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Approximate Dynamic Programming for
Constrained Piecewise Affine Systems With

Stability and Safety Guarantees
Kanghui He , Shengling Shi , Ton van den Boom , and Bart De Schutter , Fellow, IEEE

Abstract—Infinite-horizon optimal control of constrained
piecewise affine (PWA) systems has been approximately
addressed by hybrid model predictive control (MPC), which,
however, has computational limitations, both in offline design and
online implementation. In this article, we consider an alternative
approach based on approximate dynamic programming (ADP),
an important class of methods in reinforcement learning. We
accommodate nonconvex union-of-polyhedra state constraints
and linear input constraints into ADP by designing PWA
penalty functions. PWA function approximation is used, which
allows for a mixed-integer encoding to implement ADP. The
main advantage of the proposed ADP method is its online
computational efficiency. Particularly, we propose two control
policies, which lead to solving a smaller-scale mixed-integer linear
program than conventional hybrid MPC, or a single convex
quadratic program, depending on whether the policy is implicitly
determined online or explicitly computed offline. We characterize
the stability and safety properties of the closed-loop systems, as
well as the suboptimality of the proposed policies, by quanti-
fying the approximation errors of value functions and policies.
We also develop an offline mixed-integer-linear-programming-
based method to certify the reliability of the proposed method.
Simulation results on an inverted pendulum with elastic walls
and on an adaptive cruise control problem validate the con-
trol performance in terms of constraint satisfaction and CPU
time.

Index Terms—Approximate dynamic programming (ADP),
constrained control, piecewise affine (PWA) systems, reinforce-
ment learning (RL).

I. INTRODUCTION

A. Backgrounds

THERE has been an increasing interest in control of
piecewise affine (PWA) systems due to their capability

of representing hybrid models and approximating nonlinear
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dynamics [1]. Many practical control problems can be mod-
elled as PWA systems with constraints, including emergency
evasive maneuvers [2], robotic manipulation that has multi-
contact behaviors [3], and traffic control [4]. PWA systems
are a special class of switched systems where the subsystem
in each mode is affine and the transitions are based on the
state belonging to different regions. Tractable controller design
methods for PWA systems include synthesizing piecewise
linear control laws via linear matrix inequalities [5], adaptive
control [1], and model predictive control (MPC) [5]. The
challenges of controlling a PWA system include ensuring
stability and achieving optimality guarantees [5], as well as
addressing both offline and online computational complex-
ity [3], [6]. These difficulties primarily arise from the system’s
hybrid structure and inherent nonlinearity. For suboptimal
control of PWA systems with constraints, MPC is widely
applied. However, MPC for PWA systems still faces challenges
in computational complexity [6], because it involves solving
a mixed-integer linear programming (MILP) problem. The
complexity of solving MILP MPC problems is in general
dominated by the number of integers, which is proportional
to the prediction horizon. Explicit MPC [6], an offline version
of MPC, requires solving a parametric MILP problem, which
is also suffering from computational complexity issues. These
issues make MPC only suitable for slow PWA processes or
for small scale problems [3].

In contrast to MPC, reinforcement learning (RL) can learn a
policy that minimizes a finite-/infinite-horizon cost and could
have a much lower online computational burden than MPC. In
RL, two different methodologies can be distinguished: 1) pol-
icy search [7] and 2) dynamic programming [8]. Dynamic
programming has the advantage over policy search is that it
reduces the policy optimization problem to an one-step look-
ahead problem. When applied to systems with continuous
state and input spaces, approximate dynamic programming
(ADP) has been developed [9]. In this article, we consider
approximate value iteration (VI), the most basic and direct
way to solve the Bellman equation. Moreover, we provide
comprehensive performance guarantees for stability, safety and
suboptimality of the developed ADP approach. In the context
of RL, safety can have various definitions. In this article,
we specifically address safety as ensuring that the state and
input of the system satisfy predefined constraints throughout
the entire system’s evolution after the learning process is
finished.

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/
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B. Related Work

To reduce the computational cost of MPC, two different
types of approaches have been extensively studied: 1) approx-
imate MPC and 2) RL under constraints.

Approximate MPC: Approximate MPC parameterizes a
policy and then uses supervised learning or gradient-based
methods to mimic a predictive control policy. The online
computational cost is thus significantly reduced because
approximate MPC directly computes control actions based
on the learned parameters, rather than online solving an
optimization problem. Some approximate MPC work consid-
ers linear systems, with different focuses on, e.g., stability [10]
and constraint satisfaction [11]. Some approximate MPC
approaches can handle nonlinear control problems with con-
straints, e.g., by using constraint tightening [12].

RL for Constrained Control: RL for constrained control can
be roughly categorized into two groups: 1) policy-projection
RL and 2) policy-optimization RL. For the first group, a
predictive safety filter (PSF) [13], [14] can be adopted to
modify the learned policy, which can be derived from any
RL algorithm. For PWA systems with linear constraints,
this group needs to solve mixed-integer convex problems
online [14], and as a result it is not suitable for large-scale
systems or for systems requiring fast computation. For the
second group, constrained policy optimization [15], [16], [17]
is often used. Most methods [17] consider constrained Markov
decision process (MDP) problems, in which constraints are
on expected cumulative costs. Recent developments have
been made to transform instantaneous constraints into con-
straints on expected cumulative costs. The stability property
of RL controllers for nonlinear systems has been investi-
gated recently [18], [19], [20]. Nevertheless, these references
consider unconstrained problems and do not address the
suboptimality of the RL policy.

Based on these observations, for the policy optimization
methods, one could know that no work has been done for
PWA systems, and comprehensive performance of RL-based
controllers regarding online computing convenience, stability,
and constraint fulfillment cannot be achieved simultaneously.

Performance Verification of Learning-Based Controllers: In
addition to controller design, there is some related work on
performance analysis and verification of RL or any learning-
based controllers for PWA systems, by using a learner/verifier
framework or explicitly computing the range of trajectories
in a finite horizon. However, for PWA systems with learning-
based controllers, there is currently no systematic way to
verify different properties, including practical and asymptotic
stability as well as state constraint satisfaction.

C. Methods and Contributions of This Article

In conclusion, using RL to produce a reliable-learning-based
controller for constrained PWA systems with performance
guarantees and low online computational requirements is still
an open problem. The main challenge is to concurrently
ensure the stability, safety, and efficiency of the online com-
putations. Existing work can either provide stability/safety
guarantees [13], [14], [15], [20], [21], [22] or achieve low

computational cost [23], [24]. In this article, we develop
ADP algorithms under linear and union-of-polyhedra (UoP)
constraints. We propose two formulations for the inclusion of
PWA penalties in dynamic programming, i.e., adding penalties
to the stage cost and integrating penalties into the cost-to-
go. We then present two different controllers: 1) an implicit
controller that is obtained online by solving an MILP problem
that is much more simple than the one of implicit hybrid MPC
and 2) an explicit controller that is learned offline by policy
gradient. We provide rigorous analysis on the closed-loop
stability, safety, as well as suboptimality of the controllers. We
establish a systematic, MILP-based procedure that allows us
to certify the reliability of the closed-loop system. This article
contributes the state of the art as follows.

1) This work is the first research on designing policy
optimization RL methods for constrained PWA systems.
Systematic performance analysis on the feasibility, sta-
bility, and suboptimality of the RL-based controllers is
provided. The analysis suggests several ways to employ
the proposed algorithms in practice.

2) Compared to MPC, our method exhibits a superiority in
terms of online computational simplicity. In particular,
the resulting online policy optimization problem is
either an MILP problem with significantly fewer integer
variables than the hybrid MPC MILP problem, or a
single convex quadratic programming (QP) problem.

3) We develop a mixed-integer-optimization-based frame-
work to exactly verify the stability and safety of
the closed-loop system. The framework extends the
verification techniques of [10], [25], and [26] with a
comprehensive scheme that addresses both practical and
asymptotic stability properties and the enlargement of
stable and safe regions.

II. PRELIMINARIES

Notations: Let R = (−∞,+∞), R≥0 = [0,+∞), and
R>0 = (0,+∞). The boundary of the set S is ∂S , and int(S)

is the interior of S . We utilize Ai· to represent the ith row of the
matrix A. We define the sublevel set B(J, S) for a continuous
function J : Rn → R≥0 and a compact set S ⊆ R

n as B(J, S) �
{x ∈ R

n|J(x) ≤ ρ}, where ρ = minx∈∂S J(x). Denote by 	a

the smallest integer larger than or equal to a.

A. Optimal Control of PWA Systems

Our control objective is to solve the constrained infinite-
horizon optimal control problem

J∗(x0) = min
π,u,x

{
Jπ (x0) �

∞∑
t=0

l(xt, π(xt))

}

s.t. xt+1 = fPWA(xt, ut), ut = π(xt)

xt ∈ X, ut ∈ U, t = 0, 1, . . . (1)

where we consider the discrete-time PWA system of the form

fPWA(x, u) = Aix+ Biu+ fi if

[
x
u

]
∈ Ci. (2)

In (2), {Ci}si=1 is a polyhedral partition of the state-input space
X ×U . The matrices Ai, Bi, and the vectors fi define the affine
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dynamics in the regions Ci. Including the offset vector fi allows
for the representation of an affine transformation instead of
just a linear one in each region of the state space. In (1),
u = {ut}∞t=0 = {π(xt)}∞t=0, x = {xt}∞t=0, π(·) : X → U is a
control policy, l : X×U → R≥0 is the stage cost. Besides, x ∈
X, u ∈ U are the state and input constraints.1 We assume that
the dynamics, constraints, and stage costs satisfy the following
assumption.

Assumption 1 (Dynamics): The function fPWA(·, ·) : X ×
U → X is a continuous PWA function, with X ⊆ R

nx and
U ⊆ R

nu . Besides, fPWA(0, 0) = 0.
Constraints: The state constraint set X = ⋃r0

i=1 X(i) is a
UoP, where X(i) is a polyhedron for each i = 1, . . . , r0 and
r0 is the number of polyhedra. The input constraint set U is
a polyhedron. Moreover, X × U ⊂⋃s

i=1 Ci.
Stage Cost: The stage cost is based on the 1-/∞-norm:

l(xt, ut) = ‖Qxt‖q1+‖Rut‖q2 , where q1, q2 ∈ {1,∞} and Q, R
have full column rank.

Similar assumptions can be found in other papers on
control of PWA systems, e.g., [27] and [28]. In most lit-
erature [5], [27], [28], it is usually assumed that X is a
polyhedron, while we generalize it to a UoP.

An optimal policy, denoted by π∗(·), minimizes Jπ (x0)

subject to the constraints in (1) for any initial state x0 that
makes (1) feasible. In this article, we denote by X̄ the set of
feasible initial states x0 that make J∗(x0) finite.

Assumption 2: The set X̄ is nonempty. Furthermore, for any
x0 ∈ X̄, there exists a policy π(·) such that the system (2) with
ut = π(xt), starting from x0, will reach the origin in a finite
number of time steps.

Assumption 2 is a standard stabilizability assumption for
discrete-time systems. Similar assumptions for PWA systems
can be found, e.g., [5] and [27].

For any x ∈ X , according to Bellman’s Principle of
Optimality [29], the value function J∗(·) and the optimal policy
π∗(·) satisfy the following equations:

J∗(x) = �J∗(x) � min
u∈U

l(x, u)+ J∗(fPWA(x, u))

π∗(x) ∈ arg min
u∈U

l(x, u)+ J∗(fPWA(x, u)) (3)

where � is called the Bellman operator [29]. In (3), the domain
of J∗(·) is the whole state space X , which means that the value
of J∗(·) goes to infinity outside X̄. In general, the equation
for J∗(·) in (3) may have multiple solutions. Nevertheless, it
follows from [30, Proposition 1] that J∗(·) can be the unique
solution that satisfies J∗(0) = 0 under Assumption 2.

B. Exact Value Iteration

Solving the Bellman equations is in general computationally
prohibitive for nonlinear systems. Usually, an MPC problem
with a finite horizon is solved online to approximate the
infinite-horizon optimal policy. However, computational com-
plexity also remains a hurdle in the application of MPC to
PWA systems. For the PWA system, the equations in (3),

1All the results of this article also apply to the case when there is a coupled
constraint:[xT uT ]T ∈ D with D a polyhedron in X ×U , by letting X be the
projection of D in X and by letting U be a time-varying set depending on x.

on the other hand, can be solved by using an exact VI
method [27], which solves multiple multiparametric linear
programs (mp-LPs). To motivate our ADP methods, we sum-
marize the exact VI method and discuss its limitations in this
section. The exact VI algorithm starts from an initial value
function J0(·) that is either zero in X (case 1) or a control
Lyapunov function defined on a subset of X (case 2). In case
2, the following assumption should be satisfied.

Assumption 3: A continuous and PWA control
Lyapunov function JCL(·) : XCI → R≥0 in a poly-
hedral control-invariant set XCI is available. In other
words, minu∈U,fPWA(x,u)∈XCI l(x, u) + JCL(fPWA(x, u)) −
JCL(x) ≤ 0 ∀x ∈ XCI.

Assumption 3 frequently appears in the stability analysis of
MPC [31], where JCL(·) is chosen as the terminal cost and XCI
is specified as the terminal constraint. To satisfy Assumption 3,
it is sufficient to compute a stabilizing piecewise linear
feedback law on XCI, and then JCL(·) can be computed by
solving some nonlinear inequalities that contain 1-/∞-norm of
some linear functions [5].

With the initialization X0 = X and J0(x) = 0 ∀x ∈ X0
(case 1), or X0 = XCI and J0(x) = JCL(x) ∀x ∈ X0 (case 2),
the exact VI method iterates as follows:

Jk(x) = min
u∈U,fPWA(x,u) ∈Xk−1

l(x, u)+ Jk−1(fPWA(x, u)) (4)

for k = 1, 2, . . . Here, Xk = Pre(Xk−1) ∩ X0, where Pre(S) =
{x ∈ X |∃u ∈ U s.t. fPWA(x, u) ∈ S} is the backward-reachable
set to a set S. Even for PWA systems with polytopic state
constraints, the backward-reachable set to a polyhedral set can
be a nonconvex UoP because of the nonlinear dynamics (2),
which means that Xk, k = 1, 2, . . . can be nonconvex UoPs [6].

The resulting J∗(·) and π∗(·) are both PWA functions
sharing the same polyhedral partition of the feasible region
X̄ [27]. However, the complexity (i.e., the number of poly-
hedral regions or affine functions) of J∗(·) and π∗(·) is
exponential in both the dimension of the system and the
number of constraints in (1) [32], so that storing the affine
functions and regions of J∗(·) and π∗(·) needs a huge amount
of memory. Second, the number of mp-LPs that need to be
solved per iteration also grows exponentially with the problem
dimension. Moreover, the online implementation of [27] needs
to search which polyhedron the measured state belongs to. For
high-dimensional systems, these regions may have complex
representations. Based on these observations, it is thus nec-
essary to simplify both the procedure of solving the Bellman
equation and the control policy, by using some approximation
methods. However, the VI formulation in (4) is not suitable
for approximation because the probably nonconvex constraint
fPWA(x, u) ∈ Xk−1 leads to too complex optimization prob-
lems when using sample-based approaches.

III. VALUE ITERATION WITH PENALTY FUNCTIONS

To deal with this issue, we consider soft state constraints
by defining a penalty function P(·, ·). Suppose that each X(i)

of the UoP constraint set X = ⋃r0
i=1 X(i) has the half-space

representation X(i) � {x ∈ R
nx |E(i)

X x ≤ g(i)
X }, where E(i)

X ∈
R

m(i)
x ×nx , g(i)

X ∈ R
m(i)

x , and m(i)
x is the number of rows of E(i)

X .
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We design the penalty function P(·, ·) as the following min–
max forms:

P(x, X) = p min
i

max
{

0,
(

E(i)
X

)
1·x−

(
g(i)

X

)
1
, . . .(

E(i)
X

)
m(i)

x ·
x−

(
g(i)

X

)
m(i)

x

}
or

P(x, X) = p min
i

m(i)
x∑

j=1

max

{
0,

(
E(i)

X

)
j·x−

(
g(i)

X

)
j

}
(5)

where (g(i)
X )j is the jth element of the vector g(i)

X , m(i)
x is the

number of rows of E(i)
X , and p > 0 is the constraint violation

penalty weight. When X reduces to a polyhedron, i.e., r0 = 1,
the minimum operator in (5) will be removed.

An important property of P(·, ·) is that P(·, ·) is a PWA
function w.r.t. its first argument. This means that adding such
a penalty function into the cost function in (1) will not
change the PWA properties of the optimal value function
and the optimal policy. Note that we avoid barrier functions,
such as the logarithmic barrier function because they can go
to infinity in any compact constraint sets and will deprive
the value function of the PWA property. Besides, we do
not penalize the input constraint violation, because the input
constraints are single polyhedral constraints that can be readily
handled.

In case 2 of (4), in addition to enforcing a penalty for X,
we need to reconstruct the initial value function since JCL(·)
is undefined outside XCI. To achieve this, we need to penalize
JCL(x) for x outside XCI by finite values

Jsoft
0 (x) =

{
JCL(x), x ∈ XCI
JCL(z̄)+ P(x, XCI), x /∈ XCI

(6)

where z̄(·) is one of the optimizers of the following mp-LP:

z̄(x) ∈ arg min
z∈XCI
||z− x||∞. (7)

In (6), Jsoft
0 (·) is continuous on X , which will be

proven in Theorem 1. Based on the defined penalty
function, a VI algorithm with penalty is developed as
follows.

Algorithm 1 VI With Penalty

Output: A value function Jsoft
k−1(·) : X → R≥0.

1: Initialize the value function (option (a)) Jsoft
0 (x) ←

0 ∀x ∈ X , or (option (b)) by (6).
2: for k = 1, 2, . . . do
3: the value iteration Jsoft

k (x) ← �p,αJsoft
k−1(x) ∀x ∈ X ,

where α = 1 if option 1 is chosen, or α = 2 if option 2
is chosen, and �p,α is defined in (8) and (9).

4: If Jsoft
k (x) = Jsoft

k−1(x) ∀x ∈ X , break.
5: end for

In Algorithm 1, we consider two options for the VI, in
which we define two Bellman operators for J : X → R. The
first one used in option 1 is

�p,1J(x) � min
u∈U

lp(x, u)+ J(fPWA(x, u)), x ∈ X (8)

where lp(x, u) = l(x, u) + P(x, X). The second one used in
option 2 is

�p,2J(x) � min
u∈U

l(x, u)+ J(fPWA(x, u))+ Pk−1(fPWA(x, u))

x ∈ X (9)

where P0(x) = 0 ∀x ∈ X and Pk(x) = P(x, X) ∀x ∈ X and
∀k > 0. Since the state constraints are removed, the working
region of VI is the whole state space X . Besides, we also
consider two options [options (a) and (b)] for the initialization
of the value function. The combinations of above options result
in four different options: options 1(a), 1(b), 2(a), and 2(b).
In option 2 of the algorithm, we propose a novel scheme in
which we add a penalty into the cost-to-go Jsoft

k−1(fPWA(x, u)).
In the following theorem, we will analyze the PWA property
and continuity of each Jsoft

k (·) as well as the convergence of
the sequence {Jsoft

k (·)}∞k=0 to a fixed optimal value function in
all options. The proof is given in Appendix A.

Theorem 1: Considering Algorithm 1, if Assumptions 1
and 2 hold in option (a) and Assumptions 1–3 hold in option
(b), each Jsoft

k (·), k <∞ is a continuous PWA function on X
and the sequence {Jsoft

k (x)}∞k=0 converges point-wise to

Jsoft∗(x) = min
{ui,xi}∞i=0

∞∑
i=0

l(xi, ui)+ P(xi, X)

s.t. xi+1 = fPWA(xi, ui), ui ∈ U, i = 0, 1, . . .

x0 = x. (10)

Option 2, incorporating penalties into the cost-to-go, yields
the equivalent value function Jsoft

k (·) as option 1, which adds
penalties to stage costs. Both options can alleviate the violation
of state constraints by adding penalties to the overall infinite-
horizon cost function. Detailed comparison between options 1
and 2 is given in Section IV-C.

After the optimal value function Jsoft
k is obtained by

Algorithm 1, the control policy is implicitly determined by
the solution of the optimization problem (3) with J∗ replaced
by Jsoft

k .

IV. CONSTRAINED ADP ALGORITHM

A. Algorithm Design

Continuity of the value functions, established in Theorem 1,
is desired since it enables a universal approximation capabil-
ity [33]. With Algorithm 1, a tractable ADP approach can be
developed to approximate each Jsoft

k (·). In particular, a function
approximator (critic) Ĵk(·, θk), which is parameterized by θk,
is constructed to replace Jsoft

k (·). In each iteration k, a set Xs =
{x(i)}Nx

i=1 of state samples is collected from a compact region
of interest �k ⊆ X , according to some strategies, such as
sampling from a uniform grid and random sampling [8]. Here,
Nx is the number of samples. The update of the parameter θk

minimizes
∑Nx

i=1 [�p,α Ĵk−1(x, θk−1)|x=x(i) − Ĵk(x(i), θk)]2. The
iterative procedure stops when the difference between θk and
θk−1 is small enough. The procedure is given in Algorithm 2.

In (13) of step 8 of Algorithm 2, ρv(·) : X → R>0 is the
state relevance weighting function. In step 9, ε(·) : X → R≥0
is a tolerance function, determining whether Ĵk−1(·, θk−1) is
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Algorithm 2 Constrained Approximate VI

1: Option (a): Initialize the value function Ĵ0(·, θ0) ←
0 ∀x ∈ �0, where �0 = X in option 1(a) or �0 = X in
option 2(a).
Option (b): Initialize the value function Ĵ0(·, θ0) by

θ0 ← arg min
θ

∑
x∈Xs∩�0

ρv(x)
(

Jsoft
0 (x)− Ĵ0(x, θ)

)2
, (11)

where Jsoft
0 (·) is from (6), and �0 = X in option 1(b) or

�0 = XCI in option 2(b).
2: for k = 1, 2, . . . do
3: if option 1 is chosen, then let �k ← X and α← 1.
4: end if
5: if option 2 is chosen, then let Xk ← Pre(Xk−1) ∩ X,

�k ← Xk, and α← 2.
6: end if
7: Obtain the target value v(i)

k by

v(i)
k ← �p,α Ĵk−1(x, θk−1)|x=x(i) ∀x(i) ∈ Xs ∩�k. (12)

8: Find θk such that

θk ← arg min
θ

∑
x(i)∈Xs∩�k

ρv

(
x(i)

)(
v(i)

k − Ĵk(x
(i), θ)

)2
.

(13)

9: if |Ĵk(x, θk)− Ĵk−1(x, θk−1)| ≤ ε(x) ∀x ∈ �k ∩�k−1,
then break and output Ĵk−1(·, θk).

10: end if
11: end for

satisfactory. Both of ρv(·) and ε(·) will be designed later in
Section V-A. Besides, in practice one would also need a limit
on the maximum number of iterations.

With Ĵk−1(·, θk−1) available, a suboptimal control policy
π̂ im(x) can be implicitly determined by

π̂ im(x) ∈ arg min
u∈U

l(x, u)+ Ĵk−1(fPWA(x, u), θk−1). (14)

In step 1 of Algorithm 2, the function approximator is
initialized by regressing Jsoft

0 (·), provided that the explicit
form of JCL(·) is known. If the explicit form of JCL(·) is not
available but a stabilizing and safe piecewise linear feedback
law πPWL(·) : X → U on XCI is known, we can initialize
Ĵ0(·, θ0) as an approximation of JπPWL(·), which is also a
control Lyapunov function, by doing a policy evaluation [8].

To carry out the iterative procedure in Algorithm 2 effi-
ciently, we need to use a proper function approximator at
each iteration. Since each Jsoft

k (·) is a PWA function, it is
preferable that the candidate approximator can also output a
PWA function. Suitable choices are NNs with (leaky) rectifier
linear units (ReLUs) as activation functions, difference of two
max-affine functions, and so on. Detailed descriptions of these
function approximators are given in [34, Appendix C].

Mixed-Integer Formulations of Problems (12) and (14):
Problems (12) and (14) have similar forms. They can be
transformed into MILP problems since both the PWA system
and PWA function approximators are MILP representable,

which is shown in [10]. Here, we say a function J is MILP
representable if J can be represented by a set of mixed-
integer linear equations and inequalities containing additional
variables. As a result, we can obtain mixed-integer formu-
lations of problems (12) and (14). He et al. [34] provided
a detailed explanation of these formulations. MILP problems
can be effectively solved by using the branch-and-bound
approach [35], which is a global optimization algorithm.

Different from (12), Problem (14) is solved online. Even
through it still belongs to an MILP problem, (14) can be solved
more rapidly than a general hybrid MPC problem with a long
horizon, as (14) in general results much fewer auxiliary and
binary variables. That is one of main benefits of using RL.

Remark 1: When there are approximation errors, the con-
vergence of Ĵk(·, θk) to Jsoft* (·) is in general not guaranteed
because the infinite-horizon cost (1) is undiscounted and does
not induce a contraction property for the Bellman operator.
In general, one can add a discount factor to (1) to ensure the
convergence of the VI under approximation errors, but this
may come out the cost of weakening the stability [36].

B. Approximating Explicit Policies

Since two PWA functions fPWA(·, ·) and Ĵk−1(·, θk−1) are
coupled in (14), (14) may still have many auxiliary and binary
variables, if, e.g., a multiple-layer (deep) NN is used. As (14)
needs to be solved online, the advantage of low computational
complexity brought by ADP is not obvious. To avoid solving
complex MILP problems online, the policy π̂ im(·) can also
be represented explicitly, in which case it usually needs to be
approximated by a second function approximator (actor). The
actor is also recommended to having a PWA form since the
optimal control policy π∗(·) is PWA.

As the optimizer π̂ im(·) can be discontinuous and not
unique, instead of using supervised learning methods to train
the actor, we can directly construct a parameterized policy
π̂ex(·, ω) with parameter ω and update ω to minimize the
expectation of the objective function in (14) w.r.t. the sam-
ple distribution ds used in Algorithm 2. This results in the
following policy optimization problem:

ω∗ ∈ arg min
ω

Ex∼ds[ρπ(x)(l(x, π̂ex(x, ω))

+ Ĵk−1(fPWA(x, π̂ex(x, ω)), θk−1))]

s.t. Ex∼ds

[
π̂ex(x, ω)

] ∈ U (15)

where ρπ(·) : X → R>0 is another state relevance weighting
function to be specified later in Section V-A. Similar to the
critic, we specify π̂ex(·, ω) as a PWA approximator.

To solve (15), the policy gradient method, combined with
the Lagrangian multiplier methods [17], [24] for constraints
handling, can be employed.

The above procedures are conducted offline. Ideally, if
there are no approximation errors on both the critics and the
actor, and the penalty weight p and the number of iterations
are infinite, we have X∞ = X̄ and π̂ex(·, ω∗) = π̂ im(·).
Consequently, π̂ex(·, ω∗) will always make the system satisfy
all the constraints for the initial condition x0 ∈ X̄. However,
due to approximation errors and the finite penalty weight, the
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policy cannot always satisfy the state and input constraints. As
the input constraints are usually hard constraints, in the online
setting we project π̂ex(·, ω∗) onto U when the current state xt

is received. This results in a convex quadratic program

φ
(
uex

t

) = arg min
u∈U
||u− uex

t ||2 (16)

where uex
t = π̂ex(xt, ω

∗), and the function φ(·) : R
nu →

R
nu maps the output of the actor to its projected value.

Problem (16) can be treated as a parametric quadratic pro-
gram with the parameter uex

t . Therefore, the optimizer φ(·)
of (16) is unique, PWA [31, Th. 6.7], and also MILP repre-
sentable [10, Lemma 4]. Meanwhile, (16) defines a projected
policy π̂ex

proj(·) = φ(π̂ex(·, ω∗)) of π̂ex(·, ω∗).
Remark 2: The number of decision variables and the num-

ber of constraints in the convex QP problem (16) are not larger
than those in the MILP problem (14). It is known that convex
QP problems are P problems while MILP problems are NP
hard problems. Therefore, the consideration of the explicit
policy π̂ex(xt, ω

∗) further enhances the online computational
efficiency compared to (14).

C. Discussions on the ADP Method

Comparison Between Options 1 and 2 of Algorithm 2: The
main differences between options 1 and 2 are the training
region �k and the way each Ĵk−1(·, θk−1) iterates. These
differences lead to differences in the adaptability and efficiency
of options 1 and 2. Particularly, compared to option 1, option
2 is more efficient in sampling and can result in a better
approximation accuracy, because the working region �k in
option 2 is in general much smaller than X . We note that to
implement option 1, one should choose a region of interest for
sampling, and the region must be larger than X, so that the
constraint violation can be penalized in the critic. However, the
states that can be steered to the origin and have zero constraint
violation are all contained in X̄, which is much smaller than
X . Accordingly, in option 2, we concentrate on Xk, which
converges to X̄ as k goes to infinity.

On the other hand, option 2 needs to compute the k-step
controllable set �k (Xk) while option 1 does not. The property
and computation of Xk under the UoP state constraint is given
in [34, Lemma 1]. Therefore, for large-scale PWA systems,
if the exact computation of each Xk is computationally very
demanding, option 1 is preferable.

Comparison to RL With a Safety Filter: In the schemes
of [13] and [14], RL policies are projected onto a safe
set where both state and input constraints are considered.
That design is motivated from the fact that the policies
in [13] and [14] are derived from standard RL algorithms that
do not account for constraints. In comparison, our proposed
ADP algorithms incorporate the state constraints into the cost
function by adding penalty terms for violating the constraints.
Besides, input constraints are regarded as hard constraints in
the optimization problems (12), (14), and (16). The optimal
value function Jsoft∗(·) with penalties should be less than
or equal to the optimal value function J∗(·) of the origi-
nal constrained optimal control problem (1), as the optimal
solution to (1) is consistently feasible for the unconstrained

optimal control problem in Theorem 1. However, the potential
over-optimality may result from minor violations of the state
constraints. Therefore, in Section V we provide a tool to offline
verify the state constraint satisfaction.

V. PERFORMANCE ANALYSIS AND VERIFICATION

In this section, we will characterize the stability and safety
of the closed-loop system with the policies π̂ im(·) and π̂ex

proj(·),
and also the suboptimality properties of these policies. First,
we provide general conditions under which stability and safety
hold. These conditions can guide the parameter tuning of
Algorithm 2. Then, we give suboptimality guarantees, i.e., a
bound on the mismatch between the infinite cost of the policies
and real value functions. Finally, we develop verifiable stability
and safety conditions. We say that a closed-loop system is safe
in a set if its states and inputs satisfy the constraints for all
trajectories starting from the set.

A. Stability and Safety Analysis

First, we state a useful lemma that gives some properties of
the value function Jsoft

k (·).
Lemma 1: Consider Algorithm 1. Suppose that

Assumptions 1 and 2 hold in option (a) and Assumptions 1–3
hold in option (b).

(i) Then, there exists a positive constant γ < ∞ such that
for all k ≥ 0, Jsoft

k (x) ≤ γ l(x, 0) ∀x ∈ X̄;
(ii) there exists a finite k̄ > 0 such that ∀k ≥ k̄, we have

Jsoft
k (x)− Jsoft

k−1(x) ≤ βl(x, 0) ∀x ∈ X̄, with β ∈ (0, 1). (17)

The proof of Lemma 1 is provided in [34]. The following
theorem states the main result in this section.

Theorem 2: Consider Algorithm 2 and the proposed poli-
cies π̂ im(·) and π̂ex

proj(·). Let � be a compact subset of X.
Suppose that Assumptions 1 and 2 hold in option (a) and
Assumptions 1–3 hold in option (b). Consider the follow
conditions.

(C1): There exist a constant ζ ∈ (0, 1) and a positive integer
k such that |Ĵk−1(x)− Jsoft

k−1(x)| ≤ ζJsoft
k−1(x) ∀x ∈ �.

(C2): There exist a constant ep > 0 and a positive integer k
such that Ĵπ̂ex

proj
(x)− Ĵπ̂ im(x) ≤ epl(x, 0) ∀x ∈ �. Here, Ĵπ (·)

is defined by Ĵπ (x) � l(x, π(x))+ Ĵk−1(fPWA(x, π(x))).
As a result, we have the following.
(i) If C1 holds with k ≥ k̄ and

(1+ ζ )(1− β) > max(2ζγ, 1) (18)

where k̄, β, and γ come from Lemma 1, the closed-loop
system xt+1 = fPWA(xt, π̂

im(xt)), t = 0, 1, . . . , is asymptoti-
cally stable and safe in B(Jsoft

k−1,�) ∩ B(Ĵk−1,�).
(ii) If C1 and C2 hold with k ≥ k̄, and

(1+ ζ )(1− β) > max
(
2ζγ + ep, 1

)
(19)

the closed-loop system xt+1 = fPWA(xt, π̂
ex
proj(xt)), t =

0, 1, . . . , is asymptotically stable and safe in B(Jsoft
k−1,�) ∩

B(Ĵk−1,�).
The proof of Theorem 2 is given in Appendix B.
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Remark 3: Although Theorem 2 provides sufficient con-
ditions for stability, some of them (e.g., C1 and C2) are
difficult to verify. A method that can verify C1 and C2 in
a probabilistic way is reported in [12]. On the other hand,
Theorem 2 suggests several ways to design the parameters
and function approximators in Algorithm 2. For practical
verification of stability and safety, in Section V-C, we move
beyond using Conditions C1 and C2. Instead, we propose
an offline verification framework based on solving MILP
problems. As will be demonstrated in the case study, this
framework effectively verifies safe and stable regions.

1) All results in Theorem 2 require (17) to hold. The
left-hand side of (17) is about the residual error of
VI. It indicates that a suitable tolerance function ε(·),
which determines the stopping condition at step 9 of
Algorithm 2, could be ε(x) = etolel(x, 0), for some
etole ∈ (0, 1).

2) Condition C1 limits the mismatch between Ĵk−1(·) and
Jsoft

k−1(·), which further limits the approximation error
υi(x) � Ĵi(x) − �p,α Ĵi−1(x), i = 1, . . . , k of VI. To
make ζ as small as possible, which helps to fulfill (18)
and (19), ρv(·) in (13) could be specified by ρv(x) =
1/l2(x, 0). To understand this, we consider the state
trajectory x0, x1, . . . , xk that is generated from the
closed-loop system xt+1 = fPWA(xt, πk−t(xt)), t =
0, . . . , k − 1, where πi(·) denotes the optimizer of
�p,αJsoft

i−1. Then, we have Ĵk(x0)− Jsoft
k (x0) ≤ Ĵk−1(x1)−

Jsoft
k−1(x1) + υk(x0) ≤ Ĵ0(xk) − Jsoft

0 (xk) +∑k
i=1 υi(xk−i).

Suppose that |Ĵ0(xk) − Jsoft
0 (xk)| ≤ evl(xk, 0) and

|υi(xk−i)| ≤ evl(xk−i, 0), i = 1, . . . , k, where ev > 0,
we obtain

Ĵk(x0)− Jsoft
k (x0) ≤ ev

k∑
i=0

l(xi, 0) ≤ evJsoft
k (x0). (20)

Similar procedures can be applied to upper bound the
value of Jsoft

k (x0)− Ĵk(x0). From (11) and (13), we see
that compared to letting ρv(x) = 1, our choice of ρv(·) is
more likely to lead to a smaller ev, which can contribute
to the reduction of ζ , according to (20). Moreover, to
circumvent the singularity of ρv(·) at the origin, we let
ρv(x) = 1/(l2(x, 0)+ ρ), with a small constant ρ > 0.

3) Condition C2 requires the policy approximation error
Ĵπ̂ex

proj
(x)− Ĵπ̂ im(x) is constrained by the state cost l(x, 0)

scaled by a constant ep and that the constant ep is small
enough. Based on this requirement, we take ρπ(x) =
1/(l(x, 0)+ ρ) to make ep small.

Remark 4: Different from the existing stability results on
ADP [18], [19], [20], [37], Theorem 2 considers the effects of
state constraints. Besides, condition C1 allows us to analyze
the suboptimality of π̂ im(·) and π̂ex

proj(·), which has not been
addressed in existing research [18], [19], [20], [37].

B. Suboptimality Analysis

Based on Theorem 2, we can compute upper bounds on
Jπ̂ im(·) and Jπ̂ex

proj
(·), which are defined in (1).

Corollary 1: Consider Algorithm 2 and the proposed poli-
cies π̂ im(·) and π̂ex

proj(·). Let � be a compact subset of X.

(i) Let the assumptions in (i) of Theorem 2 hold and 2ζγ <

1. Then, for any x ∈ B(Jsoft
k−1,�) ∩ B(Ĵk−1,�), we have the

inequality

Jsoft∗(x) ≤ Jπ̂ im(x) ≤ 1− ζ

1− 2ζγ
Jsoft

k−1(x). (21)

(ii) Let the assumptions in (ii) of Theorem 2 hold and 2ζγ+
ep < 1. Then, for any x ∈ B(Jsoft

k−1,�) ∩ B(Ĵk−1,�), we have
the inequality

Jsoft∗(x) ≤ Jπ̂ex
proj

(x) ≤ 1− ζ

1− 2ζγ − ep
Jsoft

k−1(x). (22)

It is almost impossible to get an optimal control policy
from (15) due to the approximation error. However, (21)
and (22) confirm the intuition that a smaller approximation
error of the critic (and the actor) leads to tighter suboptimality
guarantees. Namely, as ζ → 0, ep → 0, and k → ∞,
we have Jπ̂ im(x) → Jsoft∗(x) and Jπ̂ex

proj
(x) → Jsoft∗(x) for

any x ∈ B(Jsoft
k−1,�) ∩ B(Ĵk−1,�). Moreover, if option (a) of

Algorithm 2 is used, Jsoft
k−1(x) in (21) and (22) can be replaced

by Jsoft∗(x) because Jsoft
k−1(x) ≤ Jsoft∗(x) ∀x ∈ X .

C. Stability and Safety Verification

As mentioned in the previous section, conditions C1 and C2
in Theorem 2 can only be evaluated statistically. Moreover,
the conditions in Theorem 2 are sufficient conditions for
Ĵk−1(·) and Jsoft

k−1(·) to be Lyapunov functions, and thus
these conditions can be conservative. Besides, sometimes only
practical stability can be ensured for nonlinear systems with
neural controllers [19]. In this section, we propose an offline
verification framework to simultaneously verify the practical
stability and safety of the system controlled by the projected
policy π̂ex

proj(·) in a deterministic manner, based on MILP. A
small adaption that verifies the asymptotic stability for π̂ex

proj(·)
and π̂ im(·) is provided at the end of this section.

The proposed verification procedure contains three steps.
Different from [25] and [26] that directly verify asymptotic
stability, for practical stability we need to first verify the
convergence of the closed-loop system to a neighborhood
containing the origin, and then verify the invariance of
the neighborhood. These will be formulated as two MILP
problems. Finally, to enlarge the inner-estimated region of
attraction, which is a sublevel set of Ĵk−1(·), the third MILP
problem will be formulated.

After implementing Algorithm 2 and (15), we have the
value function Ĵk−1(·) and the explicit policy π̂ex(·, ω∗) at our
disposal. To verify the stability in any sublevel set Br1 = {x ∈
X |Ĵk−1(x) ≤ r1, r1 > 0} that is contained in X, we formulate
the following optimization problem:

a∗1 = max
x,u

Ĵk−1(fPWA(x, u))− Ĵk−1(x)+ c1l(x, 0)

s.t. u = π̂ex
proj(x), r2 ≤ Ĵk−1(x) ≤ r1 (23)

where c1 is a small positive parameter, and r2 ∈ (0, r1). If a∗1 ≤
0, we can conclude that the closed-loop system with π̂ex

proj(·)
is safe in Br1 , and that any trajectories starting in Br1 will
enter Br2 = {x ∈ X |Ĵk−1(x) ≤ r2, } in finite time. The formal



HE et al.: ADP FOR CONSTRAINED PWA SYSTEMS WITH STABILITY AND SAFETY GUARANTEES 1729

result is included in Theorem 3. If a∗1 > 0, we can reduce
the values of r1 and c1. In this way, the objective function
of problem (23) and the feasible region of x become smaller,
which will make a∗1 smaller.

As all functions in (23) are PWA and thus MILP rep-
resentable, problem (23) can be formulated as an MILP
problem.

After the trajectories reach Br2 , we need to verify that they
will always stay in Br2 , i.e., we need to prove the positive
invariance of Br2 . This leads to the second MILP problem

a∗2 = max
x,u

Ĵk−1(fPWA(x, u))− c2Ĵk−1(x)− r2 + r2c2

s.t. u = π̂ex
proj(x), 0 ≤ Ĵk−1(x) ≤ r2 (24)

where c2 ∈ [0, 1]. One can directly take c2 = 0 to minimize
a∗2. Clearly, a∗2 ≤ 0 implies the positive invariance of Br2 ,
which will be proven in Theorem 3. If a∗2 > 0, similarly we
can make r2 smaller.

However, the stable and safe region Br1 derived from (23)
and (24) is usually small, as Br1 is a sublevel set of Ĵk−1(·). In
particular, if the weights in Q on different states vary greatly,
the resulting Br1 will be rather narrow and much smaller than
the real region of attraction. It could also happen that the
evolution of the closed-loop system does not make Ĵk−1(·)
decrease at the beginning, but will drive the state into Br1 in
a finite number of time steps. Besides, in most cases we are
interested in the performance of a policy in a polyhedron (or
a UoP), rather than a sublevel set.

Therefore, we further develop the third optimization
problem that evaluates the range of trajectories of the closed-
loop system in a finite number of time steps for all initial states
in a polyhedron Xin or a UoP of interest. The problem is

Check if xt ∈ X, t = 1, . . . , N − 1 ∀x0 ∈ Xin

and if Ĵk−1(xN) ≤ r1 ∀x0 ∈ Xin

s.t. ut = π̂ex
proj(xt), xt+1 = fPWA(xt, ut), t = 0, . . . , N − 1 (25)

where N is the number of time steps and r1 is such that it
makes a∗1 ≤ 0 in (23). If (25) returns “Yes,” we can conclude
that for any initial state in Xin, the states of the closed-loop
system will satisfy the constraints from t = 0 to t = N − 1,
and the final state xN will reach the stable and safe region
Br1 computed in (23). Similar to (23) and (24), (25) can be
exactly expressed in an MILP form. If Xin is a UoP, we also
need some additional binary variables to formulate the initial
condition x0 ∈ Xin (see Appendix C of the Arxiv paper [34]).

The integration of (23)–(25) constitutes the proposed ver-
ification framework, which computes the exact evolution of
the closed-loop system. It does not need any sampling or
statistical testing procedure. The effectiveness of the proposed
verification framework is stated in the following theorem, of
which the proof is provided in Appendix C.

Theorem 3: Consider the policy π̂ex
proj(·) and the proposed

verification framework consisting of (23)–(25). If Ĵk−1(0) = 0,
a∗1 ≤ 0, a∗2 ≤ 0, and (25) returns Yes, then the closed-loop
system with π̂ex

proj(·) is safe in Xin, and any trajectory starting
from Xin will approach Br1 in at most N+	(r1− r2)γ̂ /(c1r2)


time steps and stay in Br1 thereafter. Here, γ̂ is a positive
constant independent of the initial condition.

With the results in Theorems 2 and 3, we now make
practical suggestions on how to implement Algorithm 2 and
the proposed verification framework. After the explicit policy
π̂ex(·, ω∗) is obtained, we first find r2 that makes a∗2 ≤ 0.
Then, one can use (24) to compute the safe and stable region
and then use (25) to enlarge it. If a∗2 ≤ 0 but a∗1 > 0 whatever
r1 is chosen, one needs to apply (25) with r1 replaced by r2.
The cost is that one may have to choose a large horizon N
since r2 is small. The complexity of (25) grows exponentially
w.r.t. N. If a∗1 > 0 and a∗2 > 0 no matter what r1 and r2
are chosen, one have to refine the learning process. To this
end, Theorem 2 implies that one can either: 1) increase the
number of iterations by tightening the stopping condition, i.e.,
making etole smaller, or 2) improve the approximation quality
of function approximators and restart Algorithm 2.

Remark 5: The proposed verification framework general-
izes the verification methods in [10], [25], and [26], and is an
extension of [10], [25], and [26] from linear systems to PWA
systems and from asymptotic stability to practical stability.
Specifically, if we remove (24) and (25) and fix r2 = 0,
the proposed method verifies asymptotic stability, which is
stronger than the properties in Theorem 3, and it is then similar
to the method in [25]. For the comparison with [26], we note
that to guarantee state constraint satisfaction, [26] needs to
find a positively invariant set. In comparison, Xin in (25) is
not necessarily positively invariant. Besides, (25) includes the
case when X and the searching region Xin are UoPs.

In addition, (23) can be adjusted to verify the asymptotic
stability and safety of π̂ im(·). With r2 = 0 and c1l(x, 0)

replaced by c1l(x, u), a∗1 ≤ 0 tells that Ĵk−1(·) is a control
Lyapunov function, which further validates the asymptotic
stability and safety of π̂ im(·) in Br2 .

D. Overall Design Procedure

We provide a roadmap (see Fig. 1) outlining the procedures
for implementing the proposed methods. The flowcharts within
the blue box depict offline processes, while the flowcharts
in the pink box represent online steps. After Algorithm 2
is implemented, two options can be chosen. One can either
learn the explicit policy via (15) or bypass this step. Then,
the proposed verification tool in Section V-C is used to
assess the performance of the policy. If the policy falls short
of expectations, it becomes necessary to refine the learning
process and restart Algorithm 2. After verifying the safety and
stability of the policy π̂ex(·, ω) or π̂ im(·), in the online phrase
we solve (14) or (16) to compute the control input π̂ex

proj (xt)

or π̂ im(xt) when the state measure xt is received.
The control framework involves four types of parameters:

1) the hyperparameters of the learning models for the value
function and the policy; 2) the penalty weight p; 3) the
parameter etole of the tolerance function ε(·) determining
the stopping criterion of Algorithm 2; and 4) the parameters
r1, r2, and N of the verification framework. Guidelines for
setting hyperparameters of the learning models can be found
in machine learning literature, such as [38]. The principle
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Fig. 1. Schematic of the design procedure.

for tuning r1, r2, and N has been provided after Theorem 3.
To refine the learning process, one can adjust the first three
kinds of parameters by the following steps: 1) improving
the approximation quality of the learning models by tuning
the hyperparameters or amplifying samples; 2) raising p;
and 3) increasing the number of iterations by tightening the
stopping condition (etole smaller).

VI. CASE STUDY

We validate the proposed methods on an active inverted pen-
dulum between elastic walls [see Fig. 2(a)]. We illustrate the
convergence of different options of the proposed ADP method,
the effectiveness of the verification method, as well as the
online computational advantage of the proposed controllers.

By linearizing the dynamics around the vertical configura-
tion q = q̇ = 0 and discretizing the system with a sampling
time 0.05 s, we obtain a discrete-time PWA model with
4 modes, where the system matrices are given by

Ai =
[

1 0.05
αi 1

]
, Bi =

[
0

0.05

]
, fi =

[
0
βi

]
, i = 1, 2, 3, 4

with α1 = −29.5, α2 = −14.5, α3 = 0.5, α4 = −24.5,
β1 = −3.3, β2 = −1.5, β3 = 0 and β4 = 2.5, and where the
partition {Ci}4i=1 is given by C1 = {(x, u) | [1 0]x ≤ −0.12},
C2 = {(x, u) | −0.12 ≤ [1 0]x ≤ −0.1}, C3 = {(x, u) |
−0.1 ≤ [1 0]x ≤ 0.1} and C4 = {(x, u) | [1 0]x ≥ 0.1}. The
detailed description of the system is given in [34].

The inverted pendulum system is supposed to satisfy the
constraints [−0.15 − 1]T ≤ x ≤ [0.15 1]T and −4 ≤
u ≤ 4. The stage cost is l(x, u) = ||diag([20 1])x||∞ +

||u||∞. The overall control objective is to solve the infinite-
horizon optimal control problem (1). The offline procedure for
computing the proposed control policies π̂ im and π̂ex includes
solving several optimization problems. In particular, imple-
menting Algorithm 2 requires solving the MILP problem (12)
and the nonlinear regression problem (13). Computing π̂ex

requires solving the policy optimization problem (15). Besides,
the verification step contains solving three MILP problems
(23)–(25).

Starting from a zero value function and after 10 iterations,
the closed-loop behavior of the system with π̂ex

proj(·) is illus-
trated in Fig. 2(c) and (d). Fig. 2(c) plots the trajectories of
the closed-loop system (controlled by π̂ex

proj(·)) starting from
some vertices of X̄ in the state space, while Fig. 2(d) displays
the time-domain responses corresponding to the state-space
trajectories of Fig. 2(c). Although states starting from these
vertices in general have the largest J∗(·) in their neighbors,
and thus they are the most difficult to regulate to the origin,
they converge rapidly under π̂ex

proj(·). Meanwhile, the state
constraints could be slightly violated: the trajectory depicted
by the purple curves violates the constraints by about 5
percent. To avoid this, one can tighten the state constraints.
The dashed purple curve describes the trajectory starting from
the purple vertex with 10 percent constraint tightening.2 We
can observe that constraint violation is avoided.

The optimal value function J∗(·) is computed by the MPT3
toolbox [39] in 9.6 h. The learning processes of different
versions of Algorithm 2 are compared in Fig. 2(b), in which
the mean square errors between Ĵk−1(x(i), θk) and J∗(x(i)) are
depicted. The value function approximation in option (b) has
a much faster convergence rate than that in option (a), and
option 2 results in lower approximation errors than option 1.
The accelerated convergence rate in option (b) is mainly
attributed to its initial value function approximation Ĵ0(·, θ0)

being considerably closer to Jsoft∗(·) compared to option (a).
The ultimately reduced approximation errors in option 2 likely
stem from a more densely sampled state space.

The conditions for the stability and safety of the policy
π̂ex

proj(·) are verified in Fig. 2(e). Fig. 2(e) depicts the safe and
stable regions that are analyzed by the proposed verification
framework. The input constraints are always satisfied in the
simulation because the optimization problems (14) and (16)
contain the input constraints as hard constraints. The blue
region represents Br1 , which is computed by (23) with r1 =
18, c1 = 0.1, r2 = 3. We note that for some states in Br2 ,
which is colored red, the objective function in (23) becomes
positive, so the verification method in [25] fails. However, (24)
outputs a negative a∗2 with c2 = 0.1, which means that any
trajectory of the closed-loop system starting from Br1 will
reach in the neighborhood Br2 containing the origin in finite
number of time steps. Furthermore, the safe and stable region
Br1 is enlarged to Xin (the yellow region) by (25) with N = 3.
However, we observe that the verified safe and stable polytope
Xin may be conservative compared to our trajectory simulation

2We leverage a backtracking strategy to incrementally increase the con-
straint tightening factors until the safety performance is successfully verified
by our proposed verification method.
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Fig. 2. Simulation results. (a) Inverted pendulum with elastic walls. (b) Learning process of the ADP algorithm with different options. (c) Closed-loop
trajectories. The shaded region is X̄. (d) Time-domain system responses. (e) Safe and stable regions verified by the verification framework. (f) Statistical
analysis of different methods regarding CPU times. (g) Closed-loop trajectories under UoP state constraints. (h) Time-domain system responses under UoP
state constraints.

in Fig. 2(c). Suppose that Xin � {x ∈ R
nx |EXinx ≤ gXin}. The

conservatism is primarily attributed to the naive choice of EXin .
Practical strategies to mitigate this conservatism involve using
a UoP Xin and extending the horizon N.

We compare the CPU time of running the ADP-based
controllers, hybrid MPC, explicit MPC computed by the MPT3
toolbox, nonlinear MPC that uses the nonlinear model, action-
governor RL in [14], and the PSF in [13]. The horizons of
MPC and the PSF are taken as 8. The implementation of
hybrid MPC and the PSF requires to solve an MILP problem.
In comparison, for π̂ im(·) with the value function approximator
chosen as the ReLU NN (or the difference of two max-affine
functions that has 15 and 5 terms in the first and second
max blocks, respectively), one should solve a smaller MILP
problem than the ones of hybrid MPC and the PSF. For
statistical analysis, we randomly select 100 initial states and
run the system for 50 time steps. According to the results
in Fig. 2(f), the computation of π̂ex

proj(·) requires the least
amount of CPU time, which is around 2.2 × 10−6 s per
time step. Besides, π̂ im(·) performs better than hybrid MPC,
explicit MPC, action-governor RL, and PSF, regarding online
computation time, both when using the ReLU NN (about
0.028 s) or the difference of two max-affine functions (about
0.026 s) for value function approximation.

We further consider the case when the state constraints are a
UoP, namely, x ∈ X(1)∪X(2) with X(1) = {x|[−0.15 −1]T ≤
x ≤ [0.15 1]T} and X(2) = {x|[ − 0.08 −1.5]T ≤ x ≤
[0.08 1.5]T}. After implementing option 2(a) of Algorithm 2
in 10 iterations, the trajectories of the closed-loop system
with π̂ex

proj(·) starting from some vertices of X̄ are plotted
in Fig. 2(g)–(h), from which one can find that the proposed

scheme is still valid even when the state constraints are a
UoP.

Besides, a case study on a centralized adaptive cruise
control problem, which contains a 6-D PWA system with
8 modes, is provided in [34]. We train the proposed policies
π̂ im(·) and π̂ex

proj (·) using ReLU neural networks with various
sizes. These policies are compared with MPC and the PSF
in [13]. Performance metrics, including CPU time, total cost,
and safety rate are considered. The results indicate that the
proposed policies ensure the safety of the system with a 99%
probability, and their total costs are only 5% to 10% higher
than the MPC total costs. Besides, the average CPU time for
π̂ex

proj (·) is about 8 × 10−4 s, significantly lower than that of
both MPC and the PSF, which operate on the scale of 0.1 s.

VII. CONCLUSION AND FUTURE WORK

We have proposed an ADP control scheme to deal with
infinite-horizon optimal control of PWA systems subject to
linear and UoP constraints, based on MILP. With carefully
designed PWA penalty functions, the probably nonconvex UoP
constraints during the learning process are removed while the
PWA properties of the value functions are maintained. We have
formally analyzed the PWA properties and continuity of the
value function, as well as the closed-loop stability and safety
under the approximation errors. We have also designed an
offline verification tool to make the proposed method reliable.
Simulation results show that the ADP-based policies are near-
optimal, and require much less online computational effort
than conventional hybrid MPC. The limitations of the proposed
ADP method are threefold. The performance of the policies
depends heavily on the approximation accuracy of value
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functions. Second, our method does not scale well to high-
dimensional problems due to the dramatic growth of sampling
complexity. In addition, our method is limited to the cases
involving UoP state constraints and linear input constraints.
Therefore, topics for future work include eliminating the
reliance on value function approximation, exploring more
efficient sampling strategies, and considering general convex
multitime-step constraints.

APPENDIX A
PROOF OF THEOREM 1

The proof contains three parts.
1) Convergence of the VI Sequence in Option

1: Option 1(a): For the nonlinear paramet-
ric problem in (8), U is closed, and the set
{u ∈ U| Jsoft

k (x) = l(x, u)+ P(x, X)+ Jsoft
k−1(fPWA(x, u))} is

nonempty for any x in X . Then, according to [40,
Th. 4.2.1], Jsoft

k (·) is lower-semicontinuous on X . Hence,
{x ∈ X |Jsoft

k (x) ≤ λ} with λ ∈ R are closed. As lp(·, ·) and
fPWA (·, ·) are continuous on X × U , the set Uk(x, λ) = {u ∈
U| l(x, u) + P(x, X) + Jsoft

k−1(fPWA (x, u)) ≤ λ} is closed and
thus compact for all x ∈ X , λ ∈ R, and k ≥ 1. Therefore, the
compactness assumption in [30] is satisfied and {Jsoft

k (·)}∞k=0
converges point-wise to Jsoft∗(·) [30, Proposition 2].

Option 1(b): We define J∞0 (x) =
{

JCL(x), x ∈ XCI

∞ x /∈ XCI
. The

point-wise convergence of the VI J∞k (x) = �p,1J∞k−1(x) to
Jsoft∗(x) is always guaranteed by [30, Proposition 2] since
J∞0 (x) ≥ Jsoft∗(x) ∀x ∈ X . By applying the monotonicity of
the Bellman operator �p,1 [29], we get the convergence of the
VI sequence {Jsoft

k (·)}∞k=0 to Jsoft∗(·) in option 1(b).
2) Continuity and PWA Property of the Value Function

in Option 1: By recursively iterating (8), it is observed that
Jsoft

k (x) can be derived via the following batch approach:

Jsoft
k (x) = min

u0,...,uk−1, x0,...,xk

k−1∑
i=0

lp(xi, ui)+ Jsoft
0 (xk)

s.t. xi+1 = fPWA (xi, ui), x0 = x

ui ∈ U, i = 0, . . . , k − 1. (26)

Option 1(a): The proof of continuity follows from the proof
of [31, Corollary 17.2], because the objective function in (26)
is continuous and there is no state constraint. The proof of the
PWA property of Jsoft

k (·) follows a similar approach to that
of [31, Th. 17.3], with detailed exposition given in [34].

Option 1(b): We can prove that the initial value function
Jsoft

0 (·) is continuous and PWA on X (the detailed proof is
given in [34]). As a result, the remainder of the proof of
the continuity and PWA property of Jsoft

k (·) is similar to that
in option 1(a). Thus, we have completed the proof of the
statements of Theorem 1 in option 1.

3) Equivalence of the VI Sequences for Options 1 and 2:
In option 2, by iterating Jsoft

k (x) = �p,2Jsoft
k−1(x) from k to 0,

we can get the expression of Jsoft
k (·) via the batch approach

Jsoft
k (x) = the optimal value of (26)− P(x, X). (27)

From (27), we notice that the difference between the value
functions in options 1 and 2 at the same iteration is P(x, X),
which is always continuous in x and equals zero if x ∈ X.
Combining (27) with the first and second parts of the proof
proves the statements of Theorem 1.

APPENDIX B
PROOFS OF THEOREM 2 AND COROLLARY 1

For each k ≥ k̄, we define the policy πk(·) as (one of)
the optimizer(s) of �p,αJsoft

k−1(·), α = 1 or 2. For every x ∈
B(Jsoft

k−1,�) ⊆ X, according to (2)

Jsoft
k (x) = �p,αJsoft

k−1(x) ≥ l(x, πk(x))+ Jsoft
k−1(fPWA(x, πk(x)))

(28)

holds in both options. Together with (17), (28) yields

Jsoft
k−1(fPWA(x, πk(x)))− Jsoft

k−1(x) ≤ −(1− β)l(x, πk(x))

≤ −(1− β)l(x, 0) (29)

which means that for every x ∈ B(Jsoft
k−1,�), the policy πk(·)

will make fPWA(x, πk(x)) ∈ B(Jsoft
k−1,�).

Now, we show that Jsoft
k−1(·) and Ĵk−1(·) are Lyapunov

functions for the system with π̂ im(·). In particular, for any
x ∈ B(Jsoft

k−1,�) ∩ B(Ĵk−1,�), if C1 and (18) hold, we have

l
(

x, π̂ im(x)
)
+ Ĵk−1

(
fPWA(x, π̂ im(x))

)
≤ l(x, πk(x))+ Ĵk−1(fPWA(x, πk(x)))

≤ l(x, πk(x))+ (1+ ζ )Jsoft
k−1(fPWA(x, πk(x)))

≤ (1+ ζ )Jsoft
k−1(x)+ (1− (1+ ζ )(1− β))l(x, πk(x))

≤ Ĵk−1(x)+ 2ζJsoft
k−1(x)+ (1− (1+ ζ )(1− β))l(x, πk(x)).

(30)

In (30), the first inequality is true since π̂ im(·) is an optimizer
of problem (14); the second and the last inequalities hold
because x and fPWA(x, πk(x)) all in �, in which C1 holds; and
the third inequality is correct owning to (29). Since 1− (1+
ζ )(1− β) < 0, considering Lemma 1, (30) results in

Ĵk−1
(
x+

)− Ĵk−1(x) ≤ (2ζγ − (1+ ζ )(1− β))l(x, 0) (31)

with x+ = fPWA(x, π̂ im(x)). The right-hand side of (31) is
strictly negative except for x = 0 according to (18). Therefore,
we get that ∀x ∈ B(Jsoft

k−1,�) ∩ B(Ĵk−1,�), fPWA(x, π̂ im(x)) ∈
B(Ĵk−1,�) holds. Condition C1 implies that Ĵk−1(x) >

0 ∀x ∈ (B(Jsoft
k−1,�) ∩ B(Ĵk−1,�))\{0} and Ĵk−1(0) = 0.

This shows that Jsoft
k−1(·) is a Lyapunov function for the system

xt+1 = fPWA(xt, π̂
im(xt)).

Similarly to (30) and (31), we can get the following
inequality for Jsoft

k−1(·):
l
(

x, π̂ im(x)
)
+ Jsoft

k−1

(
fPWA(x, π̂ im(x))

)

≤ (1+ ζ )Jsoft
k−1(x)+ (1− (1+ ζ )(1− β))l(x, πk(x))− ζ l

(
x, π̂ im(x)

)
1− ζ

.

(32)

With (18) and Lemma 1, (32) readily leads to

Jsoft
k−1

(
x+

)− Jsoft
k−1(x) ≤

2ζγ − (1+ ζ )(1− β)

1− ζ
l(x, 0) (33)
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which means that Jsoft
k−1(·) is strictly decreasing from any

x ∈ (B(Jsoft
k−1,�) ∩ B(Ĵk−1,�))\{0} to the next state.

Combining (31) and (33), we note that B(Jsoft
k−1,�) ∩

B(Ĵk−1,�) is a positively invariant set. This together with the
Lyapunov functions Ĵk−1(·) and Jsoft

k−1(·) leads to the asymptotic
stability and safety of the closed-loop system.

Next, we analyze the behavior of the closed-loop system
with π̂ex

proj(·). With C1 and C2, Ĵk−1(x+)− Ĵk−1(x) with x+ =
fPWA(x, π̂ex

proj(x)) is upper bounded by the right-hand side
of (31) plus epl(x, 0), and Jsoft

k−1(x
+) − Jsoft

k−1(x) is also upper
bounded by the right-hand side of (33) plus epl(x, 0). Together
with (19) this results in the asymptotic stability and safety of
the closed-loop system with policy π̂ex

proj(·).
Finally, to prove Corollary 1, we note that the first inequality

in (21) and the first inequality in (22) directly follow from the
optimality of Jsoft∗(·). We derive from (32) that

1− 2ζγ

1− ζ
l
(

x, π̂ im(x)
)
≤ Jsoft

k−1(x)− Jsoft
k−1

(
fPWA(x, π̂ im(x))

)
(34)

holds for any x ∈ (B(Jsoft
k−1,�) ∩ B(Ĵk−1,�))\{0}. Consider

the trajectory x0, x1, . . . , that is generated by applying π̂ im(xt)

to system (2) at each time step t, t = 0, 1, . . . , Letting
x = xt and summing up both sides of (34) from t = 0 to
t = ∞, we get Jπ̂ im(x0) ≤ ([1− ζ ]/[1− 2ζγ ])(Jsoft

k−1(x0) −
Jsoft

k−1(x∞)). The asymptotic stability in (i) of Theorem 2
indicates that Jsoft

k−1(x∞) = 0, so (i) of Corollary 1 is proved.
Similarly, we can upper bound the stage cost when applying
π̂ex

proj(·) by ([1− 2ζγ − ep]/[1− ζ ])l(x, π̂ex
proj(x)) ≤ Jsoft

k−1(x)−
Jsoft

k−1(fPWA(x, π̂ex
proj(x))). (ii) of Corollary 1 will be obtained

by summing up the above inequality along the trajectory
controlled by π̂ex

proj(·).

APPENDIX C
PROOF OF THEOREM 3

If (25) returns Yes, the trajectories of the closed-loop system
with π̂ex

proj(·) with initial condition x0 ∈ Xin will be contained
in Br1 after N time steps. Then, for any initial state x0 ∈ Br1 ,
suppose that the tf− 1-step trajectory x0, x1, . . . , xtf−1 of the
closed-loop system with π̂ex

proj(·) is not contained in Br2 . Since
a∗1 ≤ 0, we have

Ĵk−1(xt+1)− Ĵk−1(xt) ≤ −c1l(xt, 0), t = 0, . . . , tf − 1. (35)

Summing (35) over time yields

Ĵk−1
(
xtf

) ≤ Ĵk−1(x0)− c1

tf−1∑
t=0

l(xt, 0). (36)

Meanwhile, since both Ĵk−1(·) and l(x, 0) are continuous
PWA functions on their domains, similarly to (i) of Lemma 1,
there exists a positive and finite constant γ̂ such that Ĵk−1(x) ≤
γ̂ l(x, 0) for all x ∈ X. As a result, (36) implies that Ĵk−1(xtf) ≤
r1 − ([c1r2tf]/γ̂ ). Specifying tf = 	(r1 − r2)γ̂ /(c1rr)
, which
is finite and does not depend on x0, we have Ĵk−1(xtf) ≤ r2.
Combining the above statements, we can conclude that any
trajectory of the closed-loop system with π̂ex

proj(·) starting from
Xin will reach Br2 in less than N + tf time steps. Finally, the

positive invariance of Br2 is straightforward if a∗2 ≤ 0, since we
have Ĵk−1(x) ≤ r2 ⇒ Ĵk−1(fPWA(x, π̂ex

proj(x))) ≤ r2 from (24).
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