
Bias Correction of Climate 
Simulations to Assess 
Climate Change Impacts 
on Low Flows in the Rhine 
River

Ahmed Abdelnour

M
Sc

 T
h

es
is

 D
el

ft
 U

n
iv

er
si

ty
 o

f 
Te

ch
n

o
lo

gy



 

1 
 

MSc Thesis Water Management 

 

 

Bias Correction of Climate Simulations to assess Climate 

Change Impacts on Low Flows in the Rhine River 

by 

Ahmed Adil Abdelnour 

 

To obtain the degree of Master of Science at Delft University of Technology, 

To be publicly defended on the 8th of July 2022 at 11:00. 

 

Student number: 5246563 

Project duration: 3.12.2021 – 8.7.2022 

Thesis committee:          Prof. Dr. Remko Uijlenhoet              TU Delft (Chair)   

           Dr. Astrid Blom                                TU Delft   

           Dr. Frederiek Sperna Weiland          Deltares    

           Prof. Dr. Albrecht Weerts                 Deltares - WUR 

            

 

An electronic version of this thesis can be found at:  

The cover photo is obtained from: https://www.flickr.com/photos/bballandephotographe/34006942002 

 

  

 

 

 



 

2 
 

Preface 

The world is experiencing unprecedented challenges due to climate change, that in turn has 

jeopardized water uses worldwide. This poses the need for proactive water management strategies 

that help in alleviating these issues and making the world more sustainable. I have tried my best to 

utilize my interest in modelling and programming to reflect upon one of these global challenges in 

this project.  

I have learned so much in the past seven months from my supervisors from TU Delft and Deltares. 

Special thanks go to Remko for chairing my committee and for the critical inputs. I also want to 

thank Astrid for teaching me how to look at things from a different perspective and summarize the 

message of this work in a clear manner. Thanks to Albrecht for helping me with the setup of the 

Rhine model and to his fruitful suggestions during our biweekly meetings. Finally, I would like to 

thank Frederiek for being my daily supervisor, her extremely positive attitude and helping me with 

every issue that I have encountered during the project. It has been a true pleasure to be guided by 

the four of you during this journey! 

My time at TU Delft has come to its end, a journey that went quite quickly. I made many friends and 

enjoy memorable experiences. Although I have done most of my courses online in the first year, I 

got to do a lot of things during the second year; being part of the Global initiative and the AWC, 

doing my internship at WEP and my graduation project in collaboration with Deltares. 

Aside from technical aspects, I would like to dedicate this work to my wonderful parents (Ghadda 

and Adil). Thank you for being my role model, always believing and helping me in becoming a better 

person. I also want to emphasize my gratitude to my siblings (Ayman, Alaa and Nour). Thank you all 

for the endless support and making this journey bearable while being far from home! 

 

Ahmed Adil, 

Delft, July 2022. 

 

 

 

 

 

 

 

 

 

 



 

3 
 

Abstract 

Regional climate models (RCMs) simulations are used in hydrological (climate-change) impact assessment 

studies. However, RCMs exhibit noticeable deviation from observation, and can show large variation in 

ensemble projections (biases). The objective of this study is twofold, first to assess the robustness of two 

high-skill bias-correction methods; empirical quantile mapping (QM), and scaled distribution mapping 

(SDM) in improving the hydrological modelling of the Rhine basin. The second is to assess the potential 

impacts of climate change on low flows at Lobith based on RCP8.5 scenario. The two correction methods 

are applied to correct the systematic bias from five climate datasets from the Coordinated Downscaling 

Experiment in Europe (EURO-CORDEX) covering the Rhine domain, using high resolution gridded datasets 

(1 km2) spanning from 1979 to 2019. 

The bias-corrected simulations from the hydrological model provided more accurate discharge estimates 

than the wet biased simulations, with an average error of less than 100 m3/s at Lobith. The correction 

methods are also capable of correcting unprecedented temperature and precipitation values, making them 

useful in climate assessment studies in the Rhine river. However, it appears that the accuracy of the bias 

correction depends on the parent GCM, performance of the raw RCM and the skill of the hydrological 

model in estimating discharges at the point of interest. In addition to that, the drizzling effect could not be 

reduced using these methods.   

Noticeable climate change impacts at Lobith are found using the bias-corrected projections. These 

projections suggest that low flows are going to be more frequent and longer in the coming 38 years. 

Unprecedented discharges (< 700 m3/s) are projected to occur at least 50 times between 2020 - 2060. This 

is coupled by a decrease in the long-term mean annual flow by 100 m3/s and a slight shift in the seasonality 

of low flows (2 weeks shift). 

The general hydrograph at Lobith is set to change due to climate change for the period (2020 – 2060), with 

relatively higher discharges from early June to end of August followed by relatively lower discharges in the 

last four months of the year. Water levels are projected to decline in average by 20 cm (early June to the 

end of August) and increase in average by 30 cm (end of August till to end of December). The study 

recommends the need of combining bias correction, the feedbacks in the climate system (land use changes) 

and climate adaptation strategies to study these effects further. 
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Nomenclature 

 

Abbreviation Actual name 

GCM 

RCM 

SDM 
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ERA-5 

HYRAS 

E-OBS 

REA 

Wflow_sbm 

ClimWIP 

ST-REA 

QM 

KNMI 

SMHI 

DMI 

CNRM 

IPSL 

DSST 

CDO 

SPI 

General Circulation Model 

Regional Circulation Model 

Scaled distribution mapping method 

Deutscher Wetterdienst 

fifth-generation reanalysis data for global climate and weather 

High-resolution grid observational datasets 

Observational dataset in Europe 

Reliability Ensemble Averaging 

Wflow simple bucket model 

Climate Model Weighting by Independence and Performance 

Spatiotemporal reliability ensemble averaging 

Quantile mapping method 

Royal Netherlands Meteorological Institute 

Swedish Meteorological and Hydrological Institute 

Danish Meteorological Institute 

Centre National de Recherches Meteorologique 

Institut Pierre Simon Laplace 

Differential split sample test 

Climate Data Operators 

Standard precipitation index 
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1| Introduction 
 

More severe impacts of climate change were witnessed in the recent decades on the regional and global 

scales, and of course Europe is no exception (IPCC, 2021). The world is prone to more frequent, and more 

extreme climate events (Sutton and Hawkins, 2020). The hydrological cycle has been severely disrupted by 

having higher temperature and emission rates, which led to noticeable changes in the timing and magnitude 

of floods and droughts (Lobanova et al., 2018).  

The Rhine river is one of the major rivers in Europe, originating in Switzerland and flowing into in the North 

Sea after flowing through the Netherlands. The river has been severely impacted by the effects of climate 

change in the recent decades, most notably by long drought events (Christodoulou et al., 2020), experiencing 

the last event in 2018.  

According to Hirabayashi et al., 2008 the Rhine is one of the rivers that are set to witness more extreme 

drought conditions despite having an increase in annual precipitation. Droughts abrupt the entire stability of 

the Rhine catchment and endanger all the associated water users. The Rhine is crucial for many services within 

the Netherlands, to name a few examples; the Rhine and the Meuse provide more than 40 % of the drinking 

water (Sjerps et al., 2017), it is the most densely navigated shipping route across Europe and creates an annual 

navigation turnover of more than 5 billion euros (CCNR, 2020). There is a need for adaptive water 

management strategies that cater for all possible scenarios that may occur in the future to preserve the Rhine 

River.  

1.1 The Motive: inconsistency with reality 
To assess the potential impacts of these drought events on the Rhine catchment, general circulation models 

(GCMs) serve as a tool to foresee the future and plan accordingly. GCMs are numerical models with different 

emission scenarios that consider the governing physical processes in the atmosphere, ocean, land, and 

cryosphere. However, they provide this information at a very coarse scale (100 − 600 𝑘𝑚𝑠), which makes it 

difficult to use their simulations in evaluating effects at the regional scale. To overcome this issue, scientists 

use these GCMs as a boundary conditions at the regional level to force regional climate models (RCMs) 

(Sørland et al., 2018), i,e, dynamical downscaling.  

RCMs simulations are widely used in impact assessment studies (Warnatzsch and Reay, 2019), as they have 

proven to give quite reasonable results compared to GCMs. Nonetheless, this is not always the case, as in 

many studies some RCMs have proven to have a lot of systematic biases (errors), giving very high or very low 

values when compared to the actual observations at the regional scale (Sørland et al., 2018; Pfeifer et al., 

2015).  

The presence of these biases in RCMs is caused by different reasons, for example because of the 

parameterization of the physical process of earth’s climate in the parent GCM, the boundary conditions during 

the downscaling procedure and the applied statistical downscaling method (Reiter et al., 2018; Zhao et al., 

2017; Kim et al., 2016). 

Many users of the climate data (climate simulations) have demanded some form of bias correction (Glahn 

and Lowry, 1972). Over the recent years many bias correction methods have been developed, resulting in 

making bias correction a fundamental step in climate impact research (Lafon et al., 2013; Teutschbein and 

Seibert, 2013). There have been a lot of efforts in demonstrating the applicability of bias correction methods 
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in many catchments worldwide, but there are not many on the Rhine (Terink et al., 2010; Teutschbein and 

Seibert, 2013; Enayati et al., 2021; Pierce et al., 2015; Shrestha et al., 2017). 

This research tries to assess if there is any added value in applying bias correction methods to climate 

simulations in the context of modelling low flows in the Rhine. In addition to whether the corrected 

projections can be used in real world climate adaptation and mitigation strategies.  

1.2 Conceptual background 
One may wonder how you can correct the bias (systematic error) in the future considering that we are not 

yet able to foresee. The simple answer is that we cannot fully do that. However, in the context of climate 

research, RCM simulations are thought of as from a time-dependent multivariate probability distribution 

varying in space and time (Maraun, 2016), i.e., due to randomness. The randomness is caused by the stochastic 

generators applied to the GCMs during the dynamical downscaling procedure to create the RCMs (Thompson 

and Sieber, 2012). This assumption is used to bring the probability distribution functions of future climate 

simulations closer to that of the historical observations, by mathematically manipulating the mean, variance, 

or any statistical feature of the climate simulations  (Themeßl et al., 2012; Hempel et al., 2013). In simple terms, 

bias correction methods use historic observations to correct future projections based on statistics.   

Bias correction can help to overcome some the embedded errors within climate simulations, when evaluating 

it from a hydrological perspective (Wood et al., 2004; Hempel et al., 2013). In operational applications, 

hydrologists improve their hydrological model by calibration and validation. Nonetheless, when forcing the 

calibrated model with climate simulations to assess future impacts, the model results may sometimes seem 

unrealistic (i.e., very high flows in a very dry region). This is where implementing bias correction is of a value 

in making climate simulations more realistic and subjective to the study area.   

The downsides of applying statistical downscaling methods in RCMs’ simulations cannot be always averted, 

because most of the current climate models cannot work on resolutions less than 10 km. However, this is not 

limiting as many methods were proposed to preserve the main features of the change signal like quantile 

mapping and scaled distribution mapping (Wood et al., 2004; Jang and Kavvas, 2015; Switanek et al., 2017; 

Lee et al., 2019). 

Another issue surrounding bias correction methods is that their working principles which conceive our climate 

as stationary (not varying with time), and that certainly not the case. Many studies have tested the applicability 

of widely used bias correction methods in preserving the change signal and extreme, and all of these studies 

concluded that simple bias correction methods cannot be relied upon and recommended using higher skill 

methods (Themeßl et al., 2013; Cannon et al., 2015; Reiter et al., 2018).  

1.3 Research scope 
In this study, two high skill bias correction (BC) methods are applied to EURO-CORDEX climate simulations 

that cover the Rhine basin: empirical quantile mapping (QM) and scaled distribution mapping (SDM). High 

skill means that they require more complicated mathematical approach, rather than just altering the signal of 

the mean or the variance of the projections by multiplying or addition. For further info regarding simple bias-

correction methods, the reader can refer to Teutschbein, and Seibert, 2012; Acharya et al., 2013; Pierce et al., 

2015; Shrestha et al., 2017. Up to the author’s knowledge, the chosen bias-correction methods haven’t been 

wrote out in the Rhine catchment, nor being tested in general against non-stationarity conditions within the 

Rhine.  

Empirical quantile mapping or quantile mapping (QM) has gained a lot of popularity over the recent decade. 

One of the reasons is it can be coupled with other bias-correction techniques (Enayati et al., 2021) or fitted 
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within an integrated framework with stochastic weather generators and copula approaches (Li and Babovic, 

2019). 

Scaled distribution mapping (SDM) is a bias correction proposed by (Switanek et al., 2017) as a replacement 

for QM, as the latter demonstrated lack of justification for introducing inflation/deflation to the climate 

change signal. SDM provided a general framework to overcome the drizzling effect imbedded within climate 

models (Chen et al., 2021). This effect cause climate simulations to produce low precipitation rates in the dry 

days, i.e. overestimating precipitation rates. 

There are other methods (besides bias correction) that are used by climate scientists to obtain a more robust 

change signal when there is a lot of uncertainty involved, known as performance-based weighting methods. 

These approaches constrain the change signal based on the ability of climate models to produce specific 

historic observations (Suh et al., 2012; Christensen et al., 2010; Chen et al., 2017; Sperna Weiland at al., 2021). 

Two performance-based weighting methods are used in this thesis, reliability ensemble averaging (REA) and 

climate model weighting by independence and performance (ClimWIP). These methods are selected for 

comparing the added value of bias correction the methods proposed by the scientific climate community to 

strengthen the change in climate signal using raw data (uncorrected).  

In hydrological modelling, bias correction methods target the climate simulations used to run hydrological 

models and they differ from the known model development procedures (section 3.1). The term model 

development procedures refer to the standard procedures used in improving hydrological models, like 

calibrating, validating, and refining the modelling framework. The hydrological model wflow_sbm (section 

3.5) developed by Deltares (van Verseveld et al., 2020) is used to model the Rhine river, examine the added 

value of bias correction, and investigate potential climate change impacts in the future. 

1.4 Research question 
The main goal of this project is to gain a better understanding of the reliability of bias correction methods in 

modelling low flows in the Rhine river and assess future climate impacts at Lobith. The main research question 

to achieve this objective is: 

‘Can the impact of climate change on low flows of the Rhine river reliably be assessed at Lobith using bias 

corrected EURO-CORDEX projections to 2060?’ 

This question is addressed by answering five sub-questions which are deemed to cover most of the critical 

issues, within the context of impact assessment studies in hydrology.   

▪ How do bias (un)corrected simulations perform compared to the actual flows measured at Lobith 

when using wflow_sbm? 

▪ How do the incorporated bias correction methods account for non-stationarity and preserve the 

climate signal of the RCMs at Lobith? 

▪ How do bias-corrected simulations perform compared to uncorrected simulations when applying 

performance-based weighting techniques described in Sperna Weiland et al., 2021 using the chosen 

EURO-CORDEX ensembles? 

▪ What will the impact of climate change be on low flows in the Rhine river when projecting to 2060 

(mid-future) after applying bias correction? 

▪ What are the water levels corresponding to the bias-corrected future flows at Lobith? 
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1.5 Reader guide 
The study area and data are discussed in chapter 2. The applied methods are described in chapter 3.  

Chapter 4 contains the results derived from these methods. These results are then discussed in chapter 5. 

The conclusions drawn from this research project along with further recommendations are described in 

chapter 6. 
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2| Area Description and Data 
The study area is discussed first in section 2.1. The datasets used in this research are then mentioned in 

section 2.2.  

2.1 Study Area 

2.1.1 The Rhine 

The Rhine flows through Switzerland, Germany, Austria, France, Liechtenstein, and the Netherlands. It serves 

a population of more than 50 million people who are heavily relying upon. The largest water withdrawals of 

magnitude by Germany, the Netherlands, and France (Wieriks et al., 1997). Many modifications are introduced 

in this river with the aim to provide arable land, control flooding, and ensure navigable ways. The river is 

protected by the convention on the protection of the Rhine (CPR) by all countries sharing the Rhine basin.   

Agricultural area (arable land and pastures) constitutes about 50 % of the entire land use within the Rhine 

basin area, followed by forests (31.7 %) and urban areas (8.8 %) (this includes 50 cities of more than 100,000 

residents). The rest of the land use is distributed between natural grassland (4.1 %), freshwater bodies (2.6 %), 

sparsely vegetated areas (2 %), and finally wetlands (0.2 %) (Uehlinger et al., 2009). The average discharge of 

the Rhine river is about 2300 [m3/s] (Uehlinger et al., 2009), and the basin has a total area of 180000 [km
2
]. 

The average annual rainfall within the entire basin is about 800 [mm/year]. 

Table 2-1: Land use classification in the Rhine basin 

Land use class Share (%) 

Agricultural areas 50 

Forests 31.7 

Urban areas 8.8 

Grassland 4.1 

Freshwater bodies 2.6 

Sparsely vegetated areas 2 

Wetlands 0.2 
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Table 2-2: General meteorological characteristics of the Rhine basin 

Characteristic Value 

Annual rainfall 487 - 1098 [mm] 

Average Daily evaporation 0.5-3.75 [mm] 

Mean summer temperatures 17 ℃ 

Mean winter temperatures 0.725 ℃ 

Total area  ~ 180000 [km
2
] 

Average discharge ~ 2300 [m3/s] 

 

Figure 2.1 illustrates how the Rhine river is distributed between the tributary countries (Strahler order >= 5) 

from Switzerland to the Netherlands.   

 

 

 

Figure 2-1: Elevation map and main tributaries of the Rhine basin 
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2.1.2 Lobith 

Lobith is a Dutch village situated within the province of Gelderland. This village is approximately 4 km 

downstream of the German-Dutch border, the Rhine enters the Netherlands at Lobith. Lobith is considered 

the downstream point of the Rhine catchment before the bifurcations that prolong until the North Sea.  

Flow statistics at Lobith have been used in many studies for discharge and extreme value analysis and form 

the basis for policy making on flood protection and low flows in the Netherlands (Hegnauer et al., 2014; 

Sperna Weiland et al., 2015). Based on these studies, Lobith is chosen to reflect on the potential future impacts 

of climate change in the Netherlands.  

 

Figure 2-2: Location of Lobith within the Rhine basin

2.2 Data 

2.2.1 Observations 

The observational dataset is used to apply the bias correction methods. The dataset combines three 

meteorological variables: precipitation, temperature, and evaporation. Each one of these meteorological 

observations is selected from a different dataset. The three meteorological variables and their corresponding 

datasets are discussed in the following section. 

Precipitation 

The HYRAS dataset covers the entire Rhine catchment at a very fine grid resolution of 1 km2, from the 1st of 

January 1979 till the 31st of December in 2019. HYRAS stands for High-resolution observation grid 
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observational datasets and it has been developed and maintained by the DWD1 (German Meteorological 

Service). HYRAS contains a variety of meteorological variables. For this project only precipitation is used, for 

running the hydrological model used in this study to model the Rhine basin (section 3.5).  

The daily (1 km x 1km) precipitation grids are created based on more than 6100 precipitation stations 

distributed within the Rhine basin. This is done by applying the REGNIE (translated from German to 

‘regionalized precipitation amounts’) method and validating it using multiple methods to account for 

seasonal- and spatial-errors. The REGNIE method is a combination of multiple linear regression and inverse 

distance weighting methods that consider orographical conditions (Rauthe et al., 2013; Van Osnabrugge et 

al., 2017).  

Figure 2.3 shows the distribution of these stations within the Rhine in 1961 and 1991, the highest differences 

can be seen in the eastern parts of Germany and in most of Switzerland. The figure also identifies the weather 

stations in the Rhine basin used to generate the HYRAS dataset.  

 

Figure 2-3: Number of gauging stations considered in creating the HYRAS dataset by DWD.

 

 
 

1 DWD: Deutscher Wetterdienst in German language. 
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Figure 2-4: An example of the HYRAS precipitation dataset at 11/04/1979. 

Temperature  

Temperature was obtained from E-OBS. E-OBS is the observational dataset in Europe. It is an interpolated 

gridded observational dataset created using ECA&D (European Climate Assessment and data). It has a spatial 

resolution of [0.1
ο
 X 0.1

ο≅12 x 12 km
2
] and a daily temporal frequency. The temperature is expressed in  [Cο]. 

More information on how the dataset is created, and how it compared to other dataset can be found in (Klok 

and Klein, 2009; Cornes et al., 2018). Central Europe region is known for having the highest station density across 

all Europe, indicating a higher level of reliability to this dataset. For obtaining the hydrological model simulations 

the temperature data were downscaled to 1 km grid resolution using a DEM based lapse rate correction (section 

3.5). 
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Figure 2-5: E-OBS temperature dataset at 11/4/1979. 

Evaporation 

The evaporation dataset considered in this project are calculated based on the Makkink evaporation formula 

(Makkink, 1957) applied to the ERA5 inputs (appendix I). ERA5 is the fifth-generation reanalysis data for global 

climate and weather, which is developed by the ECMWF (European Centre for Medium Range Weather 

Forecasts). ERA5 is hourly data with a grid resolution of [0.25
ο
 X 0.25

ο
 ≅30 x 30 km

2
], and spans from 1979 until 

now. The chosen period is between (1979 – 2019) to match the timing available in the used HYRAS and E-OBS 

datasets. 

The reason for choosing Makkink evaporation is because the Royal Netherlands Meteorological Institute (KNMI) 

is also documenting its evaporation based on the Makkink equation. This is necessary to ensure that this research 

is following the local context of the Netherlands and the Rhine Basin.  
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Figure 2-6: Downscaled ERA5 Makkink evaporation at 11/4/1979. 

Observed Discharges 

An observed discharge timeseries that spans for more than 100 years (1901 – 2019) at Lobith is used (Deltares, 

2022). These discharge datasets were created by translating the measured water levels at Lobith into discharges. 

These daily discharges were obtained by averaging the 23-hour values from (0:00 hour till 23:00 hour). The final 

product after these procedures is daily discharge values expressed in (m3/s). Observed flows at Lobith are 

fundamental for the steps described in the methods section. Part of the dataset is shown in the figure below, 

within the reference period considered in this project (1979 – 2018). 
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Figure 2-7: daily Observed discharges at Lobith for the period [1979 - 2018]. 

Additional Discharge data 

For the method described in appendix (X), a discharge time series for more locations than Lobith are required to 

perform the calculations and compute the spatial and temporal weights within the Rhine basin. The chosen 

locations are Cochem, Kaub, Basel, Maxau, Worms, Koeln, and Andernach. This dataset spans from [1979 – 2000] 

for seven regions located within the Rhine basin (Deltares, 2022). The reason for choosing these locations is 

because they are distributed within the Rhine basin and their timeseries is more than 20 years, which is the 

minimum period for climate related studies.  
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Figure 2-8: Daily discharge data for additional locations [1979 - 2000] 

EURO-CORDEX 

The Coordinated Regional Climate Downscaling Experiment (CORDEX) has been initiated to transfer climate 

change information to the local scale (Giorgi et al., 2009), through downscaling GCMs with RCMs.  EURO-CORDEX 

is part of the CORDEX project with focus on the European continent (Jacob et al., 2014).   

Within this study five different RCM subsets are chosen; these subsets are selected from twenty different RCMs. 

These RCMs provided the lowest error values when comparing the modelled discharges to the available 

observations in nine different catchments distributed within central Europe using wflow_sbm (Visser, R., 2020). 

The RCM subsets are reprojected from their raw resolution (0.11 degrees) to a smaller resolution (0.05 degrees) 

using the hydromt package (0.4.3.dev) developed by Deltares (Beusen, B., 2021). One possible climate change 

scenario is considered in this project, which is the Coupled Model Intercomparison Project Phase 5 (CMIP5) 

Representative Common Pathways (RCP8.5) (Riahi et al., 2011). There are two main reasons for choosing RCP 8.5; 

the first is that remaining error sources have been found to be less when using climate scenarios with a strong 

change signal (Chen et al., 2017). The second reason is that it starts to become the most realistic climate scenario 

within the available scenarios in terms of severity and greenhouse gases emissions. 
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Table 2-3: List of used climate simulations (ID refers to how these subsets are referred to in the results section). 

GCM RCM subset Period ID 

ICHEC-EC-EARTH 

ICHEC-EC-EARTH 

ICHEC-EC-EARTH 

MOHC- HadGEM2-ES 

MOHC-HadGEM2-ES 

DMI-HIRHAM5 

KNMI-RACMO22E 

SMHI-RCA4 

CNRM-ALADIN63 

IPSL-WRF381P 

  

1979 

 –  

2060  

DMI 

KNMI 

SMHI 

CNRM 

IPSL 

 

The chosen period for these projections is (1979 – 2060), the start year is chosen as 1979 to make it similar to 

the used observational dataset, while the year 2060 is chosen based on earlier research that demonstrated that 

error sources in climate models and their internal climate sensitivity remain logical when projecting to the near 

future (Chen, et al, 2020; Ehret et al., 2012; Teutschbein and Seibert, 2012). Near future refers to projecting up to 

40 years ahead. 

These climate simulations contain daily temperature rates in [K], and precipitation in [Kg/ m2 /s]. However, they 

do not directly contain evaporation. To overcome this issue the Makkink formula (Makkink, 1957) is used to 

calculate evaporation using temperature, pressure [Pa], and incoming downward shortwave radiation [W/m2] as 

inputs. Temperature had to be expressed in [Celsius] and pressure [hPa] to use the Makkink formula outlined in 

appendix I. 
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3| Methods 
Two bias-correction methods are applied to the chosen climate simulations. The two methods are discussed in 

section 3.1 in addition to showing the different mechanisms when correcting each meteorological variable. 

Section 3.2 discusses how these bias-correction methods are evaluated based on the historical experiment. The 

applied test for investigating the reliability of bias correction methods in changing climate conditions is described 

in section 3.3. The applied performance-based weighting techniques are mentioned in section 3.4. Finally, the 

hydrological model is demonstrated in section 3.5. 

3.1 Bias-Correction 

 

Figure 3-1: Typical model chain in hydrology. 

 

Figure 3.1 describes the general chain 

in modelling hydrological systems. 

The general goal of modelling is to 

predict a certain variable(s) in the 

future and use these modelled values 

in different uses (management, 

assessment, etc.). The system consists 

of three main attributes: inputs or 

forcing’s that are used by the model, 

the model that is used to generate 

predictions and the model outputs. 

Bias correction deals with inputs that 

are used by hydrological models. This 

is different from the standard 

procedures which is referred to as 

model development (calibration or 

validation). The two bias corrections 

methods adjust the simulations 

obtained (RCMs in this case).  

The type of observations used in this project are gridded datasets (see figure 2.5, 2.6 and 2.7). Each grid cell 

covers a spatial domain, this domain can be of any size and can be altered based on the user’s interest. Climate 

simulations are in the same gridded format as the observations. 

Figure 3.2 outlines the basic structure of climate simulations. The picture denoted as A, outlines the layout of 

gridded datasets, in each grid cell an average timeseries of a specific meteorological variable is stored (see 

picture B). This timeseries represents the observations at the size of the grid cell and can be of any time resolution 

(hourly, daily, monthly, etc.).  

Bias correction methods work on a general principle to correct the systematic bias, which is using the historical 

run to correct the future run (projections in this case). The actual observations and the historical climate 

simulations are both considered in the historical run, while the future climate simulations are considered in the 

future run. The reference period is the term used to refer to the historical run and the projection period refers to 

the future run. 

The correction methods utilize the working principles of climate models, as the simulations obtained from climate 

models are random variables distributed over time at each grid cell. Climate simulations shown in picture C of 

figure 3.2 can be expressed in the form of cumulative distribution function as outlined in picture D of the same 
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figure. This provide the possibility to adjust the statistical properties of climate simulations and correcting them, 

referred to as bias correction of climate simulations. Empirical quantile mapping and scaled distribution mapping 

are bias correction methods that correct future simulations based on historical observations. 

In the following subsections the two bias correction methods used in this research are discussed: empirical 

quantile mapping and scaled distribution mapping.  

 

Figure 3-2: general description of climate simulations 

3.1.1 Empirical Quantile Mapping 

Empirical quantile mapping is essentially mapping of projections probabilities based on the respective 

probabilities of the observed datasets and historical simulations. The goal of this method is to bring the 

cumulative probability distribution function of these future projections closer to that of the observations by 

adjusting it using the cumulative distribution function of the observational datasets. The general formula for 

applying quantile mapping is listed in equation 3.1. 

xc(t)MODF= ICDFOBS(CDFMODH(x(t)MODF)) (3.1) 

Where xc(t)MODF is the bias-corrected future climate simulation for the meteorological variable x at time step t. 

x(t)MODF is the raw projected (future) climate simulation for the meteorological variable x at time step t. ICDFOBs 

is the inverse cumulative distribution function derived from of the observed time series for the meteorological 

variable x at the specific grid cell. CDFMODH represents the cumulative distribution function of the raw climate 

simulation during the reference run (historical run, which is the same reference run in the observation) for x. 
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It should be noted that, equation (3.1) is applied to each grid cell within the catchment independently, which 

also considers the spatial heterogeneity within the Rhine, depending on the quality of the observational data. 

This method has demonstrated a good performance in some regions around the globe, but less so in other 

regions (Enayati et al., 2021; Reiter et al., 2018; Li and Babovic, 2019; Zhao et al., 2017).  

However, most of the available literature suggests that this method performs better when applied to sub-annual 

scales or seasonal scales (Zhao et al., 2017; Kim et al., 2016). For this reason, the general procedure described 

below has been refined, to be applied on the monthly scale.  

The following equation shows how the general empirical quantile mapping has been altered, instead of 

considering the entire time series to construct the inverse cumulative distribution, and cumulative distribution 

functions. Through this method, the projected data that’s falls within a certain month will be analysed and 

corrected based on the corresponding time series in the observation dataset. 

xc(t)MODF,  m= ICDFOBS,m(CDFMODH,m(x(t)MODF,m)) (3.2) 

Where xc(t)MODF,m is the bias-corrected future climate simulation for the meteorological variable  x at time step 

t within month m.  x(t)MODF,m is raw projected (future) climate simulation for the meteorological variable  x at 

time step t within month m.  ICDFOBS,m is the inverse cumulative distribution function derived from of the 

observed time series for x at that grid cell for month m. Finally, CDFMODH,mis the cumulative distribution function 

of the raw climate simulation during the reference run (historical run, which is the same as the used reference 

run in the observation) for x on the month m. 

The corrected simulations are then regrouped into one timeseries based on their temporal index (day, month, 

and the year) and grouped into one dataset, using the mergetime feature in CDO (Climate Data Operators 

package installed on a Linux machine).  

xcMODF=sort((xcMODF,  m1, ………, xcMODF,  m12), time) (3.3) 

An example of how this method is applied, suppose that the observation dataset and raw simulations for the 

period (1979 – 1998) are used to correct the systematic bias from the simulations for the period (1999 – 2018) 

using this method. The reference run consists of the daily observations and raw simulations that occur within the 

period (1979 - 1998), while the projected run consists of the raw simulations for the period (1999 – 2018). 

First, each dataset is divided into 12 datasets (12 month). Each dataset contains the simulations that fall within a 

specific month, the first dataset is all simulations or observations that occur within the that month (January in 

this case). In other words, for the case of observations all the observations that have occurred between the first 

of January to the 31st of January regardless of the year in which the observation took place. Meaning that all the 

observations that occur in the period (1979 – 1998) in January are listed is separate dataset, the same procedure 

is repeated in the other 11 months. The same applies for EURO-CORDEX simulations. 

Then, these future simulations are corrected from the systematic bias based on equation 3.1. After the correction, 

the 12 corrected datasets are then merged back into one dataset. This is done by CDO package in Linux.  

The CDO package can merge these 12 corrected datasets in one dataset using the mergetime feature. This 

feature sorts the corrected datasets using the associated time index for each simulation. The bias-corrected 

dataset for January contains all the corrected simulations that are associated with January, every simulation that 

occur between the first to the end of January for the period (1999 - 2019). CDO uses the full associated time 

index to sort the corrected datasets in an ascending order. 
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An example of the effect of applying this method at a specific grid cell can be seen in figure (3.3). Where the 

cumulative distribution function of the observed, raw, and future timeseries for each month are shown. In 9 of 

the 12 months the CDF of the corrected simulations is closer to the CDF of the observed dataset than the CDF 

of the raw (uncorrected) simulations. 

 

Figure 3-3: representation of quantile mapping correction on a monthly scale 

The empirical quantile mapping is used to correct the selected subsets, each subset contains the three 

meteorological variables: precipitation, temperature, and evaporation. Then, the bias-corrected subsets are used 

as inputs into the wflow_sbm model (section 3.5). There is no special consideration for each meterological 

variable like in the scaled distribution mapping. 
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3.1.2 Scaled Distribution mapping 

Prior to explaining how SDM is applied to the climate simulations, it is important to mention that correcting 

precipitation and evaporation variables using SDM depends on the fitted statistical distribution. The chosen 

distribution should be site-specific and suitable for the extremes under consideration. For correcting 

precipitation and evaporation projections gamma distribution is chosen, while for temperature correction normal 

distribution (Gaussian) is the selected distribution. 

Precipitation 

One of SDM main advantages is that it limits the drizzling effect within the climate models, while preserving the 

change signal as much as possible. To achieve this, a threshold must be set, here a threshold of 0.1 mm is chosen 

as in (Switanek et al., 2017).   

The correction of precipitation is performed using the pyCAT package, which is a climate analysis tool written in 

python and developed by Wegener Center for Climate and Global Change. However, for SDM methodology to 

be implemented, seven different steps are required to compute the bias-corrected climate simulations: 

First step is applied after setting the minimum threshold (0.1 mm), values that are lower than the threshold are 

set to zero (non-rainy days). The number of days with rain events can be distinguished from number of days 

without any rainfall event. The number of rainy days in the bias corrected future runs (RDBC) can be expressed in 

equation 3.4. The term scaling in this method, assumes that the fraction of rainy days in the future is scaled based 

on the ratio of the fraction of rainy days during the observation to the fraction of rainy days in the historical run. 

RDBC= RDMODF * (

RDOBS
TDOBS
⁄

RDMODH
TDMODH
⁄

) 

(3.4) 

TDOBS, TDMODH represent the total number of days (non-rainy days are included) in observation and the historical 

run respectively.  RDOBS, RDMODH, and RDMODF are the number of rain days in observation, historical run, and 

future run respectively. 

In the Second step, the gamma distribution is fitted to the precipitation values. The gamma distribution applied 

probability density function is described in equation 3.5. 

g(x)= 
1

β
α
Γ(α)

xα-1 e
-x

β⁄          for x >0 
(3.5) 

Where α>0, β>0 are the shape and scale parameters, g(x) is the fitted gamma distribution, x (> 0) is the 

precipitation values, and Γ(α) is the gamma function evaluated by the shape parameter.  

Then, cumulative distribution function (CDF) is constructed after fitting the probability distribution shown in 

equation 3.5. Three CDFs are obtained: the CDF of the HYRAS dataset, the raw simulation in the reference run 

and the future raw simulations in the future run. Then, these CDFs are inverted to obtain the inverse cumulative 

distribution functions (ICDFs) of the same three datasets. 

In the third step the scaling factor (SFR) is calculated by dividing the fitted raw future model run to the fitted 

historical run through the raw CDF of the future run, by using the CDFs and ICDFs obtained from the earlier step. 

SFR= 
ICDFMODF(CDFMODF)

ICDFMODH(CDFMODF)
 

(3.6) 

Where ICDFMODF and ICDFMODH are the inverse cumulative distribution function for the fitted future run and for 

the historical run of climate simulations. CDFMODF is the cumulative distribution function of the future raw simulations. 
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The Fourth step is to calculate the recurrence interval (RI) for the three runs (observation run, historical run, and 

future run). The recurrence interval (equation 3.7) is similar to how return periods are calculated in the 

hydrological context. 

RI= 
1

1-CDF
 

(3.7) 

For comparing recurrence intervals across the entire distribution, linear interpolation is performed based on the 

historical run and the observation (RIIMODH,  RI
IOBS

). This aim of this step is to compare the recurrence interval 

within the full distribution; therefore, the CDF is used for this purpose. These RI values are then used to scale the 

number of the rainy days in the future run. 

The Fifth step is to calculate the scaled recurrence interval RISCALED for the future run, through equation 3.8. This 

step is necessary to ensure that the CDF in the remaining steps is constrained between 0 and 1.  

RISCALED=max [1, 
RIIOBS* RIMODF

RIIMODH

] 
(3.8) 

Then, scaled recurrence interval is used to compute the scaled cumulative distribution function, by inverting 

equation 3.7. The result is shown in equation 3.9. 

CDFSCALED= 
1

1-RISCALED

 
(3.9) 

In the sixth step an initial array of bias corrected future values is constructed by using equation 3.10. The array 

is constructed based on the scaling factor (equation 3.6) and the scaled cumulative distribution function 

(equation 3.9).  

BCINITIAL= ICDFOBS(CDFSCALED)* SFR (3.10) 

For the final Step the bias corrected values are sorted based on their temporal index and place them as the 

modelled time series, by doing so the final bias corrected future run is constructed. This is to ensure that the 

largest bias-corrected values are placed into their original timestep.  

All the steps for correcting the precipitation simulations are listed in figure (3.4). The correction procedure is 

based on statistics. This correction method is designed for correcting climate model simulations that 

overestimate the number of rainy days and not designed for correcting climate simulations that underestimate 

the number of rainy days. For the latter case, this method will result in more underestimation of rainy days in the 

climate simulations. 
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Figure 3-4: General framework for correcting precipitation projections using SDM. 

Temperature 

Temperature correction procedure differs from the precipitation correction procedure, this is because 

temperature follows a normal distribution (Harmel et al., 2002). The procedure for correcting the systematic bias 

from future temperature simulations is described in table 3.1 (Switanek et al., 2017). 

Table 3-1: Temperature correction procedure using SDM 

Step Procedure 

1 The first step is to detrend the observed, historical run, and future run time series using the 

linear detrending method. This is to ensure the correction of the future simulations is based 

on the natural variability in the observation dataset. The suggested modifications from step 2 

to step 6 use the detrended datasets.  

2 The normal (Gaussian distribution) is fitted to all the detrended time series (observation, 

historical run, and future run). The results of this fitting are the empirical mean and standard 

deviation. Three CDFs are then constructed based on the fitted normal distribution (CDFOBS, 

CDFMODH, CDFMODF). Based on these CDFs, two inverse cumulative distribution functions are 

derived for the historical raw simulations and the future raw simulations ICDFMODH, ICDFMODF). 

3 The scaling factor (SFA) between the fitted raw future model distribution and the fitted raw 

historical distribution for each event within the future run time series is calculated. This is done 

by applying equation 3.11. Keep in mind it is different than the scaling factor for the case of 

precipitation (equation 3.6). The scaling factor for temperature is the absolute difference 

between the future run and the historical run based on the variations in the change signal of 

temperature. 

SFA=[ICDFMODF(CDFMODF) - ICDFMODH(CDFMODF)] * (
σOBS

σMODH
) (3.11) 

σOBS, σMODH are the standard deviation values calculated from the observed and raw historical 

time series. 

4 Calculate the recurrence intervals (RI) for the detrended time series (observation, historical run, 

and future run) using equation 3.12. 

RI= 
1

0.5- |CDF-0.5|
 

(3.12) 
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The reason for why it is different than equation 3.7, is to reflect on the tail’s nature in the 

normal distribution. This is not the case in the gamma distribution used for precipitation 

correction. 

5 The scaled recurrence interval (RISCALED) for the future run is used to limit the scaled cumulative 

distribution function between 0 and 1, this is necessary to ensure meaningful values. The 

recurrence intervals (RI) for the observation, historical run, and future run in step 4 (equation 

(3.12)), are then used to compute the scaled recurrence interval (RISCALED) for the future run 

using equation 3.8. 

Then final scaled cumulative distribution function CDFSCALED) is calculated by using the 

cumulative distribution function of the observations and the scaled recurrence interval 

(RISCALED) through equation 3.13. 

CDFSCALED=0.5+ |CDFOBS-0.5| * (0.5- 
1

RISCALED

) 
(3.13) 

 

6 The initial array that contains bias-corrected future run values is constructed by using equation 

3.14. The scaling factor (SFA) is the correction value after scaling the future run based on the 

available observation. 

BCINITIAL= ICDFOBS(CDFSCALED) + SFA (3.14) 
 

7 The initial bias corrected array is then sorted based on the temporal index. The result is 

modelled values that are placed on their correct timestep. The purpose of this step is to ensure 

that the largest bias-corrected temperature values are placed into their original timestep. 

The final bias-corrected dataset is formed by adding the removed trend in step 1 to the sorted 

initial bias corrected array. Equation 3.15 describes the general process 

BCFinal=Sort(BC
INITIAL

)+Trend (3.15) 
 

Evaporation 

Evaporation correction is not considered by (Switanek et al., 2017), however it is an essential part of modelling 

the Rhine river using wflow_sbm (section 3.5). The EURO-CORDEX simulations  

The reason for correcting evaporation instead of deriving it using the bias-corrected temperature, raw projected 

radiation and raw projected pressure is to prevent combining corrected variables with raw variables, to ensure a 

fair comparison between raw projections and bias-corrected projections. 

Evaporation is corrected using the same steps (gamma distribution) described in the precipitation section with 

only a minor change. This minor change is introduced because we cannot discard minimum evaporation values 

from the evaporation datasets because of thresholds, as evaporation in general depends on many other factors 

(water availability, humidity, incoming solar radiation, etc.).  

The applied bias correction procedure for correcting evaporation simulations is the same as the precipitation 

procedure with a threshold. This step is not applied through the pyCAT package because of the size of the 

datasets used in this project and setting no threshold to do the same procedure was not possible in pyCAT. To 

overcome this issue a separate python code that is written based on the same steps outlined by Switanek et al., 

2017 in precipitation correction (no minimum threshold) is used. The code combines the use of universal function 

feature (apply_ufunc) in Xarray library and Dask library to fasten computational time.  

3.2 Historical experiment  
A historical experiment refers to using the two correction methods to correct the historical climate simulations 

and assess it based on the recorded measurements.  
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The period of [1999 – 2018] is assumed to be the future run to be corrected, while the period between [1979 - 

1998] is used as the reference run to correct the future run. The choice of choosing these periods is based on 

two considerations, the first for analysing climate change impacts the minimum period is 20 years. The second 

factor is these methods are more tested when they have lesser observations (i.e., using 30 years to correct 10 

years is thought not to be an accurate representation for this test, as 10 years is lesser than 20 years). 

The period between (1979 – 1998) is considered as the reference run and the period between (1999 – 2018) is 

the future run. For the reference run the raw simulations (no correction) and observational datasets that fall 

within the same time are used. For the future run the raw simulations for the period (1999 – 2018) are the ones 

to be corrected. QM and SDM are applied to the same period, to ensure comparability. Table 3.2 shows the 

periods that are considered in this experiment. 

The bias-corrected and raw simulations are used to generate the modelled discharges at Lobith for the period 

(1999 – 2018). The assessment of the bias-corrected and raw simulations is based on their accuracy relative to 

the actual discharges at Lobith for the same period (1999 – 2018). This is done by comparing the average daily 

discharges for the same period (1999 – 2018). The average daily discharges for the period (1999 – 2018) are 

derived by averaging all the discharges that occur at a certain day within the 20 years period.  

Furthermore, the modelled discharges from the raw and corrected simulations are compared relative to the 

actual discharges at Lobith based using four long-term statistics. These statistics are the long-term annual mean 

flow, long-term summer mean flow, 7-day minimum flow and lengths below thresholds (appendix I).  

The actual meteorological observations at Lobith are used to investigate some of the changes in the shape of 

the hydrograph before and after the correction relative to the actual observed discharges. 

Table 3-2: Different periods in the historical experiment 

Reference run Future run 

Observed data 1979 - 1998 

Raw climate simulations 1979 - 1998 
 

Raw climate simulations 1999 - 2018 

Bias-corrected simulations 1999 - 2018 

Actual observations 1999 - 2018 
 

 

3.3 Non-Stationarity under scope 
Differential split sample test (DSST) was originally proposed by (Klemeš, 1986) to systematically assess 

hydrological model transposability. In hydrological modelling, DSST is implemented to test the robustness of a 

hydrological model in providing reasonable predictions in changing climate conditions. This is done by 

calibrating the model based on the wet periods and evaluating its performance during the dry periods. Then, 

the model is calibrated based on the dry periods and evaluated based on wet periods.  

DSST was adopted for the first time by Teutschbein and Seibert, 2013 to test the ability of bias corrections 

methods to account for non-stationary conditions. They have evaluated six bias correction methods based on 

the ability to correct annual values. To implement the DSST test, they have sorted the years from the driest to 

the wettest and then applied the correction, and vice versa. 

The variations in the annual values due to climate change is low compared to the variations in finer time 

resolutions like daily, monthly, etc. In this research, DSST is applied differently to evaluate the ability of the 



 

34 
 

empirical quantile mapping method and scaled distribution mapping method in correcting different seasons. 

Two different seasons are considered in this project: The period between June to August (known as JJA) and the 

period between December to February (known as DJF).  The selected period on which the correction is performed 

is the same period discussed in the historical experiment (section 3.2). In bias correction methods, the reference 

run is used to correct the future.  

The DSST test is applied on the JJA and DJF periods. QM and SDM are used to correct wet periods in the future 

based on dry periods in the reference run. The assessment is based on the actual observations during the same 

projected period. Therefore, the bias correction methods are applied based on periods outlined in table 3.2, the 

only difference here the focus is on seasons and not on the entire dataset. 

For the periods listed in table 3.2, the values that fall between the first of June to the end of August (JJA) in the 

observation dataset, raw and future simulations are listed in separate datasets. The same is applied for the values 

that fall between the first of December to the end of February (DJF) in the observation dataset, raw and future 

simulations (see figure 3.5). 

It is worth noting that precipitation and temperature are the only variables considered in this test. Evaporation 

is excluded because the ERA-5 Makkink evaporation dataset and the Makkink evaporation for the climate 

simulations are calculated differently.  

 

Figure 3-5: DSST for temperature, the red envelope is JJA and the light blue is the DJF period. 

For temperature, the wet period at Lobith is the winter period (DJF), while the dry period is the summer period 

(JJA). QM and SDM are used to correct wet periods (DJF) in the future based on dry periods (JJA) in the reference 

run, and vice versa. The assessment is based on the computed mean and standard deviation temperature values 

of the corrected periods relative to the actual observations during the same projected. 

For precipitation, it is hard to distinguish between the wet period and the dry period at Lobith. This is because 

the mean monthly precipitation at Lobith during the summer and winter periods from 1979 – 1998 is 2.1 mm/d 

(see figure 3.6). Therefore, the period in which the mean monthly precipitation is higher during the validation 

period (1999 – 2018) will be referred to as the wet period, while the other will be referred to as the dry period in 

the results section.   

The assessment is based on the computed mean and standard deviation precipitation values of the corrected 

periods relative to the actual observations during the same projected. 
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Figure 3-6: DSST for precipitation, the red envelope is JJA and the light blue is the DJF period. 

3.4 Performance-based weighting 
In the following subsections, two performance-based weightings are discussed: Reliability Ensemble Averaging 

(REA) and Climate Model Weighting by Independence and Performance (ClimWIP). One that evaluates the raw 

climate simulations based on the modelled discharge statistics (REA) and another that weight GCMs based on 

the meteorological variables. 

3.4.1 Climate Model Weighting by Independence and Performance 

The Climate Model Weighting by Independence and Performance (ClimWIP) is a recent method that has been 

proposed by (Knutti et al., 2017). ClimWIP assess general circulation models (GCMs) based on independence and 

performance. 

The performance assumption originates from the fact that there are many uncertainties in climate projections, 

for that it is not valid to assume equal performance weight for each GCM (Knutti, 2010).  For this reason, ClimWIP 

assigns a different weight to each GCM based on their historical performance in projecting the average change 

in a certain meteorological variable.  

The Independence assumption is because within the climate community there are many climate models share a 

similar building code (Annan and Hargreaves, 2017; Abramowitz et al., 2019). Thus, it deemed not logical to 

consider models that only perform better without accounting to the fact how they have been built.  

The merits of climate models is that they help us in perceiving different possible realities, this assumption is 

undermined by considering climate models that show high performance and have the same code in any impact 

assessment studies, while discarding models which have been built different. ClimWIP has been used in assessing 

many climate impacts assessment studies across the globe (Sperna Weiland at al., 2021; Brunner et al., 2019; 

Brunner et al., 2020). 
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The ClimWIP weights the GCMs by evaluating the accuracy of their simulated meteorological variables at a 

certain region to the actual observations at that region, while considering their independence in simulating these 

variables.  

The general weighting formula for ClimWIP method can be seen in equation 3.16.  

wi= 
e

-Di
2

σD
2

1+ ∑ e

-Sij
2

σS
2M

j ≠ i

 

 

 

(3.16) 

Where wi is the weight for GCM i, Di is the distance between the specific observational dataset and the climate 

simulations of GCM i,  Sij is the distance between GCM i and GCM j, σS is the shape parameter which stands for 

the performance criteria and σD is the shape parameter which stands for the performance criteria. 

What is meant by distance in (Di, Sij) is the error function. In the distance in the ClimWIP method is the mean 

square error (Brunner et al., 2019). The term D is the error function between observational datasets and each 

GCM i, while S is the error function between GCM i and GCM j. 

The values of σS and σD are very sensitive and they require special attention. Large σD (performance factor) values 

lead to equal GCM weights and small σD values lead to overconfident results in the performance of the GCMs. 

Small σS values indicate that all models are considered as independent and large values consider that the GCM 

model are dependent. The term dependent refers to GCMs having the same code structure   

Precipitation and temperature have been considered as the only meteorological variables to be used in deriving 

the weights of the GCMs. Evapotranspiration is discarded due to the mismatch in calculating of the Makkink 

evaporation in the observational datasets and the observations (Makkink, 1959). Additionally, four weights are 

considered for the RCMs (subset with IPSL ID is excluded from this step due to data issues). 

For the case of the Rhine, the value for σS and σD parameters are chosen based on Brunner et al., (2019) that 

applied the method over Europe. They have documented the most stable σS and σD weights that provide 

reasonable GCM weights per region in Europe. One value for parameter σS is used (0.706), while for the 

performance parameter σD a value of 0.607 for temperature, and a value of 0.831 for precipitation in the entire 

Rhine basin (central Europe) (Brunner et al., 2019).  

Based on these parameter values the weighting is performed using the ESMValTool (V2.0) in Linux (Righi et al., 

2020). ESMValTool stands for Earth System Model Evaluation Tool. It is an open source tool that provide the 

possibility of using different recipe, a recipe is a special term used in this tool to refer to the methods which are 

developed by climate scientists. The applied recipe is the (recipe_climwip_brunner_2019_med.yml) recipe, which 

is the same method proposed by (Brunner et al., 2019). 

The calculated GCM weight is then used to obtain the RCMs’ weights based on that parent GCM (the GCM on 

which the dynamical downscaling of the RCM is applied). In this project there are two parent GCMs: the ICHEC-

EC-EARTH model and the MOHC- HadGEM2-ES model. The weighting procedure is described in equation 

3.17. 

Rg,i= 
wi

ni

 (3.17) 

Where Rg,i is the weight of RCMg within GCM i and ni is the total number of RCMs within the GCM i. 
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After obtaining all the RCMs weights, these values are multiplied to their corresponding modelled discharges. 

Then, they are summed together to come with a one weighted discharge that represents the four RCMS. 

Following equation 3.18. 

QTW= ∑Qi* Mw,i

n

i

 
 

(3.18) 

Where QTW refers to the total weighted discharge, Qi is the modelled discharges for RCM i, Mw,i is the calculated 

weight for RCM i, and n is the total number of RCMs which are considered. 

The general procedure on how ClimWIP is applied to obtain the weighted raw discharges can be found in 

appendix I. 

3.4.2 Reliability Ensemble Averaging 

Reliability Ensemble Averaging (REA) has been proposed by (Giorgi and Mearns, 2002), and ever since it has 

been modified to suit several applications (Giorgi and Mearns, 2003; Tegegne et al., 2019; Sperna Weiland at al., 

2021). The reason for REA being popular within the climate community is because it is a multivariate method, 

meaning it is suitable for weighting RCMs and using them in various applications. 

This method has been considered as a weighting method for the chosen RCMs, based on their historical 

performance in producing accurate modelled discharges, by using the simulations after running wflow_sbm 

(section 3.5). REA is based on achieving two criteria’s; divergence, and performance, which are similar to the two 

criterions listed in ClimWIP.  

The REA provides a weight (reliability factor) for each RCM by considering two things: the divergence of the 

future discharges of the specific RCM to the ensemble mean future discharges (5 RCMs in this case) and the bias 

in the RCM’s raw discharge relative to the current climate (actual discharge).  

In simple terms, it assigns a weight to each RCM based on the mean difference between the future modelled 

discharges of the RCM to the mean of the ensemble (the mean value of all RCMs in the future) and on the mean 

difference between the modelled discharges in the past to the actual discharges. 

The general formula for REA method is described in equation 3.19. The convergence in the future discharges is 

calculated based on the raw (no bias correction) modelled discharges at Lobith for the period (2020 – 2060). The 

bias of each RCM is based on the mean difference between the actual discharges for the period (1979 – 2018) 

to the raw modelled discharges for the same period. 

wQ̅, i= [wB,i
m  .  wD,i

n ]
1

(m, n)⁄
 

                                                = {[
εQ

abs(BQ,i)
]
m

[
εQ

abs(DQ,i)
]
n

}
[1 (m, n)⁄ ]

            

 

 

 

(3.19) 

Where wQ̅, i is the weight of RCM i based on discharge statistics and BQ,i is the bias (error) between the projected 

discharges at a certain location and the observed discharges at that location. This bias is the temporal mean 

value of the differences between the RCM i simulation and the observed discharges during the reference period 

(1979 – 2018). 
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DQ,i is the divergence between RCM i discharges to the average weighted ensemble (all RCMs) discharges, which 

is the temporal mean of the difference in the RCM i simulation to the average weighted signal of the entire 

ensemble during the future run (2020 – 2060).  

εQ is a measure of natural variability, it is calculated by subtracting the maximum and minimum observed values 

at Lobith based of a moving average window of 20 years. The reason of choosing 20 years window is to avoid 

the influence of trends (Giorgi and Mearns, 2003; Sperna Weiland at al., 2021).  

The parameters m and n are used to obtain the weights based on different criterions. How these parameters are 

assigned is subjective and based on the user. However, in this research both were set to 1 based on earlier work 

by (Tegegne et al., 2019; Sperna Weiland at al., 2021).    

The calculation procedure is performed in excel after obtaining all the modelled discharges through the 

wflow_sbm model. Then, these weights are then multiplied by their corresponding modelled discharges from 

wflow_sbm and summed together to obtain the weighted average discharge that represents all subsets based 

to the REA method (as in equation 3.18). 

3.5 Hydrological Model 
Modelled river flows are calculated using the wflow_sbm (sbm stands for simple bucket model) conceptual 

hydrological model developed by Deltares. Wflow_sbm is free and open source package that can be downloaded 

easily by following the documentations described here (How to install · Wflow.jl (deltares.github.io)). The 

hydrological processes in the model are a refined version from the CQflow model (Köhler et al., 2006). The soil 

part is largely based on Topog_SBM (Vertessy and Elsenbeer, 1999). 

In figure 3.7 below, the different hydrological fluxes and processes are described. The differences between the 

wflow_sbm and Topog_SBM is the following: 

▪ Accounting for evapotranspiration and interception losses. 

▪ New root water uptake reduction function has been incorporated. 

▪ Accounting for capillary rise, glaciers, and snow build-up. 

▪ The possibility of using multiple soil layers. 

▪ Water routing over an eight-direction network (D8).  

 

 

Figure 3-7: Wflow_sbm schematic representation (van Verseveld et al., 2020). 

https://deltares.github.io/Wflow.jl/stable/user_guide/install/
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The model which has been used in this study is already calibrated by Deltares (2021). This model is built based 

on a Julia framework that has proven to be computationally faster than the python framework. It also contains 

an updated soil parameter map along with other internal modifications. Wflow_sbm is forced by the following 

forcing’s: temperature, precipitation, and evaporation. The outputs of wflow_sbm are daily discharges expressed 

in [m3/sec]. It’s important to mention that, the model is initiated by ERA5 states in the first day of the simulation 

(January 1st, 1979), this is needed to avoid having the model to start from zero discharges at the first period of 

the simulation. 

The general framework that describe the application of bias correction into the chosen ensembles, along how 

they were fed into the wflow_sbm can be found in appendix I.   

3.5.1 Additional Correction for temperature 

Climate models generate their simulations based on a certain orography’s that are different from what is 

observed (Matiu et al., 2019; Van Vooren et al., 2019). Temperature correction is deemed necessary for all of 

climate simulations (bias-corrected or not), because the target resolution to operate wflow_sbm is [1 km
2
], while 

the remapped raw climate simulations share a resolution of  about [5 km
2
]. Moreover, due to having five different 

orography’s for the Rhine basin in these EURO-CORDEX simulations, which are different from the digital elevation 

model used in the wflow_sbm model. The goal of this step is to ensure that the temperature driven hydrological 

processes (i.e., unsaturated zone, snow melting) are related to the real elevation, especially in the Alpine part of 

the Rhine basin. 

The applied temperature correction method was the one proposed by (Van Osnabrugge et al., 2019), described 

through the following equation. 

Tx, corrected= γ*(Hwflow_sbm,x- Hi,x)+ Tx (3.20) 

Where Tx, corrected [℃] is the final temperature product at grid cell x, that was corrected based on a constant lapse 

rate γ of 0.0066 [℃/𝑚]. Hwflow_sbm, x is the orography elevation at grid cell x recorded in the digital elevation file 

within wflow_sbm, while Hi,x is the orography of climate model i at grid cell x. Tx is the raw temperature or bias 

corrected input at grid cell x. 

3.6 Performance Criteria 
To assess the robustness of the applied correction methods, many assessment metrics have been used. The 

reason for choosing these metrics, is to quantify the implications of applying bias-correction methods and how 

its translated in the low flows’ context, in addition to assessing the possible potential impacts by 2060. These 

metrics are described in detail in appendix I and include KGE, NSE, NSElog, etc. 
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4| Results 
In this chapter the results of this research work are outlined. The performance of the hydrological model 

wflow_sbm at Lobith is first assessed in section 4.1. Section 4.20 describes the implemented historical experiment 

to compare applying bias correction compared to using raw simulations or weighting them based on two 

performance-based weighting methods. Subsequently, section 4.30 is about testing these methods in changing 

climate conditions using DSST. Finally, section 4.4 demonstrates the potential climate change impacts based on 

the bias-corrected simulations at Lobith. 

4.1 Hydrological model 
The calibrated hydrological model wflow_sbm (van Verseveld et al., 2020) is used to model the hydrology of the 

Rhine basin (section 3.5). The results obtained from wflow_sbm is used for answering the main research question, 

therefore it is important to evaluate the model performance based on the available observations at Lobith. The 

available discharge measurements at Lobith for the period (1979-2018) are used to evaluate the model ability in 

providing accurate discharges at Lobith.   

The results of using raw simulations (without correction) as inputs in the wflow_sbm for the same period are also 

presented. This is to evaluate the performance of using the raw subsets in hydrological modelling. As a final step 

the added value of applying the two performance-based weighting methods (section 3.4) in raw simulations is 

evaluated based on the discharge measurements at Lobith.   

4.1.1 Observed discharges 

The calibrated hydrological model (wflow_sbm) is forced using the observational dataset between [1979 – 2018] 

(section 2.2). The model outputs are compared to the observed discharge measurements at Lobith within the 

same period, the reason for not assessing the model until 2019 is because the observed discharge dataset only 

spans until mid-March 2019.   

As can be seen in figure 4.1, wflow_sbm is able to consistently capture the timing of low flows and high flows 

throughout the 40 years run. The discharge metrics of the modelled flows are reasonable as well, wflow_sbm 

achieved NSE score of 0.78, NSElog of 0.81 and KGE of 0.82.  However, it appears that the model overestimates 

high flows at Lobith in most of the times and to a lesser extent it underestimates low flows. This can be clearly 

seen in the scatter plot shown in figure 4.2, as wflow_sbm appears to overestimate high flows in average by 20 

%, but in lower flows it has lower errors compared to the actual measurements.  
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Figure 4-1: wflow_sbm vs observed during the period [1979 - 2018] at Lobith. 

In figure 4.2, it appears there is a reasonable correlation between the results of wflow_sbm and actual 

measurements during the period (1979-2019). The scatter plot indicates the simulated and actual flows correlate 

well in the range of (900 – 6000 m3/s), however after that there is a disagreement between the two  
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Figure 4-2: Scatter plot of wflow_sbm results vs observed measurements at Lobith for the period (1979-2018). 

The flow duration curves, and logarithmic flow duration curves of the observed flows and the modelled flows at 

Lobith are shown in figure 4.3. The results agree with what is apparent in figure 4.2, that the model overestimates 

high peaks and underestimates low flows. In the derived flow duration curves of the two timeseries, it appears 

that the model agrees well with the observation for flows lower than 3500 m3s-1.  

The logarithmic flow duration curves shown in figure 4.3 describe the ability of wflow_sbm in providing accurate 

predictions. It can be said that the model slightly underestimates low flows, for flows lesser than 2500 m3s−1 

and vice versa.  

From the flow duration curves in figure 4.3, the 95th percentile flow (Q95) (appendix I) of the measurements  is 

1100 m3s-1 and the one from the model is 1009 m3s-1. The difference between the two values is minimal 

(90 m3s−1). The Q95 of the observations is used as the limiting threshold in low flows analysis, the values below 

this threshold are described as severe low flows, while values above the threshold are considered within the 

range of less severe flows to high flows (normal range).  

Additionally, the 5th percentile value of the flow (Q5) from the model results is 4858 m3s-1 and from the 

observations is 4552 m3s-1. The error in estimating Q5 is three times more than the recorded error in estimating 

Q95.  
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Figure 4-3: flow duration curve and logarithmic flow duration curve for the observed flows and modelled flows for the 

period (1979-2018). 

For applications where low flows are considered, the focus should not only be limited to the model ability to 

produce marginal values as Q95 or Q5, but also on how it can predict the number of consecutive low flow days 

in a year or through the entire run. The threshold of 1100 m3s-1 is used to count the maximum consecutive low 

flow events in figure 4.4. The results depicted in figure 4.4 are the maximum number of consecutive low flow 

events in a year for the period (1979-2018). The results obtained from wflow_sbm and the observed discharge 

measurements are consistent in most of the run period. There are few times in which the maximum observed 

consecutive low flow events at Lobith are lower than the modelled, but wflow_sbm has resulted in values that 

are 20 % higher than the observations in 1991, 1996, 2003, 2009, 2012 and 2014. In general, the consecutive 

number of low flow events from wflow_sbm are higher than the observations.  
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Figure 4-4: Maximum number of consecutive low flow days in a year. 

However, the model has provided reasonable results through the entire run. This makes wflow_sbm useful in 

assessing the effects of low flows at Lobith in the future period. The entire time series shown in figure 4.1 is 

averaged daily to construct figure 4.5, all the data that falls within a certain day are averaged. The resulted dataset 

has a length of 366 (leap year is included).  

The average daily discharge values will be used in assessing the impacts of climate change on low flows at Lobith 

instead of a long hydrological timeseries as the one shown in figure 4.1. This is because the level of uncertainty 

when dealing with the results of climate simulations is high and it cannot be treated like normal daily discharge 

timeseries, due to the randomness and loose boundary conditions. Therefore, the change in climate is expressed 

based on an average scale and not daily.   

The average daily discharge values of the modelled and observed timeseries for the period (1979-2018) are 

shown in figure 4.5. In the first two months wflow_sbm provide higher average discharge values than the 

measured (day 1 to 60). This is inverted in the following four months (day 61 to 180). The two timeseries seems 

to agree well during the summer period (day 181 to 280). The is due to the hydrological regime being linear 

during this period, as the snow melt from the Alps is the major source to sustain this period. For the rest of the 

period (day 281 to 366), the model provided flows that are higher from the average measured flows.  

There is a sudden decline in the daily average flow at Lobith at day 60, the model has captured this change as 

well. The cause of this change is because in average the discharge values between the end of February and start 

of May are lower compared to the durations before and after that period. This period is found to have lower 

precipitation values (see the blue line in figure 4.10). 

Overall, it appears that the modelled flows during the autumn and winter periods are higher than the observed 

because of the witness conditions. The measured values are higher than the modelled during the spring period. 

The model agrees well with observations through the summer period, because of linear response of snow 

melting.  
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Figure 4-5: Average daily discharges at Lobith for the period 1999 – 2018 for the modelled and observed discharges. 

4.1.2 Climate simulations 

Raw simulations 

The four EURO-CORDEX subsets outlined in section 2.2 (excluding IPSL) are used to obtain the modelled 

discharges at Lobith for the same period as in section 4.1.1. The results of using these simulations in running 

wflow_sbm to obtain the modelled discharges at Lobith are shown in figure 4.6. The daily discharges from 

wflow_sbm are averaged daily to obtain the result shown in figure 4.6. 

The blue envelope represents the range where the maximum and minimum average daily discharges of all these 

simulations lie. The upper band represents the maximum averaged daily discharge of the four simulations for 

each day. The lower band represents the minimum averaged daily discharge of the four simulations. 

The discharges obtained from these raw simulations are higher the observed average daily discharge at Lobith 

for the same period. Some of the actual average daily discharge lies within the lower boundary of the ensemble’s 

envelope. The period between the day 180 to day 310 could not be captured by the envelope, in addition to few 

days at the end of January, February and November.  

The detailed average daily discharge for each EURO-CORDEX subset is shown in figure 8.1 (appendix II). In figure 

8.1, none of the selected simulations succeeded in providing reasonable predictions that can be related to the 

observations. The average daily discharges from the DMI and CNRM subsets are at least 250 m3s−1 greater than 

the daily average observed discharge. Results from KNMI and SMHI are more accurate, these two subsets gave 

their best results in the period between the first of March to the end of May. 

The raw EURO-CORDEX are not able to provide predictions that can be related to Lobith. One would expect 

more pessimistic results when applying the chosen scenario (RCP8.50). Although a slight increase in daily 

averaged flow during some periods due to excessive snow melting or extreme precipitation can be related, but 

not an increase in the average daily discharge during most of the year by 400 m3s-1. The raw simulations are not 

suitable for the use in modelling the discharges at Lobith based on the fact that they are not able to provide 

reasonable daily discharges or mimic the general flow regime (hydrograph) at Lobith accurately, in terms of the 

timing of the flows and their magnitude. 
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Figure 4-6: Average daily flows at Lobith for the period 1979 – 2018 using an ensemble of four EURO-CORDEX 

simulations. 

4.1.3 Performance-based weighting 

The two methods described in section 3.4 are implemented to the EURO-CORDEX simulations. The ClimWIP 

method focuses on weighting the GCMs based on meteorological observations, while the REA method weights 

the climate simulations based on the observed discharges, after running wflow_sbm with these simulations. The 

result of applying each method is discussed on the following subsections. The general framework on which the 

weighted discharge of the two performance-based weighting methods is obtained can be found in appendix I 

(section 7.4.2 and section 7.4.3). 

The weighting of EURO-CORDEX simulations is based on the period of (1979-2018) as in section 4.1.1. For the 

case of REA, the future period of (2019-2060) is considered to derive the convergence factor for each climate 

simulation (section 3.4.2).   

Climate model weighting by independence and performance 

The computed GCM weights based on the accuracy and independence of the simulated meteorological variables 

are obtained using the ESMValTool (v2.0). The two GCMs’ weights are listed in table 4.1 and the corresponding 

RCMs’ weights are listed in table 4.2. These weights are used to derive the weighted average daily discharge for 

the period (1979-2018) using equation 3.18.  

The weights shown in table 4.2 are equal except for the case of CNRM subset. This is because the five EURO-

CORDEX simulations considered in this project are based on two GCMs (ICHEC-EC-EARTH and MOHC-

HadGEM2-ES). Three RCMs (DMI, KNMI, SMHI) are based on ICHEC-EC-EARTH and two RCMs (IPSL, CNRM) are 

derived from MOHC-HadGEM2-ES. IPSL subset is discarded from this test because of data issues, leaving the 

entire weight of MOHC-HadGEM2-ES to CNRM. For this reason, the weight of CNRM is 0.28 and for the rest of 

subsets is 0.24. 

The weighted average daily discharge from ClimWIP weights is shown in figure 4.7. The weighted discharge 

using ClimWIP has indeed strengthened the change signal of the four climate simulations in a single signal, 

reducing the uncertainty. The usage of ClimWIP has not helped a lot in overcoming the main issue in section 

4.1.2. As the weighted daily discharge of the four climate simulations is close to the observed discharges during 

the period between the first of March to the end of May. For the rest of the year, the weighted daily average 

discharge is higher than the daily average observed discharge at Lobith.  
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Figure 4-7: ClimWIP weighted daily discharges using the raw simulations for (1999 – 2018) relative to the raw simulations 

and the actual discharges at Lobith. 

Table 4-1: ClimWIP GCMs’ weights. 

GCM Weight 

ICHEC-EC-EARTH 

 

0.72 

MOHC- HadGEM2-ES 

 

0.28 

 

Table 4-2: Corresponding RCMs’ weights 

RCM subset Weight 

DMI 0.24 

KNMI 0.24 

SMHI 0.24 

CNRM 0.28 
 

 

Reliability ensemble averaging 

The weights derived from the reliability ensemble averaging (REA) is different from that of ClimWIP in two 

aspects. Firstly, the weighting here is based on the discharges that are obtained after forcing wflow_sbm with 

the raw simulations (section 4.1.2). The second aspect is in this test a weight is assigned directly to the RCM 

instead of the parent GCM. The weighting is based on equation 3.19 and the final weighted discharge is obtained 

through equation 3.18. The weights of the REA method are listed in table 4.3. 

The weights of the RCMs using REA are different from the weighting based on GCMs in ClimWIP (table 2.2). The 

CNRM subsets has the largest value of the RCMs using REA, this is due to its smallest convergence value to the 

mean of the ensemble in the future period (2019-2060). The RCMs that originate from the ICHEC-EC-EARTH 

GCM have been assigned different weights. The DMI model has the smallest weight followed by the KNMI. The 

SMHI model has the highest weight in the selected ICHEC-EC-EARTH subsets. 

The weighted average daily discharge using REA is visualized in figure 4.8, the result is like that of ClimWIP. This 

indicates that these weighting methods cannot overcome the systematic biases in the RCMs.  

Table 4-3: Derived RCMs’ weights using REA for the period (1979-2018). 

ID Weights 

DMI 0.107 

KNMI 0.207 

SMHI 0.296 

CNRM 0.39 
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Figure 4-8: REA weighted average daily discharge for the period (1999 – 2018) relative to the raw simulations and the 

actual discharges at Lobith. 

The outputs of the wflow_sbm model when using REA and ClimWIP are very similar because of choosing few 

RCMs and not having a single RCM that is able to provide average daily discharge estimates lower than the 

observed. As having lower discharge values and more RCMs could have helped in distributing the weights 

more, thus altering the weighted result. 

4.2 Historical experiment 
The historical experiment described in section (3.2) is implemented to evaluate the added value of applying 

the two bias correction methods compared to using raw climate simulations in hydrological modelling, as 

inputs. The evaluation is based on the quality of the modelled discharges at Lobith using the bias-corrected 

simulations. This is coupled by analysing the accuracy of long-term statistics that are relevant in purposes 

related to hydrology. The results of the empirical quantile mapping method (QM) and the scaled distribution 

mapping method (SDM) are discussed in the following section 4.2.1. The calculated long-term statistics 

(appendix I) for all discharges are discussed in section 4.2.2. 

4.2.1 Quantile mapping and scaled distribution mapping. 

As discussed in section (3.2), the bias correction in the historical experiment is based on the period (1979 - 

1998) to derive bias-corrected climate simulations for the period (1999 - 2018). To correct future raw 

simulations using any bias correction method, there are two datasets that are needed next to raw future 

simulation. The two are the observational dataset and historical climate simulation of the same period and 

the same region. The results of this section are corrected based on the reference run (1997 - 2018), see table 

3.2.   

To validate the bias-corrected simulations the observational datasets of the same period (1999 - 2018) are 

used. 

The results after running the wflow_sbm model with the bias-corrected simulations are shown in figure 4.9. 

These results are the daily average discharge at Lobith during the period (1999 - 2018) in addition to the 

actual daily average discharge of the same period, for validation.  

The two bias correction methods provided more accurate hydrographs for each RCM compared to using raw 

simulations (figure 8.1). Most of the models can correctly capture the timing of the actual hydrograph in the 

second half of the year (day 180 to day 366). Three subsets provided similar performance in the second half 
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of the year (IPSL, SMHI and KNMI) and two provided lower performance during the same period (DMI and 

CNRM). There are some differences in the amount of errors in each subset. The three SDM corrected subsets 

which have the lowest amount of errors are, IPSL, KNMI and SMHI. For the first half of the year, all models 

failed to provide reasonable flow timing. The QM corrected DMI subset is the closest.  

There is a flow trend shared between most of these subsets, which is the sudden jump in flow between day 

150 to day 200. To examine the cause of the sudden jump. The precipitation, and temperature datasets at 

Lobith and in some parts in Germany are analysed. The datasets are observed datasets, raw simulations, and 

quantile mapping (QM) corrected simulations for the period (1999-2018). The reason for including the raw 

simulation is to show how the bias corrected simulations in some parts of the Rhine are compared to the 

observed datasets and to the raw simulations, within this historical experiment. 

The result of this analysis is shown in figure 4.10 and figure 4.11.  
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Figure 4-9: wflow_sbm forced with bias-corrected EURO-CORDEX simulations for the period (1999 - 2018) at Lobith 

compared to the actual flows at Lobith for the same period. 

In figure 4.11, It appears that the raw temperature simulations at Lobith are colder than what is observed 

during the same period, with an average difference of 2 Co. The QM method appears to correct these raw 

simulations and provide warmer future temperatures. The corrected temperature simulations appear to agree 

relatively well with the observed temperature for the same period, between day 70 to 300. For the rest of the 

period, the corrected simulations are warmer than the observed temperature values that are used for 

validation.  

In figure 4.10, the raw precipitation simulation for the future period are higher from the observed precipitation 

during the same period, with a small exception in August. However, the QM method managed in average to 

reduce these values and bring them closer to the observation.  
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The highest average monthly precipitation using bias-corrected simulation within Lobith for the period (1999 

– 2018) is 2.52 mm, which is the same average precipitation which is found within the observation. The method 

also managed to reduce the wet precipitation bias in January and June, but it provided false average values 

in the rest of the months. It seems that the average error within the entire year has reduced, but the mismatch 

in the timing of precipitation at Lobith could not be averted. This mismatch is caused by the underlying GCM, 

which is one of the main source of errors in hydrographs is the GCMs. 

The sudden trend depicted in figure 4.9, is due to the fact that within the period of day 150 to 200 (June 1st 

to July 20th) the highest average precipitation is introduced to the hydrological system and coupled with a 

constant increase in average temperature (reaching the max at day 200). This translated into higher flows 

because of higher rainfall and snow melting in the alps. Although the precipitation rates started to fall after 

day 150, but average temperature continued to increase.  

The higher average daily flow of the corrected climate simulations within the period of January to mid-

February can be related to having higher average rainfall values than the average observed precipitation at 

Lobith.     

 

Figure 4-10: Average precipitation comparison between the observed, raw, and corrected datasets at and near Lobith 

during the historical experiment 
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Figure 4-11: Average temperature comparison between the observed, raw, and corrected datasets at and near Lobith 

during the historical experiment 

The ten subsets shown in figure 4.9 are grouped into two ensembles, each ensemble represent the correction 

method of that ensemble (QM or SDM). The three ensembles (raw, QM corrected, and SDM corrected) are 

shown in figure 4.12 next to the average daily observed flow for the period (1999 - 2018). 

The average daily observed discharge at Lobith is fully contained within the ensemble range in figure 4.12. 

The two correction methods achieved the same performance in containing the observed discharge and in 

reducing the higher flows depicted in using raw simulations. QM and SDM have different working principles 

and yet they managed to produce similar results, indicating the same efficiency in removing the systematic 

bias.  

The bandwidth of the envelope of the two correction methods is the lowest during the summer period (day 

130 – day 240), this is due to the fact that during most of the summer and in spring periods the response of 

the catchment is more linear. 

When looking at figure 4.7 and figure 4.8 to figure 4.12, it appears the envelopes of bias-corrected datasets 

have contained the actual discharges better than the REA and ClimWIP methods. This is again caused by the 

wet precipitation bias that prevented the raw simulations to be closer to the observed discharge. The 

weighted signal of the RCMs would have been different if one RCM has provided lower estimates than the 

observed (i.e., the weighting would be more robust). 
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Figure 4-12: daily average discharge envelope of the raw forcing’s and corrected forcing's for the period (1999 – 2018) 

in addition to the daily average discharge of the same period. 

4.2.2 Long-term statistics 

In this section, the long-term statistics of modelled discharges at Lobith using the bias-corrected simulations 

for the period (1999 - 2018) are evaluated based on the observed statistics during the same period. The 

modelled discharges using the raw simulations for the same period are also analysed, to check the robustness 

of the modelled discharges using bias correction to raw simulations. 

Figure 4.13 contains the results of three long-term statistics (minimum 7-day low flow, long-term mean flow 

during the summer period and long-term annual mean flow). In the figure 4.13(A), the minimum 7-day low 

flow values of the raw simulations are high compared to the observations. This is because of relatively cold 

temperature rates and higher precipitation rates (figure 4.10 and figure 4.11). All the bias-corrected 

simulations (being from QM or SDM) are closer to the observations than the raw simulations. Three SDM 

subsets provided the most accurate predictions (KNMI, IPSL and SMHI). The bias-corrected simulations using 

QM exhibited larger errors than SDM subsets.  

Figure 4.13(B) includes the long-term mean during the summer period (June to August). The obtained long-

term mean during the summer period from the raw simulations is greater than what is obtained from the 

observed discharges. The bias-corrected simulations provided more reasonable values than the raw ones. The 

SDM corrected KNMI subset provided the best predictions. SDM corrected subsets resulted in better 

performance than QM bias-corrected subsets. However, the least performing QM subset performed better 

than the best performing raw simulations by over 140 m3/s. 

The long-term annual mean flow at Lobith is depicted in 4.13(C), where the results of using observed 

discharge dataset, bias-corrected and raw simulations for the period (1999 - 2018). The results of using bias-

corrected simulations are the most consistent here and they are more accurate than using raw simulations. 

The difference between the average long-term annual mean of the bias-corrected subsets from the actual is 

the smallest, compared to figure 4.13 (A) and figure 4.13 (B). 

The lengths below threshold (1100 m3/s) for the period (1999 – 2018) of the observed discharges, raw and 

corrected simulations is shown in figure 4.14. Since the raw simulations have produced higher flows in average 

from what is observed, there are few flow events that are found to occur below this threshold. On the other 
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hand, the flows from the bias-corrected simulations are more consistent than the raw simulations. Two 

corrected simulations provided the same range and mean as the observed discharges, the QM-corrected 

KNMI subset and SDM-corrected CNRM subset. 

The results shown in figure 4.13 and figure 4.14 suggest that the two correction methods really depend on 

the ability of the RCM to provide reasonable results. When looking at the KNMI subset, one can observe that 

the raw KNMI performed the best compared to the rest of the climate simulations, in predicting these four 

metrics with the lowest amount of errors. The use of QM and SDM in correcting this subset has made it 

perform better. Also, it remained to be the best performing subset within the bias-corrected subsets. The 

same applies for DMI, SMHI and CNRM. 

 
Figure 4-13: Long-term statistics at Lobith for the period (1999-2018). Figure A is the minimum 7-day low flows at 

Lobith, figure B is the long-term mean flow during the summer period (June to August) at Lobith, and figure C is 

the long-term annual mean flow at Lobith 

 
Figure 4-14: No of days below threshold (1100 m3/s) for the period (1999 - 2018) at Lobith. 

 

This indicates that although bias correction methods provided better performance, but that still depends on 

the RCM of the subset and the underlying GCM. 
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Although the results depicted in figure 4.13 and figure 4.14 are about Lobith, similar analysis is performed to 

three other locations distributed within the Rhine basin. The three locations are Kaub, Cochem, and Rees. The 

reason of selecting these three locations, is because they are considered as bottlenecks for low flows in the 

Rhine river.  In these locations it is shown that applying bias correction has resulted in improving the long-

term statistics at two locations (Rees and Cochem), while one location (Kaub) provided better long-term 

statistics when using raw simulations instead of using bias-corrected simulations (see appendix III for the 

related graphs).  

In general, the applied historical experiment indicated that using bias-corrected result in better performance 

than using raw simulations. This is based on the low flow analysis performed at Lobith and in three other 

locations.  

4.3 Non-stationarity 
The bias correction methods are tested under changing climate conditions as explained in section (3.3). The 

two bias correction methods (QM and SDM) are applied to two different seasons (JJA and DJF).  

The DSST test is only applied to the KNMI dataset because it provided the closest estimates relative to the 

observations for the historical period (figure 4.9, 4.12 and 4.13). The dataset is dis-aggregated to a common 

grid of 5 km2 to avoid the localized corrections and to allow for consistency and intercomparability. 

The DSST applied in the precipitation datasets is first discussed and the test on temperature datasets is 

discussed later. 

4.3.1 Precipitation 

Summer period 

The summer period (JJA) in the future raw climate simulations between (1999 - 2018) is corrected based on 

the winter periods (DJF) of the HYRAS dataset and raw simulations during the period (1979 - 1998) at Lobith. 

The result is shown in figure 4.15. 

The QM method has resulted in improving the mean signal of the corrected EURO-CORDEX simulations for 

the summer period, with a mean precipitation of 2.6 mm and a standard deviation of 4.2 mm/d. This translates 

into a difference of 0.1 mm for the entire season relative to what is observed in the validation (1999-2018). 

The difference is estimating the standard deviation is 0.9 mm/day, but still it is better than the error in the 

standard deviation of the raw simulations (1.3 mm/d).  

The SDM has also provided more accurate mean precipitation relative to the future raw simulations. However, 

the error in the estimated standard deviation using this method is higher than the future raw simulations and 

quantile mapping simulations. 

The two methods have estimated the mean seasonal precipitation value better than the raw future 

simulations. QM method provided the closest seasonal standard deviation value (4.2 mm/d) relative to the 

actual observations (5.1 mm/d). However, the estimated seasonal standard deviation value from the SDM 

method is less accurate than the future raw simulations. 

It appears in figure 4.15 that the average mean within the summer period (2.7 mm/d) in the validation period 

is higher than the mean of the winter period (2.4 mm/d). This makes the summer period the wet period and 

winter period the dry period at Lobith.  
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Quantile mapping method resulted in better performance than scaled distribution method in this category. 

It also appears that the methods can correct precipitation during relatively wet seasons based on relatively 

dry seasons.  

Winter period 

The winter period (DJF) in the future raw climate simulations between (1999 - 2018) is corrected based on the 

summer periods (JJA) of the HYRAS dataset and raw simulations during the period (1979 - 1998) at Lobith. 

The result is also illustrated in figure 4.15. 

QM and SDM mean seasonal estimates are the same value (2.2 mm), both methods underestimated what is 

observed during the validation period. The raw future simulations estimated mean winter precipitation is 

identical to what is observed during the same period (2.4 mm). 

The estimated seasonal standard deviation (DJF) values by QM, SDM and raw simulations are less than the 

actual standard deviation in the validation period (4 mm/d). 

The two methods did not provide any improvements in the raw future estimates, making them less reliable 

in correcting precipitation during relatively dry seasons based on relatively wet seasons. This implies that the 

two methods cannot accurately correct lower precipitation values, thus failing to reduce the drizzling effect 

of climate simulations.  

It is expected that SDM to perform better in correcting overestimated precipitation by climate models and 

perform less in correcting underestimated precipitation simulations. The results of this test indicate that QM 

and SDM are less reliable in correcting lower precipitation estimates. This indicate that the drizzling effect of 

climate models cannot be reduced using these methods, even after introducing the threshold in SDM and 

using sub-annual scales in QM. 

The CDFs for this step can be seen in figure 8.2 and figure 8.3 in appendix II. In general, the CDFs of the 

corrected simulations are closer to the observed CDF than the future raw simulations. 

 

 

Figure 4-15: Precipitation correction experiment through the DSST for winter and summer periods. Raw history is the 

raw precipitation simulations in the period (1979 – 1998), raw future is the raw precipitation simulations for the period 

(1999-2018), actual history is the observed HYRAS measurements for the period (1979-1998), actual validation is the 

observed HYRAS measurements within (1999-2018), QM is the bias-corrected KNMI simulations using quantile 

mapping for the period (1999-2018) and SDM is the bias-corrected KNMI simulations using scaled distribution 

mapping for the period (1999-2018). Mean is the mean value during the specific season and std is the standard 

deviation during that season. 
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4.3.2 Temperature 

Summer period 

The summer period (JJA) in the future raw temperature simulations between (1999 - 2018) is corrected based 

on the winter periods (DJF) of the E-OBS dataset and raw temperature simulations during the period (1979 - 

1998). The result of this correction is shown in figure 4.16.  

QM and SDM mean seasonal (JJA) temperature values are 17 Co, while the actual observed mean seasonal 

temperature at Lobith is found to be 1 Co higher. The raw future simulations provided a mean seasonal (JJA) 

value of 16 Co and this is 2 Co lesser than the actual value. QM and SDM corrected simulations provided more 

accurate mean temperature estimates at Lobith.  

The standard deviation of the raw and bias-corrected in the summer season is found to be around 3.2 mm/d. 

This is 0.2 mm/d lesser than the actual standard deviation at Lobith. There is no improvement in estimating 

the seasonal summer standard deviation when using QM or SDM. But they managed to provide better mean 

estimates. 

The CDFs for this step can be seen in figure 8.4 and figure 8.5 in appendix II. The CDFs of both corrected 

datasets look better than the CDF of the raw future simulation.  

Winter period 

The winter period (DJF) in the future raw temperature simulations between (1999 - 2018) is corrected based 

on the summer periods (JJA) of the E-OBS dataset and raw temperature simulations during the period (1979 

- 1998). The result of this correction is shown in figure 4.16.  

 

Figure 4-16: temperature correction experiment through the DSST for winter and summer periods. Raw history is the 

raw KNMI temperature simulations in the period (1979 – 1998), raw future is the raw temperature simulations for the 

period (1999-2018), actual history is the observed E-OBS measurements for the period (1979-1998), actual validation is 

the observed E-OBS measurements within (1999-2018), QM is the bias-corrected KNMI simulations using quantile 

mapping for the period (1999-2018) and SDM is the bias-corrected KNMI simulations using scaled distribution mapping 

for the period (1999-2018). Mean is the mean value during the specific season and std is the standard deviation during 

that season. 

QM estimated the mean seasonal (DJF) better than SDM, as QM has improved the mean of the raw 

simulations by increasing it in average by 0.1 mm. SDM has overestimated the mean value and provided a 

false change signal compared to what actually happened during the validation period. Also, it managed to 

provide the same standard deviation as the raw future simulations (both 3.7 mm/d), indicating no 

improvements in the signal. 

The cause of this contradicting behavior in SDM is because the scaling factor (equation 3.11) is very sensitive 

to the ratio between the standard deviation of the observed temperature values to the standard deviation of 
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the raw simulations during the reference period (
σOBS

σMODH
 > 1.3). This resulted in overestimating the mean signal 

of the corrected simulations.  

The estimated standard deviation in the winter seasonal using QM method is the nearest to the observed 

value. QM has performed better in correcting relatively cold temperature periods based on relatively hot 

periods in the reference periods. SDM did not manage to correct lower temperature rates to the level of QM. 

4.4 Projecting climate change impacts by 2060 
The two bias correction methods (QM and SDM) are utilized to correct the future EURO-CORDEX projections for the 

period (2020 – 2060) and examine the potential future changes at Lobith by 2060. These future simulations are corrected 

based on the available observational datasets (in section 2.2.1) and the historical simulations during the historical period 

(1979 – 2019).  

The modelled flows in the future which are obtained by forcing wflow_sbm with these corrected simulations are 

compared in section 4.4.1, relative to the actual discharges at Lobith between 1979-2019. This is followed by analysing 

low flow events by some of the metrics that are outlined in appendix I. Then, the water levels translated from the 

projected discharges are analysed. As a final step the results of the applied regional trend in the bias-corrected 

simulations are discussed.   

4.4.1 Lobith 

Discharge  

The modelled discharges at Lobith from the corrected simulations for the period (2020-2060) is shown in 

figure 4.17. The daily discharges for the period (2020 - 2060) are averaged daily to construct this figure. The 

raw simulations for the same period are shown in this graph to compare with the actual discharges and the 

discharges from the corrected simulations. 

 

Figure 4-17: Daily averaged discharges for the period (2020 - 2060) for the raw and bias-corrected simulations 

compared to the actual discharges in the reference run (1979 - 2019). 

The raw simulations appear to be higher than the actual discharge at Lobith for the period (1979-2018), like 

the historical experiment (figure 4.6). An interesting point is that the future raw discharges are higher than 
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the historical raw discharges. In figure 4.6, one could see that the raw historical ensembles are able to capture 

some of the observed discharges between (day 60 – 180) and some days in January, November, and 

December. However, the future raw ensemble discharges are only captured in the period between (day 70 – 

130). 

The same is exhibited in bias-corrected simulations for the future period, although the envelopes of QM and 

SDM are matched most of the time. But they are not capturing the observed flows for the period (1979 – 

2018), as the corrected projections in the historical experiment (figure 4.12).  

In figure 4.17, QM and SDM projections seem to agree well, indicating similar ability in removing the 

systematic bias. SDM projections are more constrained in the second half of the year compared to QM 

projections, the situation is inverted for the first half of the year, where QM projections are more constrained.    

The bias-corrected projections result in daily discharges that are consistent with the observed discharges 

from the start of the year until day 140. Then, for the rest of the year the envelopes of QM and SDM ensembles 

are more constrained. This indicates a potential change in the average daily discharge at Lobith in the future 

period (2020 – 2060), relative to the historical situation.  

In figure 4.12 and figure 4.17, the bias correction methods managed to reduce the bias in high discharges 

from the raw simulations. but the general hydrograph shape of the corrected ensemble envelope (QM or 

SDM) is like the raw ensemble envelope. This suggests that QM and SDM can reduce the average bias in the 

raw simulation, but the uncertainty in the GCM is not reduced. As the subsets that originate from the same 

GCM provide the same general hydrograph shape (see figure 4.18).  

In figure 4.18, all the corrected subsets that originate from the ICHEC-EC-EARTH model (GCM) share the same 

hydrograph, the subsets are DMI, KNMI and SMHI. Also, IPSL and CNRM share the same hydrograph due to 

originating from the same GCM, which is MOHC- HadGEM2-ES. It is also noticeable that the QM and SDM 

discharges from the same subset are similar. This indicate that the two bias correction methods can not alter 

the GCMs’ effects on the hydrology. 

Most of the corrected subsets indicate lower flows in the first half of January and higher flows for the second 

half of January, a decline in the average flows from the end of February to the end of June, followed by higher 

flows for the period between the first of July till the end of September and a slight decline in the daily average 

flows until the end of the year. 

SMHI corrected subsets (QM and SDM) provided daily average discharges that are lower than the 

observations by almost 500 m3/s for the first two months. While, IPSL corrected subsets daily average 

discharges, provided higher discharges between early January to end of March, reaching 1000 m3/s around 

mid-February.  

Although it is hard to overcome the uncertainty imposed by the parent GCM, the ten corrected subsets agree 

on two things. The first is having relatively higher flows than the observations just before the summer period 

(day 180) to the end of August. The second aspect is the relatively lower flows than the observations from 

the end of the summer period till the end of the year.  

To investigate the cause of this, two other locations are analysed, Rockenau and Andelfingen. The reason is 

to evaluate the projected changes in the contribution of snow melting during the summer period at the upper 

parts of the Rhine. One of these locations is in the Alps (Andelfingen), thus highly influenced by snow melting 

(see appendix IX). The results at Andelfingen (figure 10.4) suggest that during the period (day 180 – day 200) 
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most of the corrected simulations indicate an increase in the average daily flow due to snow melting. 

However, from this day onwards there is a sharp decrease in the contribution of melted snow to the summer 

flows. The discharges at Andelfingen remains lower than the observed at the end of the year as well. 

The projected discharges at Rockenau are lower the daily average discharge of the reference period. All the 

bias-corrected subsets indicated lower projected discharges at Rockenau for the second half of the year 

(figure 10.2). Based on the analysis at Rockenau and Andelfingen, it appears the reason of having relatively 

high discharges from day 180 to day 240 is the larger contribution of melted snow compared to the reference 

run. This also indicates a change in the timing of the summer season, i.e. shifted two or three weeks earlier 

than the current start of the summer period (late June or early July). 

The reason of having relatively lower discharges at the end of the summer period till the end of the year, is 

due to lower contribution of melted snow near the end of the summer period. There is also a general decrease 

in the average projected flows for the first two weeks in the year, but no clear reason is found.   

 



 

61 
 

 

Figure 4-18: average daily modelled discharges for each subset during the period (2020 - 2060) vs the actual observed 

discharge (1999 - 2019). 

Low flows 

The daily projected discharges at Lobith for the period (2020 – 2060) are analysed to obtain three 

metrics that are relevant in assessing low flows at Lobith. The three metrics are the minimum 7-day 

low flow, annual long-term mean discharge, and the number of lengths below threshold (1100 m3/s). 

Figure 4.19 contains these metrics. 

In figure 4.19(A), minimum 7-day low flow values for all bias-corrected simulations are listed. All the corrected 

simulations indicated extremely low minimum 7-day low flow values, except for the SDM corrected DMI 

subset. This is clearer when looking at the illustrated histograms in figure 4.20, which provide a summary of 

the low flows below the established threshold (1100 m3/s). 
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Nine of the subsets shown in figure 4.20 contain extremely low flow events at Lobith (< 700 m3/s), that have 

not been witnessed at Lobith during the period (1979 – 2018). The two corrected KNMI subsets provided 

extremely low discharges with the highest number of occurrences. The SDM corrected DMI subset is the only 

subset that has provided lengths that are lower than the observed. 

From figure 4.19(B), only Four corrected subsets have provided annual long-term mean discharge values that 

are close to the observation (SDM-DMI, QM-DMI, QM-KNMI and QM-SMHI). The rest of the corrected subsets 

provided annual long-term mean discharge values that at least 50 m3/s lesser what is observed during the 

period (1979 – 2018). 

The average of the lengths below threshold in the observed dataset is about 40 days per year. Five subsets 

have predicted higher average values (QM-KNMI, QM-SMHI, SDM-SMHI, SDM-IPSL and SDM-KNMI), as 

shown in figure 4.19(C). This indicates that low flow events are going to occur more frequent and last longer. 

All the corrected subsets have a certain outlier that is longer than 120 days. The comprehensive list of lengths 

below threshold per climate simulation and year see figure 8.6. In figure 8.6, it can be seen that in the year 

2035 and year 2059 are the years with longest number of lengths below threshold in six simulations (QM-

DMI, QM-KNMI, QM-SMHI, SDM-DMI, SDM-KNMI and SDM-SMHI). 

 

Figure 4-19: Long-term annual mean discharge at Lobith for the period (2020 – 2060). Figure A is the minimum 7-day 

low flow, figure B is the annual long-term mean discharge at Lobith, and figure C is the lengths below a threshold of 

1100 m3/s. 

Lobith is set to experience unprecedented low flow events in the period (2020 – 2060) relative to the observed 

period (1979 – 2018) due to climate change (figure (4.20)).  To reflect the change in the seasonality of the 

discharges at Lobith the seasonality ratio is calculated (appendix I), by obtaining the Q95 flow values during 

the summer period (JJA) and the winter period (DJF). When the SR value is lesser than 1, this indicates low 

flows during the summer period and high values during the winter periods, and vice versa (Laaha and Blöschl, 

2006). The SR value of the observed discharges is about 0.71 as shown in figure 4.21. The detailed values of 

the Q95 values for the observed and corrected subsets is illustrated in figure 8.7 (see appendix II).  
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Figure 4-20: Histogram of the lengths of low flow periods of the bias-corrected simulations (2020 - 2060) and observed 

discharges (1979 - 2018). 

 

Figure 4-21: SR values for the bias-corrected subsets (2020 – 2060) and for the observation (1979 – 2018). 

Six of the corrected subsets indicated stronger seasonality at Lobith during the summer period (SR ≤ 0.71), 

that means in the coming period (2020 – 2040) the Rhine river is set to experience lower flows during summer 

and higher flows in winters. The difference in terms of the SR value is small. However, when looking at figure 
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8.7 it looks that Q95 values in most of the corrected subsets are lower than the observed value during winter 

and summer period.  

This analysis indicates that besides the slight change in flow seasonality at Lobith, there is an average decline 

in the flow values for the period (2020 – 2060) relative to the historical period (1979 – 2018).  

Water Levels 

The fitted equation (A9) in appendix (I) is used to translate the daily projected discharges from wflow_sbm to 

water levels at Lobith expressed relative to the Normal Amsterdam level (NAP). The result of this translation 

is shown in figure 4.22. 

 

Figure 4-22: Detailed projected water levels at Lobith for the period (2020 - 2060) relative to the observed reference 

run. 



 

65 
 

The projected changes in the water levels follow the corresponding change in the projected discharges. For 

the period from day 150 to day 250, there is a consensus between the corrected simulations in providing 

relatively higher water levels than the average daily water levels at Lobith for the historical period (1979 – 

2018). This is followed by relatively lower water levels until the end of the year. The is due to the lower 

contribution of melted snow at that period. 

Most of the corrected simulations provided higher average daily water levels from mid-January to the end of 

March than the translated water levels from observed discharges. The corrected SMHI subsets (QM and SDM) 

is the only corrected subset that showed lower water levels between mid-January to the end of March.   

There is an average (all corrected models are included) decline of 20 cm in the average projected water levels 

relative to the average observed water level from the end of the summer period until mid-January of the next 

year. There is an average increase in water levels of 30 cm between the first of June to mid-August. 

There is a contradicting behavior between the bias-corrected simulations during the period of Mid-January 

till the first of June, therefore this period is excluded from the water level analysis.  

4.4.2 General climate trends in the Rhine basin 

In addition to the low flow analysis discussed in the section 4.4.2. The general trend of the three climatic 

variables (precipitation, evaporation, and temperature) in the Rhine basin is evaluated through a regional 

Mann-Kendall trend test (Fathian et al., 2016). The test is implemented on the bias-corrected datasets for the 

period (2020 – 2060). The result of this test in each of the climatic variables are discussed on the following 

subsections2.  

The results of this test are thirty sets, most of these results are similar. The distinct results are the only ones 

communicated in this section. 

Precipitation 

Most of the bias-corrected datasets indicated no general trend in precipitation, with a small exception in 

some parts in Germany and Luxemburg (figure 4.23). There is an increase in precipitation in some areas in 

Germany, however these areas are not within the Rhine basin. 

 
 

2 The shape of the Rhine basin is not shown in the precipitation and evaporation graphs, because of how 

the bias-corrected netCDF files were written in Python.  
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Figure 4-23: Projected precipitation trend in the bias-corrected datasets 

Temperature 

There is a consensus between the bias-corrected simulations on regional warming within the Rhine basin 

(figure 4.24). An increasing temperature trend indicates warming. There are few grid cells in Switzerland and 

Germany in which the test didn’t find any general trend. However, based on the RCP8.5 scenario it is 

expected to experience global warming. This is a prove that the applied bias-correction methods did not 

distort the change signal of the climate simulations.   
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Figure 4-24: Temperature trend in the bias-corrected datasets for the period (2020 - 2060). 

Evaporation 

In most of the Rhine basin, the regional trend test did not find any noticeable changes in the 

evaporation trend. However, there are some parts in the Alps which have indicated an increasing 

trend in evaporation. This is because of the increasing warming in these parts of the Rhine basin that 

is coupled with the available water in the snowpacks.  

Although in figure 4.24, there is a general increase in the temperature rates throughout the Rhine basin. 

Except for the Alps, none of these grid cells hinted at any increase in potential evaporation based on Makkink 

formula (Makkink, 1957). There is no clear reason is found for this contradicting results. 
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Figure 4-25: Makkink evaporation trend in the bias-corrected simulations for the period (2020 - 2060). 
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5| Discussion 
In section 5.1 some of the results of the calibrated wflow_sbm model are discussed. The results of the 

modelled discharges using raw simulations for the period (1979 – 2018) are investigated in section 5.2. Section 

5.3 elaborates on the limitations of using performance-based weighting methods in this project. Then, section 

5.4 assesses the results of the historical experiment. The main findings of the DSST test are investigated in 

section 5.5. The projected impacts of climate change on the low flows at Lobith are evaluated in section 5.6. 

Section 5.7 compares the adjusted quantile mapping method to the scaled distribution mapping in the 

context of modelling the Rhine. The research limitations are mentioned in section 5.8. Finally, section 5.9 

indicates further research areas as possible extension to this project.  

5.1 Hydrological model 
The calibrated wflow_sbm model is used in modelling the hydrology of the Rhine. Reasonable performance 

metrics (NSE = 0.7, NSElog = 0.81 and KGE = 0.82) are obtained when evaluating the modelled discharges at 

Lobith based on the actual discharges for the period (1979 – 2018). It appears that the modelled low flows 

are slightly underestimated (90 m3/s is the difference in estimating the Q95 value), while the modelled high 

flows are overestimated (error = 300 m3/s in estimating Q5). 

The histogram of the maximum consecutive low flows in a year shows that wflow_sbm can capture most of 

the dry flow events (figure 4.4). The model resulted in values that are 20 % higher than the observations in 

six years (1991, 1996, 2003, 2009, 2012 and 2014).  

The model is less reliable in studies that focus on high flows (i.e., flooding related studies) and more reliable 

in studies with a focus on low flows. Since the focus of this study is on analysing low flows, wflow_sbm is 

found not to be a limiting factor. 

5.2  Uncorrected climate simulations 
The calculated long-term statistics of the modelled discharges from raw simulations (lengths below threshold, 

7-day minimum flow and long-term mean annual discharge) provided estimates that are higher than what 

the actual discharges have provided. One of the main causes of the high modelled flows, is because the raw 

temperature simulations for the period (1979 – 2019) are in average 2 Co colder than the observed 

temperature. This has caused wflow_sbm to exhibit lower losses, thus providing flows that are higher than 

the observed. 

This indicates that these raw simulations cannot be used in analysing the flow changes at Lobith, based on 

their performance in the reference period (1979-2018). 

5.3 Performance-based weighting 
The weighting of raw climate simulations based on historical observations, either by meteorological variables 

(ClimWIP) or observed discharges (REA), appears to restrict the change signal of the raw simulations. The 

results of these weighting methods shown in figure 4.7 and 4.8, suggest that the two methods are indeed 

able to restrict the change signal based on the observations. However, these methods are not able to 

overcome the wet precipitation bias in the underlying RCMs. This has prevented these methods from 

providing results that are close to the observations. 

The two methods are not able to extrapolate from the ensemble range, as the weighted discharge is based 

on the values of the ensemble. Other methods like the Bayesian inference method (Wu et al., 2014), the 
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kriging climate change method (Drignei, 2009) and the spatiotemporal REA method (Tegegne et al., 2019) 

can reduce this problem and lead to more reasonable results.   

An example on how to apply one of these methods is shown in appendix X, where three additional stations 

(Kaub, Basel and Cochem) are considered in computing the spatiotemporal RCM weights at Lobith for the 

period (1999 – 2018). The final weighted discharges are better than the ones generated using the original 

REA method of Giorgi and Mearns, 2003. As the weighted discharge is found to lie in the lower band of the 

ensemble envelope. 

5.4 Bias correction in the historical experiment 
The corrected climate simulations for the period (1999 – 2018) resulted in modelled discharges than are closer 

to what is observed in the same period. QM and SDM methods have provided the same envelope in their 

daily average discharges for the same period, indicating similar capabilities in reducing the systematic bias. 

The comparison between the results of the bias-corrected simulations and raw simulations relative to the 

observed discharges at Lobith (figure 4.13 and 4.14), shows that the bias correction methods have improved 

the long-term statistics of the simulations by moving them closer to the observations.  

Bias correction methods cannot overcome the embedded errors in GCMs. Although, the corrected subsets 

indicated a better performance, but the hydrograph shape of each RCM still has a different shape than the 

actual hydrograph. Furthermore, RCMs that originate from the same GCM share the same hydrograph shape. 

The corrected DMI, KNMI and SMHI subsets share the same hydrograph because they are derived from the 

ICHEC-EC-EARTH model. CNRM and IPSL corrected subsets have the same hydrograph, as these RCMs are 

derived from the same GCM (MOHC-HadGEM2-ES). 

Three corrected subsets (KNMI, SMHI and IPSL) have provided better results than the rest. The reason appears 

to be related to their natural ability to estimate the long-term statistics as raw simulations (without bias 

correction). The raw KNMI and SMHI subsets have estimated the four metrics (lengths below threshold (1100 

m3/s), 7-day minimum flow and long-term mean annual discharge) better than the DMI and CNRM subsets.  

This indicates that QM and SDM methods are more of a catalyst to the climate simulations. In other words, it 

appears that the best performing corrected simulations are the best performing raw simulations. Also, the 

least performing corrected simulations are the least performing raw simulations. In any case, applying bias 

correction to the climate simulations has proved to always be better than using raw simulation at Lobith.  

This is supported by an applying the same analysis at three other locations (Kaub, Rees and Cochem) within 

the Rhine basin. The analysis suggests that the bias correction methods have improved the long-term 

statistics at two locations (Rees and Cochem), while the simulations are better of any correction at Kaub.  

The bias-corrected simulations at Kaub have provided estimates with higher errors compared to the raw 

simulations. The reason appears to be the wflow_sbm is not performing well at Kaub compared to Cochem. 

The NSE value is found to be lower than 0.4 at Kaub, based on the available observations from (1979 – 2000). 

While at Cochem, the NSE is found to be of 0.56. This suggests that the success of bias correction methods 

at certain locations depend on the skill of the hydrological model.  

5.5 Non-stationarity testing  
The DSST indicated that the two methods can work well in certain climatic conditions. Regarding precipitation 

simulations, QM and SDM can correct extreme precipitation. However, the two method did not provide any 

improvements when correcting lower precipitation values. Implying that they cannot be relied upon in 

overcoming the drizzling effect in climate simulations.  
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For temperature, the two correction methods can correct unprecedented warm temperatures. This is based 

on the provided estimates relative to the E-OBS. QM is better than SDM in correcting lower future 

temperature values based on higher temperature. As QM provided more closer estimates to the validation 

period than SDM. The raw simulation provided better estimates than the SDM in this part of the test.  

5.6 Future climate change impacts on low flows at Lobith 
The modelled discharges projected a relative increase in the average flows from the start of the summer until 

end of August. This is followed by lower average discharges until the end of the year. This is due to earlier 

snow melt because of climate change. Then, at the end of the summer period the snow melt contribution at 

the Alps is projected to decrease, resulting in lower flows. This is based on the analysis of two other locations 

(Rockenau and Andelfingen), where the corrected projections indicate lower flows at Andelfingen and 

Rockenau from the middle of the summer period until the end of the year (see appendix IX).   

For the first half of the year, it is difficult to infer the possible impacts by 2060. This is because the modelled 

discharges do not seem to agree well with each other.   

Based on the RCP8.5 scenario, the bias-corrected simulations suggest more extreme low flow events that 

have not been experienced in the Rhine. The histograms of the modelled discharges shown in figure 4.20 

suggest having extremely low discharges that are below 700 m3/s. These discharges are lower than the 

minimum discharge observed during the period (1979 – 2018). In addition to that, discharges that are in the 

range of (1100 – 900 m3/s) are going to occur more frequently and last longer. 

Considering the extremity of these results, the regional trend test applied to the bias-corrected projections 

did not indicate a general trend in precipitation and evaporation. However, it has indicated regional warming 

across the Rhine basin. The reason of this is not fully known. Only some parts in the Alps indicated an increase 

in potential evaporation, due to having enough water supply for evaporation. 

5.7 Empirical quantile mapping and scaled distribution mapping 
The two bias correction methods: quantile mapping (QM) and scaled distribution mapping (SDM) have 

improved the quality of raw EURO-CORDEX simulations in modelling the Rhine river. The similar performance 

of the two methods throughout this study indicated the presence of the systematic biases in EURO-CORDEX 

(CMIP5) simulations.  

Scaled distribution mapping method is proposed by Switanek et al., 2017 as a better alternative to the 

empirical quantile mapping method. However, this is not the case for the Rhine basin. Adjusting the QM 

method to work based on the monthly scale has proven to produce more consistent results than SDM in the 

Rhine basin. It appears that SDM is more suitable for correcting higher values (precipitation and temperature) 

and not suitable for correcting lower values (precipitation and temperature). This is mostly related to the 

scaling factors that are used in this method. 

5.8 Research limitations 

5.8.1 Observational datasets 

The datasets used to correct climate simulations are of high resolution, however there is always uncertainty 

with data. The first issue regarding the used dataset is the fact that each meteorological variable is selected 

from a different dataset. However, that cannot be averted as these sets are the ones that cover the entire 

period for the reference period considered in this study. The other issue is that each of these datasets has a 

different resolution (31, 12, 1 km2), which adds another level on uncertainty due to the additional interpolation 

procedure to fit it based on the wflow_sbm resolution (1 km2), except for HYRAS. 
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E-OBS is often used in bias correction methods, nonetheless it is an interpolated dataset where there are 

embedded errors from false measurements and interpolation method. E-OBS is found to have lower errors in 

temperature, and large errors in precipitation (Hofstra et al., 2009), and based on this reason E-OBS 

temperature dataset is chosen. 

The Makkink evaporation calculated from ERA-5 inputs is also subjective to the uncertainty of the input 

parameters used to calculate Makkink evaporation (pressure, shortwave downwelling radiation, and 

temperature) (Makkink, 1959). According to (Babar et al., 2019), ERA-5 suffers of large errors in estimating 

shortwave downwelling radiation and temperature in high altitudes. Additionally, the temperature used to 

estimate the Makkink is based on ERA-5 and not E-OBS. ERA-5 has the coarsest resolution out of the three, 

therefore it is also prone to larger errors due to statistical downscaling. 

HYRAS precipitation dataset has the finest resolution (1 km2). However, the REGNIE method used in creating 

this dataset is sensitive to the station density (i.e., works well with high station density). It is also found to 

underestimate small precipitation rates and estimate rates higher than (1 mm/day) better (Rauthe et al., 2013). 

This effect might affect the applicability of bias correction methods in correcting lower rainfall rates, and limit 

SDM method when reducing the drizzle effect of climate simulations. 

5.8.2 Climate simulations 

The selected EURO-CORDEX simulations are CMIP5, simulations were used to generate the fifth assessment 

IPCC report. However, there are new CMIP branch, which is CMIP6, that has a better representation of the 

climate and incorporate socio-economic paths that resulted in more realistic scenarios. CMIP6 is better than 

CMIP5, and there is no doubt that RCP8.5 scenario of CMIP6 is more realistic and suitable for assessment 

studies.  

The type of analysis presented in this thesis is based on one scenario, which is RCP8.5. The other two scenarios 

(RCP2.6 and RCP4.5) have not been considered here. It would be worthwhile to consider applying these 

scenarios in such assessment studies to assess climate change impacts based on all scenarios. In addition to 

test the applicability of QM and SDM in these scenarios as well.  

Two GCMs are selected in this study (ICHEC-EC-EARTH and MOHC- HadGEM2-ES). These subsets were 

chosen based on the work of (Beusen, B., 2021), as these two models demonstrated the best performance in 

modelling the Rhine without any correction (out of nine GCMs). There are other GCMs that have not been 

tested in modelling the Rhine basin, and could have been considered. The expected difference can be seen 

when applying performance-based weighting, as there will be more distributed weights and its possible that 

the observed discharge lie within its envelope.   

5.8.3 Hydrological modelling 

In this study only one model (wflow_sbm) has been considered because of time limitations, however it would 

be of a great value to model the Rhine basin with more than one model to examine the projected changes in 

the future using a different model representation. Wflow_sbm is a conceptual model where most of its 

parameters are based on spatial information, with an aim of little to no calibration. Also, its kinematic wave 

routing scheme is not the best when modelling flat regions like the Netherlands. 

5.8.4 Sensitivity of the hydrological model  

When working with different datasets, it would have been wise to examine the hydrological model sensitivity 

to the errors in the observational dataset. Through this step it would be clearer to identify the pitfalls in the 

observational datasets, and which one of the meteorological variables is sensitive to the applied bias 

correction methods.  
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5.8.5 Land use changes 

In any plausible climate assessment study, changes in land use affect the hydrological behavior of river 

catchments. For example, urbanization and deforestation can lead to an increase in the runoff of the 

catchment. This due to having lower storage capacity in the canopy or in the unsaturated zone, which can 

lead to rapid catchment response in the case of extreme rainfall events.  

Many researchers have studied the effect of land use changes in the Rhine catchment. Hurkmans et al., 

2009 used the VIC model and EURURALIS scenarios to analyse the effects of land use changes. They found 

out that such changes can lead to an increase in streamflow generation between 2 – 30 (%) in some parts of 

the Rhine catchment. Bronstert et al., 2007 used a combination of hydrological models and different land 

use scenarios to examine such changes and reported an increase between 4 – 10 (%) in parts of the Rhine 

basin. Similar results can be found in Hundecha and Bárdossy, 2004; Pfister et al., 2004. 

However, in this research possible changes in land use are not considered when projecting to the future.  

5.8.6 Bias correction 

The applied bias correction methods in this project are some of the most advanced methods developed 

worldwide. These methods consider the spatial variability by applying the correction on a grid cell, this 

approach can be regarded as suitable for correcting temperature and evaporation, but not for correcting 

precipitation. Precipitation remains the largest source of uncertainty in climate model simulations. Linking 

temperature and precipitation distributions is a reasonable solution for this issue.  

Cannon, 2018 provided a nice improvement to QM by linking the multivariate distributions. Which has 

resulted in better performance. This linkage is necessary in correcting areas that experience different types of 

rainfall that can be triggered based on a certain change in temperature, like in the Netherlands. 

5.8.7 Lobith 

The Rhine is the basin of interest and Lobith as one of the downstream locations at the Dutch border is the 

main point of interest. Focusing only at Lobith is not truly justifiable as biases may differ throughout the Rhine 

basin. Although five additional locations are analysed for validating some results (Kaub, Rees, Cochem, 

Rockenau and Andelfingen). These locations are not analysed in much detail as Lobith. Incorporating more 

locations in such analysis is more reliable than using Lobith only for investigating climate change impacts in 

the Rhine basin.   

5.8.8 Climate change adaptation strategies 

To deal with climate change impacts, many countries drafted their adaptation strategies to cater for this 

challenge. The Rhine is no exception, considering its importance to the riparian countries. In any climate 

assessment study, there is a strong need to consider the current adaptation strategies in the study area. Then, 

examine how these plans can hold by the end of the projection period and check if further refinement is 

needed. This is also important in raising awareness, exploring adaptation pathways, and assessing the 

associated implication on the decision-making process. This is not considered in this research. However, the 

interested reader in knowing the relevant climate adaptation strategies in the Netherlands and the Rhine can 

refer to the work of Haasnoot et al., 2015; Renner and Meijerink, 2018. 

5.8.9 Water levels 

Rating curves are used to estimate the projected changes in water levels till 2060. This is not the best option 

to reflect on the changes on water levels and water depths. To account for the projected changes in discharges 
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at Lobith, this requires hydrodynamical modelling of the reach near Lobith. This requires accurate bed levels 

data and additional measurements and was discarded because it was outside the scope of this project. 

5.9 Future Research 
▪ Examine the effects of land use changes and climate change in the Rhine using bias corrected 

projections. This can be done by extending these corrected projections while considering land use 

changes, using the LUISA modelling platform or EURURALIS (Hurkmans et al., 2009; Sperna Weiland 

et al., 2021). 

▪ Apply bias correction to precipitation projections using the method of Cannon, 2018, or adjusting 

the proposed methodologies to account for multivariate statistical distributions. 

▪ Assessing the associated cost of climate change effects in the Netherlands, with a special focus the 

vital commercial sectors that rely on the stability of the Rhine river (drinking water, navigation, etc.). 

▪ Assessing other (or modifying the proposed) performance-based weighting methods on the Rhine 

river and make it work on smaller scales (like Lobith). This can be done by incorporating the spatial 

variability into these methods (similar as ST-REA in appendix X, where three additional locations are 

considered to compute the weight of each RCM).  

▪ Modelling water availability challenges of the Rhine river due to climate change using CMIP6 

simulations, to formulate adaptive water management strategies that increase the preparedness of 

the vulnerable sectors (drinking water sector, agriculture, and Navigation). 

▪ Assessing the impacts of climate change at Lobith using more than one model. Where a 

combination of two are three models are used to assess climate change impacts in the Rhine river 

using bias-corrected projections.  

▪ The projected changes in water levels at Lobith due to climate change using hydraulic and 

hydrodynamic models. 

▪ Comparing a set of performance-based weighting methods to assess the hydrological response of 

the Rhine catchment to climate change. In addition to the REA and ClimWIP methods, possible 

alternatives can be the Bayesian inference method (Wu et al., 2014) and kriging climate change 

method (Drignei, 2009). 
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6| Conclusion  
The aim of this study is twofold, first to investigate the added value of using two bias correction methods 

(QM and SDM) in modelling the hydrology of the Rhine river and the second is to assess the impacts of 

climate change on low flows at Lobith by 2060 using bias-corrected EURO-CORDEX simulations. The 

investigation is based on the performance of QM and SDM in the historical experiment. The assessment is 

based on the results generated from the calibrated wflow_sbm, after forcing it with the bias-corrected 

simulations for the period (2020 – 2060). To answer the main research question presented in section 1.4, the 

following sub-questions are addressed. 

▪ How do bias (un)corrected simulations perform compared to the actual flows measured at Lobith 

when using wflow_sbm? 

The raw simulations for the period (1999 – 2018) are corrected using QM and SDM based on the observational 

dataset during the period (1979 – 1998) and the raw simulations for the same time span. The result of this 

step is bias-corrected simulations for the period (1999 – 2018). Then, the calibrated wflow_sbm model is used 

to generate all the relevant discharges using raw and corrected simulations for the period (1999 – 2018). 

Then, these modelled flows from are compared to the actual observations for the same period. 

The raw simulations have resulted in daily discharges that are in average 400 m3/s higher than the actual 

discharges for the same period at Lobith.  However, the bias-corrected simulations provided daily modelled 

discharges that have less errors compared to the actual flows in this period.  

Furthermore, the calculated long-term statistics from the corrected discharges contain less errors than the 

raw discharges relevant to the actual discharges. The improvements of the bias correction are not only 

constrained at Lobith, but also extended to two other locations, Rees and Cochem. Only one location (Kaub) 

that indicated lower performance after bias correction. This is linked to wflow_sbm being less skillful at that 

location.  

In general, bias-corrected simulations have outperformed uncorrected simulations based on the actual 

discharges at Lobith. It appears that QM and SDM improved the ability of the climate simulations, but the 

underlying error in the parent GCM is not reduced using these methods. The improvements in hydrological 

modelling are also subjective to the reliability of the raw RCM and to the skill (accuracy) of the hydrological 

model at the specific location.  

▪ How do the incorporated bias correction methods account for non-stationarity and preserve the 

climate signal of the RCMs at Lobith? 

The differential split sample test (DSST) is used to test the reliability of QM and SDM in correcting precipitation 

and temperature under changing climate conditions. The two methods (QM and SDM) indicated better 

performance than the raw simulations in correcting relatively high projections based on lower values in the 

reference run. However, for the reversed case there is a mismatch between the two methods. QM can correct 

lower temperature simulations based on warmer values better than SDM. However, the two method are not 

able to correct lower precipitation values compared to higher values, indicating a poor performance in 

reducing the common drizzle effect in climate simulations. 

Overall, QM is better than SDM in performing under different climate conditions. The scaling factors in the 

SDM prevent it from correcting underestimated simulations, thus limiting its applicability.  
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▪ How do bias-corrected simulations perform compared to uncorrected simulations when applying 

the performance-based weighting techniques described in Sperna Weiland et al., 2021 using the 

chosen EURO-CORDEX ensembles? 

The two weighting methods (REA and ClimWIP) listed in Sperna Weiland et al., 2021 are used to assign the 

weights to the selected RCMs from the EURO-CORDEX initiative. Although the two weighting have managed 

to constrain the change signal in the raw ensembles. However, that did not improve the performance of the 

raw simulations as much as the bias correction. This is because the wet bias is high, which has prevented the 

two weighting methods from providing reliable predictions at Lobith. The bias-corrected simulations 

provided more accurate discharges than the weighted raw simulations of the two methods.  

▪ What will the impact of climate change be on low flows in the Rhine river when projecting to 2060 

(mid-future) after applying bias correction? 

The average discharges for the period (2020 – 2060) are projected to be lower than the average observed 

discharge in the reference period. The annual long-term mean discharge at Lobith is projected to decrease 

by at least 100 m3/s. The average lengths below threshold (1100 m3/s) from the corrected simulations are 

higher than what is observed from the historical period at Lobith (1979 - 2018). Additionally, the projected 

average minimum 7-day flow is at least 100 m3/s lower than in the historical discharges.  

Nine corrected simulations indicated unprecedented low flow events at Lobith (< 700 m3/s), at least 50 times 

in the next 38 years. Extreme drought events are going to occur more frequently and last longer than what is 

observed in the historical discharges. There is a slight change in the seasonality of the Rhine river during the 

summer and winter periods in the future, with lower summer flows and higher winter flows. There is a 

consensus between the corrected simulations on having a relative decrease in the daily average in the last 

four months of the year counteracted by higher flows from early June to the end of August. This increase is 

due to changes in snow melt contribution from the Alps region. 

▪ What are the water levels corresponding to the bias-corrected future flows at Lobith? 

The projected water levels are in line with the same changes in future flows. Higher average water levels are 

projected between the first of June to the end of August. However, from the end of August until mid-January 

of the next year the average water levels are projected to decrease.   

The changes in the projected average water levels is not as extreme as the changes in discharges. An average 

decline of 20 cm is projected from the end of August until mid-January, while an average increase of 30 cm 

in water levels is expected between the first of June to mid-August. 

The results obtained by combining bias correction with RCP8.5 scenario are alarming. The bias-corrected 

simulations indicate noticeable climate change impacts at Lobith and over the Rhine basin. This calls for 

further investigation, by incorporating the feedback in the climate system, analysing the other climate 

scenarios (RCP2.6 and RCP4.5), current climate adaptation strategies in the Rhine basin with bias-corrected 

simulations to assess these changes in a comprehensive manner. 
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7| Appendix I 
In this section, the Makkink equation (Makkink, 1957) used to compute the evaporation is discussed first, 

followed by the general procedure on which the rating curves at Lobith are calculated. Then, all the metrics 

used in evaluating the hydrological performance of the wflow_sbm (section 3.5), assessing the added value 

of bias correction, and estimate the impacts of the meteorology at Lobith and in the Rhine basin are 

outlined.   

7.1 Makkink Evaporation: 
EURO-CORDEX simulations do not simulate evaporation directly, raw evaporation simulations are calculated 

by using the relevant raw simulations. In this thesis, the Makkink formula (Makkink, 1957) is used to calculate 

evaporation simulations using three simulations: temperature [C
ο
], pressure [hPa] and incoming shortwave 

radiation [W/m2]. 

There are many modified Makkink evaporations methods that were proposed, for example (Schuurmans, 

2009; Buishand and Velds, 1980). The Makkink evaporation used to calculate evaporation for the used climate 

simulations for the period between [1979 – 2060] based on three inputs: temperature [C
ο
], pressure [hPa] and 

incoming shortwave radiation [W/m2]. The Makkink evaporation is calculated based on the formula used by 

Deltares and described in the equations below (equation A1 to A5).  

First calculate the saturated vapor pressure esat [Pa], based on temperature T [C
ο
]. 

esat= 6.112* e
17.67 * T
(T + 243.5) 

 

(A1) 

Second, calculate the slope of the vapor pressure curve S [-]. 

S= esat* (
17.269

T+243.5
) *(1-(

T

T+243.5
)) 

 

(A2) 

Estimate the latent heat of vaporization λ. 

λ=2.502 * 10
6
- (2250 *  T )    [ J

Kg⁄ ] 

 

(A3) 

Then, calculate the psychometric constant by using pressure P [hPa], specific heat capacity of dry air Cp [J/Kg], 

and latent heat of vaporization λ. 

γ= 
Cp*P

0.622* λ
 

 

(A4) 

Finally, the daily potential evaporation PET expressed in mm /day can be estimated using the following 

formula: 

PET= 
0.65

λ
* 

S

S+γ 
* Kin* 86400         [

mm

day
]  

 

(A5) 

7.2 Rating Curves 
Rating curves are used by hydrologists and hydraulic engineers to translate the measured water levels at a 

certain location to river discharges and vice versa. To be able to project the changes in water levels due to 

climate change, it’s crucial to derive a realistic rating curve formula at Lobith. The water levels and discharge 

measurements that were commenced during 2016 are used to derive the rating curves at Lobith 
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(Rijkswaterstaat, 2016). There is a lot of uncertainty involved with using rating curves in the context of flooding 

or high flows, however since the focus of this research is on low flows. Applying a rating curve formula to 

compute water levels from the modelled discharges, one can argue that a lesser amount of errors are 

introduced (McMahon and Peel, 2019), compared to using rating curves in applications that require high 

flows (i.e., flood modelling). 

Usually rating curves are used to translate the measured water levels into discharges. The water levels and 

discharge measurements are used to obtain the fitted rating curve, based on the following equation: 

y=a xp+ b 

 

(A6) 

Where y is the water level at the point of interest, x is the discharge value at the point of interest, and the 

coefficients (a, p, and b) are site specific fitted parameters. 

This equation was based on adjusting the normal rating curve derived from the Chezy formula described 

below (Herschy et al., 1998).  

Q=c * b * (h-h0)
1.50
 *  i

0.50
 

 

(A7) 

Where Q is the the discharge, C is the coefficient of discharge, b is the width of the section (weir in the case 

of available measurement), i is the slope of the river, h0 is the zero discharge measurement and h is the water 

level 

The water level (h) described in the Chezy formula (equation A7) can be adjusted as in equation A8.  

h= (
1

c * b *  i
0.5
)

2
3⁄

* Q
2

3⁄ + h0 

 

 

(A8) 

The structure of equation A8 is like that of equation A6, the values of the three coefficients (a, b and p) is 

obtained by applying a fitting procedure on the actual measurements. The fitting was performed using the 

solver option in excel, as the solution obtained through curve_fit feature in python has yielded a lower R2 

value. 

The fitted rating curve formula for Lobith based on the available measurement (Rijkswaterstaat, 2016) is 

described in equation A9. 

y=0.151414* x0.491511+2.85256 (A9) 
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Figure 7-1: Fitted rating curve at Lobith based (Rijkswaterstaat, 2016) measurements 

The fitted equation provided a correlation coefficient (R2) of 0.98. The equation translates flows to water levels 

in a reasonable manner, until the threshold of 4500 m3/s. The uncertainty of dealing with the rating curves is 

high when dealing with high flow. Since in this project is mainly focusing with low flows, using such rating 

curves is of lesser uncertainty, as the focus is on flows that fall within the range of (900 – 3500) m3/s.   

7.3 Assessment metrics 

7.3.1 Long-term statistics 

Statistics spanning for more than 20 years is usually used when analyzing climate change. Four metrics have 

been used throughout this project, three of them consider changes throughout the year, while the remaining 

one focuses in the changes during the summer season (specifically the period from June to August, known 

as JJA). 

Long-term annual mean 

After obtaining the modelled discharges by wflow_sbm, the long-term annual mean is calculated by averaging 

these daily simulated values throughout the year, then they are averaged again over the long run (>= 20 

years) to obtain the long-term annual mean.  

 long-term Summer mean 

The same procedure used in obtaining the long-term annual mean have been applied, with a minor difference. 

The difference here is that only the values that fall between the 1st of June to the 31st of August in each year 

have been considered in calculating the long-term summer mean. 

7-day minimum low flow (ND-7) 

Moving window of 7-days is applied to the daily discharges, for each year the minimum value is calculated 

(this value describes the lowest discharges observed during a certain week). This metric is critical in many 

water-uses like navigation, ecology, and water supply. 

Lengths below threshold 

What is meant by lengths below threshold is the period (number of days in this case) during which the 

discharges are below a certain threshold. A threshold of [1100 m3/sec] is chosen for Lobith, this value is 

almost 40 % lower than the suggested threshold by Snippen et al., 2016, where the Dutch water systems is 
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not be functioning properly. The reason for choosing this value is because it is the calculated 95th percentile 

of the recorded discharges within the period (1901 – 2018)  

7.3.2 Meteorology 

Three assessment criterions are implemented to assess the possibility of having meteorological droughts at 

Lobith or other locations. The metrics are standard precipitation index (SPI), the dry spell frequency and the 

regional Mann-Kendall trend test. 

Standard Precipitation Index (SPI) 

Standard Precipitation Index (SPI) is employed to track and assess meteorological droughts at a specific 

location, Lobith in this project. SPI calculates the possibility of having meteorological droughts using only 

precipitation and was proposed by (McKee et al.,1993).  SPI is calculated by fitting a probability density 

function (gamma in this case) to the frequency distribution of precipitation summed through a certain time 

window (monthly, bi-monthly, yearly, etc.). The applied probability density function is the same function 

described in the SDM section. 

g(x)= 
1

β
α
Γ(α)

xα-1 e
-x

β⁄          for x >0 

 

(A10) 

Where α>0, β>0 are the shape and scale parameters, g(x) is the fitted gamma distribution, and x is 

precipitation accumulated over a certain period (>= 1 month). 

The Table below describes the state of extremity based on the derived SPI values. One should note that for 

each configured time step, there is a corresponding SPI value.  

Table 7-1: SPI Values description from Livada and Assimakopoulos, (2007). 

 

Condition 

 

SPI 

 

Probability 

(%) 

 

Extreme Drought  SPI ≤  −2 2.30 

Severe drought − 2 ≤ SPI ≤  −1.50 4.40 

Moderate drought − 1.50 ≤ SPI ≤  −1 9.20 

Near normal − 1 ≤ SPI ≤  1 68.20 

Moderately wet 1 ≤ SPI ≤  1.50 9.20 

Severely wet 1 ≤ SPI ≤  1.50 4.40 

Extremely wet 1 ≤ SPI ≤  1.50 2.30 

 

SPI values are derived using python, and the durations which are considered are three and six months. 

Dry Spell analysis 

Dry spell corresponds to the number of days with rainfall below 1 mm/day. This metric is essential for 

assessing the potential occurrence of long drought events like the one experienced in 2018 within the 

Netherlands. For that a threshold of 1 mm/day is assumed and all the values that are lesser than this threshold 

within the period of early May to the end of September in a single year are counted. The period is extended 

than the normal summer period, as the projected discharges indicated a small shift. 
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The probability of experiencing these spells within a year is calculated. Equation (A11) assumes a Poisson 

distribution; the exceedance probability of these dry spells is computed using the following equation.  

P(c)= exp(-rt)
(rt)

c

c!
  

 

(A11) 

Where P(c) is the probability of having a number of events exceeding the dry spell duration, r is the rate of 

exceedance calculated by dividing the number of days exceeding the applied threshold (nex) in the set years 

within the number of years considered (y), c is the number of events in interval t and  t is the period 

considered in this case (May to September). This analysis was possible through the Python code written by 

(Van Der Ent, 2020). 

Trend Analysis 

As a complementary step to investigate if the Rhine basin is going to be warmer or colder in the coming years 

under RCP8.5, a regional trend test on the three bias-corrected meteorological variables is applied. The 

regional trend test is performed by applying the Mann-Kendall (MK) trend test on each grid cell within the 

climate simulations used in this project. In general, the test is based on testing a certain hypothesis (Hamed, 

2008), if the result of this trend is positive it means that there is a positive trend (increase). The contrary can 

be inferred when having a negative value, implying a decrease in the general trend. Finally, if the result of this 

test is zero it means that there is no general trend in the grid cell. The trend test was performed using 

pymankendall (package in python). The original MK test is applied by following the outlined steps in (Fathian 

et al., 2016). 

In the case of temperature an increasing trend indicates a warming trend, while a negative temperature 

indicates a cooling trend. In the case of precipitation, a positive trend at a grid cell hints at an increase in 

precipitation rates at that grid cell and vice versa when obtaining a negative trend. Positive trend in 

evaporation indicates an increase in evaporation rates and a negative trend indicates a decrease in the rates 

in evaporation. 

7.3.3 Hydrological model assessment 

Three assessment metrics are considered in evaluating the used the performance of the hydrological model 

wflow_sbm. These metrics are chosen to assess the performance of wflow_sbm in providing accurate 

predictions in low and high flows. 

Nash-Sutcliffe efficiency 

Nash-Sutcliffe efficiency (NSE) is a widely used metric by the hydrologic community. NSE ranges between 

-∞ to 1, a value of 1 indicates a perfect model. NSE value of 0 indicate that the model describes the 

observations as good as the mean of the observations. NSE is used to assess wflow_sbm performance in 

producing high flows compared to the observed flows.  

NSE=1 - 
∑ (Qm,i- Q̅0,i)

2N
i=1

∑ (Qo,i- Q̅0)
2N

i=1

 

 

 

(A12) 

Where NSE is the Nash-Sutcliffe efficiency, Qm,i is the modelled flow at time step i,  Qo,i is the observed flow 

at time step i and Q̅0 is the average of the observed discharge dataset. 

Logarithmic Nash-Sutcliffe efficiency 

Logarithmic Nash-Sutcliffe efficiency (NSElog) is a modified metric from the NSE, that fluctuates in the same 

range. NSElog is used to assess wflow_sbm performance in producing low flows. 
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NSElog=1- 
∑ (log(Qm,i)- log(Q̅

0,i
))

2N
i=1

∑ (log(Qo,i)- log(Q̅0))
2N

i=1

 

 

 

(A13) 

Where NSElog is the logarithmic Nash-Sutcliffe efficiency, log(Q
m,i

) is the logarithmic value of the modelled 

flow at time step i, log(Qo,i) is the logarithmic value of the observed flow at time step i, and log(Q̅̅ ̅̅ ̅̅ ̅̅
0
) is the 

logarithmic value of the average of the observed discharge dataset. 

Kling-Gupta efficiency 

Kling-Gupta efficiency (KGE) was introduced by (Gupta et al., 2009), KGE incorporates three components 

(linear correlation, variation, and mean). KGE ranges between −∞ 𝑡𝑜 1, a value of 1 indicates a perfect model. 

KGE=1- √(r-1)2+(α-1)2+(β-1)2 

=1- √(r-1)2+ (
σm

σo

-1)
2

+(
μ

m

μ
o

-1)

2

 

 

 

(A14) 

Where KGE is the Kling-Gupta efficiency factor, r is the correlation coefficient between modelled discharges 

and observed flows, α is the ratio of the modelled to the observed standard deviations and β is the  ratio of 

the mean of the modelled flows to the mean of observed discharges. 

7.3.4 Other hydrological metrics 

Flow duration Curve 

Flow duration Curve (FDC) is used by hydrologists to reflect on the proportion of time steps on which a certain 

flow value is exceeded. FDC is the marginal probability distribution function of the analysed time series. FDC 

is derived by sorting the discharge data in a descending manner (n values), then a value of m is assigned 

starting with a value of 1 given to the highest value and increasing this value by 1 when moving downwards. 

Finally, the exceedance probability (P) is calculated based on the equation (A15). 

P= 
m

n+1
 

 

(A15) 

P is the probability of exceedance and n being the total count of flow values in the analyzed timeseries. 

Logarithmic flow duration curves 

The same procedure applied for calculating flow duration curves, the difference here is the logarithmic values 

of the flow are first calculated and then the similar procedure outlined in equation A15 is folowed.  

The 95th Percentile flow 

The 95th percentile flow (denoted as Q95) is a metric that represents low flows at the analyzed location. Q95 

is the flow value at which 95 % of the time is exceeded. This value is used to characterize low flows at Lobith. 

The 5th percentile flows Q5 

The 5th percentile flow (denoted as Q5) a metric that represents the high flows at the analyzed location. Q5 is 

the flow value at which 5 % of the time being exceeded. This value is used to characterize high flows at Lobith. 

Seasonality ratio 

To reflect on the changes in seasonality at Lobith considering a changing climate, the seasonality ratio metric 

is adopted. Seasonality ratio (SR) is calculated based on the flow duration curve (Laaha and Blöschl, 2006). SR 

is calculated by dividing the 95th percentile flow value observed during the summer period by the 95th 

percentile flow observed during winter period. 
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SR= 
Q95th,   summer

Q95th,   winter

 

 

(A16) 

Having a SR value lesser than 1.0 indicates low flows during summer period (JJA) and high flows during the 

winter (DJF) which happens to be the case for the Rhine, and vice versa. SR will be used to reflect on the 

changes in seasonality when projecting to 2060. The Rhine is known for being a snow dominated regime, 

having high flows during the winter period and low flows during the summer period (Hurkmans et al., 2009). 

SR is used to reflect on the situation in the future and assess if it is going to remain the same after applying 

the bias correction methods.   

 

 

7.4 General hydrological modelling framework 

7.4.1 Bias correction 
 

 
Figure 7-2: Hydrological modelling framework using QM and SDM 

Figure (A1.2) demonstrates the 

systematic process for 

producing the bias-corrected 

discharges in the future. The 

mismatch in the grid cell 

resolution of the observational 

dataset and the reprojected 

EURO-CORDEX ensemble is 

solved by re-gridding the 

observational datasets. The 

resolution of the observational 

dataset is coarsened (upscaling, 

converting from fine resolution 

to a coarser resolution) using 

the bilinear upscaling method in 

CDO (Kaspar et al., 2010).  Then, 

after matching the resolution 

the bias-correction methods are 

applied, the product is the bias-

corrected meteorological 

variables with the same 

resolution as the inputs. 

After that, CDO is used to 

downscale the corrected 

datasets (from coarse resolution 

to a finer resolution) using the 

nearest neighbor method 

(Kaspar et al., 2010). An 

additional temperature 

correction is applied using the 

lapse rate correction equation 

(equation 3.20). Finally, the 

three meterological variables 
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are merged into one file and 

used to force wflow_sbm to 

compute the daily (corrected) 

modelled for the period (2020 – 

2060). It should be also noted 

that this structure is the same 

structure for the historical 

experiment. Temperature 

correction is applied to all 

simulations (raw or corrected) to 

ensure the model perform as 

close as possible to the terrain 

of the Rhine basin. 
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7.4.2 ClimWIP 

 
Figure 7-3: Modelling framework using ClimWIP 

The ESMValTool is used to compute 

GCM weights based on ClimWIP 

(Brunner et al., 2019). However, since 

the observational datasets does not 

have the same resolution as the climate 

simulations, a statistical downscalling is 

performed using CDO before using 

these datasets in the softwars package. 

After obtaining the weights, the final 

discharge is the weighted average of 

these raw future simulations as in 

equation 3.18 (section 3.4.1). 

The results of this framework is shown 

in the results section 

 

7.4.3 REA 

 
Figure 7-4: Hydrological modelling framework using REA 

REA is implemented on the raw 

modelled discharges (section 3.4.2). 

Figure (A1.3) shows the applied 

procedure to calculate the weighted 

projections to 2060. The raw EURO-

CORDEX simulations are remapped 

(downscaled) to be able to run 

wflow_sbm based on the 1 km2 

resolution. Then, the calculated 

discharges are used to obtain the 

weights. Then these weights are 

used to compute the weighted 

discharge of the ensemble 

simulations (equation 3.18).  
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8| Appendix II: Additional Results 
 

 

Figure 8-1: Discharges at Lobith obtained by forcing wflow_sbm by raw EURO-CORDEX simulations (1999 - 2018). 
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Figure 8-2: SDM performance in the DSST for precipitation. 

 

Figure 8-3: QM performance in the DSST for precipitation 

 

Figure 8-4: SDM performance in the DSST for temperature 
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Figure 8-5: QM performance in the DSST for temperature. 
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Figure 8-6: Lengths below threshold for the period (2020 - 2060) using bias-corrected EURO-CORDEX simulations 

 

Figure 8-7: SR Q95 values for summer and winter values 
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8.1 Dry spells and SPI analysis 
The bias-corrected simulations at Lobith are analysed to assess the occurrence of dry spells in the future 

relevant to the actual observations. The results shown in figure 8.8 below, suggest that the occurrence of dry 

spells between (5 – 10) days is going to be more frequest (six out of the ten corrected simulations). The CNRM 

and SMHI subsets indicate dry spell durations that are longer than what is observed during the reference 

period (1979 – 2019). 

In the figures 8.9, 8.10, 8.11 and 8.12 the SPI analysis of the KNMI and SMHI subsets is illustrated. The reason 

for choosing these two subsets in the SPI analysis, is because they showed the highest skill relative to the 

actual observations during the historical experiment. 

 

Figure 8-8: Dry spell analysis of the bias-corrected simulations at Lobith for the period (2020 - 2060). 

The SPI analysis of the KNMI datasets indicate the highest meteorological droughts are set to on the year 

2045 and 2059. The SMHI subsets hint at meteorological droughts during the year 2025, 2035, 2059 and 

2060. The same results are found using QM or SDM (with minor differences)  
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Figure 8-9: SPI Calculation for the projected period (2020 - 2060) for the corrected KNMI subset using QM 

 

Figure 8-10: SPI Calculation for the projected period (2020 - 2060) for the corrected SMHI subset using QM. 
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Figure 8-11: SPI Calculation for the projected period (2020 - 2060) for the corrected KNMI subset using SDM 

 

Figure 8-12: SPI Calculation for the projected period (2020 - 2060) for the corrected SMHI subset using SDM 
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9| Appendix III: Kaub, Cochem, and Rees 

 
Figure 9-1: Description of how Kaub, Rees, Cochem, Rockenau and Andelfingen are 

distributed within the Rhine basin. 

As an additional check for 

the historical experiment, a 

set of three locations are 

selected for validation (i.e., 

correcting the projections 

for the period (1999 – 

2018)). 

The locations are Kaub, 

Rees and Cochem. These 

three towns are in 

Germany.  

The reason for choosing 

these locations stems from 

the fact that they are 

considered as bottleneck 

areas in the Rhine basin 

low flow related 

applications. The analysis is  

based on three indices (7-

day minimum low flow 

(ND-7), long-term annual 

mean flow and lengths 

below threshold3.  

 

 

As it appears from the figures below for each location, applying bias correction to the simulations resulted in 

a clear improvement at Rees and Cochem. The calculated stats from the corrected simulations is close to that 

obtained by forcing the wflow_sbm with the actual observations, that can be seen in the 7-day minimum low 

flow values (ND-7), long-term annual mean flow and lengths below threshold value. However, at Kaub the 

case is different. As the calculated stats at Kaub are found to less accurate from the actual observations, the 

raw projections provided more consistent results than the bias-corrected projections. That can be because 

the wflow_sbm is found not to perform well at Kaub compared to the other three locations.  

This indicate that the success of the bias correction depends on the hydrological model skill at the considered 

location. Overall, the bias-corrected projections provide better results than the raw simulations relative to the 

actual observations.  

 

 

 
 

3 The selected thresholds are 300 𝑚3/𝑠 for Cochem, 1000 𝑚3/𝑠 for Kaub and 1500 𝑚3/𝑠 for Rees. 
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9.1 Kaub 

 
Figure 9-2: Long-term statistics at Kaub, A is for 7-day minimum low flow, B is for the long-term mean annual flow 

and C is the lengths below 1000 m3/s at Kaub. 

 

 

9.2 Cochem 

 
Figure 9-3: Long-term statistics at Cochem, A is for 7-day minimum low flow, B is for the long-term mean annual flow 

and C is the lengths below 300 m3 /s at Cochem 
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9.3 Rees 

 
Figure 9-4: Long-term statistics at Rees, A is for 7-day minimum low flow, B is for the long-term mean annual flow 

and C is the lengths below 1500 m3 /s at Rees. 
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10| Appendix IX: Rockenau and Andelfingen 
Rockenau and Andelfingen are chosen to examine the changes exhibited at Lobith when projecting to 2060. 

These two locations show a strong dependence on the snow melt from the Alps. As snow is the major 

contributor to the flow observed at these locations. Rockenau is in Germany, while Andelfingen is in 

Switzerland. 

All the corrected simulations have resulted in lower average discharges at Rockenau and Andelfingen 

compared to what is observed by forcing wflow_sbm with historical observations. These locations are set to 

experience lower average discharges during summer period, due to the lower contribution from the Alps for 

the coming period due to climate change. One can expect relatively higher discharges within summer period 

for in the near future because of excessive snow melting at the start of the summer period. 

Once again, the envelope of the two corrected projections is similar, indicating similar performance between 

QM and SDM in removing the systematic bias from climate simulations. The uncertainty band in QM 

simulations is lower than in SDM simulations. 
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10.1 Rockenau 

 

Figure 10-1: Rockenau average daily discharge for the period (2020 - 2060) vs the actual discharges for the period 

(1979 - 2019). 
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Figure 10-2: Bias-corrected simulations at Rockenau for the period (2020 - 2060) compared to the actual discharges 

for the period (1979 - 2019) 
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10.2 Andelfingen 

 

Figure 10-3: Andelfingen average daily discharge for the period (2020 - 2060) vs the actual discharges for the period 

(1979 - 2019). 
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Figure 10-4: Bias-corrected simulations at Andelfingen for the period (2020 - 2060) compared to the actual discharges 

for the period (1979 - 2019). 
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11| Appendix X 
11.1 Spatiotemporal REA

In extension to the REA method discussed is the methods section (section 3.4.2), two other modifications to 

this method are introduced. Considering that none of the raw subsets used in this project provided lower values 

than the actual discharge and the unreliability due to the wet bias, REA and ClimWIP could not compete with 

QM and SDM.  

In this appendix section, the temporal REA, and spatial REA methods are applied following the framework 

proposed by Tegegne et al., 2019. However, this method is applied to modelled discharges and not to 

precipitation as in their paper. The goal is to see if there any added value when considering the spatial 

heterogeneity in the Rhine basin, by incorporating the measurements of three other locations (Basel, Kaub and 

Cochem) (see section 2.2). 

The spatial REA (S-REA), and temporal REA (T-REA) weights are obtained by applying the following expressions, 

to come with a set of weights that consider the variation in time and space (incorporated into the ST-REA). All 

while incorporating the information of RCM i at site j, and time t. X and O represent the simulated and modelled 

discharges respectively. 

T-REA= 

{
 

 

[
 
 
 

εT

√(Bi
T)

2
+vari

T ]
 
 
 
m

[
εT

abs(Di
T)
]

n

}
 

 

1
(m*n)⁄

 

 

 

 

(A17) 

 

S-REA=  {[
εS

(Bi
S
)
2
+vari

S
]

m

[
εS

abs(Di
S)
]

n

}

1
(m*n)⁄

 

 

 

(A18) 

 

ST-REA=  {[
εST

(Bi
ST)

2
+vari

ST
]

m

[
εST

abs(Di
ST)
]

n

}

1
(m*n)⁄

 

 

(A19) 

 

Di
T= ∆xi

T- 
∑ wi

T* ∆xi
TN

i=1

∑ wi
TN

i=1

 
(A20) 

 

Di
S= ∆xi

S- 
∑ wi

S* ∆xi
SN

i=1

∑ wi
SN

i=1

 

 

(A21) 

 

Di
ST= ∆xi

ST- 
∑ wi

ST* ∆xi
STN

i=1

∑ wi
STN

i=1

 
 

(A22) 

 



 

109 
 

Bi
T= 

1

T
 ∑[(

1

J
∑Xi,j,t

J

j=1

) - (
1

J
∑Oi,j,t

J

j=1

)]

T

i=1

 

 

 

(A23) 

 

Bi
S= 

1

J
 ∑[(

1

T
∑Xi,j,t

T

t=1

) - (
1

T
∑Oi,j,t

T

t=1

)]

T

i=1

 

 

 

(A24) 

 

Bi
ST= 

1

J+T
 [∑∑ (Xi,j,t- Oj,t)

T

t=1

J

j=1

] 

 

(A25) 

 

vari
T= 

1

T
 ∑[(

1

J
∑Xi,j,t

J

j=1

) - 
1

T
(∑

1

J
∑Xi,j,t

J

j=1

T

t=1

)]

T

i=1

2

 

 

(A26) 

 

vari
S= 

1

J
 ∑[(

1

T
∑Xi,j,t

T

t=1

) - 
1

J
(∑

1

T
∑Xi,j,t

T

t=1

J

j=1

)]

J

j=1

2

 

 

 

(A27) 

 

vari
ST= 

1

J+T
 {∑∑ (Xi,j,t- 

1

J+T
∑∑(Xi,j,t)

T

t=1

J

j=1

T

t=1

J

j=1

}

2

 

 

(A28) 

 

εT=max (O̅1
S
,……, O̅T

S
) -min (O̅1

S
,……, O̅T

S
)   

 

(A29) 

 

εS=max (O̅1
T
,……, O̅J

T
) -min (O̅1

T
,……, O̅J

T
)   

 

(A30) 

 

εST=max [

O1,1 ⋯ O1,T

⋮ ⋱ ⋮
OJ,1 ⋯ OJ,T

] - min [

O1,1 ⋯ O1,T

⋮ ⋱ ⋮
OJ,1 ⋯ OJ,T

] 

 

 

(A31) 

Where vari
S is the spatial variance for RCM i, vari

T is the temporal variance for RCM i.  The measure of natural 

variability in time εT, and in space εS. Di
S is the spatial divergence between the ensemble members, and Di

T is 

the temporal divergence, which are expressed as the mean difference between each simulation and the rest of 

the simulations. Bi
T and Bi

S are the spatial and temporal performance of each RCM i, this is calculated by the 

mean difference between each RCM’s simulation and observations at that point. 
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These parameters are then used to calculate the spatiotemporal REA weights using the Di
ST which is the 

spatiotemporal divergence between the ensemble members, εST natural variability in time and space, vari
ST is 

the spatiotemporal variance, and finally Bi
ST the spatiotemporal performance of RCM i. 

 

Figure 11-1: Spatiotemporal REA weighting method applied at Lobith based on Kaub, Cochem, and Basel for the period 

(1998 - 2018). 

It appears that incorporating space and time variability when applying performance-based weighting resulted 

in noticeable improvements in the average change signal of the raw simulations, when compared to using REA 

and ClimWIP.  

The latter methods consider the average change across the entire Rhine basin and generalize it on each grid 

cell located within. This assumption neglects any consideration of spatial heterogeneity related factors. The 

error in the weighted average daily discharge at Lobith using the ST-REA compared to the actual daily discharge 

for the same period (1999 – 2018) appears to be the lower relative to the weighted daily average discharge 

using ClimWIP and REA for the same period.
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