Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

Exploring new Coloring Methods for Image Triangulations

Daan Goossens', Amal D. Parakkat', Elmar Eisemann'
ITU Delft

Abstract

Minimalistic, low-poly images have gotten more
popular in recent years. But making these low-
poly images by hand can be time intensive. For
this reason, a lot of research has gone into how to
triangulate an image (semi-)automatically. In pre-
vious works, only constant color and bilinear in-
terpolation have been used to color the triangles in
the triangulation. In this paper, different coloring
methods have been investigated and showcased on
a fixed mesh. They show some promising first re-
sults, but these methods can still be improved upon.
When that happens, these coloring methods, com-
bined with previous works on how to optimally tri-
angulate, may result in more accurate or visually
pleasing low-poly images.

1 Introduction

Abstract and minimal art styles are getting more popular
lately, where for example company logos get simplified each
generation. Low-poly images, images that consist of few
colored polygons, most notably triangles, are also gaining
popularity. An example of a low-poly image can be seen in
Figure 1. These art styles can easily be converted to a vector
graphics format, because they mostly consist of simple
shapes. This has the advantage that it can be scaled without
loss of clarity or detail. This is important, because screen
resolution are increasing constantly. The simplicity also has
the advantage that it is easier to edit as there are less control
points.

The low-poly style originated from early video games,
where 3D scenes had to be limited in the number of triangles,
so that games could run in real-time with a reasonable frame
rate on the hardware available at that time. Nowadays, the
low-poly style has become more of an artistic choice than the
result of hardware constraints, as current computer hardware
can render scenes with millions of triangles in real-time.
The low-poly style resurfaced in 2D art and video games
in recent years. In the 2D art medium, the main focus is to
make the low-poly images as visually pleasing as possible
by retaining the structure of the image with the minimum
amount of triangles necessary. According to “Artistic Low

Poly rendering for images”[1], handmade low-poly art, usu-
ally achieves this by having big triangles in the background
and smaller and more densely packed triangles at places
where the main subject of the image is. These images mostly
use fat triangles, because that is more visually pleasing than
thinner triangles.

Figure 1: Example of low-poly art. Source'

Making these low-poly images can be seen as two actions,
namely making the mesh, which is a collection of triangles
which are in some way connected together, and coloring
the triangles in the mesh. As making a mesh, which can be
colored to well represent an image, can be time intensive
when done by hand, a lot of research has already been done
to make this process automatic or semi-automatic. This will
be discussed in more detail in Section 2. These works only
make use of constant coloring of the triangles and sometimes
bilinear interpolation. Therefore, in this paper, new coloring
methods will be explored, and how they compare to the
already widely used constant color and bilinear interpolation
methods will be discussed.

The paper is structured as follows. Section 2 will dis-
cuss the research that has already been done on this subject.
After which, Section 3 will give a minimal explanation of
some important terminology used throughout the paper.
The setup to make these low-poly images, and the different

"https://pixabay.com/nl/illustrations/
ijsvogel-laag-poly-lowpoly-tekening- 1458734/

https://pixabay.com/nl/illustrations/ijsvogel-laag-poly-lowpoly-tekening-1458734/
https://pixabay.com/nl/illustrations/ijsvogel-laag-poly-lowpoly-tekening-1458734/

coloring methods that are explored, will be discussed in
Section 4. Section 5 will show the resulting images that
are generated with these new coloring methods and how
they compare against the widely used constant color and
linear interpolation methods. After which, in Section 6
the significance of these results will be discussed. The
concluding remarks and possible future work can be found in
Section 7.

2 Related Work

There has already been some research done in the area of gen-
erating low-poly images. I will first discuss some academic
research and then some non-academic programs that can be
found on GitHub?. Results sampled from these works can be
found in Figure 2.

2.1 Academic Research

In “Artistic Low Poly rendering for images”[1] an algorithm
is introduced to automatically make low-poly art. They use
edge detection for vertex placement and centroidal Voronoi
tesselation steered by an image saliency map to have big tri-
angles in the background and a more dense triangulation in
the foreground elements.

“Pic2Geom™[2] also uses edge detection and a saliency
mask for vertex placement. Since visual saliency does not
work well on faces, they used face detection to extract facial
features to better triangulate faces.

“Low-poly image stylization”[3] uses abstraction and seg-
mentation of the image to place the vertices and then uses a
Delaunay triangulation to produce the low-poly artwork.

“Low-Poly Style Image and Video Processing”[4] imple-
ments a faster algorithm to make low-poly art by writing a
GLSL program that can be run on the GPU. With this faster
implementation, they can render low-poly videos in a rea-
sonable amount of time. The resulting low-poly video has
some jittering problems, which they solved by using the ver-
tex placement along the edges of image features of the pre-
vious frame, which have a chance to be preserved in the next
frame.

In “Stylized Image Triangulation”[5] instead of using edge
detection to place vertices, they have an error function that
returns how close the colored triangulation is to the original
image. They then use gradient descent to move the vertices
to places where the Delaunay triangulation minimizes a given
error metric over the whole image. This method produces
results which get very close to the original image, in contrast
to other papers, which focus more on how to make a visually
pleasing low-poly images. They also implemented low-poly
video, where for each frame they use the vertex placement
of the previous frame as an initial starting point to calculate
gradient descent on.

In “Triwild”[6] they use triangles that can curve to fit
edges, which results in fewer triangles to triangulate curvy
features with better accuracy. This has also proven useful in
simulation work cases.

“https://github.com/

2.2 Non-academic Projects

“Triangle”[7] uses edge detection to place vertices and then
computes a Delaunay triangulation. The images look nice,
but it sometimes has problems with thin triangles (see Figure
2f near the top left), which do not look as visually pleasing as
other works.

“Triangula”[8] uses a genetic algorithm to decide where to
place the vertices of the triangulation. It results in a trian-
gulation that very closely represents the original image. The
algorithm does tend to produce some thin triangles (see Fig-
ure 2g at the back wings) and might take a few minutes to
complete triangulating a single image.

“lowpolify”[9] is very similar in approach to pic2geom, in
that they both try to better triangulate faces when they are de-
tected in images. Furthermore, it uses edge detection to place
vertices after which Delaunay triangulation is computed, and
the triangles are then filled in with a constant color.

o W

(b) Pic2Geom (c) Low-poly image

stylization

(a) Artistic Low Poly
rendering for images

RN

(d) Stylized Image
Triangulation

(h) lowpolify

(g) Triangula

Figure 2: Example results from related work

2.3 Concluding Thoughts

It can be seen that a lot of previous work already went into
how to triangulate an image, and the results already look vi-
sually pleasing. In the previous works studied, mostly con-
stant color was used to color the triangles by either selecting
the average color, median color or the color in the middle of
the triangle. Sometimes bilinear interpolation was also used.
For this reason, the question if better results can be achieved
by using different coloring techniques, will be investigated.

https://github.com/

3 Background

Here, some definitions will be given for some recurring ter-
minology used in the paper.

3.1 Visual saliency

Saliency defines how much something stands out from its
close neighbors. With images, that applies to pixels, whereas,
visual saliency defines how much something stands out in
terms of human perception. For example, in Figure 1 the bird
itself stands out visually as that is the main focus of the pic-
ture, whereas the background is comparatively less important.
An example of a visual saliency map can be found in Figure
14b.

3.2 Delaunay Triangulation

A Delaunay triangulation produces a triangulation for a given
set of vertices, with the property that for each triangle, the
circle through the three vertices has no other vertices inside it
(see Figure 3). This maximizes the minimum angle over all
triangles in the triangulation, which results in triangles that
are as fat as possible. These fat triangles mostly look more
visually pleasing in low-poly art, which is why they are used
a lot in existing low-poly image generators.

Figure 3: Visual definition of Delaunay triangulation. Source®

3.3 Barycentric Coordinates

Barycentric coordinates will be used for interpolating color
values inside a triangle. A general definition can be seen in
Figure 4, where vectors P, A, B, C can be of any dimension,
but in this paper only the 2D case will be used. The barycen-
tric coordinates also have some other convenient properties,
namely for a point to be inside the triangle, the weights de-
fined in Figure 4 need to be non-negative and sum to 1. If this
is not the case, the point is not inside the triangle.

3https://en.wikipedia.org/wiki/Delaunay _triangulation#/media/
File:Delaunay_circumcircles_vectorial.svg
*http://wanochoi.com/?p=4170

c P=w,XA+wyXB+w-xC
APBC N
W, = o —
AT AABC T A
APCA b
Wp = =
BT AABC ~ A
A
B _APAB =

“e=3ABC T A

Figure 4: Barycentric coordinates definition. Source*

3.4 Bézier Triangles

A Bézier triangle is a triangle that can deform and interpo-
late between different control points on its surface. There are
multiple degrees of Bézier triangles from degree n=1, which
corresponds to linear interpolation (see blue triangle in Fig-
ure 5), to larger n. The number of control points of a Bézier
triangle dependents on the degree n, which can be found with
the formula (n 4+ 1)(n + 2)/2. The general Bézier triangle
is formulated in Equation 1, where (s, ¢, u) are the barycen-
tric coordinates, the fractional part are the coefficients of each
control point (see Figure 5), and («, 3,) describes the posi-
tion of the control points.

Figure 5: Pascal’s pyramid for multiple degrees of n. Blue triangle
n=1, red triangle n=3. The numbers on the triangle are the coeffi-
cients for each control point. Source’

§ szt]uk()fﬁ]’yk
i+j+k=n
i,3,k>0

i1k (1)

4 Method

Two different types of coloring methods were implemented,
namely methods that split triangles up into two parts that can
be colored individually, and interpolation methods, which try
to get as close as possible to the underlying image. The split-
ting methods were implemented to try out if sharp outlines

Shttps://en.wikipedia.org/wiki/Pascal %27s_pyramid#/media/
File:Pascalsche.Pyramide.png

https://en.wikipedia.org/wiki/Delaunay_triangulation#/media/File:Delaunay_circumcircles_vectorial.svg
https://en.wikipedia.org/wiki/Delaunay_triangulation#/media/File:Delaunay_circumcircles_vectorial.svg
http://wanochoi.com/?p=4170
https://en.wikipedia.org/wiki/Pascal%27s_pyramid#/media/File:Pascalsche.Pyramide.png
https://en.wikipedia.org/wiki/Pascal%27s_pyramid#/media/File:Pascalsche.Pyramide.png

on objects can be realized even with a suboptimal triangula-
tion. The interpolation methods were implemented to build
on some previous work, which try to get as close as possible
to the original image, which can be improved by these more
accurate interpolation techniques. To demonstrate the differ-
ent coloring methods, a program has been made that takes as
input an image and produces a low-poly image using these
new coloring methods. The current implementation only ac-
cepts square images. This decision was made for simplicity,
but it could easily be extended to accept any image size. As
this paper is focused on the coloring methods, a fixed triangu-
lation will be used. The implementation function as follows.
First, an input image will be provided. Then a visual saliency
map and edge map will be calculated from the image, with the
use of the OpenCV library®. From these intermediate steps,
the selected coloring method, and additional parameters, the
low-poly image will be calculated. This standard pipeline is
shown in Figure 6.

Input image:
saliency map
low threshold
edge detection
sdge mep Farguaiion

selected number of — L .
friangles

fixed triangulation

coloring method

Figure 6: The standard pipeline for generating the low-poly images

4.1 Constant Color
Constant coloring can be described by the Equation 2.

ft)=c)

Where ¢ defines the triangle in the mesh and c is basically a
constant color for each triangle separately. As discussed in
Section 2, many strategies exist to color with constant color.
Two methods were implemented, namely taking the average
color of all pixels inside the triangle and using visual saliency
to get the color for each triangle.

The visual saliency option is implemented to test if it can
also have a role in coloring, instead of only using it for plac-
ing the vertices for the triangulation. To do this, Equation 3
will be minimized over all pixels in the image. The equa-
tion basically describes a weighted error, where the weights
are the saliency values. This calculates the absolute differ-
ence between the input and output pixel color at location (x,
y), multiplied by its saliency value, which denotes how visu-
ally important that pixel is. Since the saliency value is in the
range of [0, 1], a small bias is added, so that no color val-
ues are totally discarded. To minimize this equation, for each

Shttps://github.com/opencv/opency

triangle the weighted average is taken over all pixels inside
the triangle, where the weights are the saliency values of the
corresponding pixels.

E(x,y) =|image(z,y) — chosen_color(z,y)|

- (saliency_-map(x,y) + b) ®)

4.2 Bilinear interpolation

For bilinear interpolation in this context, the barycentric co-
ordinates, explained in Section 3.3, have to be used to color
the triangles. Bilinear interpolation using barycentric coordi-
nates is formulated in Equation 4. Where (s, t, u) represents
the barycentric coordinates and (c¢1, ¢z, ¢3) represent the col-
ors of each vertex, which is sampled from the original image
at these vertex coordinates.

f(s,t,u)=s-c1+t-cotu-cs)

4.3 Linear Split

The Linear Split method can be described for each triangle by
Equation 5.

ifa-z+b>=y
coloring_method2 else

coloring_methodl

f(:r?y’a?b) = {
&)

Where (x,y) are the Cartesian coordinates of the pixel and
(a,b) are the parameters for the best fit line. This basically
says that each triangle can be split up into two parts, with the
use of a straight line. Where the part above the line is colored
by coloring_method1 and the part below the line is colored
by coloring_method2. The line basically functions as a mask
that differentiates two parts of each triangle. Three ways were
considered on how to get the parameters (a, b) of the best fit
line.

1. Use an error function for some chosen coloring meth-
ods and some random starting parameters (a,b). Then
use gradient descent on these parameters to find a local
minimum for the chosen error function.

2. For each triangle use 2-means clustering to split the tri-
angles pixels into two clusters, where pixels with colors
close to each other are clustered together. Then find the
line that splits the clusters up as much as possible.

3. Get the edge map of the image by first applying a bilat-
eral filter to filter out the textures and then using Canny
edge detection to find the edges. After which for each
triangle the best fit line is calculated through the found
edge points in the triangle. If there are not enough
edge points inside a triangle, then use only one color-
ing method for it.

In the end, option 3 was chosen for its simplicity and because
the other two options probably suffer from being computa-
tionally more demanding.

4.4 Quadratic Split

Quadratic split is the same as the linear split, but instead of
fitting a line to the edge points, it fits a quadratic equation to

https://github.com/opencv/opencv

it. This coloring method is formulated for each triangle by
Equation 6.

ifa-22+b-2
+c>=y
coloring_-method2 else

coloring_methodl

f(l‘? y’ a) b7 C) =

(6)

This is implemented the same way as linear split (Section
4.3), in the way that it gets an edge map of the image and
then finds the best fit to the found edge points in the triangle.
The only difference is that it finds the best fit approximation
for a quadratic equation instead of a linear one. In princi-
ple any degree of polynomial can be used for the best fit, but
as a quadratic function can already approximate most curves
well, making the degree of the polynomial higher will have
diminishing results.

4.5 Interpolation with Bézier Triangles

All degrees of interpolation will be done with the Bézier tri-
angle model (see Section 3.4), which can be formulated by
Equation 1 for each triangle. The colors of the control points
are optimized as a best fit problem, where the data points are
the pixels inside the corresponding triangle. For each of those
pixels, its color value and barycentric coordinates (see Sec-
tion 3.3) are collected. This data is then fitted with the help
of the gsl library” to the Bézier triangle model for the chosen
degree of interpolation. Here only degree n=1 through n=4
will be looked into (n=1 for bilinear interpolation, n=2 for
biquadratic interpolation, n=3 for bicubic interpolation, and
n=4 for biquartic interpolation). Degree n=5 and up is not
looked into as the number of control points goes up quadrat-
ically as n goes up, and the returns of how good the fit is,
becomes less significant. For all degrees of interpolation, the
best fit is gotten for every triangle individually, so no control
points are shared between triangles. Note that, the bilinear
interpolation here differs from the one discussed in Section
4.2, because in that method it does not find the best fit, as
the colors of the control points are selected directly from the
original image at those locations.

5 Results

All results are generated on four input images, which can be
seen in Figure 14a. Some algorithms also need saliency maps
(see Figure 14b) or edge maps (see Figure 15a). The edge
maps were generated using user input by changing the lower
threshold parameter of the Canny edge detector. This was
done by eye to get the best possible results. Also keep in
mind that the low-poly images are generated on a fixed mesh
of either 28x28 or 52x52 triangles, so they may not look as
visually pleasing as the results from previous works (see Fig-
ure 2). For this reason, the coloring methods that are used in
those papers, are also implemented on the same fixed mesh
to get a fairer comparison. These baseline coloring methods
are constant color (see Figure 14c and 14d) and bilinear in-
terpolation (see Figure 14e). One thing the constant color

Thttps://www.gnu.org/software/gsl/doc/html/Ils.htm]

Figure 7: Example of the zigzag artifact. Zoomed in on the apple
stem of the image produced with a 52x52 grid with constant color
and no saliency

method can still be improved upon, is the zigzag artifact near
the edges. This effect can be seen in Figure 7. According
to “Artistic Low Poly rendering for images”[1], this occurs
when a triangle covers two parts of an image with large dif-
ference in luminance, which they solved by first sorting all
pixels inside the triangle by luminance and then take the av-
erage of the median values. This can also be solved by having
a better triangulation, where one triangle does not cover two
areas with large differences in luminance. Only a subset of
the resulting images will be shown in this section. All result-
ing images can be found in Appendix B.

5.1 Visual Saliency

Figure 8: Constant color computed on a 28x28 grid, left=no
saliency; right=saliency

In Figure 14c and 14d two constant coloring methods are
compared. One using the average color over all pixels in-
side the triangle and the other using the weighted average
of all those pixels, where the weights are the corresponding
saliency values. The results are not super impressive, as they
all look almost identical. This is also confirmed by the MSE
(see Figure 13) between the two methods, as they are very
close to each other for all input images. The only observation
that can be made is that the images made using visual saliency
pop out more, and the images made with the other method
look a little more monotone. This makes sense as salient
objects in the image have higher saliency values/weights, so
these objects will be more defined. This effect can be seen
in Figure 8 near the edges of the feathers. This effect is
only barely noticeable, and was only noticed when flipping
between the two methods.

https://www.gnu.org/software/gsl/doc/html/lls.html

(b) (© (d) (e)

Figure 9: Example of the splitting methods, where the images are produced on a 52x52 grid; (a) input image; (b) produced edge map; (c)
constant color; (d) linear split with constant color; (e) quadratic split with constant color

5.2 Linear Split

(a)

Figure 10: Example of the splitting method when the edge map is
dense. (a) edge map; (b) linear split method with constant color on
a 52x52 grid

The results of the linear split method with constant color is
shown in Figure 15b and 15d, with the corresponding abso-
lute difference with the reference image. The absolute differ-
ence can help tell, at which parts of the image, the coloring
methods struggles with accurately representing the reference
image. Looking at the results, it can be noted that the method
is excellent at approximating images which have a clear fore-
ground element and not too much going on in the image, as
can be seen in the apple image where the outline is pretty
well approximated (see Figure 9d). It struggles more with
images where there is a lot of detail, for example with the
cats head and the lower body of the parrot (see Figure 10b).
This problem can be traced back to the edge maps (see Fig-
ure 10a and 15a), where the edge map of the apple is simple
and the edge map of the parrot and the cat can in some places
be very dense. This denseness of the edge map is the main
shortcoming of this method. If a triangle covers two or more
distinct edges that go in different directions or an edge that
splits up into two directions, it will have trouble accurately
approximating a line that does not give weird artifacts in the
image. This problem can be solved in multiple ways:

1. Having the edge map generation be more fine-tuned, so
that it will not produce such highly packed edge maps.

2. Making the triangles cover a smaller area, which results
in more triangles. This way, each triangle is less likely to
have the scenario where it covers multiple distinct edges.

3. Optimizing how the mesh is triangulated, so that each
triangle does not cover multiple distinct edges in the
edge map.

The best solution is a combination of option 1 and 3, seeing
as the results of this method are highly dependent on the edge
maps and the main point of these low-poly images is to have
a minimal number of triangles. From the MSE errors of this
method and the constant color method (see Figure 13), it can
be concluded that this method gets closer to the target image.
On the surface-level, the difference in MSE does not look that
impressive, but take into account that only a few triangles are
split up into two parts (only when a triangle covers an edge)
and the rest are filled in with the normal constant color (see
Figure 9¢ and 9d). Also comparing the images next to each
other, shows that this method does make the image look better
when the edge map does not produce weird artifact, because
of the problems described above.

5.3 Quadratic Split

The results of the quadratic split method can be seen in Fig-
ure 15c and 15e. The results are close to that of linear split
method, which can also be confirmed by the MSE in Figure
13. From which, it can also be concluded that it performs
slightly worse than the linear split method. In theory, this
should be the other way around, as this method has more de-
grees of freedom and should be able to better approximate
the image. The reason for this is, because this method suffers
from some artifacts. This happens when the quadratic equa-
tion approximates a parabola and splits the triangle up into
three parts instead of two. This can be seen at the edges or
stem of the apple (see Figure 9e). This artifact can be solved
by changing the model to fit the data to, as the quadratic for-
mula inherently forms parabolas. For example, a spline with
three control points, where two lie on different edges of the
triangle and the last one defines the curvature of the spline,
could solve this problem. When this artifact is solved, this
method should perform better than the linear split method,
but the smaller the triangles are, the less noticeable the differ-
ence becomes, as the approximated curvature is barely notice-
able on smaller triangles. But on larger triangles this should
perform noticeably better than the linear split method. Apart
from this artifact, this method suffers from the same problems
described in Section 5.2 and can also be improved upon in the
same ways.

Figure 11: (a) input images; (c/d/e/f) generated on a 28x28 mesh; left=resulting images, right=absolute difference with target image; (b) bilin-
ear interpolation (without fitting); (c) bilinear interpolation (fitted to data) (n=1); (d) biquadratic interpolation (n=2); (e) bicubic interpolation

(n=3); (f) biquartic interpolation (n=4)

5.4 Interpolation with Bézier Triangles

The results of the interpolation method for different degrees
of n on a 28x28 grid can be found in Figure 11. The results
on the 52x52 grid can also be seen in Figure 16. Compar-
ing the bilinear interpolation by selecting the color values at
the vertex locations (see Figure 11b) and the bilinear inter-
polation by getting the color values of the control points by
fitting it to the pixel data inside the triangle (see Figure 11c),
already produces a much better result. This is also confirmed
by the MSE found in Figure 13. For higher degrees of inter-
polation, the resulting image get closer to the original image,
but the amount it gets closer by decreases. In contrast to that,
the number of control points needed for higher dimensional
interpolation increases quadratically, which results in dimin-
ishing returns for the data used compared to how close it gets
to the image. So there is an optimum to be found for this.
There are still three main problems present, namely:

1. The interpolation has trouble with sharp differences in
color. For example in the absolute difference at the stem
of the apple, which is still a good approximation, but it
cannot do sharp edges, unless it is triangulated well or
uses the bent triangles of “Triwild”[6] or maybe com-
bined with the split methods discussed earlier (see Sec-
tion 4.3 and 4.4). The opposite can be seen in the back-
ground of the parrot where it has a really easy time ap-
proximating the background even with a lower degree of
interpolation or lesser number of triangles.

2. It cannot approximate large amounts of detail like the
feathers of the parrot. So maybe that can be added
back as a post-processing step, like in for example “Styl-
ized Image Triangulation” [5] where line patterns and
crosshatching or other styles were added back after tri-
angulation.

3. The triangles will sometimes become visible in areas
where the interpolation has trouble approximating the

Figure 12: Example of the triangle artifact on the interpolation with
Bézier triangles coloring method

underlying image. This can be seen in for example the
feathers of the parrot (see Figure 12). This happens
when the control points on the vertices and edges of a
triangle will differ noticeably between neighboring tri-
angles. To mitigate this problem, a best fit can be done
where the control points that are on the edges and ver-
tices are shared between neighboring triangles. This
does produce the problem that this will be a more diffi-
cult and slower best fit problem to solve, as not every tri-
angle is done individually, but they are all done at once.
Another solution is to have a better triangulation where
every triangle does not cover an area with a color distri-
bution that is hard to approximate or by using a higher
degree of interpolation.

Overall, this method is the most promising as it produces
accurate results even with a fixed grid. If the problems de-
scribed above are addressed in future work and the results
are combined with a state-of-the-art triangulation technique,
it will produce even more accurate results.

80.00000 B constant
B constant saliency
bilinear (no opt)
B linearsplit
60.00000
W quadratic split
bilinear (n=1, opt)
biguadratic (n=2)
40.00000 bicubic (n=3)
biguartic (n=4)

WSE (mean squared error)

20.00000

0.00000

apple decarlo cat parrot

images

(a)

60.00000 B constant
B constant saliency
bilinear (no opt)
W linear split
W quadratic split
40.00000 bilinear (n=1, apt)
biquadratic (n=2)
bicubic (n=3)
biguartic (n=4)

20.00000

MSE (mean squared error)

0.00000 o~
apple decarlo cat parrat

images

(b)

Figure 13: the MSE of the resulting coloring method compared to the target image. (a) is rendered on a grid of 28x28 triangles and (b) is

rendered on a grid of 52x52 triangles.

6 Discussion

Current research has been focused on how to triangulate an
image well for mostly constant coloring. The coloring meth-
ods showcased in the previous section, show that using other
coloring methods might be useful, but they still are in the
early stages and further research might be necessary to im-
prove on this. When this happens, the combination of these
new coloring methods with previous research on how to opti-
mally triangulate, might result in low-poly images which get
closer to the reference image than previous methods, while
using the same amount of triangles. If these techniques can
get to a point where it can get very close to the original im-
age, it might also find a use in image compression (especially
the higher degree interpolation methods), as these low-poly
images do not take much data to be stored, especially when
using a fixed grid.

7 Conclusions and Future Work

In this paper, new triangle coloring techniques were explored
for image triangulation. They were implemented on a fixed
mesh and compared to commonly used coloring methods.
These new coloring methods show some promise compared
to these widely used coloring methods, but they can still be
improved upon. Once that happens, combining these new
coloring methods with existing research on how to triangulate
images, might result in a more accurate or visually pleasing
low-poly images.

There are a lot of opportunities to expand on these new
coloring methods. Improved edge maps or saliency maps
will produce better output images for the linear and quadratic
split methods. Or figuring out how to fix the parabola
artifacts of the quadratic split by fitting the pixel data to a
spline model where two control points are on the different
edges of the triangle and the other one controls the curvature
of the spline.

Research improving these edge and saliency maps with the
help of user feedback might also be interesting to explore.

More interesting further research might involve formulat-
ing an optimal triangulation for these new coloring methods,
as these methods have some new constraints on what will give
a good output image. For example, making sure that a trian-
gle does not cover multiple distinct edges for the linear and
quadratic split methods.

Something else that might be interesting to explore later
on, when these techniques improve, is looking into how im-
age triangulation with these new coloring methods fare as a
compression method. Here the optimum degree of Bézier
triangles and the number of triangles, can be explored, as
both of these actions result in better approximations and take
more data to store. Can different orders of Bézier triangles be
mixed, by for example using a lower degree of interpolation
on the background elements and a higher degree of interpola-
tion on the foreground elements.

Taking inspiration from “Pic2Geom™[2], figuring out how
extracted facial features can be used with these new coloring
methods to improve the output image and how that compares
against the result of this paper, might also be interesting to
explore.

References

[1] M. Gai and G. Wang, “Artistic Low Poly rendering for
images,” VISUAL COMPUTER, vol. 32, no. 4, pp.
491-500, Apr. 2016.

[2] R.Ng, L. Wong, and J. See, “Pic2geom: A fast
rendering algorithm for low-poly geometric art,” in
ADVANCES IN MULTIMEDIA INFORMATION
PROCESSING (PCM), 2017, pp. 368-377.

[3] T. Uasmith, T. Pukkaman, and P. Sripian, “Low-Poly
Image Stylization,” JOURNAL FOR GEOMETRY AND
GRAPHICS, vol. 21, no. 1, pp. 131-139, 2017.

[4] W.Zhang, S. Xiao, and X. Shi, “Low-poly style image
and video processing,” in International Conference on
Systems, Signals and Image Processing (IWSSIP),
2015, pp. 97-100.

[5]

[10]

K. Lawonn and T. Guenther, “Stylized Image
Triangulation,” COMPUTER GRAPHICS FORUM,
vol. 38, no. 1, pp. 221-234, Feb. 2019.

Y. Hu, T. Schneider, X. Gao, Q. Zhou, A. Jacobson,
D. Zorin, and D. Panozzo, “TriWild: Robust
Triangulation with Curve Constraints,” ACM
TRANSACTIONS ON GRAPHICS, vol. 38, no. 4, June
2019.

E. Simo, “Triangle,”
https://github.com/esimov/triangle, 2021.

RH12503, “triangula,”
https://github.com/RH12503/triangula, 2021.

ghostwritenr, “lowpolify,”
https://github.com/ghostwriternr/lowpolify, 2018.

D. DeCarlo and A. Santella, “Stylization and
abstraction of photographs,” ACM TRANSACTIONS
ON GRAPHICS, vol. 21, no. 3, pp. 769-776, July 2002.

A Responsible Research

Here, some ethical research practices will be discussed.
Firstly, not all results will be positive, and in this paper there
will be a transparent discussion on what works and what the
limitations of the techniques used are. Secondly, the number
of data points, namely the images, used are limited. These
images were not cherry-picked and to ensure that, the source
code to reproduce the results will be made available. This
also ensures that the next research project building upon this
work, integrating it in their own work or comparing it
against their own work, can easily do so. The reader is also
encouraged to run the code on their own images!

B All Image Results

8https://www.freeimages.com/nl/photo/tasty-serie-3- 1329678

95

"Stylization and Abstraction of Photographs™[10]

Ohttps://www.flickr.com/photos/60168589 @N00/414012553
https://www.flickr.com/photos/51035555243@N01/
4423082467

https://github.com/esimov/triangle
https://github.com/RH12503/triangula
https://github.com/ghostwriternr/lowpolify
https://www.freeimages.com/nl/photo/tasty-serie-3-1329678
https://www.flickr.com/photos/60168589@N00/414012553
https://www.flickr.com/photos/51035555243@N01/4423082467
https://www.flickr.com/photos/51035555243@N01/4423082467

Figure 14: (a) input images®®'°!"; (b) visual saliency maps; (c) 28x28 grid of triangles, left=without saliency, right=with saliency; (d) 52x52

grid of triangles, left=without saliency, right=with saliency; (e) bilinear interpolation, left=28x28, right=52x52

Figure 15: (a) edge maps used in these coloring methods (The edge maps are generated with threshold edge detection set to 59, 59, 21, 110
from top to bottom respectively); (b/c/d/e) left=resulting images, right=absolute difference with target image; (b) linear split (28x28); (c)
quadratic split (28x28); (d) linear split(52x52); (e) quadratic split (52x52)

Figure 16: (a) input images; (b/c/d/e/f/g/h/i) left=resulting images, right=absolute difference with target image; (b) bilinear interpolation
(fitted to data) (n=1, 28x28); (c) biquadratic interpolation (n=2, 28x28); (d) bicubic interpolation (n=3, 28x28); (e) biquartic interpolation
(n=4, 28x28); (f) bilinear interpolation (fitted to data) (n=1, 52x52); (g) biquadratic interpolation (n=2, 52x52); (h) bicubic interpolation
(n=3, 52x52); (i) biquartic interpolation (n=4, 52x52)

	Introduction
	Related Work
	Academic Research
	Non-academic Projects
	Concluding Thoughts

	Background
	Visual saliency
	Delaunay Triangulation
	Barycentric Coordinates
	Bézier Triangles

	Method
	Constant Color
	Bilinear interpolation
	Linear Split
	Quadratic Split
	Interpolation with Bézier Triangles

	Results
	Visual Saliency
	Linear Split
	Quadratic Split
	Interpolation with Bézier Triangles

	Discussion
	Conclusions and Future Work
	Responsible Research
	All Image Results

