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Abstract

This work presents a study of a current problem in the field of audio processing: Source and
receiver localization. Currently, this problem requires that either the onset time of the sources
or the internal delay of the receivers are known. The algorithms studied here, take advantage
of the structure of the time matrix, which contains the TOA of all the receivers with respect
to all the sources, and finds the solution to the locations when the onset times are known.
The problem here is then approached from a time difference of arrival (TDOA) perspective,
which inherently cancels the onset times by subtracting the time of arrival (TOA) of a source
at every receiver. The modification under the TDOA perspective however, proves not to be
suitable under that framework. Therefore, a different approach is proposed, which uses speech
signals as calibration signals in order to estimate the onset times. Such an approach is based
on an algorithm which uses artificial calibration signals to calculate the onsets. Those signals
are known a-priori, which implies that an additional device which produces those signals is
needed. Once both internal delays and onset times are known, the locations of both sources
and receivers can be estimated using a current algorithm which is also described here.
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Chapter 1

Introduction

In the field of multi-channel audio processing it is often required to determine the location of
either sound sources s, sensors (microphones) r, or both (see an example of a layout in Figure
1-1. Once these relative locations are determined it is possible to carry out beamforming, and
noise reduction techniques. Possible applications include conferencing systems and hearing
aid systems, as an accurate estimation of the position of sources and receivers improves
the quality of ad-hoc audio systems. Ad-hoc conferencing systems which use an array of
smartphones (with no anchors) require the location of the sources and receivers to function
correctly.

Figure 1-1: General layout. Each ri represents a receiver and each sj represents a source

There are many methods that can be used to find these locations when either the onset time
to or the internal delays td are known (e.g. [2],[3],[4],[5]), or the relative distances between
sources and receivers ([6]). This means that in order to determine the locations, certain
information(such as onset times) has to be known. In order to estimate the locations it is
first necessary to find the onset times and internal delays of the signal (figure 1-2). The onset
time to represents the instance in time at which the received signal is emitted. These internal
delays td are caused by the latency inherent to certain audio devices, such as devices that
operate on Android or other operating systems (OS).
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2 Introduction

Figure 1-2: Decomposition of the measured TOA. Source sj emits at to, and tij later, the signal
arrives at receiver ri, which has an internal delay td.

The time of arrival of a signal is related to the position of the receiver relative to the source
of the signal, and this quantity is used in ranging calculations widely. In this case ranging is
referred to as the finding of distances between a source j and a receiver i. In general, finding
the location of a receiver and a source can be laid down as a maximum likelihood problem
which is expressed in (1-1). There ri, sj , c, tij , n and m represent i − th receiver, j − th
source, the speed of sound, the estimated TOA, the number of sources, and the number of
receivers, respectively.

n∑
j

m∑
i

(||ri − sj || ∗ c− tij)2. (1-1)

The problem of finding the time of arrival (||ri − sj || ∗ c) has to be solved using the apparent
received time of arrival, which will be called taij (see 1-2). The tag "apparent" of ta, comes
from the fact that it is not equal to tij as it also includes the onset time to and internal delay
td.

taij = to + tij + td. (1-2)

Therefore in order to find tij it is necessary to first find the onset time to and internal delay
td. Several algorithms are used to find either one of those unknowns from the apparent time
of arrival, but this does not solve the problem for jointly finding both to and td. If there was
a way to use the time difference of arrival (TDOA) between the receivers in an array (see ri

as in Figure 1-1) then the to would be eliminated. This approach is shown in (1-3), where k
and i represent two different receivers and j represents one source. The use of these TDOAs
eliminate the need to determine the onset, and allow the finding of the internal delays td.

taij − takj = (toj + tij + tdi)− (toj + tkj + tdk)
taij − takj = (tij − tkj) + (tdi − tdk).

(1-3)

The aim of this research work is to exploit the concept of time difference of arrival (TDOA) of
calibration signals in order to determine the positions of receivers and sources of such signals.
Current algorithms that aim at finding the internal delays are based on the TOA and require
the knowledge of the onset times. So, if the effects of the onset time are eliminated from the
calculation of the TOA, what is left is to find the internal delays td of the receivers in order
to then be able to determine the positions of receivers and sources. This is done for the time
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of arrival case in [3] and [2], and then, if it was possible to replicate the structures exploited
there, using the time difference of arrivals, it would be possible to find the localizations of
receivers ri and sources sj .

Another approach to receiver and source location is to use a pulse generator (e.g. a wavelet
generator) with a known period ([7]). This approach uses the known pulse period of a cali-
bration signal in order to determine the onset time to (see section 3-0-3). These calibration
signals are produced by an external source, for example a wavelet generator (a clicker). The
known period of the signal from this external source is used to determine the onset times.
Again, once the onset time is determined, the other unknowns can be found using known
methods (e.g. [2], [4], [3]).

An external device such as the clicker mentioned before, represents an additional piece of
equipment to be used in the localization process. This can be problematic for instance if
such a device is not available. So as a way to improve on this approach in this project it
is also researched if it is possible to arrive at the same results using arbitrary calibration
sources instead of a pulse generator, for example speech signals. If this is possible and the
self calibrating system does not depend on any external devices then the localization process
would be more convenient.
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Chapter 2

Main objective

The main objective of this work is to develop an algorithm that speech signals to facilitate
the estimation of the locations of the sources an receivers.

2-1 Specific Objectives

To research current methods of localization of sound sources and receivers and identify the
areas where they can be improved.

To improve current methods by modifying the framework to use time difference of arrival
(TDOA), thus eliminating the need to estimate the onset times.

To develop an algorithm which makes use of speech signals instead of other synthetic control
audio signals, to estimate the locations of the sources of those signals and the locations of the
receivers.

To implement the algorithm in Matlab, simulate results and test it in a real life scenario for
validation.
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Chapter 3

Current algorithms

There are two different internal delay estimation algorithms studied in this research ([2] and
[3]). Both have the purpose of finding the locations of sources and receivers by first estimating
the internal delays td, when the onset times to are known. As explained before, the apparent
time of arrival taij includes an onset time to as well as an internal delay td (see equation
(3-1)). Both the onset time and internal delay are unknown (the receiver gets taij). Also, the
internal delay is related to the latency at the receiver while the onset is related to the actual
emission time at the source.

taij = to + tij + td. (3-1)

The algorithms described here, aim at finding the internal delays td at each receiver (see
figure 1-2). In the mentioned figure, ti is the start time of the sensor,to is the onset time
which represents the actual moment at which the actual signal was emitted, TOA represent
the actual time of arrival, and td is the internal delay of the receiver.

The first algorithm ([3]) exploits the structure of the time difference relation to locations to
find either the onset times or the internal delays in a closed form. The second algorithm ([2]),
also exploits the structure of the TOA relationship but it uses a low rank approximation of
the location matrix product (RT S) with a recursive algorithm to find the internal delays.

Also, an autocalibration method is studied [7] and it exploits the use of an external calibration
source. By using such a source of which the period is known, then it is possible to correctly
determine the onset time to. After that, it is possible to find the internal delays td using the
methods in [2] or [3].

Finally, the last method studied [4], is used to determine the locations of receivers and sources,
when the times of arrival are fully known. This means that in order to use this algorithm
both the onset times to and the internal delays td have to be known in advance.

Master of Science Thesis Rodolfo Solera



8 Current algorithms

3-0-1 Pollefeys

The first algorithm to be analysed ([3]) has been developed assuming that the internal delays
at the receivers are either zero or known values. Then the purpose of the algorithm is to find
the onset time of the signal, regardless of its type.

A (m× n) time matrix T is formed from the j = 1, ..., n and i = 1, ...,m time elements from
(3-2). This matrix is not square when the number of sources (n) and the number of receivers
(m) is different. It contains the time of arrival of the sound to each of the microphones from
each of the sources. In (3-2), t̂ij represents the real time of arrivals between source i and
microphone j, and tdj represents the internal delay associated to the i receiver.

tij = (t̂ij − tdi)2. (3-2)

If tdi is unknown, it is possible to find it if a periodical source of known period is used
(see [7]). Though originally intended to find the time of departure (here, onset time), it is
possible to find the internal delays instead. Also, the RTS vector product ((3-3)) contains
the expressions which are equal to the norm of the distances between each microphone and
source. This product is equal to tij .

RTS = tij . (3-3)

The first two elements of (3-3) are the position vectors which contain the individual positions
of sources S and receivers R ((3-4)). Like mentioned above, the product of these, is equal to
the norm of each of the dimensions of each of the distances between microphones and sources.

R = [(X2
i + Y 2

i + Z2
i ) Xi Yi Zi 1] and S = [1 xj yj zj (x2

j + y2
j + z2

j )]. (3-4)

The right hand side of (3-3) is expanded as ((3-5)):

v2 ∗ (t2ij − 2tijtdi + t2di). (3-5)

It is possible to rearrange the left hand side by creating a new R, indicated as R̃. This new
term contains the t2di term from the right hand side of the equation. Then (3-3) is modified
as follows:

R̃ = [((X2
i + Y 2

i + Z2
i )− (v2 ∗ T 2

di)) Xi Yi Zi 1] ,
S = [1 xj yj zj (x2

j + y2
j + z2

j )].
(3-6)

Also from (3-6) it is possible to rearrange the expression as follows in (3-7). In (3-7), D is a
diagonal matrix which contains the unknown tdi elements. Matrix A is formed by the T 2

i j
elements and B is a matrix composed with the −2tij coefficients. Matrix T2 contains the t2ij
elements, T contains all tij . Matrices S and R̃ contain the positions of all the n sources and
m receivers respectively.
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[
I D

] [A
B

]
= (T2− 2TD) = S̃TR , (3-7)

where matrices R̃ and S are formed by vectors R̃ and S from (3-6) as in the following
expressions:

R̃ =

((X2
1 + Y 2

1 + Z2
1 )− (v2 ∗ T 2

d1)) X1 Y1 Z1 1
...

((X2
i + Y 2

i + Z2
i )− (v2 ∗ T 2

di)) Xi Yi Zi 1

 ,

S =


1 1
x1 xj

y1 · · · yj

z1 zj

(x2
1 + y2

1 + z2
1) (x2

j + y2
j + z2

j )

 ,

R̃S = T2− 2DT.

(3-8)

Because the first row of matrix S is made of ones, there should be a linear combination of at
least 5 rows of R̃TS, which results in a row of ones. Thus, there must be a vector C which
fulfils ((3-9)):

C
[
I D

] [A
B

]
= [1 1 · · · 1]. (3-9)

From here it is possible to find [CICD] = X and vector X can be split into two parts. Taking
the second half CD, and performing a piecewise division with the first half CI, the result of
this division is one of the elements of D. This is possible because the size of I is known:

tdi = Xk+m/Xk

k = 1, · · · ,m
(3-10)

The matrix formed by A and B has to be of rank five, and then if the group of independent
rows taken is five, and there are more than five tdi, these can be found iteratively for the next
group of five independent rows of R̃T S. In other words, although [3] performs the algorithm
on groups of five, in [2] this is done for m receivers. The choice of five rows at a time is
arbitrary, as the result shown in (3-10) holds for m rows.

Once D is found, then R̃TS is completely determined and it is possible to find an Ŝ and an
R̂. These matrices are equivalent to S and R up to an affine transformation, a rotation and
a translation.

Master of Science Thesis Rodolfo Solera



10 Current algorithms

3-0-2 Low Rank Approximation

The second algorithm analysed in this research [2], has the purpose of finding the internal
delays tdi. In order to determine these values, the algorithm relies on a low rank approximation
of the RT S matrix product.

The problem to be solved can be seen in equation (3-11). The maximum likelihood solution
to the problem, is not convex, and therefore will be prone to local minima. Note in (3-11)
that the difference tij − tdj is composed by the measured TOA tij and the internal delay tdj .

M∑
j

N∑
i

(1
c
||rj − si|| − (tij − tdj))2. (3-11)

Then assuming no noise (3-11) leads to the following relationship between the time of arrival
and the locations of the receivers and sources ((3-12)).

(rj − si)2 = (c ∗ (tij − tdj))2. (3-12)

Equation (3-13) is obtained from (3-12) and this is further explained in section 3-0-4 from [4].

RTS = T + ∆(δ)W. (3-13)

So a low rank approximation of RT S is to be found, by using a structured total least squares
approximation to preserve its structure. A notable difference between the method described
in section 3-0-1 and this method, is that this is a recursive method, while [3] has a closed
form solution.

3-0-3 Autocalibration method

Presented with the problem of finding the onset time estimation this method [7] solves it by
using a calibration signal of a known pulse period.

As can be seen in Figure 1-2, the real time of arrival can be determined if the onset times
and internal delays are fully known.

By using a calibration signal which is fully determined, then it is possible to find the onset
times without error (assuming there is no noise).

Figure 3-1: Calibration wavelet. It depicts a train of clicks emitted at a periodic instances (period
tp). The original onset time to is unknown, the new onset time coincides with the first received
pulse time (t′o)

Rodolfo Solera Master of Science Thesis
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This can be seen in figure 3-1. The onset time to is not known, but the first received pulse
time (t′o) is known, as well as the pulse period tp. The measured time of arrival of a signal is
tij = to + TOAij , the new to is set to be the first received pulse. The following onset time, is
equal to the first onset plus one pulse period tp. With this information, then the real TOA
can be fully determined.

3-0-4 Self calibration method

Once the TOA have been estimated, then the next step is to determine the locations of the
receivers and sources. In [4] the developed algorithm outputs the locations of the receivers
and sources, with the input of the proper time of arrival. Then the answer comes from a
maximum likelihood (ML) problem as in equation 3-14, where ri represents the position of
one receiver, sj is the position of one source, TOAij is the time of arrival of a signal from
source j to receiver i, c is the speed of sound, n is the number of sources and m the number
of receivers:

n∑
j

m∑
i

(||ri − sj || − TOAij ∗ c)2. (3-14)

The minimization of equation (3-14), leads to the estimation of all of the sources and re-
ceivers. However, the problem at hand is not convex and may fall in local minima which
means the locations would not even be affine with the real locations. The method proposed
in [4] aims at eliminating the quadratic terms that arise from (3-14) in an effort to have a bi-
linear equation on the locations of the receivers and sources which can be solved in closed form.

First, the expanded expression in (3-14) can be seen in (3-15), and there, it is evident that
there are quadratic terms for both of the receiver and the source for a given time of arrival:

r2
i + s2

j − 2risj = (TOAij ∗ c)2. (3-15)

It is noted that, in order to eliminate the square terms, it is possible to subtract from equation
(3-15) the j = 1 term for j = 1, · · · , n and i = 2, · · · ,m and then subtract the i=1 term for
j = 2, · · · , n and i = 2, · · · ,m. Therefore the resulting equation is bilinear as can be seen in
equations (3-16) and (3-17).

(r2
i + s2

j − 2risj)− (r2
1 + s2

j − 2r1sj)− (r2
i + s2

1 − 2ris1)+
+(r2

1 − 2r1s1 + s2
1) = (TOAij ∗ c)2 − (TOA1j ∗ c)2 − (TOAi1 ∗ c)2 + (TOA11 ∗ c)2 (3-16)

And simplifying equation (3-16) gives equation (3-17):

2r1si + 2rjs1 − 2rjsi − 2r1s1 = d2
ij − d2

1j − d2
i1 + d2

11

−2(si − s1)(rj − r1) = t̃ij
(3-17)
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12 Current algorithms

Equation (3-17) can be factored as a product of (n − 1) × (m − 1) matrices; −2RST = T
as can be seen in equation (3-17). In this equation ((3-17)), matrix R is composed of all 3
dimensional points of the receiver elements (rj − r1) and matrix S contains the positions of
all source elements (si − s1).

R

 rx2 − rx1 ry2 − ry1 rz2 − rz1
...

rxm − rx1 rym − ry1 rzn − rz1



S

sx2 − sx1 sy2 − sy1 sz2 − sz1
...

sxn − sx1 syn − sy1 srzn − sz1


(3-18)

With the T matrix fully determined, all d̃ij are known. The time matrix T can be decomposed
into its singular values, as in equation (3-19).

− 2RST = UVW (3-19)

Then in order to determine the R and S from the decomposition the following expressions
holds (4-1):

R = UC
−2S = C−1VW

(3-20)

In order to find matrix C, it is assumed that the first receiver and the first source are co-
located; r1 = s1.

3-0-5 Noise sensitivity

As a way to compare the localization methods in [2] and [3], both will be analysed in presence
of noise. For [3], it has been noted that even small noise levels in the order of 1

2fs
s (for

fs = 48000 Hz ) cause a large error in the internal delay calculations (see Figure 3-2). The
effect of noise is also noticeable for the approach followed in [2] as can be seen in Figure 3-3:

If only the fifth receiver is affected by noise, which is not the co-located receiver used in the
finding of the positions of receivers and sources, then the resulting errors are:

As it can be seen in Figure 3-3, 3-4 and 3-2, both algorithms have a fair tolerance to noise,
with the iterative choice ([2]) performing better. Both of these algorithms are revisited in a
following section where instead of basing the calculations on time of arrival, are based on a
different the time difference of arrival.
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Figure 3-2: Location mean error(in meters) caused by noise (using the Pollefeys
algorithm).

Figure 3-3: Location mean error (in meters) caused by noise in the first receiver (using
the STLS algorithm).
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14 Current algorithms

Figure 3-4: Location mean error (in meters) caused by noise in the fifth receiver (using the STLS
algorithm)
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Chapter 4

Time Difference of Arrival (TDOA)
based approach

In a Section 3, it was explained that when the internal delays tdi are unknown, then the
localization problem can be solved. This means that the onset times are known toj or can be
found using a fully known calibration signal ([7]).

Then seeing as how the difference between two time of arrival of two different receivers
eliminates the onset times (4-1) the goal is to determine how plausible it is to implement
these methods using a time difference of arrival (TDOA) approach.

tij − tkj = (toj + TOAij + tdi)− (toj + TOAkj + tdk)
tij − tkj = TOAij − TOA(kj) + tdi − tdk.

(4-1)

As expressed in equation (4-1), the TDOA is equal to the subtraction of the time of arrival
of a given signal at two different sensors which can be seen in Figure 4-1.

Assuming that both the internal delays td and the onset times to are unknown, then it is
possible to resort to using the time difference of arrival (TDOA) between the different receivers
instead of the times of arrival. Like it was mentioned before the TDOA of a signal between
two receivers eliminates the need to calculate the onset time to. Therefore by reformulating
the algorithms ([2] and [3]) from a TDOA standpoint it could could be possible to find the
internal delays and with these the location of ri receivers and sj sources. It is noted that
this difference, though it eliminates the onset times, results in cross terms which is the main
challenge when determining if this approach is possible.
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16 Time Difference of Arrival (TDOA) based approach

Figure 4-1: Time difference between two receivers. The two microphones ri and rk receive the
signal from source sj . The times of arrival at both receivers are tkj and tij

4-0-1 Low rank approximation

The first algorithm analysed (3-0-2) relies on a low rank approximation to the time matrix
(see (4-2)). In this equation, R is the matrix containing the positions of the receivers, S is a
matrix which contains the positions of the sources, T is a matrix which contains the squares
of the times of arrival, ∆(td) is a matrix which contains the individual internal delays and
W contains the times of arrival.

RT S = T + ∆(td)W. (4-2)

The initial minimization problem, as has been explained in section 1, can be seen in (1-3)

min(
n∑ R∑

(||ri − sj || − dij). (4-3)

In the previous expression the distance dij between receiver i and source j depends on the
apparent time of arrival tij , the onset time toj and the internal delay tdi as follows in (4-4):

dij = c(tij − toj − tdi) (4-4)

Then, by using the difference between two TOA from the same source, we can get the TDOA
expression:

||ri − sj || − ||rk − sj || = v((tij − tdi − toj)− (tkj − tdk − toj)). (4-5)

Then the minimization problem in (4-3) can be reformulated as:

min(
n∑
j

m∑
i

((||ri − sj || − ||rk − sj ||)− (dij − dkj)). (4-6)

And from this expression, we derive the following:
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(||ri−sj ||2−2||ri−sj ||||rk−sj ||+ ||rk−sj ||2) = (tij−tkj)2−2(tij−tkj)(tdi−tdk)+(tdi−tdk)2.
(4-7)

The time of arrival problem is solved by exploiting the RT S bilinear product (in the structure
of equation (4-2)). This structure should be obtained from the expression dij = v(tij−tdi−toj),
which allows for the separation of positions from the sources and the receivers as in (4-2).

For the approach followed in method [2] the right hand side of (4-2) must be solved for D(tdi)
under the assumption that the internal delays tdi are the same during the process for each of
the receivers. This can be achieved by means of a low rank approximation. A structured total
least squares method is used to find the internal delays for the case where the onset times to
are known (for example, when using a wavelet generator as sound source 3-0-3). In the case
of TDOAs however, the equation is different (see (4-7)). If the equations for k, i = 1 and
j = 1 are subtracted from (4-7) (see [4]), then we arrive at the following expression ((4-8)):

(||ri − sj ||2 − 2||ri − sj ||||rk − sj ||+ ||rk − sj ||2)− (||ri − s1||2 − 2||ri − s1||||rk − s1||+
||rk − s1||2) = (t2kij − 2tkijtdki + t2dki)− (t2ki1 − 2tki1tdki + t2dki).

(4-8)

In equation (4-8), the tkij = tkj − tij represent the difference between two times of arrival
tdki = tdk − tdi, sj represents the position of one source and r the position of a receiver. The
right hand side of (4-8) can be grouped as in (4-9):

(t2kij − t2ki1)− (tdki)(tkij − tki1). (4-9)

Using the first difference in (4-9) (t2kij−t2ki1) we can form a matrix of size (m−1)×n, the same
applies for the tdki and also for (tkij − tki1). This structure is very similar to the structure
in (3-13). Then it is necessary to determine if the problem can be solved for ∆(tdki) via a
low rank approximation scheme, much like structured total least squares is used in [2]. It
is possible to see a similarity between the structure in (3-13) and (??) as the squared terms
group, and the internal delay differences can be factored from the time differences (see (4-10)).

(t2kij − t2ki1)− 2tdki(tkij − tki1). (4-10)

So, stacking the elements in equation (4-10) as in equation (3-13):

RT S =

 t
2
111 − t2111 · · · t211n − t2111

...
...

t2m11 − t2m11 · · · t2m1n − t2m11

+


t11i · · · 0
0 td21 0
... . . . 0
0 · · · tdm1)

+

 t111 − t111 · · · t11n − t111
...

...
tm11 − tm11 · · · tm1n − tm11

 .
(4-11)
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18 Time Difference of Arrival (TDOA) based approach

And now, each element of the left hand side of equation (4-11) can be expressed as:

(||ri − sj ||2 − 2||ri − sj ||||rk − sj ||+ ||rk − sj ||2) = Tq2 − 2∆2(δl)W2. (4-12)

It is also possible to factor the left hand side of (4-12) by dividing the expression into two
parts. The first contains the squared norms and the other one will contain the cross terms:

(R̃T
ki−2[ 2

√
(xk −Xj)2 + (yk − Yj)2 + (zk − Zj)2][ 2

√
(xi −Xj)2 + (yi − Yj)2 + (zi − Zj)2])−S̃j ,

(4-13)

where:

R̃ki =
[
[r2

k + r2
i ] −2(xk + xi) −2(yk + yi) −2(zk + zi) 2

]T
S̃j =

[
(1 · · · 1) Xj Yj Zj sT

j sj

]T
.

Then equation (4-12) can be rewritten as:

r̂T
ki s̃j = Tq2 − 2∆2(δl)W2, (4-14)

where:

r̂ki =
[
[r2

k + r2
i ]− 2||ri − sj ||||rk − sj ||] − 2(xk + xi) − 2(yk + yi) − 2(zk + zi) 1

]T
.

These two terms can be stacked into matrices R̂ and S̃. In order for the algorithm to work,
both matrices have to be of known rank r and r ≤ d, which means that r represents the
dimension of the space where the array of sensors is located. The first one is a mx(n− 1) + 5
matrix, while the second is (n−1)+5xm. So, the product R̂T S̃ has a rank 5, and the product
is not bilinear, as R̂T has source position elements (s) in it. Thus, because of the cross terms
which arise from the time difference of arrival, the structured total least squares formulation
is not adaptable to the TDOA framework.
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4-0-2 Pollefeys’s method

As was explained in section 3-0-1, the method proposed by [3] takes advantage of the structure
in the left hand side of (3-8). Being able to use the product R̃TS depends greatly on the fact
that the time of arrival (TOA) of the signals is known, which is not a likely case. However,
it is possible to rearrange (4-7) as follows:

(||ri−sj ||2 + ||rk−sj ||2) = (tij−tkj)2−2(tij−tkj)(tdi−tdk)+(tdi−tdk)2 +2||ri−sj ||||rk−sj ||.

And this is equal to:

R̃T
kiS̃j = (tij − tkj)2 − 2(tij − tkj)(tdi − tdk) + 2||ri − sj ||||rk − sj ||, (4-15)

where:

r̄ki =
[
[r2

k + r2
i ]− (δk − δi)2 −2(xk + xi) −2(yk + yi) −2(zk + zi) 2

]T
s̄j =

[
1 Xj Yj Zj sT

j sj

]T
.

With tdki = (tdk − tdi) and dij = ||ri − sj ||, the right hand side of (4-15) can be factorized as
follows:

T 2
ikj + [tdki dijdkj |]

[
−2Tkij

2 I

]
= T 2

ikj + ∆̃T.

Then, after stacking up (4-15), this closely resembles the structure seen in (3-8):

R̃TS̃ = T2 + ∆(td,d)T (4-16)

Where:

∆ =

td11 · · · 0 d11d11 d12d12 · · · d1nd1n
... . . . ... d11d21 d12d22 · · · d1nd2n

0 · · · td1m d11dm1 d12dm2 · · · d1ndmn

 ,

T2 =


t2111 t2112 · · · t211n

t2121 t2122 · · · t212n
...

... · · ·
...

t21m1 t21m2 · · · t21mn

 and,
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20 Time Difference of Arrival (TDOA) based approach

T = 2



−t111 −t112 · · · −t11n

−t121 −t122 · · · −t12n
...

... · · ·
...

−t1m1 −t1m2 · · · −t1mn

1 0 · · · 0

0 . . . · · · 0

0 · · · . . . 0
0 · · · 0 1


.

Then as in [3], S̃ generates the row space of T2+∆ T, which means that a linear combination
of the right hand side of equation (4-16) can result in any of the rows of S̃. Since the last row
of S̃ is a row of ones, then the following holds:

C[I ∆]
[
T2
W

]
= [1 · · · 1] (4-17)

And then, finding [CI C∆] can be achieved by taking the pseudoinverse of [T,W]>:

C[I ∆] = [1 · · · 1]
[
T2
W

]+

Once X = [cI c∆] is known, and with the knowledge of the size of I similarly as in section
3-0-1, each unknown is found as a piecewise division.

Since the first m columns of ∆ contain the tdki in a diagonal, and because cI is a vector of
m elements, then by dividing each ci δl from c∆(δ) by each element of cI as:

∆(k) = Xk+5
Xk

(4-18)

The results of 4-18 however, are not unique and then the values of tdk are not the values of
the internal delays and then the estimation of the locations of receivers and sources fails. The
reason why all tdk are not a unique solution to 4-18 is that the rank of

[
A//B

]
is greater than

m (the number of sensors). In order to have a unique solution, the rank of the mentioned
matrix ∆ has to be, at most m. From equation (4-17), it is possible to see that, in order to
find a unique ∆, the second element has to be a tall matrix, but in reality both T and W are
fat matrices (nmx2n) due to the inclusion of the cross-term unknowns. Then, the ∆ found
is not unique.

Rodolfo Solera Master of Science Thesis



Chapter 5

Arbitrary sound sources

Since the use of time difference of arrivals in current algorithms did not yield the desired
results, a new approach to estimating the onset times is proposed. The purpose of this
approach will be again, to find the onset times to. Once the onset times are found then it is
possible to estimate the locations of receivers and sources using known methods td ([3], [2]).

In [7] the authors devise a way to find the onset time which employs a calibration source of
known frequency as is explained in section 3-0-3. There is a limitation in this approach which
derives from the fact that the calibration signal has to be known beforehand, and this implies
that a device which generates this signal has to be moved around the receivers (for example,
a wavelet generator).

toj + ||ri − sj ||
c

+ tdi = tij , (5-1)

where toj is the onset time at source j, c is the speed of sound and tdi the internal delay at
receiver i. So, from (??) it is clear that if the problem of finding ri and sj is to be solved
using times of arrival, then the toj has to be known.

A way around the limitation imposed by the need to use such a wavelet generator, is to use
a periodic or quasi-periodic signal as a calibration source. It so happens that voiced speech
is a quasi-periodic signal ([8]), and the periods of the excitation signal of voiced speech can
be estimated very accurately ([1], [9]).

Then, by taking voiced speech as a calibration signal, and estimating its pitch periods, it is
possible to estimate the onset times of each of these periods in order to get an estimate of
the onsets toj .
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22 Arbitrary sound sources

Figure 5-1: Example of a voiced-unvoiced speech segment, sampled at 48 kHz.

5-1 Localization using voiced speech signals

In section 4 it was clear that using time differences of arrival does not solve the localization
problem when both the onset time (to) and internal delays (td) are unknown. Therefore
finding the onset times to is done in [7] with the use of a calibration signal. This signal is
known a-priori and using the knowledge of its tp period it is possible to find the onset times
with good accuracy. Since voiced speech signals can be modelled as a filtered impulse train of
a given frequency, then those signals are good candidates to be used as a calibration signal.

tij = ||ri − sj ||
c

+ toj + tdi, (5-2)

where toj is the onset time at source j and tdi is the internal delay at receiver i.

As suggested by [7], the tj terms can be estimated if the calibration signals are known, that
is, the periods tp at which that signal is emitted are known. Then, for every successive j, the
onset time is to1 + jtp:

tij = ||ri − sj ||
c

+ (to1 + jtp) + tdi.

Using speech signals for this purpose, has an important implication; the pitch is not a constant.
Therefore tp is not a unique value and if the calibration signal is completely known, then each
of the intervals tpj is also known. With this in mind (5-2) can be rewritten as:
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5-1 Localization using voiced speech signals 23

tij = ||ri − sj ||
c

+ (t1 +
j∑

k=2
tpk) + tdi. (5-3)

In this scenario, a single person produces voiced speech and moves relative to the receivers
at a rate much lower than tp. Once the signal has been received it is necessary to find the
period of the signal. Pitch period is estimated in [1] by finding the glottal closure instances
(GCI) of the speech signal and the difference between two of such GCI gives the pitch period
at that instance.

Then the onset time at a given source location is equal to the sum of all previous onset times
as stated in equation (5-3). There is still an unknown, namely the initial onset time τ0.
However, if this initial onset is assumed to be zero, then equation (5-3) is modified as:

tij = ||ri − sj ||
c

+ (
j∑

k=2
tpk) + tdi. (5-4)

The remaining source of error in this case, is related to sampling. If the information about
the calibration signal is known completely (the type of signal and its tp) then the estimation
of the onset times only has that problem.

When using a voiced speech signal this assumption is not true, as the tp will also have to
be determined from the received signal. A problem with this is that the time at which each
pulse is detected also includes the actual time of arrival and the tdi which is also unknown.
It also changes depending on the i− th receiver and depending on the position of the source
if it is moving. Therefore the difference between peak times is not tp. There must be a way
to retrieve tp from the received data ((5-4), (5-5)) under a set of well defined conditions,

ˆtpj = ˜tij+1 − t̃ij = (tij+1 + (j + 1)tp)− (tij + jtp). (5-5)

Then, if the receiver positions and the source positions are assumed to be normal distributed
then the following holds:

1
M

m∑
i=1

ˆtpj = 1
m

m∑
i=1

[(tij+1 + (j + 1)tp)− (tij + jtp)] =
M∑

i=1
(tij+1 − tij) + tp. (5-6)

So, the location of the receivers are assumed to be zero mean. This implies that some of the
receivers appear to be closer (when the source approaches those), and other sources appear
to be further away (when the source moves away). This can be seen in Figure 5-2, where
each color represents a single glottal closure instance and each type of point (star, square, x,
etc.) represents an individual receiver. As time progresses, since the source is moving, these
points shift relative to each other.

Then, the mean of the measured times of arrival tends to zero as the number of receivers
increases

∑m
i=1(tij+1 − tij) ≈ 0 and then (5-6) can be rewritten as (with an error ε):
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24 Arbitrary sound sources

Figure 5-2: Voiced-unvoiced speech sample. Each different point (star, square, circle, etc)
represents the time of arrival of a single pulse at a different receiver

m∑
i=1

(tij+1 − tij) + tp = tp + ε. (5-7)

Because of these conditions, there are several considerations to be taken into account, regard-
ing the locations of receivers and sources, as those considerations have a direct impact on the
results of the estimation of both receivers and sources.

It is convenient to describe the ideal setup of the system. First, there are m sensors and
n sources, which are distributed in an ideal room (with no reverberations). Second, the n
sources are actually a single source, which moves around in the room. This trajectory is also
restricted; as it has been deemed illogical to assume that the source moves across the sensors
or does so in a purely random way.

Therefore, for this project, the path followed by the sources is modelled as a curve and also
as a helix (Figure 5-3). The latter one, although unrealistic, works as a proof of concept. The
sensors remain in the center of the trajectory placed using a zero mean distribution.

An alternative setup was also tested, and it is aimed at a scenario in which several sources
are quasi-static; that is, they only move in a semicircular path with a radius of 0.5 meters.
This is aimed at modelling what it would be like if the speech signals from several people
where used as calibration signals, without each subject moving around the receivers like in
the previous scenario.
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5-1 Localization using voiced speech signals 25

Figure 5-3: Location of sensors in
blue and the instances of the moving
source in red

Figure 5-4: Location of sensors in
blue and the instances of the quasi-
static sources in red

5-1-1 Test calibration signal with fixed period

Considering the distribution mentioned in section 5-1 of the sources and the receivers the first
approach to the voiced signal is to assume that the sources are emitting a pulse train with a
fixed frequency; this means that tp is a constant:

tij = ||ri − sj ||
c

+ (tp1 + jtp).

With these constraints, and assuming that the frequency of the calibration signal is known,
then the time of arrivals can be found. This assumption is certainly the trivial case, and then
the first task is to try to determine the tp from the received signal.

Again, going to (5-5) all microphones will receive the same pulse at a slightly different time,
and the distance between pulses at a given receiver changes depending on the movement
of the source. However, because of the assumption that the receivers follow a zero mean
distribution, as per (5-6), the value of tp can be found from two consecutive measurements
with reasonable accuracy. Then, the estimation of the tp gives an estimation of tij which is
then used in [4] to find the locations of both receivers and sources.
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26 Arbitrary sound sources

5-1-2 Speech calibration signals

Assuming that the calibration signal is a pure pulse train, even if the frequency of the pulses
varies in time is impractical. Such pulses imply that a generator must be used and in such
cases the signal would be completely known. If the case was to use a synthetic calibration
signal, then it would not be necessary to estimate the pulse period and the signal would be
completely characterized as in [7]. Then the main objective is to be able to use a readily
available calibration source such as speech. Once more, the assumption is made that only
one source is present and it moves according to an unknown trajectory, which is not random
(for example in a circle around the receivers).

Speech is a quasi-periodic signal, and a long speech sequence is normally divided in sections
of voiced and unvoiced speech. Voiced speech has a quasi-periodic excitation signal, while
unvoiced speech is excited by gaussian noise (see figure 5-5).

Figure 5-5: Block model of voiced-unvoiced speech signals

Therefore, it is necessary to determine the instantaneous pitch frequency from the received
signal in order to estimate the actual tpj . In order to find the pitch period an algorithm
named GEFBA is used ([1]). This algorithm combines a speech presence detector with a
glottal flow derivative (GFD) approach to estimate the GCI (Glottal closure instances) of the
voiced segments.

The first approach is to assume that the segment received is composed only of voiced speech.
Then the all of the received sequence will be useful and there is no need to separate the signal
between voiced (from which GCIs are extractable) and unvoiced speech. This step makes the
unrealistic assumption that a received speech signal can contain only voiced speech and was
used as a intermediate step towards the use of a full voiced-unvoiced speech segment.

In the most realistic approach, it is assumed that a speech sequence is received, and this
sequence contains both voiced and unvoiced speech segments. In this case it is first necessary
to determine whether or not the sample is part of the voiced or unvoiced part of the speech
signal. Then, from the voiced speech parts, it is necessary to extract the GCIs and from these
detected time instances, it is possible to estimate the onset times.
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Figure 5-6: Plot of a purely voiced speech signal [Top]. Glottal flow derivative with Glottal
Closure Instances (GCI) [Bottom]

Figure 5-7: Plot of a voiced-unvoiced speech signal [Top]. Glottal flow derivative with Glottal
Closure Instances (GCI) [Bottom]
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Chapter 6

Simulations and Results

For the purpose of simulation, several assumptions have to be taken into account. It was
already mentioned in section 5-1 that a crucial assumption is that the room impulse response
is null; which means that the reverberations are equal to zero. Then the simulation consists
of a voice sequence being emitted by a moving source and the source will be at a given
location during the onset of every GCI. Then taking into account the precise distance of the
source at the instance of the onset of that CGI it is possible to know the time necessary for
sound to cover the distance between that source location and each of the receivers. With
that information, it is then possible to properly determine the TOA of the signal, and this
calculation is performed for each pulse of the speech signal. This is equivalent to a fractional
delay calculation of the moving source as is done in [10] and [11], but instead of the signal,
what is modelled is the arrival times of each CGI of the speech signal. These times include
the pitch period and the TOA. Another way to look at this, is to assume that each GCI is an
independent source which only emits one pulse.

Figure 6-1: Voiced samples at the
source [top], receiver 4 [middle] and
receiver 15 [bottom]

Figure 6-2: Calculation of source
(red) and receiver (blue) locations
when offsets are known.
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Tij = T(pj) + TOAij + εQ. (6-1)

Initially it is assumed that there is no quantization error εQ but even when it is taken into
account because it is very small (in the order of 1

2Fs
), it adds very little to the final error.

Pulse train

As mentioned in section 5-1-1, the first approach to the problem was done using a test pulse
train. First the pulse train had a fixed frequency, and then the frequency was time dependent
(a chirp). The simulation assumed a random distribution of the receivers, with the provision
that the distribution has a mean equal to zero. When the period of the pulse train is known,
then the locations are perfectly determined, regardless of where the sensors are located (see
Figure 6-2)

When the Ta is unknown and it has to be estimated (5-6), then the resulting estimation of
the locations is not perfect. The error in the estimation of the offsets (and therefore of the
locations) is influenced severely by changes in the location of the receivers; i.e. if the receivers
are not inside of the path drawn by the moving source, then the error quickly escalates.

Figure 6-3: Calculation of source and
receiver locations when offsets are un-
known and the receivers are outside of
the path of the moving source.

Figure 6-4: Calculation of source and
receiver locations when offsets are un-
known and the receivers are in the
space enclosed by the path of the mov-
ing source.

If the sources are simulated to be inside of the closed path of the receiver, then the estimation
is much more accurate.

Speech signals

The motivation for the use of speech as calibration signal is mostly the convenience and
availability it has. While the use of a wavelet generator of known pulse will completely solve
the onset times, the use of such a device can be problematic especially when such a device
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is not available at a given moment. Similarly to the case of a pulse train if the pitch period
is known the location of the sources and receivers is completely determined. But, since this
assumption is not realistic, the estimation of such periods also depends on the arrangement of
the receivers. If the the locations of the sensors is zero mean distributed, then the estimation
can be performed with a good degree of accuracy as can be seen in the estimation of the
locations using a speech segment 6-3.

In an even more realistic setting, the source is not likely to move in a helical trajectory, but it
more probably will follow a semicircular path around the receivers. In such a case, the error
increases if compared to the helical movement of the source but it still remains reasonably low
provided that the sensors are effectively arranged with a mean equal to zero and surrounded
by the path drawn by the moving source, as can be seen in Figure 6-6.

Figure 6-5: Calculation of
source and receiver locations
when offsets are unknown and
the receivers are in the space en-
closed by the helical path of the
moving source.

Figure 6-6: Calculation of
source and receiver locations
when offsets are unknown and
the receivers are in the space en-
closed by the semicircular path of
the moving source.

The effects of noise in the measurements, which we assume is due to quantization error (which
is a function of the sampling frequency εs = 2

fs), has an effect on the results of the localization
of the sources and receivers. There is a difference in the resulting errors when the calibration
signal is only voiced speech or if it has voiced and unvoiced parts and the path followed by
the source also has an effect.

Also, if the source moves around the receivers in a closed circle the error is kept low, close to
the error achieved by the helical trajectory of the moving source.
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Figure 6-7: Localization errors caused
by quantization error with voiced only
speech for a semicircular path (top)
and helicoidal path (bottom) .

Figure 6-8: Localization errors
caused by quantization error with
voiced and unvoiced speech for a
semicircular path (top) and heli-
coidal path (bottom).

Another setup that tested assumes a number of quasi-static sources, which move in a small
radius and are distributed in a semicircular path around the receivers, can be seen in Figure
(5-4). In this case, each of the sources which moves about with a radius of 0.5 meters is used
to calculate the position of the receivers. The individual errors of each of these is significantly
large (see Figure 6-9 and Figure 6-10):

In Figure 6-10, all the estimated locations using the individual sources which produce speech
signals are shown. All sources are relatively close to each other and they move identically
in a semicircle therefore facing always in the same direction. This also brings forward an-
other difference in errors; if the semicircle faces the receivers as in Figure 6-12 the errors are
significantly lower than the errors obtained when the sources face elsewhere (see Figure 6-9:

This also leads to the final setup in which individual sources move randomly in a small area
and these individual sources are set along a circle or semicircle around the receivers. This
aims at reproducing a number of persons who move their head randomly in an area of known
size (using a gaussian distribution) while they produce speech, with every source producing
speech uninterrupted by other sources. This means that each person would speak alone, until
every source has produced the speech needed for the localization process to take place. This
distribution can be seen in Figure 6-13 and Figure 6-14
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Figure 6-9: Individual localization er-
ror caused by quantization error with
voiced and unvoiced speech for one
quasi-static source only.

Figure 6-10: Individual localization
error with voiced and unvoiced speech
for one quasi-static source only.

Figure 6-11: Localization errors with
voiced and unvoiced speech. Figure 6-12: Individual localization

error with voiced and unvoiced speech
for one quasi-static source only.

6-0-1 Comparative results

Effect of parameter adjustments

It is expected that, apart from the relative positions and distribution of sources and receivers,
the number of sensors and sources, has an effect in the results. The number of sources is large
when speech is used, as the typical fundamental frequency of a male speaker ranges from 80
Hz to 170 Hz. This means that in a single second there will be somewhere between 80 and
170 individual sources available. Therefore the main concern is how the results are affected
by the number of receivers.

From Figure 6-15, Figure 6-16 and Figure 6-17, it is clear that as the number of receivers
increases then the error decreases. After a number of receivers the decrease in error is quite
small. This is consistent with the assumptions made regarding the distribution of the receivers.
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Figure 6-13: Individual localization
error with voiced and unvoiced speech
for one quasi-static random source
only

Figure 6-14: Localization error with
voiced and unvoiced speech with all
quasi-static random sources shown at
once

Figure 6-15: Localization error based
on the number of receivers for a helical
source path

Figure 6-16: Localization error based
on the number of receivers for a semi-
circular source path

Figure 6-17: Localization error based
on the number of receivers for a circu-
lar source path
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6-0-2 Implementation

The implementation was performed with an array of microphones and a person speaking
while moving in a given trajectory (e.g. see figure 6-22). The array consisted of up to eight
microphones arranged in a table of 70 cm, distributed in a space of 60 cm by 55 cm by 5.5
cm. The microphones are quite directional, so they were positioned upwards in an effort
to make their pick-up as isotropic as possible. Initially measurements were carried out in an
uninsulated room close to air conditioning systems (see fig 6-18 and fig 6-19). As a result there
was a particularly high noise level and high reverberation from the walls of the room, and
this causes a high discrepancy in the number of glottal closure instances that were detected
and thus affected the final results.

Figure 6-18: Initial setup in
uninsulated room

Figure 6-19: Initial receiver dis-
tribution

The fix to this problem was to carry out the experiments in an environment which greatly
minimizes the impact of reverberation and ambient noise (ventilation systems, computer fans,
motor vibrations, etc.), which in this case is an anechoic chamber. The setup used in this case
can be seen in Figure 6-21 and Figure 6-22, where the microphones and the sound absorbing
walls and floor are visible. The path followed was a half circle and full circle of 1.5 m of radius
(see Figure 6-20).
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Figure 6-20: Experimental
setup

Figure 6-21: Experimental
setup in anechoic chamber

Figure 6-22: Re-
ceiver distribution

The speech is recorded at the 8 microphones (AKG C417 lapel microphones) and the sound
is picked by a Focusrite Scarlett 18i20 USB audio interface. The data sampled at 48 kHz and
is saved in a matrix, with each row in this matrix being the recording of moving speech at
each of the microphones. The resulting estimations can be seen in Figure 6-23 and in Figure
6-24.

The average error of the experiments is of 39cm, however, it can be seen in Figure 6-23 and
in Figure 6-24 that the structure of the receivers is preserved up to a rotation, a scaling
and a translation. It was determined, after the experiments had been carried out, that one
condition of the algorithm had not been fulfilled. In [4], in order to determine the location
of the receivers, it is assumed that the first source and the first receiver are co-located. This
was not considered during the experiments and thus affected the end result.
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Figure 6-23: Receiver estimation closeup. Each grid line is separated by 10 cm

Figure 6-24: Receiver estimation example
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Chapter 7

Conclusions and Future Work

It was stated at the beginning of this work, that determining the onset times and internal
delays is crucial for the problem of localization of sources and receivers. Throughout the
project, two approaches were studied; one related extending the current framework to time
difference of arrival, and the other related to the use of speech as a calibration signal.

There are several conclusions that can be drawn from this project, and there is also room for
improvement in this direction:

-Time difference of arrivals between two receivers eliminates the need to determine the onset
times. This framework however, proved not be adaptable to current internal delay determi-
nation algorithms. As was discussed before, this is due to the cross terms generated in the
process, which affect the basic assumptions used in [2] and in [3].

-Although the use of a clicker in [7] provides very accurate results, this can also be inconvenient
as was discussed in section 3-0-3. Therefore a readily available calibration signal such as speech
is a step forward towards simplifying the localization process. A single person speaking in
order to calibrate the system and estimate the onset times, is

-Despite the fact that the error in of the method proposed in [7] is in the mm range and the
method proposed here has a degraded performance, only performing in a cm error range, the
interest in using speech for the calibration remains an interesting path for further study. The
ability to eliminate the need for additional calibration devices, and rely on implicit calibration
sources such as speech, is definitely an advantage.

-For future work, it is of interest to consider the variability of the internal delays. The internal
delays are related to the state of the receiver (e.g. an Android smartphone), because the same
receiver may have different internal delays depending on the state of the device at the time
of reception.
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-It is of interest to include into further work the effect of reverberations of the calibration
signal. That is, take into consideration the effects of the room transfer function, which may
also be known a-priori. This will also integrate additional information which can be used to
reduce the errors.
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Appendix A

Glottal Closure Instance Estimation
Forward Backward Algorithm

(GEFBA)

A-1 Introduction

GEFBA, which stands for Glottal Closure/Opening Instant Estimation Forward-Backward
Algorithm, is a method for speech analysis. It is intended to find the glottal closure instances
(GCI) of speech signals. Such speech signals can be voiced, unvoiced or a mix of both (A-1),
and GEFBA will output the vector of those GCI from the glottal flow derivative (GFD).

Figure A-1: Speech signal sample

The glottal flow of a speech signal represents the velocity of the airflow as it passes through
the glottis. This airflow is quasi-periodical due to the glottis opening and closing ([12]) as
can be seen in figure (A-2)
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Figure A-2: Glottal flow

The GF then passes through a series of filters which model the vocal tract. The output is
then voiced speech. Unvoiced speech is not produced from a glottal flow, but it is rather
modelled using white gaussian noise (see figure A-3).

Figure A-3: Speech model

A-2 GEFBA

As stated before, the purpose of GEFBA is to output a vector which contains all the instances
at which glottal openings and glottal closures occur. This is done by integrating a voice
activity detection step, followed by the identification of the glottal closure and glottal opening
instances (GCI and GOI, respectively) by means of the glottal flow derivative (GFD) of the
voiced speech signal. The algorithm works in two phases; one which estimates the GFD from
the speech signal, and the second one which segments the GFD in voiced and unvoiced parts,
and then locates the GCIs and GOIs at those segments.

As mentioned previously, the first step is to calculate the GFD from the speech signal. In
order to do this, the speech signal has to be deconvolved with a filter which models the vocal
tract and lip radiation ([8]). So, first the speech signal is pre-emphasized with a filter D(z).
After performing a linear prediction analysis with 50% overlap to determine the vocal tract
and lip radiation, each frame is deconvolved with its corresponding vocal tract filter. The
output is the emphasized glottal flow, which is then de-emphasized with 1

D(z) and then the
GFD is obtained from all of the segments using the overlap-add method.

The next step, which uses the GFD of the speech signal, begins by detecting the maxima
and minima, and evaluating those under a set of conditions. So, the first step is to detect
a minimum which is named Ee(i + 1) in figure A-4 and represents the GCI. The algorithm
then looks to the left of this minimum, until it finds the first zero crossing (tp(i+ 1) in figure
A-4). After this zero crossing is found, it is necessary to find the maximum Em(i+ 1) in the
de(i + 1) interval (de(i + 1) = te(i + 1) − te(i)). Once the maximum is found, the algorithm
moves to the left in order to find the first zero crossing (see to1(i+1) in figure A-4). Once this
zero crossing if found, the algorithm moves to the right of to(i+ 1) and looks for a to2)(i+ 1)

Rodolfo Solera Master of Science Thesis
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with an amplitude which is less than kEm(i+ 1) (0 ≤ k < 1). This point (to2(i+ 1)) is then
designated the GOI.

These two instances (GCI and GOI) are calculated on the whole voiced and unvoiced segments
of the speech signal, but the algorithm may actually cause problems at the edges of the voiced
speech segments. Then, it is necessary to verify each GCI and GOI with six conditions in
order to consider it valid:

C1 = α1de(i) < de(i± 1) < α2de(i)
C2 = β1de(i) < dp(i± 1) < β2de(i)
C3 = γ1dc(i) < dc(i± 1) < γ2dc(i)
C4 = δ1de(i) < do(i± 1) < δ2de(i)

C5 = η1Ee(i) < Ee(i± 1) < η2Ee(i)
C6 = ζ1Em(i) < Em(i± 1) < ζ2Em(i)

(A-1)

where dp(i+1) = tp(i+1)−tp(i), do(i+1) = to2(i+1)−to2(i) and dc(i+1) = te(i+1)−tp(i+1).

Figure A-4: Speech signal sample

The set of control parameters seen in (A-1) are divided into two groups, where 0 < α1, β1, γ1, δ1, η1, ζ1 <
1 and 1 < α2, β2, γ2, δ2, η2, ζ2. When any of the conditions in (A-1) is not met, the GCI and
GOI pair are discarded, since it means that part of the GFD corresponds to an unvoiced
speech segment or at least a part of the speech segment right at the limit between a voiced
and unvoiced block.

The forward-backward nature of the algorithm works one pitch period at a time. This means,
that the algorithm moves forward and backwards one pitch period in order to estimate the
next set of glottal parameters. Once the GCI candidates are found they are analysed using
the conditions in (A-1). The forward movement part of the algorithm is described next, where
the search interval is defined as [te(i) + α1de(i), te(i) + α2de(i)]:

MF1: Search the zero crossings (tp(i), to(i)) MF2: Find the minimum between two consec-
utive zero crossings (min[tp(i), to1(i+ 1)]). Those minima are the N GCI candidates. MF3:
Using the GCI found before, calculate the rest of the parameters (Em, to2, de(i), tm(i)) MF4:
Discard all GCI and GOI pairs that dont comply with the conditions shown in (A-1). If the
resulting number of glottal parameters (M) is reduced to zero, this means that the speech
signal analysed is unvoiced. MF5: Use the remaining M sets as the next set of glottal
parameters.

The backwars movement part is the same as the forward movement, but the interval is now
[te(i)− α2de(i), te(i)− α1de(i)].
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The second phase of the algorithm is a more relaxed search, which first identifies the voiced
segments and re-estimates the glottal parameters on a frame approach. In step 1 of this phase
(see A-5), the algorithm processes a frame and classifies it in one of two: highly voiced, or not,
based on whether or not it fulfils the conditions in (A-1). In the end, the first step outputs
the beginning and end of voiced segments.

Figure A-5: Block diagram of the method (from [1])

With this information, step 2 fills those "gaps" in a more relaxed mode for the condition
parameters (as in (A-1)). Finally, the algorithm produces a list of the GCIs and GOIs of
the entire speech signal. From these glottal parameters, it is possible to calculate the pitch
periods.
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