
Network Architectures and Services

Towards a
Global Implementation of
Named Data Networking

Niels L.M. van Adrichem

M
a
s
te

r
o
f

S
c
ie

n
c
e

T
h
e
s
is

PVM 2012-076

Faculty of Electrical Engineering, Mathematics and Computer Science
Network Architectures and Services Group

Towards a
Global Implementation of
Named Data Networking

Niels L.M. van Adrichem

1217984

Committee members:
Supervisor: Prof. dr. ir. P.F.A. Van Mieghem
Mentor: Dr. ir. F.A. Kuipers
Member: Dr. J. Vrancken

August 30, 2012
M.Sc. Thesis No: PVM 2012-076

Copyright c© 2012 by Niels L.M. van Adrichem
All rights reserved. No part of the material protected by this copyright may be reproduced
or utilized in any form or by any means, electronic or mechanical, including photocopying,
recording or by any information storage and retrieval system, without the permission from
the author and Delft University of Technology.

Abstract

The host-to-host IP model currently supporting the Internet does not suffice in supporting
current-day content distribution in the form of content-sharing via peer-to-peer applications,
real-time media streaming and social networks. Since the design of IP, the usage of the
Internet has changed from a messaging and few-to-few information sharing system to a few-
to-many content distribution system where many users request large amounts of overlapping
information. Running a content distribution network over a host-to-host network appears to
be very inefficient since every piece of content needs to travel the complete distribution-chain
from generator to consumer every time it is requested. The result is that identical pieces of
information will often redundantly travel the same links and routers.

Information Centric Networking tries to solve this problem by proposing route-by-name in-
stead of route-by-address mechanisms. This enables networks to be optimized for content-
distribution instead of connections and allows routers to cache often requested pieces of con-
tent in memory. In this thesis we will attempt to solve problems that arise at the introduction
of a new globally routeable network, enabling clients and networks to be a full member (both
consumer and generator) on a global Information Centric Network. The topics discussed vary
from dynamic end-user configuration and generating globally unique names in order to share
information on the Information Centric Network, via mapping techniques to decrease routing
complexity, to proposing a transition mechanism that dynamically creates IP encapsulating
tunnels between disconnected Information Centric Networks. In short, we discuss a multi-
tude of problems which need to be addressed in order to assist the global implementation of
an Information Centric Network.

ii Abstract

Table of Contents

Abstract i

1 Introduction 1

1-1 Thesis structure . 2

2 Preliminary Research 5

2-1 History . 5

2-2 Basic techniques of Named Data Networking 6

2-2-1 Forwarding and Routing . 8

2-2-2 Naming . 10

2-2-3 Looping and TTL . 12

2-2-4 Reliability and Flow control . 13

2-2-5 Encapsulation . 13

2-2-6 XML Representation and Encoding . 18

2-2-7 Strategy . 19

2-2-8 Authenticity and Security . 21

2-3 Related Work . 21

2-3-1 Information Discovery . 21

2-3-2 Dynamic End-Host Configuration . 25

2-3-3 Transition Mechanisms . 25

iv Table of Contents

3 Dynamic Configuration and Sharing of Information 27

3-1 Experiments: Information Discovery . 27

3-1-1 Experiment Environment . 28

3-1-2 CCNx-DHCP Experiments . 29

3-1-3 OSPFN Experiments . 33

3-1-4 Combined OSPFN and CCNx-DHCP . 34

3-1-5 Experiment conclusions . 35

3-2 Proposal: Recursive Name Aggregation . 35

3-3 Basic Dynamic Host Configuration and Name Generation Description 37

3-4 Formal Dynamic Host Configuration and Name Generation Protocol Description . 38

3-5 Enabling data access . 41

3-6 Implementation . 41

3-7 Future work . 42

3-8 Conclusion . 42

4 Mapping 45

4-1 Related Work . 46

4-1-1 DNS . 46

4-1-2 Location Identifier Separation Protocol 47

4-2 Proposal . 51

4-2-1 Signing and Encapsulation . 53

4-2-2 Strategy . 53

4-3 DNS over NDN . 54

4-4 Conclusion . 56

5 Dynamic Tunnel Discovery 57

5-1 Related Work . 58

5-1-1 OSPF . 58

5-1-2 OSPFN . 59

5-2 Proposal . 59

5-3 Algorithm . 62

5-4 Varying cost functions . 64

5-4-1 Flat cost function . 64

5-4-2 Subsequent penalizing cost functions . 65

Table of Contents v

5-4-3 Faster growing penalty cost function . 66

5-5 Simulations . 68

5-6 Future work . 71

5-7 Conclusion . 72

6 Conclusion 73

6-1 Future work . 74

A Files CCNx-DHCP Experiments 75

A-1 Single server single client . 76

A-1-1 Single Server Single Client - Node 1 . 76

A-1-2 Single Server Single client - Node 2 . 77

A-1-3 Single Server Multiple Clients - Node 1 78

A-1-4 Single Server Multiple Clients - Node 2 79

A-1-5 Single Server Multiple Clients - Node 3 80

A-2 Multiple server . 81

A-2-1 Multiple Server - Node 1 . 81

A-2-2 Multiple Server - Node 2 . 82

A-2-3 Multiple Server - Node 3 - 1st Result . 83

A-2-4 Multiple Server - Node 3 - 2nd Result 84

A-3 Multiple Interfaces . 85

A-3-1 Multiple Interfaces - Server Node 3 . 85

B OSPFN Experiments 87

B-1 Multipath with single name sharing . 88

B-1-1 Multipath with single name - Node 2 . 88

B-1-2 Multipath with single name - Node 3 . 89

B-1-3 Multipath with single name - Node 4 . 90

B-1-4 Multipath with single name - Node 5 . 91

B-1-5 Multipath with single name - Node 6 . 92

B-2 Multipath with multiple name sharing . 93

B-2-1 Multipath with multiple name - Node 2 93

B-2-2 Multipath with multiple name - Node 3 94

B-2-3 Multipath with multiple name - Node 4 95

B-2-4 Multipath with multiple name - Node 5 96

B-2-5 Multipath with multiple name - Node 6 97

vi Table of Contents

C Combined OSPFN and CCNx-DHCP Experiments 99

C-1 CCNx-DHCP client connected to OSPFN network 100

C-2 Ping results from client . 101

D Proposal Implementation 103

D-1 Dynamic Host Configuration and Name Generation screen capture 103

Bibliography 105

Chapter 1

Introduction

The Internet as we know it today is designed as a host-to-host network. Packets efficiently
travel across the network from source to destination in a packet-switched manner using the
Internet Protocol (IP). At each traversed node, the packet is forwarded to a node one step
closer to its destination. Routing table entries function as road signs stating in which direction
packets need to be forwarded. The foundations of this network were designed in the late 1960s
and early 1970s and have helped the Internet increase to its current volume and size.

The design criteria for the Internet were derived from the types of global communication
known at that time, which included telephony, postal mail, telegraphs and the occasional
few-to-few file exchange between universities. In the mean time the Internet has become a
common good available to billions of people [36]. The increase of users, applications and new
insights following the introduction of a global network have resulted in a changed usage of the
Internet. Instead of the original insights of a host-to-host messaging system the Internet is
consumed as a few-to-many information distribution network where many people request lots
of overlapping information from a finite set of information generators. One could say we all
watch the same viral videos on YouTube, news items on popular websites and want to view
high-quality real-time streamed digital television at home. Even when we watch personalized
pages there is much overlap in the content we see. Messages on social networks such as
Twitter, LinkedIn and Facebook are also seen by common connections, while other content -
such as advertisements - may overlap on a different target group.

Whenever a client requests content, a connection is set up to the generating server and the
content is requested over that connection. When a large number of users request content
from a source, they all set up individual connections to that source and request information
over it individually, disregarding the overlap in their requests. This results in many pieces of
identical information traveling the paths surrounding the source. Compared to a retail store
distribution network, the buyer does not only travel to the store itself but travels the complete
distribution chain to the generator of the product disregarding how many people have already
traveled that path buying the same product. Taking a music store as an example, the buyer
of an album needs to travel to the local music store, travel from that local music store to the
wholesaler, to the distributor, to the importer, to the harbour, to the factory to pick up its

2 Introduction

medium and travel back. The next customer desiring the same album will need to travel the
same path from its own local music store to the factory, disregarding overlapping parts of the
paths and parties.

Although it is clear that such a system is inefficient as a content distribution network, IP does
not offer architectural possibilities to streamline content distribution. Considering the fact
that client applications actually request the network to set up these connections1 instead of
requesting it to deliver content, we deliberately disallow the network to streamline on anything
different from connections. There is no way for a host-to-host network, without employing
Deep Packet Inspection, to employ any type of heuristics to monitor and steer the flow of
content instead of the flow of connections since we explicitly ask it to set up connections.
This is where the philosophy of Information Centric Networking (ICN) comes into play.

The goal of ICN is to make networks more aware of their role as information distributor
in order to enable them to streamline that function. In this thesis we will discuss Named
Data Networking (NDN) [64] as proposed by the Palo Alto Research Center (Xerox PARC)
in Jacobson et al. [39] and conduct research on the problems one meets when globally im-
plementing such a network. The primary goal of this thesis is to propose solutions to enable
global implementation of Named Data Networking.

Throughout this thesis we will talk about

• Information Centric Networking (ICN) when addressing the philosophy of such a net-
work,

• Named Data Networking (NDN) as a reference to the insights of routing-by-name as
proposed by the Palo Alto Research Center and

• the Content Centric Network Architecture (CCNx) [11] as an implementation of Named
Data Networking.

1-1 Thesis structure

In chapter 2 we will first discuss the history of events that brought researchers to produce
the philosophy of Information Centric Networking (ICN), followed by a preliminary research
of the techniques behind Named Data Networking (NDN) and its implementation Content
Centric Network Architecture (CCNx). We will summarize related work previously done in
the areas of information discovery and dynamic configuration which have helped us solving
the problems discussed in the following chapters.

In chapter 3 we will discuss our first proposal combining dynamic auto-configuration of clients
on a CCNx enabled network and the automatic generation of globally unique names. Dynamic
configuration of client devices is crucial for end-user acceptation of a new protocol supporting
the Internet, whilst sharing information globally in NDN requires a globally unique name.
We propose a solution solving both problems and enabling dynamic formation of small office
and home office networks. By offering a configuration-free mechanism for users to profit from
NDN, we expect a higher willingness by users to participate.

1And request the content over these connections.

1-1 Thesis structure 3

While chapter 3 offers a solution to easily access and share content in a NDN, the dynamically
generated names are location based and share no context with the information being shared.
In chapter 4 we propose a system for mapping registered names, such as domain names, to the
location based names enabling users to share data using names matching the context. Such a
mapping system is also able to solve the route decision complexity introduced by the routing-
by-name name principle. The address space is much larger than IP which creates problems
in maintaining global routing tables. Using a mapping system one can split registered names
from aggregated routeable names. Users can use registered names for an optimal experience,
while routing can use location aggregated names to keep global routing tables small and the
complexity of selecting the correct forwarding rules low.

Alike to the introduction of IPv6, not all routers can be upgraded at once. Therefore, NDN
needs transition mechanisms to also function in networks that are not fully NDN compatible.
In chapter 5 we propose a transition mechanism and algorithm that can dynamically set up
IP encapsulated tunnels between NDN islands in order to connect previously unreachable
nodes. Our proposal efficiently chooses a balance of NDN dense paths and tunnels based on
underlying link and path costs to keep the overhead formed by crossing NDN incompatible
paths to a minimum.

4 Introduction

Chapter 2

Preliminary Research

This chapter we will start with a brief summary of the history and findings leading to the
foundation of Information Centric Networking and name based forwarding. Secondly, we will
discuss the Named Data Networking implementation of CCNx, which is short for Content
Centric Networking Architecture, designed by the Palo Alto Research Center (Xerox PARC)
[11]. The goal of this chapter is to give more insight in the philosophy and problems faced
while changing a network into an Information Centric Network. Finally, we will discuss
related work on information discovery, the NDN equivalent of topology discovery, dynamic
host configuration and transition mechanisms.

2-1 History

In the past, different research initiatives have worked on the idea of a content or information
centric Internet. One of the first initiatives towards content centric networking is the Stanford
TRIAD project [59] started in 1999. TRIAD deploys an overlay network on top of IPv4 to
deliver content based routing based on HTTP URL’s to move quickly to a close replica of
the information. The primary goal was to elevate IPv4 and TCP to a higher content aware
level by inspecting the HTTP headers and make routing decisions based on that information.
The implementation heavily relies on IP routing and TCP and therefore does not represent a
network independent possible OSI-layer 3 ICN replacement. The driving arguments behind
the project did not include the limited scalability of a host-to-host network serving content
distribution networks, but were based on the problems faced by the outrun of IPv4 addresses.
The website of the project even states that a successful implementation of the technique would
be able to eliminate the need to migrate to IPv6 and claims to work with current IPv4 NAT
standards.

In 2006 UC Berkeley introduced DONA, a Data-Oriented (and Beyond) Network Architecture
[43], which continued on the work of the TRIAD project. The project’s intended implemen-
tation clearly is a route-by-name mechanism to route requests to the closest copy of the
intended content. Still, the primary goals were to replace DNS and solve name resolution

6 Preliminary Research

from a networking perspective. After the right content is found, the content itself travels to
the requesting node using a one-to-one TCP/IP connection. Again, this makes the intended
end result to be an overlay application instead of an Information Centric Networking Archi-
tecture that has the ability to work independently of IP. However, in the DONA project many
important subjects such as naming conventions and security issues (mostly authenticity) are
already mentioned and discussed which provides a good reference for true Information Centric
Networking.

The NetInf project, short for Network of Information [54], started in 2008 at the University
of Paderborn. Although the goals of this project are the same as NDN’s or CCNx’s, their
primary focus appears to lie on data modeling, naming and finding instead of routing by
name. The invented technique uses Distributed Hash Tables, as with the Chimera P2P
search algorithm [27], to find data quickly. Their website gives thorough tools to experiment
with the technique and even has a Firefox plug-in to show the user-experience. NetInf is an
EU funded project on which was also worked in the 4WARD and SAIL projects.

The apparently most active research in ICN is the route-by-name Named Data Networking
technique proposed by PARC - the Palo Alto Research Center - [24] initiated and supervised
by Van Jacobson, who also is accredited a great role in designing the algorithm for TCP/IP
congestion control [56]. In 2009 PARC published an open source Named Data Networking
implementation called the Content Centric Networking Architecture (CCNx) [11]. NDN and
CCNx is based on prior and ongoing research in the field of Information Centric Networking
and routing-by-name. The architecture works with so-called opaque names, which describe
certain content for the end-user or application, but have no direct meaning to the networking
nodes. The name in a packet replaces the destination addresses in IP and routers only forward
requests based on this name to a destination providing this information. The data itself travels
exactly the same way back to its requester. Caches can, and ideally will, be held by any node
based on the name of the content to decrease the load on the generators of the requested
content. The project has already given thought to authentication and authorization by using
established signing techniques.

On the project’s website one can download already functioning prototypes of the architecture.
A Firefox browser plugin is currently on the list of work that is still in progress [25], as is
a Layer 2 adaptation layer to provide reassembly and reordering over networks that do not
support these features themselves. The project is being funded by the NSF Future Internet
Architecture program under the name of Named Data Networking [24].

Table 2-1 shows a comparison between the discussed proposals of Information Centric Net-
working. Since the proposal of Named Data Networking and its implementation CCNx is the
most extensive and has the most resemblances to OSI Layer 3 networking, many of our work
is based on, or continues, their studies. This is also the main reason why we have chosen this
particular stream of Information Centric Networking to base our research on.

2-2 Basic techniques of Named Data Networking

In this section we will present how the Named Data Networking principle and the CCNx imple-
mentation currently work. The information presented in this section is mainly a combination
of the higher-level presentation of NDN in [39], which we technically filled in by extensively

2-2 Basic techniques of Named Data Networking 7

Project Main focus Routing / Infor-
mation finding

Content Delivery Transport proto-
col independent

TRIAD Prevent IPv4 ad-
dress outrun

HTTP URLs TCP/IP No

DONA Replace DNS and
offer data oriented
routing

Name Based For-
warding

TCP/IP No

NetInf Offer Information
Centric Network-
ing

Chimera P2P
Overlay

TCP/IP or other
underlying trans-
port mechanism

No

NDN Offer Information
Centric Network-
ing

Name Based For-
warding

Follow reverse In-
terest path

Yes

Table 2-1: Summary of the differences between ICN proposals concerning their main focus,
difference in path or information finding, content delivery and whether they can work independently
of an underlying transport mechanism.

researching through the less representative CCNx Protocol Description [19] and documenta-
tion [21]. Many conclusions of operation have been found by investigating the CCNx software
documentation [22][23] and carrying out numerous of trial-and-error experiments to verify the
documentation and get a good grip on the philosophy of NDN. The experiments were done
using our own CCNx experiment testbed which is also used for the experiments in section
3-1. To our knowledge, no such overview both describing high level abstractions and low level
functional details yet exists. Many subjects are still under active research and development,
which means they might change and thus, hopefully, improve over time.

In NDN, when a node is interested in certain content or information, it can send out an Interest
packet containing a name describing the content. Each receiving node forwards the Interest in
the direction of the node responsible for generating the information until the Interest reaches
the generator, or it reaches a node which can serve the content from its cache. When an
Interest reaches such a node, a ContentObject packet is created which travels exactly the
same way back to the requester of the information and the originating Interest message is
discarded as it has been satisfied by the found content. Figure 2-1 shows a possible path
over which an Interest packet and satisfying ContentObject packet may travel. Whenever a
node along the path already has a cached copy of satisfying content, due to a simultaneous
previous request, it may discard the Interest and return a copy of the cached ContentObject.

The goal behind the caching mechanism is to decrease the load on content generating nodes
- and the links leading towards those - invoked by serving redundantly requested data. A
second request for earlier delivered data can be delivered from the first coinciding node on
the paths from requester to generator. The principle of NDN is that one does not care
who delivers the data, as long as it is authentic While in IP networks nodes and links may
overload once content becomes very popular and requested often, such as a video going viral,
in NDN more requests also mean more nodes will have a copy of the popular content in
cache. The probability that a node near to you on the path to the content generator has a
cached copy of the content increases by its popularity. Via the caching mechanism, copies
of content are automatically distributed towards parts of the network where it is requested.

8 Preliminary Research

App

Client

Cache

Cache

Cache

Interest

Interest

Interest
Interest

ContentObject
ContentObject

ContentObject

ContentObject

Figure 2-1: A graphical representation of an Interest requesting content traveling towards its
generator. Any NDN enabled, by definition caching, node may return a cached copy satisfying
the request, or forward the Interest further to the generating application.

The more content is requested in your area, the better its availability in caches near you. One
could say that the load on the network by a piece of content on average decreases when it is
requested more and more often, instead of increased until the frequency of requests overloads
the generating server and the paths leading to the server. This is a very promising property
for a network where a few organisations share, mainly identical, information to many.

As will be discussed in section 2-2-1, names generally take the form of ccnx:/

firstNameComponent/secondNameComponent/thirdComponent/etc/etc. The description
of the names do not have a meaning for the network itself: networking nodes merely se-
lect forwarding rules based on prefix matches on the name. The meaning of a name is only
relevant for the parties requesting and generating information. Packets come in via interfaces
which are called faces, due to the fact that these can be any type of connection with another
process, daemon, node or link. A face can, among others, be an Ethernet-interface, an IP
network, a radio link, fiber optics, a requesting or information serving application.

2-2-1 Forwarding and Routing

As is the case with all networking mechanisms, nodes or routers need a mechanism to decide
how packets are forwarded across different networks. In a Content Centric Network, all nodes
(routers, servers, consumers, peers) are equal in functionality, which means that they can all
request but also serve, forward and cache data1.

Every node keeps 3 tables. Based on its contents a node decides what action to perform on
an incoming Interest or ContentObject. These 3 tables are:

1This feature actually eases the creation of Ad-Hoc Wireless Networks. Nodes can broadcast Interests to all
nodes in range, who in turn can rebroadcast to even more nodes until a node satisfying the request is found.
The contents of the PIT ensure the data will return to the original requester, while section 2-2-3 describes
how loops in the Ad-Hoc Wireless Network are prevented. The subject of Ad-Hoc Wireless Networks however,
exceeds the scope of this thesis.

ccnx:/firstNameComponent/secondNameComponent/thirdComponent/etc/etc
ccnx:/firstNameComponent/secondNameComponent/thirdComponent/etc/etc

2-2 Basic techniques of Named Data Networking 9

• The Content Store (CS), which can cache any ContentObjects that have passed the
node for a given period of time.

• The Pending Interest Table (PIT), which contains a list of Interests and incoming faces
for which the node has already taken action but has not seen any response yet. The
PIT entries serve as waypoints for a ContentObject to travel back through all the nodes
and faces it has passed.

• The Forwarding Information Base (FIB), which contains forwarding rules for name
prefixes.

The CCNx-daemon uses prefix matching of the different name components against the dif-
ferent tables to determine the right action it should take. Prefix matching strictly occurs
on whole name components, e.g. a name of ccnx:/alice/photo would prefix match ccnx:/

alice since the first name components match though it does not prefix match ccnx:/alice/

photos since the second name components differ.

Whenever the Name of an incoming Interest prefix matches the name of a ContentObject in
the CS, the node can discard the Interest and return a copy of the cached information. In
case multiple ContentObjects match, a requested name may prefix match multiple names, at
most 1 ContentObject satisfying the Interest is returned [17].

If the Pending Interest Table contains an exact match Interest, it means the node already has
an outstanding request for the same information. The source face of the Interest is added to
the outstanding list of interested faces, making sure when a satisfying response returns it is
included in receiving that response. After the addition to the list the Interest is discarded as
the appropriate forwarding actions were already taken.

If the Interest is still not satisfied, the Forwarding Information Base is consulted to see if
any rules prefix match the name of the incoming Interest. The Interest is then forwarded to
the faces denoted in the rules having a longest prefix match on the Interest’s name. Since
a face can be either a link, connection, tunnel or application it is possible for the Interest
to be forwarded to a node one step closer to the generator, or to the application hosting or
generating the content itself. When a node has multiple forwarding rules with a longest prefix
match, Interests can be duplicated and sent to multiple faces. A rule to the Pending Interest
Table is added denoting the name of the forwarded Interest and the source face it originates
from. The chain of rules in the PITs on all nodes from the requester to the generator will be
used for the returning ContentObject to be forwarded back to the requesters.

The process of determining how to process an incoming Interest based on its name by travers-
ing the contents of the CS, PIT and FIB is shown in figure 2-2.

When an Interest hits an application face that is responsible for generating or hosting the
information, the application creates a ContentObject containing a name that prefix matches
the name of the Interest and describes the information generated. When the ContentObject
enters a node, for any PIT entries whose (prefix) name matches the ContentObject, a copy
of the ContentObject is sent to all its requesting faces and the entries are deleted as their
requests have been satisfied. At any next node that receives a copy of the ContentObject this
process continues until the chain to the requester(s) has been run down and the ContentObject
is offered to the requesting application.

ccnx:/alice/photo
ccnx:/alice
ccnx:/alice
ccnx:/alice/photos
ccnx:/alice/photos

10 Preliminary Research

Face 0

Face 1

Face 2

/parc.com 0, 1

FIB
Face list

Application

DataName

Content Store

Pending Interest Table (PIT)
Requesting

Face(s)

Index
ptr type

P

C = Content store

P = PIT

F = FIB

C

F

/parc.com/videos/WidgetA.mpg/v3/s1

/parc.com/videos/WidgetA.mpg/v3/s0

0

. . .

Figure 2-2: The CCN Forwarding Model, image has been taken from [39]

2-2-2 Naming

Since the routing and forwarding is done by name, we need a structured way of naming
content. CCNx uses a hierarchical structure in which a name is composed out of multiple
Name Components. Each subsequent component describes the characteristics of the content
a little bit more precisely. As soon as the name of the Interest prefix matches the name of a
ContentObject, that content qualifies for the request and can be returned to the requester.
The prefix match-principle is valid in the sense that a longer name, prefix matched by your
request, has a more precise description than you asked for but does satisfy your request. If we
were to request pictures of animals, we could for example describe a grey horse as /animal/

horse/grey (note the more precise description of the animal with each Name Component).
In the previous case, our grey horse is a valid response to an Interest for an /animal or /

animal/horse since it is in fact an animal and a horse. It is not until the user specifies a
more precise description of, for example, a brown horse (/animal/horse/brown) that our
grey horse response would not satisfy the request.

Prefix matching is also used in IPv4 and IPv6 [55][37] to select forwarding rules on routers,
though the difference is that in IP matching happens on subsequent bits, whilst in NDN
matching has to occur on subsequent complete tags. This means that /animal does not prefix
match /animals. Therefore, bitwise, tags should be preceded stating the length of that tag.
As a result of that, the forward slashes in the human readable names become obsolete in the
binary encoded version of that name. Our content /animal/horse/grey could in that case
be encoded as 6animal5horse4grey where the numbers state the length of each tag. In this
case the bit encoded name 6animal prefix matches, but the names 7animals and 6animus do
not. A graphical representation of binary encoded name components is shown in figure 2-3.

The concluding name of information will be extended with extra components to denote ver-
sioning and segmentation (not fragmentation). For example, the name /parc.com/videos/

WidgetA.mpg/ is extended with, among others, the components _s<segmentnumber> and _

v<timestamp> to denote the segment and version of the content being served. Since these
components are added after the meaningful part of a prefix, these added components will
not interfere with routing nor the communication between user and application. Due to the
hierarchical structure of the name, the components can be interpreted as a tree, as shown in
figure 2-4. In case of the versioning component, an Interest might add a preference to receive
the most recent version by adding a property like RightmostChild to the Interest to ensure

/animal/horse/grey
/animal/horse/grey
/animal
/animal/horse
/animal/horse
/animal/horse/brown
/animal
/animals
/animal/horse/grey
/parc.com/videos/WidgetA.mpg/
/parc.com/videos/WidgetA.mpg/
_s<segment number>
_v<timestamp>
_v<timestamp>

2-2 Basic techniques of Named Data Networking 11

Readable:

Human

Encoding:

Binary

Segmentation

Globally−routable

name

Conventional/automatic

Versioning &
User/App supplied name

Organizational name

6 6 videos 11 WidgetA.mpg ...A40DF 7moc.crap 8

/_s3/parc.com/videos/WidgetA.mpg/_v <timestamp>

2 0003

Figure 2-3: Example of a human readable and binary encoded version of a name, image taken
from [39]

parc.com

videos

WidgetA.mpg

_v1 _v2

_s0 _s1 _s2

Figure 2-4: Name Tree Traversal, image taken from [39]

travel to the newest version of the information. In case the requester knows which specific
version of the content it needs, it can add the appropriate Name Component _v<timestamp>.

CCNx basic name conventions

As discussed, CCNx uses a hierarchical naming structure in which each name component is
divided by a forward slash for user readability [12]. Each name component adds a slightly
stricter description of the content one needs or publishes. The CCNx basic name conventions
[12] state a few guidelines for the usage of CCNx names. The meaning of a name is exclu-
sively specified by the application and its users. Only in the case content should be globally
accessible, global conventions should be followed. In local situations the use of any name is
allowed and can therefore be decided upon by the organization or institution managing the
network. The document does not give any further information about local conventions, even
though local name conventions such as ccnx:/organization.local for intra-organizational
networks might scale well.

The given guidelines state that for globally reachable content the first name component should
be a “DNS name”. Choosing DNS names as the first name component could be useful while
transitioning from IP and DNS to CCNx, since all domains have already been registered [39].
In addition, when a certain prefix is not accessible from a possible CCNx island - a set of
nodes disconnected from a greater CCNx enabled network - one can use a dynamically set

_v<timestamp>
ccnx:/organization.local

12 Preliminary Research

up IP tunnel to a content server denoted in DNS. The most important guidelines for globally
accessible content are that

1. the content name should be globally unique and

2. the content name should have a DNS name as first component.

ISP-based aggregation

One of the approaches proposed [64] for long-term routing scalability is ISP-based aggre-
gation, which might be reused to dynamically generate names. The solution proposes a
differentiation between user-selected names and provider-assigned names, where user-selected
names are mapped to provider-assigned names using a mapping service analogous to DNS.
The provider-assigned names are constructed hierarchically where longer names define a more
precise location within a network. E.g. the content name /att/atlanta/alice/blog might
aggregate to Alice’s Internet connection in Atlanta connected by AT&T. For user-friendly
access Alice might now register a shorter name /alice and have that name map to her
provider-assigned name.

ISP-based aggregation uses the property that an entity responsible for delivering specifically
named content can do so by forwarding Interests to nodes delivering even more precise speci-
fied content. In our proposal in chapter 3 we will reuse the property that an entity responsible
for the primary part of a name can decide to forward Interests of subnames to other devices
it is connected to.

2-2-3 Looping and TTL

In order to prevent Interest packets from looping, the originator of an Interest sends a ran-
domly created nonce - a string of bits - along with the Interest packet. Coinciding nodes
which forward a copy of the Interest packet keep a copy of the original Interest that was
requested including the associated random nonce. As soon as an Interest with exactly the
same name and nonce arrive on another face, the node knows that this Interest packet has
made a loop and that the incoming Interest packet needs to be discarded.

All coinciding nodes keep an entry in their PIT containing names requested by the connected
faces. Due to these entries, when an Interest packet hits a node who can serve the requested
information the ContentObject packet travels back to the original requester using these en-
tries. A ContentObject always follows the exact reverse order of the path the Interest traveled.
Since Interest loops are already solved, and a ContentObject travels the same path as the
Interest triggering its generation, ContentObjects also cannot loop.

In order to prevent packets to travel around the network for an infinite time, IP has imple-
mented a hop limit denoting the maximum number of nodes an element may travel across
before it is being dropped [55]. The hop limit is initially set by the sender, and decreased with
a value of one by each node it passes until its value reaches zero. An initial value of 16 means
that the IP packet can pass 16 links before the 64th node considers it lost and drops it.

Although the mechanism from IP is very transparent and comprehensible, CCNx uses a
slightly different mechanism to avoid lost Interest packets. Every Interest packet has an

/att/atlanta/alice/blog
/alice

2-2 Basic techniques of Named Data Networking 13

optional InterestLifeTime value which states in how many seconds, after receiving the packet,
it should time out. When omitted a default value of 4 seconds is assumed. A node removes
an Interest from its PIT entry as soon as it outstays its InterestLifeTime.

It is allowed (though strangely enough not recommended) for forwarding nodes to decrease
the value of the InterestLifeTime to account for the time that the packet was in transmission
and being processed by that specific node. If a node starts with an InterestLifeTime of 4
seconds and every forwarding node decreases the InterestLifeTime with 62.5 ms, the Interest
packet is considered lost after 64 nodes. Hence, with the appropriate implementation, the
InterestLifeTime mechanism can give a time out functionality which preventing lost Interest
packets to travel across the network forever [17].

Note that a ContentObject travels the same way back as the Interest packet did, therefore
it does not need any mechanism to prevent it from becoming lost in the network. Whenever
a ContentObject can not travel any closer to the requester, which can happen when its
requesting PIT entry times out, it is discarded.

2-2-4 Reliability and Flow control

In the case of audio or video streaming, or for that matter any data, another extension
denoting the segment can be added. That means that a component _s0, _s1, _s2, etc. can
be added to denote chunks of the stream. One of the advantages is that when the first segment
has been received, the video player can already start playing while requesting the next. More
importantly, it can also be used to replace the TCP acknowledgments and congestion control.

As soon as a node does not receive a ContentObject for which it has sent an Interest, for
example due to packet loss, it can resend that Interest and it might receive that data this
time since chances are lower for the packet to be lost twice. It is possible that the Interest
does not need to travel down the complete way again; a subsequent node may already have
the content in its cache due to the previous Interest and retransmit that information to the
user.

If tags like NextSegment are added, or we calculate the next segment we need, we can request
multiple segments up front so we can influence the speed with which ContentObjects will
arrive. In comparison to TCP this adds the feature of a window size.

As you might imagine, the Interests combined with sequence numbers in the name can replace
the functionality of ACKs and their sequence numbers as used in TCP. The algorithm used
for congestion control in CCNx is still an active research topic, though one might imagine
that it might become similar to TCP. Remember, the names are meaningless to the network
itself. The names are only meaningful on an application layer or even to the end-user himself.
The network itself considers the added version and segmentation components as simple parts
of the name based on which a prefix match does, or does not occur.

2-2-5 Encapsulation

As is the case in any network protocol, many items need to be encapsulated in the packets
being exchanged between nodes. In CCNx we consider two types of packets, the Interest
packets requesting information and the ContentObject packets delivering the content.

14 Preliminary Research

Interest packets

The Interest packet can contain the following options [17]:

Interest ::= Name

MinSuffixComponents?

MaxSuffixComponents?

PublisherPublicKeyDigest?

Exclude?

ChildSelector?

AnswerOriginKind?

Scope?

InterestLifetime?

Nonce?

In this format, the Name is the only component that is required. As discussed earlier, in an
Interest packet the name is built up of hierarchically ordered Name components describing
the content we are looking for. Each Name Component consists out of 0 or more bytes,
possibly but not necessarily human readable, describing the content that is asked for. The
other components can add extra requirements to which the data should match so the client
can force extra constraints upon the requested content.

The 4 elements (MinSuffixComponents, MaxSuffixComponents, PublisherPublicKeyDigest and
Exclude) add extra requirements to which a ContentObject should obey before it is matched.
The ChildSelector tells us which element should be retrieved when multiple elements match,
e.g. the latest or newest version in case of versioning, or the first or next segment in case of seg-
mentation. The next 2 components (AnswerOriginKind and Scope) can give extra constraints
concerning the publisher of the requested information. The last 2 elements InterestLifetime
and Nonce are used by the forwarding nodes to determine routing loops and the time they
should continue requesting the information.

Sometimes it is possible for a requester to already know how long the name of a matching
ContentObject is, or in what range it should be. In this case it can state how many extra
components a prefix matching ContentObject can or should have. The MinSuffixComponents
and MaxSuffixComponents state this range, by default they should be equal to 0 and infinite
in order to be omitted. When a client knows the exact name (including additional segment,
version and signing components) of the information it requests, it can state so by setting
the MaxSuffixComponents property to 0. A MaxSuffixComponents of 1, on the other hand,
means that the name in the Interest is the complete name of the desired content without the
final component giving the SHA-256 digest of the ContentObject, which means the requester
initially accepts any content matching the name but has no preference or knowledge of any
specific versions it might prefer. We will discuss more about signing and authenticity in
section 2-2-8.

A ContentObject will always contain a SHA-256 (a cryptographic hash function) digest of
the information it carries, which is signed using the public key of the generator. In case a
client wishes information that is published by a specific publisher, it can add the digest of the
publisher its Public Key to the Interest in the form of the PublisherPublicKeyDigest. As soon

2-2 Basic techniques of Named Data Networking 15

as the PublisherPublicKeyDigest has been added, only content published by that publisher
will be prefix matched against the requested Name.

The Exclude parameter adds an option to specify name components to which the first next
Name Component may not match. For example, in case we are looking for a horse (/animal/

horse) but we do not wish to receive a picture of a grey horse, we can add a component grey
to the exclude list. In this case the added component grey will prevent grey horses to match
our request. An Interest can contain multiple Name Components that it wants to exclude,
for implementation reasons these components should be denoted in alphabetically increasing
order2.

Instead of name components, it is also possible to add filters matching multiple name compo-
nents a client does not wish to receive. This is done in the format of so called Bloom filters3

which for now exceed the scope of this text.

Since the name of a ContentObject is built up hierarchically, it can be graphically or logically
referred to as a tree of nodes. As shown in figure 2-4, in this tree every name component
matches a node to which child nodes are attached. A name matches information as soon as
there is a prefix match between the name in the Interest and the name of the ContentObject.
Therefore, it is possible that multiple child nodes match the Interest name. The ChildSelector
enables us to express a preference for one node over the other. At the moment it is possible to
give preference to the leftmost child (denoted by a 0), or the rightmost child (denoted by a 1).
The preference is only taken into account for the first component after the prefix, using the
ChildSelector it is possible to select for example the first segment of a movie, or the newest
version of a certain segment. The child components are first ordered by length, which means
that a shorter component string is considered alphabetically smaller no matter the content
of the string, and (if necessary) later ordered per character [10]. This is a result of the binary
encoding of name components as described in section 2-2-2.

The AnswerOriginKind element contains a bitmask describing how the information may be
fetched or generated.

• The first bit tells whether the information may be delivered from a caching ContentStore,
which is the default behavior.

• The second bit tells whether the information may be generated when it does not exist
yet, this is also the default behavior.

• When the third bit is set, this means that the client accepts old or stale information to
be served, it is not necessarily interested in the most recent information and nodes may
serve cached copies that are past their due date.

• The fourth bit is currently not used.

• The fifth bit can be used to mark information already in the ContentStore to become
stale (only to be used in conjunction with a Scope of 0). This option can be used by

2A value in a list can be found with a work complexity of O(log(n) instead of O(n) if that list is ordered.
3http://www.ccnx.org/wp-content/uploads/2011/08/poster-ns3-ndn.pdf states that the support for

Bloom filters is deprecated; authenticity of this source has however not been confirmed as it is part of a
mailing list and the authors connection with NDN is not trivial.

/animal/horse
/animal/horse
http://www.ccnx.org/wp-content/uploads/2011/08/poster-ns3-ndn.pdf

16 Preliminary Research

applications to tell caching nodes that the information they possibly contain has become
outdated. Although the current mechanism is considered to be a hack, the functionality
of being able to tell geographically spread caches that information became out of date
seems legitimate in a distribution network.

The property Scope defines whether it is allowed for the Interest to propagate across the
network or not.

• When it is valued 0, the Interest may not be propagated at all which means that only
information already in the ContentStore of the node may be returned.

• The value 1 means that the receiving node can only forward the Interest to directly
connected application faces, not to other types of faces. This behaviour is exploited
when building up caches of a nearby application. A caching node can, for example, be
connected directly to a forwarding node connected to a content generating application.
The caching can request all items from the application through iteration and cache them
in advance to speed up content delivery.

• A scope of 2 means that the Interest can be forwarded to any face connected to the
node, which is the default behaviour. This means that it will propagate into the net-
work according to all longest prefix-matching FIB rules searching for the information
requested.

The InterestLifeTime property defines when, measured in seconds after it is received at the
forwarding node, the Interest packet should be discarded and removed from the PIT by that
node. It is also possible to use this value as hop limit or Time-to-live mechanism when all
forwarding nodes decrease the property with a small amount. This small amount accounts
for the time the packet is in transmission and being processed by the nodes. In combination
with the segment numbering discussed in section 2-2-4 and the research suggested in section
2-2-7 about possible strategies NDN nodes can deploy to forward Interests this option can
help in creating mechanisms concerning Quality of Service, reliability, flow and congestion
control.

As previously discussed, the Nonce is a randomly generated value used to detect and dis-
card looping Interest packets. The nonce is generated once by the original requester of the
information and stays the same while propagating across the nodes to the content deliverer.
When a node receives an Interest on another interface whose Name and Nonce are equal to
an Interest received earlier, the node knows that this Interest packet made a loop and needs
to be disregarded.

ContentObject packets

ContentObjects, the messages containing the data to be delivered, contain the following prop-
erties [14]:

ContentObject ::= Signature

Name

SignedInfo

Content

2-2 Basic techniques of Named Data Networking 17

The first element, the Signature, is a signature of the Name, the SignedInfo and the Content
with their respective XML binary encoded start and end tags (more about this in section
2-2-6) as they appear on the wire in the underlying layer. The Signature is used to identify
if the ContentObject delivered truly is the message as generated by the signer, it confirms
whether the content is authentic and has not been damaged or corrupted (both by accident
or by security infringements) on the way to the receiver. Different signing methods can be
used to verify the ContentObject, we will discuss this in section 2-2-8 about Authenticity and
Security, for now we can assume a SHA-256 digest [20].

The Name matches the same prerequisites as the name in the Interest Packet. The only
thing that differs is that the last element of the name will contain an implicit SHA-256 digest
of the attached Content in order to make the name of that particular information globally
unique. This helps in a) linking to exactly one specific ContentObject and b) excluding
specific ContentObjects using the Exclude property of the Interest message.

The SignedInfo element has many elements containing detailed information about the content
being sent. It contains the PublicPublisherKeyDigest, a SHA-256 digest of the generator its
public key, which may be used by an application to quickly select the right public key from
its own memory to decode or check the signature of the information. It also contains a
TimeStamp, though it seems unclear whether it contains the time at which the ContentObject
was either created, signed or sent.

The previous two elements PublicPublisherKeyDigest and TimeStamp are always attached
to the SignedInfo element; the next elements are optional and can be used to denote extra
information.

The Type element defines the type of content carried by the ContentObject. Possible values
are plain data, encrypted content, a public key, a link or a NACK stating that the generator
does not have nor can it generate content for the requested Name.

The FreshnessSeconds element states when a ContentObject should become stale. A stale ob-
ject contains possible old information and should be eliminated from the caching ContentStore
within a short time to eliminate Content from the network that is not recent anymore. This
element states how many seconds after receiving a ContentObject it should expire. If the
element is not specified, the packet does not become stale by time. It may become stale or
removed by other mechanisms, such as a cache replacement policy.

The optional element FinalBlockId defines which segment, if applicable, is the last segment.
Knowing the last segment particularly plays a role when content - such as streaming content
or other types of media - is cut up in multiple segments. This element can be used to predict
the end of the content being retrieved. The element does not need to be sent along with every
segment of certain data, but it may be preferable to send it with the last number of segments
to let the client know the end of the data stream is coming.

The optional KeyLocator tells where a client may get the Public Key to verify the signing of
the object and is complementary to the PublicPublisherKeyDigest. Since a public key itself
can be considered as a form of information, the public key can be requested via the NDN
in the same way any other content is requested. The request of a public key is safe since
the public key (which is the content in this matter) will again be signed by its publisher or
certificate authority giving opportunities to exploit a PKI like certificate infrastructure.

18 Preliminary Research

At last the Content itself is being served containing the, possibly 0 bytes long, requested
information encapsulated as described by the Type element.

We can conclude from the previous two subsections concerning the encapsulation of Interest
and ContentObject messages that NDN has initial support for many possible implementa-
tions concerning caching policies, flow control mechanisms, segmentation and cryptographic
authentication and encryption. Most subjects, however, still need further research in order to
select or design the right mechanisms for a trustworthy global implementation. As a result,
many of the discussed options still have open ends that need implementation specific finishing.

2-2-6 XML Representation and Encoding

CCNx uses an XML representation in order to describe the content of a packet. This makes
it possible to use a XML Schema Definition (XSD) to describe what a CCNx packet should
look like. An XML Document Type Definition (DTD) can be used to further identify the
properties of a packet. CCNx has two of those schemes [18][16] which describe the properties
and their structure being used in the messages and can be used to verify the structure of a
message.

While XML is a great way of structuring the syntax and format of information, using plain-
text human readable XML to transfer packets will give a large. Therefore, CCNx uses a
custom designed binary encoding - called ccnb - instead of the human readable XML repre-
sentation to transfer the information. The binary encoding has been designed in such a way
that binary to XML to binary conversions are processed in such a way that the input and
output match exactly.

The ccnb encoding mechanism is not application specific and can be implemented by other
applications in which XML needs to be transferred compactly. The mechanism employs an
application specific dictionary [15] to translate common tag and attribute names to shorter
numbers in order to save space in the encoded message.

Each XML encoded element starts with a number representing a tag from the dictionary. The
number - for which a more detailed example is shown in figure 2-5 - is a big-endian number
representation4, in which:

• The first bit of a byte equals 1 when it is the last byte from the number or 0 if it is not.

• For all preceding bytes, the supplementary 7 bits are part of the number.

• For the last byte, bit 6 to 3 represent the most significant part of the number.

• Finally, bit 2 to 0 are used to represent the type of the current and following elements.

– 0x1: identifies that the following amount of bytes are an UTF-8 string representa-
tion of an XML tag name.

4A big-endian number representation describes numbers that are described using multiple bytes in significant
decreasing order. For example, in a big-endian number representation the first byte represents the biggest,
most significant part while the last byte represents the smallest, least significant part (which usually describes
1 to 255). Big-endianness is similar to the numeral style of writing decimal numbers.

2-2 Basic techniques of Named Data Networking 19

<Interest>

 <Name>

 <Component>

 tudelft.nl

 </Component>

 <Component>

 nas

 </Component>

 <Component>

 thesises

 </Component>

 </Name>

</Interest>

Type=2; Number=26

Type=2; Number=14

Type=2; Number=15

Type=5; Number=10; Value=tudelft.nl

Single zero-octet

Type=2; Number=15

Type=5; Number=3; Value=nas

Single zero-octet

Type=2; Number=15

Type=5; Number=8; Value=theses

Single zero-octet

Single zero-octet

Single zero-octet

01 d2

f2

fa

d5 74 75 64 65 6c 66 74 2e 6e 6c

00

fa

9d 6e 61 73

00

fa

b5 74 68 65 73 65 73

00

00

00

1 1 0 1 0 1 0 1

last byte indicator

 number 10

 type 5

Figure 2-5: A typical ccnb-encoded Interest message for ccnx:/tudelft.nl/nas/theses, the
box shows a typical one-byte encoding of the type and the number.

– 0x2: identifies the following number as a numerical representation of an XML tag
from the dictionary. Both 0x1 and 0x2 can be followed by any type of element
since XML nesting can occur.

– 0x3: idem as 0x1, though now it describes an attribute name which belongs to the
previous XML tag.

– 0x4: idem as 0x2, though now it selects a name from the dictionary describing an
attribute name. Both 0x3 and 0x4 must be followed by 0x6 containing the UTF-8
encoded string of data describing the value of the attribute.

– 0x5: identifies that the current number represents the length in bytes of the fol-
lowing data.

– 0x6: identifies that the current number represents the length of the following UTF-
8 encoded information.

– 0x0: can be used for, currently non-existent, application specific extensions not
coverable by the other types of information.

Basically, the last 3 bits of the big-endian number representation identify the usage of
the number, and the information following the number.

Since the original XML structure has already been checked, each element is simply closed
by placing a single zero-octet (0x00) avoiding the overhead of repeating each tag name when
closing it.

Based on the CCNx specific dictionary [15], an Interest will be encoded as shown in figure
2-5 [19][13].

2-2-7 Strategy

One of the new options proposed in Named Data Networking is the strategy layer [39]. The
philosophy behind the strategy layer is that a process should monitor all objects within a
router and change forwarding decisions based on the events it registers. The objects to be
monitored do not have to be limited to buffer usage, CPU usage and bandwidth usage (as

ccnx:/tudelft.nl/nas/theses

20 Preliminary Research

is usually the case with current-day QoS) but can also include average round trip times
and information hits since incoming ContentObjects can be easily mapped to previously sent
Interests without applying costly deep packet inspections.

NDN nodes should apply a strategy towards forwarding Interests for efficient retrieval of
ContentObjects. Together with an appropriate cache replacement policy and flow control
mechanism (as discussed in section 2-2-4), a proper strategy can help fine-tune or decide
upon QoS parameter settings to optimize the network.

Since Interests can be duplicated and forwarded over multiple outgoing links (in case multiple
longest prefix-matching FIB rules exist), a possible strategy can be to monitor which incoming
links receive relating ContentObjects the fastest and to vary the amount of Interests sent to
each link to the timeliness they answer with appropriate ContentObjects. If there is a link
with a long route to the information and another link with a short route to the information,
the strategy algorithm can decide based on the average response time (if any at all) to prefer
sending Interests to the shorter and thus faster link. The algorithm can continue sending a
smaller amount of Interests to the other link in order to verify existence of the path [39].

CCNx currently handles the following Strategy for all nodes. Incoming Interests are forwarded
to all faces for which a longest-prefix match occur in the Forwarding Interest Base. A node
will periodically retransmit Interests from active entries in the Pending Interest Table. It is
recommended to retransmit at random times on different faces or use another sort of heuristic
to schedule retransmission. Interests in the Pending Interest Base will timeout at a given time,
if they are not timely refreshed or reactived by a new or updated Interest from their requester.
This ensures that Interests for non-existent content are removed from the network over time
[19].

The topology discovery mechanisms used for IP are responsible for both finding possible paths
and choosing the one right (possibly most efficient) path from those paths. Forwarding an IP
packet boils down to forwarding it to the single best path chosen by the topology discovery
mechanism, no further intelligence is required. The strategy layer allows the forwarding
daemon to employ heuristics to try out different paths found by the information discovery
mechanisms and choose paths from this experience. Part of the responsibility of topology
discovery, deciding on the best out of possible paths, moves to the forwarding daemon and
can be further optimized by the experienced service. While propagated path costs can still
play a role for the initial distribution of outgoing Interests, the strategy layer may decide to
keep or change that distribution. We can conclude that the Strategy layer, combined with
the fact that a returning ContentObject can be mapped to its outstanding Interest, enables
the forwarding daemon to mean more to the network in forms of path selection and Quality
of Service than plain forwarding of unrelated IP packets currently do[38].

Theoretically it is even possible for nodes residing in ad-hoc (wireless) configuration-less
networks to gain connectivity using a specifically designed Strategy layer. If every node
broadcast Interests to all devices within reach and start preferring the nodes that answer
more often, while maintaining the occasional broadcast to see if other devices have found a
path or are connected otherwise, paths may form in a completely topology unaware manner.

2-3 Related Work 21

2-2-8 Authenticity and Security

One of the issues that the designers of CCNx are trying to solve up front is the ability to
review authenticity of gathered information. Where IP uses encryption of transport tunnels,
in NDN there is not transport tunnel from the requester to the generator. Therefore, we need
to change current-day public-key infrastructures to ensure that information a) is actually
authentic content generated by the intended author, b) is not seen by other people.

CCNx solves authenticity problems by obliging senders of ContentObject to sign those mes-
sages. In the current version signing is done by using self-generated self-signed keys, though
a system such as our current public-key infrastructure is proposed. Although signing each
ContentObject looks like a big overhead 5 we need to consider that requesting a public key
or certificate is in fact also a request for content [1]. Therefore, analysis needs to be done to
show whether the retrieval of public keys and certificates can be optimized to the point that
its overhead accounts for the safety in return.

A SHA-256 digest algorithm is currently used to generate the last name component for any
ContentObject (possibly a segment of a larger file or stream) to ensure that the complete
name addresses a unique piece of content even if different authors were to generate similar
data for the same name prefixes. A signature over either the complete ContentObject, or
the complete file built up out of multiple segments is calculated and added up front to the
first ContentObject. Since the signature is the first property of the ContentObject, even
intermediate forwarding nodes can decide to check a message’s signature when in doubt.
Each requesting application of information is obliged to verify every message’s authenticity,
while an intermediate forwarding node may optionally do so [20].

2-3 Related Work

This section discusses previously related work and research concerning the topics of this thesis.
It is split in 3 parts discussing Information Discovery, Dynamic End-Host Configuration and
Transition Mechanisms. Within the related work we hope to find partial solutions to the
problem of dynamically enabling end-users to fully participate (i.e. fetch and share data) in
a Named Data Network.

2-3-1 Information Discovery

The process of Information Discovery concerns the process of finding or learning the location
of information within a network. Parallel to topology discovery in IP, where generally IP
prefix addresses are propagated, the process of information discovery is about propagating
the availability of name prefixes across the network. In short, Information Discovery is the
process of exchanging information between nodes and creating forwarding rules accordingly
in the Forwarding Information Base.

5Every ContentObject whose authenticity is reviewed needs retrieval of the public key of its author and
the keys of the instances who signed those keys up to the point that a certificate signed by a dually trusted
certificate authority is found.

22 Preliminary Research

{subnetA, 0}

subnetA

{subnetA, 0}

{subnetA, 1}{subnetA, 1}

{subnetA, 2}

{subnetA, 2}

Figure 2-6: A graphic representation of the messages derived from a node with a single subnet
propagating its available subnet through the network.

It is suggested by Jacobson et al. [39] to enhance IP topology discovery mechanisms 6 to
support Named Data Networking. Currently 3 types of topology discovery mechanisms coexist
on the Internet:

a) The less popular though very straightforward distance vector protocols such as RIP [47]. In
a distance vector protocol every node broadcasts vectors containing available address prefixes
and an initial cost of 0. Neighbouring nodes take over the offered availability of addresses, add
a cost proportional to the link they received it from and broadcast it on all other interfaces.
Whenever a node receives vectors pointing to a certain prefix from multiple interfaces, the
one with the lowest cost will prevail. The lowest-cost vector for any prefix is considered the
lowest-cost route to that prefix and is added to the local forwarding table and propagated on
all other interfaces. The vectors being exchanged for every known prefix contain the summed
cost and the direction or interface (possibly an IP address) the vector is sent from. This
behaviour results in a distributed shortest path calculation.

Distance vector protocols are not very popular due to count-to-infinity problems, the fact that
routing loops can occur and the fact that the diameter of the network is bound to the highest
possible cost number. RIP, for example, does not support networks whose largest path is
longer than 16 links. Figure 2-6 shows a graphic representation of the messages derived from
a node with a single subnet propagating its available subnet through the network.

b) The more popular link-state routing algorithms are very often used by ISPs and companies
for intra-AS 7 topology discovery [51]. Instead of using a distributed shortest path calculation,
all routers exchange all link-states they have possible heard of defined by a connection cost
between two routers. Routers are identified by a unique IP-like address, possibly its real
IP-address, which is used to identify links between two routers.

Every router collects and broadcasts all updates it receives and uses this information to create

6Such as OSPF [53] and IS-IS [8] for intra-AS topology discovery and BGP [49] for intra-AS topology
discovery

7an Autonomous System refers to a finite network under administration of a single authority, intra-AS
topology discovery therefore refers to a topology discovery mechanism within such a network

2-3 Related Work 23

{subnetA, 1}

subnetA

{subnetA, 1}

{subnetA, 1}{subnetA, 1}

{subnetA, 1}

{subnetA, 1}

1

2

3 4

5

Broadcast link-state

messages

{1<->2}

{1<->5}

{2<->3}

{3<->4}

{4<->5}

Figure 2-7: A graphic representation of the messages derived from a node with a single subnet
propagating its available subnet through the network. The box named “Broadcast link-state
messages” indicates which messages are shared between all nodes in order to build a graph.

a graph representing the network. The graph can then be used to calculate shortest paths
to all routers and their subnets, after which forwarding rules are created. Whenever a link
changes, is added or removed, this knowledge is sent through the network, the graph is changed
accordingly and recalculation can occur. Since shortest-paths are strictly calculated using the
created graph, the mechanism does not suffer from the problems distance vector algorithms
have. Figure 2-7 shows an overview of all the link-state messages broadcast between all nodes,
and the propagation of a message indicating a certain node serves a specific subnet.

The link-state algorithm protocols OSPF [53] and IS-IS [8] are often used by ISPs for intra-AS
topology discovery. Due to the fact that a link-state algorithm gathers a complete view of
the associated network it is unsuitable for a network as large as the Internet. Next to the fact
that creating the graph is as complex as the number of links within the network, a shortest
path algorithm generally has a time- and work-complexity of O(N2), where N is the number
of nodes in the network.[51].

c) For topology discovery among Autonomous Systems (inter-AS) ISPs use the Border Gate-
way Protocol [49], which is a path-vector routing algorithm [51]. In a path-vector algorithm,
nodes broadcast messages containing their unique identifier and the prefixes they serve. Ev-
ery node receiving such messages adds its own identifier to the message, and broadcasts it on
all other available links. This results in vectors containing address prefixes and paths to the
address prefix described by the list of identifiers. When a node receives multiple paths to an
endpoint it can choose between paths based on

• path length,

• if applicable, path cost,

• trustworthiness of the administrative organizations maintaining the paths,

• particular agreements it has made with other nodes

24 Preliminary Research

{subnetA, 1}

subnetA

{subnetA, 1}

{subnetA, 5->1}{subnetA, 2->1}

{subnetA, 3->2->1}

{subnetA, 4->5->1}

1

2

3 4

5

Figure 2-8: A graphic representation of the messages derived from a node with a single subnet
propagating its available subnet through the network using a path-vector algorithm.

• and all other constraints which can be led back to the path.

After which, the chosen path is propagated to all other nodes with the identifier of the prop-
agating node attached to the path. Path-vector algorithms have the positive property that
they can give insight in the path messages will travel without the need to generate a complete
graph of the network. Routing loops are easily determined: whenever a node receives a mes-
sage already containing its own id (or 2 other equal identifiers) in the path-vector that specific
message needs to be discarded. Figure 2-8 shows the process of subnet propagation through
a simple network using a path-vector algorithm. The number of exchanged messages is equal
to a distance vector protocol, though has less of the distance vector specific disadvantages
and gives more insight into the path a chosen forwarding rule would travel.

BGP is the globally used path-vector protocol to interconnect ISPs and other ASes. Every
AS is considered to be a single node with its own unique Autonomous System Number (ASN)
administered by the Internet Assigned Numbers Authority (IANA). Since the ASNs map to
organizations, whenever a party does not trust an organization (for example for political rea-
sons) it can easily discard paths containing ASNs from that organization. Paths containing
ASes an organization might have special agreements with, can be handled accordingly. Since
the complete AS is considered to be a single node, ASes still need internal discovery mecha-
nisms such as OSPF, IS-IS or run an internal instance of BGP which does take all nodes into
account.

Since IS-IS is protocol-independent it can very easily be converted to other OSI layer 3 proto-
cols by introducing a new protocol identifier without altering the protocol itself. OSPF and
BGP, however, both are IPv4 specific routing protocols and therefore need more adaptations
to serve other types of networks. Luckily, both mechanisms have the possibility to add extra
options to the process of IP topology discovery. Although the primary focus of the processes
is to exchange information about reachable IP subnets, it can also be reused to also exchange
information about available NDN networks and their name prefixes [6][5].

An NDN implementation based on top of OSPF, called OSPFN, already exists. It consists

2-3 Related Work 25

of an extra daemon connecting to the OSPF daemon implemented by Quagga [41]. Through
the connection it can read received information about NDN enabled nodes and inject prefix
names hosted by the system into the IP discovery mechanism. The experiments in chapter 3
will show the results of OSPFN in practice. Unfortunately, neither IS-IS nor BGP currently
have a NDN enabled version.

2-3-2 Dynamic End-Host Configuration

In order to enable end-users to quickly use a network we need ways to dynamically configure
devices with appropriate gateways and settings. Parallel to the Dynamic Host Configuration
Protocol [28] in IP, a NDN enabled DHCP service called CCNx-DHCP [46] is distributed.

CCNx-DHCP relies on server daemons listening on multicast-faces, the NDN equivalence of an
IP multicast address, responding to the name ccnx:/local/dhcp. CCNx clients entering the
network multicast an Interest to the name ccnx:/local/dhcp/content indicating that they
need network settings. The server daemon responds by sending a ContentObject, satisfying
the Interest, containing a set of forwarding rules the client can use. The set of forwarding
rules can contain a gateway route prefix matching all possible names (ccnx:/).

The CCNx-DHCP daemons can be used to easily set up a multitude of CCNx clients. Un-
fortunately there is no user or device specific parametrization of settings possible, any con-
figurable settings apply to all clients. The protocol can only inform clients which forwarding
rules they should use to access content. It is impossible to configure clients with dynamically
generated names they can use to globally share content. There is no registration of devices
currently relying on information offered by the server either, while this might be preferred for
administrative purposes.

In chapter 3 we will test the functionality of CCNx-DHCP by a series of experiments and
further exploit the possibilities of dynamic end-user configuration in topology creation and
name generation.

2-3-3 Transition Mechanisms

Although we have considered ways to spread the knowledge of available information through
different domains of networks using information discovery, there is still the case that a user
requests data that is served in a piece of network that is unreachable via CCN or unknown
to the requester.

In such a case we have CCN islands that we want to interconnect. The interconnection of
disconnected CCN islands can happen through manual configuration of IP or UDP tunnels
between the islands. Though this is a good solution for a network where a limited amount of
islands coexist, when the usage of CCN grows manual configuration becomes infeasible.

What we need are automated ways to configure connectivity between CCN islands. Luckily
the same research question has already been solved in the scenario of IPv6 islands trying to
connect through IPv4 networks. In the next paragraphs we will discuss a few IPv6 transmis-
sion mechanisms and then discuss how these could be used in CCN.

One of the mechanisms IPv6 uses to establish a connection between end points is called 6in4.
In 6in4 a user or administrator manually registers two endpoints in the form of IPv6 prefixes

ccnx:/local/dhcp
ccnx:/local/dhcp/content
ccnx:/

26 Preliminary Research

or routes and 2 IPv4 addresses. IPv6 traffic between the hosts is directly encapsulated in
an IPv4 header and transmitted to the other IPv4 host. The receiving party then unpacks
the IPv4 packet, resulting in the IPv6 packet, and then treats that IPv6 packet as if it just
arrived on an interface [34]. The endpoint connected to the native IPv6 network propagates
an agreed IPv6 subnet for the other client and encapsulates and tunnels received packets for
it. This mechanism is similar to the earlier described manual configuration of IP and UDP
tunnels between CCN islands.

Since manual configuration is not feasible on large networks, a dynamic variation on 6in4 has
been engineered. 6to4 [9] functionally uses the same techniques to encapsulate and tunnel
IPv6 packets over an IPv4-only network and has additional mechanisms to dynamically set
up tunnels. Clients on a non-native IPv6 network get an IPv6 address block mapped to their
IPv4 address starting with 2002::/16, this means that an IPv6 address starting with 2002 can
be translated back to an IPv4 endpoint address and vice versa. If a non-native peer needs to
send out an IPv6 packet it can use a host address from the IPv4-mapped IPv6 address space
and encapsulate the message in a IPv4 packet directed to either

• the IPv4-calculated address if the packet is also addressed to an address from the
2002::1/16 range,

• or the anycast IPv4 address 192.88.99.1 for which any node that can unpack encapsu-
lated packets may answer.

Any nodes with the capability to encapsulate and unpack IPv6 packets from these ranges
propagate the respective IPv6 and IPv4 address(es) by means of topology discovery mecha-
nisms.

In practice this mechanism works quite well, unfortunately it is not completely fault free.
The IPv4 anycast IP address guarantees connecting to a IPv6 network, not a possible main
or all public IPv6 networks. Even when it is possible to sent IPv6 packets to an IPv6 network
using encapsulation, it is not guaranteed that packets can also travel back. The receiving
IPv6 network needs to have access to an encapsulating tunnel endpoint publishing the IP
range 2002::1/16, if this address space is not available in its network returning packets will
not find their way across the network.

In the case of NDN, a third possibility proposed by [39] to dynamically create tunnels is to
use DNS lookups to find tunnel end-points serving networks. For example, when a network
does not have forwarding rules to the NDN domain ccnx:/tudelft.net, a border gateway
node may request the tunnel end-point by requesting a DNS A or AAAA lookup to ccn.

tudelft.nl or a SRV or newly added type of request to tudelft.net. The border gateway
node encapsulates Interests destined to the NDN domain and sends it to the other network
over IP. The receiving node creates a reverse tunnel based on the source-address, forwards
the Interest according to its FIB and returns satisfying ContentObjects into the tunnel. We
will use the idea of DNS lookups to find entities serving content in chapter 4.

ccnx:/tudelft.net
ccn.tudelft.nl
ccn.tudelft.nl
tudelft.net

Chapter 3

Dynamic Configuration and Sharing of
Information

One of the problems that needs to be solved in NDN is the process of dynamic configuration
and information discovery (analogous to topology discovery in IP networking). End-users
need to be made aware of the available information and devices need to be configured ac-
cordingly. Although a few information discovery mechanisms already exist for CCNx [63][46],
dynamically sharing content for end-users without participating in difficult topology discov-
ery mechanisms is not yet possible in NDN. Instead, one needs to propagate an individually
registered name prefix using information discovery processes, such as OSPFN [63], compara-
ble to full-size topology discovery mechanisms in order to globally share content. Whilst the
power of current networks is that after devices are auto-configured, given the user has the
right credentials for closed networks, users can use the full potential of the network.

In the next section we will set up experiments to test different combinations of the avail-
able auto-configuration and information discovery mechanisms in NDN in order to find their
functional boundaries. Subsequently, we will give a summary of the problems found and
the implications of those problems. Based on the problems found and the properties of the
network we will propose a solution that both dynamically configures devices and enables
end-users to globally share information using dynamically generated names. Appendixes A,
B and refAppendixCombined contain log-files and status reports from the different daemons
used in the experiments. These files and reports are used to support the conclusions of the
experiments.

3-1 Experiments:

Information Discovery

In order to verify the functionality and the limits of the currently existing dynamic config-
uration and information discovery mechanisms CCNx-DHCP and OSPFN, which are both

28 Dynamic Configuration and Sharing of Information

������

������

������
�����	

�����

������

��������

������

Figure 3-1: Experiment network topology

discussed in sections 2-3-1 and 2-3-2, we have set up several experiments. The main goal of
the experiments is to find out to what extent the combination of these two mechanisms offers
dynamic configuration in order to enable end-users to dynamically fetch and share content.

First, we will explain the setup of the experiment environment to enable readers to verify the
results of these experiments. After that we will use two lab setups to test both CCNx-DHCP
and OSPFN independently. Finally, we will use a lab setup in which we use CCNx-DHCP
to dynamically connect to a network which is configured by OSPFN to simulate a situation
with the most similarities to current-day Internet connections.

3-1-1 Experiment Environment

We use 7 different virtual machines based on VMware connected using IP subnets. Every
subnet has its own IP range in the form of 10.12.X.0/24, where X is unique for the subnet
within the experiment environment. Each node also has a management interface with one
IP address taken from the range 172.19.5.0/24. This range is solely used for management
purposes and is excluded from usage within the experiments. The nodes are numbered 0 to
6 and are designated as follows:

• Node 0 is used occasionally when the experiment requires more than two nodes within
the same subnet.

• Node 1 fulfills the role of a SOHO (small office or home office) network that needs to
be connected via an ISP.

• Nodes 2 to 6 simulate the role of an Autonomous System of a single ISP and are
connected in a circle in order to quickly simulate multiple paths to a single destination.

Node 1 connects to node 2 as if it were connected to an ISP, nodes 1 to 6 will play the
role of an ISP administered Autonomous System which needs to be auto configured using
information discovery mechanisms. Figure 3-1 presents the network topology used during the
experiments, the interfaces of the networks are connected to each other by means of VLANs.

Not all experiments will use all nodes, though the basic set up remains unchanged throughout
most experiments. All nodes are running Ubuntu 10.04 LTS with CCNx version 0.4.2, OSPFN

3-1 Experiments: Information Discovery 29

commit 0251aab [63] and ccnx-dhcp commit 6df96d849f [46]. End-to-end connectivity and
information dispatch is established by the utility called ccnping [61] which is reconfigured to
add the hostname of the generator of the reply to the body of the ContentObject. The ccnping
client is altered slightly1 to print this information upon arrival at the requesting node. These
alterations enable us to verify where a reply came from in case multiple nodes are allowed to
generate content for a certain name prefix.

3-1-2 CCNx-DHCP Experiments

During the first set of experiments, we will verify the functionality of the CCNx-DHCP dae-
mon by dynamically configuring end-users. First we will verify basic functionality by using a
single server against multiple clients. Later we will enhance the experiment environment by in-
troducing several complexities into the network such as multiple gateway servers and multiple
links. Configuration of the client and servers is done by altering the files ccn_dhcp_server.conf
or ccn_dhcp_client.conf and either running the server daemon ccndhcpserver or the client
daemon ccndhcpnode.

Single server

In this experiment we will verify the basic functionality of the CCNx-DHCP daemon. For
this experiment we solely use nodes 0, 1 and 2 from figure 3-1 in a single subnet and start by
designating node 2 as a server and node 1 as a client. Node 2, the server, serves as a gateway
forwarding rule (ccnx:/) to any client request. Theoretically, the client or end-user, node
1, multicasts an Interest for the configuration information on the CCNx Multicast face and
receives the gateway forwarding rules accordingly. In the FIB of the client, the gateway route
is added to the lists of forwarding rules and the dynamic host configuration is successfully
terminated.

As can be seen in appendix A-1-1 and A-1-2 both node 1 and node 2 have a multicast NDN
face registered on the IP multicast adress 224.0.23.170 (which is reserved for the usage by
CCNx in general) with a forwarding entry for the name ccnx:/local/dhcp pointing into the
multicast face. Node 2 also has a gateway forwarding rule, which has been dynamically added
by the client, pointing towards the multicast face.

The client can now access information generated or forwardable by node 2. If node 2 was
part of an ISP and had access to a greater part of the Internet, one could argue that node 1
is now dynamically configured to access the Internet since node 2 can forward the Interests
of node 1. Unfortunately, there is no way for the end-user to dynamically share content since
there are no forwarding rules added leading from other nodes to the client.

In order to make this experiment a little bit more concrete, we have reconfigured the server
to create a gateway rule pointing to its IP unicast address and added a second client (node
0 from figure 3-1) to the subnet. Figure 3-2 shows a graphical representation of the two
client applications requesting configuration from the server application via the CCNx routing
daemons on the aforementioned nodes. As shown in Appendices A-1-3, A-1-4 and A-1-5 all
three nodes have created the required multicast face and set up appropriate routing. The

1By adding a simple printf() statement at the right line.

ccnx:/
ccnx:/local/dhcp

30 Dynamic Configuration and Sharing of Information

Client Client

Server

Figure 3-2: The messaging process in
which client CCNx-DHCP applications re-
quest dynamic configuration from a server.
The green lines show the path of the Inter-
est encapsulated request and ContentObject
encapsulated response messages across the
different CCNx forwarding daemons of the
nodes.

Server Server

Client

Figure 3-3: The messaging process in
which a client CCNx-DHCP request is for-
warded to two servers, though only the Con-
tentObject encapsulated response of one
server is forwarded by the client’s CCNx dae-
mon. The CCNx daemon considers the sec-
ond ContentObject to be superfluous, since
the first ContentObject has already satisfied
the initial Interest.

clients (node 0 and 1) both have generated a new face pointing to the unicast address of node
2 and set up a gateway forwarding rule accordingly.

From this small experiment we can conclude that CCNx-DHCP can indeed dynamically con-
figure multiple clients without the need of manual configuration. In the next experiments
we will try more complex situations to determine whether the daemon can handle a higher
complexity of networks.

Multiple servers

One advantage of NDN over IP networking is the possibility that a single prefix might be
accessible via multiple routes. In such a case the Interest packet for the prefix is duplicated and
sent out over all links that have a matching forwarding rule in the FIB [19]. The NDN transport
layer, which as discussed in section 2-2-7 is still under construction, will be responsible for
employing heuristics to potentially load-balance or prefer better performing faces over the
other. The NDN architecture supports multi-homing where access to a greater network can
be achieved via more than one ISP. This means that clients may have to deal with multiple
CCNx-DHCP servers whose configuration parameters may need to be combined in order to
gain advantage from multiple gateways to access content2.

In order to verify the behavior of CCNx-DHCP in such a multi-homed environment, we
have reconfigured node 1 from figure 3-1 to act as a server providing its own configuration

2Regular DHCP also supports the availability of multiple servers, though this is often implemented for
means of robustness by redundancy

3-1 Experiments: Information Discovery 31

parameters. Where the client sends out an Interest looking for configuration parameters, the
response is encapsulated within a ContentObject. Since an Interest is satisfied by a single
ContentObject matching all requirements [19] we expect the client to only receive and digest
the first response instead of receiving all possible configuration parameters and make a final
decision based on those parameters.

Unfortunately, the experiment reveals this expectation to be true. Where Appendices A-2-1
and A-2-2 show the usual faces and forwarding rules for a server, Appendices A-2-3 and A-2-4
show the client accepting either the settings3 from either node 1 or node 2. As discussed the
configuration parameters are encapsulated within a ContentObject, thus the client will receive
at most one set of configuration parameters since the CCNx daemon considers the original
Interest to be fulfilled and will not return subsequent content without explicit request. A
graphical representation of this is shown in figure 3-3 where the first response of a server is
accepted and forwarded, though the second response is discarded. This means that a client
cannot gain advantage of the availability of multiple gateways or paths and the decision of
the path taken will be based on probability instead of availability, preference or the strategy
layer.

Possible solutions to this problem, which will be deployed in our proposal, include either

• encapsulating the response in a new Interest packet which would result in all responses
to be multicast to all joined nodes4,

• or having the client re-express the Interest after each response and use the exclude
options as discussed in section 2-2-5 to disregard sources from where earlier results have
been received.

From this experiment we can conclude that although CCNx-DHCP can dynamically configure
multiple clients, it does not yet

• have a solution to conform to the NDN multipath philosophy,

• give the client the option to compare and decide on5 or merge configuration settings.

We will use the lessons learned from this experiment and incorporate them in our proposal.

Multiple interfaces and subnets

One of the goals of generic DHCP in IP is to dynamically configure clients on local networks
beyond the scope of the topology discovery process of the ISP. Even when the local network
consists of multiple links and subnets, which happens regularly in larger companies or in-
stitutions, the dynamic configuration process has to be solid to function properly. In this
experiment we have connected multiple links to different CCNx-DHCP clients, as well as to
servers in order to evaluate its behavior in more complicated networks.

3The distinction can be made by looking at the dynamically configured unicast gateway address, both
servers try to configure their own unicast IP address as gateway

4including other clients, as is also the case with regular DHCP
5as is usual for DHCP [28]

32 Dynamic Configuration and Sharing of Information

We already know that the client will accept the response of at most one server, but keep in
mind this was tested on a network with solely one subnet.

In this experiment we have configured one node as either client or server and 2 nodes, con-
nected via different subnets as opposite server or client, in order to create a scenario where
a client is connected to multiple links and a scenario where a server is connected to multiple
links. This setup facilitates to see how both server and client behave when multiple links to
clients and servers exist.

Unfortunately, the experiment reveals that both the clients and the servers are unable to
manage multiple interfaces. The CCNx multicast face is, both by client and server, registered
at one IP interface at most, which means not all possible servers can be found by the clients
and servers cannot serve more than one subnet at a time. Though acceptable for a client (they
usually only connect using a single interface), a situation where a DHCP server or DHCP
relay server needs to control multiple subnets is quite common.

After more thorough investigation into the source of CCNx-DHCP [46] and that of CCNx
itself two problems appear:

1. The CCNx-daemon tries to set up exactly 1 multicast face without specifications on
which IP interface this should occur. Therefore, there will be only 1 multicast face
connected to the IP interface selected by the kernel’s IP forwarding table. The IP
interface selected being either the default gateway, a specific forwarding rule for the
multicast IP range or none at all. This behaviour is shown in the logs of attachment
A-3-1 where at first the server can not create a multicast face at all due to missing
forwarding rules for the multicast IP range. After adding IP forwarding rules for the
multicast IP range pointing to a specific IP interface the multicast face can be created.

2. A bug in CCNx [2] prevents clients to create multiple multicast faces to the same
multicast address on different IP interfaces. In the implementation of our proposal we
have implemented a patch for CCNx [3] regarding this bug which has been submitted
to PARC6.

In short, we can state that the CCNx-DHCP currently has no support for nodes connected to
multiple interfaces.

Conclusion drawn from CCNx-DHCP experiments

The CCNx-DHCP server and client daemon show potential to dynamically configure many
clients at a time. However, more work needs to be done in the fields of link- and node-specific
configuration and for networks in which multiple servers and Internet access gateways exist.
Stateful registration of clients would enable to create node-specific configuration and would
be a step closer towards our proposal in which names are dynamically reserved for content
shared by clients.

6The patch works good for our NDN testbed. Michael Plass, a researcher and core developer at PARC,
confirmed that the patch was a proper one though they need to extend it with support for IPv6-backed networks
before it can be released.

3-1 Experiments: Information Discovery 33

3-1-3 OSPFN Experiments

OSPFN is an NDN addition to the OSPF daemon from the Quagga-routing suite [41]. As
discussed in section 2-3-1 OSPFN uses an API to connect to an OSPF daemon regulating
an already configured IP topology. Names are inserted into the network using so-called
Opaque Link-State Advertisement options which can basically add application specification
information to the information shared about links and routers [6]. OSPFN daemons can
subsequently read the propagated Opaque LSAs containing the name-to-router tuples.

In this section we will verify the functionality of OSPFN in several situations common to
both regular and NDN enabled networks.

OSPFN across a multipath NDN network

During this experiment we will verify the functionality of OSPFN in a network where content
for a certain prefix is generated by at most one node. Nodes 2 to 6 from figure 3-1 are placed
in a circle to play the role of an AS in which multiple paths to content generators coexist.
Every node is given a name in the form of ccnx:/SecondNode up till ccnx:/SixthNode in
order to have unique names within the experiment. After starting, the OSPF and OSPFN
daemons fill the IP routing table and CCNx FIB quickly with forwarding rules to the different
IP subnets and NDN names. As can be seen from the CCNx status reports - Appendices
B-1-1 up to B-1-5 - the forwarding rules always point in the direction of the shortest path
to their destination. For example, node 2 has a forward for the name ccnx:/FourthNode

to node 3, who then has a forward to node 4. Figure 3-4 shows an overview of all NDN
forwarding rules created by OSPFN. When testing end-to-end connectivity and information
dispatch with the ccnping application, network connectivity and therefore the information
discovery process work seamlessly.

This experiment shows that the OSPFN daemon enables network operators to automatically
set up NDN forwarding rules in an environment where multiple paths to a destination coexist.
Whenever a node propagates a certain namespace, which in this case was a location-dependent
name, other nodes set up the right routes to these destinations.

Information generation by multiple nodes

One of the main differences between NDN and host-to-host networking is that information is
requested independent of the location where it is generated. This enables scenarios where con-
tent can be generated by multiple nodes governed by the same organization. Since information
can be generated independent from its location, it is possible that authentic information can
be generated by multiple geographic locations, therefore it is important for an information
discovery process to support situations where a single prefix has forwarding rules pointing to
different geographical locations.

In order to simulate such an environment we have two nodes, 4 and 5, propagate that they
serve content for the same name (for convenience we took ccnx:/ourRedundantName) and
repeat the previous experiment. As shown in the CCNx status reports in Appendices B-2-1
up to B-2-5, nodes for which nodes 4 and 5 have shortest paths pointing in the same directions
(i.e. nodes 3 and 6) add a single forwarding rule pointing in the direction of both shortest

ccnx:/SecondNode
ccnx:/SixthNode
ccnx:/FourthNode
ccnx:/ourRedundantName

34 Dynamic Configuration and Sharing of Information

Node 2

Name Next Hop

ccnx:/ThirdNode Node 3

ccnx:/FourthNode Node 3

ccnx:/Fi�hNode Node 6

ccnx:/SixthNode Node 6

Node 3

Name Next Hop

ccnx:/SecondNode Node 2

ccnx:/FourthNode Node 4

ccnx:/Fi�hNode Node 4

ccnx:/SixthNode Node 2

Node 4

Name Next Hop

ccnx:/SecondNode Node 3

ccnx:/ThirdNode Node 3

ccnx:/Fi�hNode Node 5

ccnx:/SixthNode Node 5

Node 5

Name Next Hop

ccnx:/SecondNode Node 6

ccnx:/ThirdNode Node 4

ccnx:/FourthNode Node 4

ccnx:/SixthNode Node 6

Node 6

Name Next Hop

ccnx:/SecondNode Node 2

ccnx:/ThirdNode Node 2

ccnx:/FourthNode Node 5

ccnx:/Fi�hNode Node 5

Figure 3-4: An overview of all NDN forwarding rules created by OSPFN. The forwarding rules
of all nodes form, similar to forwarding rules in IP, a chain of forwarding rules from each source
to each destination.

paths. Nodes for which the direction of the shortest paths to nodes 4 and 5 differ (which is
the case for node 2) add two forwarding rules each pointing in the direction of both shortest
paths (either node 4 or node 5).

This experiment shows that OSPFN can support complex situations where data is generated
by multiple nodes within a multipath network using location independent names. In the
future, the strategy layer of CCNx could employ heuristics on top of the created forwarding
rules in order to further balance or choose between the available content generators.

3-1-4 Combined OSPFN and CCNx-DHCP

Analogous to IP networking, an end-user or Internet connection might not be part of the intra-
AS information discovery process. A scenario in which end-users are configured dynamically
using CCNx-DHCP by a node that is part of the intra-AS information discovery process
appears plausible and scalable. This experiment consists of connecting node 1 as an end-user
to the multi-path, multi-destination networks from the previous OSPFN experiments. The
end-user does not run any information discovery process, but instead runs a CCNx-DHCP
client. The node it is connected by to the rest of the AS, node 2, runs a CCNx-DHCP
server next to the intra-AS information discovery process offered by OSPFN. A gateway
route (ccnx:/) pointing towards the virtual Autonomous System of the ISP is offered to the
end-user in order to gain full connectivity to the network as shown in Appendix C-1. End-
to-end connectivity is, like in the previous experiments, verified using the altered ccnping

ccnx:/

3-2 Proposal: Recursive Name Aggregation 35

application.

The results in Appendix C-2 show that both answers varying from nodes 4 and 5 (who are
both responsible for generating content for the name ccnx:/ourRedundantName) are received
by the client configured via CCNx-DHCP. This experiment shows that it is already possible
to dynamically access information without any end-user network configuration or running
information discovery processes.

3-1-5 Experiment conclusions

In the conducted experiments both OSPFN and CCNx-DHCP work well in the sense that
they provide ways for dynamically connected end-users to learn about available information
and how to retrieve that information. When using OSPFN it is not only possible to construct
routes that enable a node to request content, but also to distribute the availability of content at
the node itself. Unfortunately, neither mechanism allows for end-users to dynamically share
content without registering their own first name component and configuring the available
routing protocols.

3-2 Proposal:
Recursive Name Aggregation

In this section, we will propose to combine a naming convention, based on the idea of ISP-
based name aggregation and a local configuration and information discovery process based
on DHCP resulting in a path-vector protocol.

Our philosophy is that a node within an AS responsible for connecting end-users, such as
home offices, is given a certain prefix for which routes are set up. This node is called the
Entrypoint. Entities connected to the ISP via that node are given subnames of that prefix.
Repeating this process recursively for devices who are again connected to the previous device
generates prefixes that become even longer when descending into the dynamically configured
network. When every node sets up forwarding rules for the subnames they have proposed to
their child nodes, the dynamically generated names become globally available since:

1. the name is globally unique - which is one of the demands stated by the CCNx name
conventions[12],

2. the presence of the primary prefix used by the first node to start the process is globally
known due to information discovery within the AS and to the Internet,

3. all intermediate nodes forward subnames to the appropriate descendant.

Forwarding tables outside of the local dynamic network and AS remain unchanged, which
helps keeping global forwarding tables scalable.

Let us consider a short example: An ISP receives Interests for ccnx:/isp.net, the availability
of the information by this ISP is made globally aware by means of information discovery. The
ISP forwards Interests to Bob’s home router for ccnx:/isp.net/bob. Bob’s router again

ccnx:/ourRedundantName
ccnx:/isp.net
ccnx:/isp.net/bob

36 Dynamic Configuration and Sharing of Information

isp.net

bob 1stComputer Camera

XboxTV

Figure 3-5: A graphical representation of a possible end-user home network. Bob’s ISP forwards
Interests for ccnx:/isp.net/bob to his home router named bob. The router generates subnames
of this name to forward Interests to connected devices, these devices can in return use their
given name to recursively generate the name ccnx:/isp.net/bob/1stComputer/Camera for
the camera. This name can be used to share photos from the camera to the Internet or view
them from other devices within the house.

generates and forwards Interests for the prefix ccnx:/isp.net/bob/1stComputer to Bob’s
computer. When Bob plugs in a device, such as a photo camera, into his computer, the
computer will again generate a prefix for that particular device (e.g., ccnx:/isp.net/bob/

1stComputer/camera). The camera can now share the photos it has stored using the name
ccnx:/isp.net/bob/1stComputer/camera/photos. The deeper one repeats this process into
the network the longer the names will become. Due to the aggregation of the names back
to the names of the intermediate and entry nodes the names will stay globally unique and
accessible.

Although we have introduced location dependency within the dynamically generated names
(as shown in figure 3-5 the names represent physical nodes and structure within a network) the
benefits of NDN over a host-to-host network are maintained. The mechanism still allows for
caching of content on subsequent nodes which results in the ability to serve more users than
one would with a regular IP connection. A mapping service, possibly an NDN equivalent of
DNS, could translate user-friendly names to one or more dynamically generated names. Both
can be requested efficiently using NDN in a distributed fashion. If the NDN node responsible
for processing the Interests to the registered user-friendly name is able to

• duplicate and translate the Interests to all possible location dependent names and

• set up flow control between the stream of Interests and returning ContentObjects to
and from the different locations,

we have regained all benefits of NDN as described in [39]. In Chapter 4 we will discuss a
proposal for such a mapping system to solve this problem.

ccnx:/isp.net/bob
ccnx:/isp.net/bob/1stComputer/Camera
ccnx:/isp.net/bob/1stComputer
ccnx:/isp.net/bob/1stComputer/camera
ccnx:/isp.net/bob/1stComputer/camera
ccnx:/isp.net/bob/1stComputer/camera/photos

3-3 Basic Dynamic Host Configuration and Name Generation Description 37

3-3 Basic Dynamic Host Configuration and Name Generation De-

scription

Using our publicly available prototype [3], we have verified the following protocol description.
Newly connected nodes first act as clients to gain access to the network. As shown in figure
3-6, the client queries the local subnets by multicasting a Discovery message containing its
host identifier and preferred hostname. All available servers respond with zero, one or more
Offer messages containing the following properties:

• The original entry-point, in order to identify unique entry-points and their possible
multitude of paths to that Entrypoint.

• The aggregated name of that entry-point the server is willing to forward to the client,
made up from its own generated name extended with the hostname preferred by the
client.

• The cost and path-vector of the route.

The responses are currently encapsulated within Interests in order to enable the client to
receive multiple responses and make a decision based on the cost and path which Offers,
possibly more than one, it wishes to use. This is done to prevent the behaviour experienced
with the CCNx-DHCP daemon in the experiment of section 3-1-2 where only the reply of
one server could be digested due to the fact that the CCNx daemon only returned the first
received response. Packing all messages in Interests results in the responses being multicast
to all clients and servers within the subnets, even when they have not requested that response.
This behaviour complies to the behaviour of DHCP with IP, where all acknowledgments are
sent to all servers as a means to say a client has chosen another server’s configuration [28].

Since it is not strictly necessary to multicast all Offers and Acknowledgments7 to all nodes, it
is also possible to encapsulate those in ContentObjects. Clients then need to recurse through
all possible ContentObjects by re-expressing their Interests and excluding previously received
results using the Exclude option (as discussed in section 3-1-2) to prevent receiving solely the
first returned Offer. Since we were able to verify behaviour with our implementation using the
encapsulation by Interests (the client applications receive all Interest encapsulated responses
without re-expressing Interest) and the fact that the recursion by repeated Interests poses a
greater effort of the network, we have chosen to keep responses Interest encapsulated. If nec-
essary or preferred, future releases can be altered to encapsulate responses in ContentObjects
and have clients recurse through them.

At label 1 in figure 3-6, the new peer has received all offers and calculates a shortest path
to each entry-point. For each shortest path the client asks the chosen server whether it is
allowed (see label 2) to use that route and name by sending a Request message8. A client can
request the complete set, a subset, or none of the configuration parameters offered by a peer.
The client can decide to choose rules based on the cost or path offered by the rule. When the

7Which both are server-to-client replies.
8This behaviour is actually very similar to DHCP [28], due to the long history of dynamic configuration by

DHCP we decided to reuse common parts of its protocol

38 Dynamic Configuration and Sharing of Information

�������
�����

��	
����
��	
����

�����
�����

�����	�
�����	�

�
�
�
�

���������������������	��������
�	�� !�

�"�#$�
���������%�����&�������

"''��'"�� ���	�����������%�����&�

�������������()

�������������	�*������
�	��%!�

�"�#$�
������������"''��'"�� ��"+	�(,�-

���������������������	�������

�	��%!���"�#$�
���������%�

"''��'"�� ���	�����������%��������()

�������������	�*������
�	�� !�

"''��'"�� ��"+	�

�"�#$�
���������������&�����%(,�-

�����	�����������������	�������

"''��'"�� ���	�����������%��������(,�-
�����	�����������������	�*����(,�-

�
�����������������	�������

"''��'"�� ���	�����������%��������(,�-

�
�����������������	�*����(,�-

�

%

&

����%

%

Figure 3-6: Example communication protocol

request is allowed, the server adds forwarding rules for the generated name towards the new
peer and acknowledges the usage of the rules (at 2).

As soon as the client receives the Acknowledgment message it also adds a forwarding rule
for the name of the entry-point pointing towards the chosen path. This results in a chain
of forwarding rules on all nodes towards the original entry-point which guarantees the new
client can reach all other nodes who have derived a name from this entry-point. An Interest
to another node will simply travel back into the direction of the entry-point until it reaches
a node that has a more precise9 forwarding rule pointing towards the desired node or one of
its aggregators.

From this moment on, the client also starts acting as a potential server to other interfaces
using its own name as aggregation base, though maintaining the original entry-point in order
to distinguish from other entry-points. The server can offer newly generated aggregated names
to new clients when requested to do so and set up the appropriate forwarding rules to ensure
global reachability.

This protocol enables end-users to start sharing content globally using the unique names
generated by the proposed configuration-less topology discovery and configuration protocol.

3-4 Formal Dynamic Host Configuration and Name Generation

Protocol Description

This section discusses the communication between nodes necessary to initialize and configure
new nodes. First, we will shortly summarize the communication between client and already
existing peers, after which we will discuss the different messages in more detail.

As discussed in section 3-3 and shown in figure 3-6, the initialization of a new node in the
network consists out of 4 types of messages:

9Remember that CCNx Interests are forwarded according to the longest prefix matching forwarding rule

3-4 Formal Dynamic Host Configuration and Name Generation Protocol Description 39

• The client sends out a Discovery message claiming its existence and requesting for
existing paths to entry-points to all nodes within reach.

• Peers that can already act as servers, return Offer messages describing the paths and
names they can serve against which cost.

• The client calculates which paths and names it will use from the offers and requests
those by sending Request messages to the appropriate servers.

• If the request is a subset from the original offer, the server will add the appropriate
forwarding rules and return with an Acknowledgment.

As soon as the client receives the acknowledgment it will add a forwarding rule for the entry-
point pointing towards the chosen server in order to enable it to access data from other nodes
using names from the same entry-point. The client is now initialized and can also start acting
as a server to newly added clients.

The Discovery message has the following two properties:

Discovery ::= clientID

clientHostName?

The clientID is a unique identifier or name within its subnet such as a public or private
IP address, Ethernet-MAC address or other type of unique hardware address, as long as it
is unique within its own broadcast reach. The clientID is used by the server to link offers,
requests and acknowledgments to the right client and keep an administration of active clients.
A client can optionally set the property clientHostName indicating a preferred hostname with
which the server can extend the recursive name, the server may but does not need to conform
to this request as the formed name may already be handed to another host.

The server replies with an Offer message stating the possible paths it can serve:

Offer ::= clientID

serverID

Rules*

Rules ::= Entrypoint

Cost

Path

AggregatedName?

The clientID and serverID serve to identify to which client-server conversation the message
belongs. The Offer contains zero or more Rules the server can offer. Each rule consists out
of 3 parts:

• A name describing the Entrypoint; usually an Internet-routeable name.

• The cost of the path to that Entrypoint.

40 Dynamic Configuration and Sharing of Information

• A path-vector of clientIDs to that Entrypoint; which is used to avoid routing loops and
it enables clients to take complexer considerations than solely cost-based decisions.

• The aggregated name the client can use, possibly extended with the previously de-
scribed preferred hostname; although the description of the protocol so far mentions
this property to be obligatory, section 3-5 further enhances the protocol due to which
it will become optional.

From all received Offers and their Rules the client daemon choses the most optimal rules.
The client requests servers to use (parts of) their offers by sending a Request message:

Request ::= clientID

serverID

Rules*

Since a client can decide to request all, none or a subset of the offered Rules, the Rules in
the Request message are a subset of the Offer from that Server. A client can request non-
coinciding subsets from multiple servers. If the request is valid (i.e. a subset from the original
proposal), the server acknowledges the Request by returning an identical Acknowledgment
message:

Acknowledgment ::= clientID

serverID

Rules*

The messages are encapsulated within Interests by using a base name of ccnx:/local/dhcngp

appended with:

1. a name component containing the clientID; this name component is redundant to the
clientID in the request, though appeared to be very useful during debugging

2. a name component containing the serverID; idem to the clientID though filled with the
clientID, the serverID can be filled with a value of _null10 to indicate a broadcast to
any server for the Discovery message

3. a name component with an encoded representation of the message.

Since the daemon is written in Java, the messages are encoded from memory into a byte-
string by using the Java Serializable interface [35]. The Serializable interface allows programs
to exchange objects across different Java virtual machines by offering functions to serialize
and deserialize an object to and from a byte-string containing the values of the object’s
properties. As long as Java is used as a basis for the Dynamic Host Configuration and Name
Generation Protocol, the Java Serializable interface is a fast and efficient way of encoding the
objects into transferable byte-strings. Whenever the need to support other languages arises

10The CCNx daemon was very reluctant to forward Interests in which a name component whose string
values equaled “null” or contained “broadcast”, possibly we were hitting on another bug or discovering some
undocumented future features.

ccnx:/local/dhcngp
_null

3-5 Enabling data access 41

we need to implement a programming language independent encoding scheme such as the
ccnb encoding discussed in section 2-2-6. Since the goal of this implementation is to verify
its functional behaviour we have chosen to encode the messages using the Java Serializable
interface. For a productional, possibly further enhanced, version of the protocol we propose
to use the ccnb encoding scheme since it is both programming language independent and
designed to efficiently encode objects into byte-strings.

3-5 Enabling data access

The protocol description above allows for clients to dynamically generate names and share
information using those names. However, the client still needs other ways of information dis-
covery or dynamic configuration to access content. Therefore, we have enhanced the protocol
to make information discovery without name generation possible. In order to do so the aggre-
gated name is made optional and when nullified indicates it is unusable for name aggregation
(which means the name cannot be used to share data) but can be used as a forwarding rule
towards the described name.

Clients choose appropriate forwarding rules based on route cost and path and propagate these
decisions to further attached nodes in the same way any other path-vector routing protocol
would. This enables end-users to dynamically access content without the need of applying
network topology discovery mechanisms themselves, or manually configuring network settings.
The unique point in this proposal is that it works configuration-less towards end-users.

3-6 Implementation

The implementation of the protocol is named CCNx-DHCNG which is short for CCNx Dy-
namic Host Configuration and Name Generation Protocol. The source of the prototype can be
downloaded from [3] in order to enable others to investigate the subject of configuration-free
topology discovery in NDN.

For general end-users the daemon is completely configuration-free. The daemon iterates
through all possible interfaces and multicasts Interests to find nodes it can connect to. For
nodes that are entry-points or default gateways, which are generally provided and preconfig-
ured or maintained by ISPs, there is a configuration file config.properties (see listing 3.1) that
needs to be configured.

The file its syntax conforms to the common Java’s Properties [62] file syntax. Each entry is
given a subsequent number starting from 0 in order to differentiate the properties that are
given to each entry. The entries contain 3 properties:

• The CCNx name of the entry-point. Which can either be the name of your ISP-
connection (ccnx:/isp.net/alice in the case of dynamic aggregation for information
sharing), or the name of a forwarding rule that needs to be propagated (ccnx:/ for a
default gateway rule).

• The initial cost of the connection which defaults to 0. Similar to a distance vector
protocol, at every link deeper into the network the cost of the rule increases. In the

ccnx:/isp.net/alice
ccnx:/

42 Dynamic Configuration and Sharing of Information

case of ISP-multihoming multiple gateways can propagate a gateway rule. The client
chooses the closest router for each entry-point based on the cost and path11. Being able
to set the initial cost of a gateway enables administrators to express preference for a
primary or secondary link.

• A boolean indicating whether name aggregation by clients is allowed, to prevent mis-
configuration this property defaults to be turned off.

The following example shows a configuration file in which the publicly accessible name ccnx:/

isp.net/alice may be used for name aggregation and a gateway route is proposed by the
border router between the local network and the ISP.

Listing 3.1: Example configuration file with arbitrarily chosen costs

1 entry . 0 = ccnx : / isp . net/alice

2 entry . 0 . cost = 10
3 entry . 0 . aggregate = true

4

5 entry . 1 = ccnx : /
6 entry . 1 . cost = 20
7 entry . 1 . aggregate = false

Appendix D-1 shows an additional screen capture of a DHCNGP client starting up and
negotiating network configuration parameters with an already configured peer.

3-7 Future work

One of the architectural options that have to be considered while further enhancing the
daemons, is the fact that links may break or be added dynamically. Therefore, a mechanism
has to be included that monitors link states and detects changes in links. At the detection of
a new or broken link, a change in entry-point and at timely schedules, recomputation of the
shortest paths have to occur. Computation of new shortest paths can lead to a different set
of dynamically generated names which also need to recurse into the connected clients.

When using a mapping service to assign a registered user-based name to your dynamically
generated location-dependent names, this mapping service needs to be notified of the update.
We will examine the problems of mapping in the following chapter.

3-8 Conclusion

Where previously designed information discovery mechanisms already allow end-users to ac-
cess content, this chapter proposes a mechanism which enables end-users to dynamically
access and share content on a NDN. Using the restrictions invoked by naming conventions

11The possibility to choose both and employ a strategy as discussed in section 2-2-7 over the multipath
routes might need further research.

ccnx:/isp.net/alice
ccnx:/isp.net/alice

3-8 Conclusion 43

and the lessons learned from earlier developed topology discovery, information discovery and
dynamic configuration mechanisms, we have been able to specify a mechanism and protocol
for dynamic configuration of end-users. With our publicly available prototype [3] end-users
are able to access the network and are given a dynamically generated globally unique name
under which they can share their content. The dynamic configuration and information dis-
covery occurs within the boundaries of local networks possibly connected by multiple ISPs,
without compromising the information discovery within the ASes of those ISPs. The key
point is that there is no need for end-user manual network configuration; all local configura-
tion can be dynamically generated from the settings of the ISP-maintained or preconfigured
entry-nodes giving access to a greater network.

44 Dynamic Configuration and Sharing of Information

Chapter 4

Mapping

One of the topics opened by the idea of location-dependent CCNx names is the fine line
between names describing information and names describing locations. Where in chapter
3 mapping is only applied by users who wish to use a registered name but only have a
dynamically generated location-based name, the principle of mapping can be applied by all
users. Until now, CCNx has left the decision between routing on information describing
names or using a possible mapping system to first translate information describing names to
location aggregated names open for research [64].

One of the major advantages of using location-dependent names mapped to content names
is the decreased size of the routing complexity since each AS can reserve a limited number
of first name components and use a geographical distribution of the subnames of these name
prefixes to define regions and connections within that region. As an example, an NDN
connection to the Delft University of Technology supplied by SURFnet could be named /

surf/netherlands/zh/tudelft. Again, the name has no meaning to the network as long
as it aggregates back to the first name component describing the ISP who can forward the
subnames to the right nodes. Since the complexity of the routing problem is at most upper
bounded to the size of the routing table, the routing problem in a location-dependent naming
scheme is upper bounded by, or proportional to the number of ISPs or ASes connected to the
network.

The number of ASes on June 4th 2012 equaled 41.313 announcing 414.483 IPv4 prefixes [26],
while halfway 2010 already 196.3 million domain names (excluding NDN routeable subdomain
names and subdirectories) [60] are reported. Given the fact that the global routing table size
is already growing into problematic sizes [57], an increase with a factor of 500 if we were to
base routing directly on registered domain names1,2 bounds complexity problems to occur.
A mechanism mapping domain-like names to a location to a path3 may solve the complexity
problem by splitting it in multiple, less complex, steps.

1Ignoring subdomains and subnames, which make the level of complexity even higher.
2Consider that prefix-matching on human readable encoded strings by itself is already more complex than

a static 4-byte or 16-byte value as in IPv4 and IPv6.
3As proposed by the Location Identifier Separation Protocol [30] for IP.

/surf/netherlands/zh/tudelft
/surf/netherlands/zh/tudelft

46 Mapping

In the following paragraphs we will discuss related work concerning mapping of identities,
either in the form of content or entities, to locations.

4-1 Related Work

4-1-1 DNS

One of the most frequently used mapping systems in today’s Internet is the Domain Name
System [52]. It is used to translate domain names, which regularly refer to an organization
or person one wants to connect to or needs a service from, to locations (mostly IP addresses4

or other host names). DNS can, among others, be used to request the following for a given
domain, host name or authority:

• Locations of web servers (both the IPv4 A-record, the IPv6 AAAA-record as well as
canonical names denoted by CNAME records).

• Locations of mail servers (MX records).

• Organization preferred spam settings (described in the SPF records).

• As well provide generic information using the less specific SRV- and TXT-records5.

The service works in a distributed fashion which means that any DNS server responsible
for a top-level domain, domain or subdomain can refer to delegates when a client requests
information about a hostname subzoning the (top-level/sub) domain it is responsible for.
This has resulted in a system in which (1) 13 root-servers have root lists referring to (2)
servers responsible for sets of top-level domains (.com, .net, .org, etc.) which again refer the
requester to a (3) DNS server responsible for the domain. This server can either give the
answer itself, or refer to a delegate which is responsible for the described subdomain. The
last process repeats itself until a server answers with the requested information. Figure 4-1
shows an example of such a recursive lookup for the domain-name www.nas.ewi.tudelft.

nl. When a server gets a request it is not authoritative for, it will refer the client to the
first set of root servers, in order to have it recurse from there. This system in which DNS
hierarchically serves requests or refers to servers serving more fine grained domain names leads
to a distributed system in which many servers have little specific knowledge though always
can refer to a server containing more fine grained information. Since the upper root- and
top-level domain servers have such a great set of child nodes, as shown in the tree in figure
4-2, a regular domain lookup can be done within a nearly constant work and time complexity.

The authenticity of a received mapping is important due to the fact that a mapping containing
false information may lead to security breaches. For example, when the mapping system’s
security is infringed, the entity gaining access over the mapping system may redirect traffic

4Which, to be more precise, refer to interfaces of hosts, not to locations or hosts themselves.
5Being the most generic types of records, we might use these to support our proposal in section 4-2.

SRV-records are commonly used by, among others, Microsoft Windows Active Directory to distribute the
knowledge of available Active Directory servers. TXT-records are, among others, used by Google to identify
website administrators and have them configure website specific search engine preferences. Due to the generic
ground of the records, they can be used for application specific services without fundamentally changing DNS.

www.nas.ewi.tudelft.nl
www.nas.ewi.tudelft.nl

4-1 Related Work 47

Recursive client

<root-server>

m.root-servers.net

<TLD -server>

ns1.dns.nl

<domain-server>

ns1.tudelft.nl

Request www.nas.ewi.tudelft.nl

<list of TLD-servers>

<list of responsible domain-servers>

<IP 130.161.40.166>

Request

Request

Figure 4-1: A graphical representation of a
recursive DNS lookup for the name www.

nas.ewi.tudelft.nl. First, the client
queries any root DNS server, in this case M.

ROOT-SERVERS.NET, for the domain which
returns a list of DNS server responsible for
the Top Level Domain (TLD) .nl. Next,
the client queries one of the TLD servers
for the name. Again, the TLD servers will
not have the answer but will recurse to the
name server responsible for tudelft.nl.
Finally, the client queries the domain server
(although it could have been possible that
it had to recurse even further) and receives
a response stating an IP address mapped to
the name.

Root servers

.com .net .eu .nl

.tudelft.nl.named-data.net .domain.nl.yourname.nl

Figure 4-2: A graphical representation of a
part of the DNS tree build by the referrals
from root-servers to the TLD-servers of the
different top-level domain extension to the
domain servers of the domains themselves.

by returning incorrect mappings and setting up man-in-the-middle attacks. Added security
can be delivered by using DNSsec [4], which adds a set of security extensions to DNS enabling
clients to check origin authenticity of received mappings.

4-1-2 Location Identifier Separation Protocol

A recent protocol in which many research has been put concerning the separation between
identifiers regarding to persons or institutions opposed to identifiers strictly referring to inter-
faces is called the Location Identifier Separation Protocol (LISP) [30]. The protocol offers a
mechanism to identify sites (as opposed to organizations in NDN) independent from the ISPs
or IP addresses by which they are connected. When a user in a network tries to connect to
a site it will address the site by its Endpoint Identifier (EID) and rely on the Ingress Tunnel
Router (ITR, basically the border router between the local LISP domain and an IP only
domain) of its own site to:

1. Lookup the EID of the receiving site to its IPv4 or IPv6 Routing Locator (RLOC, the
IP address of a border router).

2. Encapsulate the packet in an IPv4 or IPv6 packet destined for the RLOC of the receivers
Egress Tunnel Router (EGR, which is the receiver its border router), fill the source
address with its own RLOC and transmit the packet.

www.nas.ewi.tudelft.nl
www.nas.ewi.tudelft.nl
M.ROOT-SERVERS.NET
M.ROOT-SERVERS.NET
.nl
tudelft.nl

48 Mapping

Figure 4-3: Graphical representation of a packet sent from site EIDx to site EIDy. EIDx’s ITR
with IP address RLOCx encapsulates the packet in a regular IP packet and sends it to one of the
ETRs of site EIDy by setting the destination to one of the IP address RLOCy. Image has been
taken from [45].

The ETR at the receiving site unpacks the encapsulated packet and forwards it to the appro-
priate site or node identified by the EID. The outer header of the encapsulated packet contains
the RLOCs of the encapsulating ITR and decapsulating ETR, while the inner header contains
the source address (possibly a LISP EID) of the requesting client and the EID of the receiv-
ing site [50]. Figure 4-3 shows an overview of how packets sent from within the LISP address
space can travel to another LISP network by tunneling over regular IP using encapsulating
and unpacking ITRs and ETRs.

Supplementary to the previously described data plane, LISP relies on a mapping system
called the control plane to translate the EIDs to RLOCs, which primarily is the same type
of process we will need to map user-defined names to location-based names. Due to the open
implementation of mapping for LISP, many different mapping techniques have been researched
and engineered. We will discuss the mapping techniques that currently are the most active
under research and available as implementations [40][32][48][33]. In the following paragraphs
we will discuss these implementations.

LISP+ALT

The LISP+ALT technology is the currently most employed implementation of mapping in
LISP [32]. It consists of an overlay network of GRE tunnels connecting peer LISP networks
together. Over the overlay network runs an eBGP instance propagating EID prefixes. The
overlay (alternative) network consists strictly out of EID addressing and is therefore fully LISP
routeable. The alternative network is then used to send Map-Requests to EIDs to request their
EID-to-RLOC mappings and the requests are routed accordingly over the network. When
an ETR receives such a Map-Request it responds with a Map-Reply containing the mapping
and further communication between ITR and ETR can occur over the regular IP network.
Advantages of the overlay networks are that one uses existing, compatible technologies such
as GRE tunnels and BGP omitting expensive router software upgrades to reach the goal of
global mapping. Disadvantages, however, are that the alternative overlay network probably
is not using shortest paths for the spanning tree and tunnels may intersect frequently leading
to inefficiencies. The overlay network also poses a great effort in configuration by multiple
parties when an institution wants to join the overlay network, since it takes at least two
parties to set up a tunnel.

4-1 Related Work 49

LISP-TREE

LISP-TREE [40] is a mapping technique based on DNS. The proposers have chosen to trust
the decade-long experience that industry has built up maintaining the DNS system. Each
LISP-TREE Server (LTS), a DNS server equipped for serving EID to RLOC mappings, is
responsible for a set of prefixes of EID addresses. LTSes can either serve the mapping for
an EID themselves, recurse to known servers responsible for subsets or refer to these servers
in the same way DNS usually offers mappings for domains and subdomains. An LTS only
answers EIDs for whom no other known servers have a longer matching prefix. Therefore, it is
possible that a client might need to recurse multiple LTSes before receiving an authoritative
answer.

Recently, another approach similar to LISP-TREE called LISP-DDT [33] has been proposed.
It replaces the LISP-TREE DNS system with application specific protocol modifications to
address problems with caching, encoding the IP-like EID prefixes and negative answers. This
indicates that the DNS implementation of LISP-TREE contained strong building principles,
though needs LISP specific adjustments.

LISP-DHT

The last mapping technique to discuss is LISP-DHT [48]. LISP-DHT uses a distributed hash
table approach to find mappings of EIDs to RLOCs by implementing Chord [58]. Chord is a
protocol developed for peer-to-peer applications to quickly connect peers in a ring (ordered
by their hashed node identifier) and map keys onto nodes in order to find them quickly. Since
each node n, where n is its hashed identifier, has a so-called finger table which for each i-th
entry contains the address of successor n + 2i−1 and the (possibly hashed) keys of mappings
are stored by increasing order on the nodes in a ring, a key can always be found within a time
complexity of O(logN). A node is responsible for delivering possible key-to-value mappings
for keys whose hash is equal or smaller than its own, but greater than its predecessor’s hashed
identifier. Therefore, a node responsible for a key is called the key’s successor, the node’s
hashed identifier is larger or equal to the mapping’s identifier.

A node responsible for a key is found by traversing the chain of finger tables, each time select-
ing the entry whose identifier is closest preceding the queried identifier. Once the predecessor
of the responsible node is found6, the query is passed to its first successor (the responsible
node) who replies directly to the original requester. Figure 4-4 shows an example of such a
lookup.

For a node to join and access the ring network, it will need to know at least one node to find
the place of its hashed identifier in the ring and negotiate with its successor and predecessor to
change their pointers and update the finger tables of all other nodes. Authenticity of returned
mappings will need to be checked by ways of signing the mappings by a central authority,
though this issue still needs to be addressed.

A great advantage of LISP-DHT is that one can find a key-to-value association in a completely
decentralized environment within a very limited time complexity (O(logN)). A disadvantage

6Which is trivially identified since its identifier is smaller than the queried identifier and its first successor’s
identifier is larger than the queried identifier

50 Mapping

N2

N7

N14

N28N39

N45

N49

N52

N57
Reply <K53, data>

Query

<K53>

N7+1 N14

N7+2 N14

N7+4 N14

N7+8 N22

N7+16 N28

N7+32 N39

FingerTable N7

N39+1 N45

N39+2 N45

N39+4 N45

N39+8 N49

N39+16 N57

N39+32 N7

Finger Table N39

N22

Figure 4-4: A graphical representation of a typical Chord lookup where the node with hashed
identifier 7 is querying a lookup for data which is mapped under the hashed identifier 53. The
image shows the highest predecessors chosen by nodes 7 and 39 and their respective finger tables.
Node 52 is the highest predecessor for the key which makes its successor 57 responsible to reply
with a set of data for the request.

of LISP-DHT is that it suggests to make the node identifiers equal to the highest address
from the prefix they serve; when a node serves multiple non-adjacent prefixes it needs to run
multiple independent instances of Chord nodes which can be placed non-adjacently in the
ring. Another disadvantage posed by LISP-DHT is the fact that there is no central control
over who enters the Chord-ring and claims to have any mappings for a specific EID. This poses
security risks which means that mappings need to be checked using for example a centralized
signing authority. The work and time complexity of O(logN) is very low for a network where
no central mapping authority is available, though the complexity may still be too large to
support a network as large as the Internet.

Conclusion

Other LISP mapping techniques are disregarded in this thesis due to the fact that they either

• require all ITRs to download a complete mapping table when any change occurs [44],

• do not seem to be under serious active research (anymore) [7]

• or have many similarities to the mapping systems described above making it unnecessary
to discuss them as well.

This section has discussed the Location Identifier Separation Protocol and 3 major types
of mappings available for the protocol. All mapping types have their own advantages and
disadvantages regarding scalability, configuration and security though we think it is safe to say
the lowest work and time complexity is offered by DNS which can deliver mapping information
within a nearly constant time. In the next section we will propose a mixture of the above
mapping schemes to be applied in Named Data Networking.

4-2 Proposal 51

CCNx Daemon: Interest Renaming Process Initiator

Prefix Req. Faces

/Alice.eu/Photos 0

/tudel!.nl/nas/pcAlice/Alice.eu/Photos 1

Prefix Face list

/Alice.eu 1

/tudel!.nl 2

Face 0

App

Face 1

Face 2

Named Face

Web

Pending Interest Table

Forwarding Information Base

Rename

Original Interest

Renamed Interest

Figure 4-5: Interest Renaming Mechanism Initiator

4-2 Proposal

We propose to store name-to-location mappings for NDN, almost equal to the LISP-TREE
solution, in a DNS solution. A big difference between our solution and the solution for LISP
is that NDN users can benefit from the NDN itself to request mappings from DNS.

If DNS is enhanced by adding a new type of record, or reusing one of the generalized service
(SRV) or text (TXT) descriptions, which could point domains towards NDN names in the
same way we now point domains to IP addresses, we could use the DNS system to map the
first-name components of unknown routes to a location-based aggregated name. Since there is
no difference between a registered and location base name, registered names may be mapped
to other registered names and this process might need to occur multiple times before a name
for which its global route is known is revealed.

CCNx currently supports routes by pointing names towards nearby hosts in the form of TCP
and UDP quadruples. Even though the philosophy is that NDN should be routeable over
any type of network, including Ethernet, Bluetooth, IP, etc., currently only TCP and UDP
encapsulated connections are implemented. Support for NDN encapsulated requests needs to
be added in order for CCNx to work with mapped names.

When an incoming Interest has no prefix-matching forwarding rule in the Forwarding In-
formation Base, CCNx can do a DNS lookup [12] [39] for the first-name component to find
information to create a new forwarding rule for that domain. This behaviour conforms to the
behaviour described in section 4-3. Our proposal contains the possibility for DNS lookups
to also be able to return a location-based NDN name where the generator of the informa-
tion hosts the original information. For example, if Alice were to share her photos using
her personal domain name ccnx:/Alice.eu/Photos, a node without forwarding rules prefix-
matching that name will do a DNS lookup for Alice.eu once an Interest comes in from a
face (face 0 in figure 4-5) and may receive information claiming that the domain is hosted at
ccnx:/tudelft.nl/nas/pcAlice. The CCNx daemon now needs to create a named face (face

ccnx:/Alice.eu/Photos
Alice.eu
ccnx:/tudelft.nl/nas/pcAlice

52 Mapping

CCNx Daemon: Interest Renaming Process Receiver

Prefix Req. Faces

/Alice.eu/Photos 1

/tudel!.nl/nas/pcAlice/Alice.eu/Photos 2

Prefix Face list

/Alice.eu 0

/tudel!.nl 1

Face 0

App

Face 1

Face 2

Named Face

Web

Pending Interest Table

Forwarding Information Base

Rename

Original Interest

Incoming Interest

Figure 4-6: Interest Renaming Mechanism Receiver

1 in figure 4-5) configured to rename Interests to the location-based name ccnx:/tudelft.

nl/nas/pcAlice and add a forwarding rule for ccnx:/Alice.eu pointing towards that face.

As shown in figure 4-5, the CCNx daemon forwards the Interest from face 0 to the named face
1, denoting the forwarded Interest originated from face 0 in the Pending Interest Table (PIT).
The named face will translate the incoming Interest by prepending the location-based name
(resulting in the name ccnx:/tudelft.nl/nas/pcAlice/Alice.eu/Photos) and present the
renamed Interest to the CCNx daemon. The CCNx daemon forwards the renamed Interest
from face 1 to face 2 (according to the longest prefix-match of the name in the FIB) and
denotes the forwarded Interest originated from named-face 1. The translated name contains
the location-based name plus the user-registered name the original user requested, since the
original domain of the user-registered name is still included it is possible for a location-based
name to host multiple user-registered names.

When a ContentObject satisfying the translated name returns, it prefix matches the PIT
entry originating from named-face 1 and the ContentObject is offered to the named face.
The named face 1 now translates the name of the ContentObject back to the original name
requested. It does this by removing its own name from the front of the name and then returns
the altered ContentObject to the CCNx daemon. The name of the altered ContentObject
prefix matches the PIT entry originating from face 0 and the CCNx daemon will forward the
ContentObject accordingly.

Figure 4-6 shows the process at the receiving node translating the Interest back to the original
user-space name and forwards it to the application connected. Although the examples show
the applications being directly connected to the node on which the renaming occurs, since a
face can be any type of interface, application or network it is also possible to connect networks
in which the user-registered name is routeable.

Note that if a client has a gateway forwarding rule (ccnx:/), all Interests not prefix-matching
longer named forwarding rules will be forwarded to the face denoted in that rule. The possible
DNS lookup will then be done by a router of the ISP which has no default route, though who

ccnx:/tudelft.nl/nas/pcAlice
ccnx:/tudelft.nl/nas/pcAlice
ccnx:/Alice.eu
ccnx:/tudelft.nl/nas/pcAlice/Alice.eu/Photos
ccnx:/

4-2 Proposal 53

will know routes to other ASes by means of topology information discovery. The behaviour
that a user-registered name is routeable within a limited domain until it reaches a border
to the geographically named NDN network, shares many similar properties with the EID-
routeable networks in LISP.

4-2-1 Signing and Encapsulation

One of the key aspects CCNx uses to guarantee the authenticity of received information
is that each ContentObject has to be cryptographically signed in order to be accepted by a
requesting party [20]. The disadvantage of the signing mechanism used in conjunction with the
name-rewriting rules from above is the fact that the signature is calculated over the complete
ContentObject including its name. Therefore rewriting the name renders the signature to
become invalid. The party renaming the ContentObject could resign the new ContentObject,
though since the packet is not signed by the original generator the receiver will not be able
to review its authenticity.

The previous paragraph suggested a mechanism by merely renaming the user-based names
to location-based names and vice versa, though this renders the signing mechanism to be
superfluous since we change a piece of the information that is signed. The generator knows
that the Interest it receives is translated from a user name to a location-based name, since the
Interest it receives contains its location-based name. The previous paragraph suggested that
the generator maintained a similar mechanism to translate the location-based name back to
the user name and forwards this Interest to the face generating the content.

In order to ensure the authenticity of the signing process the returned ContentObject, still
containing the original name, should not be resigned after renaming to the location-based
name. On-the-wire, the returned ContentObject needs to have the location-based name in
order to be successfully prefix matched to the according PIT entries. Once the ContentObject
is renamed back to its original user-based name, the signature renders to be valid.

Although the user application receiving the ContentObject can now successfully verify the au-
thenticity of the ContentObject, intermediate nodes are also allowed (however not obliged) to
check authenticity of ContentObjects. Verifying the authenticity of a ContentObject while it
is renamed results in the ContentObject to be dropped. Instead of merely renaming the Con-
tentObject we suggest encapsulating the original signed ContentObject, without altering it in
any way, in a new ContentObject which is given the renamed name and signed accordingly.
When the encapsulated ContentObject reaches the node which renamed the original Interest,
this node will unpack the original ContentObject from the encapsulating ContentObject and
forward it accordingly.

Figures 4-7 and 4-8 show a graphical overview of the mechanisms needed when encapsula-
tion, renaming and decapsulating of ContentObjects occurs. Figure 4-9 shows an example of
encapsulating a user named ContentObject into a geographically named ContentObject.

4-2-2 Strategy

As discussed in section 2-2-7, the NDN strategy layer can employ heuristics to exploit multi-
path routes based on previously received service. Since it is possible that content is accessible

54 Mapping

CCNx Daemon: ContentObject Encapsulation Process

Prefix Req. Faces

/Alice.eu/Photos 1

/tudel!.nl/nas/pcAlice/Alice.eu/Photos 2

Face 0

App

Face 1

Face 2

Named Face

Web

Pending Interest Table

Encapsulate and Rename

Original ContentObject

Enapsulated ContentObject

Figure 4-7: Content Object Encapsulation Mechanism

by multiple geographically assigned names (due to multihoming or geographic distribution of
servers) we need ways to also employ these heuristics when a single user-registered name is
accessible via multiple geographically assigned names.

In order to employ strategy heuristics over multiple paths, the CCNx daemon needs multiple
forwarding entries in its FIB for which it can measure and steer the flow of Interests and
ContentObjects. Therefore, when multiple mappings exist for a user-registered name, the
strategy layer can be easily enabled by adding a named face for each geographic mapping
between the user-registered name and its geographic name. For example, if Alice was to share
her photos not only via her computer at the Delft University of Technology but also uses her
home Internet connection, the user registered name ccnx:/Alice.eu not only maps to ccnx:/

tudelft.nl/nas/pcAlice but also to ccnx:/isp.net/alice. For both geographically based
names a named face will be created resulting in two forwarding entries, one to each named
face, in the FIB between which the strategy layer heuristics can take place.

4-3 DNS over NDN

When DNS servers are not authoritative for a requested zone they can either redirect the
querying client to another set of DNS servers, or recursively resolve the next servers themselves
and return the answer. Since this can lead to an overload of identical requests, many ISPs
deploy caching DNS servers to which all customers query their requests. The caching server
resolves all requests recursively, returns it to the client and caches the answer for a given
period of time in order to decrease the load on the network by many simultaneous DNS
requests.

In addition to using DNS as a mapping service, we propose to request the DNS queries
themselves over NDN giving an even larger efficiency over caching servers. A DNS request is
also a request for specific content and is, therefore, suitable to be queried over an NDN.

ccnx:/Alice.eu
ccnx:/tudelft.nl/nas/pcAlice
ccnx:/tudelft.nl/nas/pcAlice
ccnx:/isp.net/alice

4-3 DNS over NDN 55

CCNx Daemon: ContentObject Decapsulation Process

Prefix Req. Faces

/Alice.eu/Photos 0

/tudel!.nl/nas/pcAlice/Alice.eu/Photos 1

Face 0

App

Face 1

Face 2

Named Face

Web

Pending Interest Table

Decapsulate

Original ContentObject

Enapsulated ContentObject

Figure 4-8: Content Object Decapsulation Mechanism

Signature

Name: /tudelft.nl/nas/pcAlice/Alice.eu/Photos/AnyPhoto

SignedInfo

Signature

Name: /Alice.eu/Photos/AnyPhoto

SignedInfo

Picture contentContent: Content:

Figure 4-9: Encapsulation of a ContentObject with a user registered name into a geographically
named ContentObject.

In order to make DNS suitable for NDN, we need to define an application specific name-scheme
which describes the request adding more fine-grained information in each name component.
The name for such an Interest should exist out of:

• the authority hosting the DNS server,

• the name one wishes to query,

• (optionally) the type of record one is interested in (e.g. A-, AAAA-, MX- or NS-records).

If we were to be interested in a (currently non-existent) NDN-record for the domain
AliceAndBob.eu, in order to map this user-space name to a geographic name, we can now
query the root-servers, TLD-servers and authoritative server via NDN using the following
names:

• An Interest for the name ccnx:/k.root-servers.org/dns/tudelft.nl/NDN - in which
k.root-servers.org can be any of the 13 root server - returning a list of TLD-servers
for the .eu TLD.

• An Interest for the name ccnx:/j.tld-server.org/dns/tudelft.nl/NDN - in which
j.tld-server.org can be any server from the returned TLD-servers - returning a list
of authoritative servers for the domain tudelft.nl.

AliceAndBob.eu
ccnx:/k.root-servers.org/dns/tudelft.nl/NDN
k.root-servers.org
.eu
ccnx:/j.tld-server.org/dns/tudelft.nl/NDN
j.tld-server.org
tudelft.nl

56 Mapping

• An Interest for the name ccnx:/authoritative-server.net/dns/tudelft.nl/NDN

possibly returning an authoritative answer or returning another set of servers to further
recurse on.

One of the advantages of the system mentioned above, is the fact that answers to common DNS
queries will be cached in the NDN network leading to a better availability of the information
and a decreased load on the authoritative DNS servers. A negative side effect (which also
exists in regular DNS over IP) is the fact that when the returned server to recurse to is a
non-geographical name the DNS client also needs to make DNS requests for that name. This
problem can be solved by adding so-called glue records [42] stating both the registered and
the geographical name of the referred DNS servers in a single reply. In the case the name of
the next DNS server is a subname of the requested name, the glue record is obligatory for
the DNS system to function.

4-4 Conclusion

In this chapter we have presented and discussed two popular mechanisms to dynamically map
(optionally user-readable) application names or identifiers to locations. We have proposed
a mechanism to map user- or application-assigned names to geographically based names
using the popular DNS system in a LISP-style manner. This mechanism offers the users
of an NDN to use user-registered domain names, while aggregated location-based names
keep global routing tables small and scalable. An extra advantage is offered when DNS
requests themselves are requested and answered over an NDN, since this also is a one-to-
many distribution of mainly identical information.

ccnx:/authoritative-server.net/dns/tudelft.nl/NDN

Chapter 5

Dynamic Tunnel Discovery

The currently running transition phase from IPv4 to IPv6 teaches us that not all routers (be
it globally, within an AS, or even within a corporate network) can be upgraded at once.

This results in networks in which islands (groups of upgraded nodes) will form that are able
to communicate via NDN internally, though not with other groups since the groups are not
connected by series of nodes that all speak NDN. It is also possible that two nodes close to
each other (in terms of links) are only connected by NDN enabled links via a large detour
forming peninsulas which penalize the efficiency.

A possible solution to connect these islands or shortcut those peninsulas is to cross NDN
incompatible nodes by setting up IP-tunnels. This is done by encapsulating NDN messages
in IP, TCP or UDP and sending them over the NDN incompatible links to a node on another
island which can unpack the carrying datagram and process the unpacked NDN message.

IPv6 knows several mechanisms to tunnel across IPv4 networks in order to obtain IPv6
connectivity between IPv6-islands during a transitioning phase. Unfortunately, all of these
mechanisms require either

• manual configuration,

• static mapping between an IPv4 and IPv6 address-space,

• or a main, assumed that there is one, IPv6 network to connect to.

Since manual configuration is not plausible for a fast global implementation of NDN, NDN
does not know address spaces mappable to IP and no main NDN network has formed yet,
these mechanisms do not fit a fast global implementation of NDN.

Given a not fully NDN enabled network in which NDN-enabled nodes exist, we need to find
NDN enabled paths between all NDN-enabled pairs of nodes, omitting NDN incompatible nodes
and dynamically crossing NDN incompatible paths using IP tunnels efficiently chosen by a
routing algorithm.

58 Dynamic Tunnel Discovery

������

������

������

� ������ 	

�����

Figure 5-1: Sample partially NDN enabled network

In order to compute all NDN enabled paths, additions to routing discovery mechanisms are
required to propagate knowledge about the ability of nodes to perform NDN. In turn, this
knowledge has to be used in shortest path calculations to determine and create the most
efficient paths automatically.

In figure 5-1, for example, in which nodes A, B, C, E and G are NDN enabled and nodes
D and F are not, we need ways to dynamically connect the NDN island of node G using a
tunnel. Though in the given example it is evident that the network needs an IP-tunnel from
node C to G to cross node F, in larger networks decisions have to be made about multiple
paths consisting out of multiple possible tunnels. In many IPv6 transitioning mechanisms the
cost of a tunnel is considered to be 1 link when used in routing discovery mechanisms1. We
propose to value a tunnel proportional to the cost of the underlying links to make the routing
discovery mechanism running on top calculate forwarding rules more accurate. Next, local
network policies may prefer the peninsula formed from node A via nodes B and C to node E
to be shortcut by an IP-tunnel from A to E crossing node D. Our proposal offers calculation
mechanisms in which shortcut tunnels can be preferred over native detours.

5-1 Related Work

5-1-1 OSPF

In IP topology discovery using OSPF, all available links between nodes are shared across all
participating routers within an area. The OSPF daemons running on these routers create a
graph from all shared links and use a shortest paths algorithm such as Dijkstra’s algorithm or
the Bellman-Ford algorithm to calculate shortest paths between nodes. The resulting shortest
path routing table is then used to translate the IP subnets attached to those nodes into a
OSPF network routing table which, in turn, is used to construct the IP forwarding rules.

1The tunnel is often connected as a virtual interface which makes it look like a directly connected IP/Eth-
ernet interface.

5-2 Proposal 59

5-1-2 OSPFN

In OSPFN, an addition to OSPF, opaque link state options (LSAs) are added to the OSPF IP
topology discovery process when nodes are designated to generate information for a certain
NDN name. The shared CCN name is denoted in the LSA and shared across all OSPF routers
within the area. The same OSPF router and network routing tables are used to create the
NDN forwarding rules.

OSPFN reads the nodes which share data for certain names and uses the shortest path
calculation already done to create the shortest path routing table to forward NDN Interests
in the right direction. This mechanism works very efficient, the same shortest path calculation
used for IP is also used for NDN. Unfortunately, the algorithm fails when not all subsequent
nodes are NDN enabled, i.e. some nodes can only forward IP packets.

When altering the OSPFN experiments from section 3-1-3 by disabling the CCNx and OSPFN
daemon of a randomly chosen node (thereby making it IP-only) the NDN routing information
will travel through the disabled node to the other nodes by means of the OSPF Opaque LSAs,
though the other nodes will not recalculate forwarding rules to omit the disabled node. As
a matter of fact, the NDN compatible nodes assume that all nodes within the OSPF group
are NDN compatible. They will forward NDN packets to NDN incompatible nodes lying on
the original shortest path. NDN incompatible nodes will discard incoming Interests as they
cannot process them, which results in broken paths.

When one considers that the default CCNx application already has the possibility to let NDN
packets cross multiple (NDN disabled) IP routers using IP encapsulated tunnels and it is
possible to propagate NDN compatibility using OSPF’s opaque LSAs, it becomes clear that
this combination can be used optimally when a routing algorithm is designed that dynamically
finds the most cost-effective mixture of NDN forwarding rules using both direct links and
IP-tunnels across NDN incompatible paths.

5-2 Proposal

The basics of our proposal rely on the following properties. Due to the high presence of IP
routers, we assume all NDN enabled nodes can reach all other NDN enabled nodes via either
direct links, IPv4 or IPv6. We assume all NDN nodes can encapsulate and unpack NDN
packets in IP packets, resulting in IP-encapsulated tunnels2. This means that each shortest
path in IP from any NDN enabled nodes A to B is a possible IP encapsulated NDN tunnel.

Considering a graph in which nodes exist which are possibly NDN enabled and are connected
by links, a link is NDN enabled when both nodes connected by the link are NDN enabled. A
virtual link, derived from an IP encapsulated tunnel, is any shortest path between two NDN
enabled nodes that is no direct NDN enabled link itself. Since the two NDN enabled nodes
can reach each other using IP over the shortest path, an IP encapsulated tunnel can be set
up between the two. With this information we can create a second graph containing all NDN
enabled nodes, NDN enabled links and virtual links (in the form of link represented tunnels)
giving each virtual link a cost proportional to the cost of the underlying IP path. In short,

2Which is actually the case in the NDN implementation CCNx

60 Dynamic Tunnel Discovery

from the graph in figure 5-2a representing a regular adjacency matrix, figure 5-2b shows all
possible shortest paths between nodes. Each of these shortest paths is a possible NDN tunnel
between two NDN enabled nodes.

First, the red coloured tunnels from figure 5-2b need to be removed, since we can only set
up tunnels between NDN enabled nodes. Next, we need to filter out the orange coloured
tunnels whose path is crossing one or more other NDN enabled nodes. Such a tunnel would
omit the NDN ability of the node being crossed, it would merely forward the IP packets
encapsulating the NDN packet to the next hop instead of processing the encapsulated Interest
or ContentObject. When a tunnel A to C crosses an NDN enabled node B there are also
two tunnels A to B and B to C which share the same underlying links, though whose path
does benefit from the NDN options of node B. Our algorithm should decide to use previously
described tunnels A to B and B to C over a direct tunnel from A to C, since the probability
Pr[cacheHit] of a cache hit on a node decreases the average path cost c(A → C) = c(A →
B) + c(B → C) to c(A→ B) + (1− Pr[cacheHit]) ∗ c(B → C).

The decision of a path using tunnels from A to B and B to C over a path using a tunnel from
A to C can be guaranteed by either

• removing virtual links passing other NDN enabled nodes from the second graph; which
we will do in our initial algorithm proposal,

• or by preferring short links or penalizing long links by varying the cost of a tunnel
not only by the underlying link costs but also its length; which we will also use in our
extended proposal.

Each shortest path from the resulting graph in figure 5-2c is a valid NDN link or tunnel. Since
it only contains NDN enabled nodes3 and their NDN (virtual) links, the graph represents a
virtual NDN adjacency matrix. Using an all-pairs shortest path algorithm4, based on the
cumulative cost of underlying links, we compute the shortest NDN paths and their respective
forwarding rules between all NDN enabled nodes containing both direct links and virtual
links to connect all NDN enabled nodes. The result of this calculation is shown in figure 5-2d,
figure 5-3 shows the adjacency and forwarding matrices used for the computation of the NDN
forwarding rules in respect to the graphs of figure 5-2.

Roughly speaking the proposed algorithm consists out of 3 steps:

1. Generating an IP forwarding matrix from an adjacency matrix using an all-pairs shortest
path calculation.

2. Filter out unsuitable links and calculate tunnel costs proportional to the underlying link
costs.

3. Use another all-pairs shortest path calculation to compute NDN forwarding rules.

This proposal solves the need to dynamically connect NDN islands and shortcut large NDN
detours by using IP encapsulated tunnels. In the initial algorithm, the NDN paths always

3Even though the NDN incompatible nodes still exist to support the IP encapsulated tunnels.
4Such as a Floyd-Warshall algorithm.

5-2 Proposal 61

AA B C G

D E F

(a) A graph representing a partially NDN en-
abled network its nodes and adjacencies. En-
circled nodes are considered NDN compatible,
while others are not.

(b) A graph representing the IP forwarding ma-
trix generated from figure 5-2a. Red coloured
paths need to be removed due to NDN incom-
patible end nodes, orange coloured paths need
to be removed since they cross NDN compatible
nodes disabling the crossed nodes to process the
NDN packets.

1 1

2
1

2

(c) The resulting NDN adjacency graph show-
ing direct links, virtual links and their respective
cost. Grey links will not be considered as they
are NDN incompatible, they are, however, used
to forward IP encapsulated NDN packets.

(d) A graph representing the resulting NDN
paths and respective forwarding rules.

Figure 5-2: The graph representations of the original set of adjacencies of the network, its IP
paths, its NDN adjacencies and its NDN paths.

A B C D E F G

A 0 1 1

B 1 0 1

C 1 0 1 1 1

D 1 1 0 1

E 1 1 0

F 1 0 1

G 1 0

Fr
o

m

To

(e) The adjacency matrix of figure 5-2a

A B C D E F G

A 0 -> A 1 -> B 2 -> B 1 -> D 2 -> D 3 -> B 4 -> B

B 1 -> A 0 -> B 1 -> C 2 -> A 2 -> C 2 -> C 3 -> C

C 2 -> B 1 -> B 0 -> C 1 -> D 1 -> E 1 -> F 2 -> F

D 1 -> A 2 -> C 1 -> C 0 -> D 1 -> E 2 -> C 3 -> C

E 2 -> D 2 -> C 1 -> C 1 -> D 0 -> E 2 -> C 3 -> C

F 3 -> C 2 -> C 1 -> C 2 -> C 2 -> C 0 -> F 1 -> G

G 4 -> F 3 -> F 2 -> f 3 -> F 3 -> F 1 -> F 0 -> G

Fr
o

m

To

(f) The forwarding matrix of figure 5-2a as rep-
resented in figure 5-2b. Each entry exists out of
a shortest path cumulative cost and the next-hop
node.

A B C D E F G

A 0 1 2

B 1 0 1

C 1 0 1 2

D

E 2 1 0

F

G 2 0

Fr
o

m

To

(g) The NDN adjacency matrix of figure 5-2c

A B C D E F G

A 0 -> A 1 -> B 2 -> B 2 -> E 4 -> B

B 1 -> A 0 -> B 1 -> C 2 -> C 3 -> G

C 2 -> B 1 -> B 0 -> C 1 -> E 2 -> G

D

E 2 -> A 2 -> C 1 -> C 0 -> E 3 -> C

F

G 4 -> C 3 -> C 2 -> C 3 -> C 0 -> G

Fr
o

m

To

(h) The NDN forwarding matrix of figure 5-2c
as represented in figure 5-2d. Each entry ex-
ists out of a shortest path cumulative cost and
the next-hop NDN node. In case the next-hop
NDN node is not directly adjacent in figure 5-2a
the forwarding rule implies setting up a tunnel.
These forwarding rules are underlined for extra
emphasis.

Figure 5-3: The adjacency and forwarding matrices in respect to figures 5-2a to 5-2d

62 Dynamic Tunnel Discovery

follow the exact shortest path of the underlying links. However, in section 5-4 we will see that
a carefully computed NDN detour may eventually be a more efficient route due to an average
decreased path invoked by regular cache hits. In section 5-4 we will discover the possibilities
of preferring many short tunnels and direct links resulting in NDN rich paths above long
tunnels and NDN scarce paths.

5-3 Algorithm

The philosophy behind this algorithm is that we find suitable NDN connections (including
tunnels and direct links) from all possible connections between NDN nodes. We do this by
computing the three earlier described steps of:

1. Generating an IP forwarding matrix from the graph’s adjacency matrix.

2. Removing unsuitable links and setting the cost of tunnels proportional to their under-
lying links generating an NDN adjacency matrix.

3. Generating an NDN forwarding matrix from the previously generated NDN adjacency
matrix.

The three steps are clearly shown in algorithm 5.1 where (after the initialization):

1. A Floyd-Warshall [31] shortest path computation occurs to generate the IP forwarding
matrix.

2. Unsuitable tunnels are removed and the cost of the remaining tunnels is determined.

3. Concluded by another Floyd-Warshall shortest path computation.

The final NDN forwarding matrix is contained in the pair of matrices path′ and next′ describ-
ing the cumulative cost and next-hops of all paths i to j.

The procedure functions most efficiently when the function crossesNoNDN() filters out virtual
links that cross and bypass other NDN enabled nodes5, as discussed in the previous section
two tunnels travelling from nodes A to B and from B to C are preferred over a tunnel from A
to C sharing the same underlying links but bypassing node B’s NDN capabilities. The second
run of the Floyd-Warshall all-pairs shortest path algorithm will compute the path from nodes
A to C touching NDN enabled node B, guaranteeing optimal use of subsequent NDN nodes.

The function named costFunction returns the cumulative cost of all underlying links, this
results in an algorithm in which each NDN path exactly follows the shortest path a packet
would have traveled in IP. Even though the underlying path may be the shortest in the sense
of total link cost, in NDN we need to consider the caching abilities of the network which
decrease the actual usage of links on a path when a cache hit occurs.

In the next section we discover ways to vary the cost of tunnels in order to prefer NDN rich
(cumulatively summed more expensive) paths over NDN scarce paths.

5The added complexity of O(n) does not add to the total algorithm complexity of O(n3) since it occurs in
a piece of the algorithm where the complexity equals O(n2).

5-3 Algorithm 63

Algorithm 5.1 Dynamic Tunnel Discovery

procedure TunnelDiscovery(G) ⊲ G(N, L)
for i, j ← 1, N do ⊲ Initialization

path[i][j] ← eij

next[i][j]← j

end for

for k, i, j ← 1, N do ⊲ Floyd-Warshall
if path[i][k] + path[k][j] < path[i][j] then

path[i][j] ← path[i][k] + path[k][j]
next[i][j] ← k

end if

end for

for i, j ← 1, N do

if ndnEnabled(i) & ndnEnabled(j) & crossesNoNDN(i, j) then ⊲ Virtual link
selection

path′[i][j] ← costFunction(i, j) ⊲ Summed cost of links on path
next′[i][j] ← j

end if

end for

for k, i, j ← 1, N do ⊲ Floyd-Warshall
if path′[i][k] + path′[k][j] < path′[i][j] then

path′[i][j] ← path′[i][k] + path′[k][j]
next′[i][j] ← k

end if

end for

return path′, next′

end procedure

64 Dynamic Tunnel Discovery

5-4 Varying cost functions

Where the previous section computes NDN paths whose underlying links exactly match the
shortest paths of the underlying network, in this section we will research possibilities to
purposefully deviate from the exact shortest path. At each NDN node traversed by an Interest,
the probability Pr[cacheHit] on a cache hit can render the rest of the path to the generator
untouched because the traversed node has a copy of the requested ContentObject in its
ContentStore. On average, the effectively traversed links in NDN rich paths will be lower
than in equally long NDN scarce paths (i.e. paths with significantly more tunnels) due to
these cache hits. Eventually, detours via NDN rich areas may be effectively cheaper in terms
of average link traversal compared to one or more tunnels at most the same number of hops.

The lines from algorithm 5.1 reading Virtual link selection and Summed cost of links on path
define the criteria for virtual link selection and cost function for virtual links. Since the cost
function currently returns the cumulative cost of underlying links, the NDN path from any
node A to any node B will always follow the same underlying links it would have done in
IP, we merely replace subsequent sets of NDN incompatible links with NDN tunnels crossing
those links. Although an exact shortest path calculation seems justified at first sight, we
need to consider the caching possibilities of NDN and the decreased effective path usage by
cache hits. For example, in figure 5-1 our initial algorithm will chose a tunnel from node A
to node E with a total cost of 2 as the path from node A to E, above a NDN native path
over nodes B and C with a total cost of 3 hops. A cache hit on node B, however, would
decrease the effectively travelled path to 1 link instead of 3. Given a cache hit probability
of Pr[cacheHit] the effective path cost from node A to node E over nodes B and C becomes
1+(1−Pr[cacheHit])∗(1+(1−Pr[cacheHit]))) = 1+(1−Pr[cacheHit])+(1−Pr[cacheHit])2 ,
solving for Pr[cacheHit] teaches us that an average cache hit probability of Pr[cacheHit] ≥
0.39 results in an average path cost lower than 2, making the path over nodes B and C
effectively cheaper than the initial tunnel over node D. A possible solution to prefer small
detours over NDN richer areas is to value long tunnels to be more expensive in contrast to
NDN native paths when they grow longer.

The combination of the link selection and cost function should select and define the virtual
links in such a way that both

• the cost of a virtual link is proportional to the underlying path between the end nodes

• and virtual links bypassing NDN enabled nodes are either disregarded as a whole, or
have a more expensive cost than the alternative smaller tunnels to have them disregarded
by the second run of the Floyd-Warshall algorithm.

We will discuss and compare several combinations in which the cost function is altered to add
extra functionality while maintaining the demands as stated above. In section 5-5 we will
show simulation results showing which of the cost functions behave the most efficient.

5-4-1 Flat cost function

The first, most straightforward (and above all already implemented) function to calculate the
cost of virtual links is to keep them identical to the cost of the underlying carrying links.

5-4 Varying cost functions 65

������

������ ������

� 	

������

�����

Figure 5-4: An example network of 7 nodes. The striped lines represent NDN incompatible links,
while the solid lines represent NDN compatible links.

In such a case, the cost function would simply return the cost of the underlying path by
returning the value of path[i][j], while the virtual link selection is responsible for filtering out
tunnels bypassing NDN enabled nodes.

The advantages of this function are that it guarantees an exact shortest path between nodes
with a time and work complexity of O(1) for the cost function and a complexity of O(n)
for the criteria function resulting that the algorithm complexity of O(n3) defined by the
Floyd-Warshall algorithm is not exceeded.

The disadvantages of this function are that

1. the decision between an equally expensive native and tunneled path can still not be
made, even when it seems obvious that an equally expensive native path may be pre-
ferred.

2. small detours allowing to touch NDN enabled nodes more frequently are not selected,
since these paths will not be chosen by the second all-pairs shortest path.

I.e., when a part of a topology looks familiar to the topology shown in figure 5-4, the path to
traverse from A to G will always be a tunnel from A to G over E and F, instead of traversing
the native NDN path A → B → C → D since the lower cumulative link costs of the prior
prevails. Even if there would exist a link in figure 5-4 connecting node C to G, the decision
from A to G via a virtual link over E and F, or the NDN path A→ B → C → G is untrivial
since they both have the same path cost.

The two disadvantages show that in finding the optimal NDN path in a topology that is only
partially NDN enabled is not trivial, and may need a less straight-forward mechanism to at
least prefer equally expensive NDN links above tunnels.

5-4-2 Subsequent penalizing cost functions

A disadvantage of a true shortest path calculation is the fact that possible short detours
leading to a higher density of available NDN enabled nodes, as shown in figure 5-4, are
excluded since they are obviously not part of the shortest path. Given a certain probability
that an intermediate NDN node already has the requested information in cache, it may be

66 Dynamic Tunnel Discovery

more efficient for node A to always send Interests for content to the higher NDN populated
detour A→ B → C → D → G, even if it is not a shortest path.

In order to prefer short tunnels and direct links over longer tunnels we need a way to favor
short and direct links with slightly smaller costs and penalize long links with a slightly higher
cost.

A plausible solution is to introduce a penalty factor f >= 1 with which we multiply each
second and subsequent link of a tunnel. The path from A → B → C → D → G in figure
5-4 would still cost 4 hops, while the virtual link from A to G would be valued to 1 + 2f .
Since the virtual link (even with equal or smaller underlying link costs) can now be valued
to be more costly than the short detour based on the value of f , we enable short detours via
NDN richer areas in the graph. The higher the penalty factor f is configured, the more likely
detours via NDN rich environments will occur.

A positive side effect is that virtual links crossing other NDN enabled nodes (e.g. A to C, B
to D and C to G) are automatically discarded by the 2nd all-pairs shortest path calculation
due to fact that a tunnel cost of eab + f ∗ ebc will always be more costly than the two direct
links from A to B (eab) and from B to C (ebc; totaling eab + ebc). Therefore, this cost function
does not require, though does allow, the virtual link selection criteria to filter out tunnels
crossing other NDN nodes. Although tunnels will be valued to be more expensive than their
original underlying link costs, while direct links share their cost with the underlying link,
the cost related to the tunnel is still proportional (upper bounded by the multiplication of
penalty factor f) to the underlying network.

An interesting property of the resulting algorithm is that links will be used at most once
within a path. Given a topology as shown in figure 5-5, 3 possible tunnels going from A to
B, from B to C and from A to C exist. When a user connected by node A wants information
served by node C, it should instinctively always use the tunnel from A to C and not first pass
node B before it goes to C since one might not want Interests to travel the link from node
B to node D twice. This cost function guarantees a link shall never be traversed twice since
the cost of the path A → C (ead + f ∗ ecd) will always be smaller than the summed cost of
A→ B and B → C(ead + f ∗ ebd + ebd + f ∗ ecd = ead + f ∗ ecd + ebd + f ∗ ebd).

5-4-3 Faster growing penalty cost function

One scenario that is excluded by the previous cost functions is the scenario (as shown in
figure 5-6) in which a long tunnel from A to G has to be set up when a user connected to A
wants information served by node G, while node H is closer by and potentially already has a
copy of the information or could store it for later requests by other users. Since the previous
algorithms either take the shortest path on the underlying links, or only allow detours when
links are only used once, node H will not be used as a tunnel endpoint since it is not on the
shortest path from A to G and in the case of a detour link h needs to be traveled twice (once
when traveling from A to H, and once when traveling from H to G).

We can say that the previous cost functions disallow the use of a potentially interesting node
while travelling from A to G. In order to allow the use of nearby NDN nodes, which actually
mean temporarily exiting the shortest path to potentially return later via the same route, we
need to adapt our cost function to make tunnels even more expensive while they grow longer.

5-4 Varying cost functions 67

������

�

������

������

Figure 5-5: An example of a partially NDN enabled network. The center node D is NDN
incompatible, forcing all other nodes to set up tunnels to each other.

������ � � � � 	 �����

������

Figure 5-6: An example of a partially NDN enabled network. The image supports scenarios in
which one might want to diverge from the shortest path, possibly using a link twice, in order to
see if a cache entry is available.

At a cache hit ratio of Pr[cacheHit] ≥ 0.5 the path from nodes A to G over H becomes less
expensive than the tunnel across the shortest path from nodes A to G.

In order to support these types of detours, we need one or more cost-functions whose penalty
increases at each subsequent link in order to break the property from the subsequent penalty
function (subsection 5-4-1) that each link within a path can only be traveled once. However,
we also want the virtual cost of tunnels to be proportional to their underlying links to prevent
inefficiently large detours. Initially, we can linearly increase the penalty at each traversed
link with the penalty factor its delta f ′ = f − 1, being the penalizing addition of the original
penalty factor. Using this function, the detour from nodes A to G via H is already taken with
a penalty factor of f ≥ 11

3
.

Another interesting, even faster increasing, function one can implement is to penalize each
link using an increasing power of the penalty factor f . Using this function, the detour via
node H is already taken with a penalty factor of f & 1.27. To see the result of the difference
in growth by the previous functions, we will enhance the linearly growing function with
functions whose penalization grow at different rates. For a slower growth we will use a
logarithmic multiplication of the penalty factor’s delta f ′ and the link cost C, faster growth
can be obtained by using a facultative or quadratic multiplication instead.

Table 5-1 describes all functions we will simulate in section 5-5. Using these simulations we
will describe the effects of computing and using nearly shortest paths in combination with a
caching network.

68 Dynamic Tunnel Discovery

Description Function Complexity

Flat cost function
∑L

i=1 Ci O(1)*

Subsequent penalizing function
∑L

i=1

{

Ci if i = 1

f ∗ Ci if i > 1
O(1)**

Linearly growing
penalizing function

∑L
i=1 Ci ∗ (1 + f ′ ∗ (i− 1)) O(L)

Power-function growing
penalizing function

∑L
i=1 Ci ∗ f i−1 O(L)

Facultatively growing
penalizing function

∑L
i=1 Ci ∗ (1 + f ′ ∗ (i− 1)!) O(L)

Quadratically growing
penalizing function

∑L
i=1 Ci ∗ (1 + f ′ ∗ (i− 1)2) O(L)

Logarithmically growing
penalizing function

∑L
i=1

{

Ci if i = 1

Ci ∗ (1 + f ′ ∗ log(i − 1)) if i > 1
O(L)

Table 5-1: Table of length penalizing cost functions that we have simulated in our experiments.
The functions vary from a flat sum of all link costs Ci to more complex functions subsequently
increasing link cost per link i = 1..L part of the tunnel. The penalty factor f > 1 is network
configurable, f ′ equals f − 1 being the penalizing addition of the penalty factor f . *Since the
total sum of the shortest path is already known in the IP forwarding matrix, this value can also be
copied. **Since the total sum of the shortest path is already known, this function can be rewritten
to FirstLinkCost + f ∗ (OldP athCost− FirstLinkCost) leading to a smaller complexity.

5-5 Simulations

This subsection discusses simulations we have done to investigate which penalizing function,
and eventually its optimal penalty factor, works best in finding efficient NDN paths. In order
to do this we generate random connected graphs6 on which we run the different penalizing
functions with all penalty factors f varying from 1 (no penalty) to 7 (the point where all
functions have reached their maximum) with a step size of 1

16
7. In order to value the efficiency

for each generated network, we compute the average path cost C for all distinct paths from all
nodes A to B in the network generated by the different runs of our algorithm. In order to get a
clear estimate of the behaviour of our algorithm, we have generated 100 independent samples
of both 100 node large and 200 node large graphs to run our simulations on. All networks
are generated with a probability of 1

20
that two nodes are connected and a probability of 1

8

that any given node is NDN enabled.

Figures 5-7 and 5-8 show the average of all network average path costs C for the generated
networks. The path costs have been computed with a cache hit probability Pr[cacheHit]
varying from 0 (which refers to a regular non-caching network) to 7

8
with steps of 1

8
in order

to quickly determine the efficiency of the different cost functions in relation to the cache hit
ratio of a network.

Each subfigure of figures 5-7 and 5-8 include a line of reference in the form of the average path

6We generate random graphs according to the Erdõs-Rényi model [29]. We ensure connectivity by regener-
ating until a connected graph (a graph without islands) has formed.

7Increasing with fractions of 2 helps keeping programmatic floating point approximations more accurate.

5
-5

S
im

u
latio

n
s

6
9

0

0
,5 1

1
,5 2

2
,5 3

3
,5 4

1

1,5

2

2,5

3

3,5

4

4,5

5

5,5

6

6,5

7

N
O

_
P

E
N

A
LT

Y

S
U

B
S

E
Q

U
E

N
T

_
P

E
N

A

LT
Y

LIN
E

A
R

_
P

E
N

A
LT

Y

P
O

W
E

R
_

F
U

N
C

T
IO

N

_
P

E
N

A
LT

Y

F
A

C
U

LT
Y

_
F

U
N

C
T

IO

N
_

P
E

N
A

LT
Y

Q
U

A
D

R
A

T
IC

_
F

U
N

C
T

IO
N

_
P

E
N

A
LT

Y

(a
)

P
r[ca

ch
e
H

it]
=

0

0

0
,5 1

1
,5 2

2
,5 3

3
,5 4

1

1,3125

1,625

1,9375

2,25

2,5625

2,875

3,1875

3,5

3,8125

4,125

4,4375

4,75

5,0625

5,375

5,6875

6

6,3125

6,625

6,9375

(b
)

P
r[ca

ch
e
H

it]
=

0
.1

2
5

0

0
,5 1

1
,5 2

2
,5 3

3
,5 4

1

1,3125

1,625

1,9375

2,25

2,5625

2,875

3,1875

3,5

3,8125

4,125

4,4375

4,75

5,0625

5,375

5,6875

6

6,3125

6,625

6,9375

(c)
P

r[ca
ch

e
H

it]
=

0
.2

5

0

0
,5 1

1
,5 2

2
,5 3

3
,5 4

1

1,3125

1,625

1,9375

2,25

2,5625

2,875

3,1875

3,5

3,8125

4,125

4,4375

4,75

5,0625

5,375

5,6875

6

6,3125

6,625

6,9375

(d
)

P
r[ca

ch
e
H

it]
=

0
.3

7
5

0

0
,5 1

1
,5 2

2
,5 3

3
,5 4

1

1,3125

1,625

1,9375

2,25

2,5625

2,875

3,1875

3,5

3,8125

4,125

4,4375

4,75

5,0625

5,375

5,6875

6

6,3125

6,625

6,9375

(e
)

P
r[ca

ch
e
H

it]
=

0
.5

0

0
,5 1

1
,5 2

2
,5 3

3
,5 4

1

1,3125

1,625

1,9375

2,25

2,5625

2,875

3,1875

3,5

3,8125

4,125

4,4375

4,75

5,0625

5,375

5,6875

6

6,3125

6,625

6,9375

(f)
P

r[ca
ch

e
H

it]
=

0
.6

2
5

0

0
,5 1

1
,5 2

2
,5 3

3
,5 4

1

1,3125

1,625

1,9375

2,25

2,5625

2,875

3,1875

3,5

3,8125

4,125

4,4375

4,75

5,0625

5,375

5,6875

6

6,3125

6,625

6,9375

(g
)

P
r[ca

ch
e
H

it]
=

0
.7

5

0

0
,5 1

1
,5 2

2
,5 3

3
,5 4

1

1,3125

1,625

1,9375

2,25

2,5625

2,875

3,1875

3,5

3,8125

4,125

4,4375

4,75

5,0625

5,375

5,6875

6

6,3125

6,625

6,9375

(h
)

P
r[ca

ch
e
H

it]
=

0
.8

7
5

F
ig

u
re

5
-7

:
G

rap
h
s

1
0
0

n
o
d
es

7
0

D
yn

am
ic

T
u
n
n
el

D
isco

very

0

0
,5 1

1
,5 2

2
,5 3

3
,5 4

1

1,5

2

2,5

3

3,5

4

4,5

5

5,5

6

6,5

7

N
O

_
P

E
N

A
LT

Y

S
U

B
S

E
Q

U
E

N
T

_
P

E
N

A

LT
Y

LIN
E

A
R

_
P

E
N

A
LT

Y

P
O

W
E

R
_

F
U

N
C

T
IO

N
_

P
E

N
A

LT
Y

F
A

C
U

LT
Y

_
F

U
N

C
T

IO
N

_
P

E
N

A
LT

Y

Q
U

A
D

R
A

T
IC

_
F

U
N

C
T

I

O
N

_
P

E
N

A
LT

Y

LO
G

A
R

IT
H

M
IC

_
F

U
N

C
T

IO
N

_
P

E
N

A
LT

Y

(a
)

P
r[ca

ch
e
H

it]
=

0

0

0
,5 1

1
,5 2

2
,5 3

3
,5 4

1

1,3125

1,625

1,9375

2,25

2,5625

2,875

3,1875

3,5

3,8125

4,125

4,4375

4,75

5,0625

5,375

5,6875

6

6,3125

6,625

6,9375

(b
)

P
r[ca

ch
e
H

it]
=

0
.1

2
5

0

0
,5 1

1
,5 2

2
,5 3

3
,5 4

1

1,3125

1,625

1,9375

2,25

2,5625

2,875

3,1875

3,5

3,8125

4,125

4,4375

4,75

5,0625

5,375

5,6875

6

6,3125

6,625

6,9375

(c)
P

r[ca
ch

e
H

it]
=

0
.2

5

0

0
,5 1

1
,5 2

2
,5 3

3
,5 4

1

1,3125

1,625

1,9375

2,25

2,5625

2,875

3,1875

3,5

3,8125

4,125

4,4375

4,75

5,0625

5,375

5,6875

6

6,3125

6,625

6,9375

(d
)

P
r[ca

ch
e
H

it]
=

0
.3

7
5

0

0
,5 1

1
,5 2

2
,5 3

3
,5 4

1

1,3125

1,625

1,9375

2,25

2,5625

2,875

3,1875

3,5

3,8125

4,125

4,4375

4,75

5,0625

5,375

5,6875

6

6,3125

6,625

6,9375

(e
)

P
r[ca

ch
e
H

it]
=

0
.5

0

0
,5 1

1
,5 2

2
,5 3

3
,5 4

1

1,3125

1,625

1,9375

2,25

2,5625

2,875

3,1875

3,5

3,8125

4,125

4,4375

4,75

5,0625

5,375

5,6875

6

6,3125

6,625

6,9375

(f)
P

r[ca
ch

e
H

it]
=

0
.6

2
5

0

0
,5 1

1
,5 2

2
,5 3

3
,5 4

1

1,3125

1,625

1,9375

2,25

2,5625

2,875

3,1875

3,5

3,8125

4,125

4,4375

4,75

5,0625

5,375

5,6875

6

6,3125

6,625

6,9375

(g
)

P
r[ca

ch
e
H

it]
=

0
.7

5

0

0
,5 1

1
,5 2

2
,5 3

3
,5 4

1

1,3125

1,625

1,9375

2,25

2,5625

2,875

3,1875

3,5

3,8125

4,125

4,4375

4,75

5,0625

5,375

5,6875

6

6,3125

6,625

6,9375

(h
)

P
r[ca

ch
e
H

it]
=

0
.8

7
5

F
ig

u
re

5
-8

:
G

rap
h
s

2
0
0

n
o
d
es

5-6 Future work 71

cost C when no penalizing function would have been applied. Using this line of reference we

can see that the average path cost C decreases from 3.03 to 2.69 hops in and from 2.55 to
2.12 respectively for the 100 node large and 200 node large generated networks in figures 5-7
and 5-8 due to the increased probability of a cache hit. In both figures, it is clear that at a
low cache hit ratio the detours taken by the penalizing functions form an overhead in terms of
increased average path costs. At higher cache hit ratios, starting around Pr[cacheHit] = 0.4
and Pr[cacheHit] = 0.25 respectively, the detours result in lower average path cost.

Looking more carefully at the charts, the characteristics of the different penalizations become
more clear. Where the subsequently penalizing function shows different characteristics in the
smaller network of figure 5-7, the faster growing functions’ characteristics look very similar in
both figures. The only difference between the faster growing function lies in the speed (com-
pared to the penalty factor) in which they grow to their limit. Since the penalty factor can
be defined as precise as a network administrator needs it to be, the speed at which the results
of the penalizing function grow is no argument favoring any of the faster growing functions.
Therefore, we can say the decision between any of the faster growing penalizing functions
opposed to another is equal. The characteristics of the (slower growing) subsequently pe-
nalizing function, however, appear to be different from the faster growing functions in the
smaller network of figure 5-7. The function’s limit generally lies closer to the line of reference.
This is due to the subsequent penalizing function allowing links to be traveled at most once8

along any path, thereby disallowing possible detours.

The graphs from figure 5-8 show that taking detours over NDN richer paths can give a decrease
in average traveled paths varying from 8.51% in subfigure 5-8d to 39.00% in subfigure 5-8h.
Our algorithm offers an undeniable increase in efficiency in NDNs with a sufficient cache hit
ratio. Network administrators can choose to implement the subsequent penalizing function
when they want to profit from NDN richer paths but do not want links to be crossed twice.
One of the faster growing functions can be chosen to optimally benefit from NDN richer areas.

5-6 Future work

An interesting topic connected to the idea of finding detours which are effectively more effi-
cient due to regular cache hits, is the usage of the actually measured cache hit ratio of nodes
in the path selection mechanism. This involves taking a node’s truly delivered caching service
into account when the path selection takes place. Although this behaviour may initially be
implemented fairly easy by altering the second Floyd-Warshall all-pairs shortest path compu-
tation in algorithm 5.1, taking a node’s truly experienced cache hit ratio has a reimbursing
side effect on the formation of the paths in the network which requires further research.

In order for a node to deliver a high cache hit ratio, it needs to meet 2 requirements:

1. A cache large enough to store the copies of frequently requested data.

2. A fair amount of requests and deliveries to initially fill its cache and keep it filled to
enable it to deliver content from cache regularly.

8As discussed in section 5-4-2

72 Dynamic Tunnel Discovery

Whenever a node does not receive many Interests it will also have a less rich populated cache,
resulting in a lower cache hit ratio. The lower cache hit ratio results in nodes choosing other
(cache hit richer) paths which results in the node still having a poorly filled cache with equal
cache hit ratio. Nodes that already have richly populated caches with high cache hit ratios
will keep receiving a large amount of Interests because other nodes prefer their paths due to
the high cache hit ratio. This behavior may result in a deadlock where new nodes, with the
potential to become very efficient cache hit performers, will not get a fair chance to play their
cards because earlier settled nodes with high cache hit ratios refrain them from doing so.

Since using the actually delivered cache hit ratio of nodes within an information discovery
process effects the cache hit ratio itself, one can see that before using parametrization of
historically delivered service within path selection computation9 we first need to research the
implications of these side effects and whether they can be overcome.

Taking the truly delivered service of nodes into account in the path selection process overlaps
with the philosophy of the NDN Strategy layer10. This gives another argument for future
research on selecting paths by the quality of the service they deliver.

Although this proposal has been designed specifically for dynamically implementing NDN in
partially enabled networks without user configuration of tunnels or other transition mech-
anisms, it is very suitable to be used without major change by other types of application
specific networks such as LISP [30], sensor networks and smart grids in order to dynamically
connect over an overlay network using dynamically chosen tunnels.

5-7 Conclusion

In this chapter we proposed a solution to dynamically connect NDN islands and detours by
creating an overlay network of all possible IP encapsulated NDN tunnels. Our algorithm
computes optimal forwarding rules based on all direct links and tunnels from this overlay
network using an all-pairs shortest path algorithm.

For networks in which a significant probability of cache hits exist, we have extended our
proposal to find detours over NDN richer areas. Our simulations show that regular cache hits
by the increased number of NDN nodes on a path, result in a lower average path utilization.

Finally, future work is suggested in the field of information discovery, by explicitly preferring
paths containing well performing caches even more efficient networks may be formed.

9However useful it seems, everyone wants to shop at the store with the best service and the lowest price
10Which (as discussed in section 2-2-7) also enables path selection based on previously delivered service.

Chapter 6

Conclusion

In this thesis, we investigated several problems that arise when a Named Data Network (NDN)
[64] is globally implemented. In each chapter we dived into the core of one of those problems
and proposed solutions to overcome them, with each proposal ultimately contributing to the
foreseen global implementation of an NDN.

After discussing the basic foundations of NDN and related work in this research area in
chapter 2, we start off in chapter 3 by solving the problem of end-user device configuration
in small office and home office networks. In order for end-users to embrace the philosophy
of NDN, the process of accessing and sharing information on the NDN must be simple and
straightforward. As already common with DHCP [28] and IP [55], we suggest a mechanism
which dynamically configures devices without user interaction to keep the complexity towards
users as low as possible. The mechanism dynamically finds paths in local networks towards
the gateways delivered by ISPs. Based on these paths, globally unique names are generated
which solves an important prerequisite for content to be shared globally.

Although the names generated in chapter 3 are globally unique and can be easily used to
share data, users may prefer context related names in the form of user-registered names over
the longer topology related generated names. To support the translation from user-registered
names to dynamically generated names, we propose a mapping lookup mechanism based on
DNS [52] and LISP [30]. Users are enabled to share content with user-registered names,
while the Interests find their way using the respective aggregated dynamically generated
names. The Interests and returning content still travel over an NDN network, just with a
different name, maintaining the profits of NDNs invoked by caching. A proper setup of the
renaming instances enables NDN implementations to benefit from multipath and multihomed
connections as if it were a genuinely globally propagated name space.

While the mapping mechanism is useful for renaming on top of the dynamically configured
networks, it can play an even greater role when used to reduce the size of global routing
tables. Storing all user registered names in global routing tables is too complex due to the
large number of individuals and institutions that may acquire registered names. Therefore,
we propose to map all registered names to the topologically aggregated names and base global
routing purely on the smaller set of aggregated names keeping global routing tables scalable.

74 Conclusion

Chapter 5 focuses on dynamically connecting NDN islands and shortcutting large NDN native
detours using IP encapsulated tunnels. Using our proposed algorithm we generate an overlay
network of tunnels and direct links and compute shortest NDN paths over that network. We
introduce a transition mechanism combined with a topology discovery algorithm connecting
partially NDN enabled networks. Since cache hits reduce traveled path costs in NDN rich
paths, in the second half of the chapter we enhance the algorithm by allowing to take detours
over NDN richer paths. Simulations show these detours over NDN richer paths result in
effectively reduced path costs in randomly generated networks with high cache hit ratios.
The proposal needs full knowledge of the network and can, therefore, be implemented by
enhancing a link-state routing protocol such as OSPF [53].

Conclusive, we have solved the following items in this thesis:

• Propose a system for dynamic host configuration, local network information discovery
and the generation of globally unique names to quickly enable end-users to access and
share data across the NDN.

• Enabling the use of user registered names in conjunction with dynamically generated
names, as well as reducing the complexity of global routing tables by mapping registered
names to topology aggregated names.

• Solving routing discovery and employing a transitioning mechanism by proposing a
single algorithm solving both.

6-1 Future work

In this thesis we have already proposed solutions for dynamic configuration, information
discovery and transitioning suitable for use within local and medium sized networks. The
network size supported by the proposal of chapter 5 is determined by the fact that it needs
full knowledge of the local network in order to fulfill its duty. Though suitable for networks of
Autonomous Systems, such as ISPs, the complexity of the algorithm (O(n3), equal to Floyd-
Warshall’s all-pairs shortest path algorithm) prevents it from being implemented globally.
Ultimately, we also need a mechanism for global information discovery.

Where the proposal from chapter 5 can be easily implemented (in both fully native and
partially NDN enabled networks) using the opaque options from OSPF, a similar approach
may be taken for inter-AS topology discovery. Future work should aim at extending the
Border Gateway Protocol (BGP) [49] in such a way that NDN enabled clients can use it
to propagate their availability and compute NDN paths to each other. If NDN incompatible
parties ignore and silently forward the NDN specific information, NDN enabled nodes can use
this information to create an overlay network of NDN similar to the overlay network proposed
in chapter 5. Using this information nodes can compute which tunnels they should create to
cross NDN incompatible ASes and set up forwarding rules accordingly.

Completing the inter-AS information discovery means all layers (local networks, intra-AS
networks and inter-AS networks) of information discovery have been solved, which means a
great part of research and engineering necessary for the global implementation of NDN will
be finished.

Appendix A

Files CCNx-DHCP Experiments

76 Files CCNx-DHCP Experiments

A-1 Single server single client

A-1-1 Single Server Single Client - Node 1

ubuntu ccnd[2021] local port 9695 api 4001 start 1324631846.519598 now 1324633619.424284

Content items: 34 accessioned, 34 stored, 33 stale, 0 sparse, 0 duplicate, 35 sent

Interests: 12 names, 0 pending, 0 propagating, 1 noted

Interest totals: 35 accepted, 0 dropped, 34 sent, 0 stuffed

Faces

● face: 0 flags: 0xc pending: 0

● face: 1 flags: 0x400c pending: 0

● face: 2 flags: 0x5012 pending: 0 local: 0.0.0.0:9695

● face: 3 flags: 0x5010 pending: 0 local: 0.0.0.0:9695

● face: 4 flags: 0x4042 pending: 0 local: [::]:9695

● face: 5 flags: 0x4040 pending: 0 local: [::]:9695

● face: 6 flags: 0xc pending: 0 activity: 35

● face: 7 flags: 0x432 pending: 0 activity: 2 remote: 224.0.23.170:59695

Face Activity Rates

Bytes/sec In/Out recv data/intr sent sent data/intr recv

face: 0 42 / 21 0 / 0 0 / 0

face: 6 5 / 42 0 / 0 0 / 0

face: 7 0 / 0 0 / 0 0 / 0

Forwarding

● ccnx:/ccnx/ping face: 0 flags: 0x3 expires: 2147481877

● ccnx:/%C1.M.S.neighborhood face: 0 flags: 0x3 expires: 2147481877

● ccnx:/ccnx/%A5%97%CF%27%E10%0CE%21%7D%EE%C9%87W%FC%D5%FC%24w%

C5%81%29%FA%AC%E6i%85-%02%83g%8A face: 0 flags: 0x17 expires: 2147481877

● ccnx:/local/dhcp face: 6 flags: 0x3 expires: 55

● ccnx:/local/dhcp face: 7 flags: 0x3 expires: 2147481937

● ccnx:/%C1.M.S.localhost/%C1.M.SRV/ccnd face: 0 flags: 0x3 expires: 2147481877

● ccnx:/%C1.M.S.localhost face: 0 flags: 0x23 expires: 2147481877

A-1 Single server single client 77

A-1-2 Single Server Single client - Node 2

ubuntu ccnd[2603] local port 9695 api 4001 start 1324632190.219527 now 1324633622.216034

Content items: 7 accessioned, 7 stored, 7 stale, 0 sparse, 0 duplicate, 7 sent

Interests: 10 names, 0 pending, 0 propagating, 0 noted

Interest totals: 8 accepted, 0 dropped, 6 sent, 0 stuffed

Faces

● face: 0 flags: 0xc pending: 0

● face: 1 flags: 0x400c pending: 0

● face: 2 flags: 0x5012 pending: 0 local: 0.0.0.0:9695

● face: 3 flags: 0x5010 pending: 0 local: 0.0.0.0:9695

● face: 4 flags: 0x4042 pending: 0 local: [::]:9695

● face: 5 flags: 0x4040 pending: 0 local: [::]:9695

● face: 7 flags: 0x432 pending: 0 activity: 3 remote: 224.0.23.170:59695

Face Activity Rates

Bytes/sec In/Out recv data/intr sent sent data/intr recv

face: 0 0 / 0 0 / 0 0 / 0

face: 7 0 / 0 0 / 0 0 / 0

Forwarding

● ccnx:/ccnx/ping face: 0 flags: 0x3 expires: 2147482217

● ccnx:/ face: 7 flags: 0x3 expires: 2147482237

● ccnx:/%C1.M.S.neighborhood face: 0 flags: 0x3 expires: 2147482217

● ccnx:/ccnx/%A5%97%CF%27%E10%0CE%21%7D%EE%C9%87W%FC%D5%FC%24w%

C5%81%29%FA%AC%E6i%85-%02%83g%8A face: 0 flags: 0x17 expires: 2147482217

● ccnx:/local/dhcp face: 7 flags: 0x3 expires: 2147482237

● ccnx:/%C1.M.S.localhost/%C1.M.SRV/ccnd face: 0 flags: 0x3 expires: 2147482217

● ccnx:/%C1.M.S.localhost face: 0 flags: 0x23 expires: 2147482217

78 Files CCNx-DHCP Experiments

A-1-3 Single Server Multiple Clients - Node 1

ubuntu ccnd[2352] local port 9695 api 4001 start 1324634977.962926 now 1324635140.730244

Content items: 6 accessioned, 6 stored, 5 stale, 0 sparse, 1 duplicate, 7 sent

Interests: 12 names, 0 pending, 0 propagating, 1 noted

Interest totals: 8 accepted, 0 dropped, 6 sent, 0 stuffed

Faces

● face: 0 flags: 0xc pending: 0

● face: 1 flags: 0x400c pending: 0

● face: 2 flags: 0x5012 pending: 0 local: 0.0.0.0:9695

● face: 3 flags: 0x5010 pending: 0 local: 0.0.0.0:9695

● face: 4 flags: 0x4042 pending: 0 local: [::]:9695

● face: 5 flags: 0x4040 pending: 0 local: [::]:9695

● face: 6 flags: 0xc pending: 0 activity: 7

● face: 7 flags: 0x432 pending: 0 activity: 3 remote: 224.0.23.170:59695

Face Activity Rates

Bytes/sec In/Out recv data/intr sent sent data/intr recv

face: 0 0 / 0 0 / 0 0 / 0

face: 6 0 / 0 0 / 0 0 / 0

face: 7 0 / 0 0 / 0 0 / 0

Forwarding

● ccnx:/ccnx/ping face: 0 flags: 0x3 expires: 2147483487

● ccnx:/%C1.M.S.neighborhood face: 0 flags: 0x3 expires: 2147483487

● ccnx:/ccnx/%A5%97%CF%27%E10%0CE%21%7D%EE%C9%87W%FC%D5%FC%24w%

C5%81%29%FA%AC%E6i%85-%02%83g%8A face: 0 flags: 0x17 expires: 2147483487

● ccnx:/local/dhcp face: 6 flags: 0x3 expires: 50

● ccnx:/local/dhcp face: 7 flags: 0x3 expires: 2147483572

● ccnx:/%C1.M.S.localhost/%C1.M.SRV/ccnd face: 0 flags: 0x3 expires: 2147483487

● ccnx:/%C1.M.S.localhost face: 0 flags: 0x23 expires: 2147483487

A-1 Single server single client 79

A-1-4 Single Server Multiple Clients - Node 2

ubuntu ccnd[2623] local port 9695 api 4001 start 1324634975.315669 now 1324635097.578644

Content items: 6 accessioned, 6 stored, 4 stale, 0 sparse, 0 duplicate, 8 sent

Interests: 11 names, 0 pending, 0 propagating, 0 noted

Interest totals: 8 accepted, 0 dropped, 6 sent, 0 stuffed

Faces

● face: 0 flags: 0xc pending: 0

● face: 1 flags: 0x400c pending: 0

● face: 2 flags: 0x5012 pending: 0 local: 0.0.0.0:9695

● face: 3 flags: 0x5010 pending: 0 local: 0.0.0.0:9695

● face: 4 flags: 0x4042 pending: 0 local: [::]:9695

● face: 5 flags: 0x4040 pending: 0 local: [::]:9695

● face: 7 flags: 0x432 pending: 0 activity: 2 remote: 224.0.23.170:59695

● face: 8 flags: 0x40412 pending: 0 remote: 172.19.5.1:59695 via: 2

Face Activity Rates

Bytes/sec In/Out recv data/intr sent sent data/intr recv

face: 0 0 / 0 0 / 0 0 / 0

face: 7 0 / 0 0 / 0 0 / 0

face: 8 0 / 0 0 / 0 0 / 0

Forwarding

● ccnx:/ccnx/ping face: 0 flags: 0x3 expires: 2147483527

● ccnx:/%C1.M.S.neighborhood face: 0 flags: 0x3 expires: 2147483527

● ccnx:/ccnx/%A5%97%CF%27%E10%0CE%21%7D%EE%C9%87W%FC%D5%FC%24w%

C5%81%29%FA%AC%E6i%85-%02%83g%8A face: 0 flags: 0x17 expires: 2147483527

● ccnx:/local/dhcp face: 7 flags: 0x3 expires: 2147483612

● ccnx:/%C1.M.S.localhost/%C1.M.SRV/ccnd face: 0 flags: 0x3 expires: 2147483527

● ccnx:/myNamespace face: 8 flags: 0x3 expires: 2147483612

● ccnx:/%C1.M.S.localhost face: 0 flags: 0x23 expires: 2147483527

80 Files CCNx-DHCP Experiments

A-1-5 Single Server Multiple Clients - Node 3

ubuntu ccnd[2605] local port 9695 api 4001 start 1324634980.555202 now 1324635104.972941

Content items: 6 accessioned, 6 stored, 4 stale, 0 sparse, 0 duplicate, 7 sent

Interests: 12 names, 0 pending, 0 propagating, 6 noted

Interest totals: 7 accepted, 0 dropped, 6 sent, 0 stuffed

Faces

● face: 0 flags: 0xc pending: 0

● face: 1 flags: 0x400c pending: 0

● face: 2 flags: 0x5012 pending: 0 local: 0.0.0.0:9695

● face: 3 flags: 0x5010 pending: 0 local: 0.0.0.0:9695

● face: 4 flags: 0x4042 pending: 0 local: [::]:9695

● face: 5 flags: 0x4040 pending: 0 local: [::]:9695

● face: 7 flags: 0x432 pending: 0 activity: 1 remote: 224.0.23.170:59695

● face: 8 flags: 0x40412 pending: 0 remote: 172.19.5.1:59695 via: 2

Face Activity Rates

Bytes/sec In/Out recv data/intr sent sent data/intr recv

face: 0 0 / 0 0 / 0 0 / 0

face: 7 0 / 0 0 / 0 0 / 0

face: 8 0 / 0 0 / 0 0 / 0

Forwarding

● ccnx:/ccnx/ping face: 0 flags: 0x3 expires: 2147483527

● ccnx:/%C1.M.S.neighborhood face: 0 flags: 0x3 expires: 2147483527

● ccnx:/ccnx/%A5%97%CF%27%E10%0CE%21%7D%EE%C9%87W%FC%D5%FC%24w%

C5%81%29%FA%AC%E6i%85-%02%83g%8A face: 0 flags: 0x17 expires: 2147483527

● ccnx:/local/dhcp face: 7 flags: 0x3 expires: 2147483637

● ccnx:/%C1.M.S.localhost/%C1.M.SRV/ccnd face: 0 flags: 0x3 expires: 2147483527

● ccnx:/myNamespace face: 8 flags: 0x3 expires: 2147483637

● ccnx:/%C1.M.S.localhost face: 0 flags: 0x23 expires: 2147483527

A-2 Multiple server 81

A-2 Multiple server

A-2-1 Multiple Server - Node 1

ubuntu ccnd[2549] local port 9695 api 4001 start 1324635923.293676 now 1324635995.835746

Content items: 6 accessioned, 6 stored, 3 stale, 0 sparse, 0 duplicate, 6 sent

Interests: 10 names, 0 pending, 0 propagating, 1 noted

Interest totals: 6 accepted, 0 dropped, 5 sent, 0 stuffed

Faces

● face: 0 flags: 0xc pending: 0

● face: 1 flags: 0x400c pending: 0

● face: 2 flags: 0x5012 pending: 0 local: 0.0.0.0:9695

● face: 3 flags: 0x5010 pending: 0 local: 0.0.0.0:9695

● face: 4 flags: 0x4042 pending: 0 local: [::]:9695

● face: 5 flags: 0x4040 pending: 0 local: [::]:9695

● face: 6 flags: 0xc pending: 0 activity: 6

● face: 7 flags: 0x432 pending: 0 activity: 2 remote: 224.0.23.170:59695

Face Activity Rates

Bytes/sec In/Out recv data/intr sent sent data/intr recv

face: 0 0 / 0 0 / 0 0 / 0

face: 6 0 / 0 0 / 0 0 / 0

face: 7 0 / 0 0 / 0 0 / 0

Forwarding

● ccnx:/ccnx/ping face: 0 flags: 0x3 expires: 2147483577

● ccnx:/%C1.M.S.neighborhood face: 0 flags: 0x3 expires: 2147483577

● ccnx:/ccnx/%A5%97%CF%27%E10%0CE%21%7D%EE%C9%87W%FC%D5%FC%24w%

C5%81%29%FA%AC%E6i%85-%02%83g%8A face: 0 flags: 0x17 expires: 2147483577

● ccnx:/local/dhcp face: 6 flags: 0x3 expires: 25

● ccnx:/local/dhcp face: 7 flags: 0x3 expires: 2147483612

● ccnx:/%C1.M.S.localhost/%C1.M.SRV/ccnd face: 0 flags: 0x3 expires: 2147483577

● ccnx:/%C1.M.S.localhost face: 0 flags: 0x23 expires: 2147483577

82 Files CCNx-DHCP Experiments

A-2-2 Multiple Server - Node 2

ubuntu ccnd[2684] local port 9695 api 4001 start 1324635920.874792 now 1324635987.730655

Content items: 6 accessioned, 6 stored, 3 stale, 0 sparse, 0 duplicate, 6 sent

Interests: 10 names, 0 pending, 0 propagating, 1 noted

Interest totals: 6 accepted, 0 dropped, 5 sent, 0 stuffed

Faces

● face: 0 flags: 0xc pending: 0

● face: 1 flags: 0x400c pending: 0

● face: 2 flags: 0x5012 pending: 0 local: 0.0.0.0:9695

● face: 3 flags: 0x5010 pending: 0 local: 0.0.0.0:9695

● face: 4 flags: 0x4042 pending: 0 local: [::]:9695

● face: 5 flags: 0x4040 pending: 0 local: [::]:9695

● face: 6 flags: 0xc pending: 0 activity: 6

● face: 7 flags: 0x432 pending: 0 activity: 2 remote: 224.0.23.170:59695

Face Activity Rates

Bytes/sec In/Out recv data/intr sent sent data/intr recv

face: 0 0 / 0 0 / 0 0 / 0

face: 6 7 / 0 0 / 0 0 / 0

face: 7 7 / 7 0 / 0 0 / 0

Forwarding

● ccnx:/ccnx/ping face: 0 flags: 0x3 expires: 2147483582

● ccnx:/%C1.M.S.neighborhood face: 0 flags: 0x3 expires: 2147483582

● ccnx:/ccnx/%A5%97%CF%27%E10%0CE%21%7D%EE%C9%87W%FC%D5%FC%24w%

C5%81%29%FA%AC%E6i%85-%02%83g%8A face: 0 flags: 0x17 expires: 2147483582

● ccnx:/local/dhcp face: 6 flags: 0x3 expires: 25

● ccnx:/local/dhcp face: 7 flags: 0x3 expires: 2147483612

● ccnx:/%C1.M.S.localhost/%C1.M.SRV/ccnd face: 0 flags: 0x3 expires: 2147483582

● ccnx:/%C1.M.S.localhost face: 0 flags: 0x23 expires: 2147483582

A-2 Multiple server 83

A-2-3 Multiple Server - Node 3 - 1st Result

ubuntu ccnd[2623] local port 9695 api 4001 start 1324635960.959503 now 1324635991.307776

Content items: 7 accessioned, 7 stored, 0 stale, 0 sparse, 0 duplicate, 7 sent

Interests: 18 names, 0 pending, 0 propagating, 6 noted

Interest totals: 7 accepted, 0 dropped, 6 sent, 0 stuffed

Faces

● face: 0 flags: 0xc pending: 0

● face: 1 flags: 0x400c pending: 0

● face: 2 flags: 0x5012 pending: 0 local: 0.0.0.0:9695

● face: 3 flags: 0x5010 pending: 0 local: 0.0.0.0:9695

● face: 4 flags: 0x4042 pending: 0 local: [::]:9695

● face: 5 flags: 0x4040 pending: 0 local: [::]:9695

● face: 7 flags: 0x432 pending: 0 activity: 2 remote: 224.0.23.170:59695

● face: 8 flags: 0x40412 pending: 0 remote: 172.19.5.2:59695 via: 2

Face Activity Rates

Bytes/sec In/Out recv data/intr sent sent data/intr recv

face: 0 0 / 0 0 / 0 0 / 0

face: 7 0 / 0 0 / 0 0 / 0

face: 8 0 / 0 0 / 0 0 / 0

Forwarding

● ccnx:/ccnx/ping face: 0 flags: 0x3 expires: 2147483617

● ccnx:/%C1.M.S.neighborhood face: 0 flags: 0x3 expires: 2147483617

● ccnx:/mySecondNamespace face: 8 flags: 0x3 expires: 2147483637

● ccnx:/ccnx/%A5%97%CF%27%E10%0CE%21%7D%EE%C9%87W%FC%D5%FC%24w%

C5%81%29%FA%AC%E6i%85-%02%83g%8A face: 0 flags: 0x17 expires: 2147483617

● ccnx:/local/dhcp face: 7 flags: 0x3 expires: 2147483637

● ccnx:/%C1.M.S.localhost/%C1.M.SRV/ccnd face: 0 flags: 0x3 expires: 2147483617

● ccnx:/%C1.M.S.localhost face: 0 flags: 0x23 expires: 2147483617

84 Files CCNx-DHCP Experiments

A-2-4 Multiple Server - Node 3 - 2nd Result

ubuntu ccnd[2655] local port 9695 api 4001 start 1324636327.681609 now 1324636340.987579

Content items: 7 accessioned, 7 stored, 0 stale, 0 sparse, 0 duplicate, 7 sent

Interests: 18 names, 0 pending, 0 propagating, 6 noted

Interest totals: 7 accepted, 0 dropped, 6 sent, 0 stuffed

Faces

● face: 0 flags: 0xc pending: 0

● face: 1 flags: 0x400c pending: 0

● face: 2 flags: 0x5012 pending: 0 local: 0.0.0.0:9695

● face: 3 flags: 0x5010 pending: 0 local: 0.0.0.0:9695

● face: 4 flags: 0x4042 pending: 0 local: [::]:9695

● face: 5 flags: 0x4040 pending: 0 local: [::]:9695

● face: 7 flags: 0x432 pending: 0 activity: 2 remote: 224.0.23.170:59695

● face: 8 flags: 0x40412 pending: 0 activity: 1 remote: 172.19.5.1:59695 via: 2

Face Activity Rates

Bytes/sec In/Out recv data/intr sent sent data/intr recv

face: 0 43 / 21 0 / 0 0 / 0

face: 7 7 / 0 0 / 0 0 / 0

face: 8 0 / 0 0 / 0 0 / 0

Forwarding

● ccnx:/ccnx/ping face: 0 flags: 0x3 expires: 2147483637

● ccnx:/%C1.M.S.neighborhood face: 0 flags: 0x3 expires: 2147483637

● ccnx:/ccnx/%A5%97%CF%27%E10%0CE%21%7D%EE%C9%87W%FC%D5%FC%24w%

C5%81%29%FA%AC%E6i%85-%02%83g%8A face: 0 flags: 0x17 expires: 2147483637

● ccnx:/local/dhcp face: 7 flags: 0x3 expires: 2147483642

● ccnx:/%C1.M.S.localhost/%C1.M.SRV/ccnd face: 0 flags: 0x3 expires: 2147483637

● ccnx:/myFirstNamespace face: 8 flags: 0x3 expires: 2147483642

● ccnx:/%C1.M.S.localhost face: 0 flags: 0x23 expires: 2147483637

A-3 Multiple Interfaces 85

A-3 Multiple Interfaces

A-3-1 Multiple Interfaces - Server Node 3

1 . / ccndhcpserver

2 1325065590.057118 ccnd [1 9 1 3] : accepted client fd=8 id=6
3 1325065590.083627 ccnd [1 9 1 3] : at ccn_sockcreate . c : 191
4 1325065590.083647 ccnd [1 9 1 3] : at ccn_sockcreate . c : 205
5 1325065590.083654 ccnd [1 9 1 3] : at ccn_sockcreate . c : 216
6 1325065590.083661 ccnd [1 9 1 3] : at ccn_sockcreate . c : 224
7 1325065590.083669 ccnd [1 9 1 3] : at ccn_sockcreate . c : 231
8 1325065590.083676 ccnd [1 9 1 3] : at ccn_sockcreate . c : 245
9 1325065590.083706 ccnd [1 9 1 3] : at ccn_sockcreate . c : 254

10 1325065590.083714 ccnd [1 9 1 3] : at ccn_sockcreate . c : 259
11 1325065590.083720 ccnd [1 9 1 3] : at ccn_sockcreate . c : 266
12 1325065590.083743 ccnd [1 9 1 3] : at ccn_sockcreate . c : 270
13 1325065590.083754 ccnd [1 9 1 3] : at ccn_sockcreate . c : 315
14 1325065590.083761 ccnd [1 9 1 3] : IPv4 multicast

15 1325065590.083787 ccnd [1 9 1 3] : setsockopt (. . . , IP_ADD_MEMBERSHIP , . . .) : No

such device

16 1325065590.086998 ccndhcp [1 9 1 9] : 4 2 4 : OnNull cleanup

17 ccn_client . c : 0 [1 9 1 9] − error 0 : Cannot join DHCP group .
18 1325065590.087784 ccnd [1 9 1 3] : shutdown client fd=8 id=6
19 1325065590.087800 ccnd [1 9 1 3] : releasing face id 6 (slot 6)
20

21 route add −net 2 2 4 . 0 . 0 . 0 netmask 2 2 4 . 0 . 0 . 0 eth3

22

23 . / ccndhcpserver

24 1325064756.084005 ccnd [1 8 8 6] : accepted client fd=8 id=6
25 1325064756.126891 ccnd [1 8 8 6] : at ccn_sockcreate . c : 191
26 1325064756.126910 ccnd [1 8 8 6] : at ccn_sockcreate . c : 205
27 1325064756.126917 ccnd [1 8 8 6] : at ccn_sockcreate . c : 216
28 1325064756.126923 ccnd [1 8 8 6] : at ccn_sockcreate . c : 224
29 1325064756.126931 ccnd [1 8 8 6] : at ccn_sockcreate . c : 231
30 1325064756.126937 ccnd [1 8 8 6] : at ccn_sockcreate . c : 245
31 1325064756.126968 ccnd [1 8 8 6] : at ccn_sockcreate . c : 254
32 1325064756.126976 ccnd [1 8 8 6] : at ccn_sockcreate . c : 259
33 1325064756.126981 ccnd [1 8 8 6] : at ccn_sockcreate . c : 266
34 1325064756.127005 ccnd [1 8 8 6] : at ccn_sockcreate . c : 270
35 1325064756.127016 ccnd [1 8 8 6] : at ccn_sockcreate . c : 315
36 1325064756.127022 ccnd [1 8 8 6] : IPv4 multicast

37 1325064756.340403 ccnd [1 8 8 6] : at ccn_sockcreate . c : 337
38 1325064756.340431 ccnd [1 8 8 6] : SO_RCVBUF for fd 9 is 131072
39 1325064756.340449 ccnd [1 8 8 6] : multicast on fd=9 id=7, sending on face 7
40 1325065436.983643 ccnd [1 8 8 6] : shutdown client fd=8 id=6
41 1325065436.983666 ccnd [1 8 8 6] : releasing face id 6 (slot 6)
42

43 ccndstatus

44 ubuntu ccnd [1 9 3 0] local port 9695 api 4001 start 1325065633.320681 now

1325065676.776780
45 Content items : 4 accessioned , 4 stored , 3 stale , 0 sparse , 0 duplicate , 5

sent

86 Files CCNx-DHCP Experiments

46 Interests : 10 names , 0 pending , 0 propagating , 0 noted

47 Interest totals : 5 accepted , 0 dropped , 4 sent , 0 stuffed

48 Faces

49 face : 0 flags : 0xc pending : 0
50 face : 1 flags : 0x400c pending : 0
51 face : 2 flags : 0x5012 pending : 0 local : 0 . 0 . 0 . 0 : 9 6 9 5
52 face : 3 flags : 0x5010 pending : 0 local : 0 . 0 . 0 . 0 : 9 6 9 5
53 face : 4 flags : 0x4042 pending : 0 local : [: :] : 9 6 9 5
54 face : 5 flags : 0x4040 pending : 0 local : [: :] : 9 6 9 5
55 face : 6 flags : 0xc pending : 0 activity : 5
56 face : 7 flags : 0x432 pending : 0 remote : 2 2 4 . 0 . 2 3 . 1 7 0 : 5969 5
57 Face Activity Rates

58 Bytes/sec In/Out recv data/intr sent sent

data/intr recv

59 face : 0 0 / 0 0 / 0 0
/ 0

60 face : 6 0 / 0 0 / 0 0
/ 0

61 face : 7 0 / 0 0 / 0 0
/ 0

62 Forwarding

63 ccnx : / ccnx/ping face : 0 flags : 0x3 expires : 2147483607
64 ccnx :/%C1 . M . S . neighborhood face : 0 flags : 0x3 expires : 2147483607
65 ccnx : / ccnx/%A5%97%CF%27%E10%0CE%21%7D%EE%C9%87W%FC%D5%FC%24w%C5%81%29%FA

%AC%E6i%85−%02%83g%8A face : 0 flags : 0x17 expires : 2147483607
66 ccnx : / local/dhcp face : 6 flags : 0x3 expires : 25
67 ccnx : / local/dhcp face : 7 flags : 0x3 expires : 2147483612
68 ccnx :/%C1 . M . S . localhost/%C1 . M . SRV/ccnd face : 0 flags : 0x3 expires :

2147483607
69 ccnx :/%C1 . M . S . localhost face : 0 flags : 0x23 expires : 2147483607

Appendix B

OSPFN Experiments

88 OSPFN Experiments

B-1 Multipath with single name sharing

B-1-1 Multipath with single name - Node 2

ccnx2 ccnd[2067] local port 9695 api 4005 start 1326269669.838528 now 1326270252.028748

Content items: 38 accessioned, 38 stored, 35 stale, 0 sparse, 0 duplicate, 47 sent

Interests: 17 names, 0 pending, 0 propagating, 8 noted

Interest totals: 47 accepted, 0 dropped, 37 sent, 2 stuffed

Faces

● face: 0 flags: 0xc pending: 0

● face: 1 flags: 0x400c pending: 0

● face: 2 flags: 0x5012 pending: 0 local: 0.0.0.0:9695

● face: 3 flags: 0x5010 pending: 0 local: 0.0.0.0:9695

● face: 4 flags: 0x4042 pending: 0 local: [::]:9695

● face: 5 flags: 0x4040 pending: 0 local: [::]:9695

● face: 6 flags: 0xc pending: 0 activity: 25

● face: 7 flags: 0x40412 pending: 0 remote: 10.12.12.131:9695 via: 2

● face: 8 flags: 0x20412 pending: 0 remote: 10.12.17.131:9695 via: 2

● face: 10 flags: 0xc pending: 0 activity: 7

● face: 11 flags: 0x432 pending: 0 activity: 13 remote: 224.0.23.170:59695

Face Activity Rates

Bytes/sec In/Out recv data/intr sent sent data/intr recv

face: 0 0 / 0 0 / 0 0 / 0

face: 6 0 / 0 0 / 0 0 / 0

face: 7 0 / 0 0 / 0 0 / 0

face: 8 0 / 0 0 / 0 0 / 0

face: 10 0 / 0 0 / 0 0 / 0

face: 11 0 / 0 0 / 0 0 / 0

Forwarding

● ccnx:/mySixthNode face: 8 flags: 0x3 expires: 2147483397

● ccnx:/local/dhcp face: 10 flags: 0x3 expires: 55

● ccnx:/local/dhcp face: 11 flags: 0x3 expires: 2147483582

● ccnx:/myThirdNode face: 7 flags: 0x3 expires: 2147483147

● ccnx:/%C1.M.S.neighborhood face: 0 flags: 0x3 expires: 2147483067

● ccnx:/ccnx/%A5%97%CF%27%E10%0CE%21%7D%EE%C9%87W%FC%D5%FC%24w%

C5%81%29%FA%AC%E6i%85-%02%83g%8A face: 0 flags: 0x17 expires: 2147483067

● ccnx:/myFifthNode face: 8 flags: 0x3 expires: 2147483397

B-1 Multipath with single name sharing 89

B-1-2 Multipath with single name - Node 3

ccnx3 ccnd[1913] local port 9695 api 4005 start 1326269674.845872 now 1326270253.437585

Content items: 13 accessioned, 13 stored, 12 stale, 0 sparse, 0 duplicate, 19 sent

Interests: 12 names, 0 pending, 0 propagating, 0 noted

Interest totals: 19 accepted, 0 dropped, 13 sent, 0 stuffed

Faces

● face: 0 flags: 0xc pending: 0

● face: 1 flags: 0x400c pending: 0

● face: 2 flags: 0x5012 pending: 0 local: 0.0.0.0:9695

● face: 3 flags: 0x5010 pending: 0 local: 0.0.0.0:9695

● face: 4 flags: 0x4042 pending: 0 local: [::]:9695

● face: 5 flags: 0x4040 pending: 0 local: [::]:9695

● face: 6 flags: 0xc pending: 0 activity: 19

● face: 7 flags: 0x40412 pending: 0 remote: 10.12.12.130:9695 via: 2

● face: 8 flags: 0x40412 pending: 0 remote: 10.12.13.131:9695 via: 2

Face Activity Rates

Bytes/sec In/Out recv data/intr sent sent data/intr recv

face: 0 0 / 0 0 / 0 0 / 0

face: 6 0 / 0 0 / 0 0 / 0

face: 7 0 / 0 0 / 0 0 / 0

face: 8 0 / 0 0 / 0 0 / 0

Forwarding

● ccnx:/mySixthNode face: 7 flags: 0x3 expires: 2147483397

● ccnx:/%C1.M.S.neighborhood face: 0 flags: 0x3 expires: 2147483072

● ccnx:/ccnx/%A5%97%CF%27%E10%0CE%21%7D%EE%C9%87W%FC%D5%FC%24w%

C5%81%29%FA%AC%E6i%85-%02%83g%8A face: 0 flags: 0x17 expires: 2147483072

● ccnx:/myFifthNode face: 8 flags: 0x3 expires: 2147483147

● ccnx:/myFourthNode face: 8 flags: 0x3 expires: 2147483147

● ccnx:/mySecondNode face: 7 flags: 0x3 expires: 2147483147

● ccnx:/%C1.M.S.localhost face: 0 flags: 0x23 expires: 2147483072

● ccnx:/ccnx/ping face: 0 flags: 0x3 expires: 2147483072

● ccnx:/%C1.M.S.localhost/%C1.M.SRV/ccnd face: 0 flags: 0x3 expires: 2147483072

90 OSPFN Experiments

B-1-3 Multipath with single name - Node 4

ccnx4 ccnd[1930] local port 9695 api 4005 start 1326269676.147192 now 1326270254.512105

Content items: 15 accessioned, 15 stored, 14 stale, 0 sparse, 0 duplicate, 17 sent

Interests: 12 names, 0 pending, 0 propagating, 0 noted

Interest totals: 17 accepted, 0 dropped, 14 sent, 1 stuffed

Faces

● face: 0 flags: 0xc pending: 0

● face: 1 flags: 0x400c pending: 0

● face: 2 flags: 0x5012 pending: 0 local: 0.0.0.0:9695

● face: 3 flags: 0x5010 pending: 0 local: 0.0.0.0:9695

● face: 4 flags: 0x4042 pending: 0 local: [::]:9695

● face: 5 flags: 0x4040 pending: 0 local: [::]:9695

● face: 6 flags: 0xc pending: 0 activity: 12

● face: 7 flags: 0x40412 pending: 0 remote: 10.12.13.130:9695 via: 2

● face: 8 flags: 0x20412 pending: 0 remote: 10.12.15.130:9695 via: 2

Face Activity Rates

Bytes/sec In/Out recv data/intr sent sent data/intr recv

face: 0 0 / 0 0 / 0 0 / 0

face: 6 0 / 0 0 / 0 0 / 0

face: 7 0 / 0 0 / 0 0 / 0

face: 8 0 / 0 0 / 0 0 / 0

Forwarding

● ccnx:/mySixthNode face: 8 flags: 0x3 expires: 2147483147

● ccnx:/myThirdNode face: 7 flags: 0x3 expires: 2147483147

● ccnx:/%C1.M.S.neighborhood face: 0 flags: 0x3 expires: 2147483072

● ccnx:/ccnx/%A5%97%CF%27%E10%0CE%21%7D%EE%C9%87W%FC%D5%FC%24w%

C5%81%29%FA%AC%E6i%85-%02%83g%8A face: 0 flags: 0x17 expires: 2147483072

● ccnx:/myFifthNode face: 8 flags: 0x3 expires: 2147483147

● ccnx:/mySecondNode face: 7 flags: 0x3 expires: 2147483147

● ccnx:/%C1.M.S.localhost face: 0 flags: 0x23 expires: 2147483072

● ccnx:/ccnx/ping face: 0 flags: 0x3 expires: 2147483072

● ccnx:/%C1.M.S.localhost/%C1.M.SRV/ccnd face: 0 flags: 0x3 expires: 2147483072

B-1 Multipath with single name sharing 91

B-1-4 Multipath with single name - Node 5

ccnx5 ccnd[1926] local port 9695 api 4005 start 1326269677.398714 now 1326270255.552877

Content items: 37 accessioned, 37 stored, 36 stale, 0 sparse, 0 duplicate, 46 sent

Interests: 14 names, 0 pending, 0 propagating, 0 noted

Interest totals: 46 accepted, 0 dropped, 39 sent, 0 stuffed

Faces

● face: 0 flags: 0xc pending: 0

● face: 1 flags: 0x400c pending: 0

● face: 2 flags: 0x5012 pending: 0 local: 0.0.0.0:9695

● face: 3 flags: 0x5010 pending: 0 local: 0.0.0.0:9695

● face: 4 flags: 0x4042 pending: 0 local: [::]:9695

● face: 5 flags: 0x4040 pending: 0 local: [::]:9695

● face: 6 flags: 0xc pending: 0 activity: 19

● face: 7 flags: 0x20412 pending: 0 remote: 10.12.15.131:9695 via: 2

● face: 8 flags: 0x20412 pending: 0 remote: 10.12.16.131:9695 via: 2

● face: 9 flags: 0xc pending: 0 activity: 24

Face Activity Rates

Bytes/sec In/Out recv data/intr sent sent data/intr recv

face: 0 0 / 0 0 / 0 0 / 0

face: 6 0 / 0 0 / 0 0 / 0

face: 7 0 / 0 0 / 0 0 / 0

face: 8 0 / 0 0 / 0 0 / 0

face: 9 0 / 0 0 / 0 0 / 0

Forwarding

● ccnx:/mySixthNode face: 8 flags: 0x3 expires: 2147483147

● ccnx:/myThirdNode face: 7 flags: 0x3 expires: 2147483147

● ccnx:/%C1.M.S.neighborhood face: 0 flags: 0x3 expires: 2147483072

● ccnx:/ccnx/%A5%97%CF%27%E10%0CE%21%7D%EE%C9%87W%FC%D5%FC%24w%

C5%81%29%FA%AC%E6i%85-%02%83g%8A face: 0 flags: 0x17 expires: 2147483072

● ccnx:/myFourthNode face: 7 flags: 0x3 expires: 2147483147

● ccnx:/myFifthNode/ping face: 9 flags: 0x3 expires: 35

● ccnx:/mySecondNode face: 8 flags: 0x3 expires: 2147483397

● ccnx:/%C1.M.S.localhost face: 0 flags: 0x23 expires: 2147483072

● ccnx:/ccnx/ping face: 0 flags: 0x3 expires: 2147483072

92 OSPFN Experiments

B-1-5 Multipath with single name - Node 6

ccnx6 ccnd[1884] local port 9695 api 4005 start 1326269678.210260 now 1326270335.842730

Content items: 40 accessioned, 40 stored, 37 stale, 0 sparse, 0 duplicate, 51 sent

Interests: 17 names, 0 pending, 0 propagating, 4 noted

Interest totals: 51 accepted, 0 dropped, 40 sent, 2 stuffed

Faces

● face: 0 flags: 0xc pending: 0

● face: 1 flags: 0x400c pending: 0

● face: 2 flags: 0x5012 pending: 0 local: 0.0.0.0:9695

● face: 3 flags: 0x5010 pending: 0 local: 0.0.0.0:9695

● face: 4 flags: 0x4042 pending: 0 local: [::]:9695

● face: 5 flags: 0x4040 pending: 0 local: [::]:9695

● face: 6 flags: 0xc pending: 0 activity: 25

● face: 7 flags: 0x20412 pending: 0 remote: 10.12.16.130:9695 via: 2

● face: 8 flags: 0x20412 pending: 0 remote: 10.12.17.130:9695 via: 2

Face Activity Rates

Bytes/sec In/Out recv data/intr sent sent data/intr recv

face: 0 31 / 16 0 / 0 0 / 0

face: 6 0 / 0 0 / 0 0 / 0

face: 7 0 / 0 0 / 0 0 / 0

face: 8 0 / 0 0 / 0 0 / 0

Forwarding

● ccnx:/myThirdNode face: 8 flags: 0x3 expires: 2147483312

● ccnx:/%C1.M.S.neighborhood face: 0 flags: 0x3 expires: 2147482992

● ccnx:/ccnx/%A5%97%CF%27%E10%0CE%21%7D%EE%C9%87W%FC%D5%FC%24w%

C5%81%29%FA%AC%E6i%85-%02%83g%8A face: 0 flags: 0x17 expires: 2147482992

● ccnx:/myFifthNode face: 7 flags: 0x3 expires: 2147483617

● ccnx:/myFourthNode face: 7 flags: 0x3 expires: 2147483067

● ccnx:/mySecondNode face: 8 flags: 0x3 expires: 2147483312

● ccnx:/%C1.M.S.localhost face: 0 flags: 0x23 expires: 2147482992

● ccnx:/ccnx/ping face: 0 flags: 0x3 expires: 2147482992

● ccnx:/%C1.M.S.localhost/%C1.M.SRV/ccnd face: 0 flags: 0x3 expires: 2147482992

B-2 Multipath with multiple name sharing 93

B-2 Multipath with multiple name sharing

B-2-1 Multipath with multiple name - Node 2

ccnx2 ccnd[2067] local port 9695 api 4005 start 1326269669.838528 now 1326278615.190375

Content items: 268 accessioned, 268 stored, 267 stale, 0 sparse, 0 duplicate, 315 sent

Interests: 18 names, 0 pending, 0 propagating, 6 noted

Interest totals: 335 accepted, 0 dropped, 277 sent, 4 stuffed

Faces

● face: 0 flags: 0xc pending: 0

● face: 1 flags: 0x400c pending: 0

● face: 2 flags: 0x5012 pending: 0 local: 0.0.0.0:9695

● face: 3 flags: 0x5010 pending: 0 local: 0.0.0.0:9695

● face: 4 flags: 0x4042 pending: 0 local: [::]:9695

● face: 5 flags: 0x4040 pending: 0 local: [::]:9695

● face: 6 flags: 0xc pending: 0 activity: 158

● face: 7 flags: 0x20412 pending: 0 activity: 1 remote: 10.12.12.131:9695 via: 2

● face: 8 flags: 0x20412 pending: 0 activity: 1 remote: 10.12.17.131:9695 via: 2

● face: 11 flags: 0x432 pending: 0 activity: 19 remote: 224.0.23.170:59695

Face Activity Rates

Bytes/sec In/Out recv data/intr sent sent data/intr recv

face: 0 0 / 0 0 / 0 0 / 0

face: 6 0 / 0 0 / 0 0 / 0

face: 7 0 / 0 0 / 0 0 / 0

face: 8 0 / 0 0 / 0 0 / 0

face: 11 0 / 0 0 / 0 0 / 0

Forwarding

● ccnx:/mySixthNode face: 8 flags: 0x3 expires: 2147483417

● ccnx:/local/dhcp face: 11 flags: 0x3 expires: 2147475217

● ccnx:/myThirdNode face: 7 flags: 0x3 expires: 2147483267

● ccnx:/ourRedundantName face: 8 flags: 0x3 expires: 2147482757

● ccnx:/ourRedundantName face: 7 flags: 0x3 expires: 2147482757

● ccnx:/%C1.M.S.neighborhood face: 0 flags: 0x3 expires: 2147474702

● ccnx:/ccnx/%A5%97%CF%27%E10%0CE%21%7D%EE%C9%87W%FC%D5%FC%24w%

C5%81%29%FA%AC%E6i%85-%02%83g%8A face: 0 flags: 0x17 expires: 2147474702

● ccnx:/myFifthNode face: 8 flags: 0x3 expires: 2147482757

● ccnx:/myFourthNode face: 7 flags: 0x3 expires: 2147482757

94 OSPFN Experiments

B-2-2 Multipath with multiple name - Node 3

ccnx3 ccnd[1913] local port 9695 api 4005 start 1326269674.845872 now 1326278617.567024

Content items: 102 accessioned, 102 stored, 101 stale, 0 sparse, 0 duplicate, 151 sent

Interests: 23 names, 0 pending, 0 propagating, 7 noted

Interest totals: 168 accepted, 0 dropped, 111 sent, 1 stuffed

Faces

● face: 0 flags: 0xc pending: 0

● face: 1 flags: 0x400c pending: 0

● face: 2 flags: 0x5012 pending: 0 local: 0.0.0.0:9695

● face: 3 flags: 0x5010 pending: 0 local: 0.0.0.0:9695

● face: 4 flags: 0x4042 pending: 0 local: [::]:9695

● face: 5 flags: 0x4040 pending: 0 local: [::]:9695

● face: 6 flags: 0xc pending: 0 activity: 148

● face: 7 flags: 0x20412 pending: 0 activity: 1 remote: 10.12.12.130:9695 via: 2

● face: 8 flags: 0x20412 pending: 0 activity: 1 remote: 10.12.13.131:9695 via: 2

Face Activity Rates

Bytes/sec In/Out recv data/intr sent sent data/intr recv

face: 0 0 / 0 0 / 0 0 / 0

face: 6 0 / 0 0 / 0 0 / 0

face: 7 0 / 0 0 / 0 0 / 0

face: 8 0 / 0 0 / 0 0 / 0

Forwarding

● ccnx:/mySixthNode face: 7 flags: 0x3 expires: 2147483417

● ccnx:/ourRedundantName face: 8 flags: 0x3 expires: 2147482757

● ccnx:/%C1.M.S.neighborhood face: 0 flags: 0x3 expires: 2147474707

● ccnx:/ccnx/%A5%97%CF%27%E10%0CE%21%7D%EE%C9%87W%FC%D5%FC%24w%

C5%81%29%FA%AC%E6i%85-%02%83g%8A face: 0 flags: 0x17 expires: 2147474707

● ccnx:/myFifthNode face: 8 flags: 0x3 expires: 2147482757

● ccnx:/myFourthNode face: 8 flags: 0x3 expires: 2147482757

● ccnx:/mySecondNode face: 7 flags: 0x3 expires: 2147482397

● ccnx:/%C1.M.S.localhost face: 0 flags: 0x23 expires: 2147474707

● ccnx:/ccnx/ping face: 0 flags: 0x3 expires: 2147474707

● ccnx:/%C1.M.S.localhost/%C1.M.SRV/ccnd face: 0 flags: 0x3 expires: 2147474707

B-2 Multipath with multiple name sharing 95

B-2-3 Multipath with multiple name - Node 4

ccnx4 ccnd[1930] local port 9695 api 4005 start 1326269676.147192 now 1326278643.218972

Content items: 134 accessioned, 134 stored, 133 stale, 0 sparse, 0 duplicate, 189 sent

Interests: 16 names, 0 pending, 0 propagating, 1 noted

Interest totals: 206 accepted, 4 dropped, 147 sent, 2 stuffed

Faces

● face: 0 flags: 0xc pending: 0

● face: 1 flags: 0x400c pending: 0

● face: 2 flags: 0x5012 pending: 0 local: 0.0.0.0:9695

● face: 3 flags: 0x5010 pending: 0 local: 0.0.0.0:9695

● face: 4 flags: 0x4042 pending: 0 local: [::]:9695

● face: 5 flags: 0x4040 pending: 0 local: [::]:9695

● face: 7 flags: 0x20412 pending: 0 remote: 10.12.13.130:9695 via: 2

● face: 8 flags: 0x20412 pending: 0 remote: 10.12.15.130:9695 via: 2

● face: 10 flags: 0xc pending: 0 activity: 39

● face: 11 flags: 0xc pending: 0 activity: 21

Face Activity Rates

Bytes/sec In/Out recv data/intr sent sent data/intr recv

face: 0 0 / 0 0 / 0 0 / 0

face: 7 0 / 0 0 / 0 0 / 0

face: 8 0 / 0 0 / 0 0 / 0

face: 10 0 / 0 0 / 0 0 / 0

face: 11 0 / 0 0 / 0 0 / 0

Forwarding

● ccnx:/ourRedundantName/ping face: 11 flags: 0x3 expires: 45

● ccnx:/mySixthNode face: 8 flags: 0x3 expires: 2147483392

● ccnx:/myThirdNode face: 7 flags: 0x3 expires: 2147483237

● ccnx:/ourRedundantName face: 8 flags: 0x3 expires: 2147482732

● ccnx:/%C1.M.S.neighborhood face: 0 flags: 0x3 expires: 2147474682

● ccnx:/ccnx/%A5%97%CF%27%E10%0CE%21%7D%EE%C9%87W%FC%D5%FC%24w%

C5%81%29%FA%AC%E6i%85-%02%83g%8A face: 0 flags: 0x17 expires: 2147474682

● ccnx:/myFifthNode face: 8 flags: 0x3 expires: 2147482732

● ccnx:/mySecondNode face: 7 flags: 0x3 expires: 2147482732

● ccnx:/%C1.M.S.localhost face: 0 flags: 0x23 expires: 2147474682

96 OSPFN Experiments

B-2-4 Multipath with multiple name - Node 5

ccnx5 ccnd[1926] local port 9695 api 4005 start 1326269677.398714 now 1326278640.514956

Content items: 284 accessioned, 284 stored, 283 stale, 0 sparse, 0 duplicate, 344 sent

Interests: 14 names, 0 pending, 0 propagating, 1 noted

Interest totals: 361 accepted, 4 dropped, 298 sent, 1 stuffed

Faces

● face: 0 flags: 0xc pending: 0

● face: 1 flags: 0x400c pending: 0

● face: 2 flags: 0x5012 pending: 0 local: 0.0.0.0:9695

● face: 3 flags: 0x5010 pending: 0 local: 0.0.0.0:9695

● face: 4 flags: 0x4042 pending: 0 local: [::]:9695

● face: 5 flags: 0x4040 pending: 0 local: [::]:9695

● face: 7 flags: 0x20412 pending: 0 remote: 10.12.15.131:9695 via: 2

● face: 8 flags: 0x20412 pending: 0 remote: 10.12.16.131:9695 via: 2

● face: 10 flags: 0xc pending: 0 activity: 34

● face: 11 flags: 0xc pending: 0 activity: 21

Face Activity Rates

Bytes/sec In/Out recv data/intr sent sent data/intr recv

face: 0 0 / 0 0 / 0 0 / 0

face: 7 0 / 0 0 / 0 0 / 0

face: 8 0 / 0 0 / 0 0 / 0

face: 10 0 / 0 0 / 0 0 / 0

face: 11 0 / 0 0 / 0 0 / 0

Forwarding

● ccnx:/ourRedundantName/ping face: 11 flags: 0x3 expires: 50

● ccnx:/mySixthNode face: 8 flags: 0x3 expires: 2147483397

● ccnx:/myThirdNode face: 7 flags: 0x3 expires: 2147483242

● ccnx:/ourRedundantName face: 7 flags: 0x3 expires: 2147482737

● ccnx:/%C1.M.S.neighborhood face: 0 flags: 0x3 expires: 2147474687

● ccnx:/ccnx/%A5%97%CF%27%E10%0CE%21%7D%EE%C9%87W%FC%D5%FC%24w%

C5%81%29%FA%AC%E6i%85-%02%83g%8A face: 0 flags: 0x17 expires: 2147474687

● ccnx:/myFourthNode face: 7 flags: 0x3 expires: 2147482737

● ccnx:/mySecondNode face: 8 flags: 0x3 expires: 2147482732

● ccnx:/%C1.M.S.localhost face: 0 flags: 0x23 expires: 2147474687

B-2 Multipath with multiple name sharing 97

B-2-5 Multipath with multiple name - Node 6

ccnx6 ccnd[1884] local port 9695 api 4005 start 1326269678.210260 now 1326278633.296220

Content items: 128 accessioned, 128 stored, 128 stale, 0 sparse, 0 duplicate, 186 sent

Interests: 13 names, 0 pending, 0 propagating, 0 noted

Interest totals: 200 accepted, 0 dropped, 138 sent, 3 stuffed

Faces

● face: 0 flags: 0xc pending: 0

● face: 1 flags: 0x400c pending: 0

● face: 2 flags: 0x5012 pending: 0 local: 0.0.0.0:9695

● face: 3 flags: 0x5010 pending: 0 local: 0.0.0.0:9695

● face: 4 flags: 0x4042 pending: 0 local: [::]:9695

● face: 5 flags: 0x4040 pending: 0 local: [::]:9695

● face: 6 flags: 0xc pending: 0 activity: 154

● face: 7 flags: 0x20412 pending: 0 remote: 10.12.16.130:9695 via: 2

● face: 8 flags: 0x20412 pending: 0 remote: 10.12.17.130:9695 via: 2

Face Activity Rates

Bytes/sec In/Out recv data/intr sent sent data/intr recv

face: 0 0 / 0 0 / 0 0 / 0

face: 6 0 / 0 0 / 0 0 / 0

face: 7 0 / 0 0 / 0 0 / 0

face: 8 0 / 0 0 / 0 0 / 0

Forwarding

● ccnx:/myThirdNode face: 8 flags: 0x3 expires: 2147483247

● ccnx:/ourRedundantName face: 7 flags: 0x3 expires: 2147482737

● ccnx:/%C1.M.S.neighborhood face: 0 flags: 0x3 expires: 2147474692

● ccnx:/ccnx/%A5%97%CF%27%E10%0CE%21%7D%EE%C9%87W%FC%D5%FC%24w%

C5%81%29%FA%AC%E6i%85-%02%83g%8A face: 0 flags: 0x17 expires: 2147474692

● ccnx:/myFifthNode face: 7 flags: 0x3 expires: 2147482742

● ccnx:/myFourthNode face: 7 flags: 0x3 expires: 2147482737

● ccnx:/mySecondNode face: 8 flags: 0x3 expires: 2147482382

● ccnx:/%C1.M.S.localhost face: 0 flags: 0x23 expires: 2147474692

● ccnx:/ccnx/ping face: 0 flags: 0x3 expires: 2147474692

● ccnx:/%C1.M.S.localhost/%C1.M.SRV/ccnd face: 0 flags: 0x3 expires: 2147474692

98 OSPFN Experiments

Appendix C

Combined OSPFN and CCNx-DHCP
Experiments

100 Combined OSPFN and CCNx-DHCP Experiments

C-1 CCNx-DHCP client connected to OSPFN network

ccnx1 ccnd[1900] local port 9695 api 4005 start 1326269705.474222 now 1326278613.038448

Content items: 24 accessioned, 24 stored, 24 stale, 0 sparse, 0 duplicate, 25 sent

Interests: 18 names, 0 pending, 0 propagating, 6 noted

Interest totals: 25 accepted, 0 dropped, 24 sent, 0 stuffed

Faces

● face: 0 flags: 0xc pending: 0

● face: 1 flags: 0x400c pending: 0

● face: 2 flags: 0x5012 pending: 0 local: 0.0.0.0:9695

● face: 3 flags: 0x5010 pending: 0 local: 0.0.0.0:9695

● face: 4 flags: 0x4042 pending: 0 local: [::]:9695

● face: 5 flags: 0x4040 pending: 0 local: [::]:9695

● face: 7 flags: 0x432 pending: 0 activity: 19 remote: 224.0.23.170:59695

Face Activity Rates

Bytes/sec In/Out recv data/intr sent sent data/intr recv

face: 0 0 / 0 0 / 0 0 / 0

face: 7 9 / 0 0 / 0 0 / 0

Forwarding

● ccnx:/local/dhcp face: 7 flags: 0x3 expires: 2147475237

● ccnx:/%C1.M.S.neighborhood face: 0 flags: 0x3 expires: 2147474742

● ccnx:/ccnx/%A5%97%CF%27%E10%0CE%21%7D%EE%C9%87W%FC%D5%FC%24w%

C5%81%29%FA%AC%E6i%85-%02%83g%8A face: 0 flags: 0x17 expires: 2147474742

● ccnx:/ face: 7 flags: 0x3 expires: 2147475237

● ccnx:/%C1.M.S.localhost face: 0 flags: 0x23 expires: 2147474742

● ccnx:/ccnx/ping face: 0 flags: 0x3 expires: 2147474742

● ccnx:/%C1.M.S.localhost/%C1.M.SRV/ccnd face: 0 flags: 0x3 expires: 2147474742

C-2 Ping results from client 101

C-2 Ping results from client

1 . / ccnping ccnx : / ourRedundantName

2 CCNPING ccnx : / ourRedundantName

3 content from ccnx : / ourRedundantName : random_number = 257297670 rtt =
108 .277ms body = ping ack node5

4 content from ccnx : / ourRedundantName : random_number = 1780917240
rtt = 125 .244ms body = ping ack node4

5 content from ccnx : / ourRedundantName : random_number = 101957390 rtt =
110 .694ms body = ping ack node4

6 content from ccnx : / ourRedundantName : random_number = 688053013 rtt =
125 .358ms body = ping ack node4

7 content from ccnx : / ourRedundantName : random_number = 129872471 rtt =
125 .261ms body = ping ack node4

8 content from ccnx : / ourRedundantName : random_number = 1328907276
rtt = 125 .291ms body = ping ack node4

9 content from ccnx : / ourRedundantName : random_number = 711068187 rtt =
117 .381ms body = ping ack node4

10 content from ccnx : / ourRedundantName : random_number = 1912353359
rtt = 108 .058ms body = ping ack node4

11 content from ccnx : / ourRedundantName : random_number = 1226765568
rtt = 125 .309ms body = ping ack node4

12 content from ccnx : / ourRedundantName : random_number = 35266697 rtt =
110 .104ms body = ping ack node4

13 content from ccnx : / ourRedundantName : random_number = 1995088542
rtt = 125 .405ms body = ping ack node4

14 content from ccnx : / ourRedundantName : random_number = 1912051879
rtt = 125 .261ms body = ping ack node4

15 content from ccnx : / ourRedundantName : random_number = 210346916 rtt =
125 .306ms body = ping ack node5

16 content from ccnx : / ourRedundantName : random_number = 219609515 rtt =
140 .765ms body = ping ack node5

17 content from ccnx : / ourRedundantName : random_number = 13340366 rtt =
109 .033ms body = ping ack node5

18 content from ccnx : / ourRedundantName : random_number = 87208733 rtt =
125 .047ms body = ping ack node5

19 content from ccnx : / ourRedundantName : random_number = 1242811001
rtt = 78.593ms body = ping ack node5

20 content from ccnx : / ourRedundantName : random_number = 1939781540
rtt = 130 .124ms body = ping ack node5

21 content from ccnx : / ourRedundantName : random_number = 1091973776
rtt = 125 .448ms body = ping ack node5

22 content from ccnx : / ourRedundantName : random_number = 1782153704
rtt = 125 .291ms body = ping ack node5

23 content from ccnx : / ourRedundantName : random_number = 626884905 rtt =
125 .467ms body = ping ack node5

24 content from ccnx : / ourRedundantName : random_number = 831496770 rtt =
125 .208ms body = ping ack node5

25 content from ccnx : / ourRedundantName : random_number = 301668207 rtt =
125 .609ms body = ping ack node5

26 content from ccnx : / ourRedundantName : random_number = 791752698 rtt =
125 .246ms body = ping ack node5

102 Combined OSPFN and CCNx-DHCP Experiments

Appendix D

Proposal Implementation

D-1 Dynamic Host Configuration and Name Generation screen

capture

A typical initialization of a client entering a network dynamically configurable using the
DHCNGP. The client and server HostIDs are replaced with the human readable names ccnx1
and ccnx2. The client receives a non-aggregational gateway forwarding rule (ccnx:/) in order
to access information and receives the name ccnx:/myEntrypointNode/ccnx1 which it can
use to share information and further aggregate upon.

1 Welcome to the Dynamic Host Configuration and Name Generation daemon .
2 HostID = ccnx1

3 HostName = ccnx1

4 Creating multicast faces .
5 Sending discovery message to local subnets

6 A discovery packet will be send .
7 Sending Discover message from ccnx1 to _null

8 Receiving a message from ccnx2 to ccnx1

9 Processing the Offer message

10 Done waiting for Offer−responses , calculating preferred forwarding table

11 The following aggregationTable has formed . The usage of dynamically found

rules is requested .
12 Entrypoint : / Cost : 40 pathVector : /ccnx2 aggregate

: false Name : null

13 Entrypoint : /myEntrypointNode Cost : 30 pathVector : /
ccnx2 aggregate : true Name : /myEntrypointNode/ccnx1

14 Sending Request message from ccnx1 to ccnx2

15 Receiving a message from ccnx2 to ccnx1

16 Processing the Acknowledgement message

17 Creating face to host ccnx2 on 1 0 . 1 2 . 1 4 . 1 3 0
18 Adding forwarding rule for entrypoint /
19 Adding forwarding rule for entrypoint /myEntrypointNode

ccnx:/
ccnx:/myEntrypointNode/ccnx1

104 Proposal Implementation

Bibliography

[1] Carlisle Adams and Steve Lloyd. Understanding PKI second edition. Pearson Education,
2002.

[2] Niels L.M. van Adrichem. Multicast Bug Report. Apr. 2012. url: http://redmine.

ccnx.org/issues/100045.

[3] Niels L.M. van Adrichem. NvanAdrichem/CCNx-DHCNGP. Mar. 2012. url: https://

github.com/NvanAdrichem/CCNx-DHCNGP.

[4] R. Arends et al. RFC 4033 DNS Security Introduction and Requirements. Mar. 2005.
url: http://tools.ietf.org/html/rfc4033.

[5] T. Bates et al. RFC 2858 Multiprotocol Extension for BGP-4. June 2000. url: http://

tools.ietf.org/html/rfc2858.

[6] L. Berger et al. RFC 5250 The OSPF Opaque LSA Option. July 2008. url: http://

tools.ietf.org/html/rfc5250.

[7] S. Brim et al. LISP-CONS: A Content distribution Overlay Network Service for LISP.
Apr. 2008. url: http://tools.ietf.org/html/draft-meyer-lisp-cons-04.

[8] R. Callon. RFC 1198 Use of OSI IS-IS for Routing in TCP/IP and Dual Environments.
Dec. 1990. url: http://www.rfc-editor.org/rfc/rfc1195.txt.

[9] B. Carpenter. RFC 6343 Advisory Guidelines for 6to4 Deployment. Aug. 2011. url:
http://tools.ietf.org/html/rfc6343.

[10] Palo Alto Research Center. Canonical CCNx Ordering. Apr. 2012. url: http://www.

ccnx.org/releases/latest/doc/technical/CanonicalOrder.html.

[11] Palo Alto Research Center. CCNx. June 2012. url: http://www.ccnx.org/.

[12] Palo Alto Research Center. CCNx Basic Name Conventions. Feb. 2012. url: http://

www.ccnx.org/releases/latest/doc/technical/NameConventions.html.

[13] Palo Alto Research Center. CCNx Binary Encoding (ccnb). Apr. 2012. url: http://

www.ccnx.org/releases/latest/doc/technical/BinaryEncoding.html.

[14] Palo Alto Research Center. CCNx ContentObject. June 2012. url: http://www.ccnx.

org/releases/latest/doc/technical/ContentObject.html.

http://redmine.ccnx.org/issues/100045
http://redmine.ccnx.org/issues/100045
https://github.com/NvanAdrichem/CCNx-DHCNGP
https://github.com/NvanAdrichem/CCNx-DHCNGP
http://tools.ietf.org/html/rfc4033
http://tools.ietf.org/html/rfc2858
http://tools.ietf.org/html/rfc2858
http://tools.ietf.org/html/rfc5250
http://tools.ietf.org/html/rfc5250
http://tools.ietf.org/html/draft-meyer-lisp-cons-04
http://www.rfc-editor.org/rfc/rfc1195.txt
http://tools.ietf.org/html/rfc6343
http://www.ccnx.org/releases/latest/doc/technical/CanonicalOrder.html
http://www.ccnx.org/releases/latest/doc/technical/CanonicalOrder.html
http://www.ccnx.org/
http://www.ccnx.org/releases/latest/doc/technical/NameConventions.html
http://www.ccnx.org/releases/latest/doc/technical/NameConventions.html
http://www.ccnx.org/releases/latest/doc/technical/BinaryEncoding.html
http://www.ccnx.org/releases/latest/doc/technical/BinaryEncoding.html
http://www.ccnx.org/releases/latest/doc/technical/ContentObject.html
http://www.ccnx.org/releases/latest/doc/technical/ContentObject.html

106 BIBLIOGRAPHY

[15] Palo Alto Research Center. CCNx DTAG Values. Apr. 2012. url: http://www.ccnx.

org/releases/latest/doc/technical/DTAG.html.

[16] Palo Alto Research Center. CCNx DTD. Apr. 2012. url: http : //www.ccnx.org/

releases/latest/doc/technical/dtd.html.

[17] Palo Alto Research Center. CCNx InterestMessage. June 2012. url: http://www.ccnx.

org/releases/latest/doc/technical/InterestMessage.html.

[18] Palo Alto Research Center. CCNx Main Schema. Apr. 2012. url: http://www.ccnx.

org/releases/latest/doc/technical/xsd.html.

[19] Palo Alto Research Center. CCNx Protocol. Mar. 2012. url: www.ccnx.org/releases/

latest/doc/technical/CCNxProtocol.html.

[20] Palo Alto Research Center. CCNx Signature Generation and Verification.
June 2012. url: http : //www.ccnx.org/releases/latest/doc/technical/

SignatureGeneration.html.

[21] Palo Alto Research Center. CCNx Technical Documentation. July 2012. url: http://

www.ccnx.org/releases/latest/doc/technical/.

[22] Palo Alto Research Center. Content-Centric Networking in C Documentation. July
2012. url: http://www.ccnx.org/releases/latest/doc/ccode/html/index.html.

[23] Palo Alto Research Center. Content-Centric Networking in Java Documentation. July
2012. url: http : //www.ccnx.org/releases/latest/doc/javacode/html/index.

html.

[24] Palo Alto Research Center. Named Data Networking. Nov. 2011. url: http://www.

named-data.net.

[25] Palo Alto Research Center. Named Data Networking - Resources. June 2012. url:
http://www.named-data.net/education.html.

[26] CIDR. CIDR Report. June 2012. url: http://www.cidr-report.org/as2.0/.

[27] Christian Dannewitz and Thorsten Biermann. “Prototyping a Network of Information”.
In: IEEE Local Computer Networks 34 (2009). url: http://www.ieeelcn.org/prior/

LCN34/lcn34demos/lcn-demo2009_dannewitz.pdf.

[28] R. Droms. RFC 2131 Dynamic Host Configuration Protocol. Mar. 1997. url: http://

www.ietf.org/rfc/rfc2131.txt.

[29] P. Erdõs and A. Rényi. “On the evolution of random graphs”. In: Publications of the
Mathematical Institute of the Hungarian Academy of Services 5 ().

[30] D. Farinacci. Locator/ID Separation Protocol (LISP) draft-ietf-lisp-23. May 2012. url:
http://tools.ietf.org/html/draft-ietf-lisp-23.

[31] Robert W. Floyd. “Algorithm 97: Shortest Path”. In: Communications of the ACM 5
(6 June 1962).

[32] V. Fuller. LISP Alternative Topology (LISP+ALT). Dec. 2011. url: http://tools.

ietf.org/html/draft-ietf-lisp-alt-10.

[33] Vince Fuller and Glen Wiley. LISP-DDT. May 2012. url: http://www.nanog.org/

meetings/nanog55/presentations/Tuesday/Fuller.pdf.

http://www.ccnx.org/releases/latest/doc/technical/DTAG.html
http://www.ccnx.org/releases/latest/doc/technical/DTAG.html
http://www.ccnx.org/releases/latest/doc/technical/dtd.html
http://www.ccnx.org/releases/latest/doc/technical/dtd.html
http://www.ccnx.org/releases/latest/doc/technical/InterestMessage.html
http://www.ccnx.org/releases/latest/doc/technical/InterestMessage.html
http://www.ccnx.org/releases/latest/doc/technical/xsd.html
http://www.ccnx.org/releases/latest/doc/technical/xsd.html
www.ccnx.org/releases/latest/doc/technical/CCNxProtocol.html
www.ccnx.org/releases/latest/doc/technical/CCNxProtocol.html
http://www.ccnx.org/releases/latest/doc/technical/SignatureGeneration.html
http://www.ccnx.org/releases/latest/doc/technical/SignatureGeneration.html
http://www.ccnx.org/releases/latest/doc/technical/
http://www.ccnx.org/releases/latest/doc/technical/
http://www.ccnx.org/releases/latest/doc/ccode/html/index.html
http://www.ccnx.org/releases/latest/doc/javacode/html/index.html
http://www.ccnx.org/releases/latest/doc/javacode/html/index.html
http://www.named-data.net
http://www.named-data.net
http://www.named-data.net/education.html
http://www.cidr-report.org/as2.0/
http://www.ieeelcn.org/prior/LCN34/lcn34demos/lcn-demo2009_dannewitz.pdf
http://www.ieeelcn.org/prior/LCN34/lcn34demos/lcn-demo2009_dannewitz.pdf
http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc2131.txt
http://tools.ietf.org/html/draft-ietf-lisp-23
http://tools.ietf.org/html/draft-ietf-lisp-alt-10
http://tools.ietf.org/html/draft-ietf-lisp-alt-10
http://www.nanog.org/meetings/nanog55/presentations/Tuesday/Fuller.pdf
http://www.nanog.org/meetings/nanog55/presentations/Tuesday/Fuller.pdf

BIBLIOGRAPHY 107

[34] R. Gilligan and E. Nordmark. RFC 2893 Transition Mechanisms for IPv6 Hosts and
Routers. Aug. 2000. url: http://tools.ietf.org/html/rfc2893.

[35] Todd Greanier. Discover the secrets of the Java Serialization API. July
2000. url: http : //java.sun.com/developer/technicalArticles/Programming/

serialization/.

[36] Miniwatts Marketing Group. World Internet Usage Statistics. Aug. 2012. url: http://

www.internetworldstats.com/stats.htm.

[37] R. Hinden and S. Deering. RFC 4291 IP Version 6 Addressing Architecture. Feb. 2006.
url: http://tools.ietf.org/html/rfc4291.

[38] Van Jacobson et al. “Custodian-Based Information Sharing”. In: IEEE Communications
Magazine 50 (7 July 2012).

[39] Van Jacobson et al. “Networking Named Content”. In: CoNEXT 2009 (2009).

[40] Lorï£¡nd Jakab et al. “LISP-TREE: A DNS Hierarchy to Support the LISP Mapping
System”. In: IEEE Journal on Selected Areas in Communications 28.8 (Oct. 2010),
pp. 1332 –1343.

[41] Paul Jakma et al. Quagga Software Routing Suite. 2012. url: http://www.nongnu.

org/quagga.

[42] P. Koch. DNS Glue RR Survey and Terminology Clarification draft-koch-dns-glue-
clarifications-04. July 2012. url: draft-koch-dns-glue-clarifications-04.

[43] Teemu Koponen et al. “A Data-Oriented (and Beyond) Network Architecture”. In:
SIGCOMM (2007).

[44] E. Lear. NERD: A Not-so-novel EID to RLOC Database. Apr. 2012. url: http://

tools.ietf.org/html/draft-lear-lisp-nerd-09.

[45] Hogbin Luo, Yajuan Qin, and Hongke Zhang. “A DHT-Based Identifier-to-Locator
Mapping Approach for a Scalable Internet”. In: IEEE Transactions on Parallel and
Distributed Systems 20 (12 Dec. 2009).

[46] Greg Lutostanski and Beichuan Zhang. NDN-Routing/ccnx-dhcp. Dec. 2011. url:
https://github.com/NDN-Routing/ccnx-dhcp.

[47] G. Malkin. RFC 1723 RIP Version 2 Carrying Additional Information. Nov. 1994. url:
http://tools.ietf.org/html/rfc1723.

[48] Laurent Mathy and Luigi Iannone. “LISP-DHT: Towards a DHT to map identifiers
onto locators”. In: ReArch’08 (Dec. 2008). url: http://conferences.sigcomm.org/

co-next/2008/CoNext08_proceedings/ReArch08Papers/1569143769.pdf.

[49] D. Meyer and K. Patel. RFC 4274 BGP-4 Protocol Analysis. Jan. 2006. url: http://

tools.ietf.org/html/rfc4274.

[50] David Meyer. “LISP-TREE: A DNS Hierarchy to Support the LISP Mapping System”.
In: Cisco: The Internet Protocol Journal 11.1 (Mar. 2008).

[51] Piet Van Mieghem. Data Communications Networking. Techne Press, Amsterdam, 2006.

[52] P. Mockapetris. RFC 1034 DOMAIN NAMES - CONCEPTS AND FACILITIES. Nov.
1987. url: http://www.ietf.org/rfc/rfc1034.txt.

http://tools.ietf.org/html/rfc2893
http://java.sun.com/developer/technicalArticles/Programming/serialization/
http://java.sun.com/developer/technicalArticles/Programming/serialization/
http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm
http://tools.ietf.org/html/rfc4291
http://www.nongnu.org/quagga
http://www.nongnu.org/quagga
draft-koch-dns-glue-clarifications-04
http://tools.ietf.org/html/draft-lear-lisp-nerd-09
http://tools.ietf.org/html/draft-lear-lisp-nerd-09
https://github.com/NDN-Routing/ccnx-dhcp
http://tools.ietf.org/html/rfc1723
http://conferences.sigcomm.org/co-next/2008/CoNext08_proceedings/ReArch08Papers/1569143769.pdf
http://conferences.sigcomm.org/co-next/2008/CoNext08_proceedings/ReArch08Papers/1569143769.pdf
http://tools.ietf.org/html/rfc4274
http://tools.ietf.org/html/rfc4274
http://www.ietf.org/rfc/rfc1034.txt

108 BIBLIOGRAPHY

[53] J. Moy. RFC 2328 OSPF Version 2. Apr. 1998. url: http://tools.ietf.org/html/

rfc2328.

[54] NetInf. NetInf. 2012. url: http://www.netinf.org.

[55] Jon Postel. RFC 791 INTERNET PROTOCOL. Sept. 1981. url: http://tools.ietf.

org/html/rfc791.

[56] SIGCOMM Award Recipients. June 2012. url: http : //www.sigcomm.org/awards/

sigcomm-awards.

[57] Richard A. Steenbergen and Rob Mosher. An Inconvenient Prefix: Is Routing Table Pol-
lution Leading To Global Datacenter Warming. Oct. 2010. url: http://www.nanog.

org/meetings/nanog50/presentations/Monday/NANOG50.Talk49.Steenbergen.

routingtable.pdf.

[58] Ion Stoica et al. “Chord: A Scalable Peer-to-peer Lookup Service for Internet Appli-
cations”. In: SIGCOMM (Aug. 2001). url: http : //pdos.csail.mit.edu/papers/

chord:sigcomm01/chord_sigcomm.pdf.

[59] Stanford University. TRIAD home page. Nov. 2011. url: http://www-dsg.stanford.

edu/triad/.

[60] Verisign. FORM 8-K CURRENT REPORT. Sept. 2010. url: http : //www.

cidr-report.org/as2.0/.

[61] Cheng Yi. NDN-Routing/ccnping. Jan. 2012. url: https : //github.com/

NDN-Routing/ccnping.

[62] Cheng Yi. Properties (Java 2 Platform SE v1.4.2. July 2012. url: http : //docs.

oracle.com/javase/1.4.2/docs/api/java/util/Properties.html.

[63] Cheng Yi et al. NDN-Routing/OSPFN. Dec. 2011. url: https : //github.com/

NDN-Routing/OSPFN.

[64] Lixia Zhang et al. Named Data Networking (NDN) Project NDN-0001. Tech. rep. Oct.
2010.

http://tools.ietf.org/html/rfc2328
http://tools.ietf.org/html/rfc2328
http://www.netinf.org
http://tools.ietf.org/html/rfc791
http://tools.ietf.org/html/rfc791
http://www.sigcomm.org/awards/sigcomm-awards
http://www.sigcomm.org/awards/sigcomm-awards
http://www.nanog.org/meetings/nanog50/presentations/Monday/NANOG50.Talk49.Steenbergen.routingtable.pdf
http://www.nanog.org/meetings/nanog50/presentations/Monday/NANOG50.Talk49.Steenbergen.routingtable.pdf
http://www.nanog.org/meetings/nanog50/presentations/Monday/NANOG50.Talk49.Steenbergen.routingtable.pdf
http://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf
http://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf
http://www-dsg.stanford.edu/triad/
http://www-dsg.stanford.edu/triad/
http://www.cidr-report.org/as2.0/
http://www.cidr-report.org/as2.0/
https://github.com/NDN-Routing/ccnping
https://github.com/NDN-Routing/ccnping
http://docs.oracle.com/javase/1.4.2/docs/api/java/util/Properties.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/util/Properties.html
https://github.com/NDN-Routing/OSPFN
https://github.com/NDN-Routing/OSPFN

	Front Matter
	Cover Page
	Title Page
	Abstract
	Table of Contents

	Main Matter
	Introduction
	Thesis structure

	Preliminary Research
	History
	Basic techniques of Named Data Networking
	Forwarding and Routing
	Naming
	Looping and TTL
	Reliability and Flow control
	Encapsulation
	XML Representation and Encoding
	Strategy
	Authenticity and Security

	Related Work
	Information Discovery
	Dynamic End-Host Configuration
	Transition Mechanisms

	Dynamic Configuration and Sharing of Information
	Experiments: Information Discovery
	Experiment Environment
	CCNx-DHCP Experiments
	OSPFN Experiments
	Combined OSPFN and CCNx-DHCP
	Experiment conclusions

	Proposal: Recursive Name Aggregation
	Basic Dynamic Host Configuration and Name Generation Description
	Formal Dynamic Host Configuration and Name Generation Protocol Description
	Enabling data access
	Implementation
	Future work
	Conclusion

	Mapping
	Related Work
	DNS
	Location Identifier Separation Protocol

	Proposal
	Signing and Encapsulation
	Strategy

	DNS over NDN
	Conclusion

	Dynamic Tunnel Discovery
	Related Work
	OSPF
	OSPFN

	Proposal
	Algorithm
	Varying cost functions
	Flat cost function
	Subsequent penalizing cost functions
	Faster growing penalty cost function

	Simulations
	Future work
	Conclusion

	Conclusion
	Future work

	Appendices
	Files CCNx-DHCP Experiments
	Single server single client
	Single Server Single Client - Node 1
	Single Server Single client - Node 2
	Single Server Multiple Clients - Node 1
	Single Server Multiple Clients - Node 2
	Single Server Multiple Clients - Node 3

	Multiple server
	Multiple Server - Node 1
	Multiple Server - Node 2
	Multiple Server - Node 3 - 1st Result
	Multiple Server - Node 3 - 2nd Result

	Multiple Interfaces
	Multiple Interfaces - Server Node 3

	OSPFN Experiments
	Multipath with single name sharing
	Multipath with single name - Node 2
	Multipath with single name - Node 3
	Multipath with single name - Node 4
	Multipath with single name - Node 5
	Multipath with single name - Node 6

	Multipath with multiple name sharing
	Multipath with multiple name - Node 2
	Multipath with multiple name - Node 3
	Multipath with multiple name - Node 4
	Multipath with multiple name - Node 5
	Multipath with multiple name - Node 6

	Combined OSPFN and CCNx-DHCP Experiments
	CCNx-DHCP client connected to OSPFN network
	Ping results from client

	Proposal Implementation
	Dynamic Host Configuration and Name Generation screen capture

	Back Matter
	Bibliography

