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Model Predictive Control for Continuous Piecewise Affine Systems

Using Optimistic Optimization

Jia Xu1, Ton van den Boom1, Lucian Buşoniu2, and Bart De Schutter1

Abstract— This paper considers model predictive control for
continuous piecewise affine (PWA) systems. In general, this
leads to a nonlinear, nonconvex optimization problem. We
introduce an approach based on optimistic optimization to solve
the resulting optimization problem. Optimistic optimization
is based on recursive partitioning of the feasible set and is
characterized by an efficient exploration strategy seeking for
the optimal solution. The advantage of optimistic optimization
is that one can guarantee bounds on the suboptimality with
respect to the global optimum for a given computational
budget. The 1-norm and ∞-norm objective functions often
considered in model predictive control for continuous PWA
systems are continuous PWA functions. We derive expressions
for the core parameters required by optimistic optimization
for the resulting optimization problem. By applying optimistic
optimization, a sequence of control inputs is designed satisfying
linear constraints. A bound on the suboptimality of the returned
solution is also discussed. The performance of the proposed
approach is illustrated with a case study on adaptive cruise
control.

I. INTRODUCTION

Piecewise affine (PWA) systems [1] are a subclass of

hybrid systems, containing both continuous and discrete

dynamics. PWA systems are defined by a polyhedral partition

of the state and input space where each polyhedron is

associated with an affine dynamical description. It has been

proved [2] that continuous PWA systems are equivalent

to other classes of hybrid systems, such as mixed logical

dynamical systems and max-min-plus-scaling systems. Based

on this equivalence between continuous PWA systems and

mixed logical dynamical systems, the MPC problem for

continuous PWA systems can be written as mixed integer

linear programming (MILP) problems [3]. However, the

efficiency of solving the resulting MILP problem is limited

by the number of integer variables. The number of integer

variables is proportional to the value of the prediction horizon

and the number of polyhedral partitions of the considered

PWA system. The complexity of current MILP algorithms

increases in the worst case exponentially if the number of

integer variables increases. On the other hand, from the

equivalence between continuous PWA systems and max-min-

plus-scaling systems, the corresponding MPC optimization

problem can be solved by a sequence of linear programming

(LP) problems [4]. Nevertheless, the complexity of that

approach is determined by the number of LP problems to be
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({j.xu-3,a.j.j.vandenboom,b.deschutter}
@tudelft.nl).

2Lucian Buşoniu is with the Automation Department, Technical Univer-
sity of Cluj-Napoca, Romania (lucian@busoniu.net).

solved, which may increase rapidly if the prediction horizon

increases. Therefore, trying to find an efficient approach with

guaranteed performance for solving the continuous PWA-

MPC optimization problem is the motivation of this paper.

Optimistic optimization [5], [6] is a class of optimization

algorithms based on recursively partitioning the feasible set.

The regions that most likely contain the optimal solution are

first refined. A sequence of feasible solutions are generated

during the iterations and the best solution is returned at the

end of the algorithm. The gap between the best value returned

by the algorithm and the real global optimum can be made

arbitrarily small as the computational budget increases. The

rate of convergence of optimistic optimization is character-

ized using a measure of the problem complexity, called near-

optimality dimension. Optimistic optimization can be applied

to general optimization problem of nonlinear functions given

evaluations of the function over general search spaces; in

addition, the evaluations may be perturbed by noise [7]. In a

previous paper [8], we have extended optimistic optimization

to solve the model predictive control problem for max-plus

linear systems. Optimistic optimization has also been used

to solve the consensus problem in multi-agent systems [9].

Moreover, optimistic optimization has been adapted to plan-

ning resulting in a class of optimistic planning algorithms

[10], [11], [12].

In this paper, we propose an approach based on optimistic

optimization to solve the MPC problem for continuous PWA

systems. At each time step, a sequence of control inputs

is computed by using optimistic optimization to solve a

nonlinear, nonconvex optimization problem subject to linear

constraints. The feasible set is transformed into a hyperbox

by applying the penalty function method. Considering a 1-

norm and ∞-norm objective function, we design a dedicated

semi-metric and the expressions for the parameters of the

requirements for optimistic optimization. These requirements

characterize the suboptimality of the solution. We show that

the near-optimality dimension of the resulting optimization

problem is zero, which results in the suboptimality bound

of the returned solution decreasing exponentially in the

computational budget. This implies that the MPC problem for

continuous PWA systems is easy to solve by using optimistic

optimization. Compared with the MILP method which pro-

vides the true optimum, the solution returned by optimistic

optimization given a finite computational budget is near-

optimal, but optimistic optimization can be computationally

efficient when the number of polyhedral partitions of the

PWA system is large.

This paper is organized as follows. In Section II, discrete-
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time PWA systems and the corresponding MPC problem

are presented. In Section III, the background of optimistic

optimization is introduced. In Section IV, the proposed

approach is presented and the suboptimality is discussed.

In Section V, the effectiveness of the proposed approach is

illustrated with an adaptive cruise control case study.

II. PROBLEM STATEMENT

Consider the discrete-time PWA system

x(k + 1) = Aix(k) + Biu(k) + gi, for

[

x(k)
u(k)

]

∈ Ωi, (1)

where Ai, Bi, and gi are the system matrices and vectors

for i = 1, . . . , N . Each region Ωi is a polyhedron given as

Ωi = {Fix(k) + Giu(k) ≤ hi} where Fi, Gi, and hi are

suitable matrices and vectors and {Ωi}
N
i=1 is a polyhedral

partition of the state and input space.

As given in [3], the system (1) can be represented as

x(k + 1) =

N
∑

i=1

zi(k),

zi(k) , [Aix(k) + Biu(k) + gi]σi(k),
N

∑

i=1

σi(k) = 1,

E1ku(k) + E2kσ(k) + E3kz(k) ≤ E4kx(k) + E5k

(2)

where σi(k) ∈ {0, 1}, σ(k) =
[

σ1(k) · · · σN (k)
]T

,

z(k) =
[

z1(k) · · · zN (k)
]T

, and E1k, . . . , E5k are linear

constraint matrices at time step k. Systems in the form of

(2) are a specific type of mixed logical dynamical systems.

Proposition 1: [13], [14] If f : R
n → R is a continuous

PWA function, then f can be represented in the max-min

canonical form

f(w) = max
i∈I

min
j∈Ji

{αT
ijw + βij} (3)

where I,Ji are finite index sets and αij ∈ R
n, βij ∈ R for

all i, j. For vector-valued functions, the above forms exist

component-wise.

Systems that can be described as

x(k + 1) = M(x(k), u(k)), (4)

where M is an expression of x(k) and u(k) in the form

of (3) with w = [xT uT ]T are called max-min-plus-scaling

systems. By introducing additional auxiliary variables or

extra constraints, the equivalence between (1) and (4) can

be established (see [2] for details). If the system (1) is

continuous (i.e. the right-hand side of (1) is continuous on

the boundary of any two neighbouring regions), then a direct

connection between (1) and (4) can be derived following

Proposition 1 (see [4] for details).

Let Np and Nc be the prediction horizon

and the control horizon. Define the vectors

x̃(k) =
[

xT (k + 1) · · · xT (k + Np)
]T

, ũ(k) =
[

uT (k) · · · uT (k + Nc − 1)
]T

. At time step k, the MPC

problem for the system (1) can be written as

min
ũ(k)

J(ũ(k)) (5)

subject to the prediction model (1), (2) or (4),

u(k + s) = u(k + Nc − 1) for s = Nc, . . . , Np − 1,

x(k) ∈ X, u(k) ∈ U, for all k,

where X and U are the feasible set of the states and the

control inputs and correspond to the physical and operational

constraints of the system. An optimal control sequence ũ(k)
is obtained by solving the problem (5); subsequently, only

the first control input u(k) is applied to the system. At the

next time step, this process is repeated.

Let r be a given reference signal. Define

∆u(k) = u(k) − u(k − 1). (6)

In this paper, we consider the following objective function

J(ũ(k)) = ‖x̃(k) − r̃(k)‖p + λ‖∆ũ(k)‖q (7)

where p, q ∈ {1,∞}, λ is a nonnegative scalar, and

r̃(k) =
[

rT (k + 1) · · · rT (k + Np)
]T

, ∆ũ(k) =
[

∆uT (k) · · · ∆uT (k + Nc − 1)
]T

.

Remark 2: If the system (2) is used as the prediction

model, the PWA-MPC problem (5) can be recast into a mixed

integer linear programming (MILP) problem following the

procedures in [3] where the number of variables and con-

straints is proportional to the product nNNp. However, in

practice, the worst-case complexity of the MILP problem is

exponential in nNNp.

III. OPTIMISTIC OPTIMIZATION

In this section, we introduce optimistic optimization for

the minimization of a function f over a set U . The notations

f and U remain generic and this section is based on [5].

The implementation of optimistic optimization is founded

on a hierarchical partitioning of U . For any integer h ∈
{0, 1, . . .}, the set U is split into Kh cells with K a finite

positive integer. This partition may be represented by a

tree structure; thus, K is the number of branches at each

node. Each cell is denoted as Uh,d, d ∈ {0, . . . ,Kh}, and

corresponds to a node (h, d) in the tree (with h the depth

and d the node index). The root node of the tree corresponds

to the whole region U and is denoted as U0,0. Expanding a

node (h, d) corresponds to splitting the cell Uh,d into K sub-

cells {Uh+1,di |i = 1, . . . ,K}. Each cell Uh,d is represented

by a point uh,d ∈ Uh,d where f may be evaluated.

Definition 3 (Semi-metric): A semi-metric on a set U is a

function ℓ : U ×U → R
+ satisfying the following conditions

for any u, v ∈ U : 1) ℓ(u, v) = ℓ(v, u) ≥ 0; 2) ℓ(u, v) = 0 if

and only if u = v.

Requirements for optimistic optimization. The follow-

ing conditions need to be satisfied for avoiding degenerated

partitions and for being able to characterize the suboptimality

(see Remark 4 for details):

1. There exists a semi-metric ℓ defined on U such that for all

u ∈ U , f(u) − f(u∗) ≤ ℓ(u, u∗), where f(u∗) = min
u∈U

f(u).

2. There exists a decreasing sequence {δ(h)}∞h=0 with

δ(h) > 0, such that for any h ∈ {0, 1, . . .}, for any cell Uh,d

at depth h, we have supu∈Uh,d ℓ(u, uh,d) ≤ δ(h), where δ(h)



Algorithm 1 Deterministic Optimistic Optimization

Given: computational budget nmax, partitioning of U
Initialize the tree T = {(0, 0)} (root node)

for t = 1 to nmax do

Select the leaf (h, d) with minimum bh,d value

Expand this leaf by adding its K children to T
end for

Return u(nmax) = arg max(h,d)∈T f(uh,d)

is called the maximum diameter of the cells at depth h.

3. There exists a scalar ν > 0 such that any cell Uh,d at depth

h contains an ℓ-ball of radius νδ(h) centered in uh,d. Such

an ℓ-ball is defined as B = {u ∈ U|ℓ(u, uh,d) ≤ νδ(h)}.

Remark 4: The requirements guarantee bounds on the

suboptimality with respect to the global optimum in relation

to the computational budget (e.g. the number of evaluations

of f ). In particular, Requirement 1 regards the local smooth-

ness of f with respect to the semi-metric ℓ near the optimum.

Requirements 2-3 guarantee that the partitioning of the fea-

sible set generates well-shaped cells that shrink with further

partitioning. The decreasing sequence δ(h) corresponds to

the maximum size of cells at each depth h. The scalar ν
can be considered as the maximum ratio of the radius of the

inscribed ball of any cell and the maximum distance between

any two points in that cell.

The optimistic optimization algorithm is summarized in

Algorithm 1. For each cell Uh,d, define bh,d = f(uh,d) −
δ(h). From Requirements 1-2, for the cell Uh,d containing an

optimal solution u∗, we have bh,d ≤ f(uh,d) − ℓ(u, uh,d) ≤
f(u∗), ∀u ∈ Uh,d. Hence, the value bh,d can be considered

as a heuristic evaluation function for selecting the cell that

most likely contains the optimal solution.

The performance of the optimistic optimization algorithm

is influenced by the choice of the semi-metric ℓ (the es-

timation of the smoothness of f ) and is characterized by

the suboptimality of the returned solution given a finite

computational budget nmax. Let u∗ be a global minimizer

of f and let Uε = {u ∈ U|f(u) − f(u∗) ≤ ε} be the set of

ε-near-optimal solutions.

Definition 5: [5] The local ν-near-optimality dimension is

the smallest η ≥ 0 such that for some ε0 > 0, for any

ε ∈ (0, ε0], there exists a C > 0 such that the maximal

number of disjoint ℓ-balls of radius νε with center in Uε is

less than Cε−η .

Proposition 6: [5] Assume that there exist c > 0 and γ ∈
(0, 1) such that δ(h) ≤ cγh for any h. Let u♮ be the solution

returned after nmax iterations.

(i) If η > 0, then f(u♮)−f(u∗) ≤ ( C
1−γη )1/η(nmax)

−1/η.

(ii) If η = 0, then f(u♮) − f(u∗) ≤ cγnmax/C−1.

Remark 7: The near-optimality dimension actually char-

acterizes the amount of the ε-near-optimal solutions of f
with respect to the semi-metric ℓ around the global optimum.

Proposition 6 gives bounds on the suboptimality of the

returned solution. For η > 0, the suboptimality bound

decreases in a power of the computational budget nmax.

The convergence speed of optimistic optimization is faster

with smaller η. The best case is η = 0 which means that

the suboptimality bound decreases exponentially with nmax.

Therefore, developing a semi-metric ℓ such that η is small

is of great importance for optimistic optimization to be

efficient.

IV. OPTIMISTIC OPTIMIZATION FOR THE

CONTINUOUS PWA-MPC PROBLEM

In this section, we present the optimistic optimization

approach for the PWA-MPC problem (5) provided that the

PWA system (1) is continuous.

Recall the definitions of 1-norm and ∞-norm for vec-

tors ‖x‖1 =
∑n

i=1 |xi|, ‖x‖∞ = maxi=1,...,n |xi|, and

|xi| = max(xi,−xi). According to the equivalence between

the system (1) and (4), the objective function (7) can be

transformed into an expression in the form of (3).

Since the state vector x̃(k) and the control input in-

crements ∆ũ(k) can be eliminated using (4) and (6), the

objection function (7) only has ũ(k) as the independent

variable:

J(ũ(k)) = max
i∈I

min
j∈Ji

{αT
ijkũ(k) + βijk} (8)

with αijk ∈ R
mNc , βijk ∈ R. The parameter vectors αijk

and the constant terms βijk can be computed from the known

information at time step k (the system matrices and vectors

Ai, Bi, and gi in (1), the reference sequence r̃, the current

state x(k), and the previous control input u(k−1)). Besides,

we consider the following constraints in the problem (5):

Pkx̃(k) + Qkũ(k) ≤ bk, (9)

xmin ≤ x(k + s) ≤ xmax, (10)

umin ≤ u(k + s − 1) ≤ umax, s = 1, . . . , Np, (11)

with Pk ∈ R
nc×nNp , Qk ∈ R

nc×mNc , bk ∈ R
nc ,

xmin, xmax ∈ R
n, umin, umax ∈ R

m.

The feasible set defined by constraints (9)-(11) is a poly-

tope. In order to easily derive the Requirements 1-3 for

optimistic optimization, we transform the problem into a

problem with hyperbox constraints. Hence, we treat (9) and

(10) as soft constraints and replace them by adding a penalty

function to the objective function:

Jp(ũ(k)) = β ·max
(

0, max
i=1,...,nc

(Pi,·x̃(k)+Qi,·ũ(k)−bi),

max
s=1,...,Np

max
j=1,...,n

(xj(k+s)−xmax,j , xmin,j−xj(k+s))
)

,

where β is the penalty coefficient; Pi,· and Qi,· are the

respective i-th rows of Pk and Qk; bi is the i-th element

of bk; xj(k + s) and xmax,j are the respective j-th elements

of x(k+s) and xmax. So we have the new objective function

Jnew(ũ(k)) = J(ũ(k)) + Jp(ũ(k)) (12)

subject to the constraint (11). Consequently, the feasible set is

actually an mNc-dimensional hyperbox U = [umin, umax]
Nc .

By performing scaling operations, the feasible set can be



transformed into a hypercube Uc. Note that the new objective

function can also be written as

Jnew(ũ) = max
i∈I

min
j∈Ji

{α̂T
ij ũ + β̂ij} (13)

with α̂ij ∈ R
mNc , β̂ij ∈ R. In the remaining part of this

section the time counter k is omitted for sake of simplicity.

Now we design the semi-metric ℓ, the diameter δ(h),
and the scalar ν that are dedicated to the continuous PWA-

MPC problem (5) with the new objective function. These

parameters are required for the implementation of optimistic

optimization and for the characterization of the suboptimality

of the returned solution.

Proposition 8: Define ᾱ , maxi,j ‖α̂ij‖2 where α̂ij are

the parameter vectors in (13). Let L be the edge length

of the hypercube Uc. Let ũ∗ be a global optimizer of the

objective function Jnew subject to ũ ∈ Uc. Recall the

hierarchical partitioning framework presented in Section III,

let the branching number K = DmNc where mNc is the

dimension of the hypercube Uc and each edge of Uc is cut

into D equal parts. Let Uh,d be the cell at depth h with node

index d and let ũh,d ∈ Uh,d be the center of Uh,d.

(i) If we define

ℓ(ũ, ṽ) = ᾱ‖ũ − ṽ‖2, (14)

for any ũ, ṽ ∈ Uc, then ℓ is a semi-metric defined on Uc such

that for any ũ ∈ Uc, we have

Jnew(ũ) − Jnew(ũ∗) ≤ ℓ(ũ, ũ∗). (15)

(ii) If we define

δ(h) =
ᾱ

2
(mNc)

1/2L/Dh, (16)

then for any cell Uh,d at any depth h, we have

sup
ũ∈Uh,d

ℓ(ũ, ũh,d) ≤ δ(h). (17)

(iii) Select 0 < ρ ≤ 1. If we define ν = ρ(mNc)
−1/2, then

any cell Uh,d contains an ℓ-ball of radius νδ(h) centered in

ũh,d.

Proof: (i) From Proposition 1, the objective function

Jnew is a continuous PWA function. The constant ᾱ ,

maxi,j ‖α̂ij‖2 is actually a Lipschitz constant for Jnew.

According to the Lipschitz continuity, we have Jnew(ũ) −
Jnew(ũ∗) ≤ ᾱ‖ũ − ũ∗‖2 for any ũ ∈ Uc. If we define the

semi-metric as ℓ(ũ, ṽ) = ᾱ‖ũ− ṽ‖2, then the inequality (15)

is satisfied. (This type of semi-metric is also developed for

an arbitrary continuous PWA function in our submitted paper

[15]).

(ii) Recall the hierarchical partitioning presented in Sec-

tion III. The edge length of the hypercube Uc is L, so

the maximum distance between any two points in Uc is

(mNc)
1/2L. The cell Uh,d at depth h of the partitioning

is also a hypercube and the edge length of Uh,d is L/Dh.

Because ũh,d is the center of the cell Uh,d, for any ũ ∈ Uh,d,

we have ‖ũ − ũh,d‖2 ≤ 1
2 (mNc)

1/2L/Dh. Define δ(h) =
ᾱ
2 (mNc)

1/2L/Dh. Therefore, for any ũ ∈ Uh,d, we have

ℓ(ũ, ũh,d) = ᾱ‖ũ − ũh,d‖2 ≤ δ(h).

(iii) An ℓ-ball of radius νδ(h) centered in ũh,d can be

written as B = {ũ ∈ Uc|ℓ(ũ, ũh,d) = ᾱ‖ũ − ũh,d‖2 ≤
νδ(h)}. Note that Uc is a hypercube and so is the cell Uh,d.

Thus, the center uh,d is also the center of the inscribed ball

of Uh,d. Let r(h) be the radius of the inscribed hyperball of

Uh,d, so r(h) = 1
2L/Dh. If we select 0 < ν ≤ ᾱr(h)

δ(h) , then

we have ‖ũ− ũh,d‖2 ≤ νδ(h)
α ≤ r(h) for all ũ ∈ B. Hence,

we have B ⊂ Uh,d. Note that
ᾱr(h)
δ(h) = (mNc)

−1/2. Thus if

we select a scalar 0 < ρ ≤ 1 and choose ν = ρ(mNc)
−1/2,

then Uh,d contains an ℓ-ball of radius νδ(h) centered in ũh,d.

Up to now, we have derived the expressions for all core

parameters of the requirements for optimistic optimization.

At each time step k, we apply optimistic optimization to

solve the MPC optimization problem (5) to obtain a sequence

of control inputs. To discuss the suboptimality of the returned

solution, we compute the local ν-near-optimality dimension

for the objective function Jnew over Uc. Denote the set

of ε-near-optimal solutions as Uε = {ũ ∈ Uc|Jnew(ũ) −
Jnew(ũ∗) ≤ ε}.

Proposition 9: Let ũ∗ be a global optimizer of Jnew

subject to ũ ∈ Uc and let ũ♮ be the solution returned by

optimistic optimization after nmax iterations. If ũ∗ is a strict

local minimizer of Jnew, then the local ν-near-optimality

dimension is η = 0 and we have Jnew(ũ♮) − Jnew(ũ∗) ≤
ᾱ
2 (mNc)

1/2LD1−nmax/C with a constant C > 0.

Remark 10: Proposition 9 shows that with the semi-metric

(14), for the continuous PWA-MPC problem with the ob-

jective function (13) subject to (11) the ν-near-optimality

dimension is η = 0 when the optimizer is strict. This means

that the optimization problem is simple, and the optimistic

algorithm can solve it efficiently, converging quickly to the

optimal solution.

V. CASE STUDY

In this section, we demonstrate the proposed approach

with an adaptive cruise control problem for a road vehicle

following a leader vehicle. We consider the setup introduced

in [16]. As shown in Fig. 1, let x(k) be the velocity of the

follower vehicle at time step k. Let r(k) be the velocity of

the leader vehicle at time step k and be communicated to the

follower vehicle as reference signals. A discrete-time model

for the positive velocity of the follower vehicle is given

in [16]. That model can be approximated by the following

continuous PWA systems:

x(k + 1) = Aix(k) + Biu(k) + gi, if x ∈ (pi−1, pi] (18)

with i = 1, 2, A1 = 0.9883, B1 = 4.598, g1 = −0.0614,

A2 = 0.9655, B2 = 4.5446, g2 = 0.3711, p0 = 0, p1 =
xmax

2 and p2 = xmax where xmax is the maximum velocity

and p1 is the breakpoint for the least-squares fitting of the

nonlinear friction. The control input u(k) is the throttle/brake

position at time step k.

Note that (18) is equivalent to the following max-min-

plus-scaling system:



leader follower

communication r̃(k)

distance d(k)

speed x(k)speed r(k)

Fig. 1. Adaptive cruise control set-up considered in the case study

x(k + 1) = min
(

A1x(k) + B1u(k) + g1,

A2x(k) + B2u(k) + g2

)

. (19)

Let d(k) be the distance between two vehicles at time step

k, so d(k+1) = d(k)+(r(k)−x(k))T with T the sampling

time. Due to safety and human comfort requirements, we

add constraints on d(k), x(k), u(k) for any time step k

dsafe ≤ d(k + s + 1), (20)

adecT ≤ x(k + s + 1) − x(k + s) ≤ aaccT, (21)

− τ ≤ ∆u(k + s − 1) ≤ τ, (22)

xmin ≤ x(k + s) ≤ xmax, (23)

− umax ≤ u(k + s − 1) ≤ umax, s = 1, . . . , Np, (24)

where dsafe corresponds to the safe following distance to

reduce the risk of collision, aacc and adec are the allowable

acceleration and deceleration for human comfort, ∆u(k) =
u(k)−u(k−1), τ is the maximum brake variation, xmax and

xmin are the maximum and minimum velocities, and umax

is the maximum brake. Set dsafe = 10 m for the constraint

(20). The constraints (21)-(24) are specified by using the

numerical values used in [16].

We consider the following objective function:

J(ũ(k)) = ‖x̃(k) − r̃(k)‖∞ + λ‖∆ũ(k)‖1 (25)

with the trade-off λ = 0.05 and Np = Nc = 2. Based on

(19), x̃(k) and ∆ũ(k) in (25) can be substituted by ũ(k).
Moreover, the constraints (20)-(23) are replaced by adding

a penalty function to the objective function. The penalty

coefficient is β = 10. The new objective function can be

rewritten in the form of (13) and the resulting feasible set is

a hypercube [−umax, umax]
Nc .

At each time step k, the MPC optimization problem is

respectively solved by using MILP method and the optimistic

optimization approach. The corresponding MILP problem is

solved by the cplex function (with the default settings) in

the TOMLAB optimization environment in MATLAB. The

optimistic optimization approach is implemented in MAT-

LAB. The termination criteria of optimistic optimization

(oo) are a combination of the computational budget and

the depth limitation. Given the number of node expansions

tmax, the number of evaluations (computational budget) of

the objective function is nmax = Ktmax + 1 with K = 2Nc

the branching number in the tree. In addition, the maximum

depth of the resulting tree is limited as hmax = 10. The

algorithm will terminate and return the best solution if the

computational budget is used or the maximum depth is

reached.

Fig. 2 shows the simulation results of adaptive cruise

control for the follower vehicle tracking different reference

velocities over the simulation horizon [1, 50]. The constant

reference velocity is 18.75 m/s and the varying reference

velocity is given as r(k) = 10e−0.05k sin(0.3k) + 18.75.

The number of node expansions in optimistic optimization

is tmax = 10. We can see that the trajectory of the velocity of

the follower vehicle controlled by optimistic optimization can

track both types of reference velocities (Fig. 2(1a) and 2(2a)).

The distance between two vehicles stays in the range of safe

distance. However, the variation of the control input is not

smooth, especially for the case with constant reference. Now

tmax is increased for optimistic optimization from 10 to 1000

and the simulation results are shown in Fig. 3. We can see

that the trajectories of the velocity and the distance resulting

from optimistic optimization track the trajectories resulting

from cplex better than the case in Fig. 2. Moreover,

the control inputs solved by optimistic optimization are

smoother and quite close to the control inputs solved by

cplex. The closed-loop cost over the simulation period of

optimistic optimization with tmax = 1000 is 96.92 for the

varying reference signal; the relative error comparing with

the cost of cplex is 0.3% (the relavive error is computed

as 100|(costcplex − costoo)/costcplex|). The closed-loop

costs of optimistic optimization given different computa-

tional budgets and the relative error comparing with cplex

are listed in Table I. The relative error of closed-loop costs of

optimistic optimization decreases if the computational budget

increases. The average CPU times for optimistic optimization

and cplex solving the optimization problem at each time

step are also included in Table I. Optimistic optimization will

be faster if we would transfer the MATLAB code into object

code.

TABLE I

CPU TIMES, CLOSED-LOOP COSTS OVER THE SIMULATION PERIOD, AND

THE RELATIVE ERROR OF OO AND CPLEX

tmax = 10 tmax = 100 tmax = 1000 cplex

CPU time (s) 0.001 0.01 0.1 0.004

Constant r
45.8 41.96 39.98 39.76

15.19% 5.51% 0.53% 0

Varying r
102.62 100.22 96.92 96.62
6.21% 3.72% 0.3% 0

VI. CONCLUSIONS

We have considered the model predictive control problem

for continuous piecewise affine systems and max-min-plus-

scaling systems, which in general leads to a nonlinear,

nonconvex optimization problem. An approach based on

optimistic optimization has been proposed to solve this

problem. A 1-norm and ∞-norm objective function has been

considered subject to a hyperbox feasible set. A dedicated

semi-metric and other parameters required by optimistic

optimization have been developed for the corresponding

problem. A case study on adaptive cruise control has been

implemented to illustrate the performance of the proposed

approach.
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Fig. 2. Simulation results of cplex and optimistic optimization (oo) for
constant and varying reference velocities (tmax = 10 for oo): (a) Velocity
of the follower vehicle; (b) Distance between two vehicles; (c) Control input;
(d) Throttle/Brake variation
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[9] L. Buşoniu and I.-C. Morărescu, “Consensus for black-box nonlinear
agents using optimistic optimization,” Automatica, vol. 50, no. 4, pp.
1201–1208, 2014.
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