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 A B S T R A C T

Bayesian system identification is increasingly used in Structural Health Monitoring (SHM) to infer unobservable 
parameters of a structure from sensor data. The use of spatially dense measurements, such as those from 
distributed fibre optic sensors, can further enhance the results of Bayesian system identification due to the 
large volume of data. However, this combination faces two major challenges: the computational cost of 
inference and the correlation structure of closely spaced data points. To overcome these difficulties, we propose 
a methodology that combines the recently-developed Variational Bayes Monte Carlo (VBMC) method with 
Gaussian process modelling of model discrepancy, and extend VBMC to enable posterior predictive calculations 
without additional model evaluations. We demonstrate the effectiveness of the proposed methodology on a 
reinforced concrete slab bridge instrumented with distributed fibre optic strain sensors and analysed using a 
finite element model. The main outcome is that VBMC requires fewer than 200 finite element model evaluations 
while producing accurate estimates, whereas a conventional MCMC method requires thousands. The application 
of the proposed framework provides two additional novel insights: accounting for spatial correlations improves 
model performance and higher measurement resolution leads to more precise parameter estimates, though with 
limited impact on predictive accuracy. This study advances the practical implementation of Bayesian system 
identification in SHM by providing both the computational efficiency and statistical framework needed for 
modern sensing technologies.
. Introduction

.1. Motivation

Government agencies around the world are facing enormous ren-
vation and replacement tasks since a significant portion of their 
nfrastructure was built decades ago and is reaching the end of its 
ervice life. Traditional methods of assessing structural condition, such 
s manual inspections, are not only costly but also rely on specialized 
abour. As an alternative, Structural Health Monitoring (SHM) has 
merged as a more efficient and consistent approach to make informed 
ecisions for infrastructure maintenance.
The use of high-resolution sensors in SHM has gained considerable 

ttention in recent years. Technologies such as distributed fibre optic 
ensors (DFOS) [1], digital image correlation (DIC) [2] and Micro-
lectro-Mechanical Systems (MEMS) sheets [3] enable the collection of 
ata with unprecedented spatial and/or temporal detail. These sensors 
rovide a wealth of information that has the potential to improve the 
verall effectiveness and accuracy of SHM.

∗ Corresponding author.
E-mail address: andres.martinezcolan@tno.nl (A. Martínez).

Occasionally, engineers use sensor data to calibrate structural mod-
els, treating SHM as an inverse problem where the objective is to 
estimate unobserved parameters of a physical model from measure-
ments. Inverse problems are usually challenging due to the presence 
of observational noise, model discrepancies and the non-uniqueness of 
solutions [4]. Bayesian system identification offers an effective proba-
bilistic framework for addressing inverse problems by providing several 
advantages over traditional optimization methods: it allows for the 
incorporation of prior knowledge about the parameters, it inherently 
regularizes ill-posed problems, and it quantifies uncertainties in the 
parameter estimates. Under this approach, the unknown structural 
parameters are treated as random variables with a prior distribution 
that is updated to a posterior using the likelihood of the observed data.

To fully exploit the data from high spatial resolution sensors, one 
might employ Bayesian system identification. However, this combina-
tion presents significant challenges. First, computationally expensive 
high-fidelity models are usually required to provide information at 
ttps://doi.org/10.1016/j.engstruct.2025.120214
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the same level of detail as the sensor data, making common Bayesian 
methods like Markov Chain Monte Carlo (MCMC) prohibitive, as they 
require numerous model evaluations. Second, model discrepancies—
differences between simulation and reality—can exhibit strong corre-
lations in closely spaced data points, but the optimal approach for 
modelling this correlation structure remains uncertain. While neglect-
ing these correlations can result in flawed inferences, explicitly mod-
elling them adds complexity to the problem, as it introduces additional 
statistical parameters that must be inferred. In optimization-based ap-
proaches, this typically results in a highly nonlinear objective function, 
making the problem challenging. Bayesian inference naturally accom-
modates this complexity by implicitly regularizing the problem through 
the prior distribution. Addressing these computational and statistical 
challenges is essential to enable the practical application of Bayesian 
system identification of engineering structures with modern sensing 
technologies.

1.2. Related work

One common approach to overcome the computational barrier is 
to replace structural model responses with cheap-to-compute surrogate 
models. They are built by strategically selecting samples and fitting an 
approximation function with input–output pairs. Various types of surro-
gates have been used for system identification of engineering structures 
such as response surfaces [5,6], Gaussian processes [7–10], polynomial 
chaos expansions [11–13] and artificial neural networks [14–16]. A key 
challenge with surrogate models is the amount of simulations required 
to obtain the desired accuracy, which can become unmanageable. This 
is especially true for high-dimensional input spaces, as many surrogate 
methods are prone to the curse of dimensionality [17].

Other methods achieve computational efficiency through special-
ized formulations. For instance, Titscher et al. [18] combines mean 
field variational inference with first-order Taylor expansions, while
Febrianto et al. [19] employs the statFEM methodology with simplified 
stochastic partial differential equations. Although these approaches 
require few model evaluations, their applicability is limited by their 
underlying assumptions. Indeed, the former struggles with nonlinear 
physical models, and the latter relies on specific mathematical simpli-
fications that may not generalize well to other structural systems

Recent advancements in Bayesian inference have focused on directly 
approximating the unnormalized posterior to accelerate the process. 
By concentrating on regions that significantly influence the posterior 
distribution, these techniques greatly reduce the number of required 
evaluations. Methods such as Bayesian Active Posterior Estimation 
(BAPE) [20] and Adaptive Gaussian Process (AGP) [21] employ Gaus-
sian process models to surrogate the unnormalized posterior. The Vari-
ational Bayesian Monte Carlo (VBMC) method [22,23] adopts a sim-
ilar strategy, but with a variational framework that approximates the 
posterior with a parametric distribution.

Moving to spatial correlations, their treatment in Bayesian system 
identification was first introduced in the seminal work of Kennedy and 
O’Hagan [24], who proposed the use of Gaussian processes for model 
discrepancy, with the dependency being encoded in its correlation 
function. Brynjarsdóttir and O’Hagan [25] used the same approach and 
demonstrated that only when incorporating realistic priors into the 
model discrepancy function, the true parameter values are uncovered. 
Recent developments have focused on specialized formulations. Raman-
cha et al. [13] introduced a covariance function tailored for linear 
dynamic systems based on the theory of random vibrations. Kosikova 
et al. [26] studied the automatic selection of a covariance function 
with an efficient approach based on Laplace approximations. Koune 
et al. [27] proposed an efficient likelihood evaluation framework by 
exploiting separable spatio-temporal covariance structures and utilizing 
exponential functions. Although effective, these approaches rely on 
specific constraints and assumptions that might limit their broader 
applicability across different types of engineering structures.
2 
1.3. Present study and contributions

A key gap in the SHM literature is the lack of efficient Bayesian 
methods for real-world structures with spatially dense measurements. 
While efficient inference techniques exist, they often rely on restrictive 
assumptions about the model structure or correlation patterns that limit 
their practical applicability.

To address this gap, we propose the use of the VBMC method, as it 
offers several advantages that make it particularly suitable for this ap-
plication: it requires minimal likelihood evaluations, making it practical 
for computationally expensive models; it imposes no restrictions on 
model structure or correlation patterns; it provides approximations for 
both the posterior distribution and model evidence, enabling Bayesian 
model selection; and it has a readily available Python implementa-
tion (PyVBMC) [28], which requires no custom coding or extensive 
fine-tuning. Additionally, we extend VBMC by presenting a practi-
cal approach for computing posterior predictive distributions without 
requiring additional model evaluations.

Our methodology combines VBMC with a flexible treatment of 
model discrepancy. Similarly to Kennedy and O’Hagan, we represent 
discrepancy as a Gaussian process with a distance-based covariance 
function; however, we perform full Bayesian inference on both physical 
and correlation parameters, which allow us to learn the correlation 
structure from the data. Furthermore, unlike previous approaches, we 
maintain generality by avoiding restrictions on the covariance function.

We demonstrate our methodology on a reinforced concrete bridge 
using static strain measurements from DFOS. To our knowledge, this 
represents the first application of VBMC for inference in a real-world 
structure. Additionally, we use this framework to investigate two as-
pects that have received limited attention in the literature. First, we 
evaluate different covariance models to investigate the effect of ig-
noring correlations on inference, and to provide insights for choosing 
a specific function. Second, we examine the value of high-resolution 
measurements for inference, as the relationship between measurement 
density and parameter uncertainty becomes non-trivial in the presence 
of spatial dependencies.

1.4. Organization

The paper is structured as follows: Section 2 details the methodol-
ogy, including the VBMC method and the modelling of spatial corre-
lations. Section 3 describes the case study of the reinforced concrete 
bridge. Sections 4 to 6 present our findings, focusing on performance 
assessment, covariance function evaluation, and the impact of data 
resolution, respectively. Sections 7 and 8 contain the discussion and 
conclusions.

2. Methodology

2.1. Principles of Bayesian inference

Bayesian inference provides a formal framework for updating the 
probability distributions of uncertain parameters given observations 
through the application of Bayes’ theorem. For continuous variables, 
this theorem takes the form: 

𝑝(𝜽|𝒚) =
𝑝(𝒚|𝜽) ⋅ 𝑝(𝜽)

∫ 𝑝(𝒚|𝜽) ⋅ 𝑝(𝜽) 𝑑𝜽
(1)

The posterior distribution 𝑝(𝜽|𝒚) represents our updated knowledge 
about the parameters 𝜽 after observing data 𝒚. This combines our 
prior knowledge, encoded in 𝑝(𝜽), with the information from the data 
through the likelihood function 𝑝(𝒚|𝜽). The denominator, known as 
the evidence or marginal likelihood, ensures the posterior distribution 
integrates to one over the parameter domain.

For most practical applications, the integral in the denominator 
is intractable and numerical approaches are needed. Markov Chain 
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Monte Carlo (MCMC) methods have become the standard in Bayesian 
statistics as they can generate samples from the posterior distribution 
without requiring the explicit computation of the evidence. However, 
the computational cost of generating a sufficient number of samples for 
convergence, typically thousands, might be prohibitively high in cases 
with expensive likelihood function evaluations. In the next section, we 
introduce Variational Bayesian Monte Carlo as an efficient alternative 
to MCMC for engineering structures.

2.2. Variational Bayesian Monte Carlo

Variational inference methods provide an efficient alternative to 
sampling-based methods by framing Bayesian inference as an optimiza-
tion problem. They approximate the true posterior distribution with a 
simpler, parametric distribution 𝑞. The parameters 𝜙 of this distribution 
are optimized to maximize the Evidence Lower Bound (ELBO), which 
is equivalent to minimizing the Kullback–Leibler divergence between 
the approximate and true posterior distributions. The ELBO is defined 
as follows: 
ELBO = E𝑞𝜙 [log 𝑝(𝒚,𝜽)] +[𝑞𝜙(𝑥)] (2)

where the first term is the expected log joint probability for 𝑞𝜙, and the 
second term is the entropy of the variational posterior.

Building on this framework, Variational Bayesian Monte Carlo 
(VBMC) [22,23] combines variational inference with Gaussian Process 
surrogate modelling to efficiently approximate posterior distributions 
in scenarios where likelihood evaluations are computationally expen-
sive. The method provides both an approximation to the posterior 
distribution and an estimate of the model evidence through the ELBO. 
In VBMC, the distribution 𝑞 is a mixture of Gaussians: 

𝑞𝜙(𝜽) =
𝐾
∑

𝑘=1
𝑤𝑘 (𝜽;𝝁𝑘,𝝈2

𝑘𝜮) (3)

New samples are selected by maximizing this acquisition function: 
𝑎(𝜽) = 𝑉𝐺𝑃 (𝜽)𝑞𝜙(𝜽) exp(𝑚𝐺𝑃 (𝜽)) (4)

where 𝑉𝐺𝑃 (𝜽) is the posterior predictive variance of the GP, 𝑚𝐺𝑃 (𝜽) is 
its posterior predictive mean, and 𝑞𝜙(𝜽) refers to the current variational 
posterior. This function promotes sampling in regions of high GP un-
certainty (𝑉𝐺𝑃 ), areas of high posterior probability (𝑞𝜙), and locations 
that the GP predicts might be promising (exp(𝑚𝐺𝑃 )). 

The variational approximation is refined through an iterative pro-
cess that follows these steps:

1. Add samples at promising locations in the parameter space by 
maximizing the acquisition function

2. Train a Gaussian Process surrogate of the log joint probability 
(sum of log prior and log likelihood) using all collected samples

3. Update the variational parameters by optimizing the ELBO, 
where the expectation term is computed in closed form using 
the GP approximation, and the entropy is estimated via Monte 
Carlo sampling

Initially, VBMC uses a warm-up phase with 𝐾 = 2 mixture compo-
nents and equal weights. This phase continues until the improvement 
in the ELBO across consecutive iterations falls below a threshold for 
several iterations, indicating initial stability of the approximation. After 
warm-up, VBMC begins adjusting the complexity of the variational pos-
terior by adding new components through splitting existing ones when 
the ELBO shows consistent improvement, and removing components 
with negligible weights if their removal does not significantly impact 
the approximation quality. This process continues until convergence 
in the ELBO. For a detailed description of the method, the reader is 
referred to the original papers by Acerbi [22,23].

2.3. Data generating process with spatial correlations

To define the likelihood function, one must construct a narrative 
that describes the  data generating process [29]. In this paper, the data 
3 
generating process is conceptualized as the combination of a physical 
model and a probabilistic model. The physical model is a deterministic 
numerical simulation of a structure for which responses can be ob-
tained as a function of control variables, such as location, and physical 
parameters; while the probabilistic model accounts for the intrinsic 
uncertainties that appear when using a model to describe a physical 
system. Here, we consider two sources of uncertainty: measurement 
uncertainty and physical model uncertainty.

Measurement uncertainty refers to the mismatch between the mea-
sured quantities and the true responses of the structure caused by 
sensing errors and/or environmental noise. In contrast, model uncer-
tainty relates to the discrepancy between the deterministic physical 
model predictions and the true responses, arising from mathematical 
simplifications and idealizations in the physical model. We adopt the 
model introduced by Kennedy and O’Hagan [24]: 
𝑦𝑖 = 𝜁 (𝑥𝑖) + 𝜖𝑖 (5)

where 𝑦𝑖 is the 𝑖th observation of the physical system, 𝜁 (𝑥𝑖) is the true 
value of the physical system at location 𝑥𝑖 and 𝜖𝑖 is the independent 
measurement error. The model discrepancy is represented as an addi-
tive term 𝛿(𝑥) on the numerical simulator 𝜂(𝑥,𝜽𝒑), with 𝜽𝒑 the unknown 
physical parameter vector: 
𝜁 (𝑥) = 𝜂(𝑥,𝜽𝒑) + 𝛿(𝑥) (6)

Combining Eqs.  (5) and (6) yields the data generating process 
equation: 
𝑦𝑖 = 𝜂(𝑥𝑖,𝜽𝒑) + 𝛿(𝑥𝑖) + 𝜖𝑖, 𝑖 = 1,… , 𝑛 (7)

The measurement error terms 𝜖𝑖 are modelled as independent zero-
mean Gaussian variables with a standard deviation 𝜎𝜖 , which can either 
be directly inferred or estimated beforehand, for instance, using sensor 
pre-recordings. On the other hand, the model discrepancy function is 
represented as a zero-mean Gaussian process: 
𝛿(𝑥) ∼ 𝐺𝑃 (𝟎, 𝑘(𝑥, 𝑥′)) (8)

where 𝑘(𝑥, 𝑥′) is a covariance function. Since we are interested in 
cases with a high spatial density of points, it is logical to employ a 
distance-based covariance function, which exhibits strong correlations 
for nearby points and weaker correlations for those far apart. Fur-
thermore, since the regions of higher or lower model discrepancy are 
not always known in advance, a stationary covariance function is a 
prudent choice. The Matérn covariance function is a commonly used 
example of a distance-based stationary function. It is characterized by 
the parameters 𝜎𝑎 (the scale term), 𝑙 (the correlation length), and 𝜈, 
which controls the smoothness of the process. For 𝜈 = 1.5, the kernel 
function reads: 

𝑘(𝑥, 𝑥′) = 𝜎2𝑎

(

1 +

√

3|𝑥 − 𝑥′|
𝑙

)

exp

(

−

√

3|𝑥 − 𝑥′|
𝑙

)

(9)

A fundamental property of Gaussian processes is that any finite 
collection of random variables sampled from the process follows a 
multivariate Gaussian distribution [30]. Therefore, the measurement 
vector follows: 
𝒚 ∼  (𝜂(𝒙,𝜽𝒑),𝑲 + 𝜎2𝜖 𝑰) (10)

where 𝑲 is the covariance matrix of the model discrepancy func-
tion 𝛿(𝑥). The elements of matrix 𝑲 are defined using the covariance 
function 𝑘(𝑥, 𝑥′): 
𝐾𝑖𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗 ) (11)

Defining 𝜮 = 𝑲 + 𝜎2𝜖 𝑰 as the total covariance matrix and 𝑛 as the 
number of observations, the likelihood function is the density of the 
multivariate Gaussian distribution: 
𝑝(𝒚|𝜽) = 1

(2𝜋)𝑛∕2|𝜮|

1∕2
exp

(

−1
2
(𝒚 − 𝜂(𝒙,𝜽𝒑))𝑇𝜮−1(𝒚 − 𝜂(𝒙,𝜽𝒑))

)

(12)

Note that 𝜽 includes the physical parameters 𝜽𝒑, which govern 
the physical model 𝜂, as well as the statistical parameters 𝜽𝒔, which 
determine the total covariance matrix 𝜮.
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2.4. Post-inference applications

Although parameter inference might sometimes be a goal in itself, 
in most occasions we would like to use the posterior distribution for 
further analysis. In this section, we explore three applications and show 
how to adapt the results from VBMC for these purposes.

2.4.1. Posterior predictive distribution
Besides estimating the underlying parameters of our model, we 

often want to make predictions based on these parameters. If we knew 
the exact value of 𝜽, predicting would be straightforward. However, 
since we only have the posterior distribution of possible values for 
𝜽, we need to marginalize over this distribution to make predictions
[31]. 

𝑝(𝒚̃|𝒚) = ∫ 𝑝(𝒚̃|𝜽) ⋅ 𝑝(𝜽|𝒚) 𝑑𝜽 (13)

The term 𝑝(𝒚̃|𝒚) is known as the posterior predictive distribution 
of 𝒚̃ given 𝒚, and 𝑝(𝒚̃|𝜽) is the likelihood of the unobserved data. 
The posterior predictive is the expected value of the likelihood of 
the unobserved data over the posterior; hence, it incorporates the 
uncertainty from all sources: model and measurement uncertainty via 
the likelihood, and parameter uncertainty via the posterior.

In practice, the integral in Eq.  (13) is often intractable, but it can 
be approximated in a Monte Carlo way. Let 𝜽(𝑖) represent samples from 
the posterior distribution 𝑝(𝜽|𝒚): 

𝑝(𝒚̃|𝒚) ≈ 1
𝑁

𝑁
∑

𝑖=1
𝑝(𝒚̃|𝜽(𝒊)) (14)

Instead of evaluating the posterior predictive distribution for every 
conceivable value of 𝒚̃, we opt for directly generating samples from the 
conditional distribution of the unobserved data given each posterior 
sample 𝜽(𝑖). Let 𝒚̃(𝑖) denote a sample drawn from this conditional 
distribution: 
𝒚̃(𝑖) ∼ 𝑝(𝒚̃|𝜽(𝑖)) =  (𝜂(𝒙̃,𝜽(𝑖)𝒑 ), 𝑲̃ + 𝜎2𝜖 𝑰) (15)

The collection of these samples {𝒚̃(𝑖)}𝑁𝑖=1 forms an approximation to 
the posterior predictive distribution. However, this approach can be 
extremely inefficient, as each sample implies evaluating the physical 
model 𝜂(𝒙̃,𝜽(𝑖)𝒑 ), demanding numerous additional simulations to prop-
agate the uncertainty of the posterior distribution to predictions. This 
limitation can restrict the applicability of VBMC.

To address this problem, we propose an extension of VBMC for es-
timating the posterior predictive distribution without additional model 
evaluations. Suppose that for each point 𝜽(𝑗) where VBMC evaluates 
the true likelihood we calculate the model response not only at the 
observed locations 𝒙 but also at the prediction locations 𝒙̃. By storing 
these additional responses, we can train a surrogate model. Because 
this surrogate is built with the samples VBMC uses to represent the 
posterior, it is expected to be accurate in regions with high posterior 
density, which is essential for obtaining a good approximation of the 
posterior predictive distribution. Here, we use a zero-mean Gaussian 
process surrogate and tune its hyperparameters by marginal likelihood 
optimization. For the case study, we use only the mean predictions 
from the GP as the predicted variances were negligible. If this were 
not the case, Eqs. (13) to (15) can be extended by adding a surrogate 
uncertainty term, using the predicted GP standard deviation.

It should be noted that the approach described in this section 
is heuristic, and there is no formal guarantee of posterior predic-
tive accuracy; however, it delivered excellent results in our experim-
ents.

2.4.2. Bayesian model selection
When multiple competing models can explain the observed data, 

Bayesian model selection provides a principled framework  for com-
4 
Table 1
Strength of evidence of 𝑀1 over 𝑀2 based on the Bayes factor [32].
 𝐵12 Strength of evidence  
 <100 Negative  
 100 to 101∕2 Barely worth mentioning 
 101∕2 to 101 Substantial  
 101 to 103∕2 Strong  
 103∕2 to 102 Very strong  
 >102 Decisive  

parison. In this work, we compare different correlation models for 
the discrepancy function from Eq.  (8). The Bayes factor quantifies the 
relative support for one model over another: 

𝐵12 =
𝑝(𝒚|𝑀1)
𝑝(𝒚|𝑀2)

=
∫ 𝑝(𝒚|𝜽1,𝑀1) ⋅ 𝑝(𝜽1|𝑀1) 𝑑𝜽1

∫ 𝑝(𝒚|𝜽2,𝑀2) ⋅ 𝑝(𝜽2|𝑀2) 𝑑𝜽2
(16)

where 𝑀1 and 𝑀2 represent the competing models. An advantage of 
using Bayes factors is that they penalize model complexity, as models 
with more parameters require the likelihood to be integrated over a 
larger parameter space. In this work, we follow Jeffreys’ interpreta-
tion [32] shown in Table  1 to qualify the strength of evidence of one 
model over the other.

In the context of VBMC, we use the evidence lower bound (ELBO) 
as a proxy for the model evidence. This can be justified because the 
tightness of this bound is explicitly optimized during the variational 
inference process. The Bayes factor is then computed as the ratio of 
the ELBOs obtained during inference under the different models.

2.4.3. Information content of observations
The Kullback–Leibler (KL) divergence provides a natural way to 

quantify the information content of observations by measuring the
distance between prior and posterior distributions. For two probability 
distributions 𝑝(𝜽) and 𝑞(𝜽), the KL divergence is defined as: 

𝐷𝐾𝐿(𝑝 ∥ 𝑞) = ∫ 𝑝(𝜽) log 𝑝(𝜽)
𝑞(𝜽)

𝑑𝜽 (17)

For the specific case of measuring information gain from observa-
tions, we calculate the KL divergence between the posterior 𝑝(𝜽|𝒚) and 
prior 𝑝(𝜽) distributions: 

𝐷𝐾𝐿(𝑝(𝜽|𝒚) ∥ 𝑝(𝜽)) = ∫ 𝑝(𝜽|𝒚) log
𝑝(𝜽|𝒚)
𝑝(𝜽)

𝑑𝜽 (18)

A larger KL divergence indicates a greater difference between our 
posterior and prior beliefs. In information theory, this divergence quan-
tifies the additional nats (or bits, when using logarithms with base 2) 
needed to represent the posterior relative to the prior. In contrast, a KL 
divergence close to zero suggests that the data added little information 
beyond what was already known from the prior.

Since the KL divergence is generally intractable for complex distri-
butions, we can approximate it using Monte Carlo integration [33]. 
VBMC provides direct estimates of the posterior densities through its 
variational approximation, making this computation straightforward. 
Given samples {𝜽(𝑖)}𝑁𝑖=1 from the posterior distribution, we can estimate: 

𝐷𝐾𝐿(𝑝(𝜽|𝒚) ∥ 𝑝(𝜽)) ≈ 1
𝑁

𝑁
∑

𝑖=1
log

𝑝(𝜽(𝑖)|𝒚)
𝑝(𝜽(𝑖))

(19)

3. Case study overview: Bridge 705 in Amsterdam

3.1. Bridge description

The case study concerns bridge 705, a reinforced concrete slab 
bridge located in Amsterdam, as shown in Fig.  1. The bridge was 
built in 1960 and up to the measurement campaign in 2018 no visible 
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Fig. 1. Side view of bridge 705. 
Source: Picture taken from [34].
Fig. 2. Illustration of the moving truck 1 (T1) at twelve positions on bridge 705 that was used during the measurement campaign and the location of the optic fibre strain sensor 
(red dashed line).  (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Source: Picture adapted from [34].
damage or signs of corrosion were detected. The bridge deck spans 102 
m in length and 33.2 m in width, and is supported at each end by abut-
ments. In addition, six rows of four V-shaped piers provide intermediate 
support. Each of these 24 piers is monolithically connected to the deck 
at its top. The piers at the two central rows have hinged supports at 
their base, while the rest use rollers. The bridge accommodates two 
tram tracks, driving lanes and sidewalks.

3.2. Measurement campaign

At the end of 2018, bridge 705 was instrumented and diagnostically 
loaded. In total, about 90 sensors were used that recorded strains, 
translations, accelerations, and temperature. During two nights, the 
bridge was closed for traffic and controlled static and dynamic load 
tests were executed using two sand trucks. One of the main objectives 
of this extensive, on-site measurement campaign was to compare the 
information content of structural response measurements obtained from 
traditional and innovative sensor technologies. More details of this 
5 
measurement campaign, the used sensors, the different load tests, and 
the data processing are presented in [34].

In this paper, we consider the strain data that was acquired during 
the static load test series T1 with a single truck (truck 1) using a high 
resolution optic fibre sensor. Truck 1 has four axles and a total mass 
of 34.95 tonnes. Fig.  2 presents the twelve front axle positions from 
the left abutment (𝑥T1) in this test series, with 𝑥T1 values equal to 
10.5, 16.9, 24.5, 32.2, 39.8, 47.5, 55.1, 62.8, 70.4, 78.1, 85.7 and 
99.9 m. Fig.  2 further indicates the location of the optic fibre by the 
red dashed line. This distributed optic fibre sensor (DFOS) was placed 
in a milled notch and bonded by an epoxy adhesive over a total length 
of about 70 m along the bottom side of the bridge deck. It has a 
10 cm distance between consecutive measuring points, where at each 
measuring point the strain value has been averaged over a spatial range 
of 20 cm. The reader is referred to Wosniok et al. [35] for further 
information about the DFOS configuration. In this paper, we only use 
the data that is measured over the about 35 m long distance between 
the points O  and O , since this part of the fibre is right below the lane 
1 2



A. Martínez et al. Engineering Structures 334 (2025) 120214 
Fig. 3. Overview of the three-dimensional finite element model under a concentrated load in the second span. 
Source: Picture taken from [34].
of truck 1. Some data processing was needed to compensate for small 
temperature changes that occurred during the test series, and to apply 
offset adjustments. For more details on these corrections, see [36].

3.3. Structural model

The strain responses of bridge 705 at the location of the DFOS are 
simulated using a three-dimensional finite element model (see Fig.  3). 
The deck and V-shaped piers are modelled with 68,649 quadrilateral 
eight-node shell elements, accounting for all thickness variations. With 
207,848 nodes, each having three translational and two rotational 
degrees of freedom, the finite element model results in over 1 million 
degrees of freedom. Given the relatively low load intensities during 
the test series, nonlinearity in the concrete material behaviour can 
be neglected. Instead, the concrete is modelled as a linear–elastic 
material, for which the modulus of elasticity 𝐸𝑐 is one of the two 
physical parameters that will be estimated. The concrete is assumed 
to be homogeneous and to have a constant value over the entire 
bridge deck. The finite element model accounts for contributions of the 
pavement and tramway rails to the deck stiffness by modification of 
the modulus of elasticity in the corresponding zones. The abutments 
on both sides of the deck are not explicitly modelled. Instead, vertical 
supports are placed at the bearing locations, and nodal supports are 
applied at the bottom of the piers, each with (i) horizontal and vertical 
constraints on the translational degrees of freedom, and (ii) a spring 
element for one of the rotational degree of freedom, in line with 
the bridge’s structural design. The rotational spring stiffness 𝐾𝑟 is the 
second physical parameter that will be estimated. The only modelled 
load is the weight of truck 1, where each of its wheel prints is modelled 
by a uniformly distributed load over a finite area. The movement of the 
truck is simulated with static analyses in discrete steps of one metre. 
All analyses are performed using the finite element software DIANA 
FEA. The accuracy of this model was validated in [34], where the finite 
element model with parameter values chosen a priori showed good 
agreement with discrete strain field measurements, achieving an R2

score of 0.84. This demonstrates that the model reasonably captures 
the bridge behaviour under static loads, while leaving room for further 
refinement through parameter estimation.

The evaluation of the finite element model takes between 10 and 
13 min. Since a Bayesian parameter estimation can require many of 
these evaluations, it may result in an excessively high wall clock time. 
As mentioned in Section 1, this computational challenge can be tackled 
by using Bayesian methods that need less likelihood function evalu-
ations or by replacing the structural model responses with surrogate 
models that are multiple orders of magnitude faster to evaluate. In this 
paper, both strategies are adopted because we aim to solve multiple 
parameter estimation tasks.

The surrogate models replace the strain responses from the finite 
element model at the location of the DFOS. Between the points O1 and 
O2, the finite element model has 336 element nodes, so 336 surrogates 
are needed for each of the twelve truck positions that we consider. 
6 
The surrogates are constructed with Gaussian processes (GPs). All GPs 
share the same hyperparameters, which are estimated by optimizing 
the marginal likelihood. Each GP consists of a two-dimensional input 
space that is formed by the two physical parameters to be estimated, 
𝐸𝑐 and 𝐾𝑟. Due to the low dimensionality of the input space, a points 
grid is used over which the finite element model was evaluated and 
then the GP models are fitted. The used grid has 112 points: 7 values 
between 10 to 100 GPa for 𝐸𝑐 and 16 values between 100 to 1012 N-
mm/rad for 𝐾𝑟. A finer discretization is used for 𝐾𝑟 because it spans 
several orders of magnitude and has a more nonlinear influence on the 
structural response compared to 𝐸𝑐 .

After fitting, the surrogate model predictions are compared against 
left out finite element model results. Since the surrogates deliver re-
sponses virtually identical to those from the finite element analyses, 
the 112 points provide sufficient information to construct an accu-
rate surrogate for the finite element model. Considering this, there 
is no downside to using the surrogates in our parameter estimation 
tasks. Nevertheless, the proposed methodology with VBMC is equally 
applicable if a finite element model is used directly.

For additional information about the finite element model and its 
surrogates, the reader is referred to Rózsás et al. [34].

3.4. Probabilistic model

We adopt the data generating process from Eq.  (7), but adding a 
multiplicative term 𝜌 on the physical model 𝜈: 
𝑦𝑖 = 𝜌 ⋅ 𝜂(𝑥𝑖,𝜽) + 𝛿(𝑥𝑖) + 𝜖𝑖, 𝑖 = 1,… , 𝑛 (20)

The term 𝜌 ∼  (1, 𝜎𝑚) is an i.i.d. variable. This signals that part 
of the model discrepancy might also scale with the magnitude of the 
model predictions. The modification was deemed necessary for the case 
study after observing that the model predictions were smooth, while 
measurements in the more strained areas exhibited fast-varying peaks. 
While the exact cause of these discrepancies—whether due to sensor 
errors or other factors—remains uncertain, for simplicity, we assume 
the model discrepancy contributes to these variations and therefore 
modify Eq.  (10) accordingly: 
𝒚 ∼  (𝜂(𝒙,𝜽), 𝜎2𝑚diag(𝜂(𝒙,𝜽))

2 +𝑲 + 𝜎2𝜖 𝑰) (21)

where diag(𝜂(𝒙,𝜽))2 is a diagonal matrix composed of the squared 
values of 𝜂(𝒙,𝜽). We do not infer 𝜎𝑚, but instead, we treat it as a 
fixed parameter. We assume 𝜎𝑚 = 0.05, which provides a balance 
between trusting our physical model while still allowing for some 
room for multiplicative errors. Additionally, 0.05 is a typical value 
in structural probabilistic modelling literature, being recommended in 
the JCSS Probabilistic Model Code - Part 3.9: Model uncertainties, for 
stresses in finite element models [37].

We also fix the standard deviation of the measurement error. This 
is possible because we have DFOS measurements taken before the 
application of the truck loads. In this situation, the true variations in 
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Table 2
Prior distribution of physical and statistical parameters.
 Parameter Units Distribution Hyperparameters 
 𝐸𝑐 GPa Uniform 𝑎 = 10, 𝑏 = 100  
 log10 𝐾𝑟 N-mm/rad Uniform 𝑎 = 0, 𝑏 = 12  
 𝜎𝑎 microstrains Gamma 𝛼 = 2, 𝛽 = 2  
 𝑙 m Gamma 𝛼 = 3, 𝛽 = 1  

Table 3
Description of sub-cases used for evaluating the performance of VBMC. For the load 
cases, see Fig.  2.
 Sub-case Covariance function Load cases Method 
 A1 Matérn, 𝜈 = 1.5 T1,39.8

MCMC  
 A2 VBMC  

Table 4
Hard bounds and plausible bounds for the VBMC algorithm.
 Parameter Units Hard bounds Plausible bounds

Lower Upper Lower Upper  
𝐸𝑐 GPa 10.0 100.0 20.0 60.0  
log10 𝐾𝑟 N-mm/rad 0.0 12.0 1.0 11.0  
𝜎𝑎 microstrains 0.0 5.0 0.2 2.0  
𝑙 m 0.0 10.0 0.2 5.0  

trains are zero, so we can attribute the fluctuations to noise, resulting 
n a fitted value of 𝜎𝜖 of 0.1 microstrains after rounding.
In contrast, we infer the statistical parameters of the covariance 

unction 𝜎𝑎 and 𝑙, along with the physical parameters 𝐸𝑐 and log10 𝐾𝑟. 
able  2 shows the chosen prior distributions. For the physical param-
ters, we have opted for wide uniform distributions, allowing the data 
o drive the inference process. On the other hand, we use Gamma 
istributions for the statistical parameters, which are appropriate for 
trictly positive variables. However, we slightly restrict these distribu-
ions, recognizing that they require some control to ensure meaningful 
esults as the inference is sensitive to them.
While the parameters 𝜎𝑚 and 𝜎𝜖 could also be inferred, doing 

o might introduce excessive flexibility in the statistical model that 
ould confound with the physical model, potentially leading to less 
eaningful results. For a broader discussion about this topic, see [25].

. Performance of variational Bayesian Monte Carlo

The use of VBMC allows to obtain accurate posterior distributions 
ith a limited number of likelihood evaluations. From Section 3.3, we 
ave cheap-to-compute Gaussian process surrogate models available for 
he finite element model of the bridge at DFOS locations. This enables 
he benchmarking of VBMC against a more established Bayesian infer-
nce method. We use the Affine invariant ensemble sampler MCMC 
ethod [38] as implemented in the emcee Python package [39]. A 
escription of the sub-cases used for the comparison is shown in Table 
.
We run sub-case A1 using the default settings of PyVBMC. The 

lgorithm requires the user to define both hard and plausible bounds. 
able  4 provides the selected bounds. For sub-case A2, we use the 
efault settings of emcee. In this case, the user must specify the num-
er of walkers and steps. We choose 40 walkers, with 2000 steps. The 
nitial positions of the walkers are sampled from the prior distribution. 
otably, only one load case is used for inference, as incorporating 
dditional load cases would significantly slow down the MCMC run. 
his is due to the computational complexity of Gaussian likelihood 
alculation, which scales cubically with the number of datapoints.
The summary statistics of the posterior distributions for both cases 

re presented in Table  5. Across all parameters, the mean and stan-
ard deviations produced by VBMC closely align with those obtained 
hrough MCMC. Additionally, the 1D and 2D marginal distributions 
7 
Fig. 4. Corner plot of the posterior distribution. The diagonal entries correspond to 
the 1D marginal distributions for 𝐸𝑐 (GPa), log10 𝐾𝑟 (N-mm/rad), 𝜎𝑎 (microstrains), and 
𝑙 (m). The rest of the entries are 2D marginal distributions.

exhibit similar shapes, as illustrated in Fig.  4. It is worth noting 
that VBMC shows smoother densities due to the algorithm use of a 
parametric approximation of the posterior.

We have verified that VBMC provides an accurate posterior estima-
tion with respect to MCMC. To evaluate its efficiency, we compare the 
convergence of parameter estimates for each method. As shown in Figs. 
5 and 6, VBMC achieves a significant reduction in computational cost, 
converging after only 145 likelihood function evaluations compared to 
approximately 30,000 evaluations needed by MCMC. This represents 
a reduction in the number of evaluations by a factor of around 200. 
As described in Section 3.3, each FE model evaluation takes around 
10 min, which would make running MCMC directly on the FE model 
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Fig. 5. Evolution of MCMC parameter estimates. The solid line and the shadowed area correspond to the mean and 95% credible interval, calculated using only the previous 1000 
samples. Results stabilize around 30,000 samples.
Table 5
Comparison of 1D marginal posterior parameter estimates.
 Parameter Unit Sub-case A1 Sub-case A2

Mean std. dev. Mean std. dev. 
𝐸𝑐 GPa 33.42 2.20 33.42 2.11  
log10 𝐾𝑟 N-mm/rad 11.56 0.42 11.57 0.30  
𝜎𝑎 microstrains 0.90 0.22 0.89 0.20  
𝑙 m 2.02 0.44 1.99 0.40  

nfeasible, as it would require around 5000 computing hours, whereas 
unning VBMC directly on the FE model would require only about 24 
omputing hours. Hamiltonian Monte Carlo methods such as the No-U-
urn Sampler [40] can be more efficient, but require gradients of the 
osterior density, which are not accessible with a black-box physical 
odel, and are still likely to need a few thousand evaluations.
In the remainder of this section, we demonstrate the effectiveness 

f the procedure outlined in Section 2.4.1 for adapting VBMC results 
o obtain posterior predictive estimates. Since we have stored the 145 
arameter samples queried by VBMC and the simulations responses 
f interest, we can utilize these input–output pairs to build surrogate 
odels. Specifically, we employ a zero-mean Gaussian process for 
ach output dimension, utilizing shared kernel hyperparameters that 
re optimized by maximizing the marginal likelihood. This is possible 
ecause all output dimensions are of the same type: they represent 
trains of similar magnitude and have a similar sensitivity to the input 
arameters.
Since VBMC prioritizes querying points that highly contribute to the 

ccuracy of the posterior distribution, it follows that a surrogate model 
f the structural responses built on these points will also exhibit high 
ccuracy within the posterior region. To illustrate this, we compare the 
erformance of the surrogate model mean predictions against the real 
redictions at samples located on the boundary of the 0.99 credible 
egion and at samples outside this region. As shown in Fig.  7, the 
urrogate model maintains excellent accuracy even on the boundary of 
8 
Table 6
Considered covariance functions.
 Function 𝑘(𝐱, 𝐱′)  
 Independent 𝜎2𝐼(𝐱 = 𝐱′)  
 Exponential 𝜎2 exp

(

− ‖𝐱−𝐱′‖
𝑙

)

 
 Matérn, 𝜈 = 1.5 𝜎2

(

1 +
√

3‖𝐱−𝐱′‖
𝑙

)

exp
(

−
√

3‖𝐱−𝐱′‖
𝑙

)

 
 Matérn, 𝜈 = 2.5 𝜎2

(

1 +
√

5‖𝐱−𝐱′‖
𝑙

+ 5‖𝐱−𝐱′‖2
3𝑙2

)

exp
(

−
√

5‖𝐱−𝐱′‖
𝑙

)

 
 Squared Exponential 𝜎2 exp

(

−
(

‖𝐱−𝐱′‖
𝑙

)2
)

 

the 0.99 credible region; however, its performance deteriorates outside 
this region. Nonetheless, because the contribution of samples outside 
the 0.99 credible region to the posterior predictive is minimal, the 
surrogate model remains sufficiently accurate for generating posterior 
predictive distributions.

5. Evaluation of covariance models

We have proposed a data generating process that accounts for the 
spatial dependency of model errors. For this, we need to specify the 
covariance function. As discussed in Section 2.3, this function should 
be distance-based and stationary; however, several functions meet these 
criteria. In this section, we evaluate various covariance models and 
explore how to select the most suitable one. This involves the use 
of posterior predictions and Bayesian model selection presented in 
Sections 2.4.1 and 2.4.2, respectively.

Table  6 shows the covariance functions considered in this paper, 
where 𝐼 is the indicator function, 𝜎 is the scale term and 𝑙 is the 
correlation length. We selected these functions to represent a spectrum 
of decay properties, allowing us to investigate how different spatial cor-
relation assumptions affect the model uncertainty. As we move down 
the table, the realizations of model discrepancy become progressively 
smoother.
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Fig. 6. Evolution of VBMC parameter estimates. The solid line and the shadowed area correspond to the mean and 95% credible interval, calculated using the current variational 
approximation for that step. Convergence is obtained at 145 samples.
Fig. 7. Comparison of the real predictions vs. the mean predictions of the surrogates trained with VBMC queried samples. The accuracy is excellent even on the boundary of the 
0.99 credible region. The surrogate performance deteriorates outside the 0.99 credible region, but the contribution of these samples to the posterior predictive is minimal.
Table 7
Description of sub-cases used for evaluating the covariance functions. For the load 
cases, see Fig.  2.
 Sub-case Covariance function Load cases Method 
 B1 Independent

T1,39.8 VBMC

 
 B2 Exponential  
 B3 Matérn, 𝜈 = 1.5  
 B4 Matérn, 𝜈 = 2.5  
 B5 Squared exponential  
9 
To investigate which of these functions is the most appropriate, we 
use the sub-cases shown in Table  7. For the inference process, we use 
data from only one load case and reserve the remaining load cases for 
posterior predictive validation. This allows us to evaluate how well the 
inferred models generalize to unseen data. Inference was conducted 
using the same VBMC settings detailed in Section 4. The number of 
likelihood evaluations required for each sub-case ranged between 100 
and 200. A summary of the resulting posterior distributions is provided 
in Table  8.

In general, the obtained posterior credible intervals are consid-
erably narrower than the prior credible intervals. We also observe 
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Fig. 8. Realizations of model discrepancy functions 𝛿(𝑥) for the covariance functions. The blue, orange and green lines correspond to sub-cases B3, B4 and B5, respectively. Left: 
Using the same hyperparameters for all three functions. Right: Using inferred mean posterior values of 𝜎𝑎 and 𝑙.  (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
Table 8
Summary of 1D marginal posterior parameter estimates. The value at the top of each 
cell corresponds to the mean. The values inside the brackets are the 2.5% and 97.5% 
percentiles.
 Sub-case 𝐸𝑐 log10 𝐾𝑟 𝜎𝑎 𝑙  
 [GPa] [N-mm/rad] [microstrains] [m]  
 B1 45.28 11.19 0.64 –  
 [42.80, 47.76] [10.87, 11.49] [0.59, 0.69] –  
 B2 40.51 10.63 0.62 4.41  
 [35.46, 46.38] [2.58, 11.92] [0.47, 0.81] [2.44, 7.11] 
 B3 33.42 11.59 0.88 1.99  
 [29.74, 38.11] [10.89, 11.98] [0.59, 1.37] [1.33, 2.92] 
 B4 32.51 11.59 0.88 1.53  
 [29.08, 36.73] [10.92, 11.98] [0.61, 1.30] [1.16, 1.99] 
 B5 32.60 11.58 0.79 0.98  
 [29.24, 36.87] [10.87, 11.99] [0.55, 1.11] [0.78, 1.17] 

relatively large differences in the inferred values of 𝐸𝑐 across the dif-
ferent models. Specifically, models B1 and B2 exhibit higher values for 
𝐸𝑐 compared to models B3, B4, and B5, which show more similar and 
lower values. Additionally, all cases show inferred log10 𝐾𝑟 parameters 
that are closer to their prior upper bound. This indicates that the 
bottom supports of the pillars behave as clamped rather than as hinged, 
a finding that aligns with the observations made by Rózsás et al. [34] 
in their study of this specific bridge.

Moreover, the inference results reveal a modest amount of model 
discrepancy, with mean 𝜎𝑎 values remaining below 1.0 microstrains 
across all cases. This is an encouraging outcome, suggesting that the 
finite element model used is of high quality. We also observe a trend 
where the correlation length 𝑙 decreases as the smoothness of the 
covariance function increases. To understand the implications of this 
behaviour, we inspect random realizations of the model discrepancy 
function 𝛿(𝑥) for models B3, B4, and B5, using the posterior mean 
values of 𝜎𝑎 and 𝑙 (see Fig.  8). Despite the covariance functions having 
different decay properties, these realizations exhibit similar trends. 
This suggests that the decrease in correlation length compensates for 
the increase in smoothness, allowing the models to fit the data simi-
larly. Therefore, the specific choice of covariance function may not be 
critical, provided that the correlation parameters are also inferred.

Although VBMC does not directly compute the evidence, it provides 
a proxy for it: the evidence lower bound (ELBO). We use it to calculate 
Bayes factors for each pair of models and interpret the strength of 
evidence according to Jeffreys [32]. The results are presented in Table 
9. It is reassuring that sub-case B1 is the least favoured by Bayesian 
model selection, despite being the most parsimonious, i.e., it has fewer 
inferred parameters than the rest. This aspect is usually weighted 
favourably in Bayesian model selection. The assumption behind sub-
case B1 was that model discrepancy occurred uncorrelated to the 
spatial proximity of points. It is easy to determine why this intuition 
10 
Table 9
Strength of evidence for the studied sub-cases. Each entry 𝑖𝑗 represents how strongly 
the model in row 𝑖 is favoured over the model in column 𝑗. Models B1 and B3 are the 
least and most favoured, respectively.
 Sub-case B1 B2 B3 B4 B5  
 B1 – Negative Negative Negative Negative  
 B2 Decisive – Negative Negative Negative  
 B3 Decisive Decisive – Barely mention Substantial 
 B4 Decisive Decisive Negative – Substantial 
 B5 Decisive Decisive Negative Negative –  

Table 10
Percentage of measurements within the 95% credible interval of the posterior predictive 
distribution. While all sub-cases show an adequate fit to the data, B3 and B4 favoured 
for unobserved data.
 Sub-case Inference data Unobserved data 
 B1 96.19% 75.81%  
 B2 96.77% 78.30%  
 B3 96.48% 89.81%  
 B4 96.48% 88.64%  
 B5 96.48% 85.12%  

was flawed by considering that both the true physical strain responses 
and the simulation are expected to be smooth, so their difference should 
be smooth as well. Sub-cases B3 and B4, corresponding to moderately 
smooth Matérn covariance functions, yield the best results.

Models can also be compared by their predictive capacity using 
the inferred posterior parameters. We compute the posterior predictive 
distribution, as outlined in Section 2.4.1, for both the observed load 
case T1,39.8, and the unobserved T1,47.5, T1,55.1, T1,62.8, and T1,70.4. As a 
metric, we use the percentage of measurements that fall within the 95% 
credible interval of the posterior predictive distribution. The results are 
shown in Table  10.

We observe a nearly uniform percentage across all models for 
the inference data, indicating that they all perform similarly well in 
fitting the observed data. However, the results for the load cases not 
used for inference present a different scenario, with models B3 and 
B4, which were most favoured by Bayesian model selection, showing 
better performance. This suggests that Bayesian model selection may 
be effective in identifying models that generalize better to unobserved 
data, although it is worth noting that some researchers have reported 
contradictory findings in this area [41]. Additionally, these results 
demonstrate that a single load case was sufficient for reliable system 
identification, validating our initial choice.

Since we are interested in spatial correlations, it is useful to show 
the posterior predictions across the length of the DFOS. In Figs.  9 and
10, we show fixed-load plots for load cases T1,55.1 and T1,70.4, which 
were not used for inference. The measurements in orange show the fast-
varying peaks in the high strained areas, as described in Section 3.4. 
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Fig. 9. Comparison of longitudinal static strain measurements along the bottom face of the bridge deck for load case T1,55.1, which was not used for inference. The plots show 
DFOS measurements (orange) versus mean posterior predictions (blue) with 95% credible intervals (shaded blue). Sub-case B3 shows better agreement between predictions and 
measured strains than sub-case B1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 11
Description of sub-cases used for evaluating inference across different resolutions. For 
the load cases, see Fig.  2.
 Sub-case Res. Equivalence Cov. function Load cases Method 
 C1 0.1 m DFOS

Matérn, 𝜈 = 1.5
T1,all, except
T1,70.4

VBMC

 
 C2 0.2 m DFOS  
 C3 0.5 m FBG  
 C4 1.0 m FBG  
 C5 2.0 m Strain gauges  
 C6 4.0 m Strain gauges  

There is moderate agreement between the mean predictions, repre-
sented by the blue lines, and the measurements for sub-case B1, while 
a very good agreement is observed for sub-case B3. Moreover, the 
credible interval, shown as a shadowed area, encompasses most of the 
measurements for sub-case B3, which is not the case for sub-case B1. 
Both observations are consistent with the results presented in Table  10.

6. Value of distributed fibre optic sensor

In the previous sections, we developed an efficient approach to 
perform Bayesian system identification using fibre optic data, extended 
VBMC for posterior predictive estimation, and examined various covari-
ance functions to account for spatial correlations. However, a critical 
question is whether high-resolution optic fibre data, despite potential 
high correlations, provides greater value in a Bayesian context. To 
evaluate this, we consider six sub-cases with different resolutions, as 
detailed in Table  11.
11 
The base sub-case C1 uses the full resolution of the data, with strains 
every 0.1 m along the fibre. For the other sub-cases, we downsample 
the data to match the respective resolutions by selecting data points at 
regular intervals corresponding to the desired spacing, starting from a 
fixed reference point. For example, in C3 with a resolution of 0.5 m, 
we select every fifth data point from C1, resulting in measurements 
at positions 0 m, 0.5 m, 1.0 m, and so on. We interpret these resolu-
tions as representative of different strain sensing technologies, such as 
distributed optic fibre sensors (DFOS), Fibre-Bragg gratings (FBG) and 
traditional strain gauges. To ensure that each sub-case has sufficient 
data for robust Bayesian inference, particularly in the lower-resolution 
cases, we include measurements from all available load cases (T1,all), 
with the exception of T1,70.4, which we reserve for posterior predictive 
checks.

It is well-known that the posterior distribution converges at a rate 
proportional to 𝑛−1∕2, where 𝑛 is the number of independent and 
identically distributed (i.i.d.) observations [42]. However, in our case, 
the assumption of independence is violated due to the presence of 
a correlated model discrepancy term. This raises uncertainty about 
whether the posterior will contract as the resolution increases. To in-
vestigate this, we calculate the 95% credible intervals for the marginal 
posterior parameters, as shown in Fig.  11. We observe that the posterior 
contracts with more data points, even after accounting for spatial corre-
lations. This indicates that the additional observations from the higher 
resolution are not redundant but provide extra value in a Bayesian 
context.

Apart from comparing 1D-marginal credible intervals, the informa-
tion content for different resolutions can also be assessed using the 



A. Martínez et al. Engineering Structures 334 (2025) 120214 
Fig. 10. Comparison of longitudinal static strain measurements along the bottom face of the bridge deck for load case T1,70.4, which was not used for inference. The plots show 
DFOS measurements (orange) versus mean posterior predictions (blue) with 95% credible intervals (shaded blue). Sub-case B3 shows better agreement between predictions and 
measured strains than sub-case B1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 12
KL divergence between posterior and prior distribution for different fibre resolutions. 
The values were calculated with a Monte Carlo approach using 10,000 samples.
 Sub-case 𝐷KL  
 C1 12.66 
 C2 11.45 
 C3 10.11 
 C4 9.68  
 C5 8.83  
 C6 7.28  

Kullback–Leibler (KL) divergence. Table  12 shows the KL divergence 
for different fibre resolutions. These values were calculated with the 
Monte Carlo approach described in Section 2.4.3, using 10,000 samples. 
The results indicate that the KL divergence increases with higher res-
olutions, reflecting a greater information gain as resolution improves, 
even when correlations are present.

Despite the benefits of higher resolution in terms of posterior con-
centration and information content, the impact on predictive perfor-
mance is more limited. As shown in Table  13, all sub-cases show 
consistent agreement between measurements and mean posterior pre-
dictions, as quantified by the coefficient of determination and mean 
squared error. Additionally, the average width of the 95% posterior pre-
dictive credible intervals remains stable across all cases. This suggests 
that while finer discretization may provide more detailed posterior dis-
tributions, it does not necessarily translate into substantially improved 
predictive capabilities for this particular load case.
12 
Table 13
Performance of posterior predictions for load case T1,70.4, which was not used for 
inference. The coefficient of determination (𝑅2) and mean squared error (MSE) were 
calculated between the measurements and mean posterior predictions. The mean width 
corresponds to the 95% equal-tailed posterior predictive credible interval.
 Sub-case 𝑅2 𝑀𝑆𝐸 Mean C.I. width 
 C1 0.93 1.58 2.38  
 C2 0.93 1.70 2.56  
 C3 0.93 1.71 2.52  
 C4 0.92 1.63 2.56  
 C5 0.92 1.57 2.55  
 C6 0.92 1.63 2.44  

7. Discussion

The use of VBMC in our case study resulted in a dramatic reduc-
tion in computational costs compared to MCMC while maintaining 
accuracy. This efficiency comes from the ability of VBMC to build a 
surrogate of the log joint probability using relatively few evaluations of 
the physical model, after which inference can proceed using the cheap 
surrogate. Performance remained stable across all sub-cases, requiring 
minimal fine-tuning. This characteristic is particularly valuable for 
practitioners who may not be experts in Bayesian inference. Moreover, 
the method does not impose hard restrictions, offering flexibility for 
inference across diverse scenarios. For these reasons, the application of 
VBMC for general use in structural engineering shows great potential.

Despite these advantages, VBMC has limitations that deserve con-
sideration. Huggins et al. [28] noted that VBMC might struggle with 
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Fig. 11. Concentration of parameter posteriors for different fibre resolutions. With increasing resolution, the credible intervals become narrower.
cases involving more than 20 parameters. Although engineering models 
tend to have moderate dimensionality, some applications can exceed 
this threshold significantly, such as when discretizations of random 
fields are involved. Additionally, our proposed method for obtaining 
posterior predictive distributions may face challenges with highly non-
linear physical models where the surrogate approximation could be 
less accurate. Furthermore, Igea and Cicirello [43] found that VBMC 
failed in the presence of highly multi-modal posteriors and proposed 
an extension to address this problem.

Regarding correlations, our choice to represent model discrepancy 
with a Gaussian process was partially motivated by convenience, as it 
enabled analytical calculation of the likelihood. Nevertheless, this can 
be justified theoretically, as model discrepancy arises from numerous 
small effects not captured by the idealized physical model. By the 
Central Limit Theorem, the aggregate effect of these many indepen-
dent sources tends towards a Gaussian distribution. Extending this 
reasoning spatially, the Gaussian process emerges as a natural choice 
for modelling the spatial distribution of these accumulated effects, 
as it represents the infinite-dimensional generalization of multivariate 
normal distributions. The importance of considering spatial correlations 
is clearly demonstrated in our results, where the model version that 
ignored correlations (sub-case B1 in Section 5) showed significantly 
worse performance in terms of both parameter inference and pre-
dictions, with Bayes factors strongly favouring all other correlation 
models.

On the other hand, selecting a specific covariance function remains 
challenging. In our case, assuming a stationary function with relatively 
smooth behaviour was justified, but other applications might require 
different approaches. An additional limitation is that, unlike physical 
parameters, prior distributions for covariance function parameters do 
not arise naturally, yet they can significantly impact inference. We 
recommend incorporating knowledge of the physical system whenever 
possible, potentially through physics-informed covariance functions.
13 
The analysis of different sensor resolutions revealed clear advan-
tages for using distributed fibre optic measurements when the pri-
mary objective is parameter inference, as evidenced by both narrower 
credible intervals and increased Kullback–Leibler divergence. This can 
be the case for monitoring systems where the parameters to be in-
ferred are damage levels. Regarding predictive performance, the differ-
ences across resolutions were modest, but this should be interpreted in 
context: even the lowest-resolution case included measurements from 
multiple load cases, providing substantial information for inference. 
In applications where fewer load cases are available, the benefits 
of high-resolution measurements might become more pronounced for 
predictive tasks.

Our case study relies on fibre optic data, but the methodology 
is applicable to other forms of spatially dense measurements, such 
as those obtained from Digital Image Correlation. In this context, 
model discrepancy manifests in two or three dimensions, requiring 
the use of higher dimensional Gaussian processes. The choice between 
considering decoupled covariance functions for each dimension or 
a single function based on the three-dimensional distance between 
points will depend on the structure being modelled. For example, an 
orthotropic deck might need separate functions for each dimension, 
while a uniform slab could be better represented by a single function.

The widespread adoption of model-based approaches in Structural 
Health Monitoring (SHM) has been constrained, in part, by their sig-
nificant computational demands. However, the efficiency of the pro-
posed method could contribute to transition from purely data-driven 
to model-based strategies. This shift has the potential to offer more 
robust and interpretable results, as it combines the advantages of 
physics-based modelling with statistical inference.

8. Conclusions

This paper presents, to the authors’ knowledge, the first application 
of Variational Bayesian Monte Carlo (VBMC) for Structural Health 
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Monitoring (SHM) in civil engineering structures. The study uses dis-
tributed fibre optic strain measurements from static load tests on a large 
reinforced concrete slab bridge to infer both structural and statistical 
model parameters. The following key conclusions are drawn:

1. VBMC requires only 100–200 likelihood function evaluations 
to successfully infer four parameters, significantly improving 
efficiency compared to traditional Markov Chain Monte Carlo 
methods, which typically require 103–105 evaluations.

2. Ignoring spatial correlation reduces model performance on test 
(hold-out) data: models with spatial correlation using the Matérn 
covariance function achieve 89% coverage for a 95% credible 
interval, while models assuming independence only reach 76%.

3. Increasing the spatial density of strain measurements along the 
optic fibre improves parameter estimates (narrower credible 
intervals, higher Kullback–Leibler divergence), but does not sub-
stantially enhance posterior predictions.

This work demonstrates that VBMC-based system identification, 
enriched by our proposed approach for calculating posterior predictive 
distributions, provides an efficient and accurate framework for SHM in 
real-world engineering structures. It also highlights the ability of the 
method to handle spatially dense measurement data, enabling the use 
of modern sensing technologies in SHM applications. Although based 
on a specific case study, these findings provide valuable insights for 
other engineering structures, advancing the practical application of 
Bayesian system identification in SHM.
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