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Bayesian system identification is increasingly used in Structural Health Monitoring (SHM) to infer unobservable
parameters of a structure from sensor data. The use of spatially dense measurements, such as those from
distributed fibre optic sensors, can further enhance the results of Bayesian system identification due to the
large volume of data. However, this combination faces two major challenges: the computational cost of
inference and the correlation structure of closely spaced data points. To overcome these difficulties, we propose
a methodology that combines the recently-developed Variational Bayes Monte Carlo (VBMC) method with
Gaussian process modelling of model discrepancy, and extend VBMC to enable posterior predictive calculations
without additional model evaluations. We demonstrate the effectiveness of the proposed methodology on a
reinforced concrete slab bridge instrumented with distributed fibre optic strain sensors and analysed using a
finite element model. The main outcome is that VBMC requires fewer than 200 finite element model evaluations
while producing accurate estimates, whereas a conventional MCMC method requires thousands. The application
of the proposed framework provides two additional novel insights: accounting for spatial correlations improves
model performance and higher measurement resolution leads to more precise parameter estimates, though with
limited impact on predictive accuracy. This study advances the practical implementation of Bayesian system
identification in SHM by providing both the computational efficiency and statistical framework needed for
modern sensing technologies.

1. Introduction Occasionally, engineers use sensor data to calibrate structural mod-
els, treating SHM as an inverse problem where the objective is to
1.1. Motivation estimate unobserved parameters of a physical model from measure-
ments. Inverse problems are usually challenging due to the presence

Government agencies around the world are facing enormous ren-
ovation and replacement tasks since a significant portion of their

infrastructure was built decades ago and is reaching the end of its

of observational noise, model discrepancies and the non-uniqueness of
solutions [4]. Bayesian system identification offers an effective proba-

service life. Traditional methods of assessing structural condition, such
as manual inspections, are not only costly but also rely on specialized
labour. As an alternative, Structural Health Monitoring (SHM) has
emerged as a more efficient and consistent approach to make informed
decisions for infrastructure maintenance.

The use of high-resolution sensors in SHM has gained considerable
attention in recent years. Technologies such as distributed fibre optic
sensors (DFOS) [1], digital image correlation (DIC) [2] and Micro-
Electro-Mechanical Systems (MEMS) sheets [3] enable the collection of
data with unprecedented spatial and/or temporal detail. These sensors
provide a wealth of information that has the potential to improve the
overall effectiveness and accuracy of SHM.
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bilistic framework for addressing inverse problems by providing several
advantages over traditional optimization methods: it allows for the
incorporation of prior knowledge about the parameters, it inherently
regularizes ill-posed problems, and it quantifies uncertainties in the
parameter estimates. Under this approach, the unknown structural
parameters are treated as random variables with a prior distribution
that is updated to a posterior using the likelihood of the observed data.

To fully exploit the data from high spatial resolution sensors, one
might employ Bayesian system identification. However, this combina-
tion presents significant challenges. First, computationally expensive
high-fidelity models are usually required to provide information at
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the same level of detail as the sensor data, making common Bayesian
methods like Markov Chain Monte Carlo (MCMC) prohibitive, as they
require numerous model evaluations. Second, model discrepancies—
differences between simulation and reality—can exhibit strong corre-
lations in closely spaced data points, but the optimal approach for
modelling this correlation structure remains uncertain. While neglect-
ing these correlations can result in flawed inferences, explicitly mod-
elling them adds complexity to the problem, as it introduces additional
statistical parameters that must be inferred. In optimization-based ap-
proaches, this typically results in a highly nonlinear objective function,
making the problem challenging. Bayesian inference naturally accom-
modates this complexity by implicitly regularizing the problem through
the prior distribution. Addressing these computational and statistical
challenges is essential to enable the practical application of Bayesian
system identification of engineering structures with modern sensing
technologies.

1.2. Related work

One common approach to overcome the computational barrier is
to replace structural model responses with cheap-to-compute surrogate
models. They are built by strategically selecting samples and fitting an
approximation function with input—output pairs. Various types of surro-
gates have been used for system identification of engineering structures
such as response surfaces [5,6], Gaussian processes [7-10], polynomial
chaos expansions [11-13] and artificial neural networks [14-16]. A key
challenge with surrogate models is the amount of simulations required
to obtain the desired accuracy, which can become unmanageable. This
is especially true for high-dimensional input spaces, as many surrogate
methods are prone to the curse of dimensionality [17].

Other methods achieve computational efficiency through special-
ized formulations. For instance, Titscher et al. [18] combines mean
field variational inference with first-order Taylor expansions, while
Febrianto et al. [19] employs the statFEM methodology with simplified
stochastic partial differential equations. Although these approaches
require few model evaluations, their applicability is limited by their
underlying assumptions. Indeed, the former struggles with nonlinear
physical models, and the latter relies on specific mathematical simpli-
fications that may not generalize well to other structural systems

Recent advancements in Bayesian inference have focused on directly
approximating the unnormalized posterior to accelerate the process.
By concentrating on regions that significantly influence the posterior
distribution, these techniques greatly reduce the number of required
evaluations. Methods such as Bayesian Active Posterior Estimation
(BAPE) [20] and Adaptive Gaussian Process (AGP) [21] employ Gaus-
sian process models to surrogate the unnormalized posterior. The Vari-
ational Bayesian Monte Carlo (VBMC) method [22,23] adopts a sim-
ilar strategy, but with a variational framework that approximates the
posterior with a parametric distribution.

Moving to spatial correlations, their treatment in Bayesian system
identification was first introduced in the seminal work of Kennedy and
O’Hagan [24], who proposed the use of Gaussian processes for model
discrepancy, with the dependency being encoded in its correlation
function. Brynjarsdéttir and O’Hagan [25] used the same approach and
demonstrated that only when incorporating realistic priors into the
model discrepancy function, the true parameter values are uncovered.
Recent developments have focused on specialized formulations. Raman-
cha et al. [13] introduced a covariance function tailored for linear
dynamic systems based on the theory of random vibrations. Kosikova
et al. [26] studied the automatic selection of a covariance function
with an efficient approach based on Laplace approximations. Koune
et al. [27] proposed an efficient likelihood evaluation framework by
exploiting separable spatio-temporal covariance structures and utilizing
exponential functions. Although effective, these approaches rely on
specific constraints and assumptions that might limit their broader
applicability across different types of engineering structures.
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1.3. Present study and contributions

A key gap in the SHM literature is the lack of efficient Bayesian
methods for real-world structures with spatially dense measurements.
While efficient inference techniques exist, they often rely on restrictive
assumptions about the model structure or correlation patterns that limit
their practical applicability.

To address this gap, we propose the use of the VBMC method, as it
offers several advantages that make it particularly suitable for this ap-
plication: it requires minimal likelihood evaluations, making it practical
for computationally expensive models; it imposes no restrictions on
model structure or correlation patterns; it provides approximations for
both the posterior distribution and model evidence, enabling Bayesian
model selection; and it has a readily available Python implementa-
tion (PyVBMC) [28], which requires no custom coding or extensive
fine-tuning. Additionally, we extend VBMC by presenting a practi-
cal approach for computing posterior predictive distributions without
requiring additional model evaluations.

Our methodology combines VBMC with a flexible treatment of
model discrepancy. Similarly to Kennedy and O’Hagan, we represent
discrepancy as a Gaussian process with a distance-based covariance
function; however, we perform full Bayesian inference on both physical
and correlation parameters, which allow us to learn the correlation
structure from the data. Furthermore, unlike previous approaches, we
maintain generality by avoiding restrictions on the covariance function.

We demonstrate our methodology on a reinforced concrete bridge
using static strain measurements from DFOS. To our knowledge, this
represents the first application of VBMC for inference in a real-world
structure. Additionally, we use this framework to investigate two as-
pects that have received limited attention in the literature. First, we
evaluate different covariance models to investigate the effect of ig-
noring correlations on inference, and to provide insights for choosing
a specific function. Second, we examine the value of high-resolution
measurements for inference, as the relationship between measurement
density and parameter uncertainty becomes non-trivial in the presence
of spatial dependencies.

1.4. Organization

The paper is structured as follows: Section 2 details the methodol-
ogy, including the VBMC method and the modelling of spatial corre-
lations. Section 3 describes the case study of the reinforced concrete
bridge. Sections 4 to 6 present our findings, focusing on performance
assessment, covariance function evaluation, and the impact of data
resolution, respectively. Sections 7 and 8 contain the discussion and
conclusions.

2. Methodology
2.1. Principles of Bayesian inference

Bayesian inference provides a formal framework for updating the
probability distributions of uncertain parameters given observations
through the application of Bayes’ theorem. For continuous variables,
this theorem takes the form:

20ly) = p(y10) - p(0)

p(y16) - p(0) dO

The posterior distribution p(6|y) represents our updated knowledge
about the parameters 6 after observing data y. This combines our
prior knowledge, encoded in p(0), with the information from the data
through the likelihood function p(y|0). The denominator, known as
the evidence or marginal likelihood, ensures the posterior distribution
integrates to one over the parameter domain.

For most practical applications, the integral in the denominator
is intractable and numerical approaches are needed. Markov Chain

(€8]
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Monte Carlo (MCMC) methods have become the standard in Bayesian
statistics as they can generate samples from the posterior distribution
without requiring the explicit computation of the evidence. However,
the computational cost of generating a sufficient number of samples for
convergence, typically thousands, might be prohibitively high in cases
with expensive likelihood function evaluations. In the next section, we
introduce Variational Bayesian Monte Carlo as an efficient alternative
to MCMC for engineering structures.

2.2. Variational Bayesian Monte Carlo

Variational inference methods provide an efficient alternative to
sampling-based methods by framing Bayesian inference as an optimiza-
tion problem. They approximate the true posterior distribution with a
simpler, parametric distribution g. The parameters ¢ of this distribution
are optimized to maximize the Evidence Lower Bound (ELBO), which
is equivalent to minimizing the Kullback-Leibler divergence between
the approximate and true posterior distributions. The ELBO is defined
as follows:

ELBO = E, [log p(y, 0)] + Hlgy(x)] (2)

where the first term is the expected log joint probability for g4, and the
second term is the entropy of the variational posterior.

Building on this framework, Variational Bayesian Monte Carlo
(VBMC) [22,23] combines variational inference with Gaussian Process
surrogate modelling to efficiently approximate posterior distributions
in scenarios where likelihood evaluations are computationally expen-
sive. The method provides both an approximation to the posterior
distribution and an estimate of the model evidence through the ELBO.
In VBMG, the distribution ¢ is a mixture of Gaussians:

K

40 = Y W N (6; py, 0} ) ©)
k=1

New samples are selected by maximizing this acquisition function:

a(0) = Vp(0)q4(0) exp(mgp(0)) @

where V;p(0) is the posterior predictive variance of the GP, mg;p(0) is
its posterior predictive mean, and q,,(0) refers to the current variational
posterior. This function promotes sampling in regions of high GP un-
certainty (Vp), areas of high posterior probability (g4), and locations
that the GP predicts might be promising (exp(mgp)).

The variational approximation is refined through an iterative pro-
cess that follows these steps:

1. Add samples at promising locations in the parameter space by
maximizing the acquisition function

2. Train a Gaussian Process surrogate of the log joint probability
(sum of log prior and log likelihood) using all collected samples

3. Update the variational parameters by optimizing the ELBO,
where the expectation term is computed in closed form using
the GP approximation, and the entropy is estimated via Monte
Carlo sampling

Initially, VBMC uses a warm-up phase with K = 2 mixture compo-
nents and equal weights. This phase continues until the improvement
in the ELBO across consecutive iterations falls below a threshold for
several iterations, indicating initial stability of the approximation. After
warm-up, VBMC begins adjusting the complexity of the variational pos-
terior by adding new components through splitting existing ones when
the ELBO shows consistent improvement, and removing components
with negligible weights if their removal does not significantly impact
the approximation quality. This process continues until convergence
in the ELBO. For a detailed description of the method, the reader is
referred to the original papers by Acerbi [22,23].

2.3. Data generating process with spatial correlations

To define the likelihood function, one must construct a narrative
that describes the data generating process [29]. In this paper, the data
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generating process is conceptualized as the combination of a physical
model and a probabilistic model. The physical model is a deterministic
numerical simulation of a structure for which responses can be ob-
tained as a function of control variables, such as location, and physical
parameters; while the probabilistic model accounts for the intrinsic
uncertainties that appear when using a model to describe a physical
system. Here, we consider two sources of uncertainty: measurement
uncertainty and physical model uncertainty.

Measurement uncertainty refers to the mismatch between the mea-
sured quantities and the true responses of the structure caused by
sensing errors and/or environmental noise. In contrast, model uncer-
tainty relates to the discrepancy between the deterministic physical
model predictions and the true responses, arising from mathematical
simplifications and idealizations in the physical model. We adopt the
model introduced by Kennedy and O’Hagan [24]:

i = C(xi)+€i (5)

where y; is the ith observation of the physical system, {(x;) is the true
value of the physical system at location x; and ¢; is the independent
measurement error. The model discrepancy is represented as an addi-
tive term §(x) on the numerical simulator #(x, 8,), with 6, the unknown
physical parameter vector:

$(x) =n(x,0p) + 6(x) ©

Combining Egs. (5) and (6) yields the data generating process
equation:

y,-=r](x,-,9p)+5(x,~)+e,-, i=1,...,n @)

The measurement error terms ¢; are modelled as independent zero-
mean Gaussian variables with a standard deviation o,, which can either
be directly inferred or estimated beforehand, for instance, using sensor
pre-recordings. On the other hand, the model discrepancy function is
represented as a zero-mean Gaussian process:

8(x) ~ GP(0, k(x,x")) (€)]

where k(x,x’) is a covariance function. Since we are interested in
cases with a high spatial density of points, it is logical to employ a
distance-based covariance function, which exhibits strong correlations
for nearby points and weaker correlations for those far apart. Fur-
thermore, since the regions of higher or lower model discrepancy are
not always known in advance, a stationary covariance function is a
prudent choice. The Matérn covariance function is a commonly used
example of a distance-based stationary function. It is characterized by
the parameters o, (the scale term), / (the correlation length), and v,
which controls the smoothness of the process. For v = 1.5, the kernel
function reads:

! /
k(x,x") = 65 1+ M exp —M

©)

A fundamental property of Gaussian processes is that any finite
collection of random variables sampled from the process follows a
multivariate Gaussian distribution [30]. Therefore, the measurement
vector follows:

y~N@(x,0,),K +cI) (10)

where K is the covariance matrix of the model discrepancy func-
tion §(x). The elements of matrix K are defined using the covariance
function k(x, x'):

K = k(x;,x)) an

Defining ¥ = K + 031 as the total covariance matrix and » as the
number of observations, the likelihood function is the density of the
multivariate Gaussian distribution:

1 1 -
p(y|0) = RSEDE exp (‘5(}’ —n(x, 0,)" =7 (y = n(x, 0p))> 12)

Note that 0 includes the physical parameters 6,, which govern
the physical model #, as well as the statistical parameters 6;, which
determine the total covariance matrix X.
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2.4. Post-inference applications

Although parameter inference might sometimes be a goal in itself,
in most occasions we would like to use the posterior distribution for
further analysis. In this section, we explore three applications and show
how to adapt the results from VBMC for these purposes.

2.4.1. Posterior predictive distribution

Besides estimating the underlying parameters of our model, we
often want to make predictions based on these parameters. If we knew
the exact value of 0, predicting would be straightforward. However,
since we only have the posterior distribution of possible values for
0, we need to marginalize over this distribution to make predictions
[311.

p(yly) = /p(S’IG)-p(@Iy)dG (13)

The term p(y|y) is known as the posterior predictive distribution
of y given y, and p(y|0) is the likelihood of the unobserved data.
The posterior predictive is the expected value of the likelihood of
the unobserved data over the posterior; hence, it incorporates the
uncertainty from all sources: model and measurement uncertainty via
the likelihood, and parameter uncertainty via the posterior.

In practice, the integral in Eq. (13) is often intractable, but it can
be approximated in a Monte Carlo way. Let 6) represent samples from
the posterior distribution p(8|y):

2p<y|e<‘>> a4

Instead of evaluatmg the posterior predictive distribution for every
conceivable value of y, we opt for directly generating samples from the
conditional distribution of the unobserved data given each posterior
sample 0. Let 3@ denote a sample drawn from this conditional
distribution:

p(¥ly) =

7O ~ p(3167) = N(n(x%,0,)), K + 621) (15)

The collection of these samples {7 }N forms an approximation to
the posterior predictive distribution. However this approach can be
extremely inefficient, as each sample implies evaluating the physical
model 5(x, Bg)), demanding numerous additional simulations to prop-
agate the uncertainty of the posterior distribution to predictions. This
limitation can restrict the applicability of VBMC.

To address this problem, we propose an extension of VBMC for es-
timating the posterior predictive distribution without additional model
evaluations. Suppose that for each point ) where VBMC evaluates
the true likelihood we calculate the model response not only at the
observed locations x but also at the prediction locations X. By storing
these additional responses, we can train a surrogate model. Because
this surrogate is built with the samples VBMC uses to represent the
posterior, it is expected to be accurate in regions with high posterior
density, which is essential for obtaining a good approximation of the
posterior predictive distribution. Here, we use a zero-mean Gaussian
process surrogate and tune its hyperparameters by marginal likelihood
optimization. For the case study, we use only the mean predictions
from the GP as the predicted variances were negligible. If this were
not the case, Egs. (13) to (15) can be extended by adding a surrogate
uncertainty term, using the predicted GP standard deviation.

It should be noted that the approach described in this section
is heuristic, and there is no formal guarantee of posterior predic-
tive accuracy; however, it delivered excellent results in our experim-
ents.

2.4.2. Bayesian model selection
When multiple competing models can explain the observed data,
Bayesian model selection provides a principled framework for com-
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Table 1
Strength of evidence of M, over M, based on the Bayes factor [32].
By, Strength of evidence
<10° Negative
10° to 10'/2 Barely worth mentioning
10'/2 to 10! Substantial
10! to 10%/2 Strong
1032 to 10? Very strong
>10? Decisive

parison. In this work, we compare different correlation models for
the discrepancy function from Eq. (8). The Bayes factor quantifies the
relative support for one model over another:

p(yIM)) /1’(3’|91s"41)~p(91|M1)d(9l

= = 16
27 p(yIMy) (16

/P(Y|92s M;) - p(6,|M;) d6,

where M| and M, represent the competing models. An advantage of
using Bayes factors is that they penalize model complexity, as models
with more parameters require the likelihood to be integrated over a
larger parameter space. In this work, we follow Jeffreys’ interpreta-
tion [32] shown in Table 1 to qualify the strength of evidence of one
model over the other.

In the context of VBMC, we use the evidence lower bound (ELBO)
as a proxy for the model evidence. This can be justified because the
tightness of this bound is explicitly optimized during the variational
inference process. The Bayes factor is then computed as the ratio of
the ELBOs obtained during inference under the different models.

2.4.3. Information content of observations

The Kullback-Leibler (KL) divergence provides a natural way to
quantify the information content of observations by measuring the
distance between prior and posterior distributions. For two probability
distributions p(0) and ¢(0), the KL divergence is defined as:

Do ll ) = / 2(6)log ‘#d@ a7

For the specific case of measuring information gain from observa-
tions, we calculate the KL divergence between the posterior p(6|y) and
prior p(0) distributions:

Diu 001y 1l p©) = [ pi6ly)tog 207

A larger KL divergence indicates a greater difference between our
posterior and prior beliefs. In information theory, this divergence quan-
tifies the additional nats (or bits, when using logarithms with base 2)
needed to represent the posterior relative to the prior. In contrast, a KL
divergence close to zero suggests that the data added little information
beyond what was already known from the prior.

Since the KL divergence is generally intractable for complex distri-
butions, we can approximate it using Monte Carlo integration [33].
VBMC provides direct estimates of the posterior densities through its
variational approximation, making this computation straightforward.
Given samples {6¢ }fi , from the posterior distribution, we can estimate:

de 18)

(210]
D (p(@1y) 1| p(O) ~ - 21 no 1y 19)

=1 (9(’))
3. Case study overview: Bridge 705 in Amsterdam
3.1. Bridge description
The case study concerns bridge 705, a reinforced concrete slab

bridge located in Amsterdam, as shown in Fig. 1. The bridge was
built in 1960 and up to the measurement campaign in 2018 no visible
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Fig. 1. Side view of bridge 705.
Source: Picture taken from [34].
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Fig. 2. Illustration of the moving truck 1 (T,) at twelve positions on bridge 705 that was used during the measurement campaign and the location of the optic fibre strain sensor

(red dashed line).
Source: Picture adapted from [34].

damage or signs of corrosion were detected. The bridge deck spans 102
m in length and 33.2 m in width, and is supported at each end by abut-
ments. In addition, six rows of four V-shaped piers provide intermediate
support. Each of these 24 piers is monolithically connected to the deck
at its top. The piers at the two central rows have hinged supports at
their base, while the rest use rollers. The bridge accommodates two
tram tracks, driving lanes and sidewalks.

3.2. Measurement campaign

At the end of 2018, bridge 705 was instrumented and diagnostically
loaded. In total, about 90 sensors were used that recorded strains,
translations, accelerations, and temperature. During two nights, the
bridge was closed for traffic and controlled static and dynamic load
tests were executed using two sand trucks. One of the main objectives
of this extensive, on-site measurement campaign was to compare the
information content of structural response measurements obtained from
traditional and innovative sensor technologies. More details of this

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

measurement campaign, the used sensors, the different load tests, and
the data processing are presented in [34].

In this paper, we consider the strain data that was acquired during
the static load test series T; with a single truck (truck 1) using a high
resolution optic fibre sensor. Truck 1 has four axles and a total mass
of 34.95 tonnes. Fig. 2 presents the twelve front axle positions from
the left abutment (xp;) in this test series, with xp; values equal to
10.5, 16.9, 24.5, 32.2, 39.8, 47.5, 55.1, 62.8, 70.4, 78.1, 85.7 and
99.9 m. Fig. 2 further indicates the location of the optic fibre by the
red dashed line. This distributed optic fibre sensor (DFOS) was placed
in a milled notch and bonded by an epoxy adhesive over a total length
of about 70 m along the bottom side of the bridge deck. It has a
10 cm distance between consecutive measuring points, where at each
measuring point the strain value has been averaged over a spatial range
of 20 cm. The reader is referred to Wosniok et al. [35] for further
information about the DFOS configuration. In this paper, we only use
the data that is measured over the about 35 m long distance between
the points O, and O,, since this part of the fibre is right below the lane
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Fig. 3. Overview of the three-dimensional finite element model under a concentrated load in the second span.

Source: Picture taken from [34].

of truck 1. Some data processing was needed to compensate for small
temperature changes that occurred during the test series, and to apply
offset adjustments. For more details on these corrections, see [36].

3.3. Structural model

The strain responses of bridge 705 at the location of the DFOS are
simulated using a three-dimensional finite element model (see Fig. 3).
The deck and V-shaped piers are modelled with 68,649 quadrilateral
eight-node shell elements, accounting for all thickness variations. With
207,848 nodes, each having three translational and two rotational
degrees of freedom, the finite element model results in over 1 million
degrees of freedom. Given the relatively low load intensities during
the test series, nonlinearity in the concrete material behaviour can
be neglected. Instead, the concrete is modelled as a linear-elastic
material, for which the modulus of elasticity E. is one of the two
physical parameters that will be estimated. The concrete is assumed
to be homogeneous and to have a constant value over the entire
bridge deck. The finite element model accounts for contributions of the
pavement and tramway rails to the deck stiffness by modification of
the modulus of elasticity in the corresponding zones. The abutments
on both sides of the deck are not explicitly modelled. Instead, vertical
supports are placed at the bearing locations, and nodal supports are
applied at the bottom of the piers, each with (i) horizontal and vertical
constraints on the translational degrees of freedom, and (ii) a spring
element for one of the rotational degree of freedom, in line with
the bridge’s structural design. The rotational spring stiffness K, is the
second physical parameter that will be estimated. The only modelled
load is the weight of truck 1, where each of its wheel prints is modelled
by a uniformly distributed load over a finite area. The movement of the
truck is simulated with static analyses in discrete steps of one metre.
All analyses are performed using the finite element software DIANA
FEA. The accuracy of this model was validated in [34], where the finite
element model with parameter values chosen a priori showed good
agreement with discrete strain field measurements, achieving an R?
score of 0.84. This demonstrates that the model reasonably captures
the bridge behaviour under static loads, while leaving room for further
refinement through parameter estimation.

The evaluation of the finite element model takes between 10 and
13 min. Since a Bayesian parameter estimation can require many of
these evaluations, it may result in an excessively high wall clock time.
As mentioned in Section 1, this computational challenge can be tackled
by using Bayesian methods that need less likelihood function evalu-
ations or by replacing the structural model responses with surrogate
models that are multiple orders of magnitude faster to evaluate. In this
paper, both strategies are adopted because we aim to solve multiple
parameter estimation tasks.

The surrogate models replace the strain responses from the finite
element model at the location of the DFOS. Between the points O, and
0,, the finite element model has 336 element nodes, so 336 surrogates
are needed for each of the twelve truck positions that we consider.

The surrogates are constructed with Gaussian processes (GPs). All GPs
share the same hyperparameters, which are estimated by optimizing
the marginal likelihood. Each GP consists of a two-dimensional input
space that is formed by the two physical parameters to be estimated,
E, and K,. Due to the low dimensionality of the input space, a points
grid is used over which the finite element model was evaluated and
then the GP models are fitted. The used grid has 112 points: 7 values
between 10 to 100 GPa for E, and 16 values between 10° to 10'? N-
mm/rad for K,. A finer discretization is used for K, because it spans
several orders of magnitude and has a more nonlinear influence on the
structural response compared to E,.

After fitting, the surrogate model predictions are compared against
left out finite element model results. Since the surrogates deliver re-
sponses virtually identical to those from the finite element analyses,
the 112 points provide sufficient information to construct an accu-
rate surrogate for the finite element model. Considering this, there
is no downside to using the surrogates in our parameter estimation
tasks. Nevertheless, the proposed methodology with VBMC is equally
applicable if a finite element model is used directly.

For additional information about the finite element model and its
surrogates, the reader is referred to Rézsés et al. [34].

3.4. Probabilistic model

We adopt the data generating process from Eq. (7), but adding a
multiplicative term p on the physical model v:

yi=p -nx;,0)+6(x)+e, i=1,...,n (20)

The term p ~ N'(1,0,,) is an i.i.d. variable. This signals that part
of the model discrepancy might also scale with the magnitude of the
model predictions. The modification was deemed necessary for the case
study after observing that the model predictions were smooth, while
measurements in the more strained areas exhibited fast-varying peaks.
While the exact cause of these discrepancies—whether due to sensor
errors or other factors—remains uncertain, for simplicity, we assume
the model discrepancy contributes to these variations and therefore
modify Eq. (10) accordingly:

y ~ N(n(x,0), 02 diag(n(x, 0))> + K + c>I) (@3]

where diag(n(x,0))> is a diagonal matrix composed of the squared
values of 5(x,0). We do not infer o,,, but instead, we treat it as a
fixed parameter. We assume o,, = 0.05, which provides a balance
between trusting our physical model while still allowing for some
room for multiplicative errors. Additionally, 0.05 is a typical value
in structural probabilistic modelling literature, being recommended in
the JCSS Probabilistic Model Code - Part 3.9: Model uncertainties, for
stresses in finite element models [37].

We also fix the standard deviation of the measurement error. This
is possible because we have DFOS measurements taken before the
application of the truck loads. In this situation, the true variations in
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Table 2
Prior distribution of physical and statistical parameters.

Parameter Units Distribution Hyperparameters

E. GPa Uniform a=10,b=100

log, K, N-mm/rad Uniform a=0,b=12

o, microstrains Gamma a=2,=2

! m Gamma a=3,=1
Table 3

Description of sub-cases used for evaluating the performance of VBMC. For the load
cases, see Fig. 2.

Sub-case Covariance function Load cases Method

Al . MCMC

A2 Matérn, v =1.5 T30 VBMC
Table 4

Hard bounds and plausible bounds for the VBMC algorithm.

Parameter Units Hard bounds Plausible bounds
Lower Upper Lower Upper

E, GPa 10.0 100.0 20.0 60.0

log, K, N-mm/rad 0.0 12.0 1.0 11.0

o, microstrains 0.0 5.0 0.2 2.0

! m 0.0 10.0 0.2 5.0

strains are zero, so we can attribute the fluctuations to noise, resulting
in a fitted value of o, of 0.1 microstrains after rounding.

In contrast, we infer the statistical parameters of the covariance
function ¢, and /, along with the physical parameters E, and log,, K,.
Table 2 shows the chosen prior distributions. For the physical param-
eters, we have opted for wide uniform distributions, allowing the data
to drive the inference process. On the other hand, we use Gamma
distributions for the statistical parameters, which are appropriate for
strictly positive variables. However, we slightly restrict these distribu-
tions, recognizing that they require some control to ensure meaningful
results as the inference is sensitive to them.

While the parameters o,, and o, could also be inferred, doing
so might introduce excessive flexibility in the statistical model that
could confound with the physical model, potentially leading to less
meaningful results. For a broader discussion about this topic, see [25].

4. Performance of variational Bayesian Monte Carlo

The use of VBMC allows to obtain accurate posterior distributions
with a limited number of likelihood evaluations. From Section 3.3, we
have cheap-to-compute Gaussian process surrogate models available for
the finite element model of the bridge at DFOS locations. This enables
the benchmarking of VBMC against a more established Bayesian infer-
ence method. We use the Affine invariant ensemble sampler MCMC
method [38] as implemented in the emcee Python package [39]. A
description of the sub-cases used for the comparison is shown in Table
3.

We run sub-case Al using the default settings of PyVBMC. The
algorithm requires the user to define both hard and plausible bounds.
Table 4 provides the selected bounds. For sub-case A2, we use the
default settings of emcee. In this case, the user must specify the num-
ber of walkers and steps. We choose 40 walkers, with 2000 steps. The
initial positions of the walkers are sampled from the prior distribution.
Notably, only one load case is used for inference, as incorporating
additional load cases would significantly slow down the MCMC run.
This is due to the computational complexity of Gaussian likelihood
calculation, which scales cubically with the number of datapoints.

The summary statistics of the posterior distributions for both cases
are presented in Table 5. Across all parameters, the mean and stan-
dard deviations produced by VBMC closely align with those obtained
through MCMC. Additionally, the 1D and 2D marginal distributions
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Fig. 4. Corner plot of the posterior distribution. The diagonal entries correspond to
the 1D marginal distributions for E, (GPa), log,, K, (N-mm/rad), ¢, (microstrains), and
I (m). The rest of the entries are 2D marginal distributions.

exhibit similar shapes, as illustrated in Fig. 4. It is worth noting
that VBMC shows smoother densities due to the algorithm use of a
parametric approximation of the posterior.

We have verified that VBMC provides an accurate posterior estima-
tion with respect to MCMC. To evaluate its efficiency, we compare the
convergence of parameter estimates for each method. As shown in Figs.
5 and 6, VBMC achieves a significant reduction in computational cost,
converging after only 145 likelihood function evaluations compared to
approximately 30,000 evaluations needed by MCMC. This represents
a reduction in the number of evaluations by a factor of around 200.
As described in Section 3.3, each FE model evaluation takes around
10 min, which would make running MCMC directly on the FE model
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Fig. 5. Evolution of MCMC parameter estimates. The solid line and the shadowed area correspond to the mean and 95% credible interval, calculated using only the previous 1000

samples. Results stabilize around 30,000 samples.

Table 5 Table 6
Comparison of 1D marginal posterior parameter estimates. Considered covariance functions.
Parameter Unit Sub-case Al Sub-case A2 Function k(x,x")
Mean std. dev. Mean std. dev. Independent o2 I(x =x')
E, GPa 33.42 2.20 33.42 211 Exponential o exp (- Lxl
log, K, N-mm/rad 11.56 0.42 11.57 0.30 Matérn, v =1.5 2 (1 + M)exp (_M)
o, microstrains 0.90 0.22 0.89 0.20 ) T aedl s St Vil
I m 2.02 0.44 1.99 0.40 Matém, v =2.5 o (1 R e )EXP (—E=)

infeasible, as it would require around 5000 computing hours, whereas
running VBMC directly on the FE model would require only about 24
computing hours. Hamiltonian Monte Carlo methods such as the No-U-
Turn Sampler [40] can be more efficient, but require gradients of the
posterior density, which are not accessible with a black-box physical
model, and are still likely to need a few thousand evaluations.

In the remainder of this section, we demonstrate the effectiveness
of the procedure outlined in Section 2.4.1 for adapting VBMC results
to obtain posterior predictive estimates. Since we have stored the 145
parameter samples queried by VBMC and the simulations responses
of interest, we can utilize these input—output pairs to build surrogate
models. Specifically, we employ a zero-mean Gaussian process for
each output dimension, utilizing shared kernel hyperparameters that
are optimized by maximizing the marginal likelihood. This is possible
because all output dimensions are of the same type: they represent
strains of similar magnitude and have a similar sensitivity to the input
parameters.

Since VBMC prioritizes querying points that highly contribute to the
accuracy of the posterior distribution, it follows that a surrogate model
of the structural responses built on these points will also exhibit high
accuracy within the posterior region. To illustrate this, we compare the
performance of the surrogate model mean predictions against the real
predictions at samples located on the boundary of the 0.99 credible
region and at samples outside this region. As shown in Fig. 7, the
surrogate model maintains excellent accuracy even on the boundary of

Squared Exponential

o2exp (— (”"',*‘”)2>

the 0.99 credible region; however, its performance deteriorates outside
this region. Nonetheless, because the contribution of samples outside
the 0.99 credible region to the posterior predictive is minimal, the
surrogate model remains sufficiently accurate for generating posterior
predictive distributions.

5. Evaluation of covariance models

We have proposed a data generating process that accounts for the
spatial dependency of model errors. For this, we need to specify the
covariance function. As discussed in Section 2.3, this function should
be distance-based and stationary; however, several functions meet these
criteria. In this section, we evaluate various covariance models and
explore how to select the most suitable one. This involves the use
of posterior predictions and Bayesian model selection presented in
Sections 2.4.1 and 2.4.2, respectively.

Table 6 shows the covariance functions considered in this paper,
where I is the indicator function, ¢ is the scale term and / is the
correlation length. We selected these functions to represent a spectrum
of decay properties, allowing us to investigate how different spatial cor-
relation assumptions affect the model uncertainty. As we move down
the table, the realizations of model discrepancy become progressively
smoother.
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Fig. 7. Comparison of the real predictions vs. the mean predictions of the surrogates trained with VBMC queried samples. The accuracy is excellent even on the boundary of the
0.99 credible region. The surrogate performance deteriorates outside the 0.99 credible region, but the contribution of these samples to the posterior predictive is minimal.

Table 7
Description of sub-cases used for evaluating the covariance functions. For the load
cases, see Fig. 2.

Sub-case Covariance function Load cases Method
Bl Independent

B2 Exponential

B3 Matérn, v = 1.5 Tys03 VBMC
B4 Matérn, v =2.5

B5 Squared exponential

To investigate which of these functions is the most appropriate, we
use the sub-cases shown in Table 7. For the inference process, we use
data from only one load case and reserve the remaining load cases for
posterior predictive validation. This allows us to evaluate how well the
inferred models generalize to unseen data. Inference was conducted
using the same VBMC settings detailed in Section 4. The number of
likelihood evaluations required for each sub-case ranged between 100
and 200. A summary of the resulting posterior distributions is provided
in Table 8.

In general, the obtained posterior credible intervals are consid-
erably narrower than the prior credible intervals. We also observe
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Fig. 8. Realizations of model discrepancy functions 6(x) for the covariance functions. The blue, orange and green lines correspond to sub-cases B3, B4 and B5, respectively. Left:

Using the same hyperparameters for all three functions. Right: Using inferred mean posterior values of o, and /.

legend, the reader is referred to the web version of this article.)

Table 8

Summary of 1D marginal posterior parameter estimates. The value at the top of each
cell corresponds to the mean. The values inside the brackets are the 2.5% and 97.5%
percentiles.

(For interpretation of the references to colour in this figure

Table 9

Strength of evidence for the studied sub-cases. Each entry ij represents how strongly
the model in row i is favoured over the model in column ;. Models Bl and B3 are the
least and most favoured, respectively.

Sub-case E, log, K, o, li
[GPa] [N-mm/rad] [microstrains] [m]
Bl 45.28 11.19 0.64 -
[42.80, 47.76] [10.87, 11.49] [0.59, 0.69] -
B2 40.51 10.63 0.62 4.41
[35.46, 46.38] [2.58, 11.92] [0.47, 0.81] [2.44, 7.11]
B3 33.42 11.59 0.88 1.99
[29.74, 38.11] [10.89, 11.98] [0.59, 1.37] [1.33, 2.92]
B4 32.51 11.59 0.88 1.53
[29.08, 36.73] [10.92, 11.98] [0.61, 1.30] [1.16, 1.99]
BS 32.60 11.58 0.79 0.98
[29.24, 36.87] [10.87, 11.99] [0.55, 1.11] [0.78, 1.17]

relatively large differences in the inferred values of E, across the dif-
ferent models. Specifically, models B1 and B2 exhibit higher values for
E, compared to models B3, B4, and B5, which show more similar and
lower values. Additionally, all cases show inferred log,, K, parameters
that are closer to their prior upper bound. This indicates that the
bottom supports of the pillars behave as clamped rather than as hinged,
a finding that aligns with the observations made by Rézsas et al. [34]
in their study of this specific bridge.

Moreover, the inference results reveal a modest amount of model
discrepancy, with mean ¢, values remaining below 1.0 microstrains
across all cases. This is an encouraging outcome, suggesting that the
finite element model used is of high quality. We also observe a trend
where the correlation length / decreases as the smoothness of the
covariance function increases. To understand the implications of this
behaviour, we inspect random realizations of the model discrepancy
function 6(x) for models B3, B4, and B5, using the posterior mean
values of 6, and / (see Fig. 8). Despite the covariance functions having
different decay properties, these realizations exhibit similar trends.
This suggests that the decrease in correlation length compensates for
the increase in smoothness, allowing the models to fit the data simi-
larly. Therefore, the specific choice of covariance function may not be
critical, provided that the correlation parameters are also inferred.

Although VBMC does not directly compute the evidence, it provides
a proxy for it: the evidence lower bound (ELBO). We use it to calculate
Bayes factors for each pair of models and interpret the strength of
evidence according to Jeffreys [32]. The results are presented in Table
9. It is reassuring that sub-case B1 is the least favoured by Bayesian
model selection, despite being the most parsimonious, i.e., it has fewer
inferred parameters than the rest. This aspect is usually weighted
favourably in Bayesian model selection. The assumption behind sub-
case Bl was that model discrepancy occurred uncorrelated to the
spatial proximity of points. It is easy to determine why this intuition

10

Sub-case Bl B2 B3 B4 B5
Bl - Negative Negative Negative Negative
B2 Decisive - Negative Negative Negative
B3 Decisive Decisive - Barely mention Substantial
B4 Decisive Decisive Negative - Substantial
B5 Decisive Decisive Negative Negative -

Table 10

Percentage of measurements within the 95% credible interval of the posterior predictive
distribution. While all sub-cases show an adequate fit to the data, B3 and B4 favoured
for unobserved data.

Sub-case Inference data Unobserved data
B1 96.19% 75.81%
B2 96.77% 78.30%
B3 96.48% 89.81%
B4 96.48% 88.64%
B5 96.48% 85.12%

was flawed by considering that both the true physical strain responses
and the simulation are expected to be smooth, so their difference should
be smooth as well. Sub-cases B3 and B4, corresponding to moderately
smooth Matérn covariance functions, yield the best results.

Models can also be compared by their predictive capacity using
the inferred posterior parameters. We compute the posterior predictive
distribution, as outlined in Section 2.4.1, for both the observed load
case T) 395, and the unobserved T 475, T 551, Tj s, and Ty 794. As @
metric, we use the percentage of measurements that fall within the 95%
credible interval of the posterior predictive distribution. The results are
shown in Table 10.

We observe a nearly uniform percentage across all models for
the inference data, indicating that they all perform similarly well in
fitting the observed data. However, the results for the load cases not
used for inference present a different scenario, with models B3 and
B4, which were most favoured by Bayesian model selection, showing
better performance. This suggests that Bayesian model selection may
be effective in identifying models that generalize better to unobserved
data, although it is worth noting that some researchers have reported
contradictory findings in this area [41]. Additionally, these results
demonstrate that a single load case was sufficient for reliable system
identification, validating our initial choice.

Since we are interested in spatial correlations, it is useful to show
the posterior predictions across the length of the DFOS. In Figs. 9 and
10, we show fixed-load plots for load cases T;ss; and T, 04, Which
were not used for inference. The measurements in orange show the fast-
varying peaks in the high strained areas, as described in Section 3.4.
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Fig. 9. Comparison of longitudinal static strain measurements along the bottom face of the bridge deck for load case T, s5,, which was not used for inference. The plots show
DFOS measurements (orange) versus mean posterior predictions (blue) with 95% credible intervals (shaded blue). Sub-case B3 shows better agreement between predictions and
measured strains than sub-case B1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 11
Description of sub-cases used for evaluating inference across different resolutions. For
the load cases, see Fig. 2.

Sub-case  Res. Equivalence Cov. function Load cases Method
C1 0.1 m DFOS

Cc2 0.2m DFOS

C3 0.5m FBG . _ T, 1> €Xcept

c4 1.0m FBG Matérn, v =15 Tos VBMC
C5 2.0 m Strain gauges

Cc6 4.0 m Strain gauges

There is moderate agreement between the mean predictions, repre-
sented by the blue lines, and the measurements for sub-case B1, while
a very good agreement is observed for sub-case B3. Moreover, the
credible interval, shown as a shadowed area, encompasses most of the
measurements for sub-case B3, which is not the case for sub-case B1.
Both observations are consistent with the results presented in Table 10.

6. Value of distributed fibre optic sensor

In the previous sections, we developed an efficient approach to
perform Bayesian system identification using fibre optic data, extended
VBMC for posterior predictive estimation, and examined various covari-
ance functions to account for spatial correlations. However, a critical
question is whether high-resolution optic fibre data, despite potential
high correlations, provides greater value in a Bayesian context. To
evaluate this, we consider six sub-cases with different resolutions, as
detailed in Table 11.

11

The base sub-case C1 uses the full resolution of the data, with strains
every 0.1 m along the fibre. For the other sub-cases, we downsample
the data to match the respective resolutions by selecting data points at
regular intervals corresponding to the desired spacing, starting from a
fixed reference point. For example, in C3 with a resolution of 0.5 m,
we select every fifth data point from Cl, resulting in measurements
at positions 0 m, 0.5 m, 1.0 m, and so on. We interpret these resolu-
tions as representative of different strain sensing technologies, such as
distributed optic fibre sensors (DFOS), Fibre-Bragg gratings (FBG) and
traditional strain gauges. To ensure that each sub-case has sufficient
data for robust Bayesian inference, particularly in the lower-resolution
cases, we include measurements from all available load cases (T ),
with the exception of T ;,4, which we reserve for posterior predictive
checks.

It is well-known that the posterior distribution converges at a rate
proportional to n~'/2, where n is the number of independent and
identically distributed (i.i.d.) observations [42]. However, in our case,
the assumption of independence is violated due to the presence of
a correlated model discrepancy term. This raises uncertainty about
whether the posterior will contract as the resolution increases. To in-
vestigate this, we calculate the 95% credible intervals for the marginal
posterior parameters, as shown in Fig. 11. We observe that the posterior
contracts with more data points, even after accounting for spatial corre-
lations. This indicates that the additional observations from the higher
resolution are not redundant but provide extra value in a Bayesian
context.

Apart from comparing 1D-marginal credible intervals, the informa-
tion content for different resolutions can also be assessed using the
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Fig. 10. Comparison of longitudinal static strain measurements along the bottom face of the bridge deck for load case T, ,,,, which was not used for inference. The plots show
DFOS measurements (orange) versus mean posterior predictions (blue) with 95% credible intervals (shaded blue). Sub-case B3 shows better agreement between predictions and
measured strains than sub-case B1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 12
KL divergence between posterior and prior distribution for different fibre resolutions.
The values were calculated with a Monte Carlo approach using 10,000 samples.

Sub-case Dy,
C1 12.66
c2 11.45
C3 10.11
C4 9.68
C5 8.83
Co6 7.28

Kullback-Leibler (KL) divergence. Table 12 shows the KL divergence
for different fibre resolutions. These values were calculated with the
Monte Carlo approach described in Section 2.4.3, using 10,000 samples.
The results indicate that the KL divergence increases with higher res-
olutions, reflecting a greater information gain as resolution improves,
even when correlations are present.

Despite the benefits of higher resolution in terms of posterior con-
centration and information content, the impact on predictive perfor-
mance is more limited. As shown in Table 13, all sub-cases show
consistent agreement between measurements and mean posterior pre-
dictions, as quantified by the coefficient of determination and mean
squared error. Additionally, the average width of the 95% posterior pre-
dictive credible intervals remains stable across all cases. This suggests
that while finer discretization may provide more detailed posterior dis-
tributions, it does not necessarily translate into substantially improved
predictive capabilities for this particular load case.
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Table 13

Performance of posterior predictions for load case T,;,,, which was not used for
inference. The coefficient of determination (R?) and mean squared error (MSE) were
calculated between the measurements and mean posterior predictions. The mean width
corresponds to the 95% equal-tailed posterior predictive credible interval.

Sub-case R? MSE Mean C.I. width
Cl 0.93 1.58 2.38
c2 0.93 1.70 2.56
C3 0.93 1.71 2.52
Cc4 0.92 1.63 2.56
C5 0.92 1.57 2.55
C6 0.92 1.63 2.44

7. Discussion

The use of VBMC in our case study resulted in a dramatic reduc-
tion in computational costs compared to MCMC while maintaining
accuracy. This efficiency comes from the ability of VBMC to build a
surrogate of the log joint probability using relatively few evaluations of
the physical model, after which inference can proceed using the cheap
surrogate. Performance remained stable across all sub-cases, requiring
minimal fine-tuning. This characteristic is particularly valuable for
practitioners who may not be experts in Bayesian inference. Moreover,
the method does not impose hard restrictions, offering flexibility for
inference across diverse scenarios. For these reasons, the application of
VBMC for general use in structural engineering shows great potential.

Despite these advantages, VBMC has limitations that deserve con-
sideration. Huggins et al. [28] noted that VBMC might struggle with
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Fig. 11. Concentration of parameter posteriors for different fibre resolutions. With increasing resolution, the credible intervals become narrower.

cases involving more than 20 parameters. Although engineering models
tend to have moderate dimensionality, some applications can exceed
this threshold significantly, such as when discretizations of random
fields are involved. Additionally, our proposed method for obtaining
posterior predictive distributions may face challenges with highly non-
linear physical models where the surrogate approximation could be
less accurate. Furthermore, Igea and Cicirello [43] found that VBMC
failed in the presence of highly multi-modal posteriors and proposed
an extension to address this problem.

Regarding correlations, our choice to represent model discrepancy
with a Gaussian process was partially motivated by convenience, as it
enabled analytical calculation of the likelihood. Nevertheless, this can
be justified theoretically, as model discrepancy arises from numerous
small effects not captured by the idealized physical model. By the
Central Limit Theorem, the aggregate effect of these many indepen-
dent sources tends towards a Gaussian distribution. Extending this
reasoning spatially, the Gaussian process emerges as a natural choice
for modelling the spatial distribution of these accumulated effects,
as it represents the infinite-dimensional generalization of multivariate
normal distributions. The importance of considering spatial correlations
is clearly demonstrated in our results, where the model version that
ignored correlations (sub-case Bl in Section 5) showed significantly
worse performance in terms of both parameter inference and pre-
dictions, with Bayes factors strongly favouring all other correlation
models.

On the other hand, selecting a specific covariance function remains
challenging. In our case, assuming a stationary function with relatively
smooth behaviour was justified, but other applications might require
different approaches. An additional limitation is that, unlike physical
parameters, prior distributions for covariance function parameters do
not arise naturally, yet they can significantly impact inference. We
recommend incorporating knowledge of the physical system whenever
possible, potentially through physics-informed covariance functions.
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The analysis of different sensor resolutions revealed clear advan-
tages for using distributed fibre optic measurements when the pri-
mary objective is parameter inference, as evidenced by both narrower
credible intervals and increased Kullback-Leibler divergence. This can
be the case for monitoring systems where the parameters to be in-
ferred are damage levels. Regarding predictive performance, the differ-
ences across resolutions were modest, but this should be interpreted in
context: even the lowest-resolution case included measurements from
multiple load cases, providing substantial information for inference.
In applications where fewer load cases are available, the benefits
of high-resolution measurements might become more pronounced for
predictive tasks.

Our case study relies on fibre optic data, but the methodology
is applicable to other forms of spatially dense measurements, such
as those obtained from Digital Image Correlation. In this context,
model discrepancy manifests in two or three dimensions, requiring
the use of higher dimensional Gaussian processes. The choice between
considering decoupled covariance functions for each dimension or
a single function based on the three-dimensional distance between
points will depend on the structure being modelled. For example, an
orthotropic deck might need separate functions for each dimension,
while a uniform slab could be better represented by a single function.

The widespread adoption of model-based approaches in Structural
Health Monitoring (SHM) has been constrained, in part, by their sig-
nificant computational demands. However, the efficiency of the pro-
posed method could contribute to transition from purely data-driven
to model-based strategies. This shift has the potential to offer more
robust and interpretable results, as it combines the advantages of
physics-based modelling with statistical inference.

8. Conclusions

This paper presents, to the authors’ knowledge, the first application
of Variational Bayesian Monte Carlo (VBMC) for Structural Health
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Monitoring (SHM) in civil engineering structures. The study uses dis-
tributed fibre optic strain measurements from static load tests on a large
reinforced concrete slab bridge to infer both structural and statistical
model parameters. The following key conclusions are drawn:

1. VBMC requires only 100-200 likelihood function evaluations
to successfully infer four parameters, significantly improving
efficiency compared to traditional Markov Chain Monte Carlo
methods, which typically require 10°~10° evaluations.

2. Ignoring spatial correlation reduces model performance on test
(hold-out) data: models with spatial correlation using the Matérn
covariance function achieve 89% coverage for a 95% credible
interval, while models assuming independence only reach 76%.

3. Increasing the spatial density of strain measurements along the
optic fibre improves parameter estimates (narrower credible
intervals, higher Kullback-Leibler divergence), but does not sub-
stantially enhance posterior predictions.

This work demonstrates that VBMC-based system identification,
enriched by our proposed approach for calculating posterior predictive
distributions, provides an efficient and accurate framework for SHM in
real-world engineering structures. It also highlights the ability of the
method to handle spatially dense measurement data, enabling the use
of modern sensing technologies in SHM applications. Although based
on a specific case study, these findings provide valuable insights for
other engineering structures, advancing the practical application of
Bayesian system identification in SHM.
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