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ARTICLE INFO ABSTRACT
Keywords: In public spaces such as city centers, train stations, airports, shopping malls, and multi-modal
Real-time pedestrian flow prediction hubs, accurately predicting pedestrian flow is crucial for effective crowd management e.g.

Pedestrian simulation

Interpretable learning-based method
Crowd diffusion

Online learning

congestion prevention and evacuation planning. Traditional microscopic simulation models offer
fine-grained insights by simulating each pedestrian individually, but they are computationally
intensive and typically used at the planning and design stage, making them unsuitable for
real-time interventions in high-demand scenarios. Macroscopic models, on the other hand,
reduce computational cost by aggregating pedestrian behavior and solving partial differential
equations, but they typically require estimates of traffic states such as density and speed —
quantities that are difficult to measure accurately in practice. Additionally, as the complexity
of these physics-based models increases, their computational feasibility for real-time use
becomes even more limited. Data-driven (machine learning) models provide a computationally
efficient alternative, enhancing real-time prediction capabilities. However, they often require
large historical datasets to generalize well, and their performance can degrade under out-of-
distribution (OOD) conditions. Moreover, most black-box learning models lack interpretability
and domain-specific insights, limiting their practical adoption. In this paper, we propose a novel
pedestrian flow prediction model based on the theory of crowd diffusion. Our method estimates
flow rates directly from sensor-observed data and infers both Origin-Destination (OD) demand
and route choice probabilities to support real-time operations. To address the OOD challenge,
we incorporate an online learning mechanism that continuously calibrates model parameters
based on incoming observations.

1. Introduction

Predicting and estimating pedestrian movement in public spaces enables operators to anticipate where people will go and how
many will be present at any given time. This information is critical for preventing overcrowding and improving the efficiency of
evacuations. Existing research largely falls within the descriptive or observational domain, which focuses on assessing, exploring, or
predicting evacuation behavior through experimentation or physics-based microscopic simulation models (Haghani, 2020; Rasouli,
2021; Helbing and Molnar, 1995; Geraerts, 2010). However, these models are typically not designed to be dynamically updated
during operation, limiting their applicability for real-time crowd management. As a result, they are insufficient for anticipating and
mitigating crowd-related risks in fast-evolving scenarios.
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Data-driven models can be employed for real-time predictions because they are pre-trained on historical data to learn complex
pedestrian activity patterns. This allows them to make predictions based on only current information, making the process more
computationally efficient and capable of responding to real-time situations. There has been a growing interest in the application
of deep learning techniques for predicting the flow, for instance of inbound / outbound passengers (Liu et al., 2019) at a train
station, or demand prediction in subway networks (Fang et al., 2019). To predict pedestrian flow, these models rely on external
factors, such as weather conditions, flow data from nearby stations, and daily or weekly activity patterns, which typically enable
prediction horizons extending beyond 15 min. However, in large infrastructures or open areas like city centers, there is a need to
forecast dense crowd movements during events like evacuations or entertainment gatherings. Here, predictions are required for the
immediate future — often within minutes or even seconds to effectively direct and manage crowds in real-time.

A few studies have analyzed pedestrian flow data to estimate origin—destination (OD) demand at train stations (Jia et al., 2024;
Hénseler et al., 2017), but these are not designed for predicting real-time pedestrian traffic states. In Bamaqa et al. (2022), synthetic
crowd datasets are generated using agent-based simulations for predicting crowd severity levels. The simulation outputs include
agents’ positions, speeds, and headings, which are processed to obtain crowd density, speed, and heading direction as inputs for the
prediction model. Similarly, Makinoshima and Oishi (2022) employed a particle filter simulation approach for real-time crowd state
prediction, using observation data to estimate latent parameters. While both studies leverage simulation tools for crowd analysis and
prediction, they are limited to small indoor areas and rely on detailed data, such as agent speeds, densities, and precise positions
— information that is challenging to acquire in real-world scenarios. Other approaches, including computer vision-based methods
for individual pedestrian trajectory prediction (Zheng, 2015; Karamouzas et al., 2018; Korbmacher and Tordeux, 2022), focus on
short-term microscopic trajectory forecasts within confined spaces, which are not applicable for macroscopic prediction in larger
environments.

Currently, there is a notable lack of effective data-driven (machine learning) models for macroscopic pedestrian flow prediction
in large public infrastructures. This gap stems from two key limitations in existing approaches. First, these models require extensive
historical datasets that capture a wide range of conditions, including both routine and emergency scenarios. However, such data are
difficult to obtain Manibardo et al. (2022), Li et al. (2022), as pedestrian flows are highly non-stationary — changing rapidly within
seconds, and crowd dynamics often do not repeat. As a result, data-driven models must be frequently retrained or updated, which
is computationally demanding and undermines their practicality for real-time prediction, especially during critical events (Seedat
et al., 2022).

Second, most existing deep learning models function as black boxes, lacking integration of physical principles or interpretable
structure. This makes their predictions difficult for practitioners to understand and trust, reducing their applicability in operational
contexts. Moreover, their complex architectures are difficult to calibrate, further limiting their usability in high-stakes, real-time
decision-making settings.

In this paper, we develop a data-driven pedestrian flow prediction framework that builds upon the basic crowd diffusion model
proposed by Liu et al. (2015). Our model consists of two primary components: the route velocity model, which estimates pedestrian
flow speed, and the route choice model, which estimates the probability of pedestrians selecting specific routes. By leveraging these
components, we can predict pedestrian flow between any two accessible locations in the infrastructure and estimate the origin—
destination (OD) matrix, while keeping the prediction process interpretable. Additionally, we integrate online machine learning
techniques to handle non-stationary scenarios, enabling the model to adapt to new situations.

In summary, our contributions are as follows.

» We formulate the problem of pedestrian flow prediction in indoor environments/large public areas using graph theory and
propose a lightweight, traffic knowledge-infused, data-driven model that utilizes diffusion behavior theory for flow prediction.
To the best of our knowledge, this approach has not yet been explored for real-time crowd flow prediction.

We designed a learning-based route velocity estimation module and a route choice module to estimate the parameters of the
diffusion behavior model. Together, these modules enable our prediction model to not only forecast flow but also estimate
traffic conditions between sensors, even with incomplete data.

We present an online learning framework that is adaptable to general data-driven methods to address the out-of-distribution
(OOD) issue. Experiments demonstrate the efficacy of this online learning framework.

To evaluate our model’s performance, we develop three comprehensive synthetic datasets and one real-world dataset,
encompassing various scenarios that could occur in a public area. Experimental results demonstrate that our model’s prediction
accuracy is comparable to and sometimes outperforms traditional data-driven models. Additionally, the model can capture
general traffic phenomena.

In the following of this paper, we first formulate the flow prediction problem and define the concept of scenario drift in Section 2.
Next, we introduce the crowd diffusion model and our extended data-driven crowd diffusion model in Section 3. Section 4 describes
the synthetic dataset and the setting of online learning. Section 5 and Section 7 analyzes the prediction performance of our model
and evaluates its reliability in terms of the estimated velocity and OD matrix. Lastly, we close with a discussion of the main findings
and potential enhancements of our new modeling framework.

2. Problem formulation

In this section, we first formulate the pedestrian flow prediction problem and then introduce the concept of scenario drift, which
refers to the OOD scenarios mentioned earlier.
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Fig. 1. Graph representation of the sensor network.

2.1. Mathematical definition of the flow prediction problem

This paper focuses on pedestrian flow prediction in large infrastructure or public spaces. Pedestrian flow represents directed
crowd movement and can be more easily and accurately acquired by most surveillance systems compared to speed and density
data. It is defined as the number of people crossing a line (i.e., cross-section) within a certain period. Suppose we have a public area
as depicted in Fig. 1(a). Each of the sensors records crowd flow in real-time, capturing instant changes in the flow rate. They are
installed in the hallway (black dashed lines in the corridor) within an infrastructure. Although pedestrians crossing a line can move in
multiple directions, we define only two directions for a line sensor without loss of generality (Tordeux et al., 2018; Lilasathapornkit
et al., 2022): right-directed flow (blue arrow) and left-directed flow (red arrow).

Many studies have used graphs to model road networks (Han et al., 2023) or large infrastructures such as buildings or transit
terminals (Lgvas, 1994; Borgers and Timmermans, 1986) to analyze traffic flow. In a similar manner, this paper represents the sensor
network as a graph (Fig. 1(b)). These sensors divide the infrastructure into multiple segments, where each segment is bounded by
sensors such that all entering and exiting pedestrians can be detected. The distance between sensors varies from 20 meters to 100
m.

Formally, we define the sensor network as a directed graph G{V, £}, where ¥V = {v,, ..., Oy} is the set of sensor nodes and
& = {e;;,v; is downstream of v;} is the set of directed edges indicating the direction of flow from the upstream nodes to the
downstream nodes. Note that each node in the graph only captures the uni-directional flow of a line sensor, and two nodes are
connected if these points are accessible within the infrastructure.

The flow of a node is influenced by its upstream node. The flow starts from the root node and spreads through the network. We
consider the root node as independent from the other nodes in the network, making it unpredictable based solely on flow information
within the network. For example, we cannot predict how many people will arrive in the building just based on the current flow
information. In contrast, nodes with ancestors are dependent and thus predictable. The flow prediction task can hence be described
as follows: Given the historical flow data [¢"~M'+1, ..., 4’1 € RVXM' where g% € RIV! is the vector of flow rates from all sensors at
time step k, predict the future flow rate [¢"*!,...,¢"*M] € RIViounXM of the downstream nodes. Here, M’ is the size of the sliding
window, M is the prediction horizon, and 7 is the current time step.

2.2. Scenario drift

Pedestrian movement patterns vary due to changing intentions and conditions over time, such as different times of day, events,
or sudden changes in the environment. These changes manifest themselves as dynamically changing OD demands varying pedestrian
activity routes, and dynamically changing walking speeds. Additionally, unexpected factors, such as adverse events and disruptions
can also lead to significant changes. For instance, in a train station, a sudden delay may shift passenger movement patterns,
causing congestion in previously underutilized areas. Traditional offline models may fail to adapt and produce inaccurate flow
predictions. The scenario drift refers to the changes in the underlying patterns and distributions of pedestrian flows influenced by
these factors. The mathematical definition can be analogized to the concept drift problem (Wares et al., 2019), it can be defined
as: p(x, ) # p;, (x, ), where p, is the distribution of the pedestrian flow in scenario ¢ with input variables x = [¢"~M 2 ,q'] and
ground truth y = [¢"*!,...,¢"*M]. The changes in the scenarios pose challenges for crowd flow prediction.
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Fig. 2. Illustration of predicting the downstream flow with the upstream route flows.

3. Methodology

The gas/fluid dynamic models have long been used to describe the crowd flow by non-linear partial differential equations. These
models (Henderson and Lyons, 1972; Henderson, 1974) rely on classical fluid dynamics theory, which assumes the conservation of
momentum and energy. Another type of macroscopic model, continuum models describes the flow dynamics in more aggregate
terms, using quantities such as flow, densities, and speeds. It assumes that the mass conservation equation must be satisfied at any
point of the pedestrian flow (Yuan et al., 2020). However, these physics-based models typically require strong assumptions and
depend on additional traffic state inputs (e.g., density and velocity), which are often difficult to obtain in practice.

In this section, we introduce the rudimentary crowd diffusion model that offers several advantages. First, it is data-efficient,
requiring only observed flow and average walking speed. Second, the model is formulated in a discrete form, making it well-suited for
time-series prediction tasks. Third, the simplicity of the model enables fast computation, a crucial property for real-time applications.
In the following, we introduce the extension of this model to the network level by introducing a route velocity module and a route
choice module to capture spatial-temporal dynamics across infrastructure locations.

3.1. Diffusion behavior with route choice probability

The crowd diffusion model is a macroscopic simulation model developed by Liu et al. (2015), which aims to study the uni-
directional pedestrian movement. The relationship between the flow of a downstream and upstream sensor can be described with
this model, since it discretizes the travel time and walking speed between two sensors in geometric distribution to mimic the diffusion
behavior. The flow of the downstream sensor is thus can be estimated with the historical flow data from the upstream node using
a diffusion process. This diffusion process is in essence a uni-directional relationship of the flow rate between one upstream sensor
and one downstream sensor. To estimate the flow of the downstream sensor §(j) using the historical upstream sensor flow g, it
is described by the following formula:

Gp()=F - qu(G—Typ)+ FA—=F) - q4(G — 1 =Typ) + -+
+ F(1 = FY'qu(j —n—Tyg)+ - eh)
+ F(1 = FY™Tas=1g, (D).
In Eq. (1), j is the current timestep, F is the diffusion coefficient, and T, is the minimum travel time between sensors A and B.
To discretize the travel time, we divide it by the time unit which is 10 s in our cases.
We now consider modeling the route choice of the pedestrian. The transition probability from A to B is defined as P,z = P(D =

A | U = B), where U denotes the upstream nodes and D the downstream nodes. This probability is then incorporated into the model
to make it applicable in a network:

Gap() = PyplFpp - 44 —Tpp) + Fup(l = Fprp) - 4G — 1 = Typ) + -
+ Fup(1 = Fpp)" - qa(j —n—Typ) + - 2
+ Fpp(l = Fppy ™47, (D).
Finally, the total flow §5(j) of sensor B at timestep j is the weighted sum between the transition probability and the upstream flows:
dg(j) = ZVe.A/B gy g(j), where N is the set of the upstream sensors of the predicted downstream sensor B. Fig. 2 demonstrates the

process of predicting the downstream flow with the upstream route flows. In Section 3.3, we will introduce how the route choice
probability and route travel time are estimated.



W. Mai et al. Transportation Research Part C 179 (2025) 105243

3.2. Multi-steps prediction

Eq. (1) describes the calculation for the single-step prediction. Theoretically, we can predict the future j — T, steps pedestrian
flow by recursively computing the flow in B (4z) by means of Eq. (3):

dp+m=F-qu(j+n—Tyug)+(1 - F)-4gG+n-1), 0<n<j-Typ. 3)
Accordingly, at the network level, we can compute the multi-step prediction on a link with the transition probability P, p:

Gup(G+n)=PuplFyp-qup(+n—Typ)+ (A =Fyp)-Gup(i+n—-1)], 0<n<j—Typ. “4)

Therefore the n’ + 1 steps ahead prediction for a downstream sensor is the aggregation of all the predicted flows from its upstream:

agli+n)="Y dpli+n), 0<n, <j-Tp0<n < min(j — T,p). 5)
vENB

In practice, the travel time 7, between each of the upstream sensors and the downstream sensors varies, if we directly aggregate
the upstream flow to predict the downstream flow, the desired downstream prediction horizon »’ is limited to the minimum upper
bound of the upstream prediction horizon (i.e. min,(j —7,3)). To address this issue, we impute the upstream sensor flow data with
their averaged historical flow. For instance, if n’ = 6 but the upstream sensor only provides n, = 4 steps, we fill in the remaining
steps n, + 1 and n, + 2 with the average historical flow from node v. This is a simple and computationally efficient method for
aligning prediction horizons. Empirically, the required imputation length is typically short (1 to 3 steps) if the discrepancy of the
travel times from the upstream to the downstream sensor is not significantly large, the historical averaging can still be accurate
within a short time range.

3.3. Parameterizing velocity and route choice probability

The walking speed of the pedestrians and the route condition are changing dynamically, thus the diffusion coefficient F,, and
transition probability P,z need to be parameterized as functions. In the uni-directional model, the diffusion coefficient is defined
as a function of the minimum travel time, and it can be represented as:

1

S (6)
L+71Typ

Fup
where Ty =7, f/ﬁ, V,p is the maximum walking speed of the pedestrian, L, is the distance between the sensors, and y, and y,
is two calibrated parameter that controls the diffusion coefficient and the average travel time, in our model they are combined and
represented by a learnable parameter a. In the pedestrian network, links accommodate bidirectional flow, so a pedestrian’s walking
speed depends on both the same-direction and counter-direction flows. The distinct « on each network link is used to represent
the unique route condition on the link. Finally, the calculation of the diffusion coefficient of route A to B is F,z = ! TR
In practice, the average speed is not fixed and it changes as the pedestrian type or the overall scenario changes. Based on the
fundamental diagram, we parameterize the route speed as a function of the upstream’ flow (g,) and downstream flow (g,):

Via = Vo Gy q9a)- @

Here, O represents the learnable parameters, and this function can be modeled using various data-driven approaches, such as
neural networks or decision regression trees. In this study, we choose neural networks because they are more adaptable to different
input data formats and can be effectively integrated into our online learning framework.

As for the transition probability, we know that it should be a function between the flow of upstream nodes and the flow
of downstream nodes. The travel time between the sensors could also affect the choice of the pedestrian. Hence, the transition
probability can be parameterized with a data-driven model and computed by the softmax function, with g,, ¢,, and T,; as input :

I+a,p

exp(fw(‘]us qq> Tud))
Zkej\/u exp(fw(@y- qi> Tur)) '

Here, f,(,) is a score function that estimates the dependency between upstream and downstream. N, is the set of downstream
sensors of the sensor u. T, is the travel time between sensor u and d.

PD=d|U=u= @®

3.4. Route flow prediction paradiagm

Our framework employs two neural networks to parameterize Egs. (7) and (8). This section provides an overview of the complete
prediction framework. Fig. 3 illustrates the workflow of our data-driven diffusion behavior model, which consists of three separate
parts: a route velocity prediction, a route choice probability estimation, and a route flow prediction layer. In the route velocity
prediction module, the objective is to estimate the velocity on the edges (a route is represented by an edge). The flow data from
the upstream and downstream sensors are encoded by two multi-layer perceptrons (MLP). The resulting embeddings (z, and z,)

1 To simplify the notation, here g, represents the historical flow g!~M'*1:" of node u.
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Fig. 3. Route flow prediction paradigm. ¢' denotes the pedestrian flow at time step . Route scores are computed using score,, = LeakyReLU(W o [h, |7 || T, ]).
These scores are then used to estimate the route choice probabilities as described in Eq. (14).

are then fed into a linear layer, reduced to a scalar (v,, and vy,,,,) using the sigmoid function . Although we experimented with
tuning the output dimensionality of the second last layer, we found that a two-dimensional embedding performs well empirically.
Furthermore, each dimension can be interpreted as the estimated upstream (v,,) and downstream velocities (v,,,,), enhancing the
interpretability of the final output. The corresponding computations are shown below:

z, = ReLU(®q, + b'V), 9
2z, =ReLU® g, + b)), (10)
Uy =0(®Pz, + b)), (€30)
Vaoun = 00z, + 7). (12)

In the above equations, b refers to the learnable bias in the linear layers. The final predicted route velocity is the weighted sum
of vy, and v,, using two learnable parameters 6, and 6,. To ensure the output is positive, we use the softplus function to transform
the prediction:

Via = 1og(1 +exp(0 Vo + 020,,,))- (13)

Inspired by the work in Velickovic et al. (2017), the route choice module calculates the route choice probability of a node by
normalizing the importance scores which is the output of f,, for each of its downstream nodes. First, the flow data from all the sensors
are encoded by a MLP with trainable parameters W. Then, the embeddings of the downstream and upstream sensors are concatenated
and fed into a fully connected layer to calculate the scores. The LeakyReLU function is applied to introduce nonlinearity. It is an
extended version of the ReLU function that allows a small, non-zero gradient when the input is negative, preventing the vanishing
gradient issue. As such, the transition probability in Eq. (8) is estimated by the following formula:

exp(LeakyReLU(W ¢ [R, 117411 T,4]))

PD=d|U=u)= )
ke, exp(LeakyReLU(W .y [P 1 1T D)

(14)

Here, h, and h,; denote the embeddings of the upstream sensor and the downstream sensor. W, is the learnable parameter
in the final linear layer to learn the correlation of upstream, downstream embedding and travel time. (- || -) is the concatenation
operator, we use the concatenation of the embeddings and travel time between upstream and downstream sensors as the input for
the softmax function.
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Algorithm 1 Flow Prediction with Test-then-Train

Require: Sensor network G{V, £}, offline sensor flow data D = [¢, -, ¢V ],
retraining iterations 7.
Ensure: Velocity model Vg, route choice model f,,,  for diffusion coefficient,
prediction error e.
1: Initialization: Initialize ®, W and «. Initialize replay buffer R.
2: 6,w,a < Offline Batch Training(D),
3: while previous n time steps observation x = [¢'™", - ¢'~!, ¢' ]U ,VYv € V is available do
4 Store observation into buffered dataset R.

5: Estimate route velocity of the network with Eq. (7).

6: Compute route choice probability with Eq. (8).

7: Predict flow for all the downstream sensors with Eq. (5).

8: Compute prediction error e, += ¢,_; when ¢ + n steps ground truth flow is observed.

9: Compute sampling probability p for the data in R based on the arriving order r(x;): p; = %
10: for i € {1,---,T} do Y
11: Sample mini-batch data &),,., from R with probability p.

12: Update route choice model f,, based on X, -

13: if i mod 2 then

14: Update velocity model Vg and a based on X,,,..

15: end if

16: Terminate retraining when validation error meets the early-stop requirement.
17: end for

18: end while
19: return Vg, fy, @ and e

After obtaining the route choice probability and route velocity, the diffusion coefficient can be calculated with Eq. (6). In the
final layer of the paradiagm, Eq. (4) is applied to perform the multi-step flow prediction.

3.5. Online learning crowd flow prediction framework

In traditional machine learning, models are trained offline using a fixed historical dataset under the assumption that future data
follow the same distribution. However, in real-world crowd dynamics, the OD demand and walking behaviors vary over time due
to factors like passenger composition, time of day, and unexpected events. These dynamic and often non-repeating patterns make
it difficult for static models to generalize, particularly during rare or extreme scenarios.

To address this, we adopt an online learning framework that continuously adapts the model to streaming input. Online learning is
a typical machine learning paradigm that aims to make streaming decisions that evolve continuously over time (Wares et al., 2019).
Research has focused on developing fast-adapting algorithms to handle the data distribution drift problem. The online gradient
descent (OGD) algorithm (Hoi et al., 2021) is a simple yet effective approach to solve the online convex optimization problem.
More advanced approaches include tree-based models with adaptive sliding windows (Domingos and Hulten, 2000) and the online
sequential extreme learning machine (OS-ELM) (Liang et al., 2006), a neural network-based method for time-series prediction.
However, these methods are tied to specific model architectures, such as Hoeffding trees or single-layer feedforward neural networks,
and are therefore not compatible with our traffic knowledge-oriented pedestrian flow prediction model.

We choose OGD to train our model. First, it is model-agnostic, allowing integration with our custom-designed, traffic knowledge-
infused prediction model without requiring structural changes. Second, OGD is well-suited for non-stationary environments: using a
buffered dataset (Hoi et al., 2021) that retains both recent and newly arrived data, the model can incrementally update its parameters
via stochastic gradient descent on the buffer without re-training from scratch on the full offline dataset. This enables rapid adaptation
to evolving pedestrian flow patterns in real-time.

To evaluate the performance of the model, we use the test-then-train Wares et al. (2019) evaluation framework. In this approach,
the model is evaluated on the current chunk of data before being trained on the chunk. After the testing, the chunk of data becomes
available for training. The evaluation process is described in Algorithm 1. Before starting the test-then-train procedure, the model
needs to be trained on offline data collected from a typical scenario under normal conditions to establish a baseline for online
learning. The model can then be retrained continuously with this framework to adapt to changing conditions.

4. Experimental design
Through a set of simulation experiments, we aim to test our new prediction model from three perspectives: its ability to

predict accurately under normal conditions, its effectiveness for downstream operations in adverse conditions such as emergency
evacuations, and its reliability in terms of the route velocity model and route choice model. Specifically, we evaluate the prediction
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Fig. 4. The architectural plans of the three infrastructures, with sensor locations marked by camera icons and the sensor network topological structures of three
infrastructures.

Table 1
The parameters of the three simulation environments. The average flow rate is calculated based on the mean flow rate at each sensor. The number of origins
represents the number of locations from which people can arrive.

Parameters Crossroad Maze Trainstation Eifpd
Num. of Nodes 8 24 24 12
Num. of Edges 12 48 54 30
Num. of Origins 4 8 10 6

Num. of Scenarios 15 15 14 11
Total Recording Time (mins) 300 765 770 2,075
Average Flow Rate (peds/10s) 14 3 4 0~1
Min/Max Walking Speed (m/s) 0.06~1.75 0.2~1.6 0.06~1.75 -

Scale of the Infrastructure (m?) 60 x 60 100 x 110 50 x 117 12 x 16

accuracy by comparing the model with baseline methods and validate whether the velocity model can learn the fundamental
relationship between velocity and flow, and whether the probability model can accurately estimate the OD matrix. Underneath we
describe the experimental design of the simulation experiments in more detail. First, the scenario development is briefly touched
upon. Accordingly, the characteristics of the synthetic datasets and a real-world dataset are introduced.

4.1. Dataset development and scenarios

Currently, there is no publicly available crowd-flow dataset that combines both high demand and a large sensor network (10
or more sensors). To thoroughly evaluate our model, we develop a comprehensive set of test cases using simulated and real-world
data. We construct three infrastructures using the simulation tools Pedestrian Dynamics (Dynamics, 2024) and Nomad (Sparnaaij
et al., 2023), both of which are microscopic agent-based simulation platforms. Fig. 4 shows the architectural plans of the three
designed infrastructures, the following subsections describe how we set up the simulation to develop different scenarios for each
infrastructure. These three datasets are designed for different purposes and feature different spatial scales. The Maze and CrossRoad
datasets primarily change the OD demand and activity patterns, while the TrainStation dataset aims to simulate the more realistic and
very complex changes in demand at a train station during peak demand when trains arrive and emergency evacuations. Additionally,
we include a real-world dataset collected in the main building of the School of Informatics at the University of Edinburgh. This
dataset contains pedestrian trajectory data and is used to assess the model’s predictive performance in actual environments. The
parameters of the four datasets are summarized in Table 1.

4.1.1. Cross road
The CossRoad is the most basic infrastructure. We develop this simulation using the simulator PedestrianDynamic. There are
four entrances and exits in the CrossRoad infrastructure, forming a simple intersection where pedestrian flow can be observed from



W. Mai et al. Transportation Research Part C 179 (2025) 105243

* 9 1)

Fig. 5. The top view of Edinburgh Informatics Forum (L.h.s.) and its sensor network (r.h.s.).

multiple directions. Pedestrians enter the building from one of the four entrances and choose an exit with varied probabilities. The
walking speed of the pedestrians follows a triangular distribution Triangular(1.35,0.8,1.75), indicating that the lowest walking speed
is 0.8 m/s, the highest is 1.75 m/s, and the mode is 1.35 m/s. The flow rate of each entrance ranges from 1 to 8 (peds/10s).

4.1.2. Maze
The Maze infrastructure is a more complex version of CrossRoad infrastructure, consisting of multiple interconnected hallways
and intersections. This design allows for more intricate routes and interactions. The simulation is built using the simulator Nomad.
The flow rate at each entrance ranges from 0 to 3 (peds/10s). To simulate changes in demand, this flow rate varies over time.
Pedestrian walking speed follows a normal distribution with a mean of 1.5 m/s and a standard deviation of 0.6 m/s. To prevent
extreme velocities, the speed is bounded with a minimum of 0.2 m/s and a maximum of 1.6 m/s.

4.1.3. Train station

The TrainStation infrastructure simulates a real-world transit hub, featuring multiple platforms, ticketing areas, and entrances/ex-
its. The simulation is developed based on Pedestrian Dynamic.

In each scenario, the agent generator generates a group of people at each time interval. The number of people in this group
follows a uniform distribution U(2,5), meaning that 2 to 5 people will be in this group. The time interval is a random variable
following an exponential distribution, such that the arrival of the passenger groups follows a Poisson distribution. We set the mean
interval s = 2 for the rush hour condition, which means that on average every 2 s a group of passengers would arrive at the station.
For off-peak hours, we set s = 4. The demand for each train line is described by the probability that passengers will take that line.
We categorize demand levels as high, normal, and low for a specific train line. For example, the demand distributions for line 1
are: high: [52%, 16%, 16%, 16%], normal: [25%,25%,25%,25%], and low: [10%, 30%, 30%, 30%].

The maximum walking speed follows the triangular distribution Triangular(2,1.5,2.5) under high-throughput conditions, indicat-
ing that the lowest maximum walking speed is 1.5 m/s, the highest is 2.5 m/s, and the mean is 2 m/s. Under normal conditions, the
maximum walking speed is Triangular(1.35,0.8,1.75). Further details about the simulation setup can be found in Mai et al. (2025).

4.1.4. Edinburgh informatics forum

We adopted one real-world dataset for our evaluation. The dataset (Majecka, 2009) comprises detected targets of pedestrians
walking through the Informatics Forum, the main building of the School of Informatics at the University of Edinburgh. Collected
over several months, the data contain approximately 1,000 observed trajectories per working day. We extracted and processed 12
days of trajectory data into flow data. The sensor locations are visualized on the left side of Fig. 5. Multiple entrance/exit points
surround the forum, each monitored by a sensor.

The average walking speed is approximately 1.2 m/s with a standard deviation of 1.72; however, precise maximum speeds cannot
be determined due to noisy trajectories with very short distances. Additionally, this real-world dataset is relatively sparse compared
to synthetic datasets, with an average flow rate of 0.13 pedestrians per 10 s.

4.2. Setting of the experiment

This section introduces the format of the spatial-temporal flow data, the benchmark models, and the evaluation metrics we used
for the experiments. The datasets we created and the code for our and the benchmark models can be found in this github repository.>

2 https://github.com/WaimenMak/Crowd-Flow-Inference
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Table 2
Performance of online crowd flow prediction on synthetic datasets, measured in pedestrians per 10 s (peds/10 s). The value in red indicates the lowest prediction
error, while the value in blue marks the second-lowest.

Dataset Metric MA GCN GAT LSTM GCN-LSTM Diffusion
Crossions RMSE 4.50 5.44 8.31 8.63 10.90 5.86
ROSSK MAE 2.72 3.11 4.07 4.67 6.00 3.45
Mam RMSE 1.98 2.25 2.06 2.14 2.26 2.03
MAE 1.39 1.64 1.50 1.51 1.57 1.41
R RMSE 4.80 4.23 4.21 3.54 3.72 3.68
MAE 2.96 2.84 2.81 2.35 2.46 2.31
e RMSE 0.46 0.46 0.47 0.48 0.49 0.46
MAE 0.23 0.24 0.25 0.22 0.18 0.19

4.2.1. Time-series flow data

The input data is a three-dimensional matrix X € RVXIVIXM’ which represents a sequence of pedestrian flow with N samples,
|V| sensors and M’ time lags. The length of the time window M’ should be carefully chosen: a window that is too long may include
uncorrelated information, while a window shorter than the minimum travel time 7,;, between sensors may fail to capture the
relevant upstream influence because the downstream inflow at time ¢ corresponds to the upstream outflow at time ¢ — 7,;;, under
theoretical conditions (free flow and identical walking speed). Therefore, using a time window shorter than 7, ;, may result in
missing critical causal relationships in the data.

With above, we set the window size to 6, meaning that we use the previous 1 min of flow data as input to predict the future
1 min flow rate of each downstream sensor. The distance between two line sensors is estimated by dividing the average travel time
by the average walking speed of the pedestrians.

We generate different scenarios by varying parameters such as walking speed, OD demand, and activity patterns. These scenarios
are then concatenated to create four comprehensive datasets for online testing. This setup also enables us to simulate scenario drifts
within a continuous data stream.

4.2.2. Benchmark models

As there are no models specifically designed for crowd flow prediction in public spaces, we selected several off-the-shelf data-
driven models for comparison. Since the models will be trained and tested online, a relatively small model with fewer trainable
parameters would be preferred. We choose the conventional time-series prediction models such as LSTM (Long-Short Term Memory),
non-parametric method, and moving average (MA). It is a simple yet effective method for estimating crowd flow and is still
commonly used in some train station crowd flow prediction systems. We also included graph models like GAT (Graph Attention
Network) (Velickovic et al., 2017), GCN (Graph Convolutional Network) (Kipf and Welling, 2017), and the spatial-temporal model
GCN-LSTM. Note that all baseline models are trained online as described in Algorithm 1.

4.2.3. Model evaluation method
We calculate the prediction error using the mean absolute error (MAE) and the root mean square error (RMSE), since the model
output prediction in an online manner, we compute the MAE and RMSE over all chunks of data stream for comparison. The following
equations compute the MAE and RMSE between the prediction y; and ground truth y,.
i=N |
Yo 19—l

MAE = —/——4M. 15
N (15)

T O = v
N .

We evaluate the prediction accuracy of the models by comparing the RMSE and MAE. The goal is not to achieve state-of-the-art
prediction accuracy but rather to attain performance comparable to other well-known data-driven models. The prediction accuracy
of existing methods is already sufficient for most scenarios.

The data stream is collected periodically, with flow data recorded every 10 s. We set the model update frequency to 5 min,
meaning the model is re-trained after every 30 data points. The replay buffer size should not be too large, as it occupies significant
storage in practice. However, it should not be too small either, as adequate space is needed for the model to be re-trained on previous
scenarios. We set it to 1000 empirically, allowing it to store data from the three most recent scenarios, each containing around 360
data points.

RMSE = (16)

5. Online prediction performance

Among these four datasets, the CrossRoad and M aze datasets primarily assess the models’ robustness to changes in pedestrian
activity patterns, while the TrainStation dataset evaluates their robustness to sudden changes in flow rate. The dataset EIFPD
tests the model’s performance in real-world scenarios. This section first compares the online prediction error of each model and
then analyses the result by visualizing the prediction and the ground truth.

10
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Fig. 6. Prediction error (RMSE) curves on four datasets. The vertical red dotted line indicates the shift in scenarios. Baseline model errors often increase after
scenario changes, while the diffusion model demonstrates more stability.

5.1. Prediction error analysis

We compare the qualities of the 1 min ahead multi-step predictions in the first three datasets and the predictions of 10 s ahead
in the real-world dataset. The results are shown in Table 2. MA performs the best in both CrossRoad and Maze. The following
reasons may explain this result: (1) The demands in both datasets change gradually, thus the flow at each sensor remains smooth
without sudden drops or increases. In such cases, a simple MA is sufficient to capture the trend. (2) MA does not have any trainable
parameters and does not need to adapt to different scenarios. (3) During network disruptions, MA can still provide stable predictions
by averaging historical flow, whereas data-driven models may struggle due to reliance on broader, potentially misleading inputs.

In the T'rainStation dataset, the performance of MA model deteriorates due to the highly fluctuating flow caused by train arrivals.
In contrast, other data-driven models can react to peaks more quickly because they have encountered similar situations in the
previous training data. Another interesting finding is that the prediction accuracies of the graph-based models are comparable to
that of the LSTM. We believe this is because the graph sizes of the datasets are not large enough for the graph models to have a
significant advantage.

The diffusion behavior model performs the second best in Maze and TrainStation regarding RMSE. Because it tends to
overestimate flow during congestion or network disruptions, resulting in a higher RMSE than the other models in these scenarios.
However, the main goal is not to develop a model with the best prediction accuracy among all scenarios but to design a model that
can obtain acceptable accuracy and quickly adapt to new scenarios. We recorded the online prediction RMSE for each chunk of
data and plotted it in Fig. 6. The prediction error curves are smoothed using a 30 min sliding window for clarity. As shown in the
figures, the diffusion behavior model maintains consistent prediction errors across different scenarios, demonstrating its robustness
to scenario drifts. In Fig. 6(d), all models perform comparably, with the prediction error remaining within a small range due to the
sparsity of pedestrian flow.

In summary, our model leverages a diffusion process for pedestrian flow prediction. The results show that its predictive accuracy
is comparable to widely used data-driven models. Although these approaches achieve similar levels of accuracy across different
datasets, the diffusion-based model may be preferred for its transparent and interpretable prediction process.

5.2. Prediction visualization

We visualize the prediction of the model and the ground truth for 5000 s of a sensor in Fig. 7. This figure shows the 40-s
prediction of a sensor in the hallway in TrainStation. In Fig. 7(a), the diffusion behavior model responds more effectively than MA,

11
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Fig. 7. Models’ 40-s ahead predictions on one sensor in TrainStation.

which exhibits noticeable delays. Fig. 7(b) compares our model with LSTM, demonstrating that our model captures peak flow more
accurately, while LSTM sometimes underestimates flow and completely misses demand peaks. In Fig. 7(c) and (d), we compare our
model with graph-based models. GCN effectively captures peak flows, but tends to underestimate them. On the other hand, GAT
accurately captures the periodic rise in flow patterns but shows limited sensitivity to sudden changes. These visualizations show
that the diffusion model can capture peak demands more effectively than the other models. More visualizations of the prediction
in other locations are presented in Appendix A.

5.3. Prediction model as a congestion detector

Under normal conditions (free flow), a good prediction model should aim for high accuracy. However, during congestion or
disruptions, it is beneficial if the model can also act as an early warning system. Our proposed crowd flow prediction model exhibits
this potential. To illustrate this, we calculate the total difference between inbound and outbound flows at the train station over time
(inbound-outbound), as shown in Fig. 8(a). The inbound flow includes both passengers alighting from trains and those entering to
board. The two peaks in this difference indicate moments when outbound flow significantly lags behind inbound flow, pointing to
severe congestion between the gate and the exits.

The model’s 40-s predictions at the main and back exit are shown in Fig. 8(b) and Fig. 8(c), our model predicts extremely high
flow at these two moments, followed by a rapid decline. However, the actual downstream flow increases more gradually. This
discrepancy between the model’s prediction and the actual flow indicates that while many people are approaching from upstream,
congestion slows their movement, delaying their arrival at the downstream sensor. The overestimation of the model becomes a
useful signal for detecting congestion and could enhance real-time alert systems and emergency response strategies.

5.4. Online uncertainty quantification with negative binomial likelihood

Incorporating uncertainty in pedestrian flow prediction can significantly improve real-time decision making. To evaluate the
capability of our model in uncertainty quantification, we adopt a parametric probabilistic approach by modeling pedestrian counts
using the negative binomial distribution - a well-established choice for positive count data (Chapados, 2014). This enables us to
formulate the training process as a likelihood maximization problem. The corresponding negative binomial likelihood is defined as

follows:
) (%)

Bu
L+ Bu
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Fig. 8. Visualization of the prediction of the diffusion model when there is high congestion. The model overshoots prediction when there is high congestion.
The vertical red dotted line indicates the shift in scenarios.

In this formulation, y denotes the one-step prediction of pedestrian flow, while 4 and g are the mean and shape parameters
of the negative binomial distribution. In the setup in Salinas et al. (2020), parameters y and f are estimated using two separate
neural networks. Specifically in our approach, the process of predicting the mean () of the distribution is the same as the non-
probabilistic prediction, however, we use an extra MLP to predict the shape parameter § of a sensor using its upstream flows as
inputs. Furthermore, solely optimizing the negative log-likelihood (NLL) loss function could lead to a poor accuracy for the single-
value prediction. Therefore, to train the model, we combine the NLL loss for the first step with the mean squared error (MSE) loss
for subsequent steps, forming the following joint objective:

i=N [T
L= |30 - —logiy!1a. B - (18)
i 2

We assess the quality of the distribution prediction using the coverage probability calibration curve, comparing our model with
benchmark models (e.g., LSTM and GCN-LSTM) trained under the same loss function (Eq. (18)) with the dataset T'rainStation.
In addition, we included DeepAR (Salinas et al., 2020), a sophisticated probabilistic forecasting model, for further comparison.
Coverage probability measures the proportion of observed data points that fall within the predicted intervals. For a well-calibrated
model, the calibration curve should align with the nominal prediction interval (the reference line). If the curve falls below the
reference line, the model underestimates the uncertainty, producing overly narrow prediction intervals; if it lies above, the model
overestimates the uncertainty, resulting in excessively wide intervals.

As can be observed in Fig. 9, when the crowding level is below 40 (peds/10 s), the diffusion model aligns closely with the
reference line, indicating a better calibration compared to the other methods. As crowding level increases, alternative models
begin to underestimate the prediction intervals, reflecting overconfidence in their forecasts. To illustrate this behavior, we present
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Fig. 10. The estimated 90% prediction interval and predicted probability distribution during evacuation. The pink dashed line indicates the moment when there
is high crowding.

a snapshot of the probabilistic predictions in Fig. 10. In this example, an evacuation occurs at timestep 955. The corresponding
predicted probability mass function (PMF) is shown in the center of the figure. The diffusion model captures the spike and predicts
high uncertainty at this moment, whereas DeepAR produces a much narrower prediction interval, which almost fails to encompass
the true pedestrian flow.

To conclude this section, we demonstrate that our model can effectively capture predictive uncertainty by incorporating a
negative binomial likelihood into training loss. With this simple modification, the model is able to achieve better-calibrated
prediction intervals compared to baseline models, particularly under extreme or rapidly changing crowd conditions. This capability
enhances the model’s applicability for real-time crowd monitoring and management, where reliable uncertainty estimation is crucial.

6. Analysis of online learning

In this section, we first validate the efficacy of online learning in the prediction framework, then the OGD’s sensitivity to the
update frequency and its real-time computational cost will be analyzed.

6.1. Efficacy of retraining

Fig. 11 presents the model’s average prediction RMSE on each data chunk, comparing their performance with and without online
retraining. The results clearly indicate a large increase in prediction error when online learning is not employed (online retraining
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Table 3
Percentage of error decrease of each model with online learning.
Model Crossroad Maze Trainstation
LSTM 48.9% (1) 36.2% (1) 18.1% (1)
GCN 66.1% (1) 33.6% (1) 2.8% (1)
GAT 49.9% (1) 22.8% (1) 7.5% (1)
Diffusion 60.8% (1) 4.3% (1) 1.9% (1)
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Fig. 11. Online prediction performance with and without online learning.
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Fig. 12. Variation in prediction error with respect to different update frequencies. (co means no update at all).

step set to 0). Specifically, the non-graph-based model LSTM benefits the most from online learning in total, as shown in Table 3 for
the percentage decrease in prediction error. Since LSTM predicts without using the topological information of the graph, changes
in the OD demand can significantly affect its prediction accuracy. In contrast, graph-based models exhibit more robust behavior.

6.2. Sensitivity to update frequency

We further examine the effect of the update frequency on the accuracy of the prediction. The chunk size of the data stream
determines how frequently the model is re-trained. As described in Algorithm 1, a portion of the chunk data is sampled as an
evaluation set, and retraining will be stopped early if the prediction error on the evaluation set exceeds a specified threshold to
prevent overfitting. Therefore, choosing an appropriate chunk size is critical: a small chunk size may lead to an unreliable evaluation
set, while a large chunk size reduces the update frequency, potentially impacting the model’s ability to adapt.

We tested three models with different update frequencies in Fig. 12. In general, we can observe that the models do not necessarily
achieve optimal performance when the update frequency is set to the highest every 3 min (with a chunk size of 15), as the
evaluation set is too small to provide reliable feedback. As the update frequency decreases, the prediction accuracy gradually

=
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Table 4
Number of trainable parameters of different models across three datasets.
Model # of trainable params
Crossroad Maze Trainstation Eifpd
GCN-LSTM 48,272 116,976 116,976 63,468
LSTM 55,344 65,680 65,680 54,028
GAT 7602 7602 7602 7523
GCN 1670 1670 1670 1153
Diffusion 1428 1464 1470 1574
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Fig. 13. The wall clock run time with different chunk sizes of each retraining of our model.

improves. However, when the frequency becomes too low, the performance begins to deteriorate. In the dataset Maze, the route
choice behavior of the pedestrians is more variant than in the dataset TrainStation, we can see that the performance of LSTM drops
as the update frequency decreases and is more sensitive compared to those graph-based models. The diffusion model shows the least
sensitivity to the update frequency, suggesting that the structure of the model can be generalized well in different scenarios.

6.3. Computational cost

Online learning can address the drift in data distribution through frequent retraining. We investigate the computational cost of
each round of retraining during online learning. The time complexity of the forward pass of our model is twofold. For the route
velocity module, the complexity is O(|€|Td,), where T represents the number of input time steps, and d,, is the dimension of the
hidden layer. Here, Td, accounts for the complexity of generating the embeddings for upstream and downstream flow. The time
complexity for the route choice estimation module is O(|V|Td, + |€|d,), where d, is the embedding size. This complexity accounts
for the generation of embeddings for each node, as well as the calculation of importance scores in Eq. (14) for each edge.

The variable chunk size is correlated to the retraining computational time since the model first trains on the chunk of the data
and then trains on randomly sampled recently stored data from the replay buffer. Other variables, such as an increase in the size of
the sensor graph and the number of trainable parameters in the model, can also increase the spatial and temporal complexity of the
algorithm. Table 4 summarizes the number of trainable parameters in different datasets. As we can see, the number of sensors does
not affect the parameters of the graph-based model, whereas in the LSTM model, the parameters largely increase with the number
of sensors. For the diffusion model, the number of parameters increases as the number of edges in the sensor network grows, as
there is one trainable parameter a for each edge. However, this increment is slight and can almost be overlooked. In general, the
diffusion model has the fewest trainable parameters.

In practice, the model makes predictions every 10 s and completes the retraining within that time frame once the update is
required. Fig. 13 shows how the chunk size of the data stream affects the retraining computational time. The experiments were
conducted on a MacBook Pro with an Apple M1 Pro CPU, 16 GB RAM, and a 500 GB SSD. In the dataset CrossRoad, the sensor
graph is relatively small; therefore, the computational time is much lower than Maze and TrainStation. For the larger networks,
even with a chunk size of 90 (equivalent to an update frequency of 15 min), the average retraining time remains around 5 s, well
below the 10-s threshold. Therefore, the computational time for each retraining round is manageable. Although the largest network,
consisting of 24 nodes and 54 edges, is not as extensive as an urban-scale network, it is sufficient for large infrastructure.

7. Qualitative evaluation of route velocity and route choice models

In this section, we evaluate the prediction quality of the velocity model and route choice model. To evaluate the route choice
model, we assess its prediction of the OD matrix in different scenarios and compare it to the ground-truth ODs, since the OD can
reflect the route choice probability of the pedestrians. For the velocity model, we investigate its understanding of the relationship

between speed and flow derived from the data.
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Fig. 15. Comparison between the ground truth OD and the estimated OD, where the colors indicate the number of people crossing — darker colors represent
higher numbers.

7.1. OD estimation based on route choice model

The trajectory data are extracted from the simulator to generate the OD matrix for the M aze infrastructure. Using these trajectory
data, we calculated the number of people moving from point A to point B during a specific period, enabling us to extract the OD
matrix.

In Fig. 14, we focus on a selected upstream sensor and visualize the estimated route choice probabilities for its downstream
paths. The results show that the estimated probabilities generally increase with the corresponding downstream flows, following
similar trends. In the third plot, which illustrates the estimated probability from origin 23 to destination 16, we notice that even
though the downstream flow declines after the 200th timestep, the estimated probability continues to rise. This occurs because the
model detects a steeper decline in flow on the other two downstream routes, making the current route relatively more favorable.
This response is consistent with intuition: in public spaces, a higher number of pedestrians entering a location often indicates greater
attractiveness or utility of that route, and thus more likely to be chosen by others.

We present the ground truth OD matrix for four different scenarios with different pedestrian activity patterns in Fig. 15(a), and
the model’s estimation in Fig. 15(b). The x-axis represents the origins and the y-axis represents the destinations. We observe that the
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Fig. 16. Comparison between the ground truth FD and the estimated FD.

model can identify OD pairs with high demand, given only the node sensor information. However, when pedestrian activity patterns
are highly diverse, the accuracy of the route choice model’s estimates may decrease. For instance, in Scenario 18, the ground truth
OD shows no movement from waypoint8 to waypoint3. Nevertheless, people are coming from exit7 to waypoint3 at the same time, so
the downstream sensor at waypoint3 still detects people passing through. Therefore, the model might assume that there is a chance
for people to travel from waypoint8 to waypoint3. As a result, the model might infer a possible route from waypoint8 to waypoint3.
Since the model relies solely on flow data from node sensors, it is reasonable to expect some discrepancies between the exact ground
truth and the estimated OD flows.

7.2. Flow and velocity fundamental diagram

To validate whether the route velocity model can capture the characteristics of the velocity-speed fundamental diagram (FD).
We determine the walking speed of agents on a route by computing their travel distance divided by travel time at each time step,
then averaging these values to obtain the route velocity. The number of people currently on the route represents the flow. Using
this information, we construct the fundamental diagram (FD). In Fig. 16(a), we visualize the ground truth velocity-flow FD, while
Fig. 16(b) shows the relationship between the predicted route flow and the predicted route velocity. Please note that the estimated
FD and ground-truth FD data points are not a one-to-one correspondence, since we plot the estimated FD using the predicted route
velocity and flow. The main goal of this comparison is to see whether our model can learn a general shape of the pedestrian
fundamental diagram and pick up the characteristics of different scenarios.
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Fig. 18. The model estimates the velocity based on the difference between up and downstream flow.

In the ground truth fundamental diagram, the relationship between speed and flow aligns well with classical traffic flow theory,
exhibiting both the free-flow regime (higher speed, lower density) on the descending branch of the speed—flow curve, and the
congested regime (lower speed, higher density) on the ascending branch of the speed-flow curve. As the route flow approaches
its maximum, the data points cluster around the critical speed. A similar pattern is observed in the estimated FD. However, the
predicted speeds are slightly higher than those in the ground truth. This discrepancy can be attributed to two reasons: (1) The
model estimates the maximum travel speed between two sensors, and (2) there is a parameter a to control the scale of the predicted
speed. As a result, the model tends to predict higher values. Moreover, although the model captures that low flow conditions can
correspond to both low and high speeds, it does not fully reproduce the congestion dynamics of the flow-speed relationship. For
instance, in Scenario 18, the ground truth FD displays a cluster of data points with high flow and very low speed, which indicates
congestion. This pattern is not captured in the estimated FD, suggesting that the model may not fully learn the complex dynamics
of congested pedestrian traffic.

However, our model is able to reflect the general changes in speed as flow changes. We investigate the relationship between
estimated speed and observed flow in Fig. 18. Fig. 18(a) shows the upstream and downstream flow of one link in the sensor network
and the corresponding estimated velocity in a normal situation. The model learns that when there is a significant difference between
the upstream and downstream flows, the upstream flow being much higher than the downstream flow, the route velocity should be
low (as seen in the drop in velocity in Fig. 18(a)). This property aligns with a general physical phenomenon: if we analogize the
corridor to a pipe and people to fluid, a higher influx than outflux indicates low fluid velocity, suggesting potential congestion at
the connection.

Fig. 18(b) shows the estimated speed in a highly congested corridor, corresponding to the scenario visualized in Fig. 17. Initially,
there is high demand at the entrance point, but people get stuck in the corridor, causing the downstream flow to decrease. This
congestion back-propagates through the upstream sensor, leading to a decrease in upstream flow. In this case, the predicted speed
first drops due to the high upstream inflow but low downstream outflow. The model fails to recognize the congestion afterward
because the difference between the upstream and downstream flows is not large enough to trigger the model to predict a low velocity.
It also cannot detect spillback effects, as the model does not explicitly incorporate the principle of mass conservation in pedestrian
flow. Since the sensors continue to record pedestrian movement, the model may interpret that pedestrians are still passing through
the hallway. However, it lacks the information needed to identify congestion and when it will propagate upstream and affect the
previous node. This limitation explains why the model does not fully capture the congestion patterns in the fundamental diagram.
Given the absence of direct measurements for link-level flow and density, this represents a trade-off between relying solely on
observable data and achieving a more complete representation of traffic dynamics.
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8. Limitations

This section outlines the limitations related to both the data used in this study and the design of the proposed model. The
synthetic datasets were developed to assess the performance of the models in high-demand scenarios featuring diverse pedestrian
activity patterns. Although synthetic simulation enables the generation of controlled and repeatable scenarios by adjusting simulation
parameters, such data may not fully capture the complexities of real-world pedestrian behavior.

Real-world data, on the other hand, can provide authentic representations of pedestrian dynamics. However, high-quality datasets
that meet the spatial and temporal granularity required for this study, particularly in large-scale public environments, are still
limited. Although we include a real-world dataset (EIFPD) in our experiments, its limited scale and sparsity reduce its effectiveness
for comprehensive model evaluation. This limitation emphasizes the value of using synthetic data and highlights the need to develop
richer, large-scale pedestrian datasets in future work.

Regarding the prediction model, it is designed to be interpretable and informed by traffic flow theory. It infers intermediate
variables such as walking speed and route choice, rather than directly fitting observed flow using black-box techniques. While this
approach limits the model’s flexibility compared to purely data-driven methods, it enhances interpretability and provides additional
traffic information that is valuable for operational decision-making.

An additional limitation is the model’s inability to predict during congestion, as it relies solely on sensor flow data and does not
incorporate density measurements between sensor locations. This design choice reflects a trade-off between the limited availability
of real-time density data, which are often difficult to obtain, and the practical need for timely predictions based on accessible inputs
(e.g. counts/flow).

9. Conclusion and future work

In this paper, we present a learning-based pedestrian flow prediction model utilizing diffusion behavior theory. The model
features a decoupled architecture for enhanced transparency. In addition, we incorporate the model into an online learning
framework to address the scenario drift problem. Our model can estimate the traffic conditions between sensors using only the
sensor flow data, serving as a short-term crowd state estimator to support real-time intervention. Overall, this paper demonstrates the
potential of combining crowd diffusion models with neural networks for macroscopic pedestrian flow prediction in highly dynamic
public environments, with better robustness than the other off-the-shelf models.

In the future, we plan to explore more advanced online learning techniques beyond the simple OGD, which requires less retraining
time. We may incorporate uncertainty estimation to determine the optimal moments for model updates. Furthermore, as discussed in
the previous section, the velocity model may fail to make accurate predictions during congestion when relying solely on sensor data.
In the future, we may explore designing a module in the neural network to implicitly infer the density between sensors, e.g. using
the information of the cumulative number of pedestrians that pass through upstream and downstream sensors. This could enhance
the accuracy of both the velocity and diffusion models, particularly under congested conditions. Lastly, a promising direction for
future work is to integrate our model into real-time crowd management or control algorithms, using its short-term predictions as
input. This can provide approximate traffic state estimates that support more effective operational decisions.
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Appendix A. Prediction on different locations

This section presents the prediction visualizations on different locations in the infrastructure (see Figs. A.19-A.23).
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Fig. A.20. Models’ 40-s ahead predictions at platform entrance in TrainStation.
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Fig. A.22. Models’ 40-s ahead predictions at the main hall in Maze.
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Appendix B. Estimated speed-flow FD in train station
This section presents the estimated fundamental diagram on different location in the train station (see Fig. B.24).
Appendix C. Setting of the simulation

The simulation consists of two generators to generate the agent and transport element (train). The generator generates passenger
and train according to the predefined parameters. During the simulation the agents would perform the activities we designed. Once
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Fig. C.25. Simulation process of the synthetic dataset TrainStation.

the evacuation is activated, all agents need to stop their current activities and need to exit the station. For a more detailed setting,
readers can refer to this paper (Mai et al., 2025) (see Fig. C.25).
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