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Abstract

The transition to renewable energy sources requires advanced energy storage so-
lutions to manage their intermittent nature. This thesis explores the feasibility of im-
plementing Battery as a Service (BaaS) for a renewable energy community (RECs)
setting, aiming to incorporate this model as part of an existing stacked revenue frame-
work utilized by battery owners across various energy markets. By directly linking bat-
tery owners with energy communities, the study shows that renting out battery storage
can eliminate intermediary overheads, thus providing financial benefits to both parties.
The research addresses two main questions: developing a stacked revenue model for
grid-connected batteries including energy communities, and comparing different bat-
tery sizing and control methods across various tariff schemes. The findings suggest
that the proposed revenue model optimizes energy use and reduces costs for the com-
munity. This thesis contributes to the research field by presenting a viable economic
model for integrating battery storage into decentralized energy communities.
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Chapter 1

Introduction

In recent years, there has been a significant increase in the adoption of renewable energy
sources such as solar and wind power. This shift is driven by the global need to transi-
tion from fossil fuels to more sustainable energy solutions. According to the International
Energy Agency (IEA), global renewable electricity capacity additions increased by nearly
50% in 2023, reaching 507 gigawatts (GW). This surge in renewable capacity is essential for
meeting international climate targets, such as those set by the COP28 climate talks, which
aim to triple renewable energy capacity by 2030 [33].

Research has shown that the integration of renewable energy sources into the power
grid requires (advanced) energy storage solutions to manage the intermittent nature of re-
newable generation [3, 56]. Various studies have highlighted the importance of Battery
Energy Storage Systems (BESS) in stabilizing the grid through ancillary services, such as
supporting voltage and frequency regulation, and providing backup power during outages
[7, 15, 36, 51, 60, 62]. The decreasing cost of lithium-ion batteries, combined with their
high efficiency and rapid response times, has made them a preferred choice for energy stor-
age.

In addition to individual battery systems, a notable development in the energy landscape
is the emergence of energy communities. These communities consist of multiple prosumers
(i.e. entities that both produce and consume energy) who combine their energy assets to
optimize their energy use, reduce costs, and enhance the consumption of locally sourced
renewable energy. Energy communities represent a decentralized approach to energy man-
agement, promoting local energy resilience and sustainability. This model not only supports
the integration of renewable energy but also helps in mitigating the demand peaks and sta-
bilizing the local grid [38, 40, 46, 61].

Despite the decreasing cost of lithium-ion batteries, they remain prohibitively expensive
for most small to medium prosumers [17, 54]. Most owners or operators of grid-connected
batteries use a stacked revenue model in ancillary markets, dividing the battery’s total capac-
ity among various revenue streams to maximize profits. This model often involves providing
services such as frequency regulation, voltage support, and peak shaving. However, partic-
ipating in these ancillary services requires specific certifications [36, 51]. These certifica-
tions ensure compliance with regulatory standards and guarantee the reliability of services
provided, but obtaining them can be costly and time-consuming, presenting an additional
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barrier for small to medium prosumers to purchase and recoup their investment in battery
storage systems.

The high costs and certification requirements mean that owning a large-scale battery is
still reserved for those who can afford the initial investment and certification costs. Pro-
sumers without storage capabilities must rely on the grid to export surplus energy and then
reimport it later at a higher price. This dependency not only leads to higher energy bills for
prosumers but also increases grid congestion, particularly as the number of households with
energy production capabilities rises. This situation exacerbates the issues of centralization,
as prosumers without battery storage rely heavily on the grid, which in turn depends on the
services provided by battery owners.

This reliance is contrary to the decentralization trends aimed at making energy systems
more locally resilient, i.e. able to balance generation/demand at a local level, and thus
potentially, ease network congestion issues. By linking battery owners directly with energy
communities, it would be possible to eliminate the middleman, creating financial benefits
for both parties. Battery owners could rent out their battery storage to energy communities
as part of their stacked revenue model. However, the potential feasibility of this solution
has not been thoroughly studied, representing a gap in current research.

In this thesis, we will explore the feasibility of implementing Battery as a Service (BaaS)
for energy communities. This study aims to incorporate this new revenue stream as part of
the already existing stacked revenue model utilized by battery owners in the energy markets.

To achieve this, we will address the following research questions:

RQ1. How to develop a stacked revenue model for a grid-connected battery that includes
an energy community?

(a) i.e. How to price the battery for different capacities?

(b) i.e. How to size the battery capacity for the different scenarios?

(c) i.e. How to size the energy generation?

RQ2. How different battery controls methods (Daily LP optimisation and Greedy heuristic
real-time control) compare for different types of tariffs:

(a) a flat tariff scheme

(b) a dynamic tariff scheme

(c) the day-ahead market prices

The primary aim of the first research question is to evaluate the feasibility of the pro-
posed revenue model. The study will primarily focus on the year 2023 in the Netherlands.
The sub-questions aim to determine a fair renting price for both the community and the bat-
tery owner, identify the optimal battery size to be rented out to a community, and determine
the optimal energy capacity that the community should install.

The second research question aims to analyze whether different battery control algo-
rithms will significantly impact profitability. The study will evaluate three types of mar-
kets: flat tariffs, which are most common in the current market; dynamic tariffs, which have
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gained popularity recently; and market prices, typically not accessible by small and medium
prosumers.

We hypothesize that renting out the battery will prove to be profitable because reliance
on the energy grid incurs unnecessary overheads. By directly linking battery owners with
energy communities, this overhead can be minimized, benefiting both parties and making
the proposed model economically viable. Additionally, we start from the hypothesis that
different battery control methods will significantly impact the final bill. Specifically, for flat
tariffs, we expect the two control methods to perform similarly. However, in markets where
prices fluctuate, we foresee that the linear optimization method will demonstrate superior
performance.

The structure of this thesis begins with the Background chapter, which provides an
overview of battery energy storage systems and the concept of energy communities. Follow-
ing this, the Related Work chapter reviews existing literature and previous studies relevant
to BEESs and energy communities, setting the stage for our research. The Methodology
chapter explains the research methods and models used in the study, detailing how data was
gathered and analyzed. In the Experimental Results chapter, we present and discuss the
findings from our experiments. The Discussion chapter interprets these results, exploring
their implications and how they relate to our hypotheses. Finally, the Conclusion and Fu-
ture Work chapter summarizes the thesis’s main findings, discusses their importance, and
proposes directions for future research.

In this thesis, we will investigate a community of 200 households, which share a small
wind turbine. The battery owner in our study will be GIGA Storage, a company that oper-
ates multiple BESS systems across the Netherlands and currently generates profit through a
stacked revenue model in the ancillary markets. The analysis will try to identify the scenar-
ios which are profitability for both parties, incentivizing them to participate in the proposed
model.
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Chapter 2

Background

The global energy landscape is currently undergoing a significant transformation, driven by
the urgent need to transition to renewable energy sources. In 2023, global renewable capac-
ity additions set a new record for the 22nd consecutive year [33]. This shift is characterized
by increasing investments in renewable energy capacity, advancements in energy storage
technologies, and the rise of decentralized energy communities. This chapter provides back-
ground information on key components of this transition, including battery energy storage
systems and their pivotal role, the activities of GIGA Storage, the day-ahead and imbalance
markets, and the emerging concept of energy communities. Understanding these elements
may help readers gain a better understanding of the context analyzed in this thesis.

2.1 Energy Storage Systems

In 2021, despite a decline in demand for all other fuels, renewable energy sources increased
by 3% compared to 2020, accounting for 290 GW of added capacity [32]. The IEA esti-
mated in 2021 that the installed capacity would reach 352.3 GW by 2023. However, by
2023, the newly added capacity had already reached 510 GW [33]. This growth is expected
to accelerate in the coming years, with renewable capacity anticipated to surpass coal by
2025, becoming the largest source of electricity generation. By 2028, it is expected that
renewable energy sources will account for over 42% of global electricity generation, with
wind and solar PV contributing 25% of this total. In 2021, the IEA forecasted that global
renewable electricity capacity would reach over 4800 GW by 2026 [32]. In 2023, this
estimate was revised upwards to 5900 GW. Although the installed capacity has exceeded
expectations, we are still not on track to meet the COP28 targets of tripling global renewable
capacity by 2030.

As the share of renewable energy sources in the global energy mix increases, so does the
importance of reliable energy storage solutions. Renewable energy sources, such as solar
and wind, have inherently variable outputs, depending on weather conditions, time of day,
and season. This variability necessitates the development and implementation of efficient
energy storage solutions to ensure a reliable and constant energy supply [3, 56].

Various energy storage solutions have been developed to meet this need, including
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2.2. Battery Energy Storage System as a Service

pumped hydro, compressed air, flywheel energy storage, hydrogen technologies, and batter-
ies [37]. Among these, lithium-ion Battery Energy Storage Systems (BESSs) have become
particularly advantageous due to their rapid response times, high power throughput, and
high round-trip efficiency. However, the cost of these batteries has been a significant barrier
to early adoption. Despite this, there has been a notable decrease in recent years, making
them more economically viable [43]. A white paper by the Solar Energy Industry Associ-
ation (SEIA) from November 2023 projects that demand for battery storage systems in the
United States will increase sixfold over the next six years. Globally, the SEIA anticipates
that the demand for BESSs, primarily used in renewable energy projects, will grow from 60
GWh in 2022 to approximately 840 GWh by 2030 [3].

2.2 Battery Energy Storage System as a Service

BESSs have become a critical component of the energy sector, facilitating the integration of
renewable energy sources into the grid. BESS owners can support this integration by par-
ticipating in either the wholesale market or in ancillary energy markets, providing services
such as voltage support, frequency regulation, black-start, congestion relief, peak-shaving,
and power smoothing [51, 7, 62, 60]. These services are important for maintaining grid
stability and ensuring a balance between supply and demand.

The economic viability of BESSs in these markets can be greatly improved by employ-
ing a stacked revenue model. This model allows BESS owners to provide multiple services
simultaneously, thereby unlocking multiple revenue streams [57]. The key challenge of this
model is determining the optimal times for charging and discharging the battery in response
to shifting market prices, while also minimizing battery degradation [8]. To effectively en-
gage the wholesale and ancillary markets with a stacked revenue model, BESS owners must
deploy competitive and efficient control algorithms that consider not only the dynamics of
the energy market but also any legislative regulations that might be present.

2.3 GIGA Storage

GIGA Storage1 is an Amsterdam-based start-up that has realized some of the largest grid-
connected battery projects in the Netherlands. Specifically, it has completed two BESSs:
Rhino, with a rating of 12MW/7.5MWh, and Buffalo, rated at 25MW/48MWh. They have
three additional projects under development in the Netherlands and two in Belgium. The
largest project in the Netherlands, Leopard, is rated at 300MW/1,200MWh. All of GIGA
Storage’s systems use lithium-ion batteries, differing only in their cathode materials. GIGA
Storage generates revenue by operating its batteries in the frequency regulation market, day-
ahead market, and imbalance market. They also have contracts with local renewable energy
producers to import energy at imbalance prices, allowing them to import energy at market
prices without incurring transport costs.

The starting point of this thesis project is to explore the feasibility of adding ”Battery as
a Service” for energy communities to their stacked revenue model.

1https://giga-storage.com/
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2.4. Electricity markets

2.4 Electricity markets

The two types of electricity markets are the wholesale markets and the ancillary markets. In
the wholesale markets, the primary product is energy, which is bought and sold at varying
prices. The four main types of wholesale markets are the Forward Market, the Day-Ahead
Market, the Intraday Market, and the Imbalance Market, each operating through different
mechanisms. Revenue for BESS owners in these markets is derived from price arbitrage,
where energy is purchased at low prices and sold at higher prices, thus profiting from the
price differential.

In contrast, the ancillary markets compensate participants for providing essential sup-
port to maintain smooth grid operations. Common ancillary services that BESSs participate
in include the Frequency Containment Reserve (FCR) and the automatic Frequency Restora-
tion Reserve (aFRR). FCR helps maintain grid stability by balancing short-term frequency
deviations, while the aFRR helps restore the system frequency to its nominal value after a
disturbance. Participants who provide these services receive a flat fee for being on standby.
If a disturbance occurs, they will have to provide the agreed-upon service, receiving ex-
tra compensation in the process. This setup is advantageous for BESS owners as it allows
them to generate revenue by being on call, resulting in less battery usage and prolonging
the battery’s lifetime.

Although ancillary markets have traditionally been the most common application for
BESS, GIGA Storage has observed a decline in profitability from these markets. Conse-
quently, they have shifted their revenue model towards price arbitrage in the Day-Ahead
and Imbalance Markets. This thesis focuses on analyzing the day-ahead market and the
imbalance market, both managed by TenneT in the Netherlands [59]. These markets are
accessible only to Balance Responsible Parties (BRPs), who are responsible for planning
daily electricity transactions and ensuring that the grid remains balanced, thus preventing
both overload and underload conditions [25].

In the day-ahead market, participants can buy and sell electricity in a pan-European
auction for the 24 hours of the next day in hourly blocks. Prices in this market are set 12
hours before it opens, with the electricity price and volume for each hour determined by
the intersection of demand and supply. This price is then paid or received by all successful
auction participants. The day-ahead market, organized with a relatively short time horizon
of 12 hours before delivery and featuring a single clearing price, accurately reflects the value
of electricity at different hours. Consequently, this clearing price is often referred to as ”the
electricity price”. In Europe, the price is determined per bidding zone, typically aligning
with national borders [59, 30].

The imbalance market allows parties to voluntarily help maintain system balance. This
market becomes relevant when unscheduled actions are taken by energy parties. When this
occurs, TenneT offers the current imbalance market price for their energy. During periods
of excess generation, prices are lowered to motivate consumers to reduce consumption.
Conversely, in the case of a generation deficit, prices increase to incentivize consumers to
boost consumption or promote energy generation [59, 55].
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2.5. Energy Communities

2.5 Energy Communities

In recent years, there has been a significant shift towards the decentralization of the energy
grid, driven by the local production and consumption of energy within energy communities.
This decentralization plays a vital role in our transition towards renewable energy sources,
increasing flexibility, efficiency, and sustainability in the energy market [27]. This is needed
as the current centralized models have been too slow to adapt to the transition towards
renewable energy sources and the progress made so far has been insufficient [9]. This
transition is also linked to the democratization of energy, where individuals or communities
have more control over their own production and consumption of energy.

This shift is illustrated by the recent rise of prosumer communities [45], where indi-
viduals both produce and consume the energy within the community, through decentralized
systems that utilize renewable power sources, such as solar or wind. This shift not only
challenges the traditional centralized models, but also opens up new opportunities for peer-
to-peer trading [48], smart grids [19], and blockchain technologies [23], further increasing
the resilience and sustainability of the energy systems.
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Chapter 3

Related Work

To situate this thesis within the relevant research fields, this chapter presents a comprehen-
sive review of the literature. The review is organized into three main sections aligned with
the research questions: Battery Energy Storage Systems (BESS) as a service, Renewable
Energy Communities (REC), and Optimal Battery Control.

The first section explores the various applications of BESS identified in the literature.
It highlights that most BESS are deployed using a stacked revenue model, participating in
both grid services and ancillary markets. The second section examines the emerging trend
of RECs, discussing the critical role of BESS in these communities and the configurations
under which they are implemented. The first two sections focus more on techno-economic
analysis and policy-making aspects of the problem. The final section delves into general
control methods for BESS, focusing on technical perspectives and control strategies, and
examining studies that address these issues from a more theoretical standpoint.

By clustering the literature in this manner, this review aims to provide a structured
understanding of the current state of research and identify gaps that this thesis seeks to
address. We will see that the problem of Battery as a Service (BaaS) for energy communities
has not been thoroughly studied, if at all. It has merely been proposed as a future research
direction in some studies, indicating a clear gap in the literature. This thesis aims to fill that
gap by exploring the feasibility and potential benefits of implementing BaaS within energy
communities.

3.1 BESS as a service

Kooshknow and Davis [36] present a map of single-use cases for BESS in the Netherlands
energy market to make them profitable. Their goal was to find possible applications for dif-
ferent actors in the Dutch electricity markets, such as transmission system operators (TSO),
distribution system operators (DSO), power generation companies, energy traders, energy
suppliers, energy retailers, and end consumers. They find that the BESSs are mainly used
in the reserve market, but they expect this to change, as the need for flexibility and energy
storage will increase.

Marnell et al. [35] review the viability of transmission-scale BESSs by examining vari-
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ous battery technologies, operational costs, and potential revenue streams for owners. Iden-
tified revenue streams include ancillary services such as voltage support, black start, and
reserves. Additionally, the review examines revenue opportunities through price arbitrage
and congestion relief. While not extensively analyzed, islanding support is noted as a po-
tential revenue stream, aligning with decentralization trends. The review highlights the
significance of a stacked revenue model, where a joint optimization function allows for the
optimal scheduling of BESS to maximize revenue.

Ramos et al [54] identified and analyzed multiple business scenarios for BESS as a
service by examining 10 battery installations in Finland, which provide various services to
the energy market. They identified three main categories of services that can be provided
by BESS, one of which was BESS as a service for end users, or communities. The focus
of their study was to identify the gap between the available research and the challenges that
arise when implementing those solutions in practice, through interviews with the relevant
stakeholders. One of the relevant problems for energy communities is that the price of
BEES is still too high to be considered a competitive solution, without a stacked revenue
model.

Prakash et al. conducted a literature review to examine the current status, challenges,
and future directions of BESSs for ancillary services in the electrical distribution grid. Us-
ing the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
framework, the review systematically identified and analyzed 115 papers published from
2010 to 2022. The review highlights three critical applications where BESS can signifi-
cantly stabilize and optimize grid operations: frequency regulation, voltage support, and
peak shaving. The authors also identified the barriers to BESS deployment and proposed
potential future research directions to address these challenges. [51].

Biggins et al. [14] analyze the optimization of BESSs for simultaneous participation
in multiple energy markets, including ancillary services required worldwide. The authors
propose a novel approach to optimize a stacked revenue model between the frequency reg-
ulation (FR) market and price arbitrage. They first predict the likelihood of their battery
being accepted to provide frequency regulation. This probability is then incorporated into a
mixed-integer linear programming (MILP) optimization model, which generates a schedule
that accounts for this risk. The results show that FFR is a larger source of revenue than arbi-
trage for battery storage. However, they also demonstrate that performing arbitrage within
a small, risk-constrained band is both economical and feasible in real-time operations.

Castillo et al. [15] addresses the integration of renewable energy through the provision
of ancillary services, by battery energy storage systems (BESS). The paper examines var-
ious control strategies and market participation rules that optimize BESS performance in
ancillary markets. It also addresses the technical challenges of improving BESS efficiency
and reliability. The paper highlights how BESS can mitigate the power quality issues as-
sociated with the intermittent nature of renewable energy sources by providing a smooth
and controlled output. The review covers a wide range of BESS applications, including
frequency regulation, voltage support, energy arbitrage, peak shaving, load smoothing, and
black start capabilities. The authors emphasize the need for advanced control strategies to
ensure that BESS can respond quickly to frequency fluctuations and voltage disturbances,
thereby maintaining grid stability. The review also notes the importance of optimizing
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BESS sizing and location to maximize economic benefits and enhance grid reliability.
Gulotta et al. [28] review the integration of distributed energy resources (DERs), in-

cluding BESSs, into ancillary service markets. It highlights the transition from centralized,
fossil fuel-based generation to decentralized, renewable energy-based models, where DERs
provide essential regulation services for grid stability. The paper discusses various strategies
and regulatory frameworks that enable DERs to effectively participate in both wholesale and
local markets, including peer-to-peer and decentralized setups. These local markets are usu-
ally managed by distribution system operators (DSOs) to facilitate prosumer participation.
Emphasizing the decentralization trend, the study underscores the need for sophisticated
control and coordination mechanisms as energy generation increasingly shifts to small, dis-
tributed power plants. The review highlights the importance of DERs in enhancing grid
reliability and the economic benefits of including BESS in ancillary markets.

3.2 Renewable Energy Communities

Davis and Hiralal [17] evaluate the economic feasibility of individual prosumers from the
UK buying their own batteries and using them to either keep their consumption flat or to
displace all of the daytime electricity demands to the nighttime when prices are lower. Both
use cases were deemed not economically feasible without government subsidies, as the
cost of the battery, inverter, and installation could not be recouped. The authors suggest
battery as a service as a possible alternative, instead of the communities owning these assets
themselves.

Guetes et al. [27] explored the restructuring of traditional power systems, due to the
recent shift towards a decentralized model, where prosumers have their own generation and
storage capabilities. The main contribution is a linear optimization model for incorporating
BESS into energy communities, aimed at increasing community income while taking the
battery degradation into account. Furthermore, the feasibility of different use cases is eval-
uated using social welfare and fairness indicators. They have shown that when the BESS
is inserted as an independent agent into a community it improves community satisfaction
while also increasing the social welfare of the market.

Aranzabal et al. [11] presents a new approach towards maximizing the economic rev-
enue that a BESS can provide within a REC. The study outlines a strategy for scheduling
BESS operations, by considering RECs as virtual microgrids that are allowed to participate
in ancillary markets such as automatic frequency restoration reserves (aFRR). The authors
introduce a three-step control strategy for BESS: initially, a machine learning algorithm
is used for predicting the microgrid load and generation; secondly, a mixed integer linear
programming (MILP) algorithm is used for creating an optimal schedule based on the fore-
casted data; and lastly, a decision-tree algorithm used to adjust the schedule in real-time
based on the actual data. They show that the proposed strategy can be profitable in some
use cases and that it can be easily scaled for different configurations or scenarios.

Belmar et al. [13] model different design configurations of energy communities in Lis-
bon, Portugal, focusing on assessing their economic and environmental impacts within vari-
ous local energy market setups. Their research identifies that in the most favorable scenario,
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prosumers equipped with a combination of photovoltaic (PV) systems and BESSs achieve
the highest cost savings, with residential prosumers saving up to 53%. This scenario as-
sumes 100% participation rates and decreased investment costs for both PV and BESS. In
a more realistic scenario, the study suggests that savings could reach up to 20%. The study
concludes that the outcomes for energy communities are highly dependent on the specific
configurations used in the modeling process.

Pasqui et al. [47] presents a techno-economic analysis of a REC in Florence, focus-
ing on the integration of battery management systems (BMS). It evaluates the performance
and benefits of four different BMS configurations: no battery (PVrec), standard (StBMS),
smart (SmBMS), and optimal (OpBMS). The study finds that the SmBMS, which uses real-
time data monitoring, enhances collective self-consumption (CSC) and provides greater
energy independence from the national grid, albeit with a slight economic disadvantage
for prosumers. In contrast, the OpBMS, based on perfect foresight of production and de-
mand, optimizes energy distribution and maximizes community profits but is impractical
for real-world implementation. The paper emphasizes the role of government incentives
and third-party companies in managing the economic feasibility and operational efficiency
of RECs, proposing that SmBMS is a practical and beneficial solution for maximizing CSC
and supporting sustainable energy practices within energy communities.

Ahmed et al. [6] offers a comprehensive review of RECs, exploring their concepts and
benefits in enhancing energy independence and resilience. The authors highlight the impor-
tance of Energy Storage Systems (ESSs), such as batteries, as crucial components of these
communities. However, challenges like high initial costs and potential technical issues with
battery maintenance and lifespan are noted as disadvantages. Despite these obstacles, elec-
trical energy storage remains particularly promising among potential solutions [16], emerg-
ing as the most cost-effective in the current economic climate, although they have a higher
environmental impact compared to other technologies [29]. The review also addresses the
progress and challenges faced by RECs, providing recommendations for policymakers and
stakeholders to promote sustainable, community-driven energy systems.

3.3 Optimal Battery Control

There has been an increase in recent years in modeling interest in Battery Energy Storage
Systems (BESS) as a linear set of constraints [58]. These models provide a fast and clear
way of analyzing the optimal behavior of BESS across various problems. However, LP
models lack an explicit formulation that accounts for mutually exclusive operations, such
as charging and discharging. Additional constraints can be added to address this issue, but
they significantly slow down the model [12]. This occurs because the added constraints
contain binary variables, converting the model into a mixed-integer linear programming
(MILP) model, which is considerably slower. Zhao et al. [63] suggested that the binary
representation can be omitted if the battery’s round-trip efficiency is less than one. However,
Jose et al. [12] disproved this by counter-example.

A more recent study by Pozo [50] directly tackles this problem by analyzing the most
useful linear BESS models and their limitations. The study investigates one MILP model

11



3.3. Optimal Battery Control

and four LP models in the context of two classical power system problems: set-point track-
ing (SPT) and transmission expansion planning (TEP). The first two models analyzed are
Exact-MILP and Simp-LP, both well-known and widely used in the techno-economic
analysis of power systems, with Simp-LP being a simplified version of Exact-MILP. The
third model, NaAl-LP, introduced by Nazir and Almassalkhi [41], always produces a fea-
sible charging schedule with respect to the state of energy limits. The fourth model, Relax-
LP, is a relaxation of the Exact-MILP model, and the fifth model, Extn-LP, proposed by
Pozo, is the closest to the MILP formulation. The paper evaluates these models through
the SPT and TEP problems, finding that only the Exact-MILP model avoids simultane-
ous charging and discharging, although it is significantly slower. In the SPT problem, the
relaxed LP models tend to overestimate the objective function, with Simp-LP being the
most overoptimistic at 15%. For the TEP problem, the differences between the objective
functions of the models are small, making them irrelevant for practical long-term planning
decisions.

Qin et al. (2016) [52] formulate the problem of optimal operation of energy storage sys-
tems under uncertainty as a stochastic control problem with general cost functions. They
propose a simple yet effective algorithm called the Online Modified Greedy (OMG) algo-
rithm. They demonstrate that the OMG algorithm has sub-optimal control when compared
to the optimal cost of the problem. However, they prove that this sub-optimality is bound by
a function of the system parameters. The bound on this sub-optimality is easily computable,
making the algorithm practical and theoretically sound for evaluating the performance of
other heuristic algorithms. Additionally, they extended the algorithm to a distributed set-
ting [53], which allows for networked storage operation under uncertainty, enhancing its
scalability and applicability in larger, more complex systems.
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Chapter 4

Methodology

The methodology section of this thesis details the approach employed to investigate the
feasibility of a grid-connected battery owner renting out a portion of their Battery Energy
Storage System (BESS) capacity to a Renewable Energy Community (REC). The study fo-
cuses on the applicability of this model within the Dutch energy market. For the simulation,
the Rhino system, owned by GIGA Storage and rated at 12MW/7.5MWh, was utilized.
The research is structured around two primary components: community simulation and
spot market simulation. These simulations allocate part of the battery for community use
and part for company operations, running over a full year and utilizing historical data from
2023 wherever possible.

In the community simulation, two distinct control strategies are employed: a model-
free greedy algorithm and a linear optimization model. The greedy algorithm prioritizes
immediate actions based on the current state, while the linear optimization model plans for
a full day. For the market simulation, a similar but simpler linear model is used to optimize
the optimize the daily charging and discharging schedule of the battery.

Additionally, this methodology covers data gathering and preprocessing, incorporating
real-world demand and generation data alongside market prices to ensure the simulations
are grounded in realistic scenarios. This approach allows for an accurate assessment of the
proposed model.

4.1 Community Simulation

For the community simulation, we will employ two distinct control strategies, each with a
different event horizon. The first approach utilizes a model-free greedy algorithm, taking
the optimal action at each given step based solely on the current state. The second approach
employs a linear optimization model with a one-day event horizon, determining the optimal
schedule for the entire day. This model runs independently for each day, requiring more in-
put data at runtime, some of which must be estimated (e.g., demand and generation curves).
While these estimations are not the primary focus of this study, their feasibility is discussed
in the Discussion section. The following subsections will delve into the specifics of each
implemented approach.
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4.1.1 Greedy Model

The most straightforward control algorithm for battery management, which requires no in-
formation about future generation, demand, or prices, is a model-free greedy algorithm. The
formulation proposed by Norbu et al. [42] was adapted for use in this thesis. This greedy
algorithm prioritizes the use of the battery over the grid whenever possible. It is termed
”model-free” because it operates solely based on the current state without accounting for
future conditions. Specifically, in scenarios of excess energy generation, the algorithm will
charge the battery first, resorting to exporting energy only if the excess power exceeds the
battery’s specifications or if the battery lacks sufficient capacity to store all the generated
energy. Conversely, during energy deficits, the algorithm will discharge the battery first,
importing energy only if the required power surpasses the battery’s maximum power rating
or if the stored energy is insufficient to cover the deficit. This algorithm is optimal for a flat
import and export tariff structure, assuming the import cost exceeds the export cost. The
formal definition of the algorithm is given as Algorithm 1.

Algorithm 1 Model-Free Battery Control Algorithm

Require: Generation: gwind/solar
i , Demand: di, Grid Price: τb

i , τs
i

Require: Battery Specifications: ηc, ηd , SoCinitial , SoCmax, SoCmin, pbat,max

Ensure: State of Charge SoCi, Exported Energy es
i , Imported Energy eb

i
1: Initialize SoC0← SoCinitial

2: Initialize T ← |gwind/solar| ▷ Number of timesteps
3: for i← 1,T do
4: if gwind/solar

i ≥ di then ▷ Excess Energy Scenario
5: pcharge

i ←min
(
gwind/solar

i −di, pmax
)

6: SoCchange←min
(

pcharge
i ·∆t ·ηc,SoCmax−SoCi−1

)
7: SoCi← SoCi−1 +SoCchange

8: es
i ← (gwind/solar

i −di) ·∆t +SoCchange/ηc

9: else ▷ Energy Deficit Scenario
10: pdischarge

i ←min
(
di−gwind/solar

i , pmax
)

11: SoCchange←min
(

pdischarge
i ·∆t/ηd ,SoCi−1−SoCmin

)
12: SoCi← SoCi−1−SoCchange

13: eb
i ← (di−gwind/solar

i )∆t +SoCchange ·ηd

14: end if
15: end for
16: ▷ Post-Processing
17: SoCi: State of Charge at time i
18: es

i : Energy exported to grid at time i with selling price of τs
i

19: eb
i : Energy imported from grid at time i with buying price of τb

i

The algorithm proceeds as follows:

1. Initialization: The state of charge (SoC) is initialized to its initial value (Line 1), and
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the number of timesteps is determined from the generation data (Line 2).

2. Excess Energy Scenario: When generation exceeds demand (gwind/solar
i ≥ di, Line

4), the algorithm calculates the maximum power that can be used to charge the battery
without exceeding its maximum charging power (Line 5) or capacity (Line 6). The
SoC is updated accordingly (Line 7). Any remaining excess energy is then exported
to the grid (Line 8).

3. Energy Deficit Scenario: When demand exceeds generation (gwind/solar
i < di, Line

9), the algorithm calculates the maximum power that can be discharged from the bat-
tery without exceeding its maximum discharging power (Line 10) or capacity (Line
11). The SoC is updated accordingly (Line 12). Any remaining deficit is then met by
importing energy from the grid (Line 16).

4. Post-Processing: The final state of charge, exported energy, and imported energy for
each timestep are recorded for further analysis (Lines 17-19). Note that the exported
energy (es

i ) and imported energy (eb
i ) are not needed, as they can be calculated from

the state of charge (SoCi), generation (gwind/solar
i ), and demand (di).

4.1.2 Linear Programming (LP) Optimization Model

In contrast to the model-free greedy algorithm, the linear optimization model takes a more
strategic approach to battery management by optimizing the charging schedule over an event
(or look-ahead) horizon. For this thesis, the horizon was set to one day (24 hours), align-
ing with much of the current literature on battery optimization [50] as well as the oper-
ational practices at GIGA. Unlike the instantaneous decision-making of the greedy algo-
rithm, which reacts to each timestep independently, the linear optimization model considers
the entire day’s energy dynamics and returns a schedule that minimizes the community’s
energy bill.

This approach requires that the input data be known beforehand, either through fore-
casting or the use of historical patterns. In this study, historical data was used for energy
generation (gwind/solar

i ), energy demand (di), and energy tariffs (τi), as described in Section
4.3. The event horizon denotes how far into the future the algorithm can access data. In-
creasing the event horizon usually results in a better overall schedule. However, this is not
always practical, as predicting values further into the future often reduces the accuracy of
the predictions. For this study, an event horizon of one day was chosen, as this was deemed
achievable in practice.

Model 1 outlines the Linear Optimization model used for the community simulation.
The objective function minimizes the energy bill, which consists of the cost of the imported
energy and the penalties associated minus the revenue from the exported energy (Equation
1.0). Two regularisation costs (L1 and L2) are also added to improve the behaviour of the
model.

The model’s constraints ensure the battery’s state of charge (SoC) is updated correctly
at each timestep. The initial state of charge is set to its initial value (Equation 1.1). The SoC
at each subsequent timestep is determined by the previous SoC, the charging power, and the
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discharging power, adjusted by their respective efficiencies (Equation 1.2). The power bal-
ance constraint ensures that the difference between charging and discharging power matches
the net energy generation minus demand, adjusted for energy imports and exports (Equa-
tion 1.3). Additionally, the maximum daily depth of charge λ max cycles prevents excessive
cycling, prolonging the life of the battery (Equation 1.4).

Model 1 LP Model - Community Simulation

Objective function:
Minimize ∑

T
i=1

(
τb

i · eb
i − τs

i · es
i
)
+L1 +L2 ▷ (1.0)

Constraints:
SoC0 = SoCinitial ▷ (1.1)

SoCi+1 = SoCi +ηc · pcharge
i ·∆t− pdischarge

i
ηd
·∆t ▷ (1.2)

pcharge
i − pdischarge

i = gwind/solar
i −di + eb

i − es
i ▷ (1.3)

∑
T
i=1

(pcharge
i ·ηc+pdischarge

i /ηd)·∆t
2·(SoCmax−SoCmin)

≤ λ max cycles ▷ (1.4)

Decision variables:
SoCi ∈ [SoCmin,SoCmax] ▷ State of charge at time step i
pcharge

i ∈ [0, pmax] ▷ Battery charging power at time step i
pdischarge

i ∈ [0, pmax] ▷ Battery discharging power at time step i
eb

i ∈ [0,∞] ▷ Energy import at time step i
es

i ∈ [0,∞] ▷ Energy export at time step i

Regularization costs:
L1 = ∑

T
i=1

(
λ charging · pcharge

i +λ charging · pdischarge
i

)
▷ Penalty for using the battery

L2 = λ capacity · (Socmax−SoCT ) ▷ Penalty for empty battery

The linear optimization model is more versatile than its greedy counterpart, particularly
when energy prices fluctuate over time. In such scenarios, the linear optimizer can anticipate
and decide the optimal times to utilize the grid. For example, it might be more advantageous
to buy energy during the night when prices are lower and store it until needed for a deficit.
Additionally, the linear model actively trades in the energy market, buying energy with
the intent of selling it at a higher price later, rather than solely for deficit purposes. This
capability allows the linear model to balance the community’s needs while also optimizing
economic benefits.

Finally, we will examine two regularization costs designed to improve the final sched-
ule by guiding the linear model toward a better solution. In linear optimization, multiple
solutions with the same objective function often exist, making them all optimal from the
optimizer’s perspective. The regularization costs are meant to refine these solutions, by
slightly changing their ordering.

The L1 cost aims to reduce battery usage by adding a very small cost, λ charging, every
time the battery is charged or discharged. Incorporating this cost into the objective function
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makes the solution with the least battery usage slightly more favorable. This cost must be
small to avoid affecting the overall optimality of the solution. In our study, we used a value
of λ charging = 10−7.

Figure A.2 shows a comparison between the SoC resulting from the greedy and simple
linear models over 10 days. As illustrated in Figure A.3, adding the L1 regularization cost
results in an improved schedule, while the total simulation cost remains constant.

The L2 cost aims to keep the battery charged at the end of the day. A drawback of
the one-day time horizon is that the linear model does not charge the battery at the end of
the day because it lacks information about the next day’s loads. Consequently, it always
opts to export energy at day’s end. The L2 optimization adds a small cost, λ capacity, which
penalizes the model for any unused capacity left in the battery at the end of the day. This
incentivizes the model to charge the battery when possible. An undesired effect of this cost
is that if the buying price falls below the λ capacity parameter, the model may purchase power
to charge the battery unnecessarily. In this study, we used a value of λ capacity = 1.2, chosen
experimentally based on performance across all scenarios. The effects of L2 regularization
are illustrated in A.4.

The best schedule is achieved by applying both regularizations together, as shown in
A.5. This approach not only produces the best results in all but one scenario but also signif-
icantly decreases battery wear, thereby extending the battery’s lifespan.

4.1.3 Mixed Integer Linear Programming (MILP) Optimization Model

As discussed in Section 3.3, the LP model requires additional constraints to accurately
model mutually exclusive operations, such as charging and discharging or importing and
exporting. Without these constraints, the model permits simultaneous operations, which can
distort the objective function. It has been found that for the set-point tracking (SPT) prob-
lem, the LP formulation can overestimate the objective function by as much as 15%[50].
The SPT problem involves a central aggregator that controls multiple BESSs and is tasked
with matching the net power demand (demand minus local renewable generation) within
the system. The problem studied in this thesis can be considered a base case of the SPT
problem, where the aggregator has access to only one BESS.

This issue was also encountered in this thesis and studied further. For the problem
studied here, the LP model shown in Model 1 also overestimates the objective function.
To address this, two binary variables were introduced, one for battery operation and the
other for grid operation, to ensure that only one action can be performed in each case. The
new model, shown in Model 2, is significantly slower due to the introduction of the binary
variables, which turn the model into a mixed-integer linear programming (MILP) model.
However, the MILP model reports the correct final cost.

From experimental evidence, we believe that the LP model miscalculates the objective
function due to the difference between charging and discharging efficiencies. When both the
charging power and discharging power are set above zero, the model creates excess power.
For example, if the charging and discharging capacities are set above zero, we will not
import anything from the grid because the two values cancel out in Equation 1.3. However,
in Equation 1.2, the two terms do not cancel out completely due to the asymmetric charging
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(ηc) and discharging efficiency (ηd) terms. This results in extra energy that we do not have
to pay for, leading to a lower objective function.

Importing and exporting at the same time can alter the objective function even more
than the issue previously discussed. However, we found this not to be a problem in practice.
When the buying price of energy is higher than the selling price, which is most often the
case, the model naturally avoids performing both actions simultaneously, as it would result
in a financial loss. However, if the selling price exceeds the buying price, the model can
import and export an infinite amount of energy simultaneously, creating unlimited profit
potential. This is not only unrealistic but also results in an unbounded model, as there is
no upper limit on the import and export variables, and increasing them always improves the
objective function. To avoid this situation, which would result in an unsolvable model, in
all the studied scenarios, the buying price of electricity was always smaller than or equal to
the selling price of electricity.

However, we have found a way to obtain the real cost using the schedule given by the
LP formulation. The final cost can be recomputed using only the state of charge (SoC) and
the inputs of the problem (demand, generation, and energy prices). First, we can recompute
the charging and discharging power from Equation 1.2 solely from the SoC. Solving for
two unknowns using only one equation results in an infinite number of solutions. This is
the same problem that the LP faces, as all these solutions are valid in the solution space of
the relaxed problem. However, we know that only one of the two variables can be positive,
with the other set to zero. So, depending on the sign given by the difference of the SoCs
at consecutive time steps, we know whether we are in the charging or discharging case.
This allows us to calculate the correct charging power at any given time step. Note that
by doing so, we are never outside the problem constraints. Even if the LP solution allows
both charging and discharging at the same time step, using both variables at the same time
can never exceed the maximum power and will only result in a smaller net power than if
one variable remains at its value and the other is set to zero. From here, we can just plug
everything into Equation 1.3. Similarly, we can assume that we only import or export at any
given time, so depending on the sign of the equation, we set either one or the other. Finally,
we can recompute the final cost as seen in Equation 1.0. This cost matches the one reported
by the MILP model, despite being calculated from the SoC reported by the LP model, which
had an incorrect objective function.

The procedure described above, although straightforward, has not been encountered
in the relevant literature. It provides a valid way of mapping a solution generated by the
relaxed LP model to the solution space of the MILP model and obtaining the correct final
cost. For the rest of this thesis, this procedure will always be used to calculate the final cost.
The need for this procedure also arises from the fact that the regularization costs skew the
objective function of the models. Although not the main focus of this thesis, the comparison
between the MILP model, LP model, and the procedure described above is an interesting
topic for future research.
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Model 2 MILP Model - Community Simulation

Objective function:
Minimize ∑

T
i=1

(
τb

i · eb
i − τs

i · es
i
)
+L1 +L2 ▷ (2.0)

Constraints:
SoC0 = SoCinitial ▷ (2.1)

SoCi+1 = SoCi +ηc · pcharge
i ·∆t− pdischarge

i
ηd
·∆t ▷ (2.2)

pcharge
i − pdischarge

i = gwind/solar
i −di + eb

i − es
i ▷ (2.3)

∑
T
i=1

(pcharge
i ·ηc+pdischarge

i /ηd)·∆t
2·(SoCmax−SoCmin)

≤ λ max cycles ▷ (2.4)

pcharge
i ≤ pmax · (1− xi) ▷ (2.5)

pdischarge
i ≤ pmax · xi ▷ (2.6)

eb
i ≤ 1015 · (1− yi) ▷ (2.7)

es
i ≤ 1015 · yi ▷ (2.8)

Decision variables:
SoCi ∈ [SoCmin,SoCmax] ▷ State of charge at time step i
pcharge

i ∈ [0, pmax] ▷ Battery charging power at time step i
pdischarge

i ∈ [0, pmax] ▷ Battery discharging power at time step i
eb

i ∈ [0,∞] ▷ Energy import at time step i
es

i ∈ [0,∞] ▷ Energy export at time step i
xi ∈ {0,1} ▷ Binary variable indicating if the battery is discharging at time step i
yi ∈ {0,1} ▷ Binary variable indicating if the grid is exporting energy at time step i

Regularization costs:
L1 = ∑

T
i=1

(
λ charging · pcharge

i +λ charging · pdischarge
i

)
▷ Penalty for using the battery

L2 = λ capacity · (Socmax−SoCT ) ▷ Penalty for empty battery

4.1.4 Self-Consumption and Degree of Autarky

In recent years, the ”Clean Energy for All Europeans” package introduced the concept
of self-consumption (SC) for energy communities [24, 34]. Self-consumption measures
how much of the energy produced is consumed within the Renewable Energy Community
(REC). Increasing SC within RECs can reduce strain on the grid, which is crucial given
the increasing network congestion issues on the transmission and distribution grids in the
Netherlands and the EU. Therefore, many people in RECs are motivated not only by the
financial benefits of renting a BESS but also by the prospect of increasing their SC. Some
individual prosumers and energy communities may even prioritize higher SC over achiev-
ing the lowest possible energy bill. To better understand the problem, we will also examine
how varying BESS capacities affect the community’s SC.

The Self-Consumption (SC) coefficient[31] is defined as the ratio between the energy
used from self-production and the total produced energy, as shown in Equation 4.1. One
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drawback of this metric is that it decreases when the community exports more energy, pe-
nalizing the installation of excess capacity and encouraging smaller installations. This re-
flects a valid concern that exporting too much energy can negatively impact grid stability.
However, this metric may overly encourage small-scale generation, leading to a very high
SC coefficient even when local production does not meet most of the community’s demand,
which is unrealistic.

SC =
∑

T
i gwind/solar

i −∑
T
i es

i

∑
T
i gwind/solar

i

(4.1)

Another metric used in this study is the Degree of Autarky (DoA)[31], which measures
the percentage of energy consumption met by locally produced sources. The DoA is defined
as the ratio between the locally satisfied consumption and the total consumption, as shown
in Equation 4.2. Although SC and DoA are similar, the key difference is that DoA does not
decrease with excess production exported to the grid. DoA promotes balancing supply and
demand within the community and increases with higher generation or battery capacities,
making it a more stable metric for measuring the community’s self-reliance.

DoA =
∑

T
i di−∑

T
i eb

i

∑
T
i di

(4.2)

4.2 Energy Spot Market Simulation

The spot market simulation will also employ a linear model as described in Model 3. This
model operates on a daily time horizon, similar to its community counterpart, and is ex-
ecuted independently for each day of the year. However, Model 3 is simpler than Model
1, as it does not account for demand and generation. The battery is always charged using
imported energy, and discharged energy is always exported. Another notable difference is
in the objective function, in this case, the profits are maximized. Formulating the prob-
lem as profit maximization or cost minimization results in equivalent linear programming
formulations, the only difference being the sign of the objective function.

The only input for the model is the electricity prices at each time step. The prices from
either the day-ahead market or the imbalance market can be used, with the main difference
being the time step duration (hourly vs. quarter-hourly). The model output will be the
optimal schedule, i.e., the schedule that maximizes profits. The constraints ensure the proper
functioning of the model: the state of charge (SoC) starts at an initial value and updates
based on the charging and discharging powers at each timestep. The imported energy equals
the charging power times the length of the time step. An identical constraint is also added
for the exported energy. Additionally, the model ensures that the depth of charge does not
exceed a maximum daily cycle limit. The decision variables include the state of charge at
each time step, the battery charging and discharging power, and the energy imported and
exported at each time step.
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Model 3 LP Model - Market Simulation
Objective function:
Maximize ∑

T
i=1

(
τs

i · es
i − τb

i · eb
i
)

▷ (3.0)
Constraints:
SoC0 = SoCinitial ▷ (3.1)
SoCi+1 = SoCi +ηcd · pcharge

i ·∆t− pdischarge
i ·∆t ▷ (3.2)

eb
i = pcharge

i ·∆t ▷ (2.3)
es

i = pdischarge
i ·∆t ▷ (3.4)

∑
T
i=1

(pcharge
i ·ηcd+pdischarge

i )·∆t
2·(SoCmax−SoCmin)

≤ λ max cycles ▷ (3.3)
Decision variables:
SoCi ∈ [SoCmin,SoCmax] ▷ State of charge at time step i
pcharge

i ∈ [0, pmax] ▷ Battery charging power at time step i
pdischarge

i ∈ [0, pmax] ▷ Battery discharging power at time step i
eb

i ∈ [0,∞] ▷ Energy import at time step i
es

i ∈ [0,∞] ▷ Energy export at time step i

4.3 Data Gathering and Preprocessing

This section outlines the methodology used to collect the input data required for the algo-
rithms described above. For the community simulation, both demand and generation curves
were needed along with energy prices. For the company simulation, energy prices for the
Day-Ahead and Imbalance Markets were required.

4.3.1 Community Demand

In this thesis, real demand data was sourced from The Thames Valley Vision (TVV) [5]
dataset. The dataset includes both generation and demand curves for 200 class-1 and 20
class-2 from the UK[4]. However, the generation data is comparatively small and will be
ignored in this study, focusing solely on the demand data. Specifically, this study uses
the 200 class-1 households, representing unrestricted domestic consumers [42]. The total
yearly demand for this community is approximately 840.34 MWh. The average yearly de-
mand per household is around 4201.71 kWh, with the smallest household consuming 1000
kWh annually and the largest household consuming 18735.47 kWh. Figure 4.1 presents a
histogram of the yearly demands (in kWh) for the households in the dataset.

4.3.2 Community Wind Generation

The wind generation curve can be estimated from wind speeds using a methodology similar
to Fruh [21, 22], Andoni et al. [10], and Norbu et al.

Real wind speed data collected by the Royal Netherlands Meteorological Institute (KNMI)
was used for the calculation. KNMI provides climate data averaged over several decades for
46 weather stations, as well as the provincial averages of the 12 Dutch provinces. For this
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Figure 4.1: Histogram of yearly demands for the Thames Valley Vision Project. (C per
KWh).

study, data from North Holland was used, as this is where all of GIGA’s assets are located,
and the community should be situated around these assets.

The data was retrieved from TU Delft’s Meteorological data portal1, and it consists of
average wind speeds for a year with hourly time steps, measured at a height of 10m above
the ground. Any missing data is computed using double spline interpolation function. The
hitorical and interpolated wind speed can be see in Figure 4.2.

uh = ua
logzh/z0

logza/z0

where uh is the wind speed at the wind turbine hub height zh = 50m, ua is the wind speed
measured at the anemometer height za = 10m, and z0 = 0.03m is the surface roughness
of grass, which is a typical environment around weather stations and was also used by
[21, 22, 10, 42].

The final power output can be approximated using the power curve provided by the
manufacturer, as seen in Figure 4.3. For this study, we will use the power curve of the
Energon E-33 wind turbine [49], which can be approximated by a sigmoid function with
parameters a = 0.7526s/m and b = 8.424m/s:

f (x,a,b) =
1

1+ e−a(x−b)
(4.3)

The yearly cost of the wind turbine was calculated and added to the community’s fi-
nal bill. Without including this cost, energy generation would appear free, making a larger

1https://www.tudelft.nl/en/ewi/over-de-faculteit/afdelingen/electrical-sustainable
-energy/photovoltaic-materials-and-devices/dutch-pv-portal/meteorological-data
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Figure 4.2: Historical wind speed data from North Holland as recorded by KNMI with
interpolated values for missing timesteps.

turbine always advantageous, which is unrealistic. Incorporating this cost allows for opti-
mizing the scale of generation by considering the turbine’s expense. The installation cost
for wind turbines has steadily declined in recent years. For our study, we used the average
weighted price from 2022 of C1200 per kW of installed capacity [1]. The wind turbine’s
cost is amortized over 20 years, resulting in a yearly cost of C19,800. One cost not consid-
ered in this thesis is the maintenance cost of the wind turbine. This cost is more challenging
to compute as it depends on multiple factors, such as the age and capacity of the turbine and
the type of technology used. Therefore, this cost was not included, but readers should be
aware of these costs, usually referred to as operations and maintenance (O&M) costs [20].

Finally, we need to ensure that the sizes of local renewable generation capacity and
demand are aligned at realistic levels relative to each other. This is achieved through a scal-
ing coefficient. The scaling coefficient for the community tracks how much of the yearly
demand is produced by the wind turbine in a year. The scale of the original wind turbine
is approximately 1.2. This coefficient helps us answer RQ1(c) by varying the scale of the
generation and selecting the one that lowers the total bill. Note that for all other research
questions, the original scale was used. The net generation, which is the produced energy mi-
nus the demand, for the whole year can be seen in Figure A.1. In this figure, the community
does not have access to a battery, so the surplus or deficit is always exported or imported.
Because the scale is close to 1, the community imports approximately the same amount it
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Figure 4.3: Comparison between the power curve of the Enercon E-33 wind turbine [49]
and the sigmoid approximation described by Eq. 4.3.

exports. The same net generation for a scale of 0.75 can be seen in Figure A.1. Increasing or
decreasing the scale will shift the line up or down. Including a battery will reduce both the
exported and imported energy, as some of the exported energy will be stored and become
available for later use.
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Figure 4.4: The half-hourly net generation (gi− di) for a community of 200 households,
using a 330kW Energon E-33 wind turbine [49].

4.3.3 Energy Prices

This thesis examines three types of energy tariffs: fixed prices, dynamic prices, and market
prices. While fixed and dynamic tariffs are typically available to prosumers in the Nether-
lands, market prices are generally accessible only to BRPs such as GIGA. However, this
study includes scenarios where community participants can also access market prices. We
will discuss the structure, benefits, and drawbacks of each tariff type.

Fixed energy tariffs

The fixed energy tariffs, also known as flat-rate pricing, remain constant over a billing
period, regardless of the time of day or demand conditions. (There exists another variation
called tiered pricing, where consumers pay different rates based on their total consumption,
with higher rates for higher usage). The flat-rate pricing is simple and predictable, making
it easier for a consumer to understand and budget their energy costs accordingly. However,
this type of tariff does not encourage the consumer to shift their usage away from on-peak
hours, leading to a higher-peak demand. Furthermore, consumers using this type of pricing
usually pay higher overall costs, as the flat rate includes a risk premium added by the energy
supplier.
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Figure 4.5: Map of average electricity prices (C per kWh) for household consumers in
Europe (first half of 2023), created using Eurostat[2].

The flat tariffs vary depending on multiple factors, such as region, energy supplier, and
the type of consumer (industrial or residential). Eurostat [2] reports that during the first
half of 2023, the energy prices in the Netherlands (both with and without taxes and levies)
were the highest in Europe, averaging at 0.4523 C per kWh. In comparison, the European
Union had an average energy price of 0.2965 C per kWh. You can see an overview of all
the European countries in Figure 4.5.

Table 4.1 shows the price breakdown by consumption bands in the Netherlands for 2023.
The table indicates that the households that paid the most in the Netherlands in 2023 were
the ones with consumption of less than 2.500 kWh in a year. However, in 2023, the Dutch
government has set a cap of 0.40 C/kWh for the electricity price, for all consumers under
2,900kWh. Without this government subsidy, most households and small-scale users would
have a higher energy bill[26]. As for the output price, the energy providers usually offer a
price between zero and twenty cents [44].

As we can see, it is hard to pinpoint an exact price of electricity, as it depends on
multiple factors. In our study, we consider a range of flat tariffs from C0.10 to C0.40 per
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kWh for imported energy, along with scenarios where communities either do not receive
compensation for exported energy or receive a fixed tariff of C0.10 per kWh.

Table 4.1: The buying price of energy for in the Netherlands (in C per kWh) and the ranking
of that price when compared with all countries in the European Union (bigger is better), for
the two halves of the year 2023, taken from Eurostat [2].

Yearly Consumption First Half of 2023 Second Half of 2023
Price (Ranking) Price (Ranking)

less than 1000 kWh 0.7928 (1) 0.6072 (1)
from 1000 to 2499 kWh 0.5176 (2) 0.3436 (3)
from 2500 to 4999 kWh 0.4436 (2) 0.2659 (7)
from 5000 to 14999 kWh 0.3869 (2) 0.2046 (12)
over 15000 kWh 0.4184 (1) 0.2177 (8)
All Bands 0.4551 (1) 0.2819 (5)

Dynamic energy tariffs

Dynamic energy tariffs, also known as time-of-use (TOU) tariffs, are higher during peak
demand periods and lower during off-peak hours. This pricing model encourages consumers
to use electricity during off-peak times, helping to balance demand and potentially lowering
overall energy costs for those who can adjust their usage. It reduces strain on the grid and
enhances grid stability and efficiency. However, the unpredictability of dynamic pricing can
make it challenging for consumers to budget their energy costs, as it requires consumers to
actively monitor and respond to price signals.

For instance, Frank Energie 2 offers dynamic tariffs in the Netherlands that reflect mar-
ket conditions. These tariffs are subject to additional taxes, such as VAT (known as BTW in
Dutch), energy tax, and variable fees, which typically range from C0.13 to C0.18 per kWh,
depending on various factors like the time of day and market prices. A flat tariff of C0.155
per kWh will be used instead, as the historical tariffs are unavailable. This flat rate will be
added on top of the day-ahead market price. For the export tariff, a flat rate of C0.10 per
kWh will be applied, which is realistic based on information from Frank Energie’s web-
site. Additionally, a scenario where no money is received for exported energy will also be
considered.

Market Prices

The historical prices from both the day-ahead and the imbalance market are needed for the
company simulation. Additionally, the day-ahead prices are used to calculate the dynamic
import price for consumers. The prices for both markets in the Netherlands for 2023 were
retrieved from the ENTSO-E (European Network of Transmission System Operators for
Electricity) API, using an open-source library 3.

2https://www.frankenergie.nl/
3https://github.com/EnergieID/entsoe-py
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Typically, a transport tariff is applied on top of market prices. This transport tariffs are
supported by the buyer. However, as mentioned in Section 2.3,GIGA can import locally
produced renewable energy at the market price without paying transport costs. Therefore,
for the company’s simulation, we will use the market prices without transport cost. This
makes the company’s current stacked revenue model more profitable and harder to find an
equally or better opportunity.

As previously mentioned, normal prosumers do not have access to this type of tariff.
However, in this situation, their battery is owned by GIGA, which is a BRP, allowing access
to these prices and enabling them to offer the same to the community. This creates an
interesting case study. For the community simulation, we will use two types of market
prices: with and without transport taxes. In the case of transport taxes, a flat transport tariff
of C0.2 per kWh was added to the buying price of electricity.
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Chapter 5

Experimental Results

This chapter presents the experiments conducted to address the research questions outlined
earlier, while also discussing the corresponding results. The first two subsections are dedi-
cated to answering RQ1, while the final subsection focuses on answering RQ2.

5.1 Calculating the Battery Rental Price

This section will analyze the experiments used to determine the rental price of the battery,
with the intent of answering RQ1(a). From the community’s perspective, there is a maxi-
mum price they are willing to pay, which corresponds to their potential savings for a given
battery capacity. From the company’s perspective, there is a minimum price they are willing
to accept, which corresponds to the profit they would have earned with the same battery size
in the energy markets. Renting out the battery is viable only when these two bounds are in
the correct order. We will now discuss the results from each of these perspectives.

5.1.1 The Maximum Rental Price

In order to better understand the problem, we will first look at the community’s yearly
costs for multiple battery sizes. The community costs are comprised of the energy bill and
the amortized cost of the wind turbine, with the cost of the battery being excluded for the
moment. The yearly costs for different battery sizes and flat tariffs can be seen in Figure
5.1, with each line representing a different flat tariff scenario. All combinations between
four different buying prices τb ∈ {0.4,0.3,0.2,0.1} and two selling prices τs ∈ {0.0,0.1}
(in C per kWh) were explored. For all except the last scenario, the cost goes down as the
battery increases.

The scenarios form two distinct groups. The upper four lines correspond to the case in
which the community does not get paid for their exported energy (the export tariff is set
to zero τs = 0). In this case, all the lines approach the yearly wind turbine cost of around
C20000. This is expected, as the community energy bill will go toward zero as the battery
capacity increases, leaving just the wind turbine cost in the final bill.

The lower four lines correspond to the case in which the community gets paid for the
exported energy (the export tariff is set to ten cents, τs = 0.1). In this scenario, the costs
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Figure 5.1: The yearly costs for the community (excluding the battery) for different battery
capacities and flat tariff scenarios.

approach zero, meaning that the profit sold to the grid is approximately the same as the cost
of the wind turbine. This is an interesting finding, as it indicates that the wind turbine could
pay for itself if the community is allowed to export the excess generation. Consequently,
the only costs the community would have to pay are the rental price of the battery and the
operation and maintenance (O&M) costs of the wind turbine, which were not discussed in
this thesis.

A widely accepted metric is the monetary (or financial) savings for the community. The
savings directly correspond to how much the community is willing to pay for the battery,
i.e., the maximum rental price. They can be directly computed from the costs by calculating
how much the community lowers their bill when compared to the case with no battery. The
savings for the community, for different battery capacities and flat tariff scenarios, can be
seen in Figure 5.2.

An important observation is that the export cost does not significantly influence the
final savings. By looking at Figure 5.2, we can observe that adding a selling price of ten
cents per kWh has approximately the same effect as subtracting ten cents from the buying
price. The difference between the solid and dotted lines can be explained by the fact that
the turbine generates roughly 1.2 times the yearly needs of the community, which means
that we are slightly overproducing, allowing us to recoup more of our costs. As the scale
of the generation approaches the yearly demand (i.e., a scale of 1), the gap between the two
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Figure 5.2: The yearly savings for the community (excluding the battery) for different bat-
tery capacities and flat tariff scenarios.

different types of lines would decrease.
We can also examine the Self-Consumption (SC) and Degree of Autarky (DoA) met-

rics, as shown in Figure A.7. Initially, the community has a relatively high degree of self-
consumption, around 70%, even without a battery. This indicates that 70% of the energy
produced by the wind turbine is directly consumed by the community. The DoA starts even
higher, at 87%, meaning that 87% of the community’s energy consumption is met by local
sources. Another way to interpret these results is that without a battery, the community
needs to export 30% of their produced energy and import an additional 13% to match de-
mand when there is no generation, as shown in Figure A.7. Adding a battery helps store
the overproduction of energy to be used at a later time, improving both metrics. Figure A.1
shows that adding a 1MWh battery increases the SC and DoA to 78.5% and 97%, respec-
tively. Beyond this point, additional capacity results in minimal increases for both metrics.
This aligns with existing literature, which suggests that achieving the final few percentages
of DoA requires significant battery investments, with most of the capacity being rarely used
[31]. For SC, the metric converges at a little over 80%, as seen in the results. This capping
occurs because the SC metric penalizes the export of energy, which is the case here since
the wind turbines are generating 1.2 times the yearly demand.
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5.1.2 The Minimum Rental Price

This subsection will examine how the minimum rental price was determined. First, we will
analyze GIGA Storage’s earnings in the energy market and how this can be used to set a
minimum price that makes financial sense. Finally, we will compare this rental price to the
cost of buying a new BESS for the community.

The maximum and expected revenue on the Imbalance and Day-Ahead markets can be
seen in Figure A.6a. The maximum revenues are based on the linear model described in
Section 4.2 and the historical prices from the Netherlands in 2023. The values provided by
the linear model represent the optimal yearly profits, which are not achievable in practice.
In reality, we do not have access to all the information beforehand, requiring some forecast-
ing that will lower the expected revenue. This is particularly noticeable for the Imbalance
Market.

Figure A.6a shows that the Imbalance Market is much more profitable than the Day-
Ahead Market. However, it is much harder to predict, making these potential profits much
harder to achieve. The Day-Ahead Market is more predictable, so the achieved profits are
closer to the maximum ones. Even with this consideration, our analysis has found that
the Imbalance Market is too profitable to be replaced with a battery-as-a-service market
model. However, the Day-Ahead Market has proven to be less profitable than the battery-
as-a-service market model in some scenarios. For the rest of this thesis, we will focus on
this scenario, considering only the Day-Ahead Market for the company simulation.

The minimum rental price directly corresponds to the profit that could have been achieved
if the rented capacity had been used for price arbitrage on the wholesale markets instead of
renting it to the community. This potential profit for the rented battery capacity can be di-
rectly computed from the potential revenue discussed previously and can be seen in Figure
A.6b. This value represents the minimum rental price because setting it any lower would
not make financial sense for the company, as they could generate more profit by perform-
ing price arbitrage on the energy markets. Note that Figures A.6a and A.6b are mirrored
(y-axis) versions of each other.

We can empirically check if the minimum renting price would be a sensible choice by
directly comparing it to the price of Li-ion batteries. In order to convert the minimum rental
price, which is in C, we will have to divide the results in Figure A.6b by the rented battery
size. This will convert the price to C per kWh, a common metric used to study the prices of
batteries. This will allow us to directly compare the renting price with the cost of buying a
new battery. The results can be seen in Figure 5.3. We can see that the rental price calculated
from the Day-Ahead market remains flat across battery capacities, at around 35 C per kWh.
This is not the case for the rental price based on the Imbalance Market, which starts very
high, at around 270 C per kWh, and keeps increasing with additional capacity. The price
of Li-ion batteries, which was considered to be between 160 and 130 C per kWh [43], can
also be seen in light purple. Comparing these, we can see that renting out the battery at the
price dictated by the Day-Ahead market would be cheaper for the community than buying
a new battery themselves. On the other hand, for the Imbalance Market, it is clear that this
revenue stream is too profitable to be replaced by the proposed BaaS model. However, we
also need to consider that usually the prices of batteries are amortized over their lifespan,
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Figure 5.3: Comparison between the yearly rental cost and buying cost for the battery across
different capacities.

which is usually 15 years. That would give us a yearly cost for the battery, resulting in
an amortized yearly cost of between 8.5 and 10.5 C per kWh, which can be seen in light
green. This would mean that buying the battery would be three times cheaper in the long
run. However, as we will see in the next section, renting out the battery still makes financial
sense for some capacities. We believe that BaaS can still be an attractive solution, especially
for communities that are turned away by the high initial cost needed for purchasing BESSs.

5.1.3 Determining the Profitability Cut-Off Points for Battery Rental Prices

To better understand the profitability cut-off points for battery rental prices, both the min-
imum and maximum prices are shown in Figure 5.4. Multiple maximum prices exist de-
pending on the flat-tariff scenario used. The area where the maximum price is greater than
the minimum price is depicted in green. Selecting any combination of battery size and
yearly rental price from the green area will result in both a lower bill for the community and
an increase in profit for the company. The results show that renting out the battery can be
profitable for both parties up to a capacity of 0.9 MWh if a flat import tariff of forty cents
(τ = 0.4) is used and no export is allowed (τ = 0). The results indicate that the proposed
methodology would be feasible in most of the studied scenarios.
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Figure 5.4: The minimum and maximum rental prices for different battery capacities and
flat tariff scenarios.

5.2 Optimal Co-Sizing of Battery and Wind Generation
Capacity

The experiments in this section are aimed at answering the remaining three subquestions
from RQ1. First, we will optimize the battery with respect to the total cost and show that
the battery is advantageous for most of the studied scenarios. We will then demonstrate how
this methodology can be extended to analyze the optimal size for wind generation. Lastly,
we will examine how self-consumption and the degree of autarky can be used to size the
generation while also taking grid congestion into account. Throughout this section, the cost
of the battery is included in the community’s bill, with the rental price set at the minimum
level that is still profitable for the company.

5.2.1 Optimal Battery Capacity for Maximizing Savings

In order to answer RQ1(b), the optimal battery size was calculated for each scenario and
is shown in Figure 5.5. The optimal points for each scenario are indicated by dots. These
points represent the optimal battery capacity that corresponds to the lowest achievable bill
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Table 5.1: The minimum costs, maximum savings, battery capacity, self-consumption, and
degree of autarky achieved at the optimum for each of the analyzed flat tariff scenarios.

Import Tariff τb = 0.4 τb = 0.3 τb = 0.2 τb = 0.1
Export Tariff τs = 0.0 τs = 0.1 τs = 0.0 τs = 0.1 τs = 0.0 τs = 0.1 τs = 0.0 τs = 0.1
Total Costs C48762 C23214 C43868 C17357 C38202 C8814 C30259 C-1645
Total Savings C12874 C6518 C7310 C1916 C2516 C0.0 C0.0 C0.0
Battery Capacity 0.28 MWh 0.24 MWh 0.24 MWh 0.12 MWh 0.16 MWh 0.0 MWh 0.0 MWh 0.0 MWh
Self-Consumption 75.9% 75.5% 75.5% 73.4% 74.2% 69.7% 69.7% 69.7%
Degree of Autarky 94.3% 93.8% 93.8% 91% 92.4% 87.5% 87.5% 87.5%
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Figure 5.5: The yearly costs for the community (including battery) and the optimal battery
size for different flat tariff scenarios (C per kWh)

for the community, typically at the inflection points of the lines. We can see from the results
that for most scenarios, a capacity between 0.1 and 0.3 MWh is optimal. Note that for three
of the studied scenarios, the optimum is situated at a capacity of zero, meaning that it is
the cheapest not to rent the battery. In these cases, the community can satisfy their needs
only by using the grid. However, all these scenarios correspond to a buying price of either
ten or twenty cents per kWh, which are the lowest in Europe, as can be seen in Figure 4.5.
This suggests that the proposed methodology would be advantageous in most of the EU,
including the Netherlands.
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Figure 5.6: The yearly savings for the community (including battery) and the optimal bat-
tery size under different flat tariff tariff scenarios.

To further investigate this problem, we can once again compute the financial savings,
which can provide a clearer view. The savings can be computed directly from the cost
and can be seen in Figure 5.6 for all studied scenarios. Note that the optimal values are
the same no matter the metric used, the only difference being that we either minimize or
maximize, depending on the case. We can clearly see that, once again, adding ten cents to
the export price has the same effect as roughly subtracting ten cents from the buying price.
This explains why the optimal values between the corresponding cases are almost identical.

Table 5.1 shows the total cost, total savings, and battery capacity for the optimal case
for each of the scenarios. The results show that in most cases, renting the battery is ad-
vantageous, with savings ranging from C2,516 to C12,874 for a 200-household community
equipped with a 330 kW wind turbine, depending on the type of flat tariff used. The high
range in the savings indicates that the feasibility of the proposed methodology highly de-
pends on the import tariff used. The export tariff is not as important in this case, as it can
be absorbed into the import price. The SC and DoA are also displayed in Table 5.1. We can
see that the SC increases by as much as 6% and the DoA by as much as 7%. Note that, as
mentioned in the previous section, the community starts with a relatively high SC and DoA.
This, combined with the fact that the last few percentages of self-reliance are always more
costly to achieve [31], makes the gains in both metrics noteworthy.
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5.2.2 Optimal Wind Turbine Capacity for Maximizing Savings

To determine the wind turbine capacity that maximizes the savings for our community of
200 households, we can build on the previous results. As mentioned in Section 4.3.2, the
scale coefficient can be used to artificially vary the wind turbine’s size. We then apply the
full methodology from the previous section and track the optimal cost and battery capacity
for each case. The minimum cost for multiple scales is shown in Figure 5.7. Each color
represents a different buying price, while the solid and dashed lines represent the cases
without and with tariffs, respectively.

These results help answer subquestion RQ1(c). In the scenario without export (τs =
0), the optimal scale falls between 1.3 and 1.7, depending on the flat tariff used. This is
close to the scale of our original wind turbine, which is 1.2. Note that in the case of a
flat import tariff of forty cents, the community reduces their energy bill from C300,000 to
approximately C30,000, just by installing the original wind turbine. However, we observe
that the community could further reduce costs by employing a larger wind turbine. In the
scenario where export is allowed (τs = 0.1), represented by the dashed lines, increasing the
wind turbine size always results in higher profit. This scenario assumes unlimited exports,
which is somewhat unrealistic since, in practice, curtailment will come into effect after a
certain capacity is reached.
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Figure 5.7: Optimal yearly cost for the community across multiple wind turbine scales
under different flat tariff scenarios.
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To further explore the problem, we will also examine the optimal battery capacity for
each wind turbine scale. The results for the cases without and with export are separated
for clarity and can be seen in Figure 5.8 and Figure A.11, respectively. The results show
that the optimal battery capacity increases up to a certain point, after which it starts to
decrease. Before this inflection point, the community is under-generating and needs to shift
their excess generation to later times. After the inflection point, the community’s demand
is more frequently met instantly by the generation, requiring a smaller battery capacity.

Furthermore, the inflection point for every line is very close to the optimal scale, indi-
cating that for the original wind turbine capacity of 1.2, the community will rent the largest
battery size. However, the close alignment of the optimal scale with the inflection point is
unexpected. The inflection point was anticipated to be situated around a scale of 1, where
the yearly generation perfectly matches the yearly consumption. It is possible that the scal-
ing of the power curve, as done in this section, tends to skew the inflection points towards
the original scale of the wind turbine. Nonetheless, this methodology still yields valuable
insights. Note that the next available wind turbine from the same manufacturer has a capac-
ity of 700 kW [18], which would generate more than 2.5 times the yearly demand for the
community. Installing such a large wind turbine for a community of only 200 households
might be impractical. However, this methodology allows us to explore how a similarly
sized wind turbine would affect the problem, making it a valuable tool for future planning
and optimization.
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Figure 5.8: Optimal battery size for the community across multiple wind turbine scales
under different flat tariff scenarios without export.

5.2.3 Optimal Wind Turbine Capacity for Maximizing Self-Reliance

We can also choose the size of the wind turbine such that the Self-Consumption (SC) and
the Degree of Autarky (DoA) are maximized. Although we could optimize for the two
metrics independently, we will see that it is better to optimize for both simultaneously, as
this reduces the community’s reliance on the grid the most. Both the SC and DoA were
calculated for multiple scales and flat tariff scenarios. As before, the results were separated
between the scenarios without and with export, and the results can be seen in Figures 5.9
and A.8. The results for all scenarios are very similar.

The SC begins at 100% in both Figures but quickly starts decreasing after a scale of
0.5. This is expected because, as mentioned in Section 4.1.4, this metric encourages the
installation of small capacities. This happens because the SC tracks how much of the locally
produced energy is consumed within the community. Having a smaller capacity makes the
energy easier to consume. This is why increasing the capacity results in a lower SC. The
results further confirm that SC is not a good stand-alone metric for deciding what generation
capacity should be installed, as it will always favor smaller installations.

On the other hand, DoA exhibits the opposite behavior, starting low at 0% but quickly
rising with additional capacity. This again makes sense, as the DoA measures how much of
the demand is met by locally produced power. Increasing the capacity will, in turn, result
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in more of the demand being satisfied. Note that up to a scale of 0.5-0.6, the relationship
between the scale and the DoA percentage is almost linear, i.e., a scale of 0.5 provides
approximately a 50% DoA. However, beyond this point, the linear relationship no longer
holds, achieving only 80% to 85% for a scale of 1. This again confirms that the last few per-
centages of DoA are much harder to achieve [31]. However, it is not clear from DoA alone
where one should stop adding extra capacity. One could keep increasing the size indefi-
nitely, adding smaller and smaller percentages to the DoA. However, this is not achievable
in practice, as this increase requires more and more of the produced energy to be exported
to the grid, as can be seen by the decrease in SC. This, in turn, increases our reliance on the
grid, making congestion worse. So we can see that increasing the DoA indefinitely is not
feasible.

As we can see, optimizing for either the DoA or the SC independently will always result
in one of the extrema (either minimum or maximum scale) being chosen as the optimum
scale, depending on the metric used, making them not useful for deciding the proper gen-
eration size that should be installed. However, we believe that the two metrics can be used
together to pick a sensible generation size, one that neither imports too much nor exports too
much. We can use the fact that increasing one metric decreases the other to our advantage.
Optimizing for both the SC and DoA simultaneously will result in a scale that is not at one
of the extrema, making this methodology viable. Furthermore, we believe that optimizing
for both metrics at the same time has the most potential for decreasing congestion. Our
reasoning is as follows: both metrics track grid utilization, but in different ways. SC tracks
how much the grid is (not) used for exporting energy, while DoA tracks how much the grid
is (not) used for importing energy. Having high percentages in both metrics would mean
that the grid is minimally utilized for both import and export. This occurs at the intersection
of the two lines, which is approximately at a scale of 1. For this scale, both SC and DoA
are between 80% and 85%, depending on the scenario, meaning that the grid is utilized less
than 20% for import and less than 20% for export.

To confirm that the joint optimum is indeed at a scale of one, a surrogate objective
function can be used, one that combines both metrics into a single objective. In our case,
we have looked at the minimum between the two metrics, as well as the average, which
can be seen in Figure A.9a and Figure A.10a, respectively. Both figures confirm that the
maximum of both metrics is achieved at a scale of roughly 1.

Lastly, we can see in Figure 5.7 that the savings difference between a scale of 1 and the
scale that minimizes the cost for the community is minimal. Most of the financial gains are
achieved at a scale of one. Increasing the wind turbine further will result in minimal addi-
tional earnings for the community. However, going above one will considerably decrease
the SC coefficient, and in turn, our reliance on the grid. Considering all the results, we
believe that a wind turbine with a scale of one would be preferable, as it allows for most of
the gains to be achieved while also aiming for the highest percentages of SC and DoA. This
suggests that the original wind turbine size of 1.2 was a good pick for the community stud-
ied in this thesis, even more so when considering that it has the smallest capacity offered by
this manufacturer [18].
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Figure 5.9: Self-Consumption (SC) and Degree of Autarky (DoA) for the community across
multiple wind turbine scales under different flat tariff scenarios without export.

5.3 Optimal Battery Control

In this section, we compare the performance of greedy and linear models under three dif-
ferent scenarios: flat tariffs, dynamic tariffs, and market prices. For the flat and dynamic
tariffs, the analysis was conducted both without an export tariff (τs = 0.0) and with an
export tariff (τs = 0.1). Similarly, for the market prices, scenarios both with and without
export tariffs were considered. For the linear model, four different variants were evaluated,
covering all possible combinations of regularization costs, including the version without
any regularization. The following subsections discuss the specifics of each scenario.

5.3.1 Flat Tariffs

First, we analyze the scenarios involving flat tariffs, both with and without export tariffs.
Figure 5.10a shows the results for a constant import tariff of forty cents (τb = 0.4 C per
kWh) without an export tariff (τs = 0.0 C per kWh). Figure 5.10b use the same import
price, but a different export price (τb = 0.1 C per kWh). In both cases, the greedy model,
along with two versions of the linear model that use L2 regularization, achieved the lowest
yearly cost.
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Figure 5.10: Comparison between different models showing the total cost for the commu-
nity for a flat tariff.

The outcomes for both scenarios align with expectations. The greedy algorithm is ex-
pected to be optimal in the context of a flat tariff, given that the buying price is above the
selling price (τb > τs), which holds true for both flat tariff scenarios. Moreover, the linear
models that achieved optimal costs incorporated L2 regularization, indicating its effective-
ness. Lastly, the addition of L1 regularization, whether used alone or in combination with
L2, did not affect the final bill, as expected.

5.3.2 Dynamic Tariffs

In this section, we analyze the performance of the models under dynamic tariffs, considering
both scenarios without export tariffs and with export tariffs. The results in Figure 5.11a
depict the costs for varying battery capacities without export tariffs, while Figure 5.11b
shows the costs with export tariffs.

For the dynamic tariff without export, the models incorporating L2 regularization achieved
the lowest cost. The greedy model closely followed in performance but did not match the
performance of the L2 models. As illustrated in Figure 5.11a, the cost reduction for the L2
regularized model becomes more significant as the battery capacity grows.

When an export tariff is introduced, the L2 regularized model still maintains the lowest
cost, outperforming the greedy model more substantially compared to the no-export sce-
nario. The difference in costs between the models increases with larger battery capacities,
highlighting the effectiveness of the L2 regularization in handling dynamic tariffs, as shown
in Figure 5.11b. Interestingly, this result is somewhat unexpected, as L2 regularization was
initially designed with flat tariffs in mind. It was anticipated that L2 would perform poorly
with dynamic tariffs, but the results indicate otherwise.

Additionally, the inclusion of L1 regularization, whether alone or combined with L2,
does not lead to any cost reduction and, as expected, does not influence the final bill posi-
tively. This pattern is consistent with the results observed in the flat tariff scenarios, where
the L1 regularization did not contribute to improved performance.
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Figure 5.11: Comparison between different models showing the total cost for the commu-
nity for a dynamic tariff.

The results clearly demonstrate that the L2 regularized linear models are the most ef-
fective in minimizing costs under dynamic tariffs, especially as battery capacity increases,
while the greedy model shows competitive performance in the absence of export tariffs but
falls behind when export tariffs are applied.

5.3.3 Market tariffs

The market tariff was the last studied scenario, where day-ahead energy prices were used.
Two scenarios were considered: one without any taxes and one with taxes. The results are
depicted in Figure 5.12a for the scenario without taxes and in Figure 5.12b for the scenario
with taxes.

In both scenarios, the greedy model lagged behind in performance. This is evident in
both figures, where the costs associated with the greedy model are consistently higher than
those of the linear models. This is expected, as the greedy approach is not well-suited for
managing day-ahead market prices effectively.

Interestingly, in the case with taxes, the models containing the L2 regularization were
once again the best performing. This was not initially anticipated, but the model also per-
forms very well with fluctuating prices. Please note that the other linear models performed
similarly up to a capacity of 1 MW, after which their performance began to diverge.

In the scenario without taxes, considered the ideal case, the linear models without L2
regularization performed the best. The simple linear model and the one with only L1 reg-
ularization achieved the lowest costs, outperforming all other models. Although the L2
regularized models outperformed the greedy model, they did not match the cost efficiency
of the linear models without L2 regularization. This outcome is somewhat surprising, given
that L2 regularization performed best for all other tariff types, but it aligns with our initial
expectation that L2 would be less effective in the context of variable market prices.

These results highlight that for market tariffs, the addition of the L2 cost improves per-
formance, only when taxes are applied. The findings suggest that the optimal model choice
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Figure 5.12: Comparison between different models showing the total cost for the commu-
nity for market prices.

is highly dependent on the specific tariff structure. Lastly, the inclusion of L1 regulariza-
tion, whether alone or combined with L2, did not impact the final cost in both scenarios,
either positively or negatively, exactly as in the previous cases.
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Chapter 6

Discussion

The integration of renewable energy sources and the increasing demand for energy storage
systems have driven the development of innovative methodologies to optimize the use of
Battery Energy Storage Systems (BESS). This discussion explores the methodology pro-
posed for battery owners to offer their assets as a service to energy communities, thereby
enhancing their revenue streams.

In this chapter, we will delve into the implications and findings of our research on im-
plementing Battery as a Service (BaaS) for energy communities. We will first analyze the
feasibility and profitability of the proposed model. Then we will examine how different op-
timization methods perform under various tariff types and market conditions. By exploring
the results from different perspectives, we aim to provide a comprehensive understanding
of the potential benefits and challenges associated with the proposed approach.

6.1 Feasibility of Battery as a Service for Energy Communities

The main contribution of this thesis is the proposed methodology which enables battery
owners to include energy communities as an additional revenue stream in their existing
stacked revenue models. The methodology was developed around RQ1, and it is based on
the fact that most BESS generate a profit by participating in various markets such as the
Day-Ahead and Imbalance markets. By adding energy communities as a revenue stream,
battery owners can rent out their storage capacity to communities, thereby diversifying their
income sources. This approach not only helps the community lower their energy bills but
also reduces their reliance on the grid.

In the Netherlands, for the year 2023, the proposed methodology showed that with a flat
import tariff of forty cents, a renewable energy community of 200 households equipped with
a 330KW wind turbine behind a neighborhood transformer could generate an annual profit
between C6,518 and C12,874, depending on whether exporting to the grid was allowed or
not. This profit can be split between the community and the company. Note that the profit
calculations take into account any losses on the Day-Ahead Market. The Imbalance Market
was deemed too profitable to be replaced with the proposed revenue model. Furthermore,
these profits were obtained at relatively low rented capacity, 0.28MWh and 0.24 MWh
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respectively. This would result in around 1.5 kWh of rented capacity per household, which
is much lower than what a typical household would install[42].

In order to understand why the optimal battery capacity was so low, we can take a
closer look at the rental price of the battery. We showed that the battery rental price would
be roughly 35 EUR per kWh of rented capacity if we consider only the Day-Ahead Market.
This is roughly four times lower than the cost of a new battery. However, when we amortized
the cost of the battery over 15 years, buying a new battery was much cheaper. Renting the
battery for 5 years would have roughly the same cost as buying a new one. Thus, we see that
the proposed model, although profitable, is not feasible in the long run, as the community
will end up paying more than if they had bought a battery themselves.

However, this is typical of a rental model, where the rented commodity is cheaper in the
short term but more expensive in the long run compared to purchasing the asset. Despite
this, we believe that the proposed methodology still holds value, as the initial high invest-
ment cost in battery technology can be off-putting for most consumers. By opting for the
proposed model, the community can optimize their energy usage without any initial invest-
ment, as the rental price is simply subtracted from the savings. Thus, although the savings
might be lower, the community can still reduce their bills by renting the battery, without
needing to invest anything upfront, only having to share part of the savings with the com-
pany renting the battery. This makes the proposed model very attractive, as it allows for all
the risks and initial investments to be supported by the company, rather than the community.

In order to calculate the rental price of the battery, we had to look at how much the
same battery capacity could earn in the energy markets. In this thesis we look at the Day-
Ahead Market and Imbalance Market, For both market simulations, a linear model was
used, which outputs the optimal value, usually not achievable in practice. For the Day-
Ahead market, where the prices are known one day before, the profits can come very close
to the optimal value. However, for the Imbalance market, this is not the case as it is highly
volatile, making it hard to predict. This is why battery owners split their operation assets in a
stacked revenue model between the two markets, using some internal mechanism [39]. This
ensures a somewhat guaranteed smaller profit earned on the more stable Day-Ahead market
while also participating in the high-risk high-reward Imbalance market. Our methodology
proposes to replace some of the Day-Ahead market profits with a flat guaranteed renting fee
for the community.

Another aspect that needs to be discussed is the choice of the rental price. To answer
RQ1(a), we have shown the region of feasible prices and battery capacities, as seen in Figure
5.4. However, we have not determined which price should be selected, as this was not the
focus of this thesis. In practice, any chosen price would result in benefits for both parties. At
the maximum price, the community would not save anything but might still be incentivized
by the prospect of increasing their self-reliance. At the minimum price, the company would
earn exactly as much as they would from the linear models on the energy markets. However,
as mentioned previously, this optimal profit is hard to obtain in practice, which means that
even using the minimum rental price would result in financial gains for the company.

For subquestions RQ1(b) and RQ1(c), we have absorbed the minimum rental price into
the final bill of the community. However, this does not change the problem, as the savings
also encode the potential profit. It was not the focus of this thesis to decide how to split these
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profits between the company and the community, but this could be a possible direction for
future work.

We also demonstrated how to choose the optimal size for the battery and wind genera-
tion, which is the focus of RQ1(b). For the battery, a capacity between 0.24 MWh and 0.28
MWh was found to be optimal in the Netherlands for a typical energy community of around
200 households, depending on whether export was allowed or not. As expected, higher
energy prices or not having export possibilities increase the required battery size. Unex-
pectedly, the battery can lower the overall bill of the community even for a small electricity
tariff of 0.2 cents, which would make the proposed model viable across Europe.

Finally, we have also looked at how the proposed methodology can be used to answer
RQ1(c), which aims to determine the optimal wind capacity that should be installed. We ex-
amined this problem from two perspectives: minimizing cost and maximizing self-reliance.
Minimizing cost results in an optimal wind turbine with a higher capacity than the one orig-
inally installed. In the scenario where export was not allowed, the lowest cost was achieved
by a wind turbine that generates 1.4-1.6 times the yearly demand of the community. Unex-
pectedly, increasing the wind turbine capacity results in a smaller optimal battery capacity.
In the scenario where export was allowed, it was found that increasing the wind turbine size
always increases profits. However, this is somewhat unrealistic, as unlimited exports would
not be feasible and would create congestion problems.

To minimize congestion, we proposed optimizing the scale such that the self-consumption
(SC) and degree of autarky (DoA) are maximized. Optimizing for the two metrics indepen-
dently is not feasible, as it will always result in one of the extrema. However, we can use
the fact that increasing one metric decreases the other, and optimize for both metrics simul-
taneously. This, in turn, reduces our reliance on the grid the most, both for importing and
exporting. We found that this results in an optimal scale of around 1. At this scale, both
the SC and DoA are above 80%, meaning that the grid is utilized at most 20% for satis-
fying the demand and at most 20% for exporting excess energy. Furthermore, increasing
the wind turbine capacity beyond a scale of 1 does not significantly increase the gains for
the community. Therefore, we believe that an optimal generation scale would be around 1,
where the community’s reliance on the grid is minimized while also achieving most of the
financial gains associated with installing a wind turbine.

6.2 Model Performance Across Different Tariff Types

In order to answer RQ2, we have analyzed how different models compare with each other
on different tariff types. The results indicate that the greedy algorithm performs surprisingly
well, even when prices fluctuate. However, this strategy can be further refined if the energy
prices are accounted for.

For the flat tariff, which corresponds with RQ2(a), the greedy model outperformed the
simple linear model. We observed that this discrepancy is caused because the linear model
discharges the battery at the end of the day. This happens because the linear model does
not have access to the loads for the next day due to its limited time horizon, so it always
sells the energy to maximize daily profits, but not yearly profits. To address this problem,
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we introduced the L2 regularization cost, which penalizes the model based on the empty
capacity at the end of the day. The linear model equipped with the L2 regularization per-
formed the same as the greedy model. The L2 regularization was inspired by the heuristic
used in the greedy model, which always prioritizes battery use. The results indicate that this
strategy is optimal in the case of a flat tariff, as both the greedy model and the linear model
incorporating it performed the best.

In the case of the dynamic tariff, which corresponds with RQ2(b), surprisingly, the
same strategy performed the best. For this situation, the linear model that employed the
L2 regularization had the best performance, although the greedy model’s performance was
close behind. Furthermore, the greedy model performed significantly better than the linear
model without the L2 regularization costs. These results indicate that, although the one-day
time horizon of the linear model allows it to better optimize the schedule, it is the greedy
strategy that generates the most revenue in this case. However, accounting for the energy
prices can further refine the schedule, unlocking additional savings.

In the case of the market tariffs, which are the prices from the day-ahead market and
correspond with RQ2(c), the linear models always performed better than the greedy model,
regardless of whether L2 was applied or not. This indicates that in the context of energy
markets, the greedy strategy is no longer the most profitable. However, it is interesting to
note that when transport tariffs are applied, the linear model with L2 regularization out-
performs the simple linear model. This suggests that although the greedy strategy is not
beneficial as a stand-alone strategy, it can still be applied in conjunction with the linear
model to further increase profits.

Lastly, we observed that the linear model produces schedules with many charging and
discharging cycles, without any obvious benefits. We explained this through the fact that
the model may not adequately account for battery wear. To steer the linear model towards
a solution with the least battery wear, we also introduced the L1 regularization cost, which
penalizes the model for each charging and discharging cycle. We have shown that in all
cases, adding the L1 regularization, either alone or together with L2, does not change the
final costs, while drastically reducing battery wear.
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Chapter 7

Conclusions and Future Work

This chapter provides an overview of the main contributions, reflects on the results, and
draws conclusions. Finally, it discusses some ideas for future work.

7.1 Contributions

The main contribution of this thesis is the development of a methodology for determining a
price, or more specifically, a price range, for renting battery capacity to energy communities.
We demonstrated that the proposed stacked revenue model can be advantageous for both the
community and the company across multiple tariff types. We extended this methodology
to also find the optimal battery capacity and generation scale for the community such that
the total cost is minimized. However, we have shown that cost is not the best metric for
optimizing the size of the generation, as it does not account for grid congestion. In this
regard, we proposed that both the self-consumption coefficient and the degree of autarky
(DoA) can be used together to optimize the size of the installed wind turbine, providing the
community with the least reliance on the grid and, in turn, avoiding congestion problems.

We have also compared the greedy model against the linear model across multiple types
of tariffs to study how the battery should be controlled. Two regularization costs were added
to the linear model in an effort to steer the schedule toward more desirable solutions. The
first regularization cost, L1, was successful in reducing the number of cycles performed by
the battery without increasing the final cost. The L2 regularization exceeded expectations
and significantly improved the performance of the linear model.

However, some caveats should be noted. We have not considered the cost of any addi-
tional infrastructure, such as power lines, transformers, etc. It is assumed in this thesis that
the battery is situated in the vicinity of the energy community, without the need for costly
additional transmission or distribution infrastructure. This might not be true in real-world
cases. We believe that adding these costs will change the optimal generation scale when
the savings are maximized. For all other calculations, adding these costs would be similar
to increasing the price of the wind turbine, having little impact on the final analysis. Fur-
thermore, scaling the wind turbine as done in this thesis does not work in the real world, as
the power curve is specific for each turbine. However, usually, higher-capacity turbines are
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more efficient, so our study might underestimate the capabilities of the scaled wind turbine,
making the real-world case even more viable. Nonetheless, the size of the wind turbine was
not optimized directly using the cost, which means that the points mentioned above are of
little concern.

7.2 Conclusions

The results show that it is feasible for battery owners operating a stacked revenue model to
replace some of the profits from the Day-Ahead market with the newly proposed revenue
source of renting part of the battery to energy communities. The proposed methodology is
profitable across a wide range of tariffs and can achieve equal or better earnings than the
Day-Ahead prices in the Netherlands using the historical prices from 2023, up to certain
capacities. We have shown how this methodology can be extended to calculate the optimal
renting sizes. In the case of a flat import tariff of forty cents per kWh, a community of
200 households equipped with a 330 kW wind turbine behind a neighborhood transformer
would obtain maximum savings for a capacity of 0.24 MWh and 0.28 MWh, depending
on whether the community was paid for their exported energy or not. The annual savings
associated with these capacities are C6,518 and C12,874, respectively. These capacities
will also result in the SC and DoA increasing by 6% and 7%, respectively.

We have also shown that using cost alone for optimizing the generation capacity can
lead to oversizing, which in turn increases the community’s reliance on the grid. The SC
and DoA are much better metrics in this regard. Optimizing the generation size with both
metrics in mind results in an optimal scale of 1, which means that the wind turbine’s output
will be equal to the community’s yearly demand. This size results in both SC and DoA
being over 80%, while also achieving most financial gains in the process.

We have also shown that the greedy model performs optimally in the case of the flat
tariff, outperforming the linear model with a one-day horizon. Surprisingly, this model also
performs well on dynamic prices, indicating that it is a viable strategy for multiple scenar-
ios. The linear model with a one-day event horizon generally performed poorly, producing
suboptimal results. A regularization cost called L2 was introduced to improve the behavior
of the linear model by forcing it to charge the battery at the end of the day. This component
significantly improved the behavior of the linear model in all but one scenario. All of this
indicates that the greedy behavior employed by the best-performing model is a valid strat-
egy even for the linear optimization model. Lastly, we introduced a regularization cost L1
that minimizes battery usage while not affecting the optimality of the solution. This cost
was successful in minimizing wear while not affecting the cost in any scenario.

7.3 Future Work

This thesis opens the possibility for multiple future areas of research. On one hand, the
methodology could be extended to consider other revenue streams beyond the Day-Ahead
Market and Imbalance Market. This would be relatively easy to achieve for any revenue
streams where the (potential) profit can be easily computed. BESSs are currently generat-
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ing profit by offering a wide range of services, so there is clear potential for finding more
that can be replaced with the proposed revenue stream. On the other hand, the differences
between the greedy and linear models could be further studied. The regularization functions
used in the linear model contain parameters that could be tuned to achieve better results in
different types of markets. In this study, the same value was used for every scenario, but
some scenarios might work better with specific values.

Furthermore, in the case of L2 regularization, the parameter indicates the price under
which the model will import energy with the sole purpose of charging the battery, account-
ing for any future loads. It would be interesting to incorporate this behavior into the greedy
model, using the same parameter. An interesting idea would be to hyper-tune the parame-
ter using the linear model and then apply it to the greedy model. The greedy model does
not need predictive demand and generation curves to be known in advance, while the lin-
ear model does. Having a greedy model incorporating this parameter would mean that the
regularization could be deployable in practice.

Lastly, we could explore how to predict generation and demand curves using machine
learning. Incorporating the uncertainties of the predictions inside our linear model could
control the battery in a way that maximizes the expected returns. This would make the
linear models deployable in practice.
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Stephen, Alva Svoboda, Hamidreza Zareipour, and Ziang Zhang. Energy-storage
modeling: State-of-the-art and future research directions. IEEE Transactions on Power
Systems, 37(2):860–875, 2022. doi: 10.1109/TPWRS.2021.3104768.

[59] TenneT. Soorten elektriciteitsmarkten, 2024. URL https://www.tennet.eu/nl/s
oorten-elektriciteitsmarkten. [Online; accessed 28. Jun. 2024].

[60] Muhammed Y. Worku. Recent advances in energy storage systems for renewable
source grid integration: A comprehensive review. Sustainability, 14(10), 2022. ISSN
2071-1050. doi: 10.3390/su14105985. URL https://www.mdpi.com/2071-1050/
14/10/5985.

[61] Abdollah Younesi, Zongjie Wang, and Pierluigi Siano. Enhancing the resilience of
zero-carbon energy communities: Leveraging network reconfiguration and effective
load carrying capability quantification. Journal of Cleaner Production, 434:139794,
2024. ISSN 0959-6526. doi: 10.1016/j.jclepro.2023.139794. URL https://www.sc
iencedirect.com/science/article/pii/S0959652623039525.

[62] Behnam Zakeri and Sanna Syri. Electrical energy storage systems: A comparative life
cycle cost analysis. Renewable and Sustainable Energy Reviews, 42:569–596, 2015.
ISSN 1364-0321. doi: 10.1016/j.rser.2014.10.011. URL https://www.sciencedir
ect.com/science/article/pii/S1364032114008284.

[63] Bining Zhao, Antonio J. Conejo, and Ramteen Sioshansi. Using electrical energy stor-
age to mitigate natural gas-supply shortages. IEEE Transactions on Power Systems,
33(6):7076–7086, 2018. doi: 10.1109/TPWRS.2018.2850840.

58

https://www.tennet.eu/nl/soorten-elektriciteitsmarkten
https://www.tennet.eu/nl/soorten-elektriciteitsmarkten
https://www.mdpi.com/2071-1050/14/10/5985
https://www.mdpi.com/2071-1050/14/10/5985
https://www.sciencedirect.com/science/article/pii/S0959652623039525
https://www.sciencedirect.com/science/article/pii/S0959652623039525
https://www.sciencedirect.com/science/article/pii/S1364032114008284
https://www.sciencedirect.com/science/article/pii/S1364032114008284


Appendix A

Extra Experimental Results

This appendix includes additional figures that support our findings. These figures provide
further insights into the various scenarios analyzed, offering a deeper understanding of the
studied problem.
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Figure A.1: The half-hourly net generation (gi− di) for a community of 200 households,
using an artificial generation scale of 0.75
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Figure A.2: Comparison between the schedules produced by the greedy model and the linear
model (simple), showing the state of charge (top), imported/exported energy (middle), and
net generation (bottom).

60



0 100 200 300 400
0

100000

200000

300000

400000

500000

B
at

te
ry

St
at

e
of

C
ha

rg
e

(W
h)

SoC using the Linear Model (L1)
SoC using the Greedy model
End of the day

0 100 200 300 400
Time

0

20000

40000

60000

80000

100000

Im
po

rt
ed

/E
xp

or
te

d
E

ne
rg

y
(W

h)

Exported/Imported energy by the liniar model
Exported/Imported energy by the greedy model
End of the day

0 100 200 300 400
-40000

-20000

0

20000

40000

60000

80000

100000

E
ne

rg
y

(W
h)

Net demand
Energy Deficit
Energy Surplus
End of the day

Figure A.3: Comparison between the schedules produced by the greedy model and the
linear model (L1), showing the state of charge (top), imported/exported energy (middle),
and net generation (bottom).
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Figure A.4: Comparison between the schedules produced by the greedy model and the
linear model (L2), showing the state of charge (top), imported/exported energy (middle),
and net generation (bottom).
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Figure A.5: Comparison between the schedules produced by the greedy model and the linear
model (L1 + L2), showing the state of charge (top), imported/exported energy (middle), and
net generation (bottom).
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Figure A.6: Big Title
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Figure A.7: Self-Consumption (SC) and Degree of Autarky (DoA) for the community
across multiple battery capacities.
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Figure A.8: Self-Consumption (SC) and Degree of Autarky (DoA) for the community
across multiple wind turbine scales under different flat tariff scenarios with export.
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Figure A.9: Minimum between Self-Consumption (SC) and Degree of Autarky (DoA) for
the community across multiple wind turbine scales under different flat tariff scenarios.
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Figure A.10: Average between Self-Consumption (SC) and Degree of Autarky (DoA) for
the community across multiple wind turbine scales under different flat tariff scenarios.
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Figure A.11: Optimal battery size for the community across multiple wind turbine scales
under different flat tariff scenarios with export.
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