

Delft University of Technology

Detecting Edge and Node Anomalies with Temporal GNNs

Cavallo, Andrea; Gioacchini, Luca; Vassio, Luca; Mellia, Marco

DOI
10.1145/3694811.3697818
Publication date
2024
Document Version
Final published version
Published in
GNNet '24

Citation (APA)
Cavallo, A., Gioacchini, L., Vassio, L., & Mellia, M. (2024). Detecting Edge and Node Anomalies with
Temporal GNNs. In GNNet '24: Proceedings of the 3rd GNNet Workshop on Graph Neural Networking
Workshop (pp. 7-13). ACM. https://doi.org/10.1145/3694811.3697818

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3694811.3697818
https://doi.org/10.1145/3694811.3697818

Detecting Edge and Node Anomalies with Temporal GNNs
Andrea Cavallo

Delft University of Technology
Delft, Netherlands
a.cavallo@tudelft.nl

Luca Gioacchini
Politecnico di Torino

Turin, Italy
luca.gioacchini@polito.it

Luca Vassio
DAUIN, Politecnico di Torino

Turin, Italy
luca.vassio@polito.it

Marco Mellia
Politecnico di Torino

Turin, Italy
marco.mellia@polito.it

Abstract
Computer and social networks can be effectively represented as
complex temporal graphs where entities (nodes) keep intercon-
necting through various relationships (edges), forming evolving
structures. Anomaly Detection (AD) in such networks consists of
identifying patterns diverging from what is expected or normal.
This task is fundamental for the detection of potential threats – e.g.
suspicious connections (edge AD) or misbehaving entities (node
AD), and challenging due to the lack of a common definition of
anomaly. However, the literature is scarce about solutions to detect
node anomalies on temporal graphs. This work addresses three
challenges in AD as found in computer and social networks: fast-
evolving graph structure, lack of ground truth, and simultaneous
presence of anomalous nodes and edges. For this, we propose to use
temporal Graph Neural Networks (tGNNs) coupled with specialised
AD blocks trained in a self-supervised way. We also embed an atten-
tion mechanism providing interpretability to the decision process.
We extensively validate the tGNNs on synthetic and real-world
datasets showing that they successfully detect both node and edge
anomalies simultaneously (≈0.9 of average AUC).

CCS Concepts
• Computing methodologies → Machine learning; • Security
and privacy → Intrusion/anomaly detection and malware
mitigation.

Keywords
Anomaly Detection, Graph Neural Networks, Dynamic Graphs,
Communications Networks

ACM Reference Format:
Andrea Cavallo, Luca Gioacchini, Luca Vassio, and Marco Mellia. 2024.
Detecting Edge and Node Anomalies with Temporal GNNs. In Proceedings
of the 3rd GNNet Workshop: Graph Neural Networking Workshop (GNNet
’24), December 9–12, 2024, Los Angeles, CA, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3694811.3697818

This work is licensed under a Creative Commons Attribution
International 4.0 License.

GNNet ’24, December 9–12, 2024, Los Angeles, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1254-8/24/12
https://doi.org/10.1145/3694811.3697818

1 Introduction
Several problems in computer, social or generic communications
networks can be framed as the identification of anomalous be-
haviour, i.e. a pattern that differs from common events in the net-
work [1, 25]. For example, intrusion detection can rely on the un-
usual behaviour of an intruder compared to legitimate users; fault
detection may identify network operation changes possibly caused
by (partial) malfunctioning; bot detection on social networks can
be based on anomalous communication patterns [27].

The behaviour of these networks can be modelled by dynamic
graphs where various entities (nodes) establish connections (edges)
that evolve over time. These graphs can then be used for Anomaly
Detection (AD), which aims at finding unusual edges (e.g. unex-
pected connections) or nodes (e.g. network intruders, attack victims,
botnet nodes, spammers) [15, 23, 27]. Despite the importance of
both tasks, most of the AD approaches on temporal graphs mainly
focus on edges [2]. However, in networks the ability to find anoma-
lous nodes is also key, and trivial adaptations of edge AD methods
to node AD (e.g. a node is anomalous if it generates an anomalous
edge) fail to adapt to the heterogeneity of behaviours of nodes (e.g.
client vs servers, influencers vs followers) and call for more flexi-
ble and general solutions. Moreover, the common lack of reliable
ground truth makes this task particularly challenging.

Recent approaches applied Deep Learning and Graph Neural
Networks (GNNs) to AD on dynamic graphs, demonstrating their
capability to model the standard network behaviour and identify
entities that diverge from it [23]. These works mainly focus on
edge AD, inject artificial anomalies and evaluate their approaches
on various real-world graphs, some of which have much slower
evolution than communications networks (e.g. citation networks).

In this work, we address these shortcomings by (i) finding anom-
alies in fast-evolving graphs, with (ii) no ground truth during train-
ing, (iii) focusing on both edge and node AD. We employ a self-
supervised data-driven strategy and we test on synthetic graphs
and real communications networks with injected or real anomalies.

Specifically, we model communication networks as temporal
graphs and we use temporal GNNs (tGNNs) given their effectiveness
in obtaining meaningful embeddings for nodes and edges [9, 14],
which we then exploit to detect unusual behaviour. For this, we
design two AD blocks based on Neural Networks (AD-NN): the
first one identifies anomalous edges, the second one anomalous
nodes. We train the overall NN (tGNN+AD-NN) end-to-end on a
self-supervised task: given past observations, the NN learns the

7

https://orcid.org/0009-0006-1226-3926
https://orcid.org/0000-0001-8258-8626
https://orcid.org/0000-0002-2920-1856
https://orcid.org/0000-0003-1859-6693
https://doi.org/10.1145/3694811.3697818
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3694811.3697818
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3694811.3697818&domain=pdf&date_stamp=2024-12-09

GNNet ’24, December 9–12, 2024, Los Angeles, CA, USA Andrea Cavallo, Luca Gioacchini, Luca Vassio, and Marco Mellia

normal behaviour of the network by predicting its evolution. Since
this training process only relies on available observations of the
network, there is no need for anomalous labels during training.
Once trained, we use the NN on new instances of the graph to label
as anomalous those edges and nodes that diverge from the learned
patterns.

We test the tGNNs on two synthetic and six real datasets with
both injected and real anomalies. Overall, we show that the pro-
posed NNs are able to detect both edge and node anomalies with
high accuracy – AUC of ≈ 0.9 on real graphs, generally improv-
ing over baselines. Importantly, their performance remains ex-
cellent even in scenarios where the training data includes un-
known anomalies as it happens in practice. Our code is available at
https://github.com/SmartData-Polito/tgnn-for-node-edge-AD.

2 Preliminaries
Notation: We define a dynamic graph {G𝑡 }𝑁

𝑡=1 as a sequence of
𝑁 static undirected graphs G𝑡 = (V𝑡 , E𝑡), where V𝑡 and E𝑡 are,
respectively, the set of nodes and edges at snapshot 𝑡 . More specif-
ically, an edge 𝜖 = (𝑢, 𝑣,𝑤) ∈ E𝑡 indicates a connection between
nodes 𝑢, 𝑣 ∈ V𝑡 with weight 𝑤 ∈ R+. Each node 𝑢 ∈ V𝑡 has a
feature vector 𝑥𝑡𝑢 ∈ R𝑒𝑓 , where 𝑒𝑓 is the feature size, and vectors 𝑥𝑡𝑢
form the rows of the feature matrix 𝑋 𝑡 . N(𝑢)𝑡 denotes the neigh-
bours of node 𝑢 at snapshot 𝑡 and N ′ (𝑢)𝑡 = N(𝑢)𝑡 ∪ {𝑢} is the
extended neighbourhood that includes the node 𝑢. An edge 𝜖 and a
node 𝑢 at snapshot 𝑡 have label 𝑦𝑡𝜖 , 𝑦𝑡𝑢 ∈ {0, 1}, where 0 stands for
normal and 1 for anomalous. Since the training is self-supervised,
we use the available labels only for validation and test.
Temporal Graph Neural Networks: In this work, we use the
Graph Convolutional Network (GCN) model [17]. A GCN with 𝐿

hidden layers computes, at each layer 𝑙 ∈ [0, 𝐿+1] and for each node
𝑢, the embedding 𝑧𝑙𝑢 ∈ R𝑒𝑙 , where 𝑒𝑙 is the size at layer 𝑙 (for simplic-
ity, we omit the time index 𝑡), by transforming and averaging the
embeddings of the neighbours and the target node at the previous
layer. Formally, 𝑧𝑙𝑢 =

∑
𝑣∈N′ (𝑢) �̂�𝑢𝑣𝑊

𝑙𝑧𝑙−1𝑣 , where𝑊 𝑙 ∈ R𝑒𝑙×𝑒𝑙−1

is a learnable weight matrix and �̂�𝑢𝑣 is the weight of the edge be-
tween nodes 𝑢 and 𝑣 , normalised such that

∑
𝑣∈N′ (𝑢) �̂�𝑢𝑣 = 1. At

the first layer, node embeddings are their features, i.e. 𝑧0𝑢 = 𝑥𝑢 and
𝑒0 = 𝑒𝑓 . Since dynamic graphs evolve temporally and spatially, tem-
poral GNNs need to consider both sources of information. Here we
consider the GCN-GRU architecture [28], where a GCN is applied to
each snapshot independently to model the structural behaviour of
nodes, and a Gated Recurrent Unit (GRU) [6] is then applied to the
sequence of resulting embeddings to model their temporal evolu-
tion. Formally, given a subsequence of the dynamic graph {G𝑡 }𝑇

𝑡=𝑡∗

of length𝑇 − 𝑡∗ + 1 starting from snapshot 𝑡∗, we obtain the embed-
ding matrices 𝑍 𝑡 = GCN(G𝑡) and 𝐻𝑇 = GRU

(
{𝑍 𝑡 }𝑇

𝑡=𝑡∗

)
, whose

rows are the node embeddings. We call memory the number of
previous time steps used to build the GRU, i.e. mem= 𝑇 − 𝑡∗.
Problem definition: We formulate the node and edge AD problem
as a binary classification task, where, for each node𝑢 or edge 𝜖 , two
learnable scoring functions, 𝑓node (·) and 𝑓edge (·), estimate their
anomaly score at time 𝑡 (i.e. the probability of class anomalous)
and the true labels 𝑦𝑡𝜖 , 𝑦𝑡𝑢 are either given or generated via self-
supervision. The edge anomaly score depends on a subset of the

dynamic graph, i.e. 𝑠𝑡𝜖 = 𝑓edge (𝜖, {G𝑡 ′ }𝑡
𝑡 ′=𝑡−mem−1) ∈ [0, 1], where

a higher value indicates a higher level of anomaly. Analogously,
𝑠𝑡𝑢 = 𝑓node (𝑢, {G𝑡 ′ }𝑡

𝑡 ′=𝑡−mem−1) ∈ [0, 1] for node anomaly score.

3 Related Works
GNNs for AD: GNNs have been widely used for AD on graphs [23].
Several methods model the normal behaviour of a network and clas-
sify as anomalous the entities that deviate from standard patterns,
targeting either anomalous nodes or anomalous edges. Node AD is
mainly performed on static graphs [7, 21], whereas edge AD is also
analysed on dynamic networks [22, 23]. However, existing works
evaluate their models only on synthetically injected anomalies, that
may not reflect real-world anomalies in application scenarios. In
this work, instead, we explicitly focus on node AD for dynamic
graphs and we consider also real anomalies.

AD in communications networks: AD in communications net-
works is widely studied [1, 15, 25, 27]. Previous works covered a
wide range of methods, from statistical and knowledge-based rules
to traditional machine learning methods such as clustering, SVM
or random forest. Recently, deep learning approaches were pro-
posed and GNNs proved to be an effective tool for several tasks on
communications networks which can be framed as an AD problem,
such as intrusion detection [2, 13]. Most works focus on edge AD,
i.e. identifying anomalous connections only [5, 16]. The problem of
node AD on dynamic graphs is less studied, despite its relevant ap-
plications – e.g. differently from our approach, some works perform
host intrusion detection [19, 20] focusing on host-level data such
as system logs using static GNNs. Here, we use tGNNs leveraging
the natural evolution of the networks.

4 Methodology

Data preprocessing:We consider lists of interactions with their
time of occurrence (e.g. the list of packets or flows exchanged
between two nodes, the list of interactions among users in a social
network, the list of API requests from web applications). We split
them into independent snapshots, each collecting the interactions
happened in a given time interval, whichwe represent as a weighted
undirected graph G𝑡 , where edge weights are the number of times
the event occurred during the snapshot 𝑡 .

Anomaly scores: We generate an embedding ℎ𝑡𝑢 for each node
𝑢 at snapshot 𝑡 using GCN-GRU given its simplicity and effec-
tiveness (note that our pipeline can incorporate different tGNNs).
Then, we generate anomaly scores. For an edge 𝜖 = (𝑢, 𝑣,𝑤), we
apply a learnable scoring function 𝜙edge (·) to the embeddings at
the previous snapshot of the two incident nodes of the edge, i.e.
𝑠𝑡𝜖 = 𝑠𝑡(𝑢,𝑣) = 𝜙edge (ℎ𝑡−1𝑢 , ℎ𝑡−1𝑣). Note that we do not compute
the node embeddings at snapshot 𝑡 because they would be af-
fected by the anomalous connections. We assume that anomalous
nodes perform a relevant number of unexpected connections; thus,
their neighbourhood differs from standard patterns [21]. There-
fore, for each node 𝑢 at snapshot 𝑡 , we compute its neighbour-
hood embedding 𝑛𝑡𝑢 as a weighted sum of the neighbours’ em-
beddings, i.e. 𝑛𝑡𝑢 =

∑
𝑣∈N(𝑢)𝑡 𝑎

𝑡
𝑢𝑣ℎ

𝑡−1
𝑣 /|N (𝑢)𝑡 |. The coefficients

𝑎𝑡𝑢𝑣 ∈ (0, 1) are obtained through a learnable attention function:

8

https://github.com/SmartData-Polito/tgnn-for-node-edge-AD

Detecting Edge and Node Anomalies with Temporal GNNs GNNet ’24, December 9–12, 2024, Los Angeles, CA, USA

𝑎𝑡𝑢𝑣 = 𝜙att (ℎ𝑡−1𝑢 , ℎ𝑡−1𝑣). This allows the network to give more im-
portance to the most informative neighbours (e.g. the anomalies).
In conclusion, we obtain the anomaly score through a learnable
scoring function 𝜙node (·) that receives as input the node and neigh-
bourhood embeddings: 𝑠𝑡𝑢 = 𝜙node (ℎ𝑡−1𝑢 , 𝑛𝑡𝑢). To implement the
learnable functions 𝜙edge, 𝜙node (referred to as AD-NNs) and 𝜙att
we employ Multi-Layer Perceptrons (MLPs).
Model training: To remove the need for labelled data, we use
self-supervised training. For edge AD, at each training snapshot
𝑡 , we compute node embeddings 𝐻𝑡−1 and use them for link pre-
diction. Real edges E𝑡 are positive examples, i.e. normal (𝑦𝑡𝜖 =

0 ∀𝜖 ∈ E𝑡). We sample an equal number of non-existing edges
E𝑡 as negative examples (𝑦𝑡𝜖 = 1 ∀𝜖 ∈ E𝑡), i.e. anomalies. As
training loss, we employ the negative log-likelihood: L𝑡

edges =

−∑
𝜖∈E𝑡∪E𝑡 (𝑦𝑡𝜖 log(𝑠𝑡𝜖) + (1 − 𝑦𝑡𝜖) log(1 − 𝑠𝑡𝜖)), thus training the

NN to assign scores 𝑠𝑡𝜖 close to 0 (1) for normal (anomalous) edges.
For node AD, at each training snapshot 𝑡 , and given node em-
beddings 𝐻𝑡−1, we generate for each node 𝑢 ∈ V𝑡 one posi-
tive neighbourhood embedding 𝑛𝑡𝑢 with the real neighbours and
one negative neighbourhood embedding 𝑛𝑡𝑢 with random non-
neighbouring nodes. Therefore, for each node 𝑢, we obtain two
anomaly scores: 𝑠𝑡𝑢 = 𝜙node (ℎ𝑡−1𝑢 , 𝑛𝑡𝑢) and 𝑠𝑡𝑢 = 𝜙node (ℎ𝑡−1𝑢 , 𝑛𝑡𝑢), as
reported in Figure 1. As loss, we employ the negative log-likelihood:
L𝑡
nodes = −∑

𝑢∈V𝑡 (log(𝑠𝑡𝑢)+log(1−𝑠𝑡𝑢)). Again, the network learns
to assign a low (high) anomaly score 𝑠𝑡𝑢 (𝑠𝑡𝑢) when 𝑢’s neighbour-
hood embedding is real (fake). We train the overall NN (tGNN+AD-
NN) end-to-end with three configurations: (i) edge-only AD: min-
imise only L𝑡

edges; (ii) node-only AD: minimise only L𝑡
nodes; (iii)

multitask (MT) AD: minimise L𝑡
MT = 𝜆 · L𝑡

nodes + (1 − 𝜆) · L𝑡
edges,

where 𝜆 is a hyperparameter. We refer to edge-only and node-only as
specialised models. We optimize the weights of the GNN, GRU and
MLPs over a sequence of training graphs using back-propagation
with Adam optimizer for 10 epochs.
Hyperparameters tuning: We split the available temporal snap-
shots into four sets: initial warm-up snapshots 𝑡 ∈ [1,𝑇𝑤𝑎𝑟𝑚],
training 𝑡 ∈ [𝑇𝑤𝑎𝑟𝑚 + 1,𝑇𝑡𝑟𝑎𝑖𝑛], validation 𝑡 ∈ [𝑇𝑡𝑟𝑎𝑖𝑛 + 1,𝑇𝑣𝑎𝑙]
and test 𝑡 ∈ [𝑇𝑣𝑎𝑙 + 1,𝑇𝑡𝑒𝑠𝑡]. The initial warm-up set provides the
model with historical information at the first training snapshot.
After training the NN, we use the validation snapshots to find the
best set of hyperparameters. Then, we evaluate the model on the
test set.

5 Datasets and Anomalies
5.1 Synthetic datasets with synthetic anomalies
We generate two synthetic datasets to analyse how our models
perform when the graph structure and evolution are controlled.
Erdős-Rényi. Based on the Erdős-Rényi model [8], we generate a
random graph inwhich nodes are connectedwith a fixed probability.
Each edge has a predefined uniformly random integer weight within
the range [45, 55]. We generate this initial graph with 10 000 nodes
and 50 000 edges. We then generate 40 sequential snapshots by
perturbing the initial graph through (i) weights perturbation, i.e. we
add an integer within [−5, 5] to the weights of 30% of the edges; (ii)
edge shuffling, i.e. we randomly choose 30% of existing edges and

reassign one of the incident nodes at random; and (iii) on-off nodes,
i.e. we remove each node (and all its edges) for one snapshot with
30% probability. We perform anomaly injection only on validation
and test snapshots by transforming 5% of the active nodes into
anomalies. We add to each of them between 2 and 6 new edges to
random destinations with a weight uniformly distributed in the
range [60, 70]. The added edges become edge anomalies.

Bipartite. Inspired by Client-Server communications, we generate
a bipartite graph with a Server layer (50 groups of 5 nodes) and
a Client layer (50 groups of a uniformly distributed random num-
ber of nodes within [200, 250]). Each group of servers serves the
requests of one group of clients, whose members are connected to
all corresponding 5 servers, with a random weight within [50, 70].
This pattern also mimics social media networks where influencers
(servers) and followers (clients) interact. Over 40 snapshots, we
apply (i) weights perturbation and (ii) on-off nodes as in Erdős-Rényi.
On validation and test snapshots, we select 5% of the active clients
and add them between 2 and 6 new anomalous edges towards
servers in different groups to make them anomalous.

5.2 Real datasets with injected anomalies
We focus on 4 public real-world datasets. These are time-evolving
graphs for which we inject synthetic anomalies for validation and
test. Reddit [18] is a bipartite graph in which nodes represent users
(user layer) that posted on the top 1 000 subreddits and edges repre-
sent a post of a user on a specific subreddit. On average, the graph
has about 7 000 nodes and 20 000 edges per snapshot. WebBrows-
ing (WB) [11] is the collection of Internet browsing histories of
≈600 users obtained through the EasyPIMS tool [12]. We create a
bipartite graph where nodes are website users and edges indicate
a user’s visit to a website. On average, the graph has about 2 500
nodes and 8 000 edges per snapshot. StackOverflow (SO) [24] is
a graph in which nodes are StackOverflow users and edges are
interactions (answers or comments). On average, the graph has
about 7 000 nodes and 10 000 edges per snapshot. UCI [22] collects
messages exchanged on an online social network between students
at the University of California, Irvine. Nodes represent users and
edges represent the exchanged messages. On average, the graph
has about 300 nodes and 2 000 edges per snapshot. All datasets
except UCI contain one month of data and we create snapshots of
1 day. UCI, instead, contains ≈4 months of data and we generate
snapshots of 4 days. In this way, we generate 31 snapshots for each
dataset.

We inject the following anomalies for validation and test.
Node anomalies: At snapshot 𝑡 , we add to 5% of the active nodes
max(4, Uniform[|N (𝑢)𝑡 |/2, |N (𝑢)𝑡 |]) random anomalous con-
nections, such that node anomalies perform a sizeable number of
anomalous connections but are not straightforward to identify. On
bipartite graphs, we select anomalies in the user layer.
Edge anomalies: At snapshot 𝑡 , we further add 0.05 · |E𝑡 | random
edges. We inject edge anomalies unrelated to node anomalies to test
whether our node AD strategy signals nodes only if they perform
significant anomalous activity.

9

GNNet ’24, December 9–12, 2024, Los Angeles, CA, USA Andrea Cavallo, Luca Gioacchini, Luca Vassio, and Marco Mellia

= + a4 + a5

ϕnode

ϕnode

Positive Example

s

s

(a = ϕatt) = a0 + a1 + a2

Real Neighbourhood Embedding

Attention Scores

(a = ϕatt) a3

Fake Neighbourhood Embedding

Temporal GNN

Node Embeddings

Node Embeddings
Generation

Graph at
snapshot t

Neighbourhood
Embeddings Generation

Negative Example

Self-supervised Training
with Negative Sampling

Figure 1: Node anomaly score computation at snapshot 𝑡 . Given a target node (red), we compute the green weighted sum of
the embeddings of its neighbours (in blue). Similarly, we compute the violet weighted sum of the embeddings of random
nodes (non-neighbours – in grey) for self-supervision. Finally, the classifier 𝜙node computes the scores given the node and its
neighbourhood embeddings.

5.3 Real datasets with real anomalies
LANL [26] collects authentication events from desktop computers
and servers at Los Alamos National Labs. In the graph, nodes rep-
resent network hosts and edges represent authentication events.
We partition this graph into 501 snapshots of 10 000 seconds fol-
lowing [16]. The ground truth consists of authentication events
performed by a red team. We use these as anomalous edges and
we define as anomalous nodes the hosts with at least 4 anomalous
connections in a snapshot. Here, the fraction of anomalies is very
low (0.0007% for nodes and 0.008% for edges).
Darknet [10] contains one month of traffic traces collected from
a /24 darknet hosted at Politecnico di Torino. We build a bipartite
graph where nodes represent sender hosts and destination TCP
ports. Edges represent packets sent from hosts to ports. The ground
truth is available for a subset of the nodes and identifies groups
of known hosts belonging to online security services, research
projects and known botnets that run daily massive internet scans
targeting the Internet (e.g. Mirai). We only consider hosts for which
the ground truth is available. Since all traffic observed by darknets
is anomalous by definition, we evaluate our models’ capability
to detect different types of anomalous behaviour. Specifically, we
remove all hosts belonging to one known class from the training
snapshot and we enable them in validation and test snapshots. We
repeat this process 5 times, each time with a different ground truth
class. In this way, the AD performance can be interpreted as the
ability to detect a new scan campaign run by a novel group of hosts.

6 Experiments
6.1 Experimental setup
We assume the training set contains clean data (i.e. no anomalies).
This might not be the case for the real datasets, and in Section
6.4 we analyze the impact of injected anomalies also in training
data. For LANL, we use the first 5 snapshots as initial warm-up
snapshots, snapshots 6-14 for training (since they do not con-
tain anomalous events), snapshots 15-86 for validation and the
remaining for test.1 For all the other datasets, we use the first 11
snapshots as initial warm-up, snapshots 12-21 for training, snap-
shots 22-26 for validation and the remaining for testing. Since

1We split validation and test sets such that they have a similar number of anomalies.

we do not consider node features, we set 𝑒𝑓 = |⋃𝑡 V𝑡 | and fea-
ture matrix 𝑋 = 𝐼 , with 𝐼 ∈ R𝑒𝑓 ×𝑒𝑓 , as common in similar set-
tings [4, 29]. On each dataset, we optimize the hyperparameters
for the MT model and use the same configuration for the spe-
cialised ones. In particular, we use a GCN with a single hidden
layer (𝐿 = 1) with size within {2048, 1024, 512, 128} and output
size 𝑒𝑖𝑛 ∈ {1024, 512, 128}. We use a single-layer GRU with out-
put size 𝑒𝑜𝑢𝑡 ∈ {128, 64, 32} (final embedding size). The GCN-GRU
considers the past mem+1 snapshots, where mem ∈ [0, 10]. The
parameter 𝜆 is within {0.1, 0.3, 0.5, 0.7, 0.9}. The MLPs that produce
the scores have a single hidden layer with size within {64, 32}. The
choice of the hyperparameters is often not critical, i.e. different
configurations result in limited differences in performance. We run
experiments on a Tesla V100-PCIE-16GB.

6.2 Baselines
Global Rule Based (GRB): rule-based method that considers node
degree distribution over the complete graph (global). For node
AD, we create an embedding for each node by concatenating its
degree in the past snapshots. For edges, we create an embedding
by concatenating the degrees of the two nodes they connect. We
then use the Local Outlier Factor algorithm [3] to detect anomalies.
Local Rule Based (LRB): analogous to GRB (rule-based), but we
normalize degrees by the neighbours’ cumulative degree (local).
Multitask without memory - MT(mem=0): static GNN that con-
siders only information from the previous snapshot (i.e. mem = 0).
Heuristics: use a specialised model for the opposite task. The
edge heuristic computes the anomaly score for a node 𝑢 as the
average of the scores of its incident edges computed by the edge-
only model, i.e. 𝑠𝑢 =

∑
𝑣∈N(𝑢) 𝑠 (𝑢,𝑣)/|N (𝑢) |. The node heuristic

computes the anomaly score for an edge 𝜖 = (𝑢, 𝑣,𝑤) as the average
of the scores computed by the node-only model for the two nodes
the edge connects, i.e. 𝑠 (𝑢,𝑣) = (𝑠𝑢 + 𝑠𝑣)/2.

6.3 Main results
Table 1 compares the AUC of different models on node and edge AD.
We report the average ranking (between 1st and 6th) of each model
over datasets and tasks. The rule-based detectors (GRB and LRB)
generally perform very poorly, thus highlighting the need for more
elaborate techniques that detect more subtle anomalies. Similarly,

10

Detecting Edge and Node Anomalies with Temporal GNNs GNNet ’24, December 9–12, 2024, Los Angeles, CA, USA

0.0 0.5 1.0
WB

0.00

0.05

0.10

0.15

0.20

%
of

ed
ge

s

Anomalies

Normal

0.0 0.5 1.0
LANL

Attention weights

Figure 2: Distribution of the attention
weights learned by theMT model on
WebBrowsing (WB) and LANL.

0.0 0.1 0.2 0.3 0.4 0.5
Radius

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

to
ta

l
sa

m
p

le
s

Edge-only – Normal

Edge-only – Anomaly

Node-only – Normal

Node-only – Anomaly

Figure 3: Fraction of samples within
a radius for normal and anomalous
nodes. Results for a WB test snapshot.

0 1 2 3 4 5 7 10
Memory length

1.00

1.02

1.04

1.06

N
or

m
al

is
ed

A
U

C

Reddit

WB

SO

UCI

Figure 4: Normalised AUC for edge AD
on 4 datasets with different values of
mem. Results for the MT model.

Table 1: Average AUC and standard deviation over 5 runs for
different models on edge and node AD on different datasets.
Best results for each task are in bold, results within the stan-
dard deviation interval of the best are in blue.

Edge Anomaly Detection

LRB GRB MT(mem=0) Node heur. Edge-only MT(mem*)

Sy
n. Erdős-Rényi 0.446 0.445 0.827±0.006 0.797±0.082 0.892±0.002 0.863±0.007

Bipartite 0.719 0.600 0.892±0.004 0.896±0.035 0.992±0.002 0.989±0.002

In
je
ct
ed

Reddit 0.500 0.491 0.908±0.002 0.794±0.024 0.942±0.002 0.941±0.002
WebBrowsing 0.530 0.462 0.822±0.007 0.552±0.107 0.845±0.006 0.840±0.002
StackOverflow 0.467 0.475 0.618±0.010 0.553±0.012 0.644±0.003 0.649±0.004
UCI 0.332 0.496 0.770±0.015 0.700±0.014 0.800±0.012 0.790±0.016

Re
al LANL 0.480 0.616 0.960±0.004 0.508±0.299 0.948±0.012 0.958±0.002

Darknet† 0.481 0.489 0.833±0.011 0.694±0.077 0.821±0.026 0.826±0.032

Ranking 5.5 5.4 2.7 4.0 1.6 1.9

Node Anomaly Detection

LRB GRB MT(mem=0) Node-only Edge heur. MT(mem*)

Sy
n. Erdős-Rényi 0.520 0.594 0.747±0.006 0.759±0.006 0.632±0.003 0.769±0.005

Bipartite 0.496 0.745 0.846±0.019 0.903±0.029 0.984±0.001 0.976±0.006

In
je
ct
ed

Reddit 0.504 0.353 0.873±0.004 0.896±0.004 0.912±0.002 0.898±0.002
WebBrowsing 0.746 0.734 0.963±0.009 0.973±0.002 0.477±0.051 0.972±0.005
StackOverflow 0.463 0.656 0.654±0.008 0.656±0.009 0.570±0.003 0.671±0.010
UCI 0.502 0.738 0.799±0.007 0.807±0.013 0.738±0.009 0.814±0.020

Re
al LANL 0.752 0.989 0.979±0.012 0.984±0.004 0.984±0.006 0.992±0.001

Darknet† 0.421 0.421 0.855±0.024 0.830±0.024 0.819±0.025 0.819±0.028

Ranking 5.6 4.6 3.2 2.2 3.5 1.8

Overall ranking 5.6 5.0 3.0 3.1 2.6 1.9

† Average over the 5 experiments using different ground truth classes as anomalies.

the performance of the heuristics is generally inconsistent. In some
cases, they achieve the best results or are comparable with the best
model (e.g. node AD on Reddit and Bipartite), but, in others, they
perform very poorly (e.g. edge AD onWebBrowsing, StackOverflow
and LANL, node AD on WebBrowsing). This justifies the need for
a more sophisticated model to detect anomalous nodes and edges
or both, depending on the application. Static models (MT(mem=0))
generally achieve worse results than dynamic models, especially
on edge AD (up to ≈0.10 AUC difference). This demonstrates the
impact of considering past information to model the evolution of
the evolving networks over time. Darknet is an exception, as static
models perform better than temporal ones, which might be due to
the highly dynamic behaviour of nodes [10] that makes historical

information not reliable. The MT model tends to perform compara-
bly to the specialised models and, overall, is the best-ranked model
across tasks. On node AD on Bipartite, the MT model significantly
improves over the node-only model. On this graph, edge detectors
perform very well, whereas node-based methods struggle to even
perform comparably to the edge heuristic. Here, the knowledge
introduced by an edge-based loss in multitask training provides
benefits also to the node AD task. StackOverflow proves to be the
most complicated scenario for AD. This shows that this dataset
is less structured and more heterogeneous than the others, and
therefore the injected anomalies are less evident. In conclusion, the
solid results on LANL and Darknet demonstrate that the models are
effective also with real-world anomalies. Specifically, all methods
except the node heuristic perform very well on LANL, showing that
the proposed approach models intrusion detection successfully. On
Darknet, we are able to identify the sudden arrival of new patterns
over repeated experiments.

6.4 Additional results and sensitivity

Attention scores: Figure 2 shows the distribution of the atten-
tion weights 𝑎𝑡𝑢𝑣 computed by the multitask model. Anomalous
edges receive higher attention than normal connections, thus con-
tributing more to the neighbourhood embeddings. In a nutshell,
the model exploits the attention mechanism to assign higher im-
portance to edges that carry more information for the AD task.
Moreover, the attention weights provide interpretability as they
let us understand what the model focuses on when making deci-
sions. This is fundamental for a system to be successfully applied
in practice, as practitioners can observe which of an anomalous
host’s interactions were more suspicious.

Evaluation of the embeddings: We further analyse the node
embeddings generated by the two specialised models (edge-only
and node-only) on one test snapshot ofWebBrowsing. For each node
embedding in the latent space, we count the number of samples
whose cosine distance is lower than a given radius. The lower the
number, the more isolated the observation is. Figure 3 shows that
anomalous nodes are more isolated in the latent space than normal
ones, since their percentage of close samples grows more slowly
with increasing radius. This is more evident for the node-onlymodel,
as the training lossL𝑡

nodes directly works on the scores of the nodes.

11

GNNet ’24, December 9–12, 2024, Los Angeles, CA, USA Andrea Cavallo, Luca Gioacchini, Luca Vassio, and Marco Mellia

Table 2: Average AUC and difference with respect to themain
results in Table 1 (red) for experiments with anomalies in-
jected also in the training set.

Edge Anomaly Detection Node Anomaly Detection

Edge-only MT Node-only MT

Reddit 0.918(-0.024) 0.925(-0.016) 0.867(-0.029) 0.871(-0.027)
WB 0.825(-0.020) 0.821(-0.019) 0.967(-0.006) 0.955(-0.017)

1 5 10 20 30
% of injections

0.7

0.8

0.9

1.0

A
U

C

MT-WB

Only-WB

MT-Reddit

Only-Reddit

Figure 5: Average AUC and std with different percentages of
injected anomalies for node AD.

This is expected since normal nodes are more numerous and their
behaviour is more consistent.

Presence of anomalies during training: To evaluate the ap-
plicability of our method to real-world cases where it might be
impossible to train on clean data, we assess the detection ability
when the anomalies are present also during training. The injec-
tion procedure in the training snapshots is the same used for the
validation and test snapshots. The results in Table 2 show that
the performance only marginally decreases compared to the main
results. This demonstrates the robustness of our methods to the
presence of anomalies in the training set. Note that the anomalies
injected in the training set are not correlated to the test set ones,
as we assume that, in a real setting, one might train the model on
potentially anomalous past data to identify new different anomalies
in the future.

Impact of memory: We investigate the importance of the tem-
poral component of tGNNs in Figure 4. In general, increasing the
memory length improves the results until reaching a saturation
point. This highlights the importance of considering historical in-
formation through time-aware GNNs which model the evolution
of the network over time. UCI shows a less evident gain as the
network evolves more quickly than others.

Sensitivity against volume of anomalies: Figure 5 shows how
different quantities of injected anomalies affect the performance. As
expected, a larger percentage of injected anomalies leads to slightly
lower AUC, as it is harder for the model to identify the normal
behaviour of nodes in the network. This happens for both the MT
and the specialised node-only models.

7 Conclusions
In this work we presented an analysis of temporal GNN-based
approaches for node and edge AD on communications networks.
Through extensive experiments, we demonstrated the effective-
ness of these methods on synthetic and real-world datasets with
artificial and real anomalies. This analysis represents a first step
towards the effective implementation of GNN-based anomaly de-
tectors in practical applications. In fact, (i) we explicitly faced the
natural and highly-dynamic temporal evolution of the communica-
tion processes thanks to the memory ability of tGNNs; (ii) we used
a completely self-supervised learning approach that requires no
ground truth labels; (iii) we focused on both edge and node anom-
alies, showing the advantages of facing both tasks simultaneously.

Future developments of the work include the analysis of differ-
ent temporal GNN architectures, anomaly scoring functions and
training strategies. Moreover, our pipeline can be easily extended
to include node features as additional network information. This
could lead to the definition of other types of anomalies that depend
not only on the node activity within the network but also on their
characteristics (e.g. servers rather than clients). Similarly, we could
extend the anomaly scoring process to account for edge weights
and, consequently, define new types of anomalies based on the
values of the connections.

Acknowledgments
This work was supported by the project SERICS (PE00000014) under
the MUR National Recovery and Resilience Plan funded by the
European Union (NextGenerationEU).

References
[1] Mohiuddin Ahmed, Abdun Naser Mahmood, and Jiankun Hu. 2016. A survey

of network anomaly detection techniques. Journal of Network and Computer
Applications 60 (2016), 19–31.

[2] Tristan Bilot, Nour El Madhoun, Khaldoun Al Agha, and Anis Zouaoui. 2023.
Graph Neural Networks for Intrusion Detection: A Survey. IEEE Access 11 (2023),
49114–49139.

[3] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. 2000.
LOF: identifying density-based local outliers. SIGMOD Rec. 29, 2 (may 2000),
93–104.

[4] Andrea Cavallo, Claas Grohnfeldt, Michele Russo, Giulio Lovisotto, and Luca
Vassio. 2022. 2-hop Neighbor Class Similarity (2NCS): A graph structural metric
indicative of graph neural network performance. arXiv preprint arXiv:2212.13202
(2022).

[5] Evan Caville, Wai Weng Lo, Siamak Layeghy, and Marius Portmann. 2022.
Anomal-E: A self-supervised network intrusion detection system based on graph
neural networks. Knowledge-Based Systems 258 (2022), 110030.

[6] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder–Decoder for Statistical Machine Translation.
In Conference on Empirical Methods in Natural Language Processing (EMNLP).
1724–1734.

[7] Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. 2019. Deep Anomaly
Detection on Attributed Networks. In SIAM International Conference on Data
Mining (SDM).

[8] P. Erdős and A. Rényi. 1959. On Random Graphs I. Publicationes Mathematicae
Debrecen 6 (1959), 290.

[9] Luca Gioacchini, Andrea Cavallo, Marco Mellia, and Luca Vassio. 2023. Exploring
Temporal GNN Embeddings for Darknet Traffic Analysis. In Proceedings of the
2nd on Graph Neural Networking Workshop 2023 (Paris, France) (GNNet ’23).
Association for Computing Machinery, New York, NY, USA, 31–36. https://doi.
org/10.1145/3630049.3630175

[10] Luca Gioacchini, Luca Vassio, Marco Mellia, Idilio Drago, and Zied Ben Houidi.
2023. i-DarkVec: Incremental Embeddings for Darknet Traffic Analysis. ACM
Trans. Internet Technol. (2023).

[11] Nikhil Jha, Martino Trevisan, Emilio Leonardi, and Marco Mellia. 2023. On
the Robustness of Topics API to a Re-Identification Attack. arXiv preprint

12

https://doi.org/10.1145/3630049.3630175
https://doi.org/10.1145/3630049.3630175

Detecting Edge and Node Anomalies with Temporal GNNs GNNet ’24, December 9–12, 2024, Los Angeles, CA, USA

arXiv:2306.05094 (2023).
[12] Nikhil Jha, Martino Trevisan, Luca Vassio, Marco Mellia, Stefano Traverso, Alvaro

Garcia-Recuero, Nikolaos Laoutaris, Amir Mehrjoo, Santiago Andrés Azcoitia,
Ruben Cuevas Rumin, Kleomenis Katevas, Panagiotis Papadopoulos, Nicolas
Kourtellis, Roberto Gonzalez, Xavi Olivares, and George-Marios Kalatzantonakis-
Jullien. 2022. A PIMS Development Kit for New Personal Data Platforms. IEEE
Internet Computing 26 (2022), 79–84.

[13] Weiwei Jiang. 2022. Graph-based deep learning for communication networks: A
survey. Computer Communications 185 (2022), 40–54.

[14] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi,
Peter Forsyth, and Pascal Poupart. 2020. Representation Learning for Dynamic
Graphs: A Survey. Journal of Machine Learning Research 21, Article 70 (2020),
73 pages.

[15] Ansam Khraisat, Iqbal Gondal, Peter Vamplew, and Joarder Kamruzzaman. 2019.
Survey of intrusion detection systems: techniques, datasets and challenges. Cy-
bersecurity 2 (2019), 1–22.

[16] Isaiah J. King and H. Howie Huang. 2023. Euler: Detecting Network Lateral
Movement via Scalable Temporal Link Prediction. ACM Transactions on Privacy
and Security 26, Article 35 (2023), 36 pages.

[17] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In International Conference on Learning Repre-
sentations (ICLR).

[18] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting Dynamic Embed-
ding Trajectory in Temporal Interaction Networks. In ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining.

[19] Zitong Li, Xiang Cheng, Lixiao Sun, et al. 2021. A Hierarchical Approach for
Advanced Persistent Threat Detection with Attention-Based Graph Neural Net-
works. Security and Communication Networks 2021 (2021), 14 pages.

[20] Fucheng Liu, Xihe Jiang, Yu Wen, Xinyu Xing, Dongxue Zhang, and Dan Meng.
2019. Log2vec: A heterogeneous graph embedding based approach for detecting
cyber threats within enterprise. In ACM SIGSAC Conference on Computer and

Communications Security (CCS).
[21] Yixin Liu, Zhao Li, Shirui Pan, Chen Gong, Chuan Zhou, and George Karypis.

2021. Anomaly detection on attributed networks via contrastive self-supervised
learning. IEEE transactions on neural networks and learning systems 33 (2021),
2378–2392.

[22] Yixin Liu, Shirui Pan, Yu Guang Wang, Fei Xiong, Liang Wang, Qingfeng Chen,
and Vincent CS Lee. 2021. Anomaly detection in dynamic graphs via transformer.
IEEE Transactions on Knowledge and Data Engineering (2021).

[23] XiaoxiaoMa, JiaWu, Shan Xue, Jian Yang, Chuan Zhou, Quan Z Sheng, Hui Xiong,
and Leman Akoglu. 2021. A comprehensive survey on graph anomaly detection
with deep learning. IEEE Transactions on Knowledge and Data Engineering (2021).

[24] Ashwin Paranjape, Austin R. Benson, and Jure Leskovec. 2017. Motifs in Temporal
Networks. In ACM International Conference on Web Search and Data Mining
(Cambridge, United Kingdom).

[25] Francesca Soro, Thomas Favale, Danilo Giordano, Luca Vassio, Zied Ben Houidi,
and Idilio Drago. 2021. The New Abnormal: Network Anomalies in the AI
Era. Communication Networks and Service Management in the Era of Artificial
Intelligence and Machine Learning (2021), 261–288.

[26] Melissa J. M. Turcotte, Alexander D. Kent, and Curtis Hash. 2018. Unified Host
and Network Data Set. World Scientific, 1–22.

[27] Rose Yu, Huida Qiu, Zhen Wen, ChingYung Lin, and Yan Liu. 2016. A survey on
social media anomaly detection. ACM SIGKDD Explorations Newsletter 18 (2016),
1–14.

[28] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and
Haifeng Li. 2020. T-GCN: A Temporal Graph Convolutional Network for Traffic
Prediction. IEEE Transactions on Intelligent Transportation Systems 21 (2020),
3848–3858.

[29] Jiong Zhu, Ryan A. Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K. Ahmed,
and Danai Koutra. 2021. Graph Neural Networks with Heterophily. AAAI
Conference on Artificial Intelligence (2021).

13

	Abstract
	1 Introduction
	2 Preliminaries
	3 Related Works
	4 Methodology
	5 Datasets and Anomalies
	5.1 Synthetic datasets with synthetic anomalies
	5.2 Real datasets with injected anomalies
	5.3 Real datasets with real anomalies

	6 Experiments
	6.1 Experimental setup
	6.2 Baselines
	6.3 Main results
	6.4 Additional results and sensitivity

	7 Conclusions
	Acknowledgments
	References

