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Relaxing the Control-gain Assumptions of DSC Design for Nonlinear
MIMO Systems

Yong Chen, Maolong Lv, Simone Baldi, Zongcheng Liu, Wenqgian Zhang and Yang Zhou

Abstract— This work focuses on adaptive neural dynamic
surface control (DSC) for an extended class of nonlinear
MIMO strict-feedback systems whose control gain functions
are continuous and possibly unbounded. The method is based
on introducing a compact set which is eventually proved to be
an invariant set: thanks to this set, the restrictive assumption
that the upper and lower bounds of control gain functions must
be bounded is removed. This method substantially enlarges the
class of systems for which DSC can be applied. By utilizing
Lyapunov theorem and invariant set theory, it is rigorously
proved that all signals in the closed-loop systems are semi-
globally uniformly ultimately bounded (SGUUB) and the output
tracking errors converge to an arbitrarily small residual set. A
simulation example is provided to demonstrate the effectiveness
of the proposed approach.

I. INTRODUCTION

In recent years, approximation-based adaptive control of
uncertain nonlinear systems has attracted much attention
[1-3]. When combined with the backstepping technique,
approximation-based adaptive approaches have been shown
to obtain global stability for many classes of nonlinear
systems [1-5]. However, it is well known that, due to
repeatedly differentiating the virtual controllers at each step,
the complexity of conventional backstepping controller dras-
tically grows as the order of the systems increases. The
DSC technique has been proposed to avoid this problem
by introducing a first-order low-pass filter in the conven-
tional backstepping design procedure. Approximation-based
adaptive controllers stemming from this technique have been
successfully constructed for many nonlinear systems and
their applications, see [5-18] and references therein. To list a
few, for example, a novel adaptive neural control is designed
for a class of nonlinear MIMO time-delay systems in [5].
In [6], adaptive fuzzy hierarchical sliding-mode control is
conducted for MIMO input-constrained nonlinear systems,
etc.

However, it should be pointed out that, for all above
schemes [5-9] to work, upper and lower bounds of the control
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gain functions must be assumed to exist. In order to remove
this restrictive assumption, some efforts have been made:
most notably, in [3] the upper bound is relaxed to a known
positive function, while the lower bound is still assumed
to exist. However, the lower and upper bounds of the
control gain functions maybe difficult to acquire in practical
applications, or even nonexistent [4]. This motivates us to
explore new approaches to remove this restrictive assumption
from the control gain functions. The main contributions of
this work are as follows:

(1) Only the signs of the control gain functions are
assumed to be known: in other words, the control gain
functions are only required to be positive (and possibly un-
bounded), rather than a priori bounded by positive constants.
The main challenge arising from this setting is that the states
cannot be assumed to be bounded a priori before obtaining
system stability.

(2) A novel set-invariance neural adaptive design is carried
out for MIMO nonlinear dynamic systems. The challenge
of this design is to construct appropriate compact sets via
Lyapunov stability and invariant set theory, which guarantee
that the states of the closed-loop system will stay in those
sets all the time, even in the presence of possibly unbounded
control gain functions.

The rest of this paper is organized as follows. Section
II presents the problem formulation and preliminaries. The
control design and stability analysis are given in Section
III. In Section IV simulation results are presented to show
the effectiveness of the proposed scheme. Finally, Section V
concludes the work.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. Problem Formulation
Consider a class of MIMO strict-feedback nonlinear sys-
tems given by [7]:
Eji; = i (Thp;) + 955 (T JTg841 + djiy (2, 1)
1<i;<pj—1

Tjp; = Pjp; (fj,p]) + Gj.p; (jj,pj)uj + djp, (2,1)

Yji =251 ] = ]., ey
(1
where z;;. € R is the state of the jth subsystem, z =
[Z] s @] s wes T ] € RY s the state vector of

the whole system (N = p1 + -+ + pn), where Z; .
[T 1) jM]T € R and p; is the order of the jth
subsystem. :Z.j,ij = [(Ej’l,..wil?jyij]T € RY, Uj and Y; €
R are the input and output of the jth subsystem respec-
tively. ;i (Z;,,;) are unknown continuous functions with

, T
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©;4,;(0) = 0, gj,(Z;,) are unknown continuous control
gain functions, and d;, (z,t), i; = 1,...,p;,5 = 1,...,m
are uncertainties consisting of dynamical coupling terms and
external disturbances.

Assumption 1: Only the signs of nonlinear functions
94,i; (T;,i;) are known. Without loss of generality, it is further
assumed that g;; (7;;,) > 0 for i; = 1,2,...,p; and
=1 ..m.

Remark 1: It has to be noted that, in all the existing
methods, e.g., [5-9], the control gain functions g; ;, (Z;,)
are assumed to satisfy 0 < a < g;;. (Z;:,) < b, with
a and b being unknown constants. In fact, this assumption
is sufficient for controllability of system (1). However, the
assumption a < g;;.(T;:,) < b is too restrictive since
such a priori knowledge of g; ;. (Z;;,) may be difficult or
even impossible to be acquired in practice. In addition,
the lower bound a and upper bound b of g;;, (Z;;,) may
be nonexistent: for example, the control gain functions
9j.i;(Tji;) = o3, 4 € does not admit any a and b do
not exist for all states: however, Assumption 1 holds since
9j.i;(Tja;) = a3, + €% > 0 for all z;;;. Therefore,
Assumption 1 allows the functions g;;,(Z;,) to be possibly
unbounded, which require new stability tools.

Assumption 2 [7]: For ¥t > 0, there exist positive con-
stants d ; such that |dji, (w,t)| < dj; . foriz=1,...p;
and j=1,....,m.

Assumption 3 [8]: The reference signal y, ,(t)
is a sufficiently smooth function of ¢, and there
exist positive constants Bjo such that Qj;p =

. .. T 2 . 2 .. 2
(oo [(00) + (52" (5" < 50}

Lemma 1 [4]: Consider the dynamic system

X(t) = —ax(t) + fu(t) 2)

where « and (3 are positive constants, and v(t) is a positive
function. For any given bounded initial condition x(0) > 0,
we have x(t) > 0, for V¢ > 0.

Lemma 2 [4]: For any o € R and w > 0, the hyperbolic
tangent function fulfills Voo > 0

3)

0 < |o| — otanh (p/w) < 0.2785w
0 < ptanh (o/w)

B. Properties of RBF NNs

The radial basis function neural networks (RBF NNs)
is used to approximate the unknown continuous functions
©;,i;(Zj,p;) in this study. As is well known, for a given
€* > 0 and any continuous function h(Z) defined on a
compact set {2, C R™, there exists a RBF NN ©T7*¢(7)
such that

nMZ)=0"¢(2)+(2), le(Z)| < @)

where Z € 1, C R" is the input vector, ©* is the ideal
constant weight vector, £(Z) is the approximation error, and
&(Z) = [¢1(Z),...,1(Z)]F with [ > 1 being the number of

neural network nodes and ¢;(Z) being commonly taken as

Gaussian functions

—(Z — wi)T(Z - wi)
o? ’

¢i(Z) = exp i=1,2,..1

(&)

where w; = [wi1,wio, -+ ,win]T and ©; € R are the center
and the width of the Gaussian function, respectively.

III. CONTROL DESIGN AND STABILITY ANALYSIS
A. Adaptive dynamic surface tracking controller design

The DSC technique is employed to design the adaptive
neural controller for system (1) under the framework of
backstepping. The control design is carried out based on the
following changes of coordinates:

{ i1 = Tj1 — Yjd )
2ia = Tia; — Xii;
where z; 1 is the output tracking error and Y ;, is the output
of the first-order filter with 1;;, as the input, where v, ;,
is the virtual controller defined in the step ¢;. The recursive
design includes p; steps. From step 1 to step p; — 1, the
virtual control ¢, ;. will be constructed in step j,; and the
actual control input u; will be designed in the step p;.
Since ©;,(%j,,), i = 1,...,p;, are unknown contin-
uous functions, they cannot be used in the control design
directly. Therefore, throughout this note, we use RBF NNs to
approximate the continuous functions ¢;;, (Z;,,,) as follows:

Ciis (Tip,) = O35 0 (Tj.0;) + €40, (Tjop, ) Tjp; € Q.

(7
where ;. (Z;,,) (81,651 (g0 )s s D e, (T, )T
with @;i, n(Zj,;), for n = 1,..1;;,, being Gaussian

functions defined in (5), and ¢;;, are the approximation
errors, satisfying |€j7ij| < 5;7%_ with € = being unknown
positive constants. For compactness, we fet €j,4; and dj ;.
denote ¢, ;,(Z;,,,) and d;, (x,t) respectively.

Step j, 1: To begin with, it follows from (1) and (7) that
the dynamics of z;; is

. T7 _
21 =05105.1(Tjp;) + €1 + g51(251)75 2 ®)
+dj = Yjd

where €; 1 is the approximation error satisfying |e; 1] < €},
with €7 ; > 0 being an unknown constant.

To consider the stabilization of (8), we consider the
following quadratic function
L

V., = CRAE 9)

Thus the time derivative of (9) can be given by

Ve, =21(050651(Z),0,) + €1 + 951 (251)75.2
+dj1— Yj.d)-
Define a compact set ;1 = {z;1|V.,, <p}, with p >

0 being any positive constant. For ;1 x Qo and g; 1(x; 1),
the following lemma holds.

(10)



Lemma 3: The continuous control gain function g;1(x;,1)
has maximum and minimum in €;; X Qjo, namely, there
exist positive constants g . 1 and g; i satisfying 91 =

min gj1(wj1) and gj, = max gji(wq)-
J,1 30

Q1 x50
Proo Observing z;1 = ;1 — Y;4, WE obtain z,; =
7, 7, 35 7,
yj,d + zj1. Hence continuous function g;1(z;1) can be
expressed by

951 (@5,1) = 131 (251, Y5.0) an
with 1 1(-) being a continuous function. Note that €;; x
Qo is a compact set since {2;; and )y are compact sets
respectively. It is possible to derive from (11) that all the
variables of p;1(-) are included in the compact set €2, 1 X
o, thus we have

zj1 € 1 X Qjo.

0<g;, <9i1(z1) < i, (12)

O
Choose the virtual control law 1); ; and parameters adap-
tation laws 19j 1 and 5J 1 as follows

Vs 124.1 A Z51
Vi1 = —Cj12j1 — 7;’(12]’ — dj,1 tanh ,,ji
4,1 ' J,1 (13)
[
— &j17;.q tanh (leJd>
Vi1
X 6,‘,12’2-1 ~
1= ;az_]’ — 031851951 (14)
A 1 A
0j,1 = 7j,1%j,1 tanh (V ) — 05,175,105,1 (15)
7,1

where ¢ 1> 0, a; 1> 0, Vi1 > 0, ﬂj71 > 0, 051 > 0, Vi1 >

0 and 53,1 > 3j,11 are design parameters. 1§j 1 and ¢, are

estimates of the unknown constants ;1 = g 3 H@ 1 || Lia
and 01 = Qj_,ll_(E;,l + d7 | ) respectively, w1th l;1 being the
dimension of ¢;(Z;,;). By recalling Lemma 1, we can
obtain 9;1(t) > 0 and 0;1(t) > 0 for V¢ > 0 by choosing
193'71(0) = 0 and (5]‘71(0) = 0
To avoid repeatedly differentiating 1; 1, in line with the
DSC in [10], we introduce a first-order filter with positive
time constant 7; o, as follows
Ti2Xj,2 T Xj,2 = Vi1, X5,2(0) = 1;1(0). (16)
Now, by defining the output error of filter (16) as ej o =
Xj}g — '(/}j,l: which yields )'(j72 = —ej’g/Tj)Q and

€j2 =

(2j,1, 25.2,€5,2,95.1,051,Y5.d> Vj.ds i}j,d)

a7)

J:2

where (j 2(-) is a continuous function, which will be used in
the stability analysis.

In view of Young’s inequality!, one has

el

251051 05,1(Z,,) < 22, 051(T5,0,)051(T5,;)
2
- %
(18)

Note that ¢, (Zj,0)051(Zj,0) < lja since ¢;1(Tj,,) =
[0j,1,1(Tj.0;)s oos Dy 050 (Tjop,)]T ad {010 (T5,)| < 1,
forn =1,...,1; 1, with [; ; being the dimension of ¢; 1(Z; ).
Thus we have

2 x |2 2

_ r Sk a?

%j1010;1(Tj,,) < wlj,l +=5r (19
aj, 2

Using x;2 = 2j2 + e;.2 + 15,1 and substituting (19) and

(13) into (10), we obtain the time derivative of V| as

2
SACH
2a?,1 7

s
Qj,lﬁmlzm

: 2
Vi < T 055 T T g2

~ A 1
Js
— g, ,%,105,1 tanh (u ) + 2j1%j,295,1(25,1)

J,1

. 2j,1Y5,d
— %j,1Yj,4 tanh (j -2 ) + 2,195,1(2j,1)€j,2
Vi
2
aj1 * * .
+ o + 1251l (€51 + d51) — 2j,195,a-
(20)
Choose the Lyapunov function candidate as
g. 5121 119_] ].
Vii=V,  + 212 1% L, (21)
M T T T g, 297
where (57‘71 = 5j,1 — 5]‘71 and 1§j71 = 19]‘71 — 1§j)1 are the

estimation errors of ¢;; and 6; 1, respectively.
Substituting (14), (15) and (20) into (21), the time deriva-
tive of V; 1 is

’ 2
Vit <—=¢jng; 25+ 21252051(250)

N
+ O'j,lgj 1 (19]',119]‘71 + 5]',15]',1) - ]‘7
7 23,2 (22)
as
+0.2785v; 4 (5;1 +d,+ 1) + 3771

+ ‘eg 2Gj,2( ’ +2j195.1(%j1)e€j,2.

Step j,i; (2 <i; <p;—1, j=1,...,m): The design
process for step 7; is similar to Step 1. From z;;, = x;;, —
1., and (4), the dynamics of z;;, is

_o*T 71 = =

=074, 85i; @jp;) + €4y + 9j,iy (T40,) 5,41
tdji; — Vi,

with ¢; ;. being the approximation error satisfying |sj7ij| <

€5.i,» Where €7 ;> 0 is an unknown constant.
R R

Z4,i;

(23)

2
oy < S 2+ g Iy (@> 1,6 > Le>0and (a—1)(8-1) =

1)



Choose the following quadratic function
L

zj,ij = §Zj;ij' (24)
From (23), the time derivative of Vz7‘ ,1s
It
. - ~ ~
VZJ\'L]‘ :zjaij (@j,lj ¢j7ij (xj7pj) + gj,ij (‘rj,i]' )xj,ij +1 (25)
+ dji; + €,y — Yi,)-
Design the virtual control law ), ;. and adaptation laws
R 3,
5j,1'9 and 193 ij
’L§j i Zj Qs
d}j,ij = _Cj,ij Zj,ij — 7262 EA— 6] ij tanh b
Jyt4 75 (26)
¢, G tanh( J,ljej,z'j>
N
" T, i Vi
A /Bj ij 2:2 L. ~
] 7,
Vii; = 52— i By Vi, 27
7yt
3 Z Jij ~
0j,i; = Vii; %), tanh f — 03,1, 74,1, 95,4 (28)
3,5

where the parameters are chosen similar to (13)-(15).
Next, let ©; ;. pass through a first-order filter with time
constant 7; ;,+1 as follows

= wjﬂ’j (O)
(29)
—j.i;- We have

Tjis+1XG,5+1  Xj,i;+1 = Y50 Xj,i,+1(0)

Define the filter errors e;;, 11 = Xji;+1

Xjyis+1 = —€ji;+1/Tji;+1 and
. G+
€ji;+1 = — .
Tji;+1

(30)

+ Gyl (Zj,iﬁl’ €i.is+1 V5 05y Yisds Yy yj,d)

with (i, y1(-) being a continuous function.

Following similar lines as Lemma 3, we find that the
continuous control gain function g; ;, (Z;,;,) can be rewritten
as

:uJJ]( Jyijo ) €5, Zpﬁj 11—176] ij—1:Yj5,d ) 3D

95 (Tja;) =
where f15;.(+) is a continuous function.

Then, define the following compact sets €2; ;.
Qij = { |:§T 7T ’L9T 5T 1:| | J 5 + Zu*l

Jris? JZ] Jyij =12 V05—

Qj,iAS?,z‘j 23,1,19?,1:-

’sz7 + BZLJ : < 2]7}
where p is an arbitrary positive constant. For €2; ;.
j,i;(Zj,,), in a similar fashion as Lemma 3 was derlved we
have that the continuous function g;;, (Z;,;;) has maximum
and minimum in €; ;. X {10, namely, there exist positive
constants 954, and g ;, satisfying

2 2
Zik T €kt T

955, S 935 (Tgi;) < Giigs Tgiy € Liiy X o (32)
Consider the Lyapunov function candidate
52
.. 0%, g.. 9. 1
L5 Dty Zji Dl 2
Vi =V. 25ty J 33)
pis = Vaiay T 29j; i 25, 20T

where gj,ij = 5]',2']- — Sj,i and 19] i; — ﬁj,i]- — ﬁj,ij-
With the help of Young’s inequality, we get

2 * 2
< [Pl @Gi;  (34)
Zjﬂ] ]1]¢] ij (‘rJ PJ) — 2&2 3,5 + 2
Grij
where aji and [;, i; are designed constants in line with (19).

Substltutlng (26) (28) and (34) into (33) and using Lemma

2 and &;4,9 > 1, we have
2
e< .

’ 2 = Jiitl
Viig <= ¢z, iy + 23393 (T55 )€1 — ———
" Tjij+1

a?l’f

+ ijijgj’ij (19] ij 19] ] + 6] ] 63 'LJ) 2 .

_|_

ej,ij+1Cj,ij+1(')‘ + 2j,i;255+195,4; (T i;)
+ 0.2785v; 4, (E;fij +dj; + 1) :
(35
Step j, pj (j = 1,...,m): From (1), (6) and (7), one has

Zj,p; @J pJ¢J7pJ (%7/31) + Ejp; T 97;0,( 7%)“

(36)
+ dj»ﬂj - Xj»ﬂj
Consider the quadratic function
L,
ey = 350 G7)

Similarly, we know that g; ,. (7, ,,) can be rewritten as

gw)]( Lm) = lujvpj(Zja/’j’éjapj’ﬂjvl’j_l’5j,pj—1?ijd) (38)

where 415 ,.(+) is a continuous function.

In light of previous steps (Lemma 3), it can be seen that,
for Q; ,. X Qo anq 9j.p; (Z,p, ), there exist positive constants
9ip, and g; ,. satisfying
L)

9 ps < 950 (Tip;) < Gjpys Tjops € Ljpy X Lo

(39)

Let us now design the actual control law u; and adaptation
laws 9; ,. and §; ,. as

Wi, 2. . 2.
= iy — by o (222 )
J,Pj J:Pj
_ é—j’pje‘]i tanh < Zjapj ejvpj )
Tjp; Tj,p;Vj,rho;
(40)
a 6jxﬂj ]%Pj 3
Uiy = 503~ i Pives Ve, (41)
J,Pj
2 Zj,0; :
0j,p; = Viups%jp; tANN (Vjp> = 04 Vins 050, (42)
Rl

where the corresponding parameters are defined similarly to
that of (26)~(28).
Consider the following Lyapunov function candidate

52 9?
95.0,%05i 955, Vip;s

2%, 2B5,p;

Viey =Vey, + @)

Zjpj



where 0; ;= 0j,p; = 0j,p; and U p; = Vjp; = Vjp;-
Following the same way as the former steps, we have

23, +0.2785v; ,. (&

3:Pi ‘ J:pi \Cd.p

. *
Vip; <= €3pi95 i T djvpj + 1)

PO .- a’
3.0
+ﬂj,pj‘7j7pj (5j,pj5j,pj + ﬁj,pjﬂjmj) + :

where a o

is a positive constant.
B. Stability analysis

Consider the following Lyapunov function candidate for

the whole systems
m

V=>V;
j=1

where V; is the Lyapunov function for the jth subsystem

1 Pj qg.. qg.
L 2 =7,15 <2 =7, 32
K 2 Z <Zj’ij " Viij 5j7ij Bii; 19]71])

;=1

(45)

L) (40)

+3 Z 63 ij+1-

zj_l

The main stability result of the proposed method is sum-
marized in the Theorem 1.

Theorem 1: Consider the nonlinear MIMO non-strict-
feedback system (1), and let Assumptions 1-3 hold. Consider
the control design composed by the virtual control laws
(13) and (26), the actual control law (40), filters (17) and
(29), adaptation laws (14), (15), (27), (28), (41) and (42).
For any p > 0 and bounded initial conditions satisfying
19“] 0) > 0, §; i;(0) > 0 and V;(0) < p, there exist
design parameters Ciizs Ujigs Viiss ﬁj,ij, Tjijs Vivigs ijpj
and 7;;, such that: (1) ©;, x Qjo is an invariant set,
namely, V;(t) < p for Vt > 0, and hence all the closed-
loop signals are SGUUB; (2) the output tracking error z;
is such that lim;_, |21 ()| < Aj 1, where A 1 is a positive
constant depending on the design parameters. Furthermore,
the whole system output tracking error 21 = [21.1, ..., 2m 1]
satisfies lim;_, o ||21(¢)]] < Ay with A; a positive constant
depending on the design parameters.

Proof: According to (22), (35) and (44), the time deriva-
tive of Vj is

pi—1
V < Z |: cj 17 -"iji| + Z Heij_;’_le’ij_i_l(.)H
ij=1 ij=1
+pi1 J,z,+1 + (Izj401] + e +1]) |25,
Tjij+1 95 |20, +1 Jig+1l) <5t
1,=1 ’
o ) )
+y [og 09 (z9j 00,0, + 050,04 ) +bj,z-j]
i;=1

(47)

2
a‘ .

St +1> + L.

where b; ;. = 0.2785v;;, | € (

By completion of squares, we have

2 2
] < Baahun)
Jyij+157,%5+ 2kj,1 2
L2 L2
95,45 %5,4;41 | 93,45 %5,4;
— ’ 1] ez
9jsi; ‘zj,iﬁrl‘ ‘Zj7ij| = 4
2 2
=22 2
G, |25, | lesiaa] < kj2Gii, 41 |
9jij |%gviz| |Chi+1] = 9 2k
with k; 1 and k; > being posmve constants
D3 ) kj23;
1 Jrij+1 3:295,4; ) .
Let Trag 1 > ijl 5 + «o; with
G]fmax{g] 1,--,Gj,p;+ and a; positive constant. There-

fore, we obtain the time derivative of V; as

Vi <AV + G “9)

where \; = min{?aj,aj iﬂj,ijagj,ijﬂj,ij} and C; =

! i i~k

22”,_1 Uj,ljgj ) (1951] +52 )_inpj:l bj,ij+(ﬂ+.
By solving (49) one has

Vi (t) <[V (0) = X]e M+ % (50)
with ¥=C} /), a positive constant. Thus we have
tlgrolo |21 < tli}rgo\/ﬂ/j(t) <V2E =Aj, (51)

Now let us consider the Lyapunov function candidate for
the whole systems as V' = Z;”:l V;. From (50), it follows
that

V:iffjgi AV + G

Jj=1 Jj=1

< —-kV+1 (52)

with £ = min {Aq, ...,
has

Am} and I = 37, C;. Then, one

V() <[V(0)-T]e ™ +T (53)

where I" = % is a positive constant.
Similarly, we have lim; ., V(t) < T, which leads to

Jim (]| < Jim VoV() VAT = Ay (54)
This completes the proof of Theorem 1. |

IV. SIMULATION RESULTS

Consider the nonlinear MIMO uncertain systems as fol-
lows:

1,1 :x§71670,3$§72 + (0.5 + ewg’l) z1,2+d1a(t, )

T2 :cos(:cLl(xiQ))xiQ + (1 + 693?,113?,2) Uy

+ d172(t, .Z‘)
dg1 = (1+sin(zy pw21)?) + €170 w0 5 + da s (£, )
T2 :xm;c%g + :cl,lx%_Q + (1.5 4 "1172172.2) 4y

+ d272(t, ZE)

Y1 =T1,1,Y2 = 22,1

(55)
where di; = 0.5cos(a] 2y ,7y,)sin(0.2), dio =
0.5cos(xf g + x12%21), dog = 2sin(x, 2, 27 ,) and
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Fig. 1: Simulation results

dao = sin(x3 5 +a3 ;) (sin(t))?. The desired tracking trajec-
tories are y1 4 = 0.5(sin(¢) + sin(0.5¢)) and ya 4 = sin(t).
Note that the control gain functions g;; = (0.5 + %31 s

g12 = (1+ At 92,1
(1.5 + e®1172.1%2,2) cannot be bounded a priori, but they ap-
parently satisfy Assumption 1. Thus, where existing methods
cannot be applied, our scheme can be used to the nonlinear
system (55).

The adaptation laws are given by (14), (15), (27) and

= e"1%21 and gpo =

(28) with design parameters 311 = Si12 = 1.5, B2 =
Ba2 = 1, 011 = 012 = 0.2, 021 = 022 = 0.15,
i1 = 1, 12 = 722 = 1.5 and y21 = 2. Let the

initial conditions be [21,1(0),212(0),22,1(0), 22,2(0)]" =
[0,0, 0,0]", 91,1(0) = D1,2(0)= V2,1 (0)= D2,2(0)= 0 and
5171(0): 51’2(0) = 62}1(0) = (52,2(0) = 0. The simulation
results are provided in Fig. 1 (a) and (b).

From Fig. 1 (a), we can see that the outputs y; and y» track
the desired trajectories 31 4 and ya 4 as closely as possible
and excellent tracking performance has been achieved. Fig. 1
(b) shows that the proposed scheme works well with bounded
system inputs even in the presence of possibly unbounded
control gain functions.

V. CONCLUSION

A novel extended adaptive tracking control approach has
been presented for a less restrictive class of nonlinear MIMO
systems with possibly unbounded control gain functions and
external disturbances. The restrictive assumption that the
upper and lower bounds of control gain functions must
be positive constants or coefficients has been removed by
introducing appropriate compact sets where the maximums
and minimums of continuous control gain functions are well
defined and used in the control design. Stability of the closed-
loop systems has been rigorously proved using Lyapunov
theory in combination with invariant set theory.
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