
The Qbead: putting
a qubit in everyone’s
hands
Software Framework
Ard Geuze
Mack Chen
Victor Hoogendijk

Te
ch

ni
sc
he

U
ni
ve

rs
ite

it
D
el
ft

The Qbead: putting a qubit in
everyone’s hands

Software Framework

by

Ard Geuze
Mack Chen

Victor Hoogendijk

to obtain the degree of Bachelor of Science

at the Delft University of Technology,

to be defended publicly on Tuesday June 24, 2025 at 11:00.

Student number: Ard Geuze, 5743052
Mack Chen, 5469058
Victor Hoogendijk, 5824559

Project duration: April 22, 2025 – June 27, 2025
Thesis committee: C. Errando Herranz TU Delft, supervisor

Dr.ir. N.P. van der Meijs TU Delft
Dr.ir. R. Santbergen TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

This thesis explores the development of the software framework for the Qbead. A physical repre-
sentation of a quantum bit (qubit) designed to be held in the hand. Shaped as a sphere, the Qbead
visualises the Bloch sphere from quantum mechanics, with internal LEDs that illuminate to display the
qubit’s state. The main goal of the Qbead is to provide students with a more intuitive and accessible
way to learn about quantum computing.

While the concept shows promise, the existing software framework lacks the necessary features to
function as an effective educational tool. This project focuses on further developing the codebase to
create a solid foundation for future use. By expanding the software and implementing quantum-related
experiments, the Qbead can better support hands-on education in quantum mechanics.

The new classes are added to create a better framework for other functions. The X, Y, Z, and Hadamard
single-qubit gates are implemented. 3 ways to detect input, rotating, shaking, and tapping have been
added. Some experiments are developed to show off the single-qubit gate functions and decoherence
of the state.

iii

Preface

This thesis ”The Qbead: putting a qubit in everyone’s hands” is written in regard to the Bachelor Gradu-
ation Project for Electrical Engineering at the Delft University of Technology. This project was proposed
by C. Errando Herranz with the goal of further developing the Qbead. There are two subgroups of 3
working on this project. This thesis focuses on the software part of the development. The other part
will dive into the hardware part.

This project made us much more knowledgeable about the world of quantum computing. And, it would
indeed be a dream if this subject could be taught in a simple manner. We hope that with the help of the
Qbead, we can make teaching quantum computing easier. We would like to thank our supervisor, C.
Errando Herranz, for giving us this opportunity and guiding us through this project. Also, Stefan, from
the University of Massachusetts Amherst, who has been working on this project from the beginning,
has helped us with the software development on the Qbead and gave useful feedback on the code.
And finally, we would also like to give our gratitude to our fellow team members Fynn van der Wal,
Henk Bakker, and Rutger Gosselink, who have been working with us for these three months.

Ard Geuze
Mack Chen

Victor Hoogendijk
Delft, June 2025

v

Contents

1 Introduction 1
1.1 Classical and quantum computers. 1
1.2 Quantum computing . 1
1.3 Qbead. 2
1.4 Problem . 2
1.5 Microcontroller . 2
1.6 IMU . 3
1.7 Structure of this thesis . 3

2 Programme of requirements 5
2.1 Mandatory requirements . 5

2.1.1 Functional requirements . 5
2.1.2 Non-functional requirements . 5

2.2 Trade-off requirements . 5

3 Theoretical Background 7
3.1 Quantum Bits . 7

3.1.1 Mathematical model . 7
3.1.2 Superposition and measurement . 8
3.1.3 Phase . 8

3.2 Bloch Sphere . 9
3.3 Quantum Gates. 9

3.3.1 Common gates . 9
3.3.2 Matrices . 9

4 Classes 11
4.1 Coordinates Class . 11

4.1.1 Cartesian vector . 11
4.1.2 LED control . 12

4.2 Quantum State Class. 12
4.2.1 Collapsing. 12
4.2.2 Gates . 12

4.3 Qbead Class . 13
4.3.1 User input . 13
4.3.2 Rotation detection . 13
4.3.3 Tap detection . 14
4.3.4 Shaking . 14
4.3.5 BLE changes for ESP32S3 . 15

5 Applications of the Qbead 17
5.1 UI/UX . 17
5.2 Gates . 17
5.3 Decoherence . 17

5.3.1 Dynamic Decoupling . 18

6 Testing 19
6.1 Installation . 19
6.2 User input measurements . 19

6.2.1 Responsiveness . 19
6.2.2 Gesture Detection Accuracy . 20
6.2.3 Conclusion . 20

vii

viii Contents

7 Discussion and Conclusion 21
7.1 Conclusion . 21
7.2 Discussion . 21

A Formulas 23
A.1 Matrices used for single qubit gates . 23

B Software framework 25
B.1 Source code XIAO Seeed nRF52870 . 25
B.2 Source code XIAO Seeed ESP32S3 . 37
B.3 Source code Pauli gate example . 51
B.4 Source code Decoherence. 52

Bibliography 55

1
Introduction

1.1. Classical and quantum computers
One of the most exciting scientific fields to date is quantum mechanics. The research on quantum
mechanics that is currently being worked on can have a significant impact on human lives [1]. This
field also opens up many possibilities that are not possible with classical mechanics. This thesis will
mainly dive into the field of quantum computing.
In the last few decades, computers have evolved into a product that everyone uses in their daily lives.
Computers use classical bits to perform calculations. These classical bits can only hold two states, ei-
ther 0 or 1. Currently, complex calculations can be run on supercomputers, which significantly shortens
the calculation duration compared to ordinary computers. However, for even more complex calcula-
tions, there might be a limit on howmuch faster supercomputers can be made [2]. A quantum computer
could unlock even more computational power that would not be possible through classical computers.
Some calculations that would be too long to perform on classical computers can be done exponentially
faster on a quantum computer. Classical computers are, at the time of writing this, still miles ahead in
terms of computational power; however, current developments on quantum computers are narrowing
this gap [3].

1.2. Quantum computing
Quantum computers store information differently than classical computers. The information in a quan-
tum computer is stored with quantum bits (qubits). These are similar to classical bits represented in
binary, but differ in some ways [4]. Qubits can exist in a superposition of the two states, which means
the qubit can be both 0 and 1 simultaneously. However, when the qubit is measured, the outcome will
always be either a 0 or a 1. The outcome of this measurement depends on the internal state of the
qubit.
A popular way to visualise the state of a qubit is by a Bloch sphere [5], seen in Figure 1.1a. The 0
and 1 states are on the north and south poles, respectively. Everything between the north and south
poles represents a superposition of 0 and 1. Every point on the surface of the sphere thus represents
a state of the qubit, shown with vector 𝜓. The direction of vector 𝜓 is determined by 𝜃 and 𝜑, which
are bounded to [0, 𝜋] and [0, 2𝜋) respectively.

1

2 1. Introduction

(a) The Bloch sphere [6] (b) Qbead in idle state

Figure 1.1

1.3. Qbead
A product that is currently in development, called the ”Qbead”, makes it possible to deliver a qubit in
someone’s hands. The Qbead is a physical representation of a qubit with the size of a golf ball, shown
in Figure 1.1b. It is shaped as a sphere and represents the Bloch sphere. Inside the shell, there is
a flexible PCB that wraps around the inner shell that contains the microcontroller and battery. For
showing the state on such a sphere, LEDs are placed on the PCB, and these can be illuminated to
represent a state. Having converted a theoretical model to a physical product, this product can serve
as an educational tool for students to build more intuition about quantum computing. Another project
[7] tried to create a physical Bloch sphere simulator as well. There, the Bloch sphere is placed on
a rotation system, which is controlled by a mobile phone app. It can show the quantum states and
execute gate operations. However, the complete setup is far more complicated and bigger in scale.
Getting young people engaged with quantum mechanics is quite a challenge [8]; the Qbead could be
used to engage them. Hu [8] mentioned that the Bloch sphere could be an effective tool to help students
better understand possible qubit states. However, the Bloch sphere might still be difficult to grasp for
students. Therefore, the Qbead can also be a useful tool to help better understand this subject.

1.4. Problem
Since the Qbead is still in development, there are still improvements that can be made on both the
hardware and software sides of the Qbead. For this project, the software framework is the main focus.
The software framework still lacks features to be used as an educational tool. By further developing
the code, it will have a better foundation for future experiments. These experiments will be worked out
as Arduino sketches that will perform quantum-related experiments on the Qbead to educate students.
The goal is to make this product ready, so it can be used as a handy educational tool to engage more
people in science and quantum mechanics and teach them the basics of quantum computing.

1.5. Microcontroller
The software of the Qbead is run on a microcontroller. A microcontroller is essentially a very small
computer that runs the Arduino code. For this project, the Seeed XIAO nRF52840 Sense was initially
chosen as the microcontroller.

Seeed XIAO nRF52840
The code that was already developed was developed for the Seeed XIAO nRF52840 Sense. This is
a cheap and open-source microcontroller that is quite energy efficient. It is also easily programmable
via the Arduino IDE. This made it a good choice to use. However, for hardware reasons, another
microcontroller was chosen [9].

1.6. IMU 3

ESP32 implantation
During this bachelor thesis project, there were also some hardware improvements made to the Qbead.
The XIAO nRF52840 Sense was replaced by the XIAO ESP32S3, which meant that the software frame-
work needed a rework to fully support the ESP32. Most of the code could easily be ported to the ESP32;
however, the Bluetooth and IMU drivers were different, so those parts had to be modified. The ESP32
is also easily programmable via the Arduino IDE.

1.6. IMU
The inertial measurement unit (IMU) is also a very important hardware component for the Qbead. The
IMU is responsible for measuring acceleration and angular velocity. Some IMUs can also measure the
magnetic field. The devices that measure these quantities are called the accelerometer, gyroscope,
and magnetometer, respectively. The XIAO nRF52840 has a built-in IMU with 6 axes, which includes
only the acceleration and the angular velocity. The XIAO ESP32S3 does not have a built-in IMU. The
hardware team chose the ICM-20948 as the new IMU. This is a 9-axis IMU, which means that it also
measures the magnetic field.

1.7. Structure of this thesis
This thesis is divided into multiple chapters about the changes that have been made to the software
framework. Chapter 2 outlines the programme of requirements for this project. Foreknowledge for
this project is written in Chapter 3, which will be the foundation for the classes and implementation.
This chapter is recommended to read through when the reader has no prior knowledge about quantum
computing. Chapter 4 goes into the classes that were added to the software framework. Chapter 5
describes the appliances for the Qbead and explains the working of the code. At last, the discussion
and conclusion can be read in Chapter 6. In Appendix A, the equations are shown, used for the gate
animations on the Qbead. Lastly, Appendix B shows the header files and the experiment’s code.

2
Programme of requirements

To justify the choices that have been made for the Qbead. A Programme of Requirements (PoR)
has been drafted. The requirements are set for the software features that the Qbead must/should
have.

2.1. Mandatory requirements
These requirements must always be complied with. This section is divided into two parts: functional
requirements, which will go into the use of the product; and non-functional requirements, which will
describe the qualities that the product has.

2.1.1. Functional requirements
(A1) The Qbead must be able to connect to a computer via Bluetooth or USB;

(A2) The Qbead must display its current state on the LEDs;

(A3) The Qbead must be able to do the single qubit gates: Pauli-X, -Y, and -Z and the Hadamard gate,
and display it;

(A4) The Qbead must be able to collapse to |0⟩ or |1⟩;
(A5) The software must process the state updates and user inputs within 100 ms after the gesture is

finished.

2.1.2. Non-functional requirements
(B1) The Qbead’s axes must be identifiable;

(B2) The software and required packages shall be installed on the user’s computer;

(B3) The software shall be run in Arduino IDE to execute operations;

(B4) The whole system and code must stay open source.

2.2. Trade-off requirements
Criteria that would preferably be complied with.

(C1) The product should preferably be able to display decoherence;

(C2) The product should preferably be able to allow dynamic decoupling;

(C3) The rotation should be correctly identified 90% of the time;

(C4) The shaking should be correctly identified 90% of the time;

5

6 2. Programme of requirements

(C5) The tapping should be correctly identified 90% of the time.

3
Theoretical Background

In this chapter, all the theory that is behind the experiments will be discussed. This theoretical back-
ground supports the material in the following chapters. If prior knowledge is recommended for a future
section, it will refer to the dedicated section in this chapter.

3.1. Quantum Bits
Quantum bits (qubits) are the fundamental building blocks of quantum computers. Qubits are the
quantum equivalent of the classical bits of an ordinary computer, but qubits differ in several key ways
[4]:

(I) Qubits do not always have a definite value. They can be 0 and 1 at the same time. This is
called superposition. In this superposition, the qubit has a probability for the 0 and 1 state; the
exact state cannot be known at this moment. When the qubit is measured, only a 0 or 1 will be
observed; this action is called ”collapsing”.

(II) Qubits can not be copied and read without changing their value. Because of the No-cloning
theorem [10], an unknown quantum state can not be perfectly copied before measurement. An
identical copy is not possible without measuring the state first. The qubit must collapse first to
obtain the value; after that, the qubit can then be copied or read.

(III) Reading a qubit can have an effect on another quantum bit. This is called entanglement.

3.1.1. Mathematical model
A mathematical representation of the qubit’s state can be found in Equation 3.1 [4].

|𝜓⟩ = 𝑒𝑖𝛾 (cos 𝜃2 |0⟩ + 𝑒
𝑖𝜑 sin

𝜃
2 |1⟩) (3.1)

Here |𝜓⟩ represents the state of the qubit in spherical coordinates, |0⟩ is the 0 state, and |1⟩ is the 1

state. These states can be seen as vectors, so |0⟩ = (10) and |1⟩ = (01). This way of representing the

vectors is called bra-ket notation [11]. This representation also indicates that the quantum state lies
in a complex vector space. Further, 𝛾 is the global phase and 𝜑 the relative phase (see Subsection
3.1.3). The position of the state is determined by 𝜃 and 𝜑, which are bounded to [0, 𝜋] and [0, 2𝜋),
respectively. Here 𝜃 refers to the polar angle, and 𝜑 refers to the azimuthal angle. A visualisation can
be seen in Figure 3.1.

7

8 3. Theoretical Background

Figure 3.1: The Bloch Sphere with all axes shown [12]

For simplicity, Equation 3.1 is often split into two parts [4]:

𝛼 = 𝑒𝑖𝛾 cos 𝜃2 (3.2)

𝛽 = 𝑒𝑖(𝜑+𝛾) sin 𝜃2 (3.3)

Combining Equations 3.2 and 3.3 gives |𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩, where 𝛼, 𝛽 ∈ ℂ and |𝛼|2 + |𝛽|2 = 1.

3.1.2. Superposition and measurement
As discussed in Item (I) of Subsection 3.1, qubits can be in a superposition. This means the qubit
has both a 0 and a 1 component. When measuring the qubit, the chance that it collapses to 0 is

|𝛼|2 = (cos 𝜃2)
2
and the chance that it collapses to 1 is |𝛽|2 = (sin 𝜃

2)
2
[4]. The phase would not make

a difference in this case, since the absolute value is taken. Note that |𝛼|2 + |𝛽|2 = 1, this means that
the total probability that either a 0 or a 1 is measured must be 1.

3.1.3. Phase
Normally, the quantum state is written with the global phase factor 𝑒𝑖𝛾 as shown in Equation 3.1. Here
𝛾 represents the global phase, and the 𝜑 represents the relative phase. When the quantum state is
measured, the global phase does not affect the outcome [13]. Since the absolute value is taken of
the two probability amplitudes 𝛼 and 𝛽, the results are the same as without the global phase. As the
Equations 3.4 and 3.5 show, the global phase does not change the quantum state measurement. For
this reason, the global phase can be ignored. The simplified quantum state expression without global
phase is shown in Equation 3.6.

|𝛼|2 = |𝑒𝑖𝛾𝛼|2 (3.4) |𝛽|2 = |𝑒𝑖𝛾𝛽|2 (3.5)

|𝜓⟩ = cos
𝜃
2 |0⟩ + 𝑒

𝑖𝜑 sin
𝜃
2 |1⟩ (3.6)

The relative phase only changes the phase of the 𝛽 component; this makes it possible to have a
relative phase for two states when the 𝛼 stays the same. States that differ in relative phase can have
a physically observable difference when measuring the qubit. Thus, relative phase does not make two
states equivalent, whereas with global phase, the states stay the same. [5].

3.2. Bloch Sphere 9

3.2. Bloch Sphere
The Bloch sphere is an intuitive way to represent the state of a single qubit [4], which is shown in Figure
3.1. The 𝜃 shows the angle from the |0⟩ state to the |1⟩ state on the X-Z plane. And, 𝜑 shows the
angle on the X-Y plane. The states that lie on the X and Y axis are listed below:

|+⟩ = [
1
√21
√2
] , |−⟩ = [

1
√2−1
√2
] , |𝑖⟩ = [

1
√2𝑖
√2
] , | − 𝑖⟩ = [

1
√2−𝑖
√2
] (3.7)

The Bloch sphere maps all relevant quantities (relative phase and probability amplitudes), but discards
the global phase. Because the global phase is not accounted for in the Bloch sphere, Equation 3.6 is
used to define the state on the Bloch sphere. Due to its clarity and ease of interpretation, the Qbead
uses the Bloch sphere to visualise its internal state. One more thing to note about the Bloch sphere,
orthogonal states are antipodal (opposite of the centre), not at 90∘[4].

3.3. Quantum Gates
The state represented in a Bloch sphere can be manipulated by applying quantum gates to the qubit
[5], [14]. They change the state of one or more qubits, similar to classical logic gates, but they operate
differently. Quantum gates can be divided into two types: single-qubit gates and multiple-qubit gates.
Single-qubit gates are generally simpler and change the state vector of only a single qubit. One of the
advantages of the Bloch sphere is that these single-qubit gates can be viewed as rotations around an
axis on this sphere.

3.3.1. Common gates
The most common single-qubit gates used in quantum computing are the Pauli-X, -Y, and -Z gates,
and the Hadamard gate [15], [16]. The Pauli gates flip the state with respect to the specified axis. For
example, the Pauli-X gate rotates the state 180 degrees around the X axis, seen in Figure 3.2. The
Hadamard gate is different from the other gates; it makes it possible to put a qubit into a superposition,
seen in Figure 3.3. For example, when the qubit is in state |0⟩, by applying the Hadamard gate, the
state goes to the |+⟩ state. The Hadamard gate can also be seen as a 180-degree rotation around the
diagonal axis that lies in the X-Z plane. One property of quantum gates is that they are unitary, which
implies they are reversible [3].

3.3.2. Matrices
One of the common ways to mathematically model these gates is with matrix transformations to the
vector representation of the state. In Equation 3.9, the gates can be seen in matrix form. These gates
can then be applied through matrix multiplication. The state vector can be rewritten as a vector shown
in Equation 3.8. Multiplying the X-gate from Equation 3.9 with Equation 3.8 gives the result shown in
Equation 3.10.

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ = [𝛼𝛽] (3.8)

𝑋 = [0 1
1 0] , 𝑌 = [0 −𝑖

𝑖 0] , 𝑍 = [1 0
0 −1] , 𝐻 = 1

√2
[1 1
1 −1] (3.9)

𝑋 ⋅ (|𝜓⟩) = [0 1
1 0] ⋅ [

𝛼
𝛽] = [

𝛽
𝛼] (3.10)

10 3. Theoretical Background

Figure 3.2: Pauli-X gate execution [17]

Figure 3.3: Hadamard gate execution [17]

4
Classes

This chapter describes the additional classes that have been added to the main header file of the
Qbead’s software. These classes are needed for the development of the future operations that were
added to the Qbead.

4.1. Coordinates Class
The previous version of the software already had a clever system to determine which LED is illuminated
on the Qbead. The Qbead was arranged into legs and sections. The ”legs” refer to the legs of the PCB,
and the ”sections” relate to the LEDs on one leg. The PCB can be seen in Figure 4.1. This system was
fully customisable when changing the number of legs and sections. However, this system was limited
in terms of expansion, and it has the problem that the LED density around the equator of the sphere
is lower than that of the rest of the sphere. Looking for alternative designs for the PCB would possibly
step away from this ”leg and section”, and would require a different way to choose the LEDs.

4.1.1. Cartesian vector
The new coordinate class that has been implemented in the software addresses this problem by in-
troducing a coordinate class with Cartesian vectors. Each state is set as a 3D vector (𝑥, 𝑦, 𝑧); the
orientation is the same as the Bloch sphere in Figure 1.1a. Also, each LED is in the new software set
as a 3D vector, and then all these LEDs are put in an LED position map. This system is more flexible
than the old system when working with different PCB designs. However, for each new PCB design

Figure 4.1: Flexible PCB of the Qbead

11

12 4. Classes

for the Qbead, a new LED mapping must be done. Nevertheless, it would be a better way for future
development to continue with an LED mapping, since it uses a universal system now to control the
LEDs. In addition to the benefits, the new class supports the development of future operations, such
as the gates and collapse function. These functions can read out the coordinates with this class, which
is made easier currently. The exact position of an LED is known, which was harder to tell with the
previous system.

4.1.2. LED control
How each LED is shown on the sphere was previously done with the legs and sections. Similar to the
Bloch sphere in Section 3.1, 𝜃 and 𝜑 are used for Qbead to determine the state vector. The 𝜃 and
𝜑 are split into sections depending on the number of LEDs. This would divide the sphere into square
sections. When a certain reference state vector lies in one of the squares, the LED that corresponds
to that square will be lit up. The Coordinate class can also work with this system because it has helper
functions to get the 𝜑 and 𝜃 of the coordinate. Despite this, the new code also uses coordinates for
the LEDs because it makes it more generic, and with this system, it is also possible to calculate the
second closest LED. This can be used to show a way of decoherence, for example.

The new way to control the LED is done by measuring the distance between two coordinates. As
mentioned in the last section, each LED has a fixed coordinate. The distance between a reference
vector can be calculated for each LED. The LED that has the shortest distance to the reference vector
will only be switched on. There is also an option to light more LEDs; this can be used to make motion
smoother or to show decoherence.

4.2. Quantum State Class
A new class was implemented to keep track of the quantum state of the Qbead. This class was not
present in the previous version of the code. This class keeps track of a coordinate with the Coordinates
class (see Section 4.1). It also has helper functions to perform gates on the current state and collapse
the state.

4.2.1. Collapsing
To replicate the real behaviour of a qubit, a collapse function was added to make measurement of
the qubit possible (see Requirement (A4)). When measuring the state of a qubit, the state collapses to
either 0 or 1 (see Subsection 3.1.2). The calculations are based on a qubit’s behaviour when collapsing.
The probability of the |0⟩ state is compared to a randomly generated number from 0 to 100. First, the
probability of |0⟩ is scaled to [0,100] as well. Then, if this randomly generated number is less than the
value of |0⟩, it will collapse to |0⟩, and otherwise it will collapse to |1⟩. Then, the coordinate is set to
either (0, 0, 1) or (0, 0, -1), which represents the 0 and 1 state, respectively.

4.2.2. Gates
One of the main requirements for the Qbead is to show the single qubit gates (see Requirement (A3)).
These are the Pauli-X, -Y, and -Z gates, as well as the Hadamard gate (see Section 3.3).
When a 180-degree rotation around the axis of a circle is done, the state is flipped around that axis.
This flipping is the same as taking the inverse of the other two axes. Thus, a simple solution for a Pauli
gate would be to negate the two other axes. So, for example, performing a Pauli-X gate will transform
the coordinate (𝑥, 𝑦, 𝑧) into (𝑥, −𝑦,−𝑧). For the Hadamard gate, the X and Z axes can be swapped.
This results in a 180-degree rotation around the XZ-axis. However, for implementing animations, the
whole path of the rotations needed to be known. The old approach only calculated the position at
the end of the rotation, which resulted in an incorrect animation being shown. A different approach
was to implement this with matrices (see Subsection 3.3.2). The rotation for all the gates mentioned
previously can be done with matrix multiplications. To compute the path of the gate matrices, these
matrices can be modified into rotation operators. These are constructed via Equation 4.1 [5], where
’I’ stands for the identity matrix and ’G’ for the gate matrix defined in Subsection 3.3.2 corresponding
to the Rotation axis. Filling in the gate matrices results in Rotation operators A.1, A.2, A.3 and A.4.
The matrix operations are computed using the EIGEN C++ library. To show the animations, the Qbead
uses the QuantumState class twice, once for the actual state of the qubit and once for the visual state

4.3. Qbead Class 13

of the system, which is calculated by applying the gate matrix in small intervals of 𝜃 to get a smooth
animation of the rotation.

𝑅(𝜃) = 𝑐𝑜𝑠(𝜃/2) ∗ 𝐼 − 𝑖𝑠𝑖𝑛(𝜃/2) ∗ 𝐺 (4.1)

4.3. Qbead Class
TheQbead class serves as an abstraction for all the hardware functions of a Qbead. Every Qbead class
instance should correspond to a physical Qbead. The initial form of the Qbead’s software already had
a lot of functions implemented. These functions implement the LED control using ”legs” and ”sections”
discussed in Subsection 4.1.2, initialising the firmware, reading out the accelerometer, and using the
Bluetooth functions of the XIAO nRF52840 microcontroller. This was also later rewritten for the XIAO
ESP32S3.

4.3.1. User input
One of the main requirements of the Qbead class is to let people operate the Qbead by themselves
when holding it in their hands. To let people do operations on the Qbead, it needs to be able to read
inputs in some way. The only way to read physical inputs with the Qbead is by using the IMU present
on the Qbead hardware.
There are three possible ways to detect user inputs: rotating, shaking, and tapping. There are four
different qubit gates implemented. There are also gestures to collapse the state and to get to a random
state. This results in six different inputs that need to be differentiated. The following methods can be
used for user input:

• Rotation of the Qbead in 3 axes using the gyroscope

• Tapping on the Qbead in 3 axes

• Shaking of the Qbead in 3 axes

These are sufficient inputs to map every required user input.
All three axes of the gyroscope are used to sense rotations. Since it senses the X, Y, and Z axes,
these axes can be connected to the respective Pauli gates. This way, the user easily knows which gate
is executed. To avoid confusion about which side the Qbead must be tapped for a certain function,
tapping is used in 2 axes, on the poles (Z-axis) and all around the equator (XY-plane). This makes the
usability more understandable for the users. Lastly, the user might not know the difference between the
axes when shaking the Qbead. It is harder to differentiate the axes when detecting shaking compared
to the other function, so shaking detection does not differentiate between axes and would only execute
one function. In conclusion, 3 different gestures are mapped by rotating, 2 gestures by tapping and
only 1 by shaking.

4.3.2. Rotation detection
To detect rotations, the gyroscope on the IMU can be used. There are a few possible ways to implement
the detection:

• Integrate the gyroscope and look at the degrees rotated

• Set a threshold for the amplitude of the angular velocity

• Use a time filter and a threshold for the angular velocity

Integrating the gyroscope
The absolute rotation in degrees is calculated via integration of the gyroscope, or by looking at the
magnetometer implemented on the new hardware[9]. This gives a way to couple a certain length of
rotation to an input. Because a Pauli gate rotates the state 180 degrees, the action needed to perform
the gate and the result are essentially the same. Because the user might want to look at the other side
of the Qbead without performing a gate, turning the Qbead slowly should not trigger a rotation input.
Thus, rotation inputs have to be fast, and users are likely to lose track of the amount of rotation.

14 4. Classes

Using angular velocity
Reading the angular velocity of the gyroscope would be a better choice in this case. To trigger the
input, the user just has to rotate the Qbead quickly. The threshold is set to 11 radians per second. This
is retrieved from testing, where it was found to strike a balance between the user easily being able to
trigger it, but also not accidentally triggering the input. Some users might first have trouble finding the
threshold, but with some practice, this is learned quickly.

Using a timefilter
To eliminate wrong inputs coming from shocks and shaking, the gyroscope is first put into a time filter
function. This function was already present in the firmware. It filters high-frequency spikes in the gy-
roscope measurement by combining the old measurements with the new measurement, which makes
the data more reliable.

4.3.3. Tap detection
The IMU of the XIAO nRF52840 has built-in tap detection. The IMU could be configured to enable tap
detection. The tap detection had settings for the amount of force that needs to be applied, enabling
double-tapping and detecting different axes for tapping. It uses an interrupt system, but the rest of the
system uses polling for getting its data. Therefore, a counter was implemented that keeps track of the
number of double taps. The system polls the counter to know if a double tap has happened.
For the XIAO ESP32S3, the IMU ICM-20948 was used. This IMU does not have native tap detec-
tion. Therefore, the tap detection was built with a small FSM as seen in Figure 4.2. The FSM has 4
states:

1. Nothing detected

2. 1 tap detected and waiting for debounce

3. 1 tap detected and not waiting for debounce

4. 2 taps detected

The FSM begins in state 1. If there is an increase in acceleration of more than 5 g/s, then it will go to
the second state. After 50 ms, it automatically goes to the third state. This is called debouncing, and
it prevents 1 tap from counting as 2 taps. When a new tap is detected within 400 ms of the initial tap,
the FSM goes to state 4. From state 4, it will go to state 1 in the next clock cycle. When no new tap is
detected, the FSM also goes to the first state again.

Figure 4.2: FSM diagram of tapping detection

4.3.4. Shaking
Shaking the Qbead results in spikes of high acceleration. This principle is used in the detection of
shaking. The function should differentiate single shocks from shaking. To make this possible, the
function checks if it keeps sensing shocks for a prolonged period. This is also implemented with a
small FSM. This FSM can be seen in Figure 4.3. First, the total acceleration is calculated by taking the
length of the gyroscope vector. The threshold for strong enough shakes to trigger the FSM is set to
3G force. If this is sensed, the FSM goes into the CheckShaking state, and the Qbead starts counting

4.3. Qbead Class 15

in milliseconds when it enters this state. After 300 milliseconds, it starts checking if the shocks are
still present. If this is the case, it will trigger the action tied to shaking. It will check for another 500
milliseconds, and if in that time no other shock is sensed, the FSM goes back to the Idle state, and no
action is triggered.

Figure 4.3: FSM diagram of shaking detection

4.3.5. BLE changes for ESP32S3
Currently, the BLE, standing for Bluetooth Low Energy, on the Qbead does not have a real function and
can only be used to read out IMU values. One of the future features planned for the Qbead is to allow
for entanglement and multiple Qbeads connecting. For this, BLE is needed, and that is why the basics
are already implemented. On the XIAO nRF52840, the BLE was already implemented using a package
from Adafruit. It uses characteristics, which are essentially packets of information holding a value of
a certain variable. On the Qbead, there are four of these: the colour of the Qbead, the coordinates,
the accelerometer readout, and the gyroscope readout. These characteristics can be read or written to
depending on the configuration. The characteristics are packaged into a service. Every characteristic
and service has its own UUID(universally unique identifier), a string of unique characters acting as an
identifier. This is then advertised, which means the Qbead broadcasts the data through the air.

The old package that implemented the BLE on the XIAO nRF52840 microcontroller is not supported
on the XIAO ESP32S3. This means that the BLE code had to be rewritten using the BLE package
built into the ESP32. Similar to the old package, this package uses services and characteristics. The
following things were changed compared to the XIAO nRF52840:

• The Qbead now creates its own server, which could hold multiple services (the Qbead still only
has one). The new hierarchy is shown in Figure 4.4.

• The server, service, and characteristic classes are now stored in pointer variables and created
using the pointer from the class above it.

• Every characteristic now has a descriptor that enables notification for the readouts and gives
every characteristic a name.

• The UUID format was changed to a version 4 UUID format because the new package could not
handle the old format.

16 4. Classes

Figure 4.4: BLE hierarchy of the Qbead

5
Applications of the Qbead

A few experiments were designed to teach people about quantum computing. From an educational
standpoint, all experiments must have a learning goal. Those experiments will be discussed in this
chapter.

5.1. UI/UX
To indicate the axes on the Qbead, which helps to find the orientation of the Qbead; there are 7 LEDs
that always light up (see Requirement (B1)). First, the 0 state vector is shown in red, and the 1 state
vector is shown in green. These colours were chosen because those are the colours that people
associate with ”on” and ”off”. At the equator, there are four equally spaced LEDs that are shown in blue
to represent the X and Y axes, which are also the |+⟩, |−⟩, |𝑖⟩, and | − 𝑖⟩ states. Lastly, a white LED is
shown to indicate the current quantum state.

5.2. Gates
To learn about gates, an experiment was set up. In this experiment, people can apply the Pauli gates
by turning the Qbead around an axis. For example, if someone turns the Qbead around its Z-axis,
the Pauli-Z gate will be applied. This will be done by showing an animation where the state travels
around the Z-axis. The Hadamard gate can also be applied. This can be done by double-tapping on
either the X or Y-axis. See Subsection 4.2.2 for the implementation of these gates. Double-tapping
the Z-axis collapses the state to 0 or 1. The Hadamard gate has the same animation as the Pauli
gates. Collapsing does not have an animation since qubits collapse almost instantly. However, after
collapsing, it has a cool-down of 2 seconds to prevent accidental gestures. There is also a way to get
to a random state. This can be done by shaking the Qbead. The rotation operations have a certain
threshold, which prevents the Qbead from activating without triggering any of the gates when inspecting
the Qbead. All the implementation can be read back in Section 4.3.

5.3. Decoherence
Decoherence is a phenomenon in qubits where, while in superposition, the complex quantum state
gradually decays over time, leading to a loss of coherence [18], [19]. This means that the phase
of the state has some drift. Since the superposition state is sensitive to external interference, even
minimal interaction with the external environment can induce decoherence [20], [21]. For this project,
a decoherence experiment was also created. In this experiment, the gates of Section 5.2 can still be
applied in the same way. The only difference is that decoherence is applied to the state.
There are a few ways to show this experiment on the Qbead. First, the decoherence can be shown by
spreading out the state. So, around the quantum state, more LEDs would turn on when no actions are
performed. With the support of the coordinate system, the nth closest LED can easily be calculated.
The only problem is that this way of implementing the decoherence is not fully generic. When the
Qbead has a higher LED resolution, the decoherence will be slower.

17

18 5. Applications of the Qbead

Figure 5.1: A qubit dephasing to both side from its original state [22]

Another method, the one that is currently used, is to give the phase a random and positive speed. The
state dephases from its original state. In Figure 5.1, an example of dephasing can be seen. For this
method, the Qbead only dephases to one side, since that is the easiest model of decoherence.

This way is simpler than the previous model. It makes it easier to understand for people without any
knowledge about quantum, and is also easy to display. The old state is shown in purple, and the actual
state is still shown in white on the Qbead.

5.3.1. Dynamic Decoupling
Dynamic decoupling is a way to counteract the quantum state error on a qubit. By applying a sequence
of gates on the qubit, it reduces the effect of decoherence on the qubit [23], [24]. Dynamic decoupling
is one of the simpler methods to suppress the quantum error [25], which is why it would be a great
addition to the Qbeads software to teach more knowledge about the qubit.

With the gate and decoherence implemented in the software, there was no need to make drastic
changes to the software. A separate sketch was made to show the decoherence on the Qbead, after
which the user can perform gates to replicate dynamic decoupling. With this dynamic decoupling ex-
periment, users will learn that rotating the Qbead in a certain manner will cause the quantum state to
become stable.

6
Testing

In this chapter, the usability of the Qbead is tested to see if the Programme of Requirements is met. The
Programme of Requirements can be found in Chapter 2. The current changes made to the software
framework are published on the public GitHub repository of the Qbead. The whole code can also be
seen in Appendix B.

6.1. Installation
To establish a connection with the Qbead, the Qbead must be connected via USB or Bluetooth. How-
ever, the Bluetooth capabilities are currently limited, so during this project, everything was done with
a USB connection. The Seeed XIAO nRF52840 Sense and the XIAO ESP32S3 use the Arduino IDE
for writing, compiling, and uploading the code. Before the Qbead’s software framework can be up-
loaded to the board, some required packages must be installed first. The following packages must be
installed:

• Adafruit Neopixel, for the communication between the LEDs and board.

• Seeed Arduino LSM5DS3, to read out sensor data of the onboard IMU of the nRF52840.

• ArduinoEigen, to support matrix calculations.

• SparkFun_ICM-20948_ArduinoLibrary, to controll the IMU of the ESP32.

• ICM20948_WE, to set the gyro range of the IMU of the ESP32.

When the software is successfully uploaded to the board, Arduino sketches can be uploaded as well
to show the decoherence experiment, for example.

6.2. User input measurements
6.2.1. Responsiveness
The Qbead is designed to process user inputs within 100 ms after a gesture is executed. The short
processing time makes sure there is minimal time delay between performing a gesture and getting
an output. This improves the user experience, since it feels close to real-time. The decoherence
experiment has a cycle time of 20 ms. Which means that the main loop is executed every 20 ms.
This is the most extensive experiment that was written, so the cycle time of the other experiments is
expected to be faster or the same. Shaking and rotating are both executed in the same loop cycle as
they are detected. This operation would take 20 ms. Tapping with the interrupt system may take a
little bit more than 1 clock cycle, which results in a maximum cycle time of 40 ms. All operations and
experiments are well under the threshold of 100 ms.

19

20 6. Testing

6.2.2. Gesture Detection Accuracy
The Qbead aims to accurately identify rotation, shaking, and tapping movements. The accuracy of
recognising the correct movement should be at least 90%. It is hard to measure this accuracy. Since the
user is prone to making mistakes. So, for example, tapping should work as intended, but it is possible
the user has not tapped with enough force. Or tapping off-axis will sometimes result in registering both
axes. Then the software cannot determine which axis is meant. Therefore, the user needs to tap on
one of the highlighted axes. The rotation gesture has big margins for error, since the user can easily
rotate the Qbead around an axis with the help of the axis indicators. So, it is hard to imagine that
two rotations are measured at once. When shaking, it is important not to rotate the Qbead around an
axis, as rotations will trigger gate operations as well and interfere with the shaking feature. But with
these instructions, the accuracy for rotating and shaking is essentially 100%. The tapping, however,
sometimes just detects 2 axes even if tapped very carefully, but that is only once every 30 times during
testing.

6.2.3. Conclusion
After testing, the Qbead software framework shows consistent and adequate results. With state up-
dates processed within 100 ms. Further, the battery life is performing well above expectations, with
battery life up to 90 minutes. Lastly, the gesture recognition accuracy meets the specifications of 90%
accuracy. Therefore, the Requirements (A5) and (C3) - (C5) are met.

7
Discussion and Conclusion

In this chapter, the outcomes of the project are evaluated based on the established Programme of
Requirements (PoR). The achieved results, encountered limitations, and recommendations for future
improvements are discussed in detail.

7.1. Conclusion
In this project, the software was greatly improved. A solid, generic, and extendable foundation was
built. A few experiments were implemented on this foundation. Both the code that was built for the
XIAO nRF52840 and the code developed for the XIAO ESP32S3 do meet all mandatory requirements.
The XIAO nRF52840 also meets all trade-off requirements. However, at the time of writing, the code
for the XIAO ESP32S3 does not meet all trade-off requirements. The tapping and shaking don’t meet
the 90% accuracy threshold. The reason this works well on the XIAO nRF52840 but not on the XIAO
ESP32S3 is that the XIAO nRF52840 has built-in tap detection. Therefore, the tap detection on the
XIAO ESP32S3 was self-built, which was not equally reliable as the one on the XIAO nRF52840.

The software was developed using the Incremental model. First, the PoR was created. Then, a re-
quirement or feature was picked, and that was implemented and tested. This model makes it very easy
to work with a team because every team member can work on their own cycle. In the first few cycles,
the focus was on improving the foundation of the code. So, for example, implementing the Coordi-
nate class. After the foundation was made, the focus went on implementing the experiments. When
implementing some experiments, the foundation still needed some changes, but those were relatively
minor.

7.2. Discussion
As already discussed in the conclusion, the tap detection of the XIAO ESP32S3 does not work that
well. We still want to improve that ourselves after this paper is finished.
Due to a misunderstanding and a difference in opinion in the beginning of the project, we first tried to
make the Qbeads axes fixed to the outside world so that the Z axis always points to the sky/ground.
We spent a lot of time on this, and this could have been prevented with more frequent meetings and
this would have left more time to develop other functions.

Recommendations for Future Work:

• Further optimisation of the gesture detection.

• Exploration of magnetometer integration for enhanced spatial awareness or more advanced ges-
tures.

• Implementation of entanglement between Qbeads.

• Development of a dedicated Bluetooth interface, accompanied by a control app or website.

21

A
Formulas

A.1. Matrices used for single qubit gates
𝑅𝑥(𝜃) = 𝑐𝑜𝑠(𝜃/2) ∗ 𝐼 − 𝑖𝑠𝑖𝑛(𝜃/2) ∗ [

0 1
1 0] = [

𝑐𝑜𝑠(𝜃/2) −𝑖𝑠𝑖𝑛(𝜃/2)
−𝑖𝑠𝑖𝑛(𝜃/2) 𝑐𝑜𝑠(𝜃/2)] (A.1)

𝑅𝑦(𝜃) = 𝑐𝑜𝑠(𝜃/2) ∗ 𝐼 − 𝑖𝑠𝑖𝑛(𝜃/2) ∗ [
0 −𝑖
𝑖 0] = [

𝑐𝑜𝑠(𝜃/2) −𝑠𝑖𝑛(𝜃/2)
𝑠𝑖𝑛(𝜃/2) 𝑐𝑜𝑠(𝜃/2)] (A.2)

𝑅𝑧(𝜃) = 𝑐𝑜𝑠(𝜃/2) ∗ 𝐼 − 𝑖𝑠𝑖𝑛(𝜃/2) ∗ [
1 0
0 −1] = [

𝑒−𝑖𝜃/2 0
0 𝑒𝑖𝜃/2] (A.3)

𝑅𝐻(𝜃) = 𝑐𝑜𝑠(𝜃/2) ∗ 𝐼 −
𝑖𝑠𝑖𝑛(𝜃/2)

√2
[1 1
1 −1] = [

𝑐𝑜𝑠(𝜃/2) − 𝑖𝑠𝑖𝑛(𝜃/2)
√2 − 𝑖𝑠𝑖𝑛(𝜃/2)√2

− 𝑖𝑠𝑖𝑛(𝜃/2)√2 𝑐𝑜𝑠(𝜃/2) + 𝑖𝑠𝑖𝑛(𝜃/2)
√2

] (A.4)

23

B
Software framework

B.1. Source code XIAO Seeed nRF52870
1 #ifndef QBEAD_H
2 #define QBEAD_H
3

4 #include <Arduino.h>
5 #include <Adafruit_NeoPixel.h>
6 #include <LSM6DS3.h>
7 #include <math.h>
8 #include <ArduinoEigen.h>
9 #include <bluefruit.h>

10

11 using namespace Eigen;
12

13 // default configs
14 #define QB_LEDPIN 10
15 #define QB_PIXELCONFIG NEO_BRG + NEO_KHZ800
16 #define QB_IMU_ADDR 0x6A
17 #define QB_IX 1
18 #define QB_IY 0
19 #define QB_IZ 2
20 #define QB_SX 0
21 #define QB_SY 0
22 #define QB_SZ 1
23 #define GYRO_GATE_THRESHOLD 8
24 #define QB_PIXEL_COUNT 62
25 #define QB_MAX_PRPH_CONNECTION 2
26 #define T_ACC 100000
27 #define T_GYRO 10000
28

29 const uint8_t QB_UUID_SERVICE[] =
30 {0x45,0x8d,0x08,0xaa,0xd6,0x63,0x44,0x25,0xbe,0x12,0x9c,0x35,0xc6,0x1f,0x0c,0xe3};
31 const uint8_t QB_UUID_COL_CHAR[] =
32 {0x45,0x8d,0x08,0xaa,0xd6,0x63,0x44,0x25,0xbe,0x12,0x9c,0x35,0xc6+1,0x1f,0x0c,0xe3};
33 const uint8_t QB_UUID_SPH_CHAR[] =
34 {0x45,0x8d,0x08,0xaa,0xd6,0x63,0x44,0x25,0xbe,0x12,0x9c,0x35,0xc6+2,0x1f,0x0c,0xe3};
35 const uint8_t QB_UUID_ACC_CHAR[] =
36 {0x45,0x8d,0x08,0xaa,0xd6,0x63,0x44,0x25,0xbe,0x12,0x9c,0x35,0xc6+3,0x1f,0x0c,0xe3};
37 const uint8_t QB_UUID_GYR_CHAR[] =
38 {0x45,0x8d,0x08,0xaa,0xd6,0x63,0x44,0x25,0xbe,0x12,0x9c,0x35,0xc6+4,0x1f,0x0c,0xe3};
39

40 const uint8_t zerobuffer20[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0
x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0};

41 const std::complex<float>i(0, 1);
42

43 // TODO manage namespaces better
44 // The setPixelColor switches blue and green
45 static uint32_t color(uint8_t r, uint8_t g, uint8_t b) {
46 return ((uint32_t)r << 16) | ((uint16_t)b << 8) | g;

25

26 B. Software framework

47 }
48

49 static uint8_t redch(uint32_t rgb) {
50 return rgb >> 16;
51 }
52

53 static uint8_t greench(uint32_t rgb) {
54 return 0x0000ff & rgb;
55 }
56

57 static uint8_t bluech(uint32_t rgb) {
58 return (0x00ff00 & rgb) >> 8;
59 }
60

61 uint32_t colorWheel(uint8_t wheelPos) {
62 wheelPos = 255 - wheelPos;
63 if (wheelPos < 85) {
64 return color(255 - wheelPos * 3, 0, wheelPos * 3);
65 }
66 if (wheelPos < 170) {
67 wheelPos -= 85;
68 return color(0, wheelPos * 3, 255 - wheelPos * 3);
69 }
70 wheelPos -= 170;
71 return color(wheelPos * 3, 255 - wheelPos * 3, 0);
72 }
73

74 uint32_t colorWheel_deg(float wheelPos) {
75 return colorWheel(wheelPos * 255 / 360);
76 }
77

78 float sign(float x) {
79 if (x > 0) return +1;
80 else return -1;
81 }
82

83 // z = cos(t)
84 // x = cos(p)sin(t)
85 // y = sin(p)sin(t)
86 // Return the angle in radians between the x-axis and the line to the point (x, y)
87 float phi(float x, float y) {
88 return atan2(y, x);
89 }
90

91 float phi(float x, float y, float z) {
92 return phi(x, y);
93 }
94

95 float theta(float x, float y, float z) {
96 float ll = x * x + y * y + z * z;
97 float l = sqrt(ll);
98 float theta = acos(z / l);
99 return theta;

100 }
101

102 bool checkThetaAndPhi(float theta, float phi) {
103 return theta >= 0 && theta <= 180 && phi >= 0 && phi <= 360;
104 }
105

106 void connect_callback(uint16_t conn_handle)
107 {
108 // Get the reference to current connection
109 BLEConnection* connection = Bluefruit.Connection(conn_handle);
110

111 char central_name[32] = { 0 };
112 connection->getPeerName(central_name, sizeof(central_name));
113

114 Serial.print(”[INFO]{BLE} Connected to ”); // TODO take care of cases where Serial is not
available

115 Serial.println(central_name);
116 }

B.1. Source code XIAO Seeed nRF52870 27

117

118 // In rads
119 void sphericalToCartesian(float theta, float phi, float& x, float& y, float& z)
120 {
121 // Normalize yaw to be between 0 and 2*PI
122 phi = fmod(phi, 2 * PI);
123 if (phi < 0)
124 {
125 phi += 2 * PI;
126 }
127 if (!checkThetaAndPhi(theta * 180 / PI, phi * 180 / PI))
128 {
129 Serial.print(”Theta or Phi out of range when creating coordinates class, initializing as

1”);
130 Serial.print(”Theta: ”);
131 Serial.print(theta);
132 Serial.print(”Phi: ”);
133 Serial.println(phi);
134 x = 0;
135 y = 0;
136 z = 1;
137 return;
138 }
139

140 x = sin(theta) * cos(phi);
141 y = sin(theta) * sin(phi);
142 z = cos(theta);
143 }
144

145 // Tap detection
146 LSM6DS3 myIMU(I2C_MODE, QB_IMU_ADDR); // Create an instance of the IMU
147 uint8_t interruptCount = 0; // Amount of received interrupts
148 uint8_t prevInterruptCount = 0; // Interrupt Counter from last loop
149

150 void setupTapInterrupt() {
151 uint8_t error = 0;
152 uint8_t dataToWrite = 0;
153

154 // Double Tap Config
155 myIMU.writeRegister(LSM6DS3_ACC_GYRO_CTRL1_XL, 0x60);
156 myIMU.writeRegister(LSM6DS3_ACC_GYRO_TAP_CFG1, 0x8E);// INTERRUPTS_ENABLE, SLOPE_FDS
157 myIMU.writeRegister(LSM6DS3_ACC_GYRO_TAP_THS_6D, 0x6C);
158 myIMU.writeRegister(LSM6DS3_ACC_GYRO_INT_DUR2, 0x7F);
159 myIMU.writeRegister(LSM6DS3_ACC_GYRO_WAKE_UP_THS, 0x80);
160 myIMU.writeRegister(LSM6DS3_ACC_GYRO_MD1_CFG, 0x08);
161 }
162

163 void int1ISR()
164 {
165 interruptCount++;
166 }
167

168 namespace Qbead {
169

170 class Coordinates
171 {
172 public:
173 Vector3d v;
174

175 Coordinates(float argx, float argy, float argz)
176 {
177 v = Vector3d(argx, argy, argz);
178 v.normalize();
179 }
180

181 // In rads
182 Coordinates(float theta, float phi)
183 {
184 float x, y, z = 0;
185 sphericalToCartesian(theta, phi, x, y, z);
186 v = Vector3d(x, y, z);

28 B. Software framework

187 }
188

189 Coordinates(Vector3d vector)
190 {
191 v = vector;
192 v.normalize();
193 }
194

195 // In rads
196 float theta()
197 {
198 return acos(v(2));
199 }
200

201 // In rads
202 float phi()
203 {
204 return atan2(v(1), v(0));
205 }
206

207 Vector2cf stateVector2D()
208 {
209 std::complex<float> alpha = cos(theta()/2);
210 std::complex<float> beta = exp(i*phi()) * sin(theta()/2);
211 return {alpha, beta};
212 }
213

214 float dist(Vector3d other) const
215 {
216 Vector3d diff = v - other;
217 return diff.norm();
218 }
219

220 void set(float argx, float argy, float argz)
221 {
222 v = Vector3d(argx, argy, argz);
223 v.normalize();
224 }
225

226 // in rads
227 void set(float theta, float phi)
228 {
229 float x, y, z = 0;
230 sphericalToCartesian(theta, phi, x, y, z);
231 v = Vector3d(x, y, z);
232 }
233

234 void set(Vector3d vector) {
235 v = vector;
236 v.normalize();
237 }
238

239 // in rads
240 void setTheta(float theta)
241 {
242 set(theta, phi());
243 }
244

245 // in rads
246 void setPhi(float phi)
247 {
248 set(theta(), phi);
249 }
250 };
251

252 class QuantumState
253 {
254 private:
255 Coordinates stateCoordinates;
256

257 public:

B.1. Source code XIAO Seeed nRF52870 29

258 QuantumState(Coordinates argStateCoordinates) : stateCoordinates(argStateCoordinates) {}
259 QuantumState() : stateCoordinates(0, 0, 1) {}
260

261 void setCoordinates(Coordinates argStateCoordinates)
262 {
263 stateCoordinates.set(argStateCoordinates.v);
264 }
265

266 Coordinates getCoordinates()
267 {
268 return stateCoordinates;
269 }
270

271 void collapse()
272 {
273 const float a = (stateCoordinates.v(2) + 1) / 2; // probability of measuring |0>
274 if (a < 0.0001) {
275 stateCoordinates.set(0, 0, -1);
276 return;
277 } else if (a > 0.9999) {
278 stateCoordinates.set(0, 0, 1);
279 return;
280 }
281 const bool is1 = random(0, 100) <= a * a * 100;
282 this->stateCoordinates.set(0, 0, is1 ? 1 : -1);
283 }
284

285 void applyGate(Matrix2cf gate)
286 {
287 Vector2cf stateVector = stateCoordinates.stateVector2D();
288 stateVector = gate * stateVector;
289 stateVector.normalize();
290 stateCoordinates.set(2*acos(abs(stateVector.x())), arg(stateVector.y()) - arg(stateVector

.x()));
291 }
292

293 void applyGateType(uint16_t gateType, float rotationDegree = PI)
294 {
295 switch (gateType)
296 {
297 case 1:
298 gateX(-rotationDegree);
299 break;
300 case 2:
301 gateY(-rotationDegree);
302 break;
303 case 3:
304 gateZ(rotationDegree);
305 break;
306 case 4:
307 gateX(rotationDegree);
308 break;
309 case 5:
310 gateY(rotationDegree);
311 break;
312 case 6:
313 gateZ(-rotationDegree);
314 break;
315 case 7:
316 gateH(rotationDegree);
317 break;
318 default:
319 break;
320 }
321 }
322

323 // Rotate PI around the x axis
324 void gateX(float rotationDegree = PI)
325 {
326 Matrix2cf gateMatrix;
327 gateMatrix << cos(rotationDegree / 2.0f), -sin(rotationDegree / 2.0f) * i,

30 B. Software framework

328 -sin(rotationDegree / 2.0f) * i, cos(rotationDegree / 2.0f); // global phase differs
from pauli gates but this doesn’t matter for bloch sphere

329 applyGate(gateMatrix);
330 }
331

332 // Rotate PI around the y axis
333 void gateZ(float rotationDegree = PI)
334 {
335 Matrix2cf gateMatrix;
336 gateMatrix << exp(-i * rotationDegree / 2.0f), 0,
337 0, exp(i * rotationDegree / 2.0f);
338 applyGate(gateMatrix);
339 }
340

341 // Rotate PI around the z axis
342 void gateY(float rotationDegree = PI)
343 {
344 Matrix2cf gateMatrix;
345 gateMatrix << cos(rotationDegree / 2.0f), -sin(rotationDegree / 2.0f),
346 sin(rotationDegree / 2.0f), cos(rotationDegree / 2.0f);
347 applyGate(gateMatrix);
348 }
349

350 // Rotate PI around the xz axis
351 void gateH(float rotationDegree = PI)
352 {
353 Matrix2cf gateMatrix;
354 gateMatrix << (cos(rotationDegree / 2.0f) - i * sin(rotationDegree / 2.0f) / sqrt(2.0f)),

-i * sin(rotationDegree / 2.0f) / sqrt(2.0f),
355 -i * sin(rotationDegree / 2.0f) / sqrt(2.0f), (cos(rotationDegree / 2.0f) + i * sin(

rotationDegree / 2.0f) / sqrt(2.0f));
356 applyGate(gateMatrix);
357 }
358 };
359

360 class Qbead {
361 public:
362 Qbead(const uint16_t pin00 = QB_LEDPIN,
363 const uint16_t pixelconfig = QB_PIXELCONFIG,
364 const uint8_t imu_addr = QB_IMU_ADDR)
365 : imu(LSM6DS3(I2C_MODE, imu_addr)),
366 pixels(Adafruit_NeoPixel(QB_PIXEL_COUNT, pin00, pixelconfig)),
367 bleservice(QB_UUID_SERVICE),
368 blecharcol(QB_UUID_COL_CHAR),
369 blecharsph(QB_UUID_SPH_CHAR),
370 blecharacc(QB_UUID_ACC_CHAR),
371 blechargyr(QB_UUID_GYR_CHAR)
372 {}
373

374 static Qbead *singletoninstance; // we need a global singleton static instance because
bluefruit callbacks do not support context variables -- thankfully this is fine because
there is indeed only one Qbead in existence at any time

375

376 LSM6DS3 imu;
377 Adafruit_NeoPixel pixels;
378

379 BLEService bleservice;
380 BLECharacteristic blecharcol;
381 BLECharacteristic blecharsph;
382 BLECharacteristic blecharacc;
383 BLECharacteristic blechargyr;
384

385 float rbuffer[3], rgyrobuffer[3];
386 float T_imu; // last update from the IMU
387 float T_freeze = 0;
388 float T_shaking = 0;
389 bool frozen = false; // frozen means that there is an animation in progress
390 bool shakingState = false; // if ShakingState is 1 detected shaking and if shaking keeps

happening randomising state
391 QuantumState state = QuantumState(Coordinates(-0.866, 0.25, -0.433));
392 Coordinates visualState = Coordinates(-0.866, 0.25, -0.433);

B.1. Source code XIAO Seeed nRF52870 31

393 Vector3d gravityVector = Vector3d(0, 0, 1);
394 Vector3d gyroVector = Vector3d(0, 0, 1);
395 float yaw = 0;
396

397 float t_ble, p_ble; // theta and phi as sent over BLE connection
398 uint32_t c_ble = 0xffffff; // color as sent over BLE connection
399

400 // led map index to Coordinates
401 // This map is for the first version of the flex-pcb
402 Coordinates led_map_v1[62] = {
403 Coordinates(-1, -0, -0),
404 Coordinates(-0.866, 0, -0.5),
405 Coordinates(-0.5, 0, -0.866),
406 Coordinates(-0, 0, -1),
407 Coordinates(0.5, 0, -0.866),
408 Coordinates(0.866, 0, -0.5),
409 Coordinates(1, 0, 0),
410 Coordinates(-0.866, 0.25, -0.433),
411 Coordinates(-0.5, 0.433, -0.75),
412 Coordinates(-0, 0.5, -0.866),
413 Coordinates(0.5, 0.433, -0.75),
414 Coordinates(0.866, 0.25, -0.433),
415 Coordinates(-0.866, 0.433, -0.25),
416 Coordinates(-0.5, 0.75, -0.433),
417 Coordinates(-0, 0.866, -0.5),
418 Coordinates(0.5, 0.75, -0.433),
419 Coordinates(0.866, 0.433, -0.25),
420 Coordinates(-0.866, 0.5, 0),
421 Coordinates(-0.5, 0.866, 0),
422 Coordinates(-0, 1, 0),
423 Coordinates(0.5, 0.866, 0),
424 Coordinates(0.866, 0.5, 0),
425 Coordinates(-0.866, 0.433, 0.25),
426 Coordinates(-0.5, 0.75, 0.433),
427 Coordinates(-0, 0.866, 0.5),
428 Coordinates(0.5, 0.75, 0.433),
429 Coordinates(0.866, 0.433, 0.25),
430 Coordinates(-0.866, 0.25, 0.433),
431 Coordinates(-0.5, 0.433, 0.75),
432 Coordinates(-0, 0.5, 0.866),
433 Coordinates(0.5, 0.433, 0.75),
434 Coordinates(0.866, 0.25, 0.433),
435 Coordinates(-0.866, -0, 0.5),
436 Coordinates(-0.5, -0, 0.866),
437 Coordinates(-0, -0, 1),
438 Coordinates(0.5, -0, 0.866),
439 Coordinates(0.866, -0, 0.5),
440 Coordinates(-0.866, -0.25, 0.433),
441 Coordinates(-0.5, -0.433, 0.75),
442 Coordinates(-0, -0.5, 0.866),
443 Coordinates(0.5, -0.433, 0.75),
444 Coordinates(0.866, -0.25, 0.433),
445 Coordinates(-0.866, -0.433, 0.25),
446 Coordinates(-0.5, -0.75, 0.433),
447 Coordinates(-0, -0.866, 0.5),
448 Coordinates(0.5, -0.75, 0.433),
449 Coordinates(0.866, -0.433, 0.25),
450 Coordinates(-0.866, -0.5, -0),
451 Coordinates(-0.5, -0.866, -0),
452 Coordinates(-0, -1, -0),
453 Coordinates(0.5, -0.866, -0),
454 Coordinates(0.866, -0.5, -0),
455 Coordinates(-0.866, -0.433, -0.25),
456 Coordinates(-0.5, -0.75, -0.433),
457 Coordinates(-0, -0.866, -0.5),
458 Coordinates(0.5, -0.75, -0.433),
459 Coordinates(0.866, -0.433, -0.25),
460 Coordinates(-0.866, -0.25, -0.433),
461 Coordinates(-0.5, -0.433, -0.75),
462 Coordinates(-0, -0.5, -0.866),
463 Coordinates(0.5, -0.433, -0.75),

32 B. Software framework

464 Coordinates(0.866, -0.25, -0.433),
465 };
466

467 static void ble_callback_color(uint16_t conn_hdl, BLECharacteristic* chr, uint8_t* data,
uint16_t len) {

468 Serial.println(”[INFO]{BLE} Received a write on the color characteristic”);
469 singletoninstance->c_ble = (data[2] << 16) | (data[1] << 8) | data[0];
470 Serial.print(”[DEBUG]{BLE} Received”);
471 Serial.println(singletoninstance->c_ble, HEX);
472 }
473

474 static void ble_callback_theta_phi(uint16_t conn_hdl, BLECharacteristic* chr, uint8_t* data
, uint16_t len){

475 Serial.println(”[INFO]{BLE} Received a write on the spherical coordinates characteristic”
);

476 singletoninstance->t_ble = ((uint32_t)data[0])*180/255;
477 singletoninstance->p_ble = ((uint32_t)data[1])*360/255;
478 Serial.print(”[DEBUG]{BLE} Received t=”);
479 Serial.print(singletoninstance->t_ble);
480 Serial.print(” p=”);
481 Serial.println(singletoninstance->p_ble);
482 }
483

484 void startAccelerometer() {
485 // BLE Characteristic IMU xyz accelerometer readout
486 blecharacc.setProperties(CHR_PROPS_READ | CHR_PROPS_NOTIFY);
487 blecharacc.setPermission(SECMODE_OPEN, SECMODE_OPEN);
488 blecharacc.setUserDescriptor(”xyz acceleration”);
489 blecharacc.setFixedLen(3*sizeof(float));
490 blecharacc.begin();
491 blecharacc.write(zerobuffer20, 3*sizeof(float));
492 }
493

494 void begin() {
495 singletoninstance = this;
496 Serial.begin(9600);
497 for (int waitCount = 0; waitCount < 50; waitCount++)
498 {
499 if (Serial) {break;}
500 delay(100);
501 }
502

503 pixels.begin();
504 clear();
505 setBrightness(10);
506

507 Serial.println(”[INFO] Booting... Qbead on XIAO BLE Sense + LSM6DS3 compiled on ”
__DATE__ ” at ” __TIME__);

508 if (!imu.begin()) {
509 Serial.println(”[DEBUG]{IMU} IMU initialized correctly”);
510 } else {
511 Serial.println(”[ERROR]{IMU} IMU failed to initialize”);
512 }
513

514 // BLE Peripheral service setup
515 Bluefruit.begin(QB_MAX_PRPH_CONNECTION, 0);
516 Bluefruit.setName(”qbead | ” __DATE__ ” ” __TIME__);
517 Bluefruit.Periph.setConnectCallback(connect_callback);
518 bleservice.begin();
519 // BLE Characteristic Bloch Sphere Visualizer color setup
520 blecharcol.setProperties(CHR_PROPS_READ | CHR_PROPS_WRITE);
521 blecharcol.setPermission(SECMODE_OPEN, SECMODE_OPEN);
522 blecharcol.setUserDescriptor(”BSV rgb color”);
523 blecharcol.setFixedLen(3);
524 blecharcol.setWriteCallback(ble_callback_color);
525 blecharcol.begin();
526 blecharcol.write(zerobuffer20, 3);
527 // BLE Characteristic Bloch Sphere Visualizer spherical coordinate setup
528 blecharsph.setProperties(CHR_PROPS_READ | CHR_PROPS_WRITE);
529 blecharsph.setPermission(SECMODE_OPEN, SECMODE_OPEN);
530 blecharsph.setUserDescriptor(”BSV spherical coordinates”);

B.1. Source code XIAO Seeed nRF52870 33

531 blecharsph.setFixedLen(2);
532 blecharsph.setWriteCallback(ble_callback_theta_phi);
533 blecharsph.begin();
534 blecharsph.write(zerobuffer20, 2);
535 // BLE Characteristic IMU xyz gyroscope readout
536 blechargyr.setProperties(CHR_PROPS_READ | CHR_PROPS_NOTIFY);
537 blechargyr.setPermission(SECMODE_OPEN, SECMODE_OPEN);
538 blechargyr.setUserDescriptor(”xyz gyroscope”);
539 blechargyr.setFixedLen(3*sizeof(float));
540 blechargyr.begin();
541 blechargyr.write(zerobuffer20, 3*sizeof(float));
542 startBLEadv();
543

544 // Tap detection
545 setupTapInterrupt();
546 pinMode(PIN_LSM6DS3TR_C_INT1, INPUT);
547 attachInterrupt(digitalPinToInterrupt(PIN_LSM6DS3TR_C_INT1), int1ISR, RISING);
548 }
549

550 void clear() {
551 pixels.clear();
552 }
553

554 void show() {
555 pixels.show();
556 }
557

558 void setBrightness(uint8_t b) {
559 pixels.setBrightness(b);
560 }
561

562 void setLed(Coordinates coordinates, uint32_t color, int leds = 1) {
563 float theta = coordinates.theta() * 180 / PI;
564 float phi = coordinates.phi() * 180 / PI;
565 if (phi < 0) {
566 phi += 360;
567 }
568 setBloch_deg(theta, phi, color, leds);
569 }
570

571 void showAxis() {
572 setLed(Coordinates(1, 0, 0), color(0, 0, 122));
573 setLed(Coordinates(-1, 0, 0), color(0, 0, 122));
574 setLed(Coordinates(0, 1, 0), color(0, 0, 122));
575 setLed(Coordinates(0, -1, 0), color(0, 0, 122));
576 setLed(Coordinates(0, 0, 1), color(0, 255, 0));
577 setLed(Coordinates(0, 0, -1), color(255, 0, 0));
578 }
579

580 // in rads
581 float getDistToLed(float theta, float phi, int index) {
582 const Coordinates led = led_map_v1[index];
583 const Coordinates reference(theta, phi);
584 return led.dist(reference.v);
585 }
586

587 // Single bit is lit up on the Bloch sphere
588 void setBloch_deg(float theta, float phi, uint32_t c, int leds = 1) {
589 int index[leds];
590 float dist[leds];
591 for (int i = 0; i < leds; i++) {
592 index[i] = -1;
593 dist[i] = 1000;
594 }
595 for (int i = 0; i < QB_PIXEL_COUNT; i++) {
596 float d = getDistToLed(theta * PI / 180, phi * PI / 180, i);
597 for (int j = 0; j < leds; j++) {
598 if (d < dist[j]) {
599 for (int k = leds - 1; k > j; k--) {
600 index[k] = index[k - 1];
601 dist[k] = dist[k - 1];

34 B. Software framework

602 }
603 index[j] = i;
604 dist[j] = d;
605 break;
606 }
607 }
608 }
609 for (int i = 0; i < leds; i++) {
610 if (index[i] != -1) {
611 uint8_t r = redch(c);
612 uint8_t g = greench(c);
613 uint8_t b = bluech(c);
614 float p2 = pow(200, -dist[i]);
615 pixels.setPixelColor(index[i], color(p2 * r, p2 * g, p2 * b));
616 }
617 }
618 }
619

620 void setBloch_deg_smooth(float theta, float phi, uint32_t c) {
621 setBloch_deg(theta, phi, c, 2);
622 }
623

624 void animateTo(uint8_t gate, uint16_t animationLength = 2000)
625 {
626 if (frozen)
627 {
628 prevInterruptCount = interruptCount;
629 }
630 else if (gate == 0)
631 {
632 return;
633 }
634 if (gate == 9)
635 {
636 visualState.set(state.getCoordinates().v);
637 }
638 if (gate == 8)
639 {
640 state.collapse();
641 visualState.set(state.getCoordinates().v);
642 }
643 float T_new = millis();
644 float delta = T_new - T_freeze;
645 if (delta > animationLength)
646 {
647 frozen = false;
648 state.applyGateType(gate);
649 Serial.println(”Animation finished”);
650 return;
651 }
652 float d = delta * PI / float(animationLength);
653 QuantumState from = state;
654 from.applyGateType(gate, d);
655 visualState.set(from.getCoordinates().v);
656 }
657

658 bool detectShaking()
659 {
660 float totalAcceleration = gravityVector.norm();
661 if (shakingState)
662 {
663 float newTime = millis();
664 float shakingCounter = newTime - T_shaking;
665 if (shakingCounter < 300)
666 {
667 return false;
668 }
669 if (totalAcceleration > 11)
670 {
671 Serial.println(”Randomizing”);
672 float randomTheta = (random(0, 1000)/1000.0f) * PI;

B.1. Source code XIAO Seeed nRF52870 35

673 float randomPhi = (random(0, 1000)/500.0f) * PI;
674 state.setCoordinates(Coordinates(randomTheta, randomPhi));
675 setLed(state.getCoordinates(), color(255, 0, 255));
676 shakingState = false;
677 return true;
678 }
679 if (shakingCounter > 800)
680 {
681 shakingState = false;
682 }
683 return false;
684 }
685 if (totalAcceleration > 11)
686 {
687 Serial.print(”Detected shaking turning on shakingState, acc length: ”);
688 Serial.println(totalAcceleration);
689 shakingState = true;
690 T_shaking = millis();
691 }
692 return false;
693 }
694

695 int checkMotion()
696 {
697 if (frozen)
698 {
699 return 0;
700 }
701 frozen = true;
702 T_freeze = micros();
703 if (detectShaking())
704 {
705 return 9;
706 }
707 if (shakingState)
708 {
709 frozen = false;
710 return 0;
711 }
712 // Handle tap interrupt
713 if (interruptCount > prevInterruptCount)
714 {
715 uint8_t tapStatus = 0;
716 myIMU.readRegister(&tapStatus, LSM6DS3_ACC_GYRO_TAP_SRC);
717 prevInterruptCount = interruptCount;
718

719 if (tapStatus & 0x01)
720 {
721 Serial.println(”Collapsing”);
722 return 8;
723 }
724 else
725 {
726 Serial.println(”Executing H gate”);
727 return 7;
728 }
729 }
730 // Handle shaking
731 for (int i = 0; i < 3; i++)
732 {
733 if (gyroVector[i] > GYRO_GATE_THRESHOLD)
734 {
735 return i + 1; // 1 = -x, 2 = -y, 3 = z
736 }
737 }
738 for (int i = 0; i < 3; i++)
739 {
740 if (gyroVector[i] < - GYRO_GATE_THRESHOLD)
741 {
742 return i + 4; // 4 = x, 5 = y, 6 = -z
743 }

36 B. Software framework

744 }
745 frozen = false;
746 return 0;
747 }
748

749 void writeToBLE(BLECharacteristic& destination, Vector3d vector) {
750 float buffer[3] = {(float)vector(0), (float)vector(1), (float)vector(2)};
751 destination.write(buffer, 3 * sizeof(float));
752 for (uint16_t conn_hdl = 0; conn_hdl < QB_MAX_PRPH_CONNECTION; conn_hdl++)
753 {
754 if (Bluefruit.connected(conn_hdl) && destination.notifyEnabled(conn_hdl))
755 {
756 destination.notify(buffer, 3 * sizeof(float));
757 }
758 }
759 }
760

761 Vector3d getVectorFromBuffer(float *buffer) {
762 // calibration of imu because imu is not aligned with bloch sphere
763 float rx = (1 - 2 * QB_SX) * buffer[QB_IX];
764 float ry = (1 - 2 * QB_SY) * buffer[QB_IY];
765 float rz = (1 - 2 * QB_SZ) * buffer[QB_IZ];
766 return Vector3d(rx, ry, rz);
767 }
768

769 void readIMU(bool print=true) {
770 rbuffer[0] = imu.readFloatAccelX();
771 rbuffer[1] = imu.readFloatAccelY();
772 rbuffer[2] = imu.readFloatAccelZ();
773 rgyrobuffer[0] = imu.readFloatGyroX();
774 rgyrobuffer[1] = imu.readFloatGyroY();
775 rgyrobuffer[2] = imu.readFloatGyroZ();
776

777 float T_new = micros();
778 float delta = T_new - T_imu;
779 T_imu = T_new;
780

781 Vector3d newGyro = getVectorFromBuffer(rgyrobuffer) * PI / 180;
782 float d = min(delta / float(T_GYRO), 1.0f);
783 gyroVector = d * newGyro + (1 - d) * gyroVector; // low pass filter
784

785 Vector3d newGravity = getVectorFromBuffer(rbuffer);
786 d = min(delta / float(T_ACC), 1.0f);
787 gravityVector = d * newGravity + (1 - d) * gravityVector;
788

789 yaw += gravityVector.dot(gyroVector);
790 yaw = fmod(yaw, 2 * PI);
791

792 if (print) {
793 Serial.print(gravityVector(0));
794 Serial.print(”\t”);
795 Serial.print(gravityVector(1));
796 Serial.print(”\t”);
797 Serial.print(gravityVector(2));
798 Serial.print(”\t-1\t1\t”);
799 Serial.print(gyroVector(0));
800 Serial.print(”\t”);
801 Serial.print(gyroVector(1));
802 Serial.print(”\t”);
803 Serial.println(gyroVector(2));
804 }
805

806 writeToBLE(blecharacc, gravityVector);
807 writeToBLE(blechargyr, gyroVector);
808 }
809

810 void startBLEadv(void)
811 {
812 Serial.println(”[INFO]{BLE} Start advertising...”);
813 // Advertising packet
814 Bluefruit.Advertising.addFlags(BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE);

B.2. Source code XIAO Seeed ESP32S3 37

815 Bluefruit.Advertising.addTxPower();
816

817 // Include HRM Service UUID
818 Bluefruit.Advertising.addService(bleservice);
819

820 // Secondary Scan Response packet (optional)
821 // Since there is no room for ’Name’ in Advertising packet
822 Bluefruit.ScanResponse.addName();
823

824 /* Start Advertising
825 * - Enable auto advertising if disconnected
826 * - Interval: fast mode = 20 ms, slow mode = 152.5 ms
827 * - Timeout for fast mode is 30 seconds
828 * - Start(timeout) with timeout = 0 will advertise forever (until connected)
829 *
830 * For recommended advertising interval
831 * https://developer.apple.com/library/content/qa/qa1931/_index.html
832 */
833 Bluefruit.Advertising.restartOnDisconnect(true);
834 Bluefruit.Advertising.setInterval(32, 244); // in unit of 0.625 ms
835 Bluefruit.Advertising.setFastTimeout(30); // number of seconds in fast mode
836 Bluefruit.Advertising.start(0); // 0 = Don’t stop advertising after n

seconds
837 }
838

839 }; // end class
840

841 Qbead *Qbead::singletoninstance = nullptr;
842

843 } // end namespace
844

845 #endif // QBEAD_H

Listing B.1: Qbead.h

B.2. Source code XIAO Seeed ESP32S3
1 #ifndef QBEAD_H
2 #define QBEAD_H
3

4 #include <Arduino.h>
5 #include <Adafruit_NeoPixel.h>
6 #include <Wire.h>
7 #include <ICM_20948.h>
8 #include <ICM20948_WE.h>
9 #include <math.h>

10 #include <ArduinoEigen.h>
11 #include <BLEDevice.h>
12 #include <BLEUtils.h>
13 #include <BLEServer.h>
14 #include <BLE2902.h>
15

16 using namespace Eigen;
17

18 // default configs
19 #define QB_LEDPIN 21
20 #define QB_PIXELCONFIG NEO_BRG + NEO_KHZ800
21 #define QB_IMU_ADDR 0x69
22 #define QB_IX 1
23 #define QB_IY 0
24 #define QB_IZ 2
25 #define QB_SX 0
26 #define QB_SY 0
27 #define QB_SZ 1
28 #define GYRO_GATE_THRESHOLD 12
29 #define QB_PIXEL_COUNT 62
30 #define QB_MAX_PRPH_CONNECTION 2
31 #define T_ACC 100000
32 #define T_GYRO 10000
33 #define TAP_THRESHOLD_TIME 400 // Threshold for tap detection in milliseconds
34 #define TAP_THRESHOLD 8 // Threshold for tap detection in g/s

38 B. Software framework

35 #define DEBOUNCE_TIME 50 // Debounce time in milliseconds
36

37 const char QB_UUID_SERVICE[] = ”e5eaa0bd-babb-4e8c-a0f8-054ade68b043”;
38 // {0x45,0x8d,0x08,0xaa,0xd6,0x63,0x44,0x25,0xbe,0x12,0x9c,0x35,0xc6,0x1f,0x0c,0xe3};
39 const char QB_UUID_COL_CHAR[] = ”e5eaa0bd-babb-4e8c-a0f8-054ade68c043”;
40 // {0x45,0x8d,0x08,0xaa,0xd6,0x63,0x44,0x25,0xbe,0x12,0x9c,0x35,0xc6+1,0x1f,0x0c,0xe3};
41 const char QB_UUID_SPH_CHAR[] = ”e5eaa0bd-babb-4e8c-a0f8-054ade68d043”;
42 // {0x45,0x8d,0x08,0xaa,0xd6,0x63,0x44,0x25,0xbe,0x12,0x9c,0x35,0xc6+2,0x1f,0x0c,0xe3};
43 const char QB_UUID_ACC_CHAR[] = ”e5eaa0bd-babb-4e8c-a0f8-054ade68e043”;
44 // {0x45,0x8d,0x08,0xaa,0xd6,0x63,0x44,0x25,0xbe,0x12,0x9c,0x35,0xc6+3,0x1f,0x0c,0xe3};
45 const char QB_UUID_GYR_CHAR[] = ”e5eaa0bd-babb-4e8c-a0f8-054ade68f043”;
46 // {0x45,0x8d,0x08,0xaa,0xd6,0x63,0x44,0x25,0xbe,0x12,0x9c,0x35,0xc6+4,0x1f,0x0c,0xe3};
47

48 uint8_t zerobuffer20[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0
x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0};

49 const std::complex<float>i(0, 1);
50 // We need both because ICM_20948_I2C does not support changing the gyro range
51 ICM20948_WE imuWE;
52 ICM_20948_I2C imuI2C;
53

54 // TODO manage namespaces better
55 // The setPixelColor switches blue and green
56 static uint32_t color(uint8_t r, uint8_t g, uint8_t b) {
57 return ((uint32_t)r << 16) | ((uint16_t)b << 8) | g;
58 }
59

60 static uint8_t redch(uint32_t rgb) {
61 return rgb >> 16;
62 }
63

64 static uint8_t greench(uint32_t rgb) {
65 return 0x0000ff & rgb;
66 }
67

68 static uint8_t bluech(uint32_t rgb) {
69 return (0x00ff00 & rgb) >> 8;
70 }
71

72 uint32_t colorWheel(uint8_t wheelPos) {
73 wheelPos = 255 - wheelPos;
74 if (wheelPos < 85) {
75 return color(255 - wheelPos * 3, 0, wheelPos * 3);
76 }
77 if (wheelPos < 170) {
78 wheelPos -= 85;
79 return color(0, wheelPos * 3, 255 - wheelPos * 3);
80 }
81 wheelPos -= 170;
82 return color(wheelPos * 3, 255 - wheelPos * 3, 0);
83 }
84

85 uint32_t colorWheel_deg(float wheelPos) {
86 return colorWheel(wheelPos * 255 / 360);
87 }
88

89 float sign(float x) {
90 if (x > 0) return +1;
91 else return -1;
92 }
93

94 // z = cos(t)
95 // x = cos(p)sin(t)
96 // y = sin(p)sin(t)
97 // Return the angle in radians between the x-axis and the line to the point (x, y)
98 float phi(float x, float y) {
99 return atan2(y, x);

100 }
101

102 float phi(float x, float y, float z) {
103 return phi(x, y);
104 }

B.2. Source code XIAO Seeed ESP32S3 39

105

106 float theta(float x, float y, float z) {
107 float ll = x * x + y * y + z * z;
108 float l = sqrt(ll);
109 float theta = acos(z / l);
110 return theta;
111 }
112

113 bool checkThetaAndPhi(float theta, float phi) {
114 return theta >= 0 && theta <= 180 && phi >= 0 && phi <= 360;
115 }
116

117 // In rads
118 void sphericalToCartesian(float theta, float phi, float& x, float& y, float& z)
119 {
120 // Normalize yaw to be between 0 and 2*PI
121 phi = fmod(phi, 2 * PI);
122 if (phi < 0)
123 {
124 phi += 2 * PI;
125 }
126 if (!checkThetaAndPhi(theta * 180 / PI, phi * 180 / PI))
127 {
128 Serial.print(”Theta or Phi out of range when creating coordinates class, initializing as

1”);
129 Serial.print(”Theta: ”);
130 Serial.print(theta);
131 Serial.print(”Phi: ”);
132 Serial.println(phi);
133 x = 0;
134 y = 0;
135 z = 1;
136 return;
137 }
138

139 x = sin(theta) * cos(phi);
140 y = sin(theta) * sin(phi);
141 z = cos(theta);
142 }
143

144 namespace Qbead {
145

146 class Coordinates
147 {
148 public:
149 Vector3d v;
150

151 Coordinates(float argx, float argy, float argz)
152 {
153 v = Vector3d(argx, argy, argz);
154 v.normalize();
155 }
156

157 // In rads
158 Coordinates(float theta, float phi)
159 {
160 float x, y, z = 0;
161 sphericalToCartesian(theta, phi, x, y, z);
162 v = Vector3d(x, y, z);
163 }
164

165 Coordinates(Vector3d vector)
166 {
167 v = vector;
168 v.normalize();
169 }
170

171 // In rads
172 float theta()
173 {
174 return acos(v(2));

40 B. Software framework

175 }
176

177 // In rads
178 float phi()
179 {
180 return atan2(v(1), v(0));
181 }
182

183 Vector2cf stateVector2D()
184 {
185 std::complex<float> alpha = cos(theta()/2);
186 std::complex<float> beta = exp(i*phi()) * sin(theta()/2);
187 return {alpha, beta};
188 }
189

190 float dist(Vector3d other) const
191 {
192 Vector3d diff = v - other;
193 return diff.norm();
194 }
195

196 void set(float argx, float argy, float argz)
197 {
198 v = Vector3d(argx, argy, argz);
199 v.normalize();
200 }
201

202 // in rads
203 void set(float theta, float phi)
204 {
205 float x, y, z = 0;
206 sphericalToCartesian(theta, phi, x, y, z);
207 v = Vector3d(x, y, z);
208 }
209

210 void set(Vector3d vector) {
211 v = vector;
212 v.normalize();
213 }
214

215 // in rads
216 void setTheta(float theta)
217 {
218 set(theta, phi());
219 }
220

221 // in rads
222 void setPhi(float phi)
223 {
224 set(theta(), phi);
225 }
226 };
227

228 class QuantumState
229 {
230 private:
231 Coordinates stateCoordinates;
232

233 public:
234 QuantumState(Coordinates argStateCoordinates) : stateCoordinates(argStateCoordinates) {}
235 QuantumState() : stateCoordinates(0, 0, 1) {}
236

237 void setCoordinates(Coordinates argStateCoordinates)
238 {
239 stateCoordinates.set(argStateCoordinates.v);
240 }
241

242 Coordinates getCoordinates()
243 {
244 return stateCoordinates;
245 }

B.2. Source code XIAO Seeed ESP32S3 41

246

247 void collapse()
248 {
249 const float a = (stateCoordinates.v(2) + 1) / 2; // probability of measuring |0>
250 if (a < 0.0001) {
251 stateCoordinates.set(0, 0, -1);
252 return;
253 } else if (a > 0.9999) {
254 stateCoordinates.set(0, 0, 1);
255 return;
256 }
257 const bool is1 = random(0, 100) <= a * a * 100;
258 this->stateCoordinates.set(0, 0, is1 ? 1 : -1);
259 }
260

261 void applyGate(Matrix2cf gate)
262 {
263 Vector2cf stateVector = stateCoordinates.stateVector2D();
264 stateVector = gate * stateVector;
265 stateVector.normalize();
266 stateCoordinates.set(2*acos(abs(stateVector.x())), arg(stateVector.y()) - arg(stateVector

.x()));
267 }
268

269 void applyGateType(uint16_t gateType, float rotationDegree = PI)
270 {
271 switch (gateType)
272 {
273 case 1:
274 gateX(-rotationDegree);
275 break;
276 case 2:
277 gateY(-rotationDegree);
278 break;
279 case 3:
280 gateZ(rotationDegree);
281 break;
282 case 4:
283 gateX(rotationDegree);
284 break;
285 case 5:
286 gateY(rotationDegree);
287 break;
288 case 6:
289 gateZ(-rotationDegree);
290 break;
291 case 7:
292 gateH(rotationDegree);
293 break;
294 default:
295 break;
296 }
297 }
298

299 // Rotate PI around the x axis
300 void gateX(float rotationDegree = PI)
301 {
302 Matrix2cf gateMatrix;
303 gateMatrix << cos(rotationDegree / 2.0f), -sin(rotationDegree / 2.0f) * i,
304 -sin(rotationDegree / 2.0f) * i, cos(rotationDegree / 2.0f); // global phase differs

from pauli gates but this doesn’t matter for bloch sphere
305 applyGate(gateMatrix);
306 }
307

308 // Rotate PI around the y axis
309 void gateZ(float rotationDegree = PI)
310 {
311 Matrix2cf gateMatrix;
312 gateMatrix << exp(-i * rotationDegree / 2.0f), 0,
313 0, exp(i * rotationDegree / 2.0f);
314 applyGate(gateMatrix);

42 B. Software framework

315 }
316

317 // Rotate PI around the z axis
318 void gateY(float rotationDegree = PI)
319 {
320 Matrix2cf gateMatrix;
321 gateMatrix << cos(rotationDegree / 2.0f), -sin(rotationDegree / 2.0f),
322 sin(rotationDegree / 2.0f), cos(rotationDegree / 2.0f);
323 applyGate(gateMatrix);
324 }
325

326 // Rotate PI around the xz axis
327 void gateH(float rotationDegree = PI)
328 {
329 Matrix2cf gateMatrix;
330 gateMatrix << (cos(rotationDegree / 2.0f) - i * sin(rotationDegree / 2.0f) / sqrt(2.0f)),

-i * sin(rotationDegree / 2.0f) / sqrt(2.0f),
331 -i * sin(rotationDegree / 2.0f) / sqrt(2.0f), (cos(rotationDegree / 2.0f) + i * sin(

rotationDegree / 2.0f) / sqrt(2.0f));
332 applyGate(gateMatrix);
333 }
334 };
335

336 class Qbead {
337 public:
338 Qbead(const uint16_t pin00 = QB_LEDPIN,
339 const uint16_t pixelconfig = QB_PIXELCONFIG,
340 const uint8_t imu_addr = QB_IMU_ADDR)
341 : pixels(Adafruit_NeoPixel(QB_PIXEL_COUNT, pin00, pixelconfig))
342 {}
343

344 static Qbead *singletoninstance; // we need a global singleton static instance because
bluefruit callbacks do not support context variables -- thankfully this is fine because
there is indeed only one Qbead in existence at any time

345

346 Adafruit_NeoPixel pixels;
347

348 BLEServer* bleserver;
349 BLEService* bleservice;
350 BLECharacteristic* blecharcol;
351 BLECharacteristic* blecharsph;
352 BLECharacteristic* blecharacc;
353 BLECharacteristic* blechargyr;
354 BLEAdvertising* bleadvertising;
355

356 float rbuffer[3], rgyrobuffer[3];
357 float T_imu; // last update from the IMU
358 float T_freeze = 0;
359 float T_shaking = 0;
360 float t_ble, p_ble; // theta and phi as sent over BLE connection
361 uint32_t c_ble;
362 bool frozen = false; // frozen means that there is an animation in progress
363 bool shakingState = false; // if ShakingState is 1 detected shaking and if shaking keeps

happening randomising state
364 QuantumState state = QuantumState(Coordinates(-0.866, 0.25, -0.433));
365 Coordinates visualState = Coordinates(-0.866, 0.25, -0.433);
366 Vector3d gravityVector = Vector3d(0, 0, 1);
367 Vector3d oldGravityVector = Vector3d(0, 0, 1);
368 Vector3d gyroVector = Vector3d(0, 0, 1);
369 float lastTapTime = 0;
370 float lastDebounceTime = 0; // last time the tap was debounced
371 bool waitingForSecondTap = false;
372 float dt = 0; // time since the last IMU update
373

374 // led map index to Coordinates
375 // This map is for the first version of the flex-pcb
376 Coordinates led_map_v1[62] = {
377 Coordinates(-1, -0, -0),
378 Coordinates(-0.866, 0, -0.5),
379 Coordinates(-0.5, 0, -0.866),
380 Coordinates(-0, 0, -1),

B.2. Source code XIAO Seeed ESP32S3 43

381 Coordinates(0.5, 0, -0.866),
382 Coordinates(0.866, 0, -0.5),
383 Coordinates(1, 0, 0),
384 Coordinates(-0.866, 0.25, -0.433),
385 Coordinates(-0.5, 0.433, -0.75),
386 Coordinates(-0, 0.5, -0.866),
387 Coordinates(0.5, 0.433, -0.75),
388 Coordinates(0.866, 0.25, -0.433),
389 Coordinates(-0.866, 0.433, -0.25),
390 Coordinates(-0.5, 0.75, -0.433),
391 Coordinates(-0, 0.866, -0.5),
392 Coordinates(0.5, 0.75, -0.433),
393 Coordinates(0.866, 0.433, -0.25),
394 Coordinates(-0.866, 0.5, 0),
395 Coordinates(-0.5, 0.866, 0),
396 Coordinates(-0, 1, 0),
397 Coordinates(0.5, 0.866, 0),
398 Coordinates(0.866, 0.5, 0),
399 Coordinates(-0.866, 0.433, 0.25),
400 Coordinates(-0.5, 0.75, 0.433),
401 Coordinates(-0, 0.866, 0.5),
402 Coordinates(0.5, 0.75, 0.433),
403 Coordinates(0.866, 0.433, 0.25),
404 Coordinates(-0.866, 0.25, 0.433),
405 Coordinates(-0.5, 0.433, 0.75),
406 Coordinates(-0, 0.5, 0.866),
407 Coordinates(0.5, 0.433, 0.75),
408 Coordinates(0.866, 0.25, 0.433),
409 Coordinates(-0.866, -0, 0.5),
410 Coordinates(-0.5, -0, 0.866),
411 Coordinates(-0, -0, 1),
412 Coordinates(0.5, -0, 0.866),
413 Coordinates(0.866, -0, 0.5),
414 Coordinates(-0.866, -0.25, 0.433),
415 Coordinates(-0.5, -0.433, 0.75),
416 Coordinates(-0, -0.5, 0.866),
417 Coordinates(0.5, -0.433, 0.75),
418 Coordinates(0.866, -0.25, 0.433),
419 Coordinates(-0.866, -0.433, 0.25),
420 Coordinates(-0.5, -0.75, 0.433),
421 Coordinates(-0, -0.866, 0.5),
422 Coordinates(0.5, -0.75, 0.433),
423 Coordinates(0.866, -0.433, 0.25),
424 Coordinates(-0.866, -0.5, -0),
425 Coordinates(-0.5, -0.866, -0),
426 Coordinates(-0, -1, -0),
427 Coordinates(0.5, -0.866, -0),
428 Coordinates(0.866, -0.5, -0),
429 Coordinates(-0.866, -0.433, -0.25),
430 Coordinates(-0.5, -0.75, -0.433),
431 Coordinates(-0, -0.866, -0.5),
432 Coordinates(0.5, -0.75, -0.433),
433 Coordinates(0.866, -0.433, -0.25),
434 Coordinates(-0.866, -0.25, -0.433),
435 Coordinates(-0.5, -0.433, -0.75),
436 Coordinates(-0, -0.5, -0.866),
437 Coordinates(0.5, -0.433, -0.75),
438 Coordinates(0.866, -0.25, -0.433),
439 };
440

441 void startAccelerometer()
442 {
443 blecharacc = bleservice->createCharacteristic(QB_UUID_ACC_CHAR,
444 BLECharacteristic::PROPERTY_READ | BLECharacteristic::PROPERTY_NOTIFY);
445 BLEDescriptor* pAccDesc = new BLEDescriptor(”2901”);
446 pAccDesc->setValue(”Accelerometer readout Characteristic”);
447 blecharacc->addDescriptor(pAccDesc);
448 blecharacc->addDescriptor(new BLE2902());
449 blecharacc->setValue(zerobuffer20, 3*sizeof(float));
450 }
451

44 B. Software framework

452 // TODO: Check when the new flex-pcb has arrived
453 Coordinates led_map_v2[107] = {
454 Coordinates(0.0, 0.0),
455 Coordinates(0.39, 4.97),
456 Coordinates(0.78, 4.97),
457 Coordinates(1.18, 5.08),
458 Coordinates(1.18, 4.87),
459 Coordinates(1.57, 4.89),
460 Coordinates(1.57, 5.06),
461 Coordinates(1.95, 5.04),
462 Coordinates(1.95, 4.91),
463 Coordinates(2.34, 4.97),
464 Coordinates(2.73, 4.97),
465 Coordinates(0.78, 4.45),
466 Coordinates(1.18, 4.55),
467 Coordinates(1.18, 4.35),
468 Coordinates(1.57, 4.37),
469 Coordinates(1.57, 4.53),
470 Coordinates(1.95, 4.51),
471 Coordinates(1.95, 4.39),
472 Coordinates(2.34, 4.45),
473 Coordinates(0.39, 3.93),
474 Coordinates(0.78, 3.93),
475 Coordinates(1.18, 4.03),
476 Coordinates(1.18, 3.82),
477 Coordinates(1.57, 3.84),
478 Coordinates(1.57, 4.01),
479 Coordinates(1.95, 3.99),
480 Coordinates(1.95, 3.87),
481 Coordinates(2.34, 3.93),
482 Coordinates(2.73, 3.93),
483 Coordinates(0.78, 3.4),
484 Coordinates(1.18, 3.3),
485 Coordinates(1.57, 3.32),
486 Coordinates(1.95, 3.34),
487 Coordinates(2.34, 3.4),
488 Coordinates(0.39, 2.88),
489 Coordinates(0.78, 2.88),
490 Coordinates(1.18, 2.98),
491 Coordinates(1.18, 2.78),
492 Coordinates(1.57, 2.8),
493 Coordinates(1.57, 2.96),
494 Coordinates(1.95, 2.94),
495 Coordinates(1.95, 2.82),
496 Coordinates(2.34, 2.88),
497 Coordinates(2.73, 2.88),
498 Coordinates(0.78, 2.36),
499 Coordinates(1.18, 2.46),
500 Coordinates(1.18, 2.25),
501 Coordinates(1.57, 2.27),
502 Coordinates(1.57, 2.44),
503 Coordinates(1.95, 2.42),
504 Coordinates(1.95, 2.29),
505 Coordinates(2.34, 2.36),
506 Coordinates(0.39, 1.83),
507 Coordinates(0.78, 1.83),
508 Coordinates(1.18, 1.93),
509 Coordinates(1.18, 1.73),
510 Coordinates(1.57, 1.75),
511 Coordinates(1.57, 1.92),
512 Coordinates(1.95, 1.89),
513 Coordinates(1.95, 1.77),
514 Coordinates(2.34, 1.83),
515 Coordinates(2.73, 1.83),
516 Coordinates(0.78, 1.31),
517 Coordinates(1.18, 1.41),
518 Coordinates(1.18, 1.21),
519 Coordinates(1.57, 1.23),
520 Coordinates(1.57, 1.39),
521 Coordinates(1.95, 1.37),
522 Coordinates(1.95, 1.25),

B.2. Source code XIAO Seeed ESP32S3 45

523 Coordinates(2.34, 1.31),
524 Coordinates(0.39, 0.79),
525 Coordinates(0.78, 0.79),
526 Coordinates(1.18, 0.89),
527 Coordinates(1.18, 0.68),
528 Coordinates(1.57, 0.7),
529 Coordinates(1.57, 0.87),
530 Coordinates(1.95, 0.85),
531 Coordinates(1.95, 0.72),
532 Coordinates(2.34, 0.79),
533 Coordinates(2.73, 0.79),
534 Coordinates(0.78, 0.26),
535 Coordinates(1.18, 0.36),
536 Coordinates(1.18, 0.16),
537 Coordinates(1.57, 0.18),
538 Coordinates(1.57, 0.35),
539 Coordinates(1.95, 0.32),
540 Coordinates(1.95, 0.2),
541 Coordinates(2.34, 0.26),
542 Coordinates(0.39, 6.02),
543 Coordinates(0.78, 6.02),
544 Coordinates(1.18, 6.12),
545 Coordinates(1.18, 5.92),
546 Coordinates(1.57, 5.94),
547 Coordinates(1.57, 6.1),
548 Coordinates(1.95, 6.08),
549 Coordinates(1.95, 5.96),
550 Coordinates(2.34, 6.02),
551 Coordinates(2.73, 6.02),
552 Coordinates(0.78, 5.5),
553 Coordinates(1.18, 5.6),
554 Coordinates(1.18, 5.4),
555 Coordinates(1.57, 5.41),
556 Coordinates(1.57, 5.58),
557 Coordinates(1.95, 5.56),
558 Coordinates(1.95, 5.44),
559 Coordinates(2.34, 5.5),
560 Coordinates(3.14, 4.97),
561 };
562

563 class MyServerCallbacks: public BLEServerCallbacks {
564 void onConnect(BLEServer* pServer) {
565 Serial.println(”BLE: Device connected”);
566 }
567 void onDisconnect(BLEServer* pServer) {
568 Serial.println(”BLE: Device disconnected”);
569 }
570 };
571

572 class ColorCharCallbacks: public BLECharacteristicCallbacks {
573 void onWrite(BLECharacteristic *pCharacteristic) {
574 Serial.println(”[INFO]{BLE} Received a write on the color characteristic”);
575 uint8_t* pData = pCharacteristic->getData();
576 singletoninstance->c_ble = (pData[2] << 16) | (pData[1] << 8) | pData[0];
577 Serial.print(”[DEBUG]{BLE}Qbead received”);
578 Serial.println(singletoninstance->c_ble, HEX);
579 }
580 };
581

582 class ThetaPhiCharCallbacks: public BLECharacteristicCallbacks {
583 void onWrite(BLECharacteristic *pCharacteristic) {
584 Serial.println(”[INFO]{BLE} Received a write on the spherical coordinates

characteristic”);
585 uint8_t* pData = pCharacteristic->getData();
586 singletoninstance->t_ble = ((uint32_t)pData[0])*180/255;
587 singletoninstance->p_ble = ((uint32_t)pData[1])*360/255;
588 Serial.print(”[DEBUG]{BLE} Received t=”);
589 Serial.print(singletoninstance->t_ble);
590 Serial.print(” p=”);
591 Serial.println(singletoninstance->p_ble);
592 }

46 B. Software framework

593 };
594

595 void
596 begin()
597 {
598 Wire.begin(40, 39);
599 Wire.setClock(50000); // drop to 50kHz
600 singletoninstance = this;
601 Serial.begin(9600);
602 for (int waitCount = 0; waitCount < 50; waitCount++)
603 {
604 if (Serial) {break;}
605 delay(100);
606 }
607

608 pixels.begin();
609 clear();
610 setBrightness(10);
611

612 Serial.println(”[INFO] Booting... Qbead on XIAO ESP32 compiled on ” __DATE__ ” at ”
__TIME__);

613

614 BLEDevice::init(”qbead | ” __DATE__ ” ” __TIME__);
615 // Bluefruit.begin(QB_MAX_PRPH_CONNECTION, 0);
616 // Bluefruit.setName(”qbead | ” __DATE__ ” ” __TIME__);
617 // Bluefruit.Periph.setConnectCallback(connect_callback);
618 bleserver = BLEDevice::createServer();
619 bleserver->setCallbacks(new MyServerCallbacks());
620 bleservice = bleserver->createService(QB_UUID_SERVICE);
621 // BLE Characteristic Bloch Sphere Visualizer color setup
622

623 uint8_t zerobuffer2[] = {0 ,0};
624 float zerobufferfloat[] = {0.0f, 0.0f, 0.0f};
625 blecharcol = bleservice->createCharacteristic(QB_UUID_COL_CHAR,
626 BLECharacteristic::PROPERTY_READ | BLECharacteristic::PROPERTY_WRITE);
627 BLEDescriptor* pColDesc = new BLEDescriptor(”2901”);
628 pColDesc->setValue(”Color Characteristic”);
629 blecharcol->addDescriptor(pColDesc);
630 blecharcol->setCallbacks(new ColorCharCallbacks());
631 blecharcol->setValue(zerobuffer20, 3);
632

633 blecharsph = bleservice->createCharacteristic(QB_UUID_SPH_CHAR,
634 BLECharacteristic::PROPERTY_READ | BLECharacteristic::PROPERTY_WRITE);
635 BLEDescriptor* pSphDesc = new BLEDescriptor(”2901”);
636 pSphDesc->setValue(”Theta and Phi Characteristic”);
637 blecharsph->addDescriptor(pSphDesc);
638 blecharsph->setCallbacks(new ThetaPhiCharCallbacks());
639 blecharsph->setValue(zerobuffer20, 2);
640

641 blechargyr = bleservice->createCharacteristic(QB_UUID_GYR_CHAR,
642 BLECharacteristic::PROPERTY_READ | BLECharacteristic::PROPERTY_NOTIFY);
643 BLEDescriptor* pGyrDesc = new BLEDescriptor(”2901”);
644 pGyrDesc->setValue(”Gyroscope readout Characteristic”);
645 blechargyr->addDescriptor(pGyrDesc);
646 blechargyr->addDescriptor(new BLE2902());
647 blechargyr->setValue(zerobuffer20, 3*sizeof(float));
648

649 startAccelerometer();
650

651 if (bleservice) {
652 Serial.println(”starting service”);
653 bleservice->start();
654 } else {
655 Serial.println(”Service is null!”);
656 }
657 startBLEadv();
658

659 imuI2C.begin(Wire, QB_IMU_ADDR);
660 imuWE = ICM20948_WE(&Wire, QB_IMU_ADDR);
661 imuWE.setGyrRange(ICM20948_GYRO_RANGE_2000);
662 imuWE.setAccDLPF(ICM20948_DLPF_6);

B.2. Source code XIAO Seeed ESP32S3 47

663 imuWE.setAccRange(ICM20948_ACC_RANGE_8G);
664 }
665

666 void startBLEadv(void)
667 {
668 bleadvertising = bleserver->getAdvertising();
669 bleadvertising->addServiceUUID(QB_UUID_SERVICE);
670 Serial.println(”[INFO]{BLE} Start advertising...”);
671 // Advertising packet
672 BLEAdvertisementData advertisementData;
673 advertisementData.setName(”qbead | ” __DATE__ ” ” __TIME__);
674 advertisementData.setFlags(6); // BLE_SIG_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE = 6
675

676 /* Start Advertising
677 * - Enable auto advertising if disconnected
678 * - Interval: fast mode = 20 ms, slow mode = 152.5 ms
679 * - Timeout for fast mode is 30 seconds
680 * - Start(timeout) with timeout = 0 will advertise forever (until connected)
681 *
682 * For recommended advertising interval
683 * https://developer.apple.com/library/content/qa/qa1931/_index.html
684 */
685 bleadvertising->setAdvertisementData(advertisementData);
686 bleadvertising->setMinInterval(32);
687 bleadvertising->setMaxInterval(244);
688

689 BLEDevice::startAdvertising();
690 }
691

692 void clear() {
693 pixels.clear();
694 }
695

696 void show() {
697 pixels.show();
698 }
699

700 void setBrightness(uint8_t b) {
701 pixels.setBrightness(b);
702 }
703

704 void setLed(Coordinates coordinates, uint32_t color, int leds = 1) {
705 float theta = coordinates.theta() * 180 / PI;
706 float phi = coordinates.phi() * 180 / PI;
707 if (phi < 0) {
708 phi += 360;
709 }
710 setBloch_deg(theta, phi, color, leds);
711 }
712

713 void showAxis() {
714 setLed(Coordinates(1, 0, 0), color(0, 0, 122));
715 setLed(Coordinates(-1, 0, 0), color(0, 0, 122));
716 setLed(Coordinates(0, 1, 0), color(0, 0, 122));
717 setLed(Coordinates(0, -1, 0), color(0, 0, 122));
718 setLed(Coordinates(0, 0, 1), color(0, 255, 0));
719 setLed(Coordinates(0, 0, -1), color(255, 0, 0));
720 }
721

722 // in rads
723 float getDistToLed(float theta, float phi, int index) {
724 const Coordinates led = led_map_v1[index];
725 const Coordinates reference(theta, phi);
726 return led.dist(reference.v);
727 }
728

729 // Single bit is lit up on the Bloch sphere
730 void setBloch_deg(float theta, float phi, uint32_t c, int leds = 1) {
731 int index[leds];
732 float dist[leds];
733 for (int i = 0; i < leds; i++) {

48 B. Software framework

734 index[i] = -1;
735 dist[i] = 1000;
736 }
737 for (int i = 0; i < QB_PIXEL_COUNT; i++) {
738 float d = getDistToLed(theta * PI / 180, phi * PI / 180, i);
739 for (int j = 0; j < leds; j++) {
740 if (d < dist[j]) {
741 for (int k = leds - 1; k > j; k--) {
742 index[k] = index[k - 1];
743 dist[k] = dist[k - 1];
744 }
745 index[j] = i;
746 dist[j] = d;
747 break;
748 }
749 }
750 }
751 for (int i = 0; i < leds; i++) {
752 if (index[i] != -1) {
753 uint8_t r = redch(c);
754 uint8_t g = greench(c);
755 uint8_t b = bluech(c);
756 float p2 = pow(200, -dist[i]);
757 pixels.setPixelColor(index[i], color(p2 * r, p2 * g, p2 * b));
758 }
759 }
760 }
761

762 void setBloch_deg_smooth(float theta, float phi, uint32_t c) {
763 setBloch_deg(theta, phi, c, 2);
764 }
765

766 void animateTo(uint8_t gate, uint16_t animationLength = 2000)
767 {
768 if (gate == 0)
769 {
770 return;
771 }
772 if (gate == 9)
773 {
774 visualState.set(state.getCoordinates().v);
775 }
776 if (gate == 8)
777 {
778 state.collapse();
779 visualState.set(state.getCoordinates().v);
780 }
781 float T_new = millis();
782 float delta = T_new - T_freeze;
783 if (delta > animationLength)
784 {
785 frozen = false;
786 state.applyGateType(gate);
787 Serial.println(”Animation finished”);
788 return;
789 }
790 float d = delta * PI / float(animationLength);
791 QuantumState from = state;
792 from.applyGateType(gate, d);
793 visualState.set(from.getCoordinates().v);
794 }
795

796 bool detectShaking()
797 {
798 float totalAcceleration = gravityVector.norm();
799 if (shakingState)
800 {
801 float newTime = millis();
802 float shakingCounter = newTime - T_shaking;
803 if (shakingCounter < 300)
804 {

B.2. Source code XIAO Seeed ESP32S3 49

805 return false;
806 }
807 if (totalAcceleration > 3)
808 {
809 Serial.println(”Randomizing”);
810 float randomTheta = (random(0, 1000)/1000.0f) * PI;
811 float randomPhi = (random(0, 1000)/500.0f) * PI;
812 state.setCoordinates(Coordinates(randomTheta, randomPhi));
813 setLed(state.getCoordinates(), color(255, 0, 255));
814 shakingState = false;
815 return true;
816 }
817 if (shakingCounter > 800)
818 {
819 shakingState = false;
820 }
821 return false;
822 }
823 if (totalAcceleration > 3)
824 {
825 Serial.print(”Detected shaking turning on shakingState, acc length: ”);
826 Serial.println(totalAcceleration);
827 shakingState = true;
828 T_shaking = millis();
829 }
830 return false;
831 }
832

833 bool detectDoubleTap(float acc)
834 {
835 float currentTime = millis();
836

837 // If waiting too long for second tap, reset state
838 if (waitingForSecondTap && (currentTime - lastTapTime > TAP_THRESHOLD_TIME))
839 {
840 waitingForSecondTap = false;
841 }
842

843 // Check for tap condition
844 if (abs(acc) > TAP_THRESHOLD)
845 {
846 // Debounce: ensure enough time since last detected tap
847 if (currentTime - lastDebounceTime > DEBOUNCE_TIME)
848 {
849 lastDebounceTime = currentTime;
850

851 if (waitingForSecondTap)
852 {
853 waitingForSecondTap = false;
854 return true; // Second tap detected within threshold time
855 }
856 else
857 {
858 // First tap detected
859 lastTapTime = currentTime;
860 waitingForSecondTap = true;
861 }
862 }
863 }
864 return false;
865 }
866

867 int checkMotion()
868 {
869 if (frozen)
870 {
871 return 0;
872 }
873 frozen = true;
874 T_freeze = micros();
875 if (detectShaking())

50 B. Software framework

876 {
877 return 9;
878 }
879 if (shakingState)
880 {
881 frozen = false;
882 return 0;
883 }
884 // Handle double tap
885 float acc = (gravityVector(2) - oldGravityVector(2)) * 1000000 / dt;
886 Serial.print(”acc: ”);
887 Serial.println(acc);
888 if (detectDoubleTap(acc))
889 {
890 Serial.println(”Collapse detected”);
891 return 8; // collapse
892 }
893 float accX = (gravityVector(0) - oldGravityVector(0)) * 1000000 / dt;
894 float accY = (gravityVector(1) - oldGravityVector(1)) * 1000000 / dt;
895 if (detectDoubleTap(accX) || detectDoubleTap(accY))
896 {
897 Serial.println(”Hadamard detected”);
898 return 7; // Hadamard
899 }
900 // Handle rotating
901 for (int i = 0; i < 3; i++)
902 {
903 if (gyroVector[i] > GYRO_GATE_THRESHOLD)
904 {
905 return i + 1; // 1 = -x, 2 = -y, 3 = z
906 }
907 }
908 for (int i = 0; i < 3; i++)
909 {
910 if (gyroVector[i] < - GYRO_GATE_THRESHOLD)
911 {
912 return i + 4; // 4 = x, 5 = y, 6 = -z
913 }
914 }
915 frozen = false;
916 return 0;
917 }
918

919 void writeToBLE(BLECharacteristic* destination, Vector3d vector) {
920 float buffer[] = {(float)vector(0), (float)vector(1), (float)vector(2)};
921 if (destination)
922 {
923 destination->setValue((uint8_t*)buffer, sizeof(buffer));
924 destination->notify();
925 } else
926 {
927 Serial.println(”destination is null”);
928 }
929 }
930

931 Vector3d getVectorFromBuffer(float *buffer) {
932 // calibration of imu because imu is not aligned with bloch sphere
933 float rx = (1 - 2 * QB_SX) * buffer[QB_IX];
934 float ry = (1 - 2 * QB_SY) * buffer[QB_IY];
935 float rz = (1 - 2 * QB_SZ) * buffer[QB_IZ];
936 return Vector3d(rx, ry, rz);
937 }
938

939 void readIMU(bool print=true) {
940 while (!imuI2C.dataReady()) {
941 delay(20); // 1-2 ms delay is fine
942 }
943

944 imuI2C.getAGMT();
945 rbuffer[0] = imuI2C.accX() / 1000.0f; // convert to g
946 rbuffer[1] = imuI2C.accY() / 1000.0f;

B.3. Source code Pauli gate example 51

947 rbuffer[2] = imuI2C.accZ() / 1000.0f;
948 rgyrobuffer[0] = imuI2C.gyrX();
949 rgyrobuffer[1] = imuI2C.gyrY();
950 rgyrobuffer[2] = imuI2C.gyrZ();
951

952 float T_new = micros();
953 dt = T_new - T_imu;
954 T_imu = T_new;
955

956 Vector3d newGyro = getVectorFromBuffer(rgyrobuffer) * PI / 180;
957 float d = min(dt / float(T_GYRO), 1.0f);
958 gyroVector = d * newGyro + (1 - d) * gyroVector; // low pass filter
959

960 Vector3d newGravity = getVectorFromBuffer(rbuffer);
961 d = min(dt / float(T_ACC), 1.0f);
962 oldGravityVector = gravityVector;
963 gravityVector = d * newGravity + (1 - d) * gravityVector;
964

965 if (print) {
966 Serial.print(gravityVector(0));
967 Serial.print(”\t”);
968 Serial.print(gravityVector(1));
969 Serial.print(”\t”);
970 Serial.print(gravityVector(2));
971 Serial.print(”\t-1\t1\t”);
972 Serial.print(gyroVector(0));
973 Serial.print(”\t”);
974 Serial.print(gyroVector(1));
975 Serial.print(”\t”);
976 Serial.println(gyroVector(2));
977 }
978

979 if (blecharacc) {
980 writeToBLE(blecharacc, gravityVector);
981 }
982 if (blechargyr) {
983 writeToBLE(blechargyr, gyroVector);
984 }
985 }
986 }; // end class
987

988 Qbead *Qbead::singletoninstance = nullptr;
989

990 } // end namespace
991

992 #endif // QBEAD_H

Listing B.2: QbeadESP32

B.3. Source code Pauli gate example
1 #include <Qbead.h>
2

3 Qbead::Qbead bead;
4 int rotationState = 0;
5 uint32_t stateColor = color(255, 255, 255);
6 const bool toggleAnimationOn = 1;
7

8 void setup() {
9 bead.begin();

10 bead.setBrightness(25); // way too bright
11 Serial.println(”testing all pixels discretely”);
12 for (int i = 0; i < bead.pixels.numPixels(); i++) {
13 bead.pixels.setPixelColor(i, color(255, 255, 255));
14 bead.pixels.show();
15 delay(5);
16 }
17 Serial.println(”testing smooth transition between pixels”);
18 for (int phi = 0; phi < 360; phi += 30) {
19 for (int theta = 0; theta < 180; theta += 3) {
20 bead.clear();

52 B. Software framework

21 bead.setBloch_deg(theta, phi, colorWheel_deg(phi));
22 bead.show();
23 }
24 }
25 Serial.println(”starting inertial tracking”);
26 }
27

28 void loop() {
29 bead.readIMU(false);
30 bead.clear();
31 bead.showAxis();
32 stateColor = color(255, 255, 255);
33 Serial.print(”rotationState: ”);
34 Serial.println(rotationState);
35 if (bead.frozen)
36 {
37 stateColor = color(122, 122, 0);
38 }
39 else
40 {
41 rotationState = bead.checkMotion();
42 if (rotationState != 0)
43 {
44 bead.frozen = true;
45 bead.T_freeze = millis();
46 }
47 }
48 bead.animateTo(rotationState, 2000);
49 bead.setLed(bead.visualState, stateColor);
50 bead.show();
51 }

Listing B.3: Pauli gate detection

B.4. Source code Decoherence
1 #include <Qbead.h>
2

3 Qbead::Qbead bead;
4 int rotationState = 0;
5 uint32_t stateColor = color(255, 255, 255);
6 uint32_t decoherenceColor = color(122, 0, 122);
7 const bool toggleAnimationOn = 1;
8 Qbead::Coordinates oldCoordinates(0, 0, 1);
9 int t = 0;

10 bool wasFrozen = false;
11

12 void setup()
13 {
14 bead.begin();
15 bead.setBrightness(25);
16 Serial.println(”testing all pixels discretely”);
17 for (int i = 0; i < bead.pixels.numPixels(); i++)
18 {
19 bead.pixels.setPixelColor(i, color(255, 255, 255));
20 bead.pixels.show();
21 delay(5);
22 }
23 Serial.println(”testing smooth transition between pixels”);
24 for (int phi = 0; phi < 360; phi += 30)
25 {
26 for (int theta = 0; theta < 180; theta += 3)
27 {
28 bead.clear();
29 bead.setBloch_deg(theta, phi, colorWheel_deg(phi));
30 bead.show();
31 }
32 }
33 Serial.println(”starting inertial tracking”);
34 oldCoordinates = bead.state.getCoordinates();
35 t = millis();

B.4. Source code Decoherence 53

36 }
37

38 void loop()
39 {
40 bead.readIMU(true);
41 bead.clear();
42 bead.showAxis();
43 stateColor = color(255, 255, 255);
44 Serial.print(”rotationState: ”);
45 Serial.println(rotationState);
46 if (bead.frozen)
47 {
48 stateColor = color(122, 122, 0);
49 wasFrozen = true;
50 }
51 else
52 {
53 if (wasFrozen)
54 {
55 wasFrozen = false;
56 oldCoordinates = bead.state.getCoordinates();
57 }
58 rotationState = bead.checkMotion();
59 if (rotationState != 0)
60 {
61 bead.frozen = true;
62 bead.T_freeze = millis();
63 }
64 float phi = bead.state.getCoordinates().phi();
65 int dt = millis() - t;
66 float randInt = random(200, 10000);
67 phi += dt / randInt;
68 if (phi > 2 * PI)
69 {
70 phi -= 2 * PI;
71 }
72 Qbead::Coordinates newCoordinates(bead.state.getCoordinates().theta(), phi);
73 bead.state.setCoordinates(newCoordinates);
74 bead.visualState = bead.state.getCoordinates();
75 bead.setLed(oldCoordinates, decoherenceColor);
76 }
77 t = millis();
78 bead.animateTo(rotationState, 2000);
79 bead.setLed(bead.visualState, stateColor, 1);
80 bead.show();
81 }

Listing B.4: Decoherence

Bibliography

[1] Quantum Technology and Application Consortium – QUTAC, Bayerstadler, Andreas, Becquin,
Guillaume, et al., “Industry quantum computing applications,” EPJ Quantum Technol., vol. 8,
no. 1, p. 25, 2021. DOI: 10.1140/epjqt/s40507-021-00114-x. [Online]. Available: https:
//doi.org/10.1140/epjqt/s40507-021-00114-x.

[2] S. Lloyd, “Ultimate physical limits to computation,” Nature, vol. 406, pp. 1047–1054, 2000, Quan-
tum decoherence, ISSN: 1476-4687. DOI: https://doi.org/10.1038/35023282. [Online].
Available: https://www.nature.com/articles/35023282.

[3] T. Wong, Introduction to Classical and Quantum Computing. Rooted Grove, 2022.
[4] C. P. Williams, Explorations in Quantum Computing. London: Springer London, Jan. 2011. DOI:

10.1007/978-1-84628-887-6.
[5] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniver-

sary Edition. Cambridge University Press, 2010, pp. 17–28, 174.
[6] Bloch sphere - Wikipedia — en.wikipedia.org, https://en.wikipedia.org/wiki/Bloch_

sphere, [Accessed 30-04-2025].
[7] Y.-P. Liao, Y.-L. Cheng, Y.-T. Zhang, H.-X. Wu, and R.-C. Lu, “The interactive system of bloch

sphere for quantum computing education,” in 2022 IEEE International Conference on Quantum
Computing and Engineering (QCE), 2022, pp. 718–723. DOI: 10.1109/QCE53715.2022.
00097.

[8] P. Hu, Y. Li, R. S. K. Mong, and C. Singh, “Student understanding of the bloch sphere,” European
Journal of Physics, vol. 45, no. 2, p. 025 705, Feb. 2024. DOI: 10.1088/1361-6404/ad2393.
[Online]. Available: https://dx.doi.org/10.1088/1361-6404/ad2393.

[9] F. van der Wal, H. Bakker, and R. Gosselink, “The qbead,” Unpublished, will be published at the
same time as this paper.

[10] G. Lindblad, “A general no-cloning theorem,” Letters in Mathematical Physics, vol. 47, pp. 189–
196, 1999, ISSN: 1573-0530. DOI: https://doi.org/10.1023/A:1007581027660. [On-
line]. Available: https://link.springer.com/article/10.1023/A:1007581027660.

[11] P. A. M. Dirac, “A new notation for quantum mechanics,” Mathematical Proceedings of the Cam-
bridge Philosophical Society, vol. 35, no. 3, pp. 416–418, 1939. DOI: 10.1017/S0305004100021162.

[12] M. Newman. “Bloch sphere.” (), [Online]. Available: https://prefetch.eu/know/concept/
bloch-sphere/.

[13] P. Kaye, R. Laflamme, and M. Mosca, An Introduction to Quantum Computing. USA: Oxford
University Press, Inc., 2007, ISBN: 0198570007.

[14] J. Preskill,Quantum computing 40 years later, 2023. arXiv: 2106.10522 [quant-ph]. [Online].
Available: https://arxiv.org/abs/2106.10522.

[15] A. Ekert, T. Hosgood, A. Kay, and C. Macchiavello. “Introduction to Quantum Information Sci-
ence.” (Dec. 8, 2024), [Online]. Available: https://qubit.guide.

[16] A. Ekert, P. M. Hayden, and H. Inamori, “Basic concepts in quantum computation,” in Coherent
atomic matter waves. Springer Berlin Heidelberg, 2024, pp. 661–701, ISBN: 9783540410478.
DOI: 10.1007/3-540-45338-5_10. [Online]. Available: http://dx.doi.org/10.1007/
3-540-45338-5_10.

[17] K. Herb. “Bloch sphere simulator.” (), [Online]. Available: https://bloch.kherb.io/.
[18] H. E. Brandt, “Qubit devices and the issue of quantum decoherence,” Progress in Quantum Elec-

tronics, vol. 22, no. 5, p. 260, 1999, ISSN: 0079-6727. DOI: https://doi.org/10.1016/
S0079- 6727(99)00003-8. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0079672799000038.

[19] V. Vedral and M. B. Plenio, “Basics of quantum computation,” Progress in Quantum Electronics,
vol. 22, no. 1, p. 28, 1998, ISSN: 0079-6727. DOI: https://doi.org/10.1016/S0079-
6727(98)00004-4. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0079672798000044.

55

https://doi.org/10.1140/epjqt/s40507-021-00114-x
https://doi.org/10.1140/epjqt/s40507-021-00114-x
https://doi.org/10.1140/epjqt/s40507-021-00114-x
https://doi.org/https://doi.org/10.1038/35023282
https://www.nature.com/articles/35023282
https://doi.org/10.1007/978-1-84628-887-6
https://en.wikipedia.org/wiki/Bloch_sphere
https://en.wikipedia.org/wiki/Bloch_sphere
https://doi.org/10.1109/QCE53715.2022.00097
https://doi.org/10.1109/QCE53715.2022.00097
https://doi.org/10.1088/1361-6404/ad2393
https://dx.doi.org/10.1088/1361-6404/ad2393
https://doi.org/https://doi.org/10.1023/A:1007581027660
https://link.springer.com/article/10.1023/A:1007581027660
https://doi.org/10.1017/S0305004100021162
https://prefetch.eu/know/concept/bloch-sphere/
https://prefetch.eu/know/concept/bloch-sphere/
https://arxiv.org/abs/2106.10522
https://arxiv.org/abs/2106.10522
https://qubit.guide
https://doi.org/10.1007/3-540-45338-5_10
http://dx.doi.org/10.1007/3-540-45338-5_10
http://dx.doi.org/10.1007/3-540-45338-5_10
https://bloch.kherb.io/
https://doi.org/https://doi.org/10.1016/S0079-6727(99)00003-8
https://doi.org/https://doi.org/10.1016/S0079-6727(99)00003-8
https://www.sciencedirect.com/science/article/pii/S0079672799000038
https://www.sciencedirect.com/science/article/pii/S0079672799000038
https://doi.org/https://doi.org/10.1016/S0079-6727(98)00004-4
https://doi.org/https://doi.org/10.1016/S0079-6727(98)00004-4
https://www.sciencedirect.com/science/article/pii/S0079672798000044
https://www.sciencedirect.com/science/article/pii/S0079672798000044

56 Bibliography

[20] M. Schlosshauer, “Quantum decoherence,” Physics Reports, vol. 831, pp. 1–57, 2019, Quantum
decoherence, ISSN: 0370-1573. DOI: https://doi.org/10.1016/j.physrep.2019.10.
001. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0370157319303084.

[21] R. Sutor, Dancing with Qubits, Second Edition. Packt Publishing, 2019, pp. 454–476, ISBN:
9781837636754.

[22] P. Goiporia. “Suppressing errors with dynamical decoupling using pulse control on amazon braket.”
(2022), [Online]. Available: https://aws.amazon.com/blogs/quantum-computing/
suppressing-errors-with-dynamical-decoupling-using-pulse-control-on-
amazon-braket/.

[23] W. Yang, Z.-Y. Wang, and R.-B. Liu, “Preserving qubit coherence by dynamical decoupling,” Fron-
tiers of Physics in China, vol. 6, no. 1, pp. 2–14, Mar. 2011, ISSN: 2095-0470. DOI: 10.1007/
s11467-010-0113-8. [Online]. Available: https://doi.org/10.1007/s11467-010-
0113-8.

[24] X. Peng, D. Suter, and D. A. Lidar, “High fidelity quantum memory via dynamical decoupling:
Theory and experiment,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 44,
no. 15, p. 154 003, Jul. 2011. DOI: 10.1088/0953-4075/44/15/154003. [Online]. Available:
https://dx.doi.org/10.1088/0953-4075/44/15/154003.

[25] N. Ezzell, B. Pokharel, L. Tewala, G. Quiroz, and D. A. Lidar, “Dynamical decoupling for super-
conducting qubits: A performance survey,” Physical Review Applied, vol. 20, no. 6, Dec. 2023,
ISSN: 2331-7019. DOI: 10.1103/physrevapplied.20.064027. [Online]. Available: http:
//dx.doi.org/10.1103/PhysRevApplied.20.064027.

https://doi.org/https://doi.org/10.1016/j.physrep.2019.10.001
https://doi.org/https://doi.org/10.1016/j.physrep.2019.10.001
https://www.sciencedirect.com/science/article/pii/S0370157319303084
https://www.sciencedirect.com/science/article/pii/S0370157319303084
https://aws.amazon.com/blogs/quantum-computing/suppressing-errors-with-dynamical-decoupling-using-pulse-control-on-amazon-braket/
https://aws.amazon.com/blogs/quantum-computing/suppressing-errors-with-dynamical-decoupling-using-pulse-control-on-amazon-braket/
https://aws.amazon.com/blogs/quantum-computing/suppressing-errors-with-dynamical-decoupling-using-pulse-control-on-amazon-braket/
https://doi.org/10.1007/s11467-010-0113-8
https://doi.org/10.1007/s11467-010-0113-8
https://doi.org/10.1007/s11467-010-0113-8
https://doi.org/10.1007/s11467-010-0113-8
https://doi.org/10.1088/0953-4075/44/15/154003
https://dx.doi.org/10.1088/0953-4075/44/15/154003
https://doi.org/10.1103/physrevapplied.20.064027
http://dx.doi.org/10.1103/PhysRevApplied.20.064027
http://dx.doi.org/10.1103/PhysRevApplied.20.064027

	Introduction
	Classical and quantum computers
	Quantum computing
	Qbead
	Problem
	Microcontroller
	IMU
	Structure of this thesis

	Programme of requirements
	Mandatory requirements
	Functional requirements
	Non-functional requirements

	Trade-off requirements

	Theoretical Background
	Quantum Bits
	Mathematical model
	Superposition and measurement
	Phase

	Bloch Sphere
	Quantum Gates
	Common gates
	Matrices

	Classes
	Coordinates Class
	Cartesian vector
	LED control

	Quantum State Class
	Collapsing
	Gates

	Qbead Class
	User input
	Rotation detection
	Tap detection
	Shaking
	BLE changes for ESP32S3

	Applications of the Qbead
	UI/UX
	Gates
	Decoherence
	Dynamic Decoupling

	Testing
	Installation
	User input measurements
	Responsiveness
	Gesture Detection Accuracy
	Conclusion

	Discussion and Conclusion
	Conclusion
	Discussion

	Formulas
	Matrices used for single qubit gates

	Software framework
	Source code XIAO Seeed nRF52870
	Source code XIAO Seeed ESP32S3
	Source code Pauli gate example
	Source code Decoherence

	Bibliography

