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Preface

This Master thesis is the final part of my Master of Science in Embedded
Systems at Delft University of Technology. The work presented is performed
at the Embedded Software Group led by Prof. dr. Koen Langendoen. It
describes the research I conducted while developing a smart bracelet for
Shake-On, a startup at the YES!Delft incubator.

My work combines Shake-On’s need for a product with a more theoretical
view. This report is written for the thesis committee and future developers
of Shake-On. It will convey my ideas and provide recommendations with
respect to further product development.

For questions or remarks, do not hesitate to contact me.

Aimee Ferouge
A.A.Ferouge@student.tudelft.nl
Delft, 9th December 2015
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Abstract

The way people meet each other is usually face to face. Meanwhile, the way
people maintain their contacts is mostly through social media. This results
in a gap of translating a handshake into a digital connection. Shake-On is
a start-up that has come up with an answer by means of a smart bracelet.
Their aim is to wirelessly exchange contact details between users wearing
the bracelet. This exchange is triggered by the most common human gesture
people use when introducing themselves: the handshake.

This thesis will overcome two major challenges for Shake-On. First, no
general pattern recognition method can be applied to detect handshakes.
This is caused by the fact that handshakes gestures show large variations
among individual persons.

Second, the system should be robust to multiple handshakes happening con-
currently. This applies to the scenario of more than two people shaking
hands while standing close to each other. Contact details should only be
exchanged between people that are handshaking, which requires handshake
matching. Again, large variations in ‘handshaking style’ make it a cumber-
some task to identify matching handshakes.

This thesis proposes a two-fold solution to address the above-mentioned chal-
lenges. The first part includes handshake detection, using new features
for pattern recognition that are tailored to handshaking recognizing. The
second part proposes a new method to perform handshake matching that
overcomes the shortcomings of existing solutions.

The work done in this thesis has led to the following results:

1. The developed detection method takes into account limited resources
and is therefore suitable for implementation on a smart bracelet. Moreover,
it shows similar performance as the state-of-the-art solutions, namely
an accuracy of 95%. In contrast to existing solutions using 6 stochastic
features, our solution uses 4 computationally lightweight features.

2. Being the first of its kind, the matching method proposes a novel
technique that maps handshakes to an abstract binary format. This
format is called peakmaps. Because it eliminates personal handshaking
style, peakmaps result in a pairing accuracy of 80% compared to 24%
using basic cross correlation.
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Chapter 1

Introduction

“It is possible to tell things by a handshake. I like the ‘looking in the eye’
syndrome. It conveys interest. I like the firm, though not bone crushing
shake. The bone crusher is trying too hard to ‘macho it.’ The clammy or
diffident handshake, fairly or unfairly, get me off to a bad start with a per-
son.”

— George H. W. Bush

1.1 Getting in Touch, Staying in Touch

Handshakes have been around for over 2,500 years, used by the ancient
Greeks to reassure one another they held no weapon[1]. Nowadays, the
gesture is common in the Western world when greeting people or meeting
somebody new.

The most common way people meet each other is face to face, either by
coincidence or on purpose. The preference for getting in touch with new
people face to face is provided by conferences and networking events.

Meanwhile, the way people maintain in contact has changed with the intro-
duction of social media. In a world where social media is rapidly evolving,
many social platforms are arising for different types of purposes. Examples
include Facebook for self-promotion or LinkedIn for business purposes[2].
Nowadays when it comes to staying in touch, the digital world is sufficient.
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CHAPTER 1. INTRODUCTION

If we look at professional networking, this phenomenon is very well-known.
Conferences and networking events are common practise for meeting new
people. Many business cards are exchanged, only to be used when looking
for the person on LinkedIn. For our scenario of interest, the process of
meeting new people comprises two steps:

1. Getting in touch face to face

2. Staying in touch digitally

The question remains how to fill the gap between the encounter of new
contacts in real-life and the emerging digital platforms for the maintenance
of social networks.
In other words, how to translate a handshake to a digital connection?

1.2 Introducing the Shake-On Smart Bracelet

The issue stated above is addressed by Shake-On, a start-up at the YES!Delft
incubator. Their idea is to create a smart wrist-band1 that can be worn dur-
ing events where people meet, e.g. conferences or networking events. Upon
detecting a handshake between two people, the smartbands exchange con-
tact information users by means of a smartphone application. This contact
information contains only the basics, for example name, function and com-
pany. Users get an overview of recently collected handshakes and can decide
whether to keep or discard the contacts. Upon mutual confirmation of both
users, complete profiles are exchanged. These may include a phone number,
email address or a link to their LinkedIn page.

The bracelet is responsible for the detection of handshakes and the wireless
exchange of basic contact information.

1Smart wrist-band, (smart) bracelet and smartband are equivalent terms

2



1.3. SYSTEM SET UP AND REQUIREMENTS

1. Listen to 
accelerometer

2. Detect a 
handshake

3 & 4. listen for 
complementary 
bracelets and 
exchange data

5. Communicate 
with Shake-on app

Figure 1.1: Actions performed by the bracelet when the user performs a
handshake.

1.3 System Set Up and Requirements

Before summarizing the contents of this thesis, the functions of the bracelet
are briefly explained. See also Fig. 1.1. Bracelets worn by each individual
attendee follow this lifecycle:

1. Idle mode: bracelets keep track of the user’s movements

2. Detect handshake: when the user performs a handshaking gesture,
this is detected by the bracelet

3. Communicate: the bracelet broadcasts information about the new
handshake and listens for incoming ‘handshakes’ from neighbouring
bracelets

4. Match handshake: contact details will be exchanged between brace-
lets of two people shaking hands

5. Notify: The bracelet notifies the user of the new match by means of
a smartphone application using Bluetooth Low Energy (BLE)

3



CHAPTER 1. INTRODUCTION

The first requirement is that the bracelet should be energy efficient and
able to last at least three days without recharging. As large events usually
take up a couple of days (or sometimes an entire week), the need for daily
recharging of all bracelets should be avoided.

Power consumption is an important aspect that should always be taken into
account thoughout the entire development.

Second, users should be offered real-time insight about who they have met
during the event. Upon handshake detection by a bracelet, the identity (ID)
of the matching bracelet should be passed on to a smartphone application2.
This introduces the optional fifth step to the lifecycle.

1.4 Problem Statement

There are a few design constraints that originate from Shake-On’s require-
ments. These introduce a couple of challenges, as they require algorithms
and mechanisms that are not readily available.

First, the bracelet should be able to detect a traditional handshake gesture.
The bracelet should not require a so-called invented gesture, which is a
predefined gesture that is performed similarly by all users in order to increase
detection performance. Instead, the user’s natural handshake is used as a
trigger to exchange contact details. This way, people don’t have to act
differently as a consequence of wearing the bracelet. The problem is that no
handshake is the same, since they show large variability between individuals.
Variable traits of a handshake include the duration of a handshake, the
intensity of shaking and orientation of the grip.

Given the human factor in each handshake, there is no straightforward and
general detection algorithm that can be applied.

Second, the handshake detection should be able to handle large crowds, i.e.
more than two people shaking hands simultanuously in a small room. The
matching step mentioned in the previous paragraph comprises selecting the
right bracelet from a pool of candidates. When four attendees (pair A and
pair B) are shaking hands, contact details should only be exchanged within
pair A and pair B. The bracelet should compare candidate handshakes to
its own decide whether they are its complementary or not. Sometimes one
person will have a strong, powerful handshake and the other person will
have a soft, timid handshake. For this reason, finding the right match can
be cumbersome if the individual gesture will not show much resemblence.

2The smartphone application will be referred to as ‘the app’ in the remainder of this
thesis.

4



1.5. CONTRIBUTIONS

Thus, the matching step introduces the challenge of selecting the matching
bracelet from a pool of surrounding candidates, accounting for handshake
uniqueness.

To summarize, the following challenges are introduced:

1. Generality: there is no straightforward solution for handshake de-
tection, since every user has a unique ‘handshaking style’

2. Robust to concurrency: in the case of multiple candidate matches,
the bracelet should be able to select the right match

1.5 Contributions

The contributions of this thesis are two-fold. First, this thesis provides a
comparative study of different technologies required to realize the bracelet
Shake-On is aiming for, meeting all of its constraints. Second, algorithms
are proposed to perform handshake detection and matching. Throughout
the thesis, these contributions are described in the following manner:

• Chapter 2 explains the system architecture from which a requirements
specification will be derived;

• Chapter 3 contains an analysis of related projects regarding wireless
data exchange and gesture recognition;

• Chapter 4 proposes new features for pattern recognition that are tailored
to handshaking gestures. This results in a detection accuracy of 95%,
using fewer features than state-of-the-art solutions;

• Chapter 5 proposes a new method for handshake matching, called
peakmaps. These will increase the pairing accuracy from 24% for basic
cross correlation to 80%.

Finally, Chapter 6 draws conclusions and gives recommendations for future
development.

5
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Chapter 2

Design Requirements

Chapter 1 already touched upon the most important design constraints.
This chapter will further elaborate on the requirements of the desired sytem,
distinguishing the two main challenges:

• Handshake detection based on accelerometer data

• Handshake matching of two users

This chapter is structured as follows: Section 2.1 will describe the custom
PCB that was developed for Shake-On, used as starting point for the brace-
let. Section 2.2 explains why it is preferable to pre-classify gestures rather
then broadcasting all sensor data. Section 2.3 lists the requirements for
handshake detection and pinpoints the challenges that will be faced. Sec-
tion 2.4 does the same for handshake matching, already giving a few insights
why matching is difficult.

2.1 The Hardware

With respect to the hardware, a few design choices were already prescribed
by Shake-On. First, the PCB that is used in the smartbands is custom-
made and has been a starting point for this project. See Fig. 2.1. The
board contains an nRF51 chip1 , a printed antenna2 and an accelerometer3.
The nRF51 chip is built around a Cortex M0 CPU4 , has an embedded radio

1Nordic Semiconductor nRF51822 System-on-Chip [3]
2Designed to use the 2.4 GHz band
3LIS3DH MEMS digital output motion sensor: ultra low-power high performance 3-

axes “nano” accelerometer[4]
432-bit ARM R©-Cortex M0

7



CHAPTER 2. DESIGN REQUIREMENTS

Figure 2.1: The PCB and programmer from Salland Electronics.
Main components are the nRF SoC, antenna and accelerometer.

transceiver and supports so-called SoftDevices. These are pre-compiled, pre-
linked binary files. The SoftDevice S110 is used on the nRF51 as it contains
a Bluetooth R©Smart protocol stack [5]. To program and debug the PCB,
the manufacturer Salland Electronics has made a module (the programmer)
with Pogo pins5. See Fig. 2.1.

2.2 Computation over Transmission

The smartbands continuously receive sensor data from the accelerometer,
which can not all be classified as a potential handshake gesture. Knowing
this, a filtering step is needed that precedes the transmission of handshake
characteristics to other smartbands should. Computation over Transmission
is a well-known design principle, stating that the energy cost of computation
as compared to radio transmission is approximately 1000 calculations to 1
bit of data transfer[6]. Of course, this depends on the distance that the
data must be transferred as transmission cost increases by the square of
the distance. However, if it is possible to reduce the amount of data to be
transmitted by increasing the number of computations this is preferable.

For this reason, a pre-classification algorithm should make sure only poten-
tial handshakes are broadcasted. This means on-chip handshake recognition
done in two steps: classification of the sensor data (handshake detection)
by the individual bracelets, followed by data broadcasting and comparison
with other bracelets (handshake matching).

5Spring-loaded pins that are used to establish a temporary connection between to PCBs

8



2.3. CHALLENGE 1: HANDSHAKE DETECTION

2.3 Challenge 1: Handshake Detection

As explained in Section 2.2, handshake detection will comprise the classi-
fication of the sensor data. A sample can be either labeled ‘Handshake’
or ‘No handshake’. Given the available hardware and the design specific-
ations from Chapter 1, the following requirements apply to the handshake
detection algorithm:

1. The algorithm should be able to run without any resources other than
the ones offered by the components on the PCB

2. The algorithm should only use the accelerometer data as input

3. The algorithm should be able to detect natural handshake gestures
(no need for invented gestures)

The generality property described in Chapter 1 makes the formulation of a
detection algorithm challenging. It is impossible to train the system for all
kinds of handshakes, so our solution needs to be general. On the other hand,
the solution should be reliable; our algorithm should decrease the number
of false negatives to avoid missing a handshakes. At the same time, the
algorithm should minimize the number of false positives to save energy and
avoid broadcasting gestures that are not handshakes.

To illustrate the need for a general yet reliable solution, Fig. 2.2 shows sensor
data of two people shaking hands. Even though both gestures belong to the
same handshake, they show very different traces. Despite this, they should
be both recognized by the the detection algorithm.

2.4 Challenge 2: Handshake Matching

The second challenge comprises the comparison of handshake movements
between two users wearing the bracelet. Both smartbands provide a sample
characterizing their handshake movement, which is then checked for similar-
ity. Given the available hardware and the design specifications from Chapter
1, the requirements for handshake detection also apply to the matching al-
gorithm:

The algorithm should be able to run without any resources other than the
ones offered by the components on the PCB

9
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Figure 2.2: Accelerometer data from two people shaking hands.
Even though both gestures belong to the same handshake, they show very
different traces. For handshake detection, this introduces a need for gener-
ality. For handshake matching, it is hard to recognize such different traces
as being the same handshake.

As we will see in Chapter 5, handshake matching is quite complex because
traces that belong to the same handshake can be very different. An as-
pect that needs to be considered is that users might wear their bracelets
in a slightly different manner, resulting in different sensor values. Another
phenomenon that causes different sensor values is called palm power. This
is the situation where one person tends to rotate the other person’s hand
downwards, forcing him in a submissive role. Finally, people vary a lot in
the intensity of the handshake. When one person has a rather strong hand-
shake, the other person’s hand is more or less being shook. It may seem
unlikely, but the two samples from Fig. 2.2 are from the same handshake.
Because two individual handshake traces can show such large variability, it
is difficult to see whether they belong to the same handshake or not.

10



Chapter 3

State-of-the-Art

This chapter will explore the research that has already been conducted on
wireless data exchange triggered by gesture recognition. It will provide
a comparative study on the available methods for gesture recognition ex-
plored by research projects that have had similar interests to ours. Not
all algorithms mentioned here are candidate solutions for our bracelet, but
discussing them helps to gain an understanding of the design choices made
further down this thesis.

Section 3.1 and Section 3.2 will provide a rough overview on the conduc-
ted research in the field of gesture recognition and handshake recognition,
respectively. It will also introduce some terminology and the evaluation
criteria needed for discussing other research. Section 3.3, Section 3.4 and
Section 3.5 will look into three existing solutions that have similar goals,
but suffer from a few shortcomings. Section 3.6 completes the comparative
study by analyzing three project that are focussed on gesture recognition
in general. Section 3.7 provides an overview table, comparing the projects
mentioned above and evaluating their applicability to our desired system.

3.1 Gesture Recognition

Shake-On is not the first to investigate the combination of accelerometer-
based gesture recognition and wireless data exchange. Many research pro-
jects have been conducted with respect to such sensor networks in health-
care. In [7, 8], the aim of the research is fall detection for elderly people.
More general activity monitoring using accelerometers involves detecting
resting, walking and running in a non-invasive manner. The work done in
[9, 10, 11, 12] focusses on monitoring such activities. Even more specific
are [13, 14, 15]. Their work investigates the recognition and classification of

11



CHAPTER 3. STATE-OF-THE-ART

hand gestures, such as handwashing or writing letters with a Nintendo Wii
mote.

3.2 Handshake Recognition

For over ten years there has been interest in accelerometer-based hand
gesture recognition. Two incentives have been the introduction of smart-
phones having built-in accelerometers ([16, 17]) and the Nintendo Wiimote
([18, 13, 19, 20]).

This section will discuss some evaluation criteria that is of interest when
looking for in-node gesture recognition. Also, some commonly used termin-
ology is introduced. A detailed comparative study is conducted on the used
features, classifiers, performance and system drawbacks.

3.2.1 Evaluation Criteria

Having defined the system requirements, existing solutions can be evaluated
in a structured way. Since there are limited resources, system complexity
and efficiency are important aspects in this comparative study. System com-
plexity is related to the computational capabilities of the platform, in our
case a simple nRF51 chip. System efficiency relates to the power consump-
tion, constrained by the requirement of using a coin cell battery and three
days without recharging. Recall from Chapter 2 that data transmission is
much more costly in terms of energy than computations. This calls for a
balanced trade-off between maximizing true positives and minimizing false
positives. This can be measured using precision and recall, which considers
two questions:

1. How many of the detected handshakes actually occured?

2. How many real handshakes have been detected?

Definition 1 Precision is the fraction of retrieved data points that are rel-
evant to the query.

precision =
| {real} ∩ {detected} |
| {detected} |

(3.1)

Definition 2 Recall is the fraction of data points relevant to the query that
are successfully retrieved.

recall =
| {real} ∩ {detected} |

| {real} |
(3.2)

12



3.3. EXISTING SOLUTION 1: SMART-ITS FRIENDS BY HOLMQUIST

3.2.2 Terminology

Before discussing related work, some jargon needs to be introduced. The
following definitions are not straightforward to all readers, but will be used
in the remainder of this thesis.

Definition 3 Given a gesture sample G from the accelerometer, classific-
ation is the process of determining whether G can be considered a handshake
or not.

Definition 4 Classifiers are classification algorithms that are used in the
field of pattern recognition and data mining.

Definition 5 Given a gesture sample G, a feature vector G = {f1, f2, . . . , fn}
consists of a set of metrics that characterize G. Examples that are often used
in literature are stochastic statistics like the mean µ, standard deviation σ,
(co)variance Cov[X,Y ]and mean error ε.

Well-known classifiers used in this thesis and related work are Hidden Markov
Models (HMM), k-Neighest Neighbors (kNN), Support Vector Machines
(SVM) and decision trees like C4.5.

3.3 Existing Solution 1: Smart-Its Friends by
Holmquist

The Smart-Its Friends technique aims for easy establishments of connec-
tions between two artefacts[21]. Their objective is ‘to develop a range of
small, embedded devices as platforms for augmentation and interconnection
of artefacts’. During the matching phase, the Smart-It broadcasts its cap-
tured movement data and ID to other devices within a limited listening
range (see Fig. 3.1). Surrounding devices compare the data to their own.
Based on whether the devices are moved similarly, they either establish a
dedicated connection or not. This connection will physically break when the
devices move out of each others communication range, but will automatically
reconnect when placed back in range.

Smart-Its Friends are stand-alone devices, meaning there is no base station
(PC) involved. This is a property that meets the stand-alone requirement
from Shake-On. Furthermore, there are no restrictions on the synchronized
movement that is performed. Because of this, the bracelets are continuously
broadcasting. Considering the Computation over Transmission design prin-
ciple, this way of unconditional broadcasting is not energy efficient. All

13
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(a) Matching phase. (b) Two connected devices.

Figure 3.1: Two Smart Its devices interacting [21]. Upon synchronized
movement, they establish a dedicated connection.

movement data is broadcasted over a 868 MHz ISM 1 band, leading to much
traffic and continuous context-matching of Smart-Its that are close to each
other. One of the authors has been contacted by email to shed some light on
unclear matters. Unfortunately, there is no information about the perform-
ance of Smart-Its. Given the fact that Smart-Its uses a 2D accelerometer, it
would have been interesting to know whether this provides enough informa-
tion to perform gesture matching. Also, it remains unclear whether Smart-
Its uses feature vectors (and what parameters they contain) and whether it
is possible for multiple devices to connect to the same Smart-It.

3.4 Existing Solution 2: iBand by Kanis

The iBand is developed by the Human Connectedness group in Dublin for
a study towards the influence of techno-gestures upon social networking
[22]. Two people shaking hands cause their wristband to connect using
infrared (IR) transceivers, after which data is exchanged. Like the Smart-It,
the device uses a PIC microcontroller and a 2-D accelerometer. After the
event, the user returns to the kiosk to upload all collected contacts at a base
station. During an interview with Marije Kanis, one of the authors of [22],
it appeared that the main focus of the iBand project was the social impact
of the digital networking. Technical optimization of the device has not been
an important aspect, which becomes clear when looking at the prototype
(see Fig. 3.2). The coarse detection of handshaking movement and the need
for an alignment of the bulky IR-module are two aspects that need to be
avoided. Experiments on detection accuracy have not been conducted or
are not public. Even after the interview with Marije Kanis and a short

1The industrial, scientific and medical (ISM) radio bands are reserved internationally
for purposes other than telecommunications. (”ARTICLE 1 - Terms and Definitions”,
International Telecommunication Union, 19 October 2009)
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Figure 3.2: The iBand prototype by [22]. Upon a handshake, the smart-
bands are connected by means of aligned infrared transceivers.

email conversation with one of the engineers, the system performance was
not quantifiable.

3.5 Existing Solution 3: B-HandDS by Augimeri

The B-HandDS [23] can be considered the solution that comes closest to
the system desired by Shake-On (see Fig. 3.3). The wristbands are in sleep
mode until another device enters their proximity, using a beaconing mechan-
ism. Then, Augimeri introduces a cooperative handshake detection protocol
(CHDP) that requires both parties to confirm the handshake before they
exchange data. Sensor data is first classified locally, after which only poten-
tial handshakes are advertised. Then, potential handshakes received from
other smartbands are compared to its own and might lead to a connection.
For both local classification and matching, a feature vector is composed and
fed to an algorithm based on a J48 Decision Tree.2

The motivation for the use of the J48 decision tree is the fact that the
algorithm is lightweight and computationally inexpensive, good for coarse-
grained classification. This is a smart choice, since accuracy will be provided
by the CDHP. The feature vector, however, is quite large and comprises
parameters like zero crossing, the root mean square (RMS) of each sample,
maximum amplitude, frame mean, standard deviation and total energy3 Us-
ing these features has led to the best performance of the classifier, but they
also require complex computations. This is not a problem in the project
of Augimeri, since a PC base station is used for computation and commu-
nication. However, for our scenario of interest the algorithm should be as
lightweight as possible and it would be interesting to see to what extent the

2A WEKA implementation of the C4.5 algorithm, developed by Ross Quinlan. WEKA
is a software tool providing a collection of of machine learning algorithms for data mining
tasks [24].

3the sum of the square of all values in the frame calculated across X, Y, Z accelerometer
sensor channels. It can be considered as a measure of the global activity in a frame [23].
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Figure 3.3: B-HandDS prototype by [23].

feature vector can be simplified. Also, the B-HandDS uses a beaconing mech-
anism to detect other nodes and wake up from an energy preserving mode
(sleep mode). This kind of proximity detection is redundant for Shake-On,
as the bracelets are either switched on when worn or switched off. Rather,
there should be some kind of activity detection in order to wake up the
device or put it to sleep. As for the performance, the J48 algorithm suffers
the least from false positives compared to other decision trees. B-HandDS
has an accuracy of 99%around 75% only considering recall and 75% when
taking into account precision.

3.6 Common Gesture Recognition Techniques

Besides the three projects studied above, more interesting work has been
done on gesture recognition. The techniques used are briefly discussed and
evaluated on their applicability for our bracelet.

In [14], Wu uses a Nintendo WiiMote to recognize gestures that are inten-
ded to give commands (e.g. turn up the volume). The proposed method is
a Frame-based Descriptor and Multi-class Support Vector Machine (SVM),
being able to distinguish 12 gestures. The feature vector has brought down
raw sensor data to five parameters, which reduces signal variance and noise.
The conducted experiments show that SVM outperfomes Dynamic Time
Warping (DTW) and Hidden Markov Models (HMM), two classifier often
used in pattern recognition. The experiments also show that SVM outper-
forms Naive Bayes and C4.5. However, SVM includes the need for discrete
Fourier transform (DFT), only works for easy gestures (a simple 90 degree
rotation of the WiiMote) and has an accuracy of 89,3% for user-independant
recognition.

In conclusion, Wu shows the benefits of a feature vector-based classifica-

16



3.6. COMMON GESTURE RECOGNITION TECHNIQUES

tion algorithm, however has a rather complex implementation for detecting
simple gestures.

Another research on the WiiMote is done by Liu in [13], aiming for au-
thentication and navigation based on personalized gesture recognition. The
WiiMote sends its acceleration data through Bluetooth to a PC base sta-
tion that runs the recognition algorithm. The proposed system can detect
8 gestures, using DTW with an accuracy of 75,4% for user-independant re-
cognition (and 93.5% for user-dependent recogntion). For user-dependent
recognition, the WiiMote is trained to recognize gestures from only one
person, whereas user-independent should recognize gestures performed by
different users that all have a different way of moving. With respect to user-
dependent gesture recognition, DTW is suitable since it performs well with
limited training.

In its recommendations, [13] mentions identification of common features
in acceleration data to achieve a better user-independent recognition rate.
This is interesting, since our scenario of interest involves user-independent
recognition of a known gesture: a handshake.

The last relevant research is [15], which develops a wrist-worn sensor that
recognizes the duration and techniques of hand washing. Using a PC running
WEKA (also used in [23]), 15 different scrubbing motions are classified in
order to study the hand washing behavior of medical staff. With an 8-
parameter feature vector and a k-Nearest Neighbour algorithm (kNN), an
accuracy of 88.5% is achieved. Interestingly, [15] suggests the decision tree
used in [23] as an alternative classifier and it discards the use of Neural
Networks because of their poor response time. Also, experiments regarding
window length (or frame size) and sampling rates of the accelerometer can
be quite useful in a later phase of development.
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Project HGO Platform Low Power Classifier Features Precision Recall
B-HandDS[23] Yes PC Detection J48 6 99% 75%
iBand[22] Yes PCB IR alignment N/A ∗ ∗
Smart-Its[21] Yes PCB No detection RMS ∗ ∗ ∗
Gesture-3D[14] No PC SVM 5 89.3% ∗
uWave[13] No PC DTW N/A∗ 75.4% 90%
HCW[15] No PC kNN 8 88.5% ∗
Desired system

Figure 3.4: An overview of all techniques and methods discussed in
this chapter. HGO is short for Handshake Gestures Only. An asterisk (∗)
means the content of the cell is unknown or uncertain. Green cells indicate
the project meets the design requirements. Orange cells imply room for
improvement regarding complexity. Red cells indicate the aspect is not
considered or does not meet the design requirements.

3.7 Summary

Fig. 3.4 provides an overview of all techniques and methods mentioned in this
chapter. Green cells indicate that the project meets our design requirements.
The orange cells imply there might be room for improvement regarding
the high number of parameters. Red cells mean the project aspect is not
considered or that the design choice does not meet the design requirements.
An asterisk (∗) means the content of the cell is unknown or uncertain.

We can conclude from this comparative study that there is no system or al-
gorithm yet that satisfies all of the design requirements. B-HandDS provides
a good starting point, proposing the lightweight J48 classifier for handshake
detection. Since there are only two categories, namely ‘handshake’ and ‘no
handshake’, there is no need for more complex classifiers like HMM, SVM or
kNN. In order to meet the stand-alone requirement, a lot can be improved
with respect to the used feature vectors. Commonly used features often re-
quire Fast Fourier Transform, which is no problem considering that all these
projects use a PC base station.

The aim of our algorithm of interest is to find new features that can be
obtained in a lightweight manner, taking into account the limited resources
of a System-on-Chip (SoC). These can then be used for:

1. handshake detection, in combination with the J48 decision tree

2. handshake matching, mapping a handshake into a compressed format
resulting in less data to transmit

The remainder of this thesis will described the work done in order to find
such an algorithm.
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Chapter 4

Handshake Detection

“Is that a dagger I see before me..?”

— Macbeth (W. Shakespeare)

This chapter will deal with challenge 1 from Chapter 2. It is important
to distinguish handshake detection from handshake matching, which is dis-
cussed in Chapter 5. Thus, before proceeding we note that the questions to
be answered have a different nature:

• Handshake detection: given one gesture, does it classify as hand-
shaking? 1

• Handshake matching: given more than two candidate handshakes,
which one belongs to me?

This chapter will investigate handshake detection by the individual smart-
bands. Section 4.1 translates characteristics of a handshake into the qualitat-
ive properties of orientation, intensity and frequency. Section 4.2 translates
these qualitative characteristics to quantitative features using accelerometer
data. A hypothesis is formulated regarding a new method for handshake
detection that requires only lightweight computations. Section 4.3 explains
how the Filter and Wrapper method are used to obtain a minimal fea-
ture vector. This vector contains only those features that are crucial for
handshake detection. Section 4.4 evaluates the feature vectors obtained by
Section 4.3 by feeding them to a J48 decision tree.

1Or, using the Shakespeare quote with a slight twist: is that a handshake I see before
me?

19



CHAPTER 4. HANDSHAKE DETECTION

4.1 Handshakes: A Closer Look

The goal of this section is to find the features that define a handshake and
a way to detect them using raw sensor data. The first part will discuss
the nature of handshake gestures and formulate three key characteristics.
Furthermore, other research projects are discussed regarding the feature
vectors used and their applicability to handshake detection.

4.1.1 The Handshake Gesture

When talking about handshaking, the gesture that is addressed is clear. Two
people grasp each other’s right hand according to etiquette and perform a
synchronised up-and-down movement. In a classical handshake, both hands
have a thumb-up orientation and the movement takes between one and two
seconds. Now, typical characteristics that classify a gesture as a handshake
can be derived from the above qualitative description.

For the position of the hand, we can use the fact that the bracelet is strapped
to the wrist and will follow all of its motions. When the hand is in a fingers-
up orientation, it is very unlikely a handshake will be performed. The wrist
orientation can therefore be of use in handshake detection. See Fig. 4.1.

Figure 4.1: Three examples of wrist orientations, useful for detec-
tion of a potential handshake. The second image shows the orientation
of a conventional handshake.

The up-and-down shaking is a strong characteristic that can be used to dis-
tinguish between gestures. Whereas a handshake can be strong and excited,
drinking a cup of coffee needs to be done slowly and in a controlled manner.
Also, there is a lot of variation in the way people shake hands, which will
be used to our advantage later on when performing handshake matching.
Thus, the intensity of the movement is a property of interest.

Finally, a handshake is not a static. The rhythm of shaking can vary, with an
average of approximately three up-and-down movements per second. Since
handshakes are a cooperation of two people, the up-and-down motions of
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both gestures are likely to be the same. This frequency is therefore a third
interesting feature to investigate, resulting in the following 3-tuple to de-
scribe a handshake:

Handshake = {orientation, intensity, frequency} (4.1)

4.1.2 Decision Problems vs. Classification Problems

As discussed in Chapter 3, other research projects also use feature vectors.
They often included standard stochastic parameters like mean, standard
deviation, (co)variance, correlation and mean error. There is a distinction,
however, in the nature of the question addresed in the state-of-the-art pro-
jects. In general, research questions in the field of pattern recognition are
either a:

• Decision problem: “Does this gesture resemble a handshake or not?”

• Classification problem: “Which of the predefined gestures in our lib-
rary does this sample resemble?”

Classifying a dataset by the full set of standard stochastic statistics is a good
method for tackling a search problem. For example, a speech recognition
problem (‘Who’s voice is this?’). Stochastic statistics have proven to be
effective speech recognition features. Therefore it is understandable that
many academic works have reached out to them for gesture recognition as
well.

However, in our case there is a single gesture of interest and needs to be de-
cided whether the sample satisfies or not. Given the many ways handshakes
can be performed, comparing them to predefined library-handshakes is too
strict and will lead to many false negatives.
For the handshake detection algorithm, a feature set should be formulated
that captures all handshakes but discards other gestures.

4.2 Sensor Data: Interpreting the Accelerometer

Having defined a qualitative handshake using the 3-tuple from the previous
section, the raw sensor data can be studied. The accelerometer output
contains a reading for each spatial axis, namely x, y and z. A 16-bit value
represents the experienced gravity, with 0 representing no gravity. Gravity
is measured by the standard free fall acceleration (g0 = 9.81m/s2), which is
equal to 1G.
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Table 4.1: Static acceleration on the three spatial axes x, y and z
for six basic orientations. ±g is equal to the gravitational acceleration
of ≈ 9.81 m/s2.

x y z

Palm up 0 0 g
Palm down 0 0 −g
Fingers up g 0 0
Fingers down −g 0 0
Thumb up 0 −g 0
Thumb down 0 g 0

Figure 4.2: Three static orientations of the smartband. The second
image depicts a handshaking orientation, showing negative gravity for the
y-axis. This is useful information for formulation a detection algorithm.

4.2.1 Quantification of A Handshake: Orientation, Intensity and
Frequency

By analyzing the LIS3DH accelerometer data, it is possible to distinguish
basic movements. As mentioned by [25], a bracelet strapped to the wrist can
give insight on static orientations of the hand. In Table 4.1 and Fig. 4.2, the
concept of static acceleration is explained for each axis. The sensitivity is set
to ± 2G, resulting in gravity being sensed as ± 16000. It can be seen that
for each position, one axis is subject to gravity and the other two axes form a
plane that does not experience gravity (meaning, the accelerometer reading
is 0). This phenomenon can be used when detecting handshakes, since for
the orientation we are interested in a thumb-up orientation. Putting this
in numbers, we can derive the bracelet orientation by looking at the sensor
value for each axis.

When it comes to intensity, the three axis also provide useful information.
By looking at the maximum and minimum experienced gravity (representing
the up-and-down movement), it is possible to quantify intensity. A strong
handshake will result in large spikes, while a soft handshake will result in
a more flattened signal, as shown in Fig. 4.3. Thus, handshake intensity
can be quantified by looking at the range r of the signal. It is also possible
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Figure 4.3: Two handshaking gestures from which the intensity can
be retrieved. A larger amplitude or range (left) implies a higher intensity
than a more attenuate gesture (right).

to observe the frequency feature, which is visualized in Fig. 4.4. The dots
in the plot emphasize the upper and lower peaks. The frequency can be
computed by counting the samples between the peaks (inter-peak distance)
and multiplying by the sample rate.

4.2.2 Using Quantified Characteristics to Our Advantage

In conclusion, the readings of the accelerometer offer ways to identify the
handshake tuple defined in Section 4.1. The total feature space comprises
9 features, namely orientation, intensity and frequency for each spatial axes
x, y and z:

Handshake = {orientationx,y,z, intensityx,y,z, frequencyx,y,z} (4.2)

An optimal feature set can be obtained by discarding features that are ir-
relevant for handshake detection. For example, we already saw how ana-
lyzing experienced gravity helps us identify a handshake orientation. The
remainder of this chapter will evaluate the following hypotheses:

Hypothesis 1 Handshake detection can be performed by using the orient-
ation, intensity and frequency as features for pattern recognition.

Hypothesis 2 Using this new feature set, handshake detection can be per-
formed with 95% predictive accuracy (precision-recall) and a smaller feature
vector than existing solutions.
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Figure 4.4: Two handshaking gestures from which the frequency
can be retrieved. Many spikes (left) implies faster handshaking than only
a few spikes (right).

4.3 Method

When using pattern recognition for classifying predefined gestures, it is ne-
cessary to gather training data. Feature extraction is performed on the
training data to translate qualitative handshake characteristics to numer-
ical features. Recall that each reading contains sensor values for three axes,
resulting in 9 features, namely orientation, intensity and frequency for the
x, y and z plane. Using sensitivity analysis, the impact of each feature on
the classification accuracy is determined. Finally, a minimal set of features
is identified that provides an accuracy of 95%.

4.3.1 Training Data Acquisition

In order to gather training data, the bracelet was worn by a test group. This
group consisted of my roommates and me. Each participant performed a
handshake with the other five participants. This was repeated three times,
with the setup mimicking three different scenarios: standing, walking and
sitting. These scenarios were based on typical situations that people are
likely to meet at a conference or fair. The sample rate of the sensor was set
at 10 Hz as done in [23] and the sensitivity set at ± 2G. The sensor data
was transmitted wirelessly to the PC terminal using proprietary radio com-
munication by means of an in-house developed protocol. Each run included
the five handshakes and other random movements that were performed in
between. So, for six participants performing five runs for three rounds the
dataset contains 90 handshakes. Fig. 4.5 shows the prototype bracelet and
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Figure 4.5: Training data acquisition with the first prototype and
roommates serving as participants. The bracelet is strapped around
the right wrist using Velcro. Sensor readings are sent to the PC.

a photo while collecting training data.

4.3.2 Feature Extraction

The first step in the analysis of the training data is to distinguish all hand-
shakes from other random movements. This is done using visual inspection
of the raw data plots, followed by manual annotation of the handshakes.
Each annotated handshake has a duration of 1.5 seconds, equal to 15 sensor
readings. This value is chosen since it appears to be the typical duration of a
handshake when studying the training data. Of course, the dataset consists
of many other movements that are not handshakes. This means, features
need to be computed for the entire dataset in order to classify it. Since
features are computed using frames of 15 samples, a sliding window is used
that moves along the received sensor data. After every reading, the window
is shifted to the right by one sample2. This way, every sensor reading will
lead to a new feature vector that can be used for classification.

Definition 6 A rectangular window function w(n) is a mathematical func-
tion that is constant inside and zero-valued outside interval [0, N-1].

w(n) =

{
1, if n ∈ [0, N − 1]

0, otherwise
(4.3)

2The shift size is initially set to be one, but can be varied in a later experimental phase.
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Figure 4.6: Plots depicting how the features are computed. The mean
µ is found by calculating the average value of the frame. The range r is found
by calculating the amplitude, or the difference between the maximum and
minimum value. The peaks are found by computing the local extrema.

Using MATLAB, the three important handshake features from theHandshake
tuple are computed. For each axis, the features can be translated from a
qualitative to a quantative description as follows:

• Orientation: the average window mean µ

• Intensity : the maximum range r

• Frequency : local extrema, being the upper and lower peaks

Fig. 4.6 shows how the mean µ, range r and peaks (red) are computed from
the raw sensor data (blue).

More importantly, Fig. 4.7 shows all recorded gestures performed by the
participants. For each sample, the x, y and z-component are depicted as
a blue, green and red dot, respectively. Thus, each sample is represented
by three dots. Handshakes are marked as black dots. Due to the wide
variability of the handshakes, the black dots are scattered quite a lot. To
eliminate outliers, the 5% outermost black dots are not taken into account.
Based on a 95%-rule, dashed boxes mark the values required to satisfy a
handshake. As an example, three handshakes are emphasized to show how
for each axis the dot is within the dashed box. These are the circles, triangles
and squares.
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Figure 4.7: Gesture samples represented as dots for the x, y an
z-axes. The dashed box indicates the area that satisfy handshaking be-
haviour. For a gesture to be classified as a handshake, the dots should be
within the box for each axis. This is shown for three examples, being the
circles, triangles and squares.
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Table 4.2: Snippet from training data that is used as input for
WEKA. The feature vector comprises of the window mean µ, range r,
and peaks. The last column holds the label YES or NO, dependending on
whether the window contains a handshake or not.

xµ xr xd yµ yr yd zµ zr zd handshake?
...

...
...

...
...

...
...

...
...

...
5568 14912 2.57 -5755 47488 2.37 -10167 25152 4.50 no
57258 14912 2.28 -4996 47488 2.50 -95018 25152 4 no
53034 16512 2.25 -4070 47488 2.66 -81450 25152 4.25 yes
...

...
...

...
...

...
...

...
...

...

4.3.3 Feature Selection

In classification, some features of a vector might play a more important role
than others. The question is which of the nine features are of interest for
detecting a handshake and which can be discarded. In order to find the
minimum set of features necessary to gain a 95% accuracy, the data mining
tool WEKA from [23, 15] is used.

First the training data is processed in MATLAB, computing all 9 features
of F for each run using the sliding window concept. Recall that handshakes
are annotated beforehand as they can be easily distinguished by visual in-
spection of the training data. Now, an .arff file can be composed, which is
the data format for WEKA. See Table 4.2. Now there are two approaches
offered by WEKA for feature selection, namely the Filter method and the
Wrapper method.

The Filter Method

The filter method uses a subset evaluator and a ranker to assign a weight
to each feature in the dataset. Based on the ranking, features from the
lower ranks can be omitted one by one. After each removal the predictive
accuracy (precision and recall) can be estimated with the preferred classi-
fier, in our case the J48 decision tree. This way, it is possible to examine
and plot so-called learning curves. Typically, a learning curve will show
better performance as more low ranked features are omitted. Because the
information they hold is insignificant, they only add noise to the classifier.
However, omitting low-ranked features works up to a point when the feature
subset becomes too small and the classifier will start suffering from under-
fitting . Underfitting occurs when the learning hypothesis considers too few
features, resulting in a too coarse-grained classification. Thus, finding the
global minimum of the learning curve will lead to the best feature subset.
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Table 4.3: Feature ranked according to the Filter method. We use
10-fold cross-validation, the InfoGainAttributeEval evaluator and a ranker
(199 instances).

Rank Feature

1 yr
2 zµ
3 zr
4 xµ
5 xr
6 yµ
7 zd
8 yd
9 xd

The Wrapper Method
The wrapper method uses a subset evaluator that will identify all possible
subsets from your feature vector. This means, every possible combination
of features will be evaluated for their classification performance. Next a
classifier is defined, in our case the J48 decision tree. Both for the Filter
and Wrapper method, classification can be performed using either n-fold
cross-validation3 or percentage split4. In our test 10-fold cross validation
is chosen over percentage split. This is because our dataset contains 90
samples and for percentage split a larger dataset is preferred.

The result comprises a ranking of the features based on their appearance
in each of the 10 folds. Very often, not all features are equally significant.
The next step involves omitting the lowest-ranked features and have WEKA
compute the precision and recall on the obtained Fwrapper.

4.4 Results

First, the filter method is used. The chosen subset evaluator is InfoGain-
AttributeEval, accompanied by a ranker. Using 10-fold cross-validation, the
features are ranked as shown in Table 4.3. By omitting the lowest ranked
feature one by one, the optimal subset of features is found by looking a
the predictive accuracy. In Table 4.4, each newly obtained feature vector is

3Used to limit overfitting. Cross-validation involves partitioning the dataset in a val-
idation subset and a testing subset. To reduce variability, multiple rounds (or folds)
are performed using different partitions, and the validation results are averaged over the
rounds.

4With percentage split, a part of your dataset is used to train the system and the rest
for testing.
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Table 4.4: Predictive accuracy for different Ffilter, using 10-fold cross-
validation and a J48 decision tree classifier.

xµ yµ zµ xr yr zr xd yd zd Precision (%) Recall (%)

97.6 97.5

97.6 97.5

94.7 94.5

96.1 96.0

85.3 85.4

82.9 82.9

evaluated for meeting the constraint of 95% accuracy in both precision and
recall.

Next the wrapper method is used. The subset evaluator is set to Classifi-
erSubsetEval for the J48 decision tree and the search method to Best Fit.
Using 10-fold cross-validation, the features are ranked based on their fre-
quency of appearance. See also Table 4.5. Again, by omitting the lower
features one by one, the optimal subset of features is found by looking at
the predictive accuracy. The constraint of a precision and recall of 95% leads
to Table 4.6.

In conclusion, the minimal feature vector that satisfies the accuracy require-
ment of 95% precision and recall contains 4 features and can be either Ffilter
or Fwrapper based on the Filter method and Wrapper method, respectively.

Ffilter = {xµ, zµ, yr, zr} (4.4)

Fwrapper = {xµ, xr, yµ, yr} (4.5)

Since both feature vectors have the same size and performance, we have
to pick either one of the methods. A disadvantage of the filter method is
that the weight put by the ranker algorithms is different than those used
by classification algorithms. For this reason, the filter method is often used
for large feature vectors that need to be reduced drastically. For example,
going from a thousend features down to fifty. A typical application to use
the filter method is data mining, which includes finding coarse patterns in
very large datasets.

A typical application to use the wrapper method is machine learning tests.
This is the goal of the algorithm since the bracelet should learn to detect a
handshake. Thus, for our case of interest the wrapper method is preferred.
See Appendix A for the resulting decision tree.
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Table 4.5: Feature ranked according to the Wrapper method. We
use 10-fold cross-validation, the ClassifierSubsetEval evaluator and a J48
classifier (199 instances).

#folds (max 10) Feature

10 xµ
10 yµ
9 yr
6 xr
6 zr
2 xd
2 zµ
1 yd
1 zd

Table 4.6: Predictive accuracy for different Fwrapper using 10-fold cross-
validation and a J48 decision tree classifier.

xµ yµ zµ xr yr zr xd yd zd Precision (%) Recall (%)

97.6 97.5

97.1 97.0

95.7 95.5

94.6 94.5

95.6 95.5

94.7 94.5
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4.5 Summary

This chapter has explored a new type of features to perform handshake
detection. The fact that we know the gesture of interest is used to our ad-
vantage by looking at the characteristics of a handshake. These are identified
and translated into quantifiable characteristics:

• Wrist orientation, found by computing the frame mean µ

• Handshake intensity, found by computing the frame amplitude (or
range r)

• Shaking frequency, found by computing the local extrema (or peaks)

Using the Filter and Wrapper method in the data mining tool WEKA, two
lightweight feature vectors are composed. Both contain 4 features and have
gain a predictive accuracy of 95% precision and recall. Recall from Chapter 3
that existing solutions that achieve such high accuracy require a PC to run
complex classifiers with large stochastic features.

The two hypotheses formulated at the beginning of the chapter are suppor-
ted by the above results. Handshake detection can be done in a less complex
manner than existing solutions, without compromising on performance.
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Chapter 5

Handshake Matching

The goal of this chapter is to verify whether the qualitative handshakes
characteristics defined earlier can be used for comparing and matching hand-
shakes. Recall the questions from Chapter 4 and how their nature is differ-
ent:

• Handshake detection: given one gesture, does it classify as hand-
shaking?

• Handshake matching: given more than two candidate handshakes,
which one belongs to me?

In the literature, cross correlation and dynamic time warping (DTW) are
often used for gesture recognition. DTW is an algorithm for measuring
similarity between two temporal sequences which may vary in time or speed.
For gesture recognition this is useful, since the recorded sample could be
matching the reference gesture in the predefined library, only shifted in time
or skewed. However, handshaking is a synchronized movement that does
not take varying speed into account.

Cross correlation is a measure of similarity between two series as functions
of the lag of one relative to the other. It will be tested and evaluated for
its applicability on handshake matching. As we shall see, there are a few
limitations when applying simple cross correlation. therefore, a new method
will be proposed that aims to overcome the shortcomings of cross correlation.

The findings in the previous chapter give reason to again formulate a hypo-
thesis regarding handshake matching.

Hypothesis 3 Handshake matching can be performed by examining the ori-
entation, intensity and frequency of the handshake gesture and can be done
using only lightweight computations.
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Figure 5.1: Two pairs of attendees (A and B) shaking hands sim-
ultanuously within each others radio range. The smartbands should
only exchange data with their match, so A1↔A2 and B1↔B2.

Section 5.1 introduces the problem of how multiple bracelets can be within
each other’s listening range. Section 5.2 describes how training data is collec-
ted for developing and testing the matching algorithm. Section 5.3 explains
why cross correlation on the raw sensor data suffers from the palm power
effect. Also, it proposes the use of Pareto frontiers that eliminates the ori-
entation characteristic. Section 5.4 explains why cross correlation on the
raw sensor data suffers from the weak shaker effect. Also, it proposes the
use of a new method called peakmaps that only consider the frequency char-
acteristic. Section 5.5 explains how peakmaps work and why they obtain a
three times better performance basic cross correlation.

5.1 Four is a Crowd

Pairing two bracelets that have both detected a handshake does not seem
like a complex task. They will turn on their radio, listen for incoming
packets and connect. However, there is a probabiity that multiple pairs of
attendees shake hands at similar time and are located within each other’s
listening range. See Fig. 5.1. To account for this scenario, a matching
algorithm is needed that can pair the right bracelets with each other. For
this thesis, all proposed matching algorithms are tested considering a pool
of four bracelets, so two pairs of attendees shaking hands simultanuously.
Since handshaking is a synchronized movement, it is to be expected that
mismatching handshakes will show less correlation than handshakes that
belong to the same gesture. See also Fig. 5.2.
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Figure 5.2: Four handshake examples, cross-matched to illustrate
similarity between matching samples. Note: these plots are generated
for explanation purposes. In real life, the bracelets worn by the attendees
show less perfect correspondance.

5.2 Training Data Acquisition

In order to gather training data, two handshaking participants wear a brace-
let of which the data is recorded synchronously.

The training data is acquired by 8 participants, forming pairs that perform 4
handshakes. When testing the matching algorithm, the set up will consider
2 pairs that shake hands simultanuously. This means test are done on a
group consisting of 4 participants, which is repeated for 20 different group
configurations. In total, 22 groups performing 4 handshakes yields a dataset
of 80 test cases.
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Table 5.1: Setup for training data acquisition. Eight participants are
being cross-matched in order to obtain 80 test cases.

Parameter Used in dataset
#participants 8

#handshakes performed by a pair 4
#groups of 4 participants 20

#test cases 80

5.3 Cross Correlation on Raw Sensor Data

Previous studies have applied cross correlation to classify gestures captures
by accelerometer-based devices. [18, 15, 26] apply cross correlation for a
gesture comparison, yielding a performance of 70%-90% accuracy. For this
reason, cross correlation is used as a starting point for our matching al-
gorithm.

5.3.1 A Short Introduction to Cross Correlation

Cross correlation1 is a measure for similarity for signals that are shifted in
time. This is useful, since one bracelet might detect the handshake slightly
earlier than the other one. The signals are aligned by finding the lag that
corresponds with the highest correlation2.

Definition 7 In signal processing, cross correlation is a measure for sim-
ilarity of two series u[n] and v[n] as a function of the lag i ∈ [0, k] of one
relative to the other.

(u ∗ v)[n] =
∞∑

m=−∞
(u ∗ [m]v)[m+ n] (5.1)

Positive correlation exists when, given an increase in u[n], v[n] also increases
and vice versa.

Negative correlation exists when, given a decrease in u[n], v[n] also decreases
and vice versa.

1Also known as Sliding Dot Product of Sliding Inner-product
2The lag is limited at ±500 ms, which is considered the maximum difference in detec-

tion.
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Figure 5.3: The y-axes of the bracelets show positive correlation,
the x-axes and z-axes show negative correlation. This is caused by
the mirrored orientation of the bracelets (see Fig. 5.4). Note: these plots
are generated for explanation purposes. In real life, the bracelets worn by
the attendees show less perfect correspondance.

5.3.2 Algorithm 1: Simple Cross Correlation

It is reasonable to think the two people shaking hands show identical sensor
values. Therefore it is important to introduce the mirror effect, caused by
the fact that the two people are facing each other. Fig. 5.4 and Fig. 5.3
show how two people facing each other results in inversed sensor values for
the x- and z-axis.

In our testcase with 4 attendees shaking hands simultanuously, the matching
algorithm should be structured have a basic structure in the form of:

M = f(c1, c2, c3) (5.2)

where c1, c2 and c3 are potential matches (or candidates) and f(c1, c2, c3)
the matching algorithm selecting the matching handshake. In this section,
the algorithm is based on cross correlation on the raw sensor data.
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Figure 5.4: Mirrored x-axis and z-axis as a result of two people
facing each other. See Fig. 5.3 for the corresponding sensor output.

Matching algorithm 1 involves the following steps, to be executed by each
bracelet:

1. Collect sensor data from the other 3 candidates

2. For each candidate compute the total maximum cross correlationMmax =
(u ∗ v)max,x + (u ∗ v)max,y + (u ∗ v)max,z. Note: to account for the
mirrored x and z-axes, the data for these axes is inverted for one of
the bracelets.

3. Construct 3 possible combinations: match (A1A2‖B1B2), mismatch
type I (A1B1‖A2B2) and mismatch type II (A1B2‖A2B1)

4. Determine the matching coefficientM for each combination using the
summation Mcombination = Mpair1 +Mpair2

5. Select the right candidate based on the highest matching coefficient
using the equation below.

match = max(Mmatch,Mmismatch1,Mmismatch2) (5.3)

Fig. 5.5 shows how the maximum correlation measure Mmax is retrieved.
Table 5.2 provides an example of Algorithm 1, using the data from Fig. 5.2.
It holds the values of Mmax for all combinations. Next, matching coefficient
M is determined for each of the three possible combinations by adding the
M values of the two pairs involved. This leads to Table 5.3, showing that
the right combination (match) yields the highest matching coefficientM.
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Figure 5.5: Raw sensor data (upper plot) and cross correlation
measure using a lag∈ [−5, 5] (lower plot). The maximum correlation
measures Mmax (marked with a dot) will be used for computing the match-
ing coefficient M.

Table 5.2: Maximum correlation measures Mmax computed for the example
from Fig. 5.2

Reference A1 A2 B1 B2

A1 6.4 4.2 3.8
A2 4.4 4.8
B1 4.5

Table 5.3: Matching coefficient M computed for the handshakes
from Fig. 5.2. For the correlation measures, the values from Table 5.2 are
used.

Combination Mpair1 Mpair2 M
Match (A1A2‖B1B2) 6.4 4.5 10.9
Mismatch type I (A1B1‖A2B2) 4.2 3.8 8.0
Mismatch type II (A1B2‖A2B1) 3.8 4.8 8.6
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Figure 5.6: Performance of Algorithm 1. This is a poor performance as
it is even worse than random guessing, which has a 33% probability.

5.3.3 Results Algorithm 1

Algorithm 1 is tested on all 88 test cases from the training dataset. Fig. 5.6
shows the outcome, correctly matching the bracelets only 22% of the time.
This result is even worse than random guessing, asking for a critical ana-
lysis on Algorithm 1. Studying the sensor data and the maximum correl-
ation measures Mmax for the x-axis only, it seems to show no difference
for matching and mismatching bracelets. This implies that the movements
along the x-axis, which corresponds to moving back and forth, are similar
for all attendees and insignificant for matching.

Observation 1 The sensor data for the x-axis is similar for all candidates,
adding noise rather than useful information

5.3.4 Algorithm 2: Analyzing the y, z-plane

Considering the observation made in the previous section, Algorithm 1 can
be adjusted to reduce noise by eliminating x-axis data. This means that for
Algorithm 2 the maximum correlation measure Mmax is obtained as follows:

Mmax = (u ∗ v)max,y + (u ∗ v)max,z (5.4)

40



5.3. CROSS CORRELATION ON RAW SENSOR DATA

70%

10%

20%

Match Mismatch type I Mismatch type II

Figure 5.7: Performance of Algorithm 2. Taking out the x-axis yields a
much better performance compared to Algorithm 1.

5.3.5 Results Algorithm 2

Again, Matching Algorithm 2 is tested on all 88 test cases from the training
dataset. Fig. 5.7 shows the outcome, correctly matching the bracelets 58%
of the time. Despite the fact that this result is still rather poor, it is quite
an improvement compared to Algorithm 1.

Analyzing Algorithmm 2, it is important to consider the fact that we are
trying to tackle a 2-dimensional problem (namely the y,z-plane) by studying
1-dimensional signals (for the y and z-axis). Correlation is computed for the
y and z-axis separately and then added together. This approach does not
take into account the possibility that these two axes might give us more in-
formation when they are combined. The handshaking movements are spread
over the y and z-axis depending on whether the hand is on top or on the
bottom. This is known as palm power, described by Pease and Pease[27].
It is explained to be a strategy to obtain either a dominant or submissive
role in a handshake. Handshakes play a major role in body language and
have often been the topic in behavioral science. Later in this chapter more
handshake behavior will be introduced. For now, the following observation
can be made.

Observation 2 Handshake characteristics are spread over the y and z-axis
due to the palm power effect. Studing each axis separately might result in
relevant information getting lost.
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Figure 5.8: Three candidates plotted as Pareto frontiers. Since Can-
didate 3 has the smallest distance to a perfect match (black dot), this is
the optimal solution. Note that Candidate 1 and 2 are on the same Pareto
frontier. This means they have the same Pareto efficiency and are therefore
equally matching the reference signal.

5.4 Introducing the Pareto Frontier

The insight from Algorithm 2 provides reason to consider a new way of
computing Mmax. We will no longer study the y and z-axis individually,
which means the notion of orientation is discarded. Instead, we study both
axes simultanuously using Pareto frontiers.

5.4.1 A Short Introduction to Pareto Frontiers

Pareto frontiers are easily explained using one of the handshakes as an ex-
ample. For two handshakes that matching perfectly, the correlation for both
the y and z-axis would be 100%. Now consider three candidates showing
a 50%-50%, a 60%-40% and a 40%-60%correlation for the y an z-axis, re-
spectively. Which candidate is a better match? Fig. 5.8 shows how a Pareto
frontier can help, since it depicts the distance from both candidates to the
perfect solution: a 100%-100% score.
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Figure 5.9: Illustration of the weak shaker effect. Both attendee A1
(blue) and attendee B1 (red) select attendee A2 (dashed) to be their match,
since this shake matches everybody.

Definition 8 A Pareto frontier is a set of resource allocations (e.g. cor-
relation percentage) that are Pareto efficient, meaning they are an equally
eligible solution.

So instead of summing the correlation measures for the individual axes, it is
worthwhile to consider the Pareto efficiency. This will be done for our next
algorithm.

5.5 Cross Correlation on Peakmaps

Another interesting observation can be made when analyzing the sensor
data. Handshakes with a rather low amplitude (or range r, or intensity)
are more likely to be selected as match. Handshake with low intensity are
referred to in [27] as The Dutch Treat.3. The opposite is the so-called Pump
Handler, meaning a very enthusiastic handshake. This distinction is im-
portant and will be addressed to as the weak shaker effect. Fig. 5.9 shows
sensor data for three participants. Participant A1 and Participant B1 are
both active shakers (see Fig. 5.10b) and will select Participant A2 (a weak
shaker, see Fig. 5.10a) to be their match because the signal is neutral.

Observation 3 People are either active or passive handshakers. Two
active shakers are often correctly matched, while passive shakers tend to
decrease the matching performance because they match to everybody.

3This handshake style has origins in the Netherlands, where a person can be accused
of ‘Geeft een hand als een bosje wortels’ or ‘Giving handshake like a bunch of carrots’.
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(a) The Dutch Treat (b) AThe Pump Handler.

Figure 5.10: Handshaking styles described by [27]. Passive handshakes
are referred to as The Dutch Treat. Active handshakes are referred to as
The Pump Handler.

Because the weak shaker effect involves intensity, it might be worthwhile to
take this element out. Combined with the decision to discard orientation,
only the frequency characteristic remains.

Observation 4 Handshakes should be mapped to a format where only the
frequency matters, completely eliminating handshaking style.

5.5.1 From Raw Sensor Data to Peakmaps

In order to map raw data to a format that only considers frequency, absolute
sensor values should be omitted. Using local extrema, so-called peakmaps
are created that register either no extremum, a maximum or a minimum.
This is done in Fig. 5.11, transforming raw sensor data to a bar plot with
peakrange ∈ {−1, 0, 1}.
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Figure 5.11: The procedure of peakmapping a handshake. The amp-
litude of the peak is no longer relevant now that both orientation and in-
tensity have been discarded

45



CHAPTER 5. HANDSHAKE MATCHING

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−1

−0.5

0

0.5

1

Sample number

P
ea

k
ra

n
ge

Incorrect peak hit
Reference
Correct peak hit

Figure 5.12: A plot explaining the notion of peak hits and misses. A
peak from the reference signal is either missed (only blue peaks), correctly
hit (green peaks) or incorrectly hit (red).

5.5.2 Peak Hits and Misses

This new approach applies cross correlation on peakmaps, which is rather
coarse-grained but provides an easy way know whether peaks are hit or
missed. Considering a reference bracelet, peaks that are missed by the can-
didate add nothing to the correlation since 1·0 = 0. Peaks that are mimicked
by a candidate add positive to the correlation measure: 1 · 1 = 1. Peaks
that mimicked but mirrored are worse than a peak miss, as they show an
opposite movement. For this reason they add negative to the correlation
measure and will be called negative peak hits: 1 · −1 = −1.

Definition 9 Correct peak hits occur when the candidate mimicks a peak
from the reference bracelet, with corresponding orientation. They result in
correlation measure M being increased by 1.

Definition 10 Incorrect peak hits occur when the candidate mimicks a
peak from the reference bracelet, but with opposite orientation. They result
in correlation measure M being decreased by 1.

Definition 11 Peak misses occur when the candidate does not mimick
a peak from the reference bracelet. They result in correlation measure M
staying the same.

Fig. 5.12 provides an example. The blue peaks are the reference, which are
either missed (entirely blue), correctly hit (green) or incorrectly hit (red).
Since peak misses do not change the correlation measure, they go unnoticed.
This means that a mismatch with many peaks is likely to yield a higher
correlation measure than the actual match.
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Figure 5.13: An example of unmodified peakmaps failing due to
minor fluctuations. The matching peakmap (green) has five correct hits
and one incorrect hit, resulting in a correlation measure of M = 4. The mis-
matching peakmap (red) has six correct hits and one incorrect hit, resulting
in a correlation measure of M = 6.
Since the red peakmap has a higher value for M , the algorithm will think
this is the match.

Fig. 5.13 provides an example: the mismatching candidate correctly hits
more peaks than the matching candidate, but also has many peaks that
are not mimicked by the reference. Since these are not considered by basic
correlation, the wrong candidate is selected.

Observation 5 Peakmaps should omit minor fluctuations, since they are
likely to influence the correlation measure in an unpredictable way.

5.5.3 Peak Threshold using top-k

It is interesting to investigate why some peakmaps show many peaks. Es-
pecially since handshake typically involves two or three up-and-down move-
ments. Taking another look at the raw data from Fig. 5.11, we can easily
distinguish the handshake. It is also manually annotated in Fig. 5.14, result-
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Figure 5.14: An example of a handshake on which a top-2 threshold
is applied. For the upper and lower peaks, only the two most characteristc
are peakmapped.

ing in the green peaks. Analyzing the raw data, it appears that the insigni-
ficant extrema (blue) are caused by minor vibrations. Since frequency is the
only feature being considered, these minor vibrations weaken the handshake
uniqueness property.

The last modification to the peakmaps is that only the top-2 upper and
lower peaks are allowed in the peakmap.

Observation 6 Peakmaps should not contain all local extrema, as these
add noise. Only the two most characteristic upper and lower peaks should
be represent in the peakmap.

5.5.4 Results Algorithm 3: Peakmaps

Algorithm 3 incorporates all of the observations made in Section 5.5. Ori-
entation is discarded by means of Pareto frontiers and intensity is discarded
using peakmaps. Minor peaks are filtered out using top-k filtering. Match-
ing performance of Matching Algorithm 3 leads to a performance of 80%.

These results are surprising in the sense that only the frequency character-
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Figure 5.15: Performance of Algorithm 3. Correctly pairing the brace-
lets for 80% of the time, peakmaps outperforms cross correlation on raw
sensor data.

istic seems to matter. Orientation and intensity are properties that make
each individual gesture unique. By this point, we have learned that this does
not apply to a handshakes, which combines the gesture of two individuals.

5.6 Summary

This chapter has explored a new approach to perform handshake matching.
Using cross correlation on raw sensor values as starting point, three steps
have led to a solution that has a matching performance of 80%. We have seen
that individual traces show very much variability, even between two people
handshaking. This has led to an algorithm that only considers synchronized
up-and-down movement, omitting orientation and intensity.

All three steps are reported in this chapter in order to provide insight in the
flow of thought. The hypothesis formulated at the beginning of the chapter
is supported by the above result. Handshake matching can be done with
reasonable performance, without the need for raw sensor data.
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Chapter 6

Conclusions and Recommenda-
tions

The purpose of the work done is this thesis was to derive methods that could
detect two people shaking hands, using only an accelerometer. The two
major challenges that were faced comprise 1) user-independent handshake
detection and 2) correct matching in the scenario of multiple concurrent
handshakes. This chapter will report the results and give recommendations
to Shake-On for attaining a final implementation of the bracelet.

6.1 Conclusions

For handshake detection, a tool is developed that computes orientation,
intensity and frequency characteristics for a given gesture. It suffices to
examine the orientation µ and intensity r of the gesture. The optimal feature
vector F , obtained using the Wrapper method, contains four features and
has a predictive accuracy of 95%. Compared to existing solutions, this
method shows equal performance while requiring fewer features and more
lightweight computations.

For handshake matching, an algorithm is derived and evaluated for its ability
to select the complementary bracelet from a pool of candidates. We have
seen that it suffices to consider only the handshaking frequency. Using
basic cross correlation as starting point, a new algorithm is proposed and
evaluated. Mapping raw sensor data to peakmaps eliminates the palm power
effect and the weak shaker effect. For a group of four bracelets, the peakmap
algorithm is able to select its match for 80% of the time. Compared to the
performance of basic cross correlation (only 24%), this is more than a factor
3 improvement.
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6.2 Recommendations

First of all, the current PCB has a few shortcomings that need to be over-
come in a future revision. Not only is it still a bit too large in size, basic
components like a reset buttons, a couple of LEDs and a holder for the coin
cell battery are preferable.

Regarding the sensing components, this thesis has shown that handshakes
can be detected using only an accelerometer. However, problems arise when
the bracelet is worn upside down or when people apply palm power1. This
is because an accelerometer can only measure experienced acceleration, but
is not aware its orientation. A solution to this would be to use a gyroscope
together with the accelerometer, which can tackle this problem when com-
bined. This enables recognizing movements regardless of how the bracelet
is worn.

At the moment, a prototype exists that can detect handshakes and pass on
the credentials of the other user, matched by a handshake, to the phone. Fu-
ture work includes implementing the matching algorithm in order to handle
multiple broadcasting bracelets. Once this is done, a large field test would
be worthwhile to test both functionality and usability.

The MATLAB tool developed in this chapter computes orientation, intens-
ity and frequency characteristics for given training data. As explained in
Chapter 4, the fact that we are explicitly looking for a handshaking gesture
is used to our advantage. However, it would be interesting to investigate
the performance of the tool with respect to other other gestures, e.g. vot-
ing (right arm raised). For Shake-On, this might be very interesting with
respect to gesture recognition tailored to individual clients.

Future work includes:

1. Redesign of the PCB, considering the addition of a gyroscope for
orientation-independant handshake recognition

2. Formulation of a simple communication protocol that has no need for
an initiating node (peripheral-device configuration)

3. A large-scale field test, testing the robustness of the prototype

4. Experiments with respect to the detection of other gestures that might
be interesting during conferences, e.g. voting

5. Power optimization to maximize the battery life of the bracelets, for
example by creating an energy preserving mode (sleep mode)

1A form of powerplay in handshaking, where one person forces the other person to be
in a palm-down position which implies silent authority. Explained in Chapter 6.
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Appendix A

Handshake Detection Decision
Trees

Figure A.1: J48 decision tree for feature vector Fwrapper obtained in
Chapter 4, generated by WEKA.
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