
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Master's Thesis
Offline stage acceleration of the self-consistent
clustering analysis method: towards real-time
material predictions

AE5711
Max S. Kukkola

Master's Thesis
Offline stage acceleration of the self-consistent
clustering analysis method: towards real-time

material predictions

by

Max S. Kukkola
4827104

in partial fullfilment of the requirements for the degree of

Master of Science
in Aerospace Engineering

at Delft University of Technology
to be defended publicly on 31-05-2024 at 13:00

Graduation Committee:

Role Name Affiliation
Chair Dr. Dimitrios Zarouchas Delft University of Technology
Responsible supervisor Dr. Baris Caglar Delft University of Technology
Examiner Dr. Bianca Giovanardi Delft University of Technology
External supervisor Dr. Miguel A. Bessa Brown University

Supervisors:

Role Name Affiliation
Primary supervisor Dr. Miguel A. Bessa Brown University
Daily supervisor Dr. Bernardo P. Ferreira Brown University
Home supervisor Dr. Baris Caglar Delft University of Technology

Cover courtesy of CrowdAI [46]

Preface

This master’s thesis would not have been possible without the incredible support of so many people in
my life whom I would like to thank.

First and foremost, I would like to thank Miguel and Bernardo for giving me the opportunity to come
to Brown University and work under their supervision. Your methods for conducting research that
combine curiosity, passion and rigor helped me throughout this endeavor and will be a guiding force in
my professional journey from here on out. The experience at Brown, as well as our many conversations
outside of work, also helped me develop a better understanding of the world. It was truly a fantastic
experience and I am more than pleased to have been given the ability to pursue it.

I would also like to thank my family and friends for helping me finish this. My parents, who supported
my decisions and gave me a high level of autonomy to decide what I wanted to do in life. My friends
from Delft, as well as the many others I met around the world over the last few years, whom I’ve shared
great moments with and who have gotten me through difficult times. I owe a great deal to all these
people for shaping me into the person I have become. Also, a special shout-out to my friend Kübra for
telling me about an ”interesting machine learning course” I should take that eventually led me to meet
Miguel for the first time.

With this experience drawing to an end, I feel fortunate to have been able to pursue what I love. I
hope to continue working within the fields of mechanics and computational modeling in the future, and
by doing so, I hope to further expand our understanding of the physical world.

Max S. Kukkola
Providence, May 2024

i

Abstract

Heterogeneous materials are vital for both the modern engineer and inquisitive scientist alike. They
make up a vital material class that can either form inevitably as a result of material processing (such
as crystallization in metals) or can be intentionally designed for to gain desirable properties (such as
anisotropy in composites). As such, due to their prevalence and applicability to various engineering
problems, predicting their behavior has become a topic of great interest in the solid mechanics commu-
nity over the last few decades.

One particularly pressing challenge is performing fast mechanical simulations along multiple length
scales in heterogeneous materials. To this end, the reduced order method known as Self-Consistent
Clustering Analysis (SCA) has been proposed as an effective means of striking a balance between
accuracy and efficiency. Underpinning this is SCA’s ability to decompose a domain into clusters in
a preliminary offline stage (learning), efficiently reducing the problem’s degrees of freedom. It has
been shown to be remarkably accurate in predicting plasticity without significantly degrading accuracy
compared to other methods, such as the finite element method. However, the offline stage requires a
quantity known as theCluster Interaction Tensor (CIT) to be computed, whose computational complexity
scales quadratically with the number of clusters, thus causing a bottleneck in the method. Additionally,
the CIT is recomputed during the online stage (prediction) in the recently proposed extension called
adaptive Self-consistent Clustering Analysis (ASCA), which further stresses the need to speed up their
computation.

To address this limitation, a data-driven surrogate model is proposed to compute the CIT efficiently.
The behavior of the local CIT components is first analyzed, from which it is concluded that a surro-
gate model shall be developed to predict upper off-diagonal terms. This decision is made due to the
bi-modal nature of certain components in the tensor and the quadratic scaling behavior of off-diagonal
terms versus the linear scaling of diagonal ones. Following that, a sensitivity study shows how vari-
ous magnitudes of noise affect the homogenized response’s accuracy and convergence performance.
Furthermore, it is shown that the solution accuracy and convergence behavior are degraded when the
number of clusters is increased. With a proper understanding of the CIT’s behavior and its function
within SCA, the surrogate can be created.

The surrogate’s feasibility is first shown using the ResNet-18 architecture, a CNN model derived
from computer vision. It is demonstrated that ResNet-18 can make accurate predictions for a range of
different microstructural parameters. This includes the number of clusters and samples in the dataset’s
distribution and out of distribution. Composite RVEs are used as out-of-distribution samples to test the
robustness of the surrogate to realistic inputs. An attempt is made to improve the model’s performance
by training it on an unbalanced dataset, and although it improves the overall CIT prediction in specific
regimes, the resulting stress-strain generalizability is degraded. Subsequently, a lighter version of
ResNet-18, known as ResNet-lite, is tested and shown to give faster predictions than the baseline
method. This, however, comes at a cost to the accuracy of the solution.

Additionally, deemed as a critical aspect of the study, the efficient generation of a large representa-
tive training dataset is discussed. A novel method for generating clustered microstructures efficiently
using gradient noise is introduced. By leveraging datasets derived using this method, the surrogate can
learn the fundamental interactions needed to make accurate predictions on realistic, out-of-distribution
samples. The need for a large dataset is further emphasized using a dataset size sensitivity study.

ii

Contents

Preface i

Abstract ii

Nomenclature viii

1 Introduction 1

2 Literature Review 2
2.1 Reduced order modeling . 2

2.1.1 Self-Consistent Clustering Analysis . 2
2.1.2 Clustering . 3
2.1.3 Clustered Lippmann-Schwinger homogenization 4
2.1.4 Cluster Interaction Tensor . 6

2.2 Machine Learning . 8
2.2.1 Machine learning in computer vision . 9
2.2.2 Machine learning in solid mechanics . 11
2.2.3 Operator Learning . 11

2.3 Data generation . 12
2.4 Algorithmic complexity . 13
2.5 Research question . 15

3 Synthetic Data Generation 16
3.1 Motivation . 16
3.2 Cluster generator . 17
3.3 Microstructure generator . 19
3.4 Dataset generator . 21

4 Data Driven Predictions 23
4.1 Baseline model . 23
4.2 Data analysis and pre-processing . 24
4.3 Sensitivity Analysis . 29

4.3.1 Sensitivity to noise . 30
4.3.2 Sensitivity to number of clusters . 32

4.4 Methods . 33
4.5 Standard surrogate model . 35

4.5.1 Experimental Setup . 35
4.5.2 Training . 36
4.5.3 In-distribution prediction results . 37
4.5.4 Out-of-distribution prediction results . 38
4.5.5 Discussion . 40
4.5.6 Challenges and Limitations . 40

4.6 Unbalanced dataset study . 41
4.6.1 Experimental setup . 41
4.6.2 Training . 41
4.6.3 In-distribution prediction results . 42
4.6.4 Out-of-distribution prediction results . 43
4.6.5 In-distribution prediction with small clusters . 44
4.6.6 Discussion . 44

4.7 Sensitivity to dataset size . 44
4.7.1 Experimental setup . 44
4.7.2 Training . 44

iii

Contents iv

4.7.3 In-distribution prediction results . 45
4.7.4 Out-of-distribution prediction results . 45
4.7.5 Discussion . 46

4.8 Accelerated surrogate model . 46
4.8.1 Experimental Setup . 46
4.8.2 Training . 47
4.8.3 In-distribution prediction results . 47
4.8.4 Out-of-distribution prediction results . 49
4.8.5 Discussion . 50

5 Conclusions 51

6 Recommendations 53

References 54

List of Figures

2.1 Summary of the Self-Consistent Clustering Analysis (SCA) (taken from Ferreira [15]). . 3
2.2 Schematic of a material cluster, Ω(I)

µ , within the micro-scale domain, Ωµ, 0, and the asso-
ciated uniform assumption for a generic field aµ(Y) (taken from Ferreira [15]). 4

2.3 Examples demonstrating CRVE’s for a 2D simulation. a and c show the cross section
of a fiber reinforced composite and b and d show a two phase-field simulation based
on the Cahn–Hilliard equation. In a and b the first material phase is discretized into
8 clusters and in c and d into 32 clusters. The second material phase is removed for
clarity. Each cluster color corresponds to an individual cluster. Note how clusters can be
discontinuous (taken from Liu et al. [37]). 5

2.4 Visualization of the cluster interaction tensor (CIT) components in a cluster-reduced RVE
(CRVE) with 3 material clusters (taken from Ferreira [15]). 7

2.5 Partial computational times (s) of the offline stage in SCA simulations with a composite
RVE benchmark under uniaxial tension. Offline stage: linear elastic DNS simulations
(step 1), base cluster analysis (step 2) and computation of cluster-interaction tensors
(step 3). [15] . 8

2.6 The difference between deep learning and traditional machine learning (taken fromAlzubaidi
et al. [2]). 9

2.7 Comparison of deep learning and traditional machine learning as a function of dataset
size (taken from Alzubaidi et al. [2]). 10

2.8 Improvements in accuracy in classification of ImageNet dataset (winning architectures
2012-2015) (taken from Alom et al. [1]). 10

2.9 White Noise. 13
2.10 Gradient Noise. 13
2.11 Growth of most common complexity classes (taken from Rowell et al. [48]). 14

3.1 Strain concentration field of a composite RVE undergoing uniaxial tension. Composite
consists of circular fibers embedded in a matrix. 16

3.2 Cluster generator implementation flow chart. The program first generates noise in the
complex domain (C). Complex arrays are separated in the figure into real and imaginary
components (for visualization purposes). The program then applies a Gaussian filter
followed by a transformation into the real domain (R) concluded by a binarization step. 18

3.4 First two generated clusters in microstructure. Biting bias can be seen present in cluster 2. 19
3.3 Microstructure generator flow chart (example for microstructure with 3 clusters). Clusters

are generated given a volume fraction and roughness parameter. The available domain
is kept track of to ensure no clusters overlap. The final cluster is generated by filling the
remaining available domain. Microstructures are created by adding all clusters together. 20

3.5 Array structure of global and local cluster interaction tensors. 21
3.6 Data-driven modeling pairwise approach where the surrogate model predicts the local

cluster interaction tensor between two material clusters from the corresponding support
functions. 22

3.7 Truncation of the global tensor used to obtain a balanced dataset. 22

4.1 Discrete frequency distribution showing bi-modal distribution (T IJ
111). 25

4.2 Discrete frequency distribution showing unimodal distribution (T IJ
131). 25

4.3 Selected strategy for computing the global tensor. The upper off-diagonal terms are
computed using the surrogate model, the diagonal terms using the baseline analytical
approach and the lower off-diagonal terms using the symmetry condition. 25

4.4 Discrete density distribution of local CIT values for k = 1 (after scaling) and continuous
Gaussian distribution with zero mean and unit variance overlaid on top. 27

v

List of Figures vi

4.5 Discrete density distribution of local CIT values for k = 2 (after scaling) and continuous
Gaussian distribution with zero mean and unit variance overlaid on top. 28

4.6 Discrete density distribution of local CIT values for k = 3 (after scaling) and continuous
Gaussian distribution with zero mean and unit variance overlaid on top. 29

4.7 Sensitivity to noise in elastic case. Homogenized response (upper figures), box plot of
model termination (lower figures). 30

4.8 Sensitivity to noise in plastic case. Homogenized response (upper figures), box plot of
model termination (lower figures). 31

4.9 Sensitivity to noise in plastic+SCS case. Homogenized response (upper figures), box
plot of model termination (lower figures). 32

4.10 Sensitivity to number of clusters in plastic-SCS case. Stress-strain response (upper
figures), box plot of model termination (lower figures). 33

4.11 Examples of in-distribution clustered microstructures. 35
4.12 Examples of out-of-distribution clustered microstructures. 35
4.13 ResNet-18 log loss diagrams using different optimizers. 36
4.14 L2 Ground Truth vs Prediction (in-distribution). 37
4.15 Stress-Strain response (plastic + SCS, in-distribution, nc = 5). 37
4.16 Stress-Strain response (plastic + SCS, in-distribution, nc = 20). 38
4.17 Stress-Strain response (plastic + SCS, in-distribution, nc = 80). 38
4.18 L2 Ground Truth vs Prediction (out-of-distribution). 39
4.19 Stress-Strain response (plastic + SCS, out-of-distribution, nc = 5). 39
4.20 Stress-Strain response (plastic + SCS, out-of-distribution, nc = 20). 39
4.21 Stress-Strain response (plastic + SCS, out-of-distribution, nc = 80). 40
4.22 L2 Ground Truth vs Prediction (in-distribution sample with small cluster). 41
4.23 Log loss diagrams for dataset study. 41
4.24 CIT MAE for dataset study (in-distribution). 42
4.25 L2 Ground Truth vs Prediction (in-distribution, nc = 5). 42
4.26 L2 Ground Truth vs Prediction (in-distribution, nc = 80). 43
4.27 CIT MAE for dataset study (out-of-distribution). 43
4.28 L2 Ground Truth vs Prediction (in-distribution with small cluster). 44
4.29 Log loss diagrams for truncated dataset sizes. 44
4.30 CIT MAE sensitivity to dataset size (in-distribution). 45
4.31 CIT MAE sensitivity to dataset size (out-of-distribution). 45
4.32 ResNet-lite log loss diagrams using different optimizers. 47
4.33 L2 Ground Truth vs Prediction (in-distribution) . 47
4.34 Stress-Strain response (plastic + SCS, in-distribution, nc = 5). 48
4.35 Stress-Strain response (plastic + SCS, in-distribution, nc = 20). 48
4.36 Stress-Strain response (plastic + SCS, in-distribution, nc = 80). 48
4.37 L2 Ground Truth vs Prediction (out-of-distribution). 49
4.38 Stress-Strain response (plastic + SCS, out-of-distribution, nc = 5). 49
4.39 Stress-Strain for (plastic + SCS, out-of-distribution, nc = 20). 50
4.40 Stress-Strain response (plastic + SCS, out-of-distribution, nc = 80). 50

List of Tables

2.1 Partial and total computational times (s) of the different solution methods associated with
a composite RVE benchmark under uniaxial tension. Number of clusters: (c) nc = 65
(coarse), (m) nc = 185 (medium), (f) nc = 305 (fine) and (*) nc = 65→190. Offline stage:
linear elastic DNS simulations (step 1), base cluster analysis (step 2) and computation
of cluster-interaction tensors (step 3). [15] . 8

3.1 Average wall clock time (in seconds) to generate a microstructure with given resolution
and number of clusters. 19

4.1 Modified ResNet-18 architecture. 36
4.2 Model summary ResNet-18 (in-distribution). 37
4.3 Model summary ResNet-18 (out-of-distribution). 38
4.4 Model summary dataset study (in-distribution). 42
4.5 Model summary dataset study (out-of-distribution). 43
4.6 Stress MAPE sensitivity to dataset size (in-distribution). NC refers to one or more of the

simulations not converging to a solution . 45
4.7 Stress MAPE sensitivity to dataset size (out-of-distribution). NC refers to one or more of

the simulations not converging to a solution. 46
4.8 ResNet-lite architecture. 46
4.9 Model summary ResNet-lite (in-distribution). 47
4.10 Model summary ResNet-lite (out-of-distribution). 49

vii

Nomenclature

Abbreviations

Abbreviation Definition

ASCA Adaptive Self-consistent Clustering Analysis
CNN Convolutional Neural Network
CPU Central Processing Unit
CIT Cluster Interaction Tensor
CROM Cluster-based Reduced Order Model
CRVE Cluster-reduced Representative Volume Element
DNS Direct Numerical Simulation
FEM Finite Element Method
FFT Fast Fourier Transform
FLOPs Floating Point Operations
GPU Graphics Processing Unit
ML Machine Learning
PINN Physics Informed Neural Network
POD Proper Orthogonal Decomposition
ROM Reduced Order Model
RVE Representative Volume Element
SCA Self-consistent Clustering Analysis
SCS Self Consistent Scheme
TCL Tensor Contraction Layer
TRL Tensor Regression Layer

viii

1
Introduction

Heterogeneous materials form a highly relevant material subset used and analyzed by engineers and
scientists today. For some material classes, heterogeneities form inevitably as a result of material
processing (such as crystallization in metals), whilst in others the heterogeneities can be added on
purpose to gain desirable properties (such as anisotropy in composites). Due to their prevalence and
applicability to various engineering problems, predicting their behavior has become a topic of great
interest in the solid mechanics community over the last few decades.

Materials are said to act in a hierarchical manner, where simple small-scale constituents interact
in a reciprocal manner with the complex large-scale compounds they make up. Several models have
been suggested to take into account this hierarchical nature in heterogeneous materials, with many
aiming to characterize the macro-scale due to its applicability to various engineering problems.

Traditional phenomenological models for example treat the material constituents as one and infer
an average behavior at the macro-scale. These methods have been shown to be viable in many appli-
cations yet fall short in others due to the need for laborious experimentation to determine and calibrate
model parameters.

Concurrent multi-scale methods, on the other hand, have found solutions by establishing a direct
link between the macro and micro scales. In this approach, each macroscopic point is evaluated using
a high-fidelity microscopic simulation of a Representative Volume Element (RVE). However, performing
this analysis using direct numerical simulations can be intractable for many engineering problems due
to the computational requirements imposed by the dimensionality of the problem.

As a consequence of the inefficiency of direct numerical simulations in concurrent multi-scale meth-
ods, Reduced Order Models (ROM) have been introduced to reduce the dimensionality of the micro-
scopic simulation. They have the promise of providing a two-for-one solution: making accurate pre-
dictions based on the constitutive behavior of each separate constituent whilst being computationally
efficient.

This thesis project therefore aims to disseminate the state of the art in ROM research and sug-
gest improvements that can help make accurate and efficient predictions of heterogeneous materials.
Specifically, by combining already efficient ROM’s with a data-driven surrogate modeling approach,
which has also shown tremendous potential at making computational methods more efficient, the result-
ing approach has the potential to be significantly faster than conventional methods whilst maintaining
a high level of accuracy. The proposed method could be used by designers to make accurate yet fast
predictions with limited reliance on experimental data. Some potential use cases could be multiscale
design using topology optimization and material discovery.

1

2
Literature Review

This chapter presents the literature review conducted to determine a number of knowledge gaps in
the field of solid mechanics and introduces a research question for the thesis project. First reduced
order modeling and specifically self-consistent clustering analysis are introduced in section 2.1. Then,
machine learning methods and their applications in a number of fields are highlighted in section 2.2.
Following that, in section 2.3, methodologies for obtaining datasets of clustered microstructures are
explored. Next, different metrics for evaluating algorithms are discussed in section 2.4. Finally, in
section 2.5, based on the reviewed literature, knowledge gaps are stated and a research question is
formulated.

2.1. Reduced order modeling
A variety of Reduced Order Models (ROMs) have been introduced in the continual search to obtain
computationally cheap yet accurate mechanical solutions of heterogeneous materials. Arguably the
most used are the analytical homogenization methods which have been applied for decades, most
notably the Mori-Tanaka method [39] and self-consistent scheme [22, 8]. Additionally, lower and upper
material property bounds have been estimated using the Voigt-Reuss [57, 47] and Hashin-Shtrikman
bounds [20]. However, underpinning these methods are the assumptions of mean-field and linear
superposition which limit their applicability to more complex structures or localized nonlinear material
behavior such as plasticity [15].

One particular class of ROMs called the Cluster-based Reduced Order Model (CROM) has gained
significant traction over the last decade. First presented by Liu et al. [37] as the self-consistent clus-
tering analysis (SCA), it can estimate solutions at a significantly lower cost than direct numerical simu-
lations (decreasing the wall clock time in orders of magnitude) without incurring a significant reduction
in solution accuracy. It has been shown to be particularly well suited for modeling plasticity in hetero-
geneous materials. The method was further extended and improved by Ferreira et al. [12] to include
adaptivity. This section gives a high-level overview of SCA and presents some of its limitations.

2.1.1. Self-Consistent Clustering Analysis
The Representative Volume Element (RVE) is the foundation of many multi-scale methods. However,
modeling a high-fidelity RVE can often be computationally intractable due to the fine mesh needed to
accurately capture the geometry and mechanical behavior at small length scales. To counter this, one
may attempt to decompose the microstructure into larger domains called material clusters. However,
when applying the same analysis methods used for the high-fidelity RVE, such as finite element analy-
sis, greater limitations are imposed on the mesh and the solutions accuracy is diminished. Given these
challenges, SCA emerges as a notably effective approach due to its ability to model large and irregular
material clusters whilst maintaining high solution accuracy.

A high level summary of SCA is provided in Figure 2.1. The method consists of two primary stages:
an online stage and an offline stage. The offline stage serves to compress an RVE into a lower di-
mensional representation known as a Cluster-reduced RVE (CRVE). It does this by grouping material
points with similar properties (step 2), with the properties being derived from a set of cheap linear elastic

2

2.1. Reduced order modeling 3

Direct Numerical Simulation (DNS) in step 1. Using the clustered representation of the microstructure
the Cluster Interaction Tensor (CIT) is computed (step 3) to give a stress-strain relationship between
every cluster pair. With the CRVE defined, the online stage of the method can commence in which the
material response is found given a set of strain and/or stress macro-scale loading constraints. It does
so by solving the clustered Lippmann-Schwinger system of equilibrium equations using the Newton-
Raphson scheme (step 4). Finally, the macro-scale material mechanical response can be computed,
using computational homogenization (step 5).

Figure 2.1: Summary of the Self-Consistent Clustering Analysis (SCA) (taken from Ferreira [15]).

2.1.2. Clustering
SCA owes its computational efficiency to its ability to approximate the behavior of an RVE using a finite,
lower-dimensional set of material clusters. This CRVE representation relies on a piecewise uniform
approximation to a local field of interest (Figure 2.2). Namely, the field of choice is assumed constant
within each material cluster. Denoting aµ to be a generic field, this assumption can be expressed as

aµ(Y) =

nc∑
I=1

a(I)
µ χ(I)(Y) , χ(I)(Y) =

{
1 if Y ∈ Ω

(I)
µ, 0

0 otherwise
, (2.1)

where aµ is the homogeneous field in the Ith material cluster and χ(I) is the characteristic function of
the Ith material cluster. Based on this definition, the following equivalence can be established:∫

Ωµ, 0

χ(I)(Y) [•]µ dv =

∫
Ω

(I)
µ, 0

[•]µ dv. (2.2)

Under such assumptions, a system of equations may be established based on the Lippmann-
Schwinger equation (originally introduced in the context of Quantum Mechanical Scattering Theory
but later adopted for the case of solid mechanics).

The decomposition of the RVE into a CRVE is performed using a material point similarity principle.
Namely, the strain concentration tensor He(Y) is used as a heuristic to group similar points together.

εeµ(Y) = He(Y) : εe(X) , ∀Y ∈ Ωµ, 0 . (2.3)

The strain concentration tensor can be determined by performing a DNS of 3 or 6 linear elastic micro-
scale equilibrium problems under orthogonal loading conditions for the case of 2D or 3D, respectively.
This heuristic is chosen firstly because the mechanical behavior under any loading condition within the
elastic regime is identical for points with the same strain concentration. Furthermore, these points act
similarly to each other into the nonlinear plastic regime due to the fact that plastic flow generally occurs
in areas of high strain concentration.

2.1. Reduced order modeling 4

Figure 2.2: Schematic of a material cluster, Ω(I)
µ , within the micro-scale domain, Ωµ, 0, and the associated uniform assumption

for a generic field aµ(Y) (taken from Ferreira [15]).

Once the strain concentration tensor is found the points are clustered using K-means clustering. It
should be noted that using this scheme the points do not need to be adjacent to each other in order
to be clustered together. As a consequence, clusters can be discontinuous. An example of CRVE’s of
two microstructures is shown in Figure 2.3.

2.1.3. Clustered Lippmann-Schwinger homogenization
To solve for the material mechanical response given a CRVE, the clustered Lippmann-Schwinger ho-
mogenization needs to be introduced. The following derivation is performed assuming infinitesimal
strains. A derivation for the case of finite strains is provided by Ferreira [15], although is considered
outside of the scope of the present work.

Consider a heterogeneous RVE of domain Ωµ,0 and boundary ∂Ωµ,0 composed several perfectly
bonded, linear elastic phases. Assuming periodic boundary conditions, a macro-scale strain ε(X) can
be prescribed using

ε(X) =
1

vµ,0

∫
Ωµ,0

εµ(Y) dv, (2.4)

where vµ,0 is the volume of the RVE. Additionally, the micro-scale strain field can be decomposed into
separate components,

εµ(Y) = ε(X) + ε̃µ(Y), (2.5)

where ε(X) is the average (far field) strain and ε̃µ(Y) is the fluctuation component.
In the absence of body forces, the micro-scale quasi-static equilibrium condition can be expressed

as:

div 0 [σµ(Y)] = 0 ∀Y ∈ Ωµ, 0. (2.6)

At this step, it is convenient to introduce a reference (fictitious) homogeneous linear elastic material
with tangent modulus De, 0. This allows the real stress to be separated into two parts,

σµ(Y) = De, 0(Y) : ε̃µ(Y) + σ∗
µ(Y), (2.7)

where σ∗
µ is the eigenstress, which represents the difference in the stress between the actual hetero-

geneous material and the reference homogeneous material for a given strain.
Using the Green operatorΦ0(Y −Y ′)which corresponds to the strain contributed by a concentrated

external stress at Y ′ in the reference material, the equilibrium condition can be rewritten in integral form:

εµ(Y) = −
∫
Ωµ,0

Φ0(Y − Y ′) : ε∗µ(Y
′) dv′ + ε0µ , ∀Y ∈ Ωµ, 0. (2.8)

Substituting Equation 2.7 into Equation 2.8,

2.1. Reduced order modeling 5

Figure 2.3: Examples demonstrating CRVE’s for a 2D simulation. a and c show the cross section of a fiber reinforced
composite and b and d show a two phase-field simulation based on the Cahn–Hilliard equation. In a and b the first material
phase is discretized into 8 clusters and in c and d into 32 clusters. The second material phase is removed for clarity. Each

cluster color corresponds to an individual cluster. Note how clusters can be discontinuous (taken from Liu et al. [37]).

εµ(Y) = −
∫
Ωµ,0

Φ0(Y − Y ′) :
(
σµ(Y

′)− De, 0 : εµ(Y
′)
)
dv′ + ε0µ , ∀Y ∈ Ωµ, 0. (2.9)

To solve the equation, boundary conditions from the macroscopic scale must be imposed. This can
be done using a strain constraint

1

vµ

∫
Ωµ, 0

εµ(Y) dv = ε(X) , ∀Y ∈ Ωµ, 0, (2.10)

a stress constraint

1

vµ

∫
Ωµ, 0

σµ(Y) dv = σ(X) , ∀Y ∈ Ωµ, 0, (2.11)

or alternatively as a mixed stress/strain constraint. For numerical applications, the equation can be
rewritten in incremental time form

εµ,m+1(Y) = −
∫
Ωµ,0

Φ0(Y − Y ′) :
(
σµ,m+1(Y

′)− De, 0 : εµ,m+1(Y
′)
)
dv′ + ε0µ,m+1 , ∀Y ∈ Ωµ, 0.

(2.12)
This is the Lippmann-Schwinger equation in incremental form and solving it for every material point

would be computationally expensive. However using the previously defined assumption given by Equa-
tion 2.1 the domain can be decomposed into a finite set of material clusters. In order tomake themethod
efficient, the decomposition requires that the number of material clusters in the CRVE be significantly
smaller than the number of material points modeled in the high fidelity RVE. The Lippmann-Schwinger
equation can therefore be averaged for each cluster

2.1. Reduced order modeling 6

1

f (I)vµ

∫
Ωµ, 0

χ(I)(Y)εµ,m+1(Y) dv = − 1

f (I)vµ

∫
Ωµ, 0

[∫
Ωµ, 0

χ(I)(Y)Φ0(Y − Y ′) :

(
σµ,m+1(Y

′)− De, 0 : εµ,m+1(Y
′)
)
dv′
]
dv + ε0µ,m+1 , I = 1, 2, . . . , nc , (2.13)

where f (I) is the volume fraction of the cluster and vµ is the total volume of the CRVE. The cluster
piece wise assumption yields

εµ,m+1(Y
′) =

nc∑
J=1

χ(J)(Y ′) ε
(J)
µ,m+1 , (2.14)

σµ,m+1(Y
′) =

nc∑
J=1

χ(J)(Y ′)σ
(J)
µ,m+1 , (2.15)

using which Equation 2.13 can be simplified to:

ε
(I)
µ,m+1 = −

nc∑
J=1

(
1

f (I)vµ

∫
Ωµ, 0

∫
Ωµ, 0

χ(I)(Y)χ(J)(Y ′)Φ0(Y − Y ′) dv′ dv

)
:(

σ̂
(J)
µ,m+1 − De, 0 : ε

(J)
µ,m+1

)
+ ε0µ,m+1 , I = 1, 2, . . . , nc . (2.16)

This can be expressed in a more compact way as:

ε
(I)
µ,m+1 = −

nc∑
J=1

T(I)(J) :
(
σ

(J)
µ,m+1 − De, 0 : ε

(J)
µ,m+1

)
+ ε0µ,m+1 , I = 1, 2, . . . , nc , (2.17)

where T(I)(J) is the cluster interaction tensor

T(I)(J) =
1

f (I)vµ

∫
Ωµ, 0

∫
Ωµ, 0

χ(I)(Y)χ(J)(Y ′)Φ0(Y − Y ′) dv′dv , I, J = 1, 2, . . . , nc . (2.18)

Applying Equation 2.2 to Equation 2.14 and Equation 2.15 the constraints can be reformulated as
follows:

nc∑
I=1

f (I)ε
(I)
µ,m+1 = εm+1(X) , (2.19)

nc∑
I=1

f (I)σ
(I)
µ,m+1 = σm+1(X) . (2.20)

2.1.4. Cluster Interaction Tensor
An important step following the clustering of the RVE and before the material’s mechanical response is
solved, is the computation of the CIT (in the offline stage). The CIT physically represents the influence
of the stress in the J th cluster on the strain in the Ith cluster. The tensor contains components for every
combination of cluster pairs and the clusters can be visualized as images as seen in Figure 2.4.

Using Equation 2.18 it can be observed that the CIT exhibits a cluster symmetry along one of its
diagonals

T(J)(I) =
f (I)

f (J)
T(I)(J). (2.21)

2.1. Reduced order modeling 7

Figure 2.4: Visualization of the cluster interaction tensor (CIT) components in a cluster-reduced RVE (CRVE) with 3 material
clusters (taken from Ferreira [15]).

It is assumed that the reference material is linear elastic which enables the Green operator to take
a closed-form expression in the frequency domain given by:

˘Φ0
klij(ζ) =

1

4µ0

δkiζjζl + δkjζiζl + δliζjζk + δljζiζk
|ζ|2

− λ0 + µ0

µ0(λ0 + 2µ0)

ζkζlζiζj
|ζ|4

, (2.22)

where ζ is the frequency wave vector corresponding to Y in real space, δij is the Kronecker delta, µ0

and λ0 are the Lamé constants of the reference material. This can be conveniently split up

Φ̆
0
(ζ) = c1(λ

0, µ0) Φ̆
0

1(ζ) + c2(λ
0, µ0) Φ̆

0

2(ζ). (2.23)

where the reference material independent components are defined as

(Φ̆0
1)klij(ζ) =

1

|ζ|2
(δkiζjζl + δkjζiζl + δliζjζk + δljζiζk) , (Φ̆0

2)klij(ζ) =
ζkζlζiζj
|ζ|4

, (2.24)

with

c1(λ
0, µ0) =

1

4µ0
, c2(λ

0, µ0) = − λ0 + µ0

µ0(λ0 + 2µ0)
. (2.25)

In this form, the expensive computation of the fourth-order Green operator components Φ̆
0

1(ζ) and
Φ̆

0

2(ζ) are carried out only once in the offline stage and later linearly scaled by the coefficients c1(λ0, µ0)
and c2(λ

0, µ0) during the online stage. In addition, due to the singularity at the zero frequency, a third
Green operator component is conveniently introduced by enforcing the condition Φ̆

0
(ζ = 0) = 0.

Furthermore the convolution of cluster χ(J) with the Green operator Φ0 can be expedited by per-
forming it in the frequency domain using the Fast Fourier Transform (FFT):∫

Ωµ, 0

χ(J)(Y ′)Φ0(Y − Y ′) dv′ = F−1
(
χ̆(J)(ζ) Φ̆

0
(ζ)
)
. (2.26)

The computation of the CIT has been identified as a significant bottleneck in the offline stage of
the method [15, 59] and in the online stage when adaptivity is used in the Adaptive Self-consistent
Clustering Analysis (ASCA) [15]. Since the computation is permutational in nature, it balloons with a
complexity of O(n2

c), where nc is the number of clusters. This observation is supported by Table 2.1

2.2. Machine Learning 8

which presents Ferriera’s [15] reported results on the partial and total computational times in SCA and
ASCA for a composite RVE benchmark under uniaxial tension. Furthermore, the offline stage results
are visualized in Figure 2.5 where the bottleneck in the computation of the CIT (step 3), caused by the
scaling performance, can be observed.

Computational time (s)

Method Offline
(step 1)

Offline
(step 2)

Offline
(step 3)

Online
(solution)

Online
(adapt.) Total

DNS - - - 23800 - 23800
SCA(c) 219 22 52 132 - 425
SCA(m) 219 108 399 1350 - 2080
SCA(f) 219 154 1100 2460 - 3930
ASCA(*) 219 22 52 324 637 1010

Table 2.1: Partial and total computational times (s) of the different solution methods associated with a composite RVE
benchmark under uniaxial tension. Number of clusters: (c) nc = 65 (coarse), (m) nc = 185 (medium), (f) nc = 305 (fine) and
(*) nc = 65→190. Offline stage: linear elastic DNS simulations (step 1), base cluster analysis (step 2) and computation of

cluster-interaction tensors (step 3). [15]

Figure 2.5: Partial computational times (s) of the offline stage in SCA simulations with a composite RVE benchmark under
uniaxial tension. Offline stage: linear elastic DNS simulations (step 1), base cluster analysis (step 2) and computation of

cluster-interaction tensors (step 3). [15]

A fast algorithm for computing the interaction tensor was proposed by Zhang et al. [59]. The method
maps points from the original mesh to a courser mesh using composition ratios to reduce the number
of computations needed. Their method decreases the required number of operations yet still scales
with quadratic complexity when the number of clusters is increased.

The online stage as well as other aspects of the method are considered outside of the scope of this
work. The interested reader is directed to Liu et al. [37] and Ferreira [15] for a more detailed analysis
of the physics and algorithmic implementation of SCA.

2.2. Machine Learning
Machine learning (ML) is the artificial intelligence technique in which computers can learn by drawing
inferences from patterns in data without following predetermined and explicit instructions. Although it
has existed in some form since the 1950s, it has exploded in popularity over the last few years thanks
to increased datasets, improvements in algorithms and advances in computer hardware [4].

Whilst ML has been used to solve various problems in fields ranging from language, medicine and
finance, to name a few, it would be prudent to limit this literature review to only the most relevant
fields. Since the information about the clusters is spatial in nature, the field of computer vision is first
discussed. Next, examples of the use of machine learning in the solid mechanics field is highlighted to
draw parallels to the topic of research in this manuscript. Finally, the framework of operator learning is
introduced which is a useful generalization of mappings between function spaces.

2.2. Machine Learning 9

2.2.1. Machine learning in computer vision
Computer vision is a mature field that provides many tools for performing classification or regression
tasks on image-like data.

One of the major breakthroughs in the field was the paradigm shift from traditional ML to deep learn-
ing [2]. Namely, in traditional ML a successful architecture was in large part determined by the method
used to extract features. Many were proposed such as histogram of oriented gradients, scale invariant
feature transform, and bag of words. Deep learning on the other hand offered a black box solution for
extracting and operating on features in an image without any feature engineering (Figure 2.6). This
together with the following characteristics makes deep learning particularly appealing:

1. Universal learning approach: deep learning can provide universal approximations in most appli-
cation domains.

2. Robustness: since features don’t need to be precisely defined, deep learning strategies are more
robust to changes in the input data since the new features can be learned in an automatedmanner.

3. Generalization: the same architectures can be used in different applications which is referred to as
transfer learning. This is particularly useful in situations when there is little data in an application
of interest but lots of data in a similar application.

4. Scalability: due to the ease of parallelising deep learning algorithms and advances in CPU and
GPU technologies, they can be scaled to include large numbers of hidden layers.

Figure 2.6: The difference between deep learning and traditional machine learning (taken from Alzubaidi et al. [2]).

The most notable limitation of deep learning, however, is its reliance on large amounts of data due
to the increased number of parameters that need to be trained. Therefore, it can be said that traditional
methods can often offer better performance for smaller datasets whereas deep learning performs better
for larger datasets (Figure 2.7).

Arguably the most important discovery in the field of computer vision was the convolutional neural
network (CNN). First introduced by Fukushima [17] and later popularized by LeCun et al. [34] it was able
to greatly outperform other state-of-the-art architectures at the time. CNNs have allowed for greater
feature extraction and have been successfully applied within deep learning frameworks. The strengths
of CNNs over other networks, such as fully connected networks, can be attributed to four main concepts:
local connections, weight sharing, pooling and multiple layers [3]. CNNs employ convolutional layers
that convolve a kernel over a feature space. These kernels are typically smaller than the feature space,
allowing them to capture local features within the kernels receptive field. Since these kernel’s are small
and convolved over an entire feature space, it allows a small number of weights to be shared over the
entire feature space. Following a convolutional layer and, typically, a nonlinear activation, the outputs
can be pooled to downsample the representation and, as such, reduce the number of computations and
weights required in downstream layers. Finally, by stacking multiple convolutional and pooling layers
in sequence the network can learn a hierarchical representation of an image at multiple scales.

The ImageNet Large Scale Visual Recognition Challenge [49] has been one of the major drivers
of innovation and standardization within the computer vision field. Notably, the object localization task
let researchers from around the world train and compare their architectures every year on training

2.2. Machine Learning 10

Figure 2.7: Comparison of deep learning and traditional machine learning as a function of dataset size (taken from Alzubaidi et
al. [2]).

and validation sets of 1.2 million and 150k images, respectively. The first major breakthrough came
with AlexNet which not only improved the accuracy by a wide margin but also showed that CNNs can
be efficiently parallelised on a GPU to speed up the training of large networks [31]. The next major
breakthrough came with VGGNet which utilized a relatively simple architecture but demonstrated that
accuracy can be significantly increased by increasing model depth [53]. Following that, ResNet intro-
duced the concept of residual learning which allowed information to bypass a convolutional layer using
an identity mapping [21]. This mitigated the vanishing gradient problem (inherent to deep networks)
and, in turn, allowed for even deeper networks to be created than before.

Figure 2.8: Improvements in accuracy in classification of ImageNet dataset (winning architectures 2012-2015) (taken from
Alom et al. [1]).

With deeper and larger networks accuracy could be significantly improved, however, this came with
the downside of higher computational cost. Out of this limitation came an area of study focusing on
optimizing the computational cost of a network whilst ensuring accuracy is not significantly degraded.
Lebedev et al. [33] demonstrated that CP decomposition can be used to get an 8.5x CPU speedup
at a cost of only 1% drop in accuracy when training AlexNet on the ImageNet dataset. Similarly, ten-
sor methods were utilized by Kossaifi et al. [29] by imposing a low-rank constraint on the activation
layers known as Tensor Contraction Layers (TCLs) and on the regression weights known as Tensor Re-
gression Layers (TRL). When applied to VGG and ResNet architectures, TCLs and TRLs reduced the

2.2. Machine Learning 11

number of parameters compared to fully connected layers by more than 65% (in turn reducing the com-
putational cost) while maintaining or increasing accuracy. Howard et al. [25] proposed MobileNetV1
which employs depth wise separable convolution to substantially improve computation efficiency over
standard convolutional layers. MobileNetV2 [50] built on that by introducing a resource-efficient block
with inverted residuals and linear bottlenecks. MobileNetV3 [24] introduced a way in which automated
search algorithms (using reinforced learning) can be used to find the optimal architecture that balances
computational speed and accuracy. ShuffleNet [60] utilizes group convolution and channel shuffle oper-
ations to reduce computational cost. Hinton et al. [23] proposed teaching a large ”teacher” network that
can then guide smaller ”student” networks. Complementary to the development of novel architectures,
quantization has been used to improve efficiency through reduced precision arithmetic [26].

2.2.2. Machine learning in solid mechanics
With the success of machine learning in various computing tasks (such as machine vision) it has gar-
nered large interest in the solid mechanics field. A common approach called metamodeling has been
extensively used whereby a surrogate model is built to approximate the behavior of numerical tech-
niques such as the finite element method. This can be applied to both forward problems (finding the
outcomes of a system given an input) or inverse problems (exploring the inverse input space given
an outcome). These methods are often called data-driven since they rely on data to create the model.
Several studies have been conducted on data-driven modeling using supervised machine learning.

In simple cases, studies have focused on predicting a single or few quantities of interest given
a microstructure. Pathan et al. [43] predicted the homogenized response of composite RVEs using
a gradient-boosted tree regression model with principle component analysis used to obtain features
from the two-point correlation function of the microstructure. Gholami et al. [18] utilized ResNet and
AlexNet to predict the Young’s modulus and Poisson ratios of composite hydrogels. Using a regression
tree model, Zhenchao et al. [44] also successfully predicted the elastic properties of composite RVE’s.

Other studies have focused on more complex predictions such as full field predictions. Bolandi et al.
[3] developed a novel architecture for stress prediction of steel plates. The study extensively compared
a large number of parameters such as using various architecture blocks, loss functions and dataset
sizes to evaluate and optimize their architecture. Mozzafar et al. [41] used recurrent neural networks
to show that plasticity could be precisely and efficiently predicted using deep learning methods. Their
model was capable of learning reversible, irreversible, and history-dependent phenomena of different
deformation paths. Sepasdar et al. [52] trained a U-Net architecture to predict the stress field of a
composite RVE. Using the output from the first model as inputs, they trained a second U-Net model to
predict cracks in the RVE.

Although most of the mentioned literature has reported increases in computational speed when
comparing the inference of their surrogate models against their corresponding numerical technique, it
can be said that there is a lack in consistency when trying to compare their approaches, both in terms of
accuracy and time. To better standardize results of machine learning architectures across the solid me-
chanics field, and similar to ImageNet in computer vision, Lejeune [35] created the mechanical-MNIST
dataset that could be used by the community. Its data consists of heterogeneous microstructures of
varying stiffness and is derived from the MNIST dataset. Following an FEM simulation of each mi-
crostructure, into the plastic regime and under different loading conditions, the dataset targets consist
of stress/strain fields and total strain energy which corresponds to full field and single quantity of interest
predictions, respectively.

Unsupervised techniques have also been used within solid mechanics. For example in the case of
data reduction/clustering with the Self Consistent-clustering Analysis (SCA) [37] and Proper Orthogonal
Decomposition (POD) [45]. Another notable example are Physics Informed Neural Networks (PINN’s)
which incorporate neural networks and autodifferention into the solution scheme of partial differential
equations [40].

2.2.3. Operator Learning
Operator learning is a useful framework from which data-driven models can be understood. A popular
approach for learning an operator such as G : L2(X)→ L2(Y), where L2(X;Rd) is a set of continuous
functions from a set X to Rd, is a description using three maps [51].

G ≈ F = D ◦ A ◦ E (2.27)

2.3. Data generation 12

The first map, E : L2(X) → Rm, is the encoder. It takes the input function and maps it to a finite-
dimensional feature representation. This can for example bem finite samples from the original function
or a projection of the function onto a set of m basis functions. The second map, A : Rm → Rn,
is the approximation map. It is the finite-dimensional approximation of the actions performed by the
operator G. The last map, D : Rn → L2(Y), is the decoder step, which brings the latent dimensional
representation in Rn back to the function space of the input.

L2(X) L2(Y)

Rm Rn

G

E

A

D (2.28)

Using the operator learning methodology it has been proven that neural networks with arbitrary non-
linear activation functions serve as a universal approximation for any continuous function [7]. Nonethe-
less, the proof of universal approximation doesn’t provide an estimate for the size of the latent space
for which universal approximation can be guaranteed. Instead, it states that universal approximation
can be achieved given a large enough latent space.

2.3. Data generation
A big determining factor in the effectiveness of a data-driven model is the data that is provided to
it. It can affect a model’s accuracy, training time and generalization. Additionally, as highlighted in
section 2.2 large amounts of data are typically required to train deep networks. This section highlights
some potential ways of creating datasets of heterogeneous microstructures, with specific emphasis on
ways in which clustered microstructures (used in SCA) can be obtained or generated.

One method by which clustered microstructures could be generated is using representative material
microstructures that undergo a clustering procedure. The material microstructures could be obtained
from real microstructures or generated synthetically. Since SCA operates on a regular grid, it has
been suggested as an effective tool for modeling microstructures from micrographs of real material mi-
crostructures [15]. However, this has not been done in practice and as such advances would need to
be made in the method (in areas such as image denoising) before it can be considered robust enough
for a data-driven approach. Furthermore collecting a sufficiently large sample of micrographs can be
prohibitively costly and time consuming. In practice, SCA has generally been used with synthetically
generated material microstructures. This can be done using the Cahn-Hilliard equations [6] to create
a binary material phase field, which has typically been used for generating microstructures of metal
alloys [19]. Several methods have also been suggested for generating microstructures of composite
microstructures such as RAND_uSTRU_GEN [38] and AMINO [14]. Although generating a dataset
based on these microstructures would make it representative of similar microstructures, it might fail
to generalize to other microstructures. Furthermore, generating the dataset using material microstruc-
tures would be computationally expensive due to the additional step of clustering the microstructure as
well as the high cost associated with the generation of each microstructure for some of the methods
highlighted (which can be in the order of minutes for a single microstructure).

A viable alternative could be generating the clustered microstructures directly using noise. In the
simplest case white noise (Figure 2.9) can be generated by sampling a uniform random value at each
voxel. However, this assumes that every voxel is independent of one another and therefore doesn’t
include spatial correlations between neighboring points. To create spatially correlated noise, gradi-
ent noise fields (Figure 2.10) have been successfully utilized in many disciplines. Notably, Gaussian
noise has been used for soil mechanics to create random soil structures for permeability studies [58]
and fluid dynamics for creating random vorticity fields [30] (in both cases this was later used within a
data-driven modeling framework). Another example of the use of Gaussian noise is the work by Vel
and Groupee [56] who used Gaussian noise to create biphasic material microstructures to evaluate a
homogenization scheme. Gaussian noise can be generated quickly by initializing and masking white
noise in the frequency domain and transforming this into the spatial domain using the FFT [32]. Jakes
et al. [27] presented a similar framework for dataset generation by using Perlin noise to make fibrosis
patterns. Although fast, Perlin noise suffers from axis-aligned anisotropy which adds artifacts to the
field [32]. Interestingly, Jakes et al. [27] noise method used a root finding algorithm to pick the bina-
rization plane that enforced a predetermined volume fraction. They also superimposed different noise

2.4. Algorithmic complexity 13

Figure 2.9: White Noise. Figure 2.10: Gradient Noise.

fields, with various bases, to control the feature size and anisotropy of the final structure. Altogether
these methods offer a fast way of generating random spatially correlated fields at varying length scales.
However, to the best knowledge of the author, no attempt has yet been made at generating multi-phase
microstructures using gradient noise. Currently, the clustering of fields has been restricted to simple
binarization.

2.4. Algorithmic complexity
Algorithmic analysis is the study of how an algorithm’s efficiency at solving a particular problem com-
pares to others. Most commonly this efficiency is measured in terms of time complexity or space
complexity [9]. This section introduces some commonly used metrics for measuring the complexity of
an algorithm.

A simple approach for measuring time complexity is the wall clock time [5]. In this approach an
algorithm is executed on a machine and the time it takes the algorithm to evaluate the problem to
completion is noted. One downside of using wall clock time to design algorithms is that an algorithm
needs to be fully programmed to obtain this metric. This makes the process time consuming when
comparing different algorithms. Furthermore, the wall clock time can be influenced by how an algorithm
is implemented, e.g. the machine it is run on or the compiler that is used. Lastly, the wall clock time is
not informative for considering other (similar) problems that the algorithm may encounter in the future.

To counter the limitations of wall clock time the big-O (O) notation is used [5]. It is a metric typically
applied to P class (polynomial time) problems and considers the algorithm’s asymptotic efficiency. This
can intuitively be understood to be how much an algorithm’s time complexity grows as a function of
input size (n). Some of the most common complexity classes are seen in Figure 2.11.

Formally big-O can be defined as follows:

Definition. ”A function g belongs to the complexity class O(f) if there is a number n0 ∈ N
and a constant c > 0 such that for all n ≥ n0, we have that g(n) ≤ c ∗ f(n). We say that the
function g is ‘eventually smaller’ than the function c ∗ f .” [5]

This implies that constant factors do not change the growth class. Furthermore, it means that the
behavior of the function for small inputs is irrelevant. Through this definition, the complexity classes
seen in Figure 2.11 can be defined as elements of a set:

O(1) ∈ O(logn) ∈ O(n logn) ∈ O(n2) ∈ O(2n) ∈ O(n!) (2.29)

As such, for functions formed from different growth classes, the largest growth class defines the
complexity of the function. For example, a function with growth class C(n) = 500000 logn + 4n2 +
0.3n + 100 would have the component 4n2 as its largest growth class. Furthermore, as a result of the
definition, the constant term would not affect the complexity. Hence, the complexity class of function
C(n) would be O(n2).

Nevertheless, big-O notation has limitations. Namely, that it only considers an algorithm’s asymp-
totic performance. This is best exemplified by galactic algorithms which are algorithms with a small

2.4. Algorithmic complexity 14

Figure 2.11: Growth of most common complexity classes (taken from Rowell et al. [48]).

complexity class that are never used in practice due to their high cost for realistic input sizes, poten-
tially requiring datasets on the scale of the universe [36].

To counter this limitation, the number of multiplications is often used as an estimate of complexity.
The reason why multiplications are considered over other operations such as additions is because they
are one of the most computationally expensive floating point operations. This can be understood by
considering the big-O complexity of an example operation on two integer values. When multiplying the
two integers the complexity would be O(n2) whereas adding them would have a complexity of O(n).
This metric assumes that the algorithms being compared operate using the same datatype e.g. 32-bit
floats. It is limited to considering an input of a single size but can be convenient for evaluating an
algorithm when the range of input sizes is known [16].

However, it has also been argued that multiplications and additions have a compute time of sim-
ilar order and can therefore be categorized in the same group. In such a metric additions would be
included when evaluating the complexity of an algorithm. Due to the extensive use of multiplications
and additions in neural network algorithms, this is the most commonly used metric in the ML commu-
nity. It can be referred to as Floating Point Operations (FLOPs) when additions or multiplications each
count as one unit or AddMul when a pair of an addition and a multiplication operation is counted as
one. The AddMul unit comes from the idea that neurons in a neural network scale an input by a weight
and translate by a bias, making it convenient to count computational complexity simply by summing
the number of connected neurons [10].

2.5. Research question 15

2.5. Research question
Based on the conducted literature review, two primary knowledge gaps can be identified:

KG1 Fast computations of the cluster interaction tensor: The computation of the cluster interaction
tensor scales withO(n2) as a function of number of clusters. Therefore, it is the driving bottleneck
in the offline stage of SCA when the number of clusters is increased (as seen in Figure 2.5). It also
significantly affects the solution time in the online stage when adaptivity is used. Increasing the
computational speed of this step can further improve upon the computational efficiency provided
by SCA in making material predictions.

KG2 Efficient generation of large and diverse multi-phase microstructure datasets: Given the
interest in training data-driven models on heterogeneous microstructures, different ways of gener-
ating the datasets and their effect on the models need to be explored. For example, a dataset of
representative microstructures such as composites or metals can be slow and limit the generaliz-
ability of a model trained on said dataset. Gradient noise has been used to counter this limitation,
although so far microstructures have been limited to simple biphasic structures.

Based on these knowledge gaps the following research question is formulated and guides the thesis.

To what extent can a data-driven surrogate model accurately predict and accelerate
the computation of the cluster interaction tensors (CIT) in self-consistent clustering
analysis (SCA)?

To answer the primary research question and address the knowledge gaps further, several sub-
questions can also be formulated:

SQ1 To what extent can a data-driven surrogate model accurately predict the CIT?
SQ2 To what extent can a data-driven surrogate model accelerate predictions of the CIT?
SQ3 How can data for a surrogate model’s training be generated?

3
Synthetic Data Generation

This chapter introduces a novel method for generating large datasets of clustered microstructures using
gradient noise. Section 3.1 highlights the motivation behind the use of gradient noise for the problem
of clustered microstructure generation. Section 3.2 discusses how a single cluster can be generated.
Section 3.3 expands upon the cluster generator to the generation of clustered microstructures. Section
3.4 concludes by showing how full datasets of synthetic clustered microstructures are generated.

3.1. Motivation
To motivate the methodology needed to generate the synthetic data one must first revisit the offline
stage of the SCA introduced in chapter 2. SCA utilizes an offline linear elastic DNS simulation to
compute the strain concentrations along all material points of a domain. It then clusters points using the
k-means minimization which results in points with similar strain concentration being clustered together.
This entails that the geometry of the clustered microstructure is a product of the strain field exhibited
by the structure.

In most cases, amaterial undergoing deformation can be assumed to have a smooth and continuous
strain field (and by extension the strain concentration). Under such an assumption the points in the field
are said to be spatially correlated i.e. points close to one another will exhibit a similar strain value. As a
result of this, SCA produces clusters that are spatially correlated, even though clusters don’t need to be
continuous. This motivates the need for a spatially correlated method of generating synthetic data such
as Gaussian noise introduced in section 2.3. It’s noted that the strain concentration field is disturbed
when different material phases are present [42]. The strain concentration of a single composite RVE
can be seen in Figure 3.1. Notice the strain concentration field’s smoothness in the matrix phase and
abrupt change between matrix and fiber phases.

Figure 3.1: Strain concentration field of a composite RVE undergoing uniaxial tension. Composite consists of circular fibers
embedded in a matrix.

16

3.2. Cluster generator 17

Furthermore, as highlighted in section 2.2, data-driven methods require large datasets to train. Cur-
rent RVE microstructure generators can take in the order of seconds or even minutes to generate a
microstructure and also require undergoing the offline stage DNS simulation and clustering step in or-
der to obtain a clustered microstructures. Hence a method for generating large datasets of clustered
microstructures efficiently is required. Once again, with Gaussian noise being very cheap to initialize,
it presents itself as a viable solution for the problem at hand.

3.2. Cluster generator
Following the observations made in section 3.1, it can be concluded that most clusters tend to clump to-
gether due to the continuous nature of the strain in the medium. Therefore if the strain field is described
using the frequency domain, it can be assumed that the lower frequencies should yield a sufficiently
good approximation of the field. Only under sharp jumps in the field (such as at phase boundaries) are
high-frequency components needed to yield a sufficiently good approximation. However, this can be
emulated by simulating discrete changes in the field by obtaining noise from separate seed states for
different parts of the domain. Furthermore, periodic boundary conditions can be enforced using Fourier
spectral synthesis to be consistent with the formulation of SCA. Following this reasoning, the following
methodology for generating clusters has been developed.

A schematic of the cluster generator algorithm is shown in Figure 3.2. It begins by initializing an
array of white noise in the complex domain (C). To aid in visualization, the complex array has been
split into the real and imaginary components in the figure. A Gaussian filter of given roughness is then
applied. The roughness parameter corresponds to the variance of the Gaussian filter and the mean of
the filter is centered at zero frequency. The complex array is then inverse Fourier transformed to get
an array in the real domain (R). This array is then binarized according to a threshold to get an array
of ones and zeros. The binarization step sets the threshold such that, after masking by the available
domain array, the output is of a desired volume fraction.

Some relevant remarks are in order:

• Since the noise is composed of a set of frequency components the resulting image is periodic
in the real domain. This is particularly useful as the SCA simulations performed in subsequent
sections will enforce periodic boundary conditions on the domain.

• The inverse Fourier transform is efficiently performed using the fast Fourier transform method.
• A standard inverse zero-frequency shift is applied on the filtered noise prior to the inverse Fourier
transform.

• The volume fraction of the cluster is computed by calculating the ratio of ones present in the matrix
over the total entries in the matrix.

• A root-finding algorithm is implemented to compute the binarization threshold at which a cluster
with the desired volume fraction is found from the filtered noise. In this case, Brent’s method is
used since it provides a guaranteed solution, at a faster rate than the bisection method, and does
not require a gradient.

3.2. Cluster generator 18

Figure 3.2: Cluster generator implementation flow chart. The program first generates noise in the complex domain (C).
Complex arrays are separated in the figure into real and imaginary components (for visualization purposes). The program then

applies a Gaussian filter followed by a transformation into the real domain (R) concluded by a binarization step.

3.3. Microstructure generator 19

3.3. Microstructure generator
The previously explained cluster generator can then be utilized to generate microstructures consisting
of multiple clusters (clustered microstructures). To explain the microstructure generator, an example
where a microstructure with three clusters is generated is demonstrated in Figure 3.3.

The available domain is tracked throughout the computation. This acts as a mask in the binarization
step and limits the domain that a newly generated cluster can fill. It serves as the condition that ensures
that no clusters overlap.

The cluster generator takes as inputs the available domain, desired volume fraction and desired
roughness parameters. The volume fraction and roughness parameters are initialized for all clusters in
a microstructure from a distribution a priori. The volume fraction is taken from a uniform distribution and
then normalized so that the sum of all volume fractions adds up to unity (the full microstructure domain).
The roughness parameter is initialized from a log-normal distribution. The log-normal is used in order
to generate microstructures where a majority of clusters are generated with small roughness values,
whilst including a few clusters with higher roughness values (that approach white noise). The cluster
generator step outputs a new cluster and updates the available domain to exclude the domain of the
newly created cluster. The final cluster is simply computed by filling the remaining available domain.
Finally, the generated clusters are added together to form the clustered microstructure.

Since the microstructure consists of layers of clusters stacked on top of each other, a ”biting” bias
presents itself in clusters that are generated following the first one (as shown in Figure 3.4). This bias
gets compounded the more clusters are generated due to a decrease in available domain.

(a) Cluster 1 (b) Cluster 2

Figure 3.4: First two generated clusters in microstructure. Biting bias can be seen present in cluster 2.

The purpose of the microstructure generator is to generate large datasets to train surrogate models.
To demonstrate its efficiency, the generation of microstructures with different resolutions and numbers
of clusters was timed. The wall clock time to generate 100 microstructures given a set of parameters is
found and averaged to estimate the wall clock time required to generate a single microstructure. The
results are shown in Table 3.1.

Resolution Clusters
5 20 80

56x56 0.004s 0.016s 0.065s
112x112 0.007s 0.047s 0.157s
224x224 0.025s 0.129s 0.564s

Table 3.1: Average wall clock time (in seconds) to generate a microstructure with given resolution and number of clusters.

It is observed that the wall clock time is at most in the order of 10−1s which is faster than composite
RVE generators that can take in the order of seconds or even minutes to generate a single RVE of the
same size [14, 38]. Furthermore, the microstructure generator provides microstructures in a clustered
form, obviating the need to run the offline DNS simulation and clustering procedure.

3.3. Microstructure generator 20

Figure 3.3: Microstructure generator flow chart (example for microstructure with 3 clusters). Clusters are generated given a
volume fraction and roughness parameter. The available domain is kept track of to ensure no clusters overlap. The final cluster

is generated by filling the remaining available domain. Microstructures are created by adding all clusters together.

3.4. Dataset generator 21

3.4. Dataset generator
In order to facilitate the dataset generation, a choice of target must first be established. Naturally, this
will be the CIT but there is a multitude of ways in which the quantity can be expressed. In the form
given by Equation 2.18, the CIT is a function of the reference materials Lamé parameters and, as
such, is subject to the self-consistent optimization step of the online stage. Predicting the CIT in this
form is a considerably difficult task given the complexity of the physics involved. Therefore, the offline
parameters of the CIT are predicted instead. By using the split version of the Green operator given by
Equation 2.23 the CIT can be reformulated in the form

T(I)(J) = c1(λ
0, µ0) T(I)(J)

1 + c2(λ
0, µ0) T(I)(J)

2 , (3.1)

where c1 and c2 are the material dependent parameters given by Equation 2.25. The component T(I)(J)
3

is also used and corresponds to the zero frequency of the Green operator. In the computational imple-
mentation, the offline CIT component is denoted using T(I)(J)

ijk (with the subscripts ijk) where i and j are
the tensor directions and k is a component index (1, 2 or 3). From here on, the tensor T is also referred
to as a ”global tensor” whereas the component with a set I and J , denoted by T(I)(J), is referred to as a
”local tensor”. This is visualized in Figure 3.5. The global tensor contains nc × nc local tensors (where
nc is the number of clusters).

(a) Structure of global tensor T. nc is the total number of
clusters.

(b) Structure of local tensor T(I)(J). Notice that the
length of k is fixed whereas i and j are variable.

Figure 3.5: Array structure of global and local cluster interaction tensors.

Another decision to be made is whether to predict global or local tensors. One issue in predicting
the global tensor is that the output needs to vary in size as a function of the input size. This is because
the number of local tensors grows quadratically as a function of the number of clusters. This imposes
a severe limitation on the possible architectures that can be considered. Additionally, although archi-
tectures such as transformers [55] are capable of handling variable input and output sequences, these
methods typically rely on padding and masking operations to convert a fixed-size architecture into a
variable-size setting. This imposes a limitation on the current application since the number of param-
eters in such an architecture is dictated by the highest number of clusters, which could result in the
model being over-parameterized for cases with few clusters. As such, for the current study, a ”pair-
wise” strategy is chosen whereby the local tensor is predicted for cluster pairs, as seen in Figure 3.6.
Nevertheless, the global tensor strategy will be discussed again in chapter 6.

Attention is called upon the fact that the CIT contains n2
c number of local tensor components. It is

these local components that the surrogate will later predict in its pairwise approach (with each local
component corresponding to a data point). Due to the scaling of the global tensor, care must be taken
when dealing with datasets containing microstructures of varying cluster numbers. This is because
a microstructure containing many clusters yields significantly more data points than a microstructure

3.4. Dataset generator 22

Figure 3.6: Data-driven modeling pairwise approach where the surrogate model predicts the local cluster interaction tensor
between two material clusters from the corresponding support functions.

containing few clusters. The average volume fraction of a cluster is also proportional to the number of
clusters in a microstructure. Microstructures with more clusters on average have clusters with smaller
volume fractions. Therefore actions need to be taken in order to ensure a balanced dataset.

Two different approaches are considered to correct for this. In the first, microstructures are be
binned into groups defined by the number of clusters. The number of microstructures in each bin is set
such that the amount of local tensor components they contributed is equal across bins. This method,
however, is not chosen due to the rigid structure imposed on the binning and the number of microstruc-
tures permitted in each bin. Additionally, this approach can lead to an unbalanced dataset since bins
contain different total amounts of clusters. This, for example, results in clusters being repeated more
in bins containing microstructures with many clusters.

Instead, an approach where the global tensor is truncated is proposed. This method involves trun-
cating the volume fraction and roughness lists to a length of nc,cut. For these microstructures, the ”fill
domain” operation shown in Figure 3.3 is not executed, effectively generatingmicrostructures with voids
in them. This, however, does not affect the surrogate model as training occurs on a pair-wise basis.
To obtain a balanced dataset, nc,cut is set to the minimum number of clusters in the range considered.
Essentially, the method only generates local tensors up to a certain point (retaining those values) and
does not generate other local tensors (effectively discarding those values). This is visualized in Fig-
ure 3.7. This method has the additional benefit of providing more flexibility on the number of clusters
each microstructure could take on. The Sobol sequence is therefore used, within a given range, to
determine the number of clusters in each microstructure, as such, filling the space more efficiently.



T(1)(1) T(2)(1) · · · T(nc,cut)(1) T(nc,cut+1)(1) · · · T(nc)(1)

T(1)(2) T(2)(2) · · · T(nc,cut)(2) T(nc,cut+1)(2) · · · T(nc)(2)

...
...

. . .
...

...
. . .

...
T(1)(nc,cut) T(2)(nc,cut) · · · T(nc,cut)(nc,cut) T(nc,cut+1)(nc,cut) · · · T(nc)(nc,cut)

T(1)(nc,cut+1) T(2)(nc,cut+1) · · · T(nc,cut)(nc,cut+1) T(nc,cut+1)(nc,cut+1) · · · T(nc)(nc,cut+1)

...
...

. . .
...

...
. . .

...
T(1)(nc) T(2)(nc) · · · T(nc,cut)(nc) T(nc,cut+1)(nc) · · · T(nc)(nc)


Retained values Discarded Values

Figure 3.7: Truncation of the global tensor used to obtain a balanced dataset.

4
Data Driven Predictions

This chapter explores data-driven predictions of the CIT. First, section 4.1 introduces the software used
to calculate the CIT and the algorithms behind its implementation. Then, in section 4.2, the underlying
distributions in the CIT are explored, and a strategy for CIT predictions is proposed. Next, in section 4.3,
a sensitivity analysis shows how uncertainty in the CIT could affect SCA. Following that, the methods
pertaining to surrogate model evaluation are introduced in section 4.4. With the methods established,
a standard surrogate model is introduced, trained and evaluated in section 4.5. A potential limitation is
observed in the standard surrogate model and section 4.6 aims to address the limitation by modifying
the dataset. This is followed by a convergence analysis with respect to the dataset size in section 4.7.
Finally, an accelerated version of the surrogate is presented in section 4.8.

4.1. Baseline model
A baseline (analytical) model must first be implemented against which the surrogate (data-driven) model
for solving the CIT can be compared. The physics and derivation of the necessary equations for such
a method are highlighted in section 2.1. Conveniently, an open-source implementation of SCA called
CRATE has been provided by Ferreira et al. [13]. It includes a step where the CIT is computed given a
microstructural description. The code is tested and well documented and many of the decisions made
to optimize it have been summarized by Ferreira [15].

Since the CIT, specifically, is the quantity of interest in this study, the algorithmic implementation
of its computation in CRATE is highlighted in algorithm 1. Note that [Y]2d is an array representing
the material domain. Colors have been provided to illustrate the iterations over various indices better.
Notice that the I and J indices form a nested for-loop. It is due to this nesting that the algorithm scales
with O(n2

c).

23

4.2. Data analysis and pre-processing 24

Algorithm 1: CIT pseudocode.
Input : [Y]2d, nc, ncomp

Output :T (I)(J)

1 Obtain Φ̆ijkl ;

2 for J = 1 to nc do
3 [X̆]J2d ← F (χ([Y]2d));

4 for ij in ncomp do
5 for kl in ncomp do
6 [Mijkl]

J
2d ← F−1([X̆]J2d ◦ Φ̆ijkl) ;

7 end
8 end
9 for I = 1 to nc do
10 if I > J then
11 [T (J)(I)] ← f(I)

f(J) [T
(I)(J)];

12 else
13 [X]I2d ← χ([Y]2d);

14 for ij in ncomp do
15 for kl in ncomp do
16 [T (J)(I)]←

∑
voxels

[X]I2d ⊙ [Mijkl]
J
2d;

17 end
18 end
19 Obtain c1 ;
20 [T (J)(I)]← c1[T

(J)(I)];
21 end
22 end
23 end

4.2. Data analysis and pre-processing
Since data plays a crucial role in any data-driven model, it must first be analyzed and pre-processed
to ensure easier training and accurate predictions.

In the first step of this stage, histograms showing the CIT values for a set index of a local tensor are
created, from which it can be observed that some local elements exhibit a bi-modal distribution while
others exhibit an unimodal distribution. An example of a bi-modal distribution is shown in Figure 4.1 and
a unimodal distribution is shown in Figure 4.2. Upon further inspection, it can be determined that the two
modes in the distribution could be distinguished through their position within the global tensor. Namely,
one mode corresponded to the diagonal terms of the global tensor, whereas another corresponded to
the off-diagonal terms. The diagonal terms correspond to the self-interaction case. This result, and
the fact that the diagonal mode is higher than the off-diagonal, makes intuitive sense since it is to be
expected that the stress within a cluster has a higher importance in determining its own strain when
compared to the stresses in other clusters.

4.2. Data analysis and pre-processing 25

(a) nc = 9 (b) nc = 18 (c) nc = 36

Figure 4.1: Discrete frequency distribution showing bi-modal distribution (T IJ
111).

(a) nc = 9 (b) nc = 18 (c) nc = 36

Figure 4.2: Discrete frequency distribution showing unimodal distribution (T IJ
131).

This observation informed the decision to predict only the upper off-diagonal terms using a surro-
gate model. Given the bimodal distribution, the performance of a data-driven model can be enhanced
by predicting the two modes separately, particularly when the classes corresponding to each mode (di-
agonal or off-diagonal) are known a priori. Additionally, the upper off-diagonal terms scale with O(n2

c),
whereas the diagonal terms only scale withO(nc). By predicting off-diagonal terms, any reduction in the
inference times of a cluster pair will exert an increasingly pronounced effect on the global CIT tensor’s
computational time as the number of clusters increases. The lower off-diagonal terms are determined
through the symmetry condition described by Equation 2.21. The surrogate strategy is described by
algorithm 2 and visualized in Figure 4.3.



T(1)(1) T(2)(1) · · · T(nc)(1)

T(1)(2) T(2)(2) · · · T(nc)(2)

...
...

. . .
...

T(1)(nc) T(2)(nc) · · · T(nc)(nc)


surrogate analytical symmtery

Figure 4.3: Selected strategy for computing the global tensor. The upper off-diagonal terms are computed using the surrogate
model, the diagonal terms using the baseline analytical approach and the lower off-diagonal terms using the symmetry

condition.

4.2. Data analysis and pre-processing 26

Algorithm 2: CIT with surrogate pseudocode.
Input : [Y]2d, nc, ncomp

Output :T (I)(J)

1 Obtain Φ̆ijkl ;

2 for J = 1 to nc do
3 [X̆]J2d ← F (χ([Y]2d));

4 for ij in ncomp do
5 for kl in ncomp do
6 [Mijkl]

J
2d ← F−1([X̆]J2d ◦ Φ̆ijkl) ;

7 end
8 end
9 for I = 1 to nc do
10 if I > J then
11 [T (J)(I)] ← f(I)

f(J) [T
(I)(J)];

12 else
13 [X]I2d ← χ([Y]2d);
14 if I == J then
15 for ij in ncomp do
16 for kl in ncomp do
17 [T (J)(I)]←

∑
voxels

[X]I2d ⊙ [Mijkl]
J
2d;

18 end
19 end
20 else
21 [T (J)(I)]← surrogate([X]J2d, [X]I2d);
22 end
23 Obtain c1 ;
24 [T (J)(I)]← c1[T

(J)(I)];
25 end
26 end
27 end

The next step involved standardizing the dataset. This is done since neural networks train faster
when the features and targets follow a distribution with zero mean and unit variance. The standardized
values are found using

Z =
X − µ

σ
, (4.1)

where X is the value being standardized, µ is the mean and σ is the standard deviation of the dataset.
The features are not standardized since they are composed of clusters given in a binary format. The
targets, on the other hand, are standardized since they represent the CIT values on a continuous scale.
The discrete probability distribution showing the scaled values of every local tensor index from a dataset
containing 100k clustered microstructures with 5-80 clusters are shown in Figure 4.4, Figure 4.5 and
Figure 4.6. The indices 121 and 211 are not shown since all values are null. By comparing the scaled
discrete density distributions to the continuous Gaussian distribution, it can be seen that none of the
CIT components follow a normal distribution. Additionally it is observed that the indices 111, 221, 331,
112, 122, 212, 222, 332 and all values where k = 3 exhibit a skew. The skew cannot be remedied using
a log transform since the distributions take on positive and negative values.

4.2. Data analysis and pre-processing 27

Figure 4.4: Discrete density distribution of local CIT values for k = 1 (after scaling) and continuous Gaussian distribution with
zero mean and unit variance overlaid on top.

4.2. Data analysis and pre-processing 28

Figure 4.5: Discrete density distribution of local CIT values for k = 2 (after scaling) and continuous Gaussian distribution with
zero mean and unit variance overlaid on top.

4.3. Sensitivity Analysis 29

Figure 4.6: Discrete density distribution of local CIT values for k = 3 (after scaling) and continuous Gaussian distribution with
zero mean and unit variance overlaid on top.

4.3. Sensitivity Analysis
Before building a surrogate, which is, by definition, an approximation, it is useful to gain a qualitative
understanding of how the SCA solution behaves when given an approximate CIT. To do this, a sensitivity
analysis is conducted to see how the model behaves given changes in certain parameters.

The sensitivity analysis is performed by injecting noise into the CIT of a benchmark example given
in CRATE. The benchmark is a long fiber composite RVE undergoing uniaxial tension. The noise is
injected by first transforming the CIT using a standard scaler. A noise value is then sampled for each
local tensor index from a Gaussian distribution with zero mean (µ) and given standard deviation (α)
corresponding to the desired noise level. It is then inverse-transformed to get the noisy solution. Noise
is only applied to upper off-diagonal terms, which correspond to the values that will be approximated
using the surrogate. This is given using the following equation:

T̃(I)(J)
ijk = σijk

(T(I)(J)
ijk − µijk

σijk
+Nijk(µ = 0, σ = α)

)
+µijk, ∀I, J, I < J , (4.2)

where T̃(I)(J)
ijk is the noisy CIT and µijk and σijk are the mean and standard deviation of each local

4.3. Sensitivity Analysis 30

tensor index for the single clustered microstructure, respectively. The equation can be simplified to,

T̃(I)(J)
ijk = T(I)(J)

ijk + σijkNijk(µ = 0, σ = α), ∀I, J, I < J . (4.3)

Note that the lower off-diagonal terms are computed using the symmetry condition (Equation 2.21)
taking the noisy upper off-diagonal values as inputs.

A hundred simulation trials are performed with different seeds of noise. By injecting noise into the
solution in this manner, the error given by the surrogate model can be emulated.

4.3.1. Sensitivity to noise
The first sensitivity study considers the homogenized response for different noise values. This is eval-
uated using plots of the homogenized stress-strain response in the direction of loading. The number of
clusters is kept constant at 18 and the noise parameter α is considered at points equal to 0.005, 0.01,
0.02, 0.04.

Additionally, three test cases correspond to a higher degree of physical complexity. First and most
simple is the elastic case where all materials are assigned elastic properties. Next is the plastic case
where materials are assigned either elastic or elasto-plastic properties. CRATE uses the J2 plastic-
ity model for computing plastic responses. Finally, the most complex is plasticity with self-consistent
scheme (SCS), or plastic+SCS case for short, which is the same as the plastic case but with SCS. This
is computationally challenging since SCS requires an optimization step to be performed in the online
stage.

(a) α = 0.005 (b) α = 0.01

(c) α = 0.02 (d) α = 0.04

Figure 4.7: Sensitivity to noise in elastic case. Homogenized response (upper figures), box plot of model termination (lower
figures).

4.3. Sensitivity Analysis 31

(a) α = 0.005 (b) α = 0.01

(c) α = 0.02 (d) α = 0.04

Figure 4.8: Sensitivity to noise in plastic case. Homogenized response (upper figures), box plot of model termination (lower
figures).

4.3. Sensitivity Analysis 32

(a) α = 0.005 (b) α = 0.01

(c) α = 0.02 (d) α = 0.04

Figure 4.9: Sensitivity to noise in plastic+SCS case. Homogenized response (upper figures), box plot of model termination
(lower figures).

Several statements can be made regarding the different cases based on the simulations performed.
In the elastic case (Figure 4.7), increasing the noise changes the solution accuracy linearly and does
not affect convergence. In the plastic case (Figure 4.8), the solution accuracy is degraded in a linear
manner for small noise values and in a nonlinear manner for larger noise values. The model’s ability
to converge can be affected by large noise values. The plastic+SCS case shows that for smaller noise
values, the solution accuracy is, surprisingly, better than that of the plastic case. This can be attributed
to the SCS having an optimization step that can potentially self-correct for errors. However, it is also
observed that, in this case, the model is very sensitive to noise when it comes to convergence, with
many simulations unable to converge even for small noise values. For α = 0.04, it is even observed
that, on average, the models terminate at the yielding point.

4.3.2. Sensitivity to number of clusters
Next, since the surrogate model will be tested for different numbers of clusters and should preferably
be scalable to large numbers of clusters, the sensitivity is evaluated for varying numbers of clusters. It
should be noted that σijk changes for different values of nc and is, therefore, an uncontrollable variable
that can affect the simulation results.

4.4. Methods 33

(a) nc = 18 (b) nc = 36

(c) nc = 72

Figure 4.10: Sensitivity to number of clusters in plastic-SCS case. Stress-strain response (upper figures), box plot of model
termination (lower figures).

Based on Figure 4.10, it can be observed that the solution accuracy degrades with increasing num-
bers of clusters. This is attributed to the fact that the number of off-diagonal terms (which are approxi-
mate) grows faster than the number of diagonal terms (which are exact), leading to a more significant
compounding error in the solution.

4.4. Methods
Several metrics are used to evaluate and compare the surrogate model with the baseline model. Natu-
rally, since the two primary goals of this study are to find a method that is faster than the baseline while
still maintaining reasonable accuracy, the metrics must reflect these goals. Additionally, models with
different parameters are used to assess the performance given different physics and test cases.

The first metric used to evaluate the computation speed is the number of FLOPs. This represents
the theoretical complexity of each algorithm given a set number of inputs. The resolution must be fixed
to compute this metric. These inputs are chosen in such a way that they are representative of the
resolution that a user of SCA could encounter. FLOPs are selected over other theoretical complex-
ity metrics because the number of FLOPs of most popular architectures can be readily found in ML
literature. Additionally, FLOPs are simple to compute by hand.

The second metric used to evaluate computation speed is the wall clock time. Naturally, as high-
lighted in section 2.4, this metric is highly dependent on the system used. However, it is still indicative
of the computational speed that a potential user of an algorithm can expect. To keep conditions compa-
rable, the surrogate and baseline are evaluated on an Intel Core i7-6700K, 4-core CPU and averaged

4.4. Methods 34

over three evaluations. The wall clock time of the baseline is given by tbaseline and the difference in
wall clock time between the surrogate and baseline is reported as a speedup factor,

Speedup =
tbaseline
tsurrogate

. (4.4)

Additionally, metrics related to the model’s training are provided. The total training time of the
model and the number of training epochs are shown. Models with documented training time are trained
on an NVIDIA H100-NVL GPU using the OSCAR Supercomputer at the Center for Computation and
Visualization, Brown University.

The first metric used for evaluating the accuracy is the Mean Absolute Error (MAE) of the CIT
prediction,

CIT MAE =
1

n2
c · n2

comp · 3

nc∑
I=1

nc∑
J=1

ncomp∑
i=1

ncomp∑
j=1

3∑
k=1

(T(I)(J)
ijk − T̃(I)(J)

ijk) , (4.5)

is essentially the averaged error over every tensor element. It should be noted that ncomp = 3 when
a 2D simulation is performed under infinitesimal strains. This metric evaluates how well a model has
trained for its objective. Additionally, this is supported by the log loss diagrams, which give a qualitative
overview of the model training process.

The second metric used for evaluating the accuracy is the Mean Absolute Percentage Error (MAPE)
in the stress at every increment. It is given by,

Stress MAPE =
1

nincrements

nincrements∑
i=1

|σi − σ̃i

σi
| , (4.6)

where nincrements is the total number of increments in a simulation, σi is the stress at increment i
given by the baseline model and σ̃i is the stress at increment i given by the surrogate model. These
values are given for a 2D uniaxial tension benchmark and pure shear benchmark, with the stress being
reported in the respective strain loading direction of the benchmark.

In addition, relevant plots are provided to evaluate the model’s accuracy. A plot comparing the L2
norm of the local tensor between the baseline and surrogate is shown. This gives more context to the
CIT MAE value since it visualizes every local tensor rather than computing a single value for the global
tensor. Furthermore, stress-strain plots are shown to give more context to the Stress MAPE values
and verify that the final result behaves as expected.

SCA simulations are performed using several parameters. Firstly, similarly to section 4.3, three
test cases are considered in increasing levels of physical complexity: elastic, plastic and plastic+SCS.
Secondly, the models are evaluated for a range of clusters: 5, 20 and 80. Additionally, two sample
groups are considered: in-distribution and out-of-distribution. In this case, distribution relates to the
range of possible clustered microstructures that can be generated using the synthetic generation tech-
nique highlighted in chapter 3. An in-distribution sample is generated using the same parameters as
the training dataset but is a sample that the model has not seen during training. By design, it is pro-
vided in an already clustered state as seen in Figure 4.11. An out-of-distribution sample is generated
using a representative long fiber composite microstructure that undergoes a clustering procedure in
CRATE to generate the clustered microstructure seen in Figure 4.12. An in-distribution sample shows
how accurate a model is at predicting with samples similar to the training data and reflects how well
it has trained. An out-of-distribution sample shows how well a model can generalize to more realistic
use cases.

To evaluate models fairly, the CIT MAE and Stress MAPE values are averaged for 5 in-distribution
samples and 5 out-of-distribution samples. The accompanying L2 norm plots and stress-strain plots
are given for a single sample. To enable comparison between different studies (section 4.5, section 4.6,
section 4.8), these plots are obtained from the same sample across the studies.

4.5. Standard surrogate model 35

(a) nc = 5 (b) nc = 20 (c) nc = 80

Figure 4.11: Examples of in-distribution clustered microstructures.

(a) nc = 5 (b) nc = 20 (c) nc = 80

Figure 4.12: Examples of out-of-distribution clustered microstructures.

4.5. Standard surrogate model
First, it is important to establish if a data-driven surrogate model can be trained to predict the CIT
accurately enough so that it can be used in SCA.

4.5.1. Experimental Setup
ResNet-18, which is an off-the-shelf model discussed in section 2.2, is selected for the experiment.
This choice comes from the model having high accuracy in the ImageNet competition and applicability
to other problems conducted in solid mechanics. It requires 1.79 GFLOPs to compute a local tensor,
which is significantly higher than the 0.015 GFLOPs needed for the baseline model. Nevertheless, this
experiment aims to demonstrate the feasibility of using an data-driven model to make predictions of
the CIT.

The model has also been slightly modified from their original implementation. The first layer is mod-
ified to accept two channels (corresponding to the two clusters) instead of three channels. Additionally,
it is padded using circular padding instead of zero padding to reflect the periodic boundary conditions
of the problem. The last layer is modified to regress 27 values (corresponding to each element in the
local CIT) instead of 1000 values. The modified architecture is shown in Table 4.1 in the same format
presented by He et al. [21].

4.5. Standard surrogate model 36

Layer Name Block
conv1 7x7, 64, stride 2
pool 3x3 max pool, stride 2

conv2_x
[3x3, 64
3x3, 64

]
× 2

conv3_x
[3x3, 128
3x3, 128

]
× 2

conv4_x
[3x3, 256
3x3, 256

]
× 2

conv5_x
[3x3, 512
3x3, 512

]
× 2

average pool
27-d fc

Table 4.1: Modified ResNet-18 architecture.

The dataset comprises 100k clustered microstructures and 750k data points (cluster pairs), split into
80% training data and 20% validation data and has a resolution of 224×224 pixels. Some parameters
are also set for the clustered microstructure generation algorithm. Each clustered microstructure has
between 5 and 80 clusters, corresponding to the range of clusters being evaluated in the subsequent
SCA simulations. The roughness distributions are sampled from a log distribution with a mean of 2 and
a standard deviation of 1. These values are obtained by trial and error through visual comparison with
clustered microstructures given in literature.

4.5.2. Training
Several training parameters are set for the training strategy. Training is performed for 20 hours or
50 epochs or until an early stopping condition is reached, whichever comes first. The early stopping
condition is set to a 10% improvement in validation loss with a patience of 10 epochs. The learning
rate is initialized with a value of 0.01 and an exponentially decayed function with γ = 0.9 is applied. A
step decay with γ = 0.1 is applied at a patience of 5 epochs within the early stopping condition. MSE
is used as the loss function and the batch size is set to 256.

ResNet-18 converges to a lower validation loss using Adam (as seen in Figure 4.13), and as such,
the weights of this model are used for the standard surrogate. This model required 2h:18m:21s and 34
epochs to converge.

(a) SGD (b) Adam

Figure 4.13: ResNet-18 log loss diagrams using different optimizers.

4.5. Standard surrogate model 37

4.5.3. In-distribution prediction results

nc Physics CIT MAE tbaseline Speedup Stress MAPE
(uniaxial tension)

Stress MAPE
(pure shear)

5
elastic

0.059 2.60E-01s 0.53
0.13% 0.14%

plastic 0.48% 0.46%
plastic + SCS 0.79% 0.64%

20
elastic

0.058 1.71E+00s 0.32
0.03% 0.17%

plastic 0.18% 0.54%
plastic + SCS 0.16% 0.30%

80
elastic

0.099 2.00E+01s 0.26
0.55% 0.53%

plastic 1.91% 2.33%
plastic + SCS 1.90% 1.62%

Table 4.2: Model summary ResNet-18 (in-distribution).

(a) nc = 5 (b) nc = 20 (c) nc = 80

Figure 4.14: L2 Ground Truth vs Prediction (in-distribution).

(a) Uniaxial tension (b) Pure Shear

Figure 4.15: Stress-Strain response (plastic + SCS, in-distribution, nc = 5).

4.5. Standard surrogate model 38

(a) Uniaxial tension (b) Pure Shear

Figure 4.16: Stress-Strain response (plastic + SCS, in-distribution, nc = 20).

(a) Uniaxial tension (b) Pure Shear

Figure 4.17: Stress-Strain response (plastic + SCS, in-distribution, nc = 80).

4.5.4. Out-of-distribution prediction results

nc Physics CIT MAE tbaseline Speedup Stress MAPE
(uniaxial tension)

Stress MAPE
(pure shear)

5
elastic

0.137 2.70E-01s 0.62
0.26% 0.44%

plastic 0.63% 2.95%
plastic + SCS 0.41% 1.77%

20
elastic

0.107 1.70E+00s 0.32
0.39% 0.27%

plastic 2.44% 3.96%
plastic + SCS 0.54% 2.08%

80
elastic

0.153 1.90E+01s 0.25
0.41% 1.45%

plastic 2.82% 11.16%
plastic + SCS 0.62% 6.33%

Table 4.3: Model summary ResNet-18 (out-of-distribution).

4.5. Standard surrogate model 39

(a) nc = 5 (b) nc = 20 (c) nc = 80

Figure 4.18: L2 Ground Truth vs Prediction (out-of-distribution).

(a) Uniaxial tension (b) Pure Shear

Figure 4.19: Stress-Strain response (plastic + SCS, out-of-distribution, nc = 5).

(a) Uniaxial tension (b) Pure Shear

Figure 4.20: Stress-Strain response (plastic + SCS, out-of-distribution, nc = 20).

4.5. Standard surrogate model 40

(a) Uniaxial tension (b) Pure Shear

Figure 4.21: Stress-Strain response (plastic + SCS, out-of-distribution, nc = 80).

4.5.5. Discussion
With the results of the surrogate shown for in-distribution and out-of-distribution samples in Table 4.2
and Table 4.3, respectively, a number of observations can be made based on the data as well as the
supporting figures.

Remarkably, the surrogate yields highly accurate homogenized stress-strain responses. For the
in-distribution results, it is within 2% and 3% for the uniaxial tension and pure shear, respectively. The
out-of-distribution results give slightly poorer predictions that are at least within 3% and 12% for the
uniaxial tension and pure shear, respectively. As expected, based on the sensitivity analysis, the
plastic+SCS cases generally give more accurate solutions than the plastic cases, especially when the
number of clusters is increased. Strikingly, the out-of-distribution uniaxial, plastic+SCS case gives al-
most exact predictions (within 1%). Nevertheless, the results are less impressive in the pure shear
case, where the surrogate cannot predict with the same degree of accuracy. A potential reason why
the pure shear predictions are less accurate than the uniaxial tension cases could be the dataset’s
scaling and the local tensor elements underlying distributions. It can be seen in Figure 4.4 that indices
corresponding to shear (i = 3 and j = 3) have different underlying distributions when compared to their
normal counterparts and, therefore, a different architecture or scaling may be needed to predict these
components more accurately.

Nevertheless, as expected based on the number of GFLOPs, the surrogate cannot offer a speedup
compared to the baseline method. Taking a closer look at the speedup values, it can be observed
that they change with the number of clusters. This is an expected result since the ratio of diagonal to
off-diagonal terms in the global tensor changes with the number of clusters.

4.5.6. Challenges and Limitations
When testing in-distribution samples, it is observed that the model cannot make accurate predictions for
ones containing very small clusters. This can be seen in Figure 4.22a, where the surrogate significantly
overpredicts the local CIT L2 norms when small clusters are present. Due to this over-prediction, the
simulations failed to converge in the plastic+SCS case. Note that this sample is not one of the five
used during model evaluation. After filtering for clusters with less than 10 pixels in total (by merging
these small clusters into larger clusters), it can be seen in Figure 4.22b that the R2 values improve
significantly. Note that although only a single cluster is removed in the clusteredmicrostructure, multiple
points are filtered out in Figure 4.22 due to the cluster being permuted with all other clusters in the
clustered microstructure. No convergence issues are observed after filtering. Some potential reasons
for this limitation could be due to a more challenging physical interaction or higher required precision
in the small cluster regime. Additionally, the limitation could arise due to the dataset used to train the
surrogate, which contained less than 0.5% of data points with clusters of size 10 pixels or smaller. While
this limitation isn’t observed in any of the out-of-distribution cases during testing, as none contain small
enough clusters, it could become an issue as the number of clusters is increased beyond the upper
limit considered in this study (nc = 80).

4.6. Unbalanced dataset study 41

(a) Unfiltered for small clusters (b) Filtered for small clusters

Figure 4.22: L2 Ground Truth vs Prediction (in-distribution sample with small cluster).

4.6. Unbalanced dataset study
To attempt to resolve the limitation caused by small clusters, a fundamental assumption made during
dataset generation is challenged: the need for a balanced dataset. By training on an unbalanced
dataset, more emphasis could be given to smaller clusters, increasing the accuracy in the regime.

4.6.1. Experimental setup
The standard surrogate is trained on two additional unbalanced datasets and compared to the results
of the balanced dataset. The unbalanced datasets contain the same number of data points as the
balanced dataset but scale the input from the CIT differently (in a quadratic or linear manner). The
reader is reminded that the dataset for the standard surrogate is made by first generating several
clustered microstructures and then splitting the global tensor of each into local tensors, with each local
tensor corresponding to a single data point. In the balanced case, described in chapter 2, the global
tensor is truncated such that each clustered microstructure contributes the same number of data points
irrespective of the number of clusters. This can be summarized as d ∝ c, where d is the number of
data points contributed by each clustered microstructure and c is a constant. The parameter nc,cut

(introduced in section 3.4) is set to the minimum number of clusters in the range considered (nc,cut = 5).
The quadratic dataset scales proportionally to the size of the CIT, i.e. d ∝ n2

c . In this case, nc,cut = nc.
The linear dataset truncates the CIT such that d ∝ nc. To mimic a linear relationship, nc,cut = int(√nc),
where int is a function that rounds the value to the nearest integer value.

4.6.2. Training
The same training strategy is used as described in section 4.5. The model architecture and weights
from section 4.5 are reused for the balanced dataset case. The log loss plots of the two new surrogates
trained on unbalanced datasets (linear and quadratic) can be seen in Figure 4.23.

(a) Linear (b) Quadratic

Figure 4.23: Log loss diagrams for dataset study.

4.6. Unbalanced dataset study 42

4.6.3. In-distribution prediction results

Figure 4.24: CIT MAE for dataset study (in-distribution).

Clusters Physics
Stress MAPE

(uniaxial tension)
Stress MAPE
(pure shear)

Balanced Linear Quadratic Balanced Linear Quadratic

5
elastic 0.13% 0.59% 0.59% 0.14% 0.45% 0.71%
plastic 0.48% 2.07% 1.97% 0.46% 1.71% 2.21%

plastic + SCS 0.79% 3.31% 2.98% 0.64% 1.61% 2.72%

20
elastic 0.03% 0.13% 0.08% 0.17% 0.27% 0.12%
plastic 0.18% 0.86% 0.32% 0.54% 1.27% 0.46%

plastic + SCS 0.16% 0.52% 0.37% 0.30% 0.60% 0.28%

80
elastic 0.55% 0.43% 0.44% 0.53% 0.22% 0.42%
plastic 1.91% 2.38% 2.33% 2.33% 1.07% 1.91%

plastic + SCS 1.90% 2.14% 2.11% 1.62% 0.92% 1.56%

Table 4.4: Model summary dataset study (in-distribution).

(a) Balanced dataset (b) Linear dataset (c) Quadratic dataset

Figure 4.25: L2 Ground Truth vs Prediction (in-distribution, nc = 5).

4.6. Unbalanced dataset study 43

(a) Balanced dataset (b) Linear dataset (c) Quadratic dataset

Figure 4.26: L2 Ground Truth vs Prediction (in-distribution, nc = 80).

4.6.4. Out-of-distribution prediction results

Figure 4.27: CIT MAE for dataset study (out-of-distribution).

Clusters Physics
Stress MAPE

(uniaxial tension)
Stress MAPE
(pure shear)

Balanced Linear Quadratic Balanced Linear Quadratic

5
elastic 0.26% 0.28% 0.12% 0.44% 0.55% 1.28%
plastic 0.63% 3.21% 3.87% 2.95% 5.16% 10.45%

plastic + SCS 0.41% 2.84% 2.63% 1.77% 3.02% 5.73%

20
elastic 0.39% 0.17% 0.27% 0.27% 0.52% 0.66%
plastic 2.44% 9.21% 9.61% 3.96% 9.38% 10.06%

plastic + SCS 0.54% 2.78% 2.75% 2.08% 3.66% 4.34%

80
elastic 0.41% 0.29% 0.17% 1.45% 1.09% 1.02%
plastic 2.82% 18.80% 17.59% 11.16% 17.80% 15.66%

plastic + SCS 0.62% 3.62% 3.73% 6.33% 6.05% 5.55%

Table 4.5: Model summary dataset study (out-of-distribution).

4.7. Sensitivity to dataset size 44

4.6.5. In-distribution prediction with small clusters

(a) Balanced dataset (b) Linear dataset (c) Quadratic dataset

Figure 4.28: L2 Ground Truth vs Prediction (in-distribution with small cluster).

4.6.6. Discussion
Several observations can be made about the surrogates trained on the three datasets. The quadratic
and linear datasets are both able to improve the R2 results in the outlier case (Figure 4.28). However,
themodel still exhibits abnormal behavior by over-predicting the CIT values. As expected, theR2 values
for samples with a high number of clusters are improved (Figure 4.26), but predictions in samples with
small numbers of clusters are degraded (Figure 4.25) when going from balanced to linear to quadratic.
The same relationship is observed in the CIT MAE values (Figure 4.24 and Figure 4.27). No significant
change is observed in the Stress MAPE values of the in-distribution case (Table 4.4). Interestingly, in
the out-of-distribution case, the Stress MAPE values more than doubled for most experiments when
comparing the linear and quadratic datasets against the balanced dataset. This result shows that a
balanced dataset is needed for the surrogate to generalize.

4.7. Sensitivity to dataset size
To justify the use of a large dataset as well as the proposed clustered microstructure generator method,
the surrogate’s sensitivity is tested for different dataset sizes.

4.7.1. Experimental setup
The ResNet-18 model (shown in Table 4.1) is used again for this experiment. The model is trained
for datasets with 100k, 10k and 1k clustered microstructures. The smaller datasets are formed by
truncating the larger dataset, i.e. they are a subset of the 100k dataset.

4.7.2. Training
The same training strategy is used as described in section 4.5. The model architecture and weights
from section 4.5 are reused for the 100k dataset case. The other two models are trained using the
Adam optimizer (to enable a fair comparison). The log loss plots can be seen in Figure 4.29.

(a) 10k (b) 1k

Figure 4.29: Log loss diagrams for truncated dataset sizes.

4.7. Sensitivity to dataset size 45

4.7.3. In-distribution prediction results

Figure 4.30: CIT MAE sensitivity to dataset size (in-distribution).

Clusters Physics
Stress MAPE

(uniaxial tension)
Stress MAPE
(pure shear)

100k 10k 1k 100k 10k 1k

5
elastic 0.13% 0.58% 2.77% 0.14% 0.62% 3.07%
plastic 0.48% 2.09% 9.05% 0.46% 1.87% 8.62%

plastic SCS 0.79% 2.21% 14.89% 0.64% 2.23% 10.63%

20
elastic 0.03% 0.14% 0.33% 0.17% 0.48% 1.09%
plastic 0.18% 1.30% 3.31% 0.54% 2.19% 6.03%

plastic SCS 0.16% 0.66% NC 0.30% 1.06% 2.40%

80
elastic 0.55% 0.39% 2.23% 0.53% 0.37% 1.62%
plastic 1.91% 2.91% NC 2.33% 0.78% 14.64%

plastic SCS 1.90% 1.24% NC 1.62% 1.18% NC

Table 4.6: Stress MAPE sensitivity to dataset size (in-distribution). NC refers to one or more of the simulations not converging
to a solution

4.7.4. Out-of-distribution prediction results

Figure 4.31: CIT MAE sensitivity to dataset size (out-of-distribution).

4.8. Accelerated surrogate model 46

Clusters Physics
Stress MAPE

(uniaxial tension)
Stress MAPE
(pure shear)

100k 10k 1k 100k 10k 1k

5
elastic 0.26% 0.25% 1.60% 0.44% 1.06% 2.72%
plastic 0.63% 4.80% 16.61% 2.95% 10.09% 17.06%

plastic SCS 0.41% 3.03% 8.43% 1.77% 5.62% 8.77%

20
elastic 0.39% 0.64% 2.12% 0.27% 1.12% 3.65%
plastic 2.44% 21.96% 34.45% 3.96% 16.55% 30.49%

plastic SCS 0.54% 5.33% 9.40% 2.08% 6.22% 11.60%

80
elastic 0.41% 0.32% 2.09% 1.45% 0.29% 3.39%
plastic 2.82% 30.92% NC 11.16% 19.71% 55.20%

plastic SCS 0.62% NC NC 6.33% 4.71% NC

Table 4.7: Stress MAPE sensitivity to dataset size (out-of-distribution). NC refers to one or more of the simulations not
converging to a solution.

4.7.5. Discussion
As expected, the model’s accuracy increases as a function of dataset size. This is evident by the
decrease in CIT MAE (seen in Figure 4.30 and Figure 4.31) as well as Stress MAPE (seen in Table 4.6
and Table 4.7) as dataset size increases. It is particularly noteworthy by how much the stress MAPE
is affected in out-of-distribution results. For example, it more than doubles in the plastic case for every
increment of dataset size. The effect on the in-distribution results is not as severe. This suggests that
dataset size has a significant influence on the generalizability of the surrogate.

Naturally, at large enough dataset sizes, the improvement gains will be marginal and likely plateau.
However, these results suggest that this plateau cannot be observed within the range of tested dataset
sizes for the givenmodel. This motivates the need for large dataset sizes (in the range of 100k clustered
microstructures or more) when training this surrogate on the given cluster range.

4.8. Accelerated surrogate model
With the surrogate modeling approach being shown to be sufficiently accurate, the next challenge is
making it faster than the baseline.

4.8.1. Experimental Setup
For this experiment, a modified ResNet-18 architecture (called ResNet-lite) is created to test modeling
with fewer parameters. This model requires only 0.012 GFLOPs, which is less than the 0.015 GFLOPs
needed for the baseline model.

ResNet-lite is based on the ResNet-18 architecture with the only exception being that the first layer
has 4 convolutional filters instead 64 (i.e. the output of this layer has 4 channels instead of 64). In
the down-sampled convolutional layers the same widening ratio (x2) of the channels is used as in
ResNet-18. The architecture can be seen in Table 4.8.

Layer Name Block
conv1 7x7, 4, stride 2
pool 3x3 max pool, stride 2

conv2_x
[3x3, 4
3x3, 4

]
× 2

conv3_x
[3x3, 8
3x3, 8

]
× 2

conv4_x
[3x3, 16
3x3, 16

]
× 2

conv5_x
[3x3, 32
3x3, 32

]
× 2

average pool
27-d fc

Table 4.8: ResNet-lite architecture.

4.8. Accelerated surrogate model 47

4.8.2. Training
The same training strategy implemented in section 4.5 is used. ResNet-lite converges to a lower vali-
dation loss using Adam (as seen in Figure 4.32), and as such, the weights of that model are used. This
model required 1h:57m:37s and 33 epochs to converge.

(a) SGD (b) Adam

Figure 4.32: ResNet-lite log loss diagrams using different optimizers.

4.8.3. In-distribution prediction results

nc Physics CIT MAE tbaseline Speedup Stress MAPE
(uniaxial tension)

Stress MAPE
(pure shear)

5
elastic

0.219 2.60E-01s 1.16
0.67% 0.63%

plastic 1.98% 1.80%
plastic + SCS 2.56% 2.14%

20
elastic

0.180 1.76E+00s 1.51
0.13% 0.62%

plastic 1.31% 1.51%
plastic + SCS 0.61% 1.41%

80
elastic

0.153 1.95E+01s 1.81
0.63% 0.63%

plastic 2.85% 1.84%
plastic + SCS 3.07% 1.90%

Table 4.9: Model summary ResNet-lite (in-distribution).

(a) nc = 5 (b) nc = 20

2.49
(c) nc = 80

Figure 4.33: L2 Ground Truth vs Prediction (in-distribution)

4.8. Accelerated surrogate model 48

(a) Uniaxial tension (b) Pure Shear

Figure 4.34: Stress-Strain response (plastic + SCS, in-distribution, nc = 5).

(a) Uniaxial tension (b) Pure Shear

Figure 4.35: Stress-Strain response (plastic + SCS, in-distribution, nc = 20).

(a) Uniaxial tension (b) Pure Shear

Figure 4.36: Stress-Strain response (plastic + SCS, in-distribution, nc = 80).

4.8. Accelerated surrogate model 49

4.8.4. Out-of-distribution prediction results

nc Physics CIT MAE tbaseline Speedup Stress MAPE
(uniaxial tension)

Stress MAPE
(pure shear)

5
elastic

0.675 2.60E-01s 1.12
0.33% 0.90%

plastic 8.68% 10.43%
plastic + SCS 3.15% 5.28%

20
elastic

0.399 1.68E+00s 1.46
0.34% 0.68%

plastic 21.88% 15.48%
plastic + SCS 4.84% 5.11%

80
elastic

0.236 1.94E+01s 1.85
0.43% 1.29%

plastic 34.26% 26.44%
plastic + SCS 5.83% 7.03%

Table 4.10: Model summary ResNet-lite (out-of-distribution).

(a) nc = 5 (b) nc = 20 (c) nc = 80

Figure 4.37: L2 Ground Truth vs Prediction (out-of-distribution).

(a) Uniaxial tension (b) Pure Shear

Figure 4.38: Stress-Strain response (plastic + SCS, out-of-distribution, nc = 5).

4.8. Accelerated surrogate model 50

(a) Uniaxial tension (b) Pure Shear

Figure 4.39: Stress-Strain for (plastic + SCS, out-of-distribution, nc = 20).

(a) Uniaxial tension (b) Pure Shear

Figure 4.40: Stress-Strain response (plastic + SCS, out-of-distribution, nc = 80).

4.8.5. Discussion
With the results of the accelerated surrogate shown for in-distribution and out-of-distribution samples
in Table 4.10 and Table 4.9, respectively, a number of observations can be made based on the data as
well as the supporting figures

The accelerated surrogate model aims to obtain a faster solution than the baseline. It can be con-
cluded that this requirement is satisfied when considering the speedup factor of both in-distribution and
out-of-distribution samples. The speedup again changes as a function of nc, with higher speedup val-
ues observed for higher nc. This is due to the quadratic scaling in the number of the upper off-diagonal
CIT terms as opposed to the linear scaling of the diagonal ones.

As expected, for a model with fewer parameters, the accelerated surrogate’s accuracy is degraded
compared to the standard surrogate. This is already seen in the log loss plots where it could be ob-
served that the validation loss is almost an order of magnitude lower when comparing Figure 4.13 to
Figure 4.32. Interestingly, for in-distribution samples, although the CIT MAE values are lower than
out-of-distribution samples, the stress MAPE values are comparable (and even lower in some cases).
However, the out-of-distribution results are significantly poorer than the standard surrogate, with stress
MAPE values as high as 35% and 27% for the uniaxial tension and pure shear, respectively. This
shows that the accelerated model can make accurate in-distribution predictions yet fails to generalize
to out-of-distribution samples in most cases.

5
Conclusions

To conclude the exploration of this thesis investigation, the research question posed is again brought
up and examined.

To what extent can a data-driven surrogate model accurately predict and accelerate
the computation of the cluster interaction tensors (CIT) in self-consistent clustering
analysis (SCA)?

A number of sub-questions are also posed to shed light on the answer sufficiently. These sub-
questions are discussed one by one, and with them, conclusions regarding the main research question
can be made.

SQ1: To what extent can a data-driven surrogate model accurately predict the
CIT?
This sub-question is investigated in chapter 4 (specifically section 4.5). Using a ResNet-18 architecture
as a surrogate to predict upper-off diagonal terms in the CIT, it is shown that the stress-strain responses
could be accurately predicted with the surrogate. The surrogate is able to make accurate predictions
with both in-distribution microstructures (similar to the ones it was trained on) and generalizes to out-of-
distribution microstructures (that represent realistic specimens the model may encounter when applied
in an engineering context).

Additionally, several conclusions can be derived from the sensitivity study in section 4.3. For ex-
ample, the three cases considered (elastic, plastic and plastic+SCS) exhibit different behaviors. Noise
in the CIT only affects the stress-strain solution of the elastic case and does not affect convergence.
In the plastic case, it affects its stress-strain solution and convergence behavior. Surprisingly, in the
plastic+SCS case, the model appears to self-correct for a noisy CIT (in terms of its stress-strain re-
sponse) but also struggles more with convergence than in the other two cases. Finally, it is shown
that the solution accuracy and convergence behavior is degraded with increasing numbers of clusters.
These results must be considered when applying a data-driven surrogate model in SCA. Additionally,
a dilemma presents itself whereby the surrogate model is ideally applied to cases containing many
clusters to get the fastest speedup yet has the adverse effect of degrading solution accuracy. This
requires a more accurate model for simulations with more clusters.

SQ2: To what extent can a data-driven surrogate model accelerate predictions
of the CIT?
This sub-question is investigated in chapter 4 (specifically section 4.8). A modified version of ResNet-
18 called ResNet-lite is created that has fewer parameters and subsequently requires fewer FLOPs
to compute the CIT components compared to the baseline model, increasing computational efficiency.
This, however, comes at the cost to the model’s accuracy. In particular, the model’s generalizability is
severely hindered as the out-of-distribution predictions are not accurate.

Although ResNet-lite demonstrates a more efficient implementation of the surrogate, it should not
be treated as the end-all, be-all architecture. The appropriate model could lie on a spectrum in terms

51

52

of parameters between ResNet-lite and ResNet-18 or even as an entirely different architecture. The
choice of the model architecture largely depends on the application in which the surrogate is to be
implemented and how vital accuracy and speed are to the application.

SQ3: How can data for a surrogate model's training be generated?
This sub-question is primarily investigated in chapter 3. A novel method for generating clustered mi-
crostructures using gradient noise is proposed. It can create a clustered microstructure within millisec-
onds, and as such, it is particularly well suited for generating large datasets for data-driven surrogate
model training. Having large datasets is shown to be important in section 4.7 as the CIT prediction and
stress-strain response’s accuracy suffers from smaller datasets. Additionally, it is shown in section 4.3
that surrogates trained on these microstructures could make accurate predictions on out-of-distribution
microstructures, demonstrating the transferability of knowledge from these datasets.

6
Recommendations

Although the thesis investigation is able to sufficiently resolve the research question, certain areas
of interest were uncovered in the process and some questions remain open. A number of potential
research directions are therefore highlighted that can help steer future investigations.

Firstly, more consideration can be given to the architecture being used. In this study only ResNet-18
is considered and it proved to be sufficient for demonstrating the proof-of-concept. However ResNet-
18 is not considered state of the art anymore when it comes to the ImageNet dataset prediction, with
transformer architectures such as ViT having better accuracy’s [11]. The downside of using transformer
architectures is that they require more data to learn invariances when compared to CNNs which have
many of them built in by design (such as translation invariance). On this end, the clustered microstruc-
ture generator can be used to generate the larger datasets efficiently.

Tangent to the previous point, a more robust hyperparameter optimization can be performed on the
architecture to achieve predetermined objectives regarding accuracy or computational efficiency. This
study demonstrated that a ResNet-18 architecture with a reduced number of channels (called ResNet-
lite) yields a speedup when compared to the baseline. However other parameters in the model such
as stride can be modified. Additionally, methods introduced in chapter 2 for compressing architectures
such as CP decomposition or tensor contraction layers can be implemented to gain in efficiency. Al-
ternatively, reinforcement learning approaches that aim to optimize an architecture for computational
efficiency such as the work done by Howard et al. [24] when creating MobileNet-V3 can be tried.

Next, full tensor predictions can be attempted. This study focused on pairwise predictions based
on the cluster support functions. Therefore the surrogate only had knowledge of the problem at a local
tensor level. Using a global approach (for example using graph neural networks) the model may learn
dependencies between local components that can potentially improve accuracy. Additionally, pruning
could be used in such an approach to remove cluster dependencies that do not have a significant contri-
bution to the final result. If effective pruning could be achieved, the quadratic computational complexity
of the algorithm (which is currently considered one of the biggest limitations) may be reduced.

Additionally, a major extension of this research would be expanding the method to accommodate
three-dimensional problems. Most of the steps in the process already allow for this. The clustered
microstructure generator can easily be expanded to generate datasets with 3D clustered microstruc-
tures and SCA has previously been shown to be capable of solving 3D problems [37, 15]. The biggest
obstacle in expanding the method to the third dimension would likely be the choice of a suitable archi-
tecture for the surrogate model. Although 3D neural networks exist in literature [54, 28], their use has
not become as widespread as their 2D counterparts. As such, significant consideration would need to
be given to obtain an efficient and accurate model for such an application.

Finally, the dataset generators can also be refined. Firstly, techniques utilizing k-means can be
implemented in the binarization step of the cluster generator in order to match SCA’s clustering behav-
ior more closely and mitigate biting bias. Furthermore, investigations into tuning the roughness and
volume fraction parameters can be conducted to obtain more general datasets or datasets suited for
particular applications. This could be done by generating representative out-of-distribution datasets and
analyzing the characteristics of their clusters. With a more rigorous investigation into optimal dataset
generation processes, better accuracy can be achieved in out-of-distribution predictions.

53

References

[1] M. Z. Alom et al. “A State-of-the-Art Survey on Deep Learning Theory and Architectures”. In:
Electronics 8.3 (2019). ISSN: 2079-9292. DOI: 10 . 3390 / electronics8030292. URL: https :
//www.mdpi.com/2079-9292/8/3/292.

[2] L. Alzubaidi et al. “Review of Deep Learning: Concepts, CNN Architectures, challenges, applica-
tions, Future Directions”. In: Journal of Big Data 8.1 (Mar. 2021). DOI: 10.1186/s40537-021-
00444-8.

[3] H. Bolandi et al. “Bridging Finite Element and deep learning: High-resolution stress distribution
prediction in structural components”. In: Frontiers of Structural and Civil Engineering 16.11 (Nov.
2022), pp. 1365–1377. DOI: 10.1007/s11709-022-0882-5.

[4] E. Brynjolfsson and A. McAfee.What’s driving the Machine Learning Explosion? Nov. 2020. URL:
https://hbr.org/2017/07/whats-driving-the-machine-learning-explosion.

[5] J. Bullinaria. Lecture Notes for Data Structures and Algorithms. https://www.cs.bham.ac.uk/
~jxb/DSA/dsa.pdf. School of Computer Science, University of Birmingham. 2019.

[6] J. W. Cahn and J. E. Hilliard. “Free energy of a nonuniform system. I. Interfacial Free Energy”.
In: The Journal of Chemical Physics 28.2 (Feb. 1958), pp. 258–267. DOI: 10.1063/1.1744102.

[7] T. Chen and H. Chen. “Universal approximation to nonlinear operators by neural networks with
arbitrary activation functions and its application to dynamical systems”. In: IEEE Transactions on
Neural Networks 6.4 (July 1995), pp. 911–917. DOI: 10.1109/72.392253.

[8] R. Christensen and K. Lo. “Solutions for effective shear properties in three phase sphere and
cylinder models”. In: Journal of the Mechanics and Physics of Solids 27.4 (1979), pp. 315–330.
DOI: 10.1016/0022-5096(79)90032-2.

[9] W. Dean. “Computational Complexity Theory”. In: The Stanford Encyclopedia of Philosophy. Ed.
by E. N. Zalta. Fall 2021. Metaphysics Research Lab, Stanford University, 2021.

[10] R. Desislavov, F. Martínez-Plumed, and J. Hernández-Orallo. “Trends in AI inference energy con-
sumption: Beyond the performance-vs-parameter laws of deep learning”. In: Sustainable Com-
puting: Informatics and Systems 38 (Apr. 2023), p. 100857. ISSN: 2210-5379. DOI: 10.1016/j.
suscom.2023.100857. URL: http://dx.doi.org/10.1016/j.suscom.2023.100857.

[11] A. Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale. 2021. arXiv: 2010.11929 [cs.CV].

[12] B. P. Ferreira, F. Andrade Pires, and M. Bessa. “Adaptivity for clustering-based reduced-order
modeling of localized history-dependent phenomena”. In: Computer Methods in Applied Mechan-
ics and Engineering 393 (2022), p. 114726. ISSN: 0045-7825. DOI: https : / / doi . org / 10 .
1016/j.cma.2022.114726. URL: https://www.sciencedirect.com/science/article/pii/
S0045782522000895.

[13] B. P. Ferreira, F. M. A. Pires, andM. A. Bessa. “CRATE: A Python package to perform fast material
simulations”. In: Journal of Open Source Software 8.87 (2023), p. 5594. DOI: 10.21105/joss.
05594. URL: https://doi.org/10.21105/joss.05594.

[14] B. P. Ferreira, J. L. Vila-Chã, and F. A. Pires. “An adaptive multi-temperature isokinetic method for
the RVE generation of particle reinforced heterogeneousmaterials, part II: Numerical assessment
and statistical analysis”. In: Mechanics of Materials 165 (Feb. 2022), p. 104068. DOI: 10.1016/
j.mechmat.2021.104068.

[15] B. P. Ferreira. “Towards Data-drivenMulti-scaleOptimization of Thermoplastic Blends: Microstruc-
tural Generation, Constitutive Development and Clustering-Based Reduced-Order Modeling”.
PhD thesis. Repositório Aberto, 2022. URL: https://hdl.handle.net/10216/146900.

54

https://doi.org/10.3390/electronics8030292
https://www.mdpi.com/2079-9292/8/3/292
https://www.mdpi.com/2079-9292/8/3/292
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1007/s11709-022-0882-5
https://hbr.org/2017/07/whats-driving-the-machine-learning-explosion
https://www.cs.bham.ac.uk/~jxb/DSA/dsa.pdf
https://www.cs.bham.ac.uk/~jxb/DSA/dsa.pdf
https://doi.org/10.1063/1.1744102
https://doi.org/10.1109/72.392253
https://doi.org/10.1016/0022-5096(79)90032-2
https://doi.org/10.1016/j.suscom.2023.100857
https://doi.org/10.1016/j.suscom.2023.100857
http://dx.doi.org/10.1016/j.suscom.2023.100857
https://arxiv.org/abs/2010.11929
https://doi.org/https://doi.org/10.1016/j.cma.2022.114726
https://doi.org/https://doi.org/10.1016/j.cma.2022.114726
https://www.sciencedirect.com/science/article/pii/S0045782522000895
https://www.sciencedirect.com/science/article/pii/S0045782522000895
https://doi.org/10.21105/joss.05594
https://doi.org/10.21105/joss.05594
https://doi.org/10.21105/joss.05594
https://doi.org/10.1016/j.mechmat.2021.104068
https://doi.org/10.1016/j.mechmat.2021.104068
https://hdl.handle.net/10216/146900

References 55

[16] P. J. Freire et al. Computational Complexity Evaluation of Neural Network Applications in Signal
Processing. 2022. arXiv: 2206.12191 [eess.SP].

[17] K. Fukushima. “Neocognitron: A self-organizing neural network model for a mechanism of pattern
recognition unaffected by shift in position”. In: Biological Cybernetics 36.4 (Apr. 1980), pp. 193–
202. DOI: 10.1007/bf00344251.

[18] K. Gholami, F. Ege, and R. Barzegar. “Prediction of composite mechanical properties: Integration
of deep neural network methods and finite element analysis”. In: Journal of Composites Science
7.2 (Feb. 2023), p. 54. DOI: 10.3390/jcs7020054.

[19] C. P. Grant. “Spinodal decomposition for the cahn-hilliard equation”. In:Communications in Partial
Differential Equations 18.3–4 (Jan. 1993), pp. 453–490. DOI: 10.1080/03605309308820937.

[20] Z. Hashin and S. Shtrikman. “A variational approach to the theory of the elastic behaviour of
Multiphase Materials”. In: Journal of the Mechanics and Physics of Solids 11.2 (1963), pp. 127–
140. DOI: 10.1016/0022-5096(63)90060-7.

[21] K. He et al. “Deep Residual Learning for Image Recognition”. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). June 2016.

[22] R. Hill. “A self-consistent mechanics of Composite Materials”. In: Journal of the Mechanics and
Physics of Solids 13.4 (1965), pp. 213–222. DOI: 10.1016/0022-5096(65)90010-4.

[23] G. Hinton, O. Vinyals, and J. Dean. Distilling the Knowledge in a Neural Network. 2015. arXiv:
1503.02531 [stat.ML].

[24] A. Howard et al. Searching for MobileNetV3. 2019. arXiv: 1905.02244 [cs.CV].
[25] A. G. Howard et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Appli-

cations. 2017. arXiv: 1704.04861 [cs.CV].
[26] B. Jacob et al. Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only

Inference. 2017. arXiv: 1712.05877 [cs.LG].
[27] D. Jakes et al. “Perlin Noise Generation of Physiologically Realistic Patterns of Fibrosis”. In:

bioRxiv (2019). DOI: 10.1101/668848.
[28] S. Korolev et al. Residual and Plain Convolutional Neural Networks for 3D Brain MRI Classifica-

tion. 2017. arXiv: 1701.06643 [cs.CV].
[29] J. Kossaifi et al. “Tensor Regression Networks”. In: Journal of Machine Learning Research 21.123

(2020), pp. 1–21. URL: http://jmlr.org/papers/v21/18-503.html.
[30] N. B. Kovachki et al. “Neural Operator: Learning Maps Between Function Spaces”. In: ArXiv

abs/2108.08481 (2021). URL: https://api.semanticscholar.org/CorpusID:237213378.
[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet Classification with Deep Convolutional

Neural Networks”. In: Advances in Neural Information Processing Systems. Ed. by F. Pereira
et al. Vol. 25. Curran Associates, Inc., 2012. URL: https://proceedings.neurips.cc/paper_
files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[32] A. Lagae et al. “A Survey of Procedural Noise Functions”. In: Computer Graphics Forum 29.8
(2010), pp. 2579–2600. DOI: https://doi.org/10.1111/j.1467-8659.2010.01827.x.

[33] V. Lebedev et al.Speeding-upConvolutional Neural Networks Using Fine-tunedCP-Decomposition.
2015. arXiv: 1412.6553 [cs.CV].

[34] Y. Lecun et al. “Gradient-based learning applied to document recognition”. In: Proceedings of the
IEEE 86.11 (1998), pp. 2278–2324. DOI: 10.1109/5.726791.

[35] E. Lejeune. Mechanical MNIST: A benchmark dataset for mechanical metamodels. 2020. URL:
https://open.bu.edu/handle/2144/39813.

[36] R. J. Lipton and K. W. Regan. People, problems, and proofs essays from Gödel’s Lost Letter:
2010. Springer Berlin, 2016.

[37] Z. Liu, M. Bessa, and W. K. Liu. “Self-consistent clustering analysis: An efficient multi-scale
scheme for inelastic heterogeneous materials”. In: Computer Methods in Applied Mechanics and
Engineering 306 (2016), pp. 319–341. ISSN: 0045-7825. DOI: https://doi.org/10.1016/j.
cma.2016.04.004.

https://arxiv.org/abs/2206.12191
https://doi.org/10.1007/bf00344251
https://doi.org/10.3390/jcs7020054
https://doi.org/10.1080/03605309308820937
https://doi.org/10.1016/0022-5096(63)90060-7
https://doi.org/10.1016/0022-5096(65)90010-4
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1905.02244
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1712.05877
https://doi.org/10.1101/668848
https://arxiv.org/abs/1701.06643
http://jmlr.org/papers/v21/18-503.html
https://api.semanticscholar.org/CorpusID:237213378
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/https://doi.org/10.1111/j.1467-8659.2010.01827.x
https://arxiv.org/abs/1412.6553
https://doi.org/10.1109/5.726791
https://open.bu.edu/handle/2144/39813
https://doi.org/https://doi.org/10.1016/j.cma.2016.04.004
https://doi.org/https://doi.org/10.1016/j.cma.2016.04.004

References 56

[38] A. Melro, P. Camanho, and S. Pinho. “Generation of random distribution of fibres in long-fibre
reinforced composites”. In: Composites Science and Technology 68.9 (July 2008), pp. 2092–
2102. DOI: 10.1016/j.compscitech.2008.03.013.

[39] T. Mori and K. Tanaka. “Average stress in matrix and average elastic energy of materials with
misfitting inclusions”. In: Acta Metallurgica 21.5 (1973), pp. 571–574. DOI: 10.1016/0001-6160
(73)90064-3.

[40] B. Moseley. “Physics-informedMachine Learning: From concepts to real-world applications”. PhD
thesis. 2022.

[41] M. Mozaffar et al. “Deep learning predicts path-dependent plasticity”. In: Proceedings of the
National Academy of Sciences 116.52 (Dec. 2019), pp. 26414–26420. DOI: 10 . 1073 / pnas .
1911815116.

[42] T. Mura. Micromechanics of defects in solids. M. Nijhoff, 1982.
[43] M. V. Pathan et al. “Predictions of the mechanical properties of unidirectional fibre composites

by supervised machine learning”. In: Scientific Reports 9.1 (Sept. 2019). DOI: 10.1038/s41598-
019-50144-w.

[44] Z. Qi et al. “Prediction of mechanical properties of carbon fiber based on cross-scale FEM and
machine learning”. In: Composite Structures 212 (2019), pp. 199–206. ISSN: 0263-8223. DOI:
https://doi.org/10.1016/j.compstruct.2019.01.042. URL: https://www.sciencedirect.
com/science/article/pii/S0263822318335529.

[45] A. Radermacher and S. Reese. “POD-based model reduction with empirical interpolation ap-
plied to nonlinear elasticity”. In: International Journal for Numerical Methods in Engineering 107.6
(2016), pp. 477–495. DOI: https://doi.org/10.1002/nme.5177.

[46] D. Raj. Why should you care about deep learning? June 2021. URL: https://www.crowdai.
com/blog/why-should-you-care-about-deep-learning.

[47] A. Reuss. “Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung
für Einkristalle .” In: ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für
Angewandte Mathematik und Mechanik 9.1 (1929), pp. 49–58. DOI: 10.1002/zamm.192900901
04.

[48] E. Rowell et al. Big-O Complexity Chart. URL: https://www.bigocheatsheet.com/.
[49] O. Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In: International

Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–252. DOI: 10.1007/s11263-015-0816-
y.

[50] M. Sandler et al. MobileNetV2: Inverted Residuals and Linear Bottlenecks. 2019. arXiv: 1801.
04381 [cs.CV].

[51] J. Seidman et al. “NOMAD: Nonlinear Manifold Decoders for Operator Learning”. In: Advances in
Neural Information Processing Systems. Ed. by S. Koyejo et al. Vol. 35. Curran Associates, Inc.,
2022, pp. 5601–5613. URL: https://proceedings.neurips.cc/paper_files/paper/2022/
file/24f49b2ad9fbe65eefbfd99d6f6c3fd2-Paper-Conference.pdf.

[52] R. Sepasdar, A. Karpatne, and M. Shakiba. “A data-driven approach to full-field nonlinear stress
distribution and failure pattern prediction in composites using Deep Learning”. In:Computer Meth-
ods in Applied Mechanics and Engineering 397 (July 2022), p. 115126. DOI: 10.1016/j.cma.
2022.115126.

[53] K. Simonyan and A. Zisserman.Very DeepConvolutional Networks for Large-Scale ImageRecog-
nition. 2015. arXiv: 1409.1556 [cs.CV].

[54] D. Tran et al. A Closer Look at Spatiotemporal Convolutions for Action Recognition. 2018. arXiv:
1711.11248 [cs.CV].

[55] A. Vaswani et al. Attention Is All You Need. 2017. arXiv: 1706.03762 [cs.CL].
[56] S. S. Vel and A. J. Goupee. “Multiscale thermoelastic analysis of random heterogeneous materi-

als: Part I: Microstructure characterization and homogenization of material properties”. In: Com-
putational Materials Science 48.1 (2010), pp. 22–38. ISSN: 0927-0256. DOI: https://doi.org/
10.1016/j.commatsci.2009.11.015.

https://doi.org/10.1016/j.compscitech.2008.03.013
https://doi.org/10.1016/0001-6160(73)90064-3
https://doi.org/10.1016/0001-6160(73)90064-3
https://doi.org/10.1073/pnas.1911815116
https://doi.org/10.1073/pnas.1911815116
https://doi.org/10.1038/s41598-019-50144-w
https://doi.org/10.1038/s41598-019-50144-w
https://doi.org/https://doi.org/10.1016/j.compstruct.2019.01.042
https://www.sciencedirect.com/science/article/pii/S0263822318335529
https://www.sciencedirect.com/science/article/pii/S0263822318335529
https://doi.org/https://doi.org/10.1002/nme.5177
https://www.crowdai.com/blog/why-should-you-care-about-deep-learning
https://www.crowdai.com/blog/why-should-you-care-about-deep-learning
https://doi.org/10.1002/zamm.19290090104
https://doi.org/10.1002/zamm.19290090104
https://www.bigocheatsheet.com/
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
https://proceedings.neurips.cc/paper_files/paper/2022/file/24f49b2ad9fbe65eefbfd99d6f6c3fd2-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/24f49b2ad9fbe65eefbfd99d6f6c3fd2-Paper-Conference.pdf
https://doi.org/10.1016/j.cma.2022.115126
https://doi.org/10.1016/j.cma.2022.115126
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1711.11248
https://arxiv.org/abs/1706.03762
https://doi.org/https://doi.org/10.1016/j.commatsci.2009.11.015
https://doi.org/https://doi.org/10.1016/j.commatsci.2009.11.015

References 57

[57] W. Voigt. “Ueber die beziehung zwischen den beiden elasticitätsconstanten isotroper Körper”. In:
Annalen der Physik 274.12 (1889), pp. 573–587. DOI: 10.1002/andp.18892741206.

[58] Y. D. Wang et al. ML-LBM: Machine Learning Aided Flow Simulation in Porous Media. 2020.
arXiv: 2004.11675 [physics.flu-dyn].

[59] L. Zhang et al. “Fast calculation of interaction tensors in clustering-based homogenization”. In:
Computational Mechanics 64.2 (2019), pp. 351–364. DOI: 10.1007/s00466-019-01719-x.

[60] X. Zhang et al. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile De-
vices. 2017. arXiv: 1707.01083 [cs.CV].

https://doi.org/10.1002/andp.18892741206
https://arxiv.org/abs/2004.11675
https://doi.org/10.1007/s00466-019-01719-x
https://arxiv.org/abs/1707.01083

	Preface
	Abstract
	Nomenclature
	Introduction
	Literature Review
	Reduced order modeling
	Self-Consistent Clustering Analysis
	Clustering
	Clustered Lippmann-Schwinger homogenization
	Cluster Interaction Tensor

	Machine Learning
	Machine learning in computer vision
	Machine learning in solid mechanics
	Operator Learning

	Data generation
	Algorithmic complexity
	Research question

	Synthetic Data Generation
	Motivation
	Cluster generator
	Microstructure generator
	Dataset generator

	Data Driven Predictions
	Baseline model
	Data analysis and pre-processing
	Sensitivity Analysis
	Sensitivity to noise
	Sensitivity to number of clusters

	Methods
	Standard surrogate model
	Experimental Setup
	Training
	In-distribution prediction results
	Out-of-distribution prediction results
	Discussion
	Challenges and Limitations

	Unbalanced dataset study
	Experimental setup
	Training
	In-distribution prediction results
	Out-of-distribution prediction results
	In-distribution prediction with small clusters
	Discussion

	Sensitivity to dataset size
	Experimental setup
	Training
	In-distribution prediction results
	Out-of-distribution prediction results
	Discussion

	Accelerated surrogate model
	Experimental Setup
	Training
	In-distribution prediction results
	Out-of-distribution prediction results
	Discussion

	Conclusions
	Recommendations
	References

