
Delft University of Technology

The AI that solves League of
Legends: How to play a MOBA
game professionally according

to AI models

Author:
Yunsong Yao

Thesis Supervisors:
Prof.dr.ir. G. Jongbloed
Dr. N. (Nestor) Parolya

Dr. R.J. Fokkink

June 20, 2023

Abstract

This thesis examines the strategies used during the Ban/Pick phase of pro-
fessional League of Legends matches by using a quantitative model to study
its influencing variables, including winning rates of champions, team compo-
sitions, team sides and other components. Hence, by studying patterns and
relationships between them, our purpose is to gain a deep understanding of
the decision-making techniques in the aforementioned context, with which we
aim to provide professional League of Legends coaches with state-of-the-art
Ban/Pick strategies.

To successfully achieve this, we will first provide an extensive introduc-
tion to the objectives and mechanisms of League of Legends before discussing
the structure and rules of the Ban/Pick phase, which is often regarded as the
most important aspect of the game strategy-wise, within the game. Then,
we discuss the methods and datasets used for our quantitative analysis by
comparing the methods with different criteria and assess their efficiency, con-
sistency and robustness. Last but not least, we finish off by summarizing our
achievements and recommending further study directions in this area.

1

1 Introduction

League of Legends (LoL) is a 2009 multiplayer online battle arena video
game developed and published by Riot Games. In the game, two teams of
five players battle each other, with the mission of destroying the main base
of the opponent, known as the Nexus. Every player chooses and controls a
character, known as a “champion”. These champions all have unique abil-
ities and different play styles [Lea10]. During a game, champions become
more powerful by collecting experience points and gold. With gold, they can
purchase items from a wide range of collections to push the team to victory
[Zha+].

The game is played on a map called Summoner’s Rift, which consists of
three lanes and two jungles, along with additional static objects such as tur-
rets, inhibitors, and neutral monsters that provide strategic advantages when
destroyed or defeated. Figure 1 displays the map of Summoner’s Rift. In the
figure, the name of each lane is shown, and during the laning phase, ally’s
laning champions (Top, Mid, Bot and Sup) proceed to the corresponding
lanes to battle against enemy champions (Top, Mid, Bot and Sup). Mean-
while, jungle champions go into the jungle and combat with neutral monsters
to gain experience and gold.

2

Figure 1: Map of Summoner’s Rift of competitive League of Legends matches.

1.1 Champion selection

As mentioned earlier, one of the most crucial aspects of League of Legends is
the pre-game champion selection process, commonly known as the “Ban/Pick
(B/P) phase”. In this phase, each team takes turns banning champions they
do not want their opponents to pick, followed by selecting champions for
their own team composition. Note that if a team bans a champion, then that
champion cannot be chosen by either of the teams. The process is strategic,
as players need to consider their team’s strengths and weaknesses, synergies
between champions, and counter-picks to enemy champions. The B/P phase
follows the order 1 -1 -1 -1 -1 -1 -1-2-2-1-1 -1 -1 -1 -1-2-1 [Rob]. Here, the colors
denote the team currently selecting, the numbers (1 or 2) signify how many
champions each team should pick or ban, the italic letters denote the ban-
ning phase, and lastly, the bold letters denote the selection phase. In simple
words, at the start of the B/P phase, the blue team and the red team ban
champions alternately until each team has banned 3 champions, followed by

3

the picking phase where the blue team selects one champion first, succeeded
by the red team selecting two champions, and so forth, until each team suc-
cessfully selects a total of three champions. Subsequently, we go back to the
banning phase where the red team and the blue team ban the champions
alternately until in total of 10 champions are banned, lastly the teams se-
lect the champions by order red-blue-blue-red until all 10 champions are
selected. An example of B/P phase in League of Legends is shown in Figure
2.

Figure 2: B/P phase of the final game of League of Legends 2022 Worlds
Grand Final.

4

2 Methods

To determine the best method for selecting champions, we first need to pre-
dict the winning rate of all possible team compositions. In other words, when
all 10 champions are chosen arbitrarily, we need to predict the winning rate
of the blue side against the red side. We scrape first datasets from Fandom
[LPL], [LCK], [wor]. In our dataset, all the variables we have are categorical
variables, which consist of two different types: nominal categorical variables
and ordinal categorical variables. An example of our dataset is shown in
figure 3.

Figure 3: Example of the dataset.

Nominal categorical variables are variables that have two or more cate-
gories without any intrinsic ordering [Bru11]. In this dataset, the name of
the blue team and the red team are examples of nominal variables. Each
team has a unique name, but there is no intrinsic order to the team names.

Ordinal categorical variables, on the other hand, have categories that can
be ordered or ranked [Has]. For instance, the variable “patch” can be con-
sidered as an ordinal categorical variable as patches are released in a chrono-
logical order, and a higher patch number implies that it was released later
than the ones with lower numbers. However, in our case we consider “patch
number” as a nominal categorical variable because a later patch number is
not necessarily related to a higher value.

To perform any classification tasks on these categorical variables, they
need to be transformed into numerical variables. In this section, Onehot
encoding method, Binary encoding method and Embedding method are in-
troduced and compared to see which one performs better.

There are a total of 493 games in the dataset, and for each game, 24
variables are available. These variables are nominal variables such as the
name of the blue team, name of the red team, top lane champion of blue team,
jungle champion of blue team, support player of red team, patch number, and

5

the winning team.
Before applying any transformation methods, we split the dataset into a

training set (Xtrain, ytrain) containing 75% of the total data, and a test set
(Xtest, ytest) containing the remaining 25%. We will repeat this behavior for
a large number of times to ensure that the model can be trained and tested
on a large variety of data.

2.1 Onehot encoding method

This subsection describes a method for representing categorical variables in
a dataset using vectors. Specifically, for each categorical feature, a vector of
length equal to the number of possible values of the feature is created, and
each possible value is assigned a corresponding position in the vector. When
a variable has a particular value, the corresponding position in the vector is
set to 1, and all other positions are set to 0.

In the case of the given dataset, there are 23 features, each with a certain
number of possible values as shown in the table. For example, the “Patch”
feature has 6 possible values, so it would be represented by a vector of length
6. The exact mechanism is shown in Table 1.

Patch
12.1
12.11
12.12
12.13
12.14
12.18

Patch
1
2
3
4
5
6

Patch
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Table 1: Transforming mechanism for Onehot encoding method.

To represent a single game in the dataset, we stack all of the feature
vectors vertically to form a single vector W that represents all of the values
for a single game. The first N1 entries of W correspond to the first variable,
the nextN2 entries correspond to the second variable, and so on, until the last
N23 entries correspond to the last variable. The dimensions of the variables
after Onehot encoding is shown in Table 2.

6

Feature Patch Blue team Red team Blue pick 1 Blue pick 2 Blue pick 3
Blue pick 4 Blue pick 5 Red pick 1 Red pick 2 Red pick 3 Red pick 4
Red pick 5 Blue top Blue jungle Blue mid Blue bot Blue support
Red top Red jungle Red mid Red bot Red support

Dimension 6 43 43 29 24 25
23 31 37 27 31 34
39 49 53 49 51 52
49 53 49 50 55

Table 2: Dimensions of the variables after applying Onehot encoding.

Using this representation, it is possible to perform various machine learn-
ing tasks on the dataset, such as classification. However, it should be noted
that this method assumes that each feature is equally important, which may
not always be the case in practice. Additionally, if the total number of pos-
sible values for the features is very large, the resulting vector representation
may be very high-dimensional, which could pose challenges for the classifi-
cation.

Adding up all the numbers yields the total length of the vector W , which
is 892. Since the total number of matches available is 493, we are now able
to represent all the data with a numerical matrix X of size 493× 892.

2.2 Binary encoding method

Binary encoding is another popular technique used to convert categorical
data to numerical data using binary digits (0s and 1s). In this process,
each value of the variables is assigned a unique binary code, where all dig-
its together represent a unique value that a variable can possibly take. By
converting categorical variables into binary form, we can create a binary rep-
resentation of the data that can be processed by machine learning algorithms.

To convert a categorical variable into binary form, we first determine
the total number of unique values and label them using arbitrary integers
from 2 to the total number of values plus 1. If, on the contrary, we started
with 1, the binary representation of the very first value would be 00...00,
resulting in a zero-row that may cause issues such as bias in the algorithm
and inaccurate feature importance. Moreover, as a convention, we label the
categorical variables in lexicographical order. Next, we convert each label
from decimal to binary and place each digit in a separate column. As a

7

result, a categorical variable with N values can be represented using only
⌊log2N + 1⌋ columns.

For example, consider the categorical variable “Patch” with the values
“12.1”, “12.11”, “12.12”, “12.13”, “12.14”, and “12.18”. We label them from
2 to 7 and convert each label to its binary representation (001, 010, 011,
100, 101, 110). Finally, we place each digit in a separate column resulting
in the representation 0|0|1, 0|1|0, 0|1|1, 1|0|0, 1|0|1, 1|1|0. The mechanism is
demonstrated in Table 3.

Patch
12.1
12.11
12.12
12.13
12.14
12.18

Patch
2
3
4
5
6
7

Patch
001
010
011
100
101
110

Patch
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0

Table 3: Transforming mechanism for Binary encoding method.

By converting categorical variables to binary form, the resulting matrix
has significantly fewer dimensions, reducing the sparsity of the data. Table
4 displays the dimensions of the categorical variables after transformation.

8

Feature Patch Blue team Red team Blue pick 1 Blue pick 2 Blue pick 3
Blue pick 4 Blue pick 5 Red pick 1 Red pick 2 Red pick 3 Red pick 4
Red pick 5 Blue top Blue jungle Blue mid Blue bot Blue support
Red top Red jungle Red mid Red bot Red support

Number of values 6 43 43 29 24 25
23 31 37 27 31 34
39 49 53 49 51 52
49 53 49 50 55

Feature Patch Blue team Red team Blue pick 1 Blue pick 2 Blue pick 3
Blue pick 4 Blue pick 5 Red pick 1 Red pick 2 Red pick 3 Red pick 4
Red pick 5 Blue top Blue jungle Blue mid Blue bot Blue support
Red top Red jungle Red mid Red bot Red support

Dimension 3 6 6 5 5 5
5 5 6 5 5 6
6 6 6 6 6 6
6 6 6 6 6

Table 4: Dimensions of the variables after applying Binary encoding.

By applying Binary encoding to the categorical variables, we can sig-
nificantly reduce the dimension of the resulting matrix from 493×892 to
493×128. However, it is important to note that Binary encoding has its lim-
itations and drawbacks in our case. Many of the variables are unrelated to
each other, representing distinct items such as players and champions. As
a result, using Binary encoding may lead to a large number of dependent
variables, with only ⌊log2N + 1⌋ variables being independent based on sim-
ple linear algebra. Additionally, the dependencies between pairs of variables
may vary as the dot products of pairs of vectors are different, which can pose
challenges during classification. This must be taken into account during the
analysis of the data.

2.3 Classification methods for basic encoding techniques

After transforming all features into either Onehot encoded form or Binary
encoded form, our dataset contains only numerical values, and all features are
considered equally important. Therefore, we do not perform dimensionality
reduction and explore three classification techniques that are suitable for this
situation.

Firstly, we consider Logistic Regression, which is appropriate for predict-
ing the likelihood of an event occurring based on a set of independent vari-

9

ables [IBM]. In our case, the probability that the blue side wins lies between
0 and 1, which makes Logistic Regression an appropriate choice. However,
we must assume that predictors are independent, which may not hold for
champions since some of them interact with each other. Moreover, logistic
regression is prone to overfitting, particularly when using Onehot encoding,
where we have almost twice as many features as data points [Tra20].

The next method we use is random forest classification, which is more
accurate and robust than logistic regression, as it reduces overfitting and
variance by averaging the results of different trees [R21]. Since our dataset
has a large number of features and classes, we expect random forest classi-
fication to perform well. However, this classifier may be slow to train when
using a large number of trees. Still, this is not a significant issue since we
only need to train once and store the classifier locally. In addition, random
forest classification may not perform well on high dimensional or sparse data
[Sha21]. This can be problematic for our Onehot encoded dataset, which
contains many zeros, whereas the binary encoded dataset does not contain
as much information.

As champions interact with one another, we cannot assume that the pre-
dictors are independent. The interactions between champions can be mod-
eled using the encoding methods discussed in previous sections. With a total
of 163 champions, employing the Onehot encoding method to represent in-
teractions between two champions brings up the addition of 26,404 (2C2

163)
columns after the encoded columns. Out of the 26,404 entries, 20 (2C2

5) would
be ones, and the remaining 26,383 would be zeros. It becomes evident that
even when attempting to represent pairwise interactions between champions,
we are faced with an unmanageable number of columns, let alone accounting
for higher-order (3, 4, 5) interactions that undoubtedly play a non-negligible
role.

One solution to this challenge is the implementation of neural network
methods, as they are designed to learn complex relationships between inputs
and outputs. However, neural network methods are considered “black-box”
approaches, meaning it is nearly impossible to comprehend precisely how the
network arrives at its decisions or predictions.

In summary, we have three suitable classification techniques for our dataset,
each with its advantages and limitations. The comparison between the meth-
ods are summarized in Table 5.

10

Methods Advantages Limitations

Logistic Regression
Easy to use and the output is Independence does not always hold and
a probability between 0 and 1 is prone to overfitting

Neural Network
A good solution to the

Black-box method
intractable interaction problem

Random Forest
More robust than logistic regression May not perform well on

and reduces overfitting highly sparse data

Table 5: Methods and their advantages and limitations.

2.4 Embedding

The Onehot encoding method creates a sparse matrix of size 493 × 892,
resulting in a large number of explanatory variables (892) with mostly ze-
ros. This poses a challenge known as the curse of dimensionality, which can
adversely affect the accuracy of statistical models. To address this issue,
we can use a method called embedding, which reduces the dimensionality of
variables using deep learning [Koe18b].

Since we only have nominal categorical variables, we can order the values
of each variable arbitrarily. As a convention, we order the values in a lexi-
cographical order and assign the first value an order of 0 and the last value
an order of ni, where ni is the total number of possible values of the i-th
variable minus 1. We then decide how many dimensions we want to reduce.

It is important to find a balance between the number of dimensions we
want to reduce and the amount of information we want to retain. If we reduce
too few dimensions, we still have a large number of dimensions, and the curse
of dimensionality persists. However, if we reduce too many dimensions, we
may lose too much information and end up with strong collinearity between
variables.

As a convention, we set the dimension of each transformed variable to
be half of the number of possible values, rounded up to the closest integer.
The dimensions of the transformed variables can be found in Table 6. By
reducing the dimensionality of the variables through embedding, we can pos-
sibly improve the performance of our statistical models and avoid the curse
of dimensionality.

11

Feature Patch Blue team Red team Blue pick 1 Blue pick 2 Blue pick 3
Blue pick 4 Blue pick 5 Red pick 1 Red pick 2 Red pick 3 Red pick 4
Red pick 5 Blue top Blue jungle Blue mid Blue bot Blue support
Red top Red jungle Red mid Red bot Red support

Desired dimension of 3 22 22 15 12 13
transformed values 12 14 19 14 16 12

20 25 27 25 26 26
25 27 25 25 28

Table 6: Dimensions of the variables after applying Embedding.

After having chosen the dimensions, the transformed variables are initial-
ized arbitrarily while letting all variables have weights that add up to 1. That
is, for variable i, if this variable can take ni values, we let the transformed
variable Ti = [xi1, ..., xini

]T .
Subsequently, all the vectors representing the categorical variables are

concatenated to a vector of length
∑N

i=0 ni, which is the sum of the lengths
of all transformed vectors. This vector has the form

[x11, ..., x1n1 , x21, ..., x2n2 ,, xN1, ..., xNnN
].

All the data we have are transformed in this manner while letting the
variables with the same values have the exactly same weight vectors and
variables with different values have different weight vectors. After trans-
forming (i.e. embedding) all the data into numerical values, those data are
treated as the inputs of a shallow neural network. The neural network is
custom built, it has arbitrarily determined fixed values of weights and bias,
its number of layers, number of units per layer and its activation function are
logically chosen. Finally, we may choose some suitable optimizer to optimize
against the loss function that finds the embedded values.

In our case we create 2 dense neural network layers with 5000 units and
2500 units respectively, the numbers of units are decided by trial and error.
We use ReLu as our activation function. Lastly we use sigmoid activation
function to map the values of the 2500 units of the second layer to values
between 0 and 1.

To determine the suitable loss-function, note that the output of the neural
network is a vector consists of values between 0 and 1, we use binary cross-
entropy as our loss function since the outcome of the training data is a binary
vector. Lastly, we apply Adam stochastic gradient descent method with

12

a suitable step-size to find the weights. We notice that after 5 iterations
we achieve an accuracy of 0.98645 for the training data. The embedding
mechanism is summarized in Table 7.

To calculate the accuracy, we transform each value of each variable in
the test data into the weights we found in the previous part. We therefore
transform the 124× 24 matrix consists of test data into an 124× 455 matrix.
Now we use the transformed matrix as our input to the deep neural network
layers of the previous part, after rounding off the output, we obtain the
accuracy simply by comparing the output to ytest.

13

Embedding 1
input 0×1
output 3×1

Embedding 2
input 0×1
output 22×1

Embedding 22
input 0×1
output 25×1

Embedding 23
input 0×1
output 28×1

Flatten 1
input 3×1
output 0×3

Flatten 2
input 22×1
output 0×22

Flatten 22
input 25×1
output 0×25

Flatten 23
input 28×1
output 0×28

Concatenate
input (0×3),(0×22),...,(0×25),(0×28)
output 0×455

Dense linear 1
input 0×455
output 0×5000

Activation ReLu 1
input 0×5000
output 0×5000

Dense linear 2
input 0×5000
output 0×2500

Activation ReLu 2
input 0×2500
output 0×2500

Dense Sigmoid
input 0×2500
output 0×1

.

.

Table 7: Mechanism of Embedding.

14

3 Comparison between the methods

In this section we present comparison between the aforementioned methods
using metrics such as accuracy, ROC, AUC and so on.

3.1 Accuracy

The traditional method of computing the accuracy is to test the accuracy
of the test data and validate it through cross-validation. However, in our
case, test sets created by using different portions of the whole data have a
large difference in accuracy. A possible cause is that there are champions
that are seldom selected, champions contained in the test sets might not
even appear once in the training sets. A possible solution to circumvent this
problem is to arbitrarily select a test set with replacement for a large number
of times and test the accuracy of the selected test set. In Figure 4 we provide
the comparison between embedding and various classification methods using
Onehot encoding by splitting the data set into a 75% training set and a 25%
test set arbitrarily 100 times. We observe that Random Forest classification
method has the highest mean accuracy.

Figure 4: Comparison between Embedding and different Onehot classifica-
tion methods.

In Figure 5, we compare the accuracy of different classification methods
using Binary encoding. We observe that the accuracy of classification us-
ing Binary encoding is significantly lower than the accuracy using Onehot
encoding, and on average, it is also lower than Embedding.

15

Figure 5: Comparison different classification methods using Binary encoding.

3.2 ROC and AUC

Another way to compare the methods is to find the ROC curve and the AUC
parameter. Those are given in Figure 6, Figure 7 and Table 8. We see that
when we use Onehot encoding method, not only does the Random Forest
classifier have the highest average accuracy, but also the highest ROC curve
and the largest area under curve. Embedding comes as the third regarding
accuracy and is outperformed by Logistic Regression and Random Forest.

16

(a) ROC curve of Embedding. (b) ROC curve of Logistic Regression.

(c) ROC curve of Neural Network. (d) ROC curve of Random Forest.

Figure 6: Comparison between different classification methods by using Onehot
encoding, the red curve denotes the average of the curves.

Area under curve
Embedding 0.699

Logistic Regression 0.709
Neural Network 0.698
Random Forest 0.720

Table 8: The AUC parameter of different methods.

17

Figure 7: Comparison between the average ROC curve of Embedding and
different Onehot classification methods.

3.3 Testing consistency

In this section, we present methods of testing the consistency of the classifiers.
As we have successfully found a classification method that can predict the
outcome of the games at an accuracy of approximately 0.67, we also need
to make sure that the classifier has a strong consistency, meaning that the
classifier should not make “simple” mistakes at a high probability.

In League of Legends, the two sides (blue and red) are designed to be
nearly balanced, so playing on either side should be fair [Cri23]. Therefore,
we expect that the outcome of a game should not be determined by the team’s
side, but rather by the strength of their champion selection. That means that
if a given team plays against itself with a certain team composition (champion
selection), the outcome of the game should be determined regardless which
team it is. Therefore, suppose we have teams “A, B, ..., Y, Z” and our
classifier predicts team A to win on the blue side against itself, we expect
that with a high probability our classifier predicts team “B, ..., Y, Z” to win

18

on the blue side as well.
First we find the set of all teams that have appeared in our data set, then

we take the whole data set and select one team, say team A, out of the set
of teams and change the teams and the team members in the whole dataset
to the current team (team A) and the corresponding players. Furthermore,
we predict the outcome of the whole data set using the classifiers we have
found in the previous sections, here we only consider Embedding and the
Random Forest classifier using Onehot encoding. After this step we are left
with a single vector of length 493 (number of games available) consisting only
ones and zeros, those are expected to indicate the strength of the champion
selection. We store this vector and continue selecting other teams out of the
set of all teams and replace the “teams” and “teams members” of the dataset
with the currently selected team. After looping over all the teams, we end
up with 27 (number of teams) vectors of size 493, where the same position of
the vectors indicates the same champion selection. The mechanism is shown
in Table 9.

Game Feature Patch Blue team Red team Blue team composition 1 Red team composition Blue players Red players
1 Blue team 1 Red team 1 Blue team composition 1 Red team composition 1 Blue players 1 Red players 1
2 Blue team 2 Red team 2 Blue team composition 2 Red team composition 2 Blue players 2 Red players 2

...

...
N Blue team N Red team N Blue team composition N Red team composition N Blue players N Red players N

Game Feature Patch Blue team Red team Blue team composition 1 Red team composition Blue players Red players
1 Blue team 1 Blue team 1 Blue team composition 1 Red team composition 1 Blue players 1 Blue players 1
2 Blue team 1 Blue team 1 Blue team composition 2 Red team composition 2 Blue players 1 Blue players 1

...

...
N Blue team 1 Blue team 1 Blue team composition N Red team composition N Blue players 1 Blue players 1

classification

binary vector of length 493

Table 9: Mechanism of letting one team play against itself, this mechanism
needs to be performed 27 times.

Now, for each of the 493 games, we examine the prediction made by the
classifiers 27 times (for each of the 27 teams) and record the occurrence of
ones (number of times that the blue team wins). We set up two hypotheses

19

here, H0 : The number of occurrences of ones is the half of the number of
teams against H1 : The number of occurrences of ones is not the half of the
number of teams. If the occurrences of ones is close to the number of teams
(27) or close to 0, then H1, our desired result, holds. That would mean that
our classifier is therefore consistent. Suppose that the result is binomially
distributed with p = 0.5 and N = 27. We use 0.05 as our critical p-value,
and the percentage of the games where p-values of the occurrences of ones
are less than 0.05 is given in the Table 10.

Percentage of the games where H0 is rejected
Random Forest 0.355
Embedding 0.462

Table 10: Percentage of the games where the occurrences of ones are close
to 0 or 27.

We observe that for the Random Forest classifier, 35% of the p-values
are less than the threshold 0.05, and for Embedding, 46% of the p-values
are less than 0.05. Additionally, we calculate the average distance between
the winning rate of the various team compositions and the boundary {0, 1}
when the same teams play against themselves. The distance is defined by
1
P

∑P
i=0 1(pi ≤ 0.5)p2i + 1(pi > 0.5)(1 − pi)

2, where 1 denotes the indicator
function. The results are shown in Table 11. Note here that the smaller the
mean distance is, the closer the winning rate is to the boundary, indicating
a more consistent classification.

Mean distance to the boundary in L2

Random Forest 0.336
Embedding 0.303

Table 11: Mean distance between the winning rate and the boundary 0 and
1.

The next method we use to test the consistency of the classifier is to
simulate games where we not only let the teams play against themselves, but
also let the teams have the exactly same team composition when they play
against themselves. We examine the situations where a certain team uses the
composition chosen on the blue side to play against itself and where it uses

20

the composition chosen on the red site to play against itself. The mechanism
is shown in Table 12 and 13.

Game Feature Patch Blue team Red team Blue team composition Red team composition Blue players Red players
1 Blue team 1 Red team 1 Blue team composition 1 Red team composition 1 Blue players 1 Red players 1
2 Blue team 2 Red team 2 Blue team composition 2 Red team composition 2 Blue players 2 Red players 2

...

...
N Blue team N Red team N Blue team composition N Red team composition N Blue players N Red players N

Game Feature Patch Blue team Red team Blue team composition Red team composition Blue players Red players
1 Blue team 1 Blue team 1 Blue team composition 1 Blue team composition 1 Blue players 1 Blue players 1
2 Blue team 1 Blue team 1 Blue team composition 2 Blue team composition 2 Blue players 1 Blue players 1

...

...
N Blue team 1 Blue team 1 Blue team composition N Blue team composition N Blue players 1 Blue players 1

Table 12: Modification of the DataFrame where a certain team uses the
composition on the blue side to play against itself.

Game Feature Patch Blue team Red team Blue team composition Red team composition Blue players Red players
1 Blue team 1 Red team 1 Blue team composition 1 Red team composition 1 Blue players 1 Red players 1
2 Blue team 2 Red team 2 Blue team composition 2 Red team composition 2 Blue players 2 Red players 2

...

...
N Blue team N Red team N Blue team composition N Red team composition N Blue players N Red players N

Game Feature Patch Blue team Red team Blue team composition Red team composition Blue players Red players
1 Blue team 1 Blue team 1 Red team composition 1 Red team composition 1 Blue players 1 Blue players 1
2 Blue team 1 Blue team 1 Red team composition 2 Red team composition 2 Blue players 1 Blue players 1

...

...
N Blue team 1 Blue team 1 Red team composition N Red team composition N Blue players 1 Blue players 1

Table 13: Modification of the DataFrame where a certain team uses the
composition on the red side to play against itself.

In this case, we expect that nearly 50% of the situations our classifier
predicts the blue side to win since we have made the blue team and the red
team equally strong for each of the games. We now have H0 : The number of
occurrences of ones is half the number of teams against H1 : The number of
occurrences of ones is not half the number of teams. Now suppose again that
the result is binomially distributed with p = 0.5 and N = 27, we calculate the
p-value for each of the games and reject H0 when p < 0.05. The percentage
of the total 493 games that we do not reject H0 is given in Table 14. Note
that a higher percentage of not rejecting H0 means less influence of the sides
to the outcome of the games, indicating a more consistent classifier.

21

Percentage of the games where H0 is not rejected
Random Forest blue comp 0.737
Embedding blue comp 0.564

Random Forest red comp 0.809
Embedding red comp 0.570

Table 14: Percentage of the games where the occurrences of ones are near
the half of the number of teams.

Also, the distance between the percentage of the games where the blue
side wins and the baseline percentage 0.5, given by 1

P

∑P
i=0(pi−0.5)2 is shown

in Table 15.

Mean distance to the baseline 0.5 in L2

Random Forest blue comp 0.186
Embedding blue comp 0.255

Random Forest red comp 0.166
Embedding red comp 0.254

Table 15: Mean distance between the winning rates and the baseline winning
rate 0.5.

We note that Embedding performs better when the teams play against
themselves while keeping the original composition, and the Random Forest
classifier with Onehot encoding performs better when the teams play against
themselves with exactly the same team composition. This can be explained
by the domain knowledge of League of Legends. In League of Legends, dif-
ferent teams have different strategies and different ways of playing. A certain
team composition may not be suitable for some teams, possibly due to the
fact that players have different masteries for the champions, players favor
a certain side of the map, etc. Therefore, it is understandable and likely
that one team favors the composition on the blue side and the other team fa-
vors the composition on the red side when the teams play against themselves.
This can lead to completely different outcomes. On the other hand, if a team
plays against itself with exactly the same team composition on both sides,
the only factor that decides the outcome of the game is the side. However,
as we discussed before, no side has an advantage over the other. Therefore,
the outcome is more or less decided by a coin-flip.

22

3.4 Limitations

We see that the combination of Onehot encoding technique and Random
Forest classifier has overall the best performance among all other classifiers.
However, it also has limitations. In our dataset, we only have game records of
112 champions while there are in total 163 playable champions in League of
Legends [Xu23]. This is due to the fact that in professional matches, players
tend to choose champions that are strongest in the current meta, while the
relatively weak champions are usually left out. The dataset available covers
in total of 6 patches, while we have around 20 patches per year.

Suppose now we have a new dataset in which all the 163 champions are
chosen at least once, and in the luckiest case no champion is chosen by players
with different roles (so suppose a multi-role champion is chosen by a Top
player, it is not chosen by any Jun player anymore). In this case, we would
end up having a matrix of size N × 1008. The number 1008 is obtained by
noting that now we have 14 additional columns for patches (as the number
of patches increases from 6 to 20) and 2*51 (as ally and enemy both has
a increased champion pool from 112 to 163) more columns for champions.
However, if we use Embedding or Binary encoding techniques, the number
of the features in the matrix will be significantly smaller.

23

4 Fine-tuning of the Methods

4.1 Hyperparameter tuning

We see that Random Forest classifier has the best performance among all
classifiers we have used. However, the classifier we used are with the default
setting in Python. The setting is shown in Table 16.

parameters values
bootstrap True
ccp alpha 0
class weight None
criterion gini

max depth None
max features sqrt
max leaf nodes None
max samples None

min impurity decrease 0.0
min samples leaf 1
min samples split 2

min weight fraction leaf 0.0
n estimators 100

n jobs None
oob score False

random state None
verbose 0

warm start False

Table 16: Default parameters of the Random Forest classifier.

Note that the most important criteria are the number of trees (“n estimators”)
and the max number of features when splitting at each leaf node [Koe18a].
Therefore, we take a selection of the parameters and give them a range of
available values and search for the best value. The selection we take con-
sists of the following parameters: “bootstrap”, “criterion”, “max depth”,
“max features”, “min samples leaf”, “min samples split”, and “n estimators”.
In order to determine a reasonable range of values for “max depth”, we check
the values that this parameter currently has for all 100 trees. The depths of

24

the trees are [40, 36, 35, 48, 46, 37, ..., 36, 41, 37, 43, 42]. None of the trees
has a depth more than 50, so it is reasonable to limit the “max depth” of
the trees to any positive integer below 45. The proposed range of values is
given in Table 17.

parameters values
bootstrap {True, False}
criterion {gini, entropy, log-loss}

max depth {20,25,30,35,40,45,None}
max features {sqrt, log2, auto}

min samples leaf {1,2,3}
min samples split {2,4,8}

n estimators {100,200,400,800,1600}

Table 17: Range of parameters of the Random Forest classifier

Now we use the RandomizedSearchCVmodule from the “sklearn” package
to find the best possible parameters with a randomized training set. The best
parameters found are given in Table 18.

parameters values
bootstrap True
criterion log-loss

max depth 40
max features auto

min samples leaf 3
min samples split 2

n estimators 100

Table 18: Best parameter for Random Forest classifier on one random train-
ing set.

As we mentioned before, the selection of the training set greatly affects
the accuracy of the classification. Therefore, We also need to test the accu-
racy on different training sets. As before, we will arbitrarily select a large
number of training sets and compare the best parameters found by Random-
izedSearchCV to determine the ultimately best parameters for our dataset.
We take 50 random training sets and perform 100 searchings for each of the

25

Arbitrarily split the data into a training set and a test set

Select the training set

Arbitrarily select a parameter-tuple

Record accuracy with cross-validation

Store the best parameter-tuple

Compare and find the most frequent parameters

Repeat 100 times

Repeat 50 times

Figure 8: Mechanism of performing RandomizedSearchCV on 50 random
training sets.

50 training sets. The mechanism is shown in Figure 8. The running time is
5070 seconds and the most frequent best value for each of the parameters is
given in Table 19.

26

parameters default values most frequent best values
bootstrap True True
ccp alpha 0 0
class weight None None
criterion gini entropy

max depth None None
max features sqrt sqrt
max leaf nodes None None
max samples None None

min impurity decrease 0 0
min samples leaf 1 3
min samples split 2 3

min weight fraction leaf 0 0
n estimators 100 100

n jobs None None
oob score False False

random state None None
verbose 0 0

warm start False False

Table 19: Comparison between default parameters and the most frequent
best parameters of the Random Forest classifier, the values of the parameters
that can be improved are given in red.

4.2 Comparison between the default classifier and the
fine-tuned classifier

After obtaining the best fine-tuned values, we again arbitrarily split the
dataset into a training set and a test set for 100 times and evaluate the
accuracy, ROC-curve and AUC, those are given in Figure 9, Figure 10, Fig-
ure 11 and Table 20.

27

Figure 9: Comparison between the accuracy between Random Forest classi-
fier with default parameters and with fine-tuned parameters.

(a) ROC curve of Random Forest classi-
fier with default parameters.

(b) ROC curve of Random Forest classi-
fier with fine-tuned parameters.

Figure 10: Comparison between the ROC curve between Random Forest classifier
with default parameters and with fine-tuned parameters, the red curve denotes the
average of the curves.

28

Figure 11: Comparison between the average ROC curve of Random Forest
classifier with default parameters and with fine-tuned parameters.

Classifier Accuracy Area under curve
Random Forest default 0.664 0.713

Random Forest fine-tuned 0.674 0.723
Increase 1.5% 1.4%

Table 20: Increase in accuracy and AUC after fine-tuning Random Forest
classifier.

We see that fine-tuning the Random Forest classifier improves not only
the accuracy but also the AUC parameter. Therefore, we can conclude that
the Random Forest classifier with the fine-tuned parameters is, for now, the
best classifier for our model.

29

5 MCTS algorithm

In League of Legends, there are currently 163 champions. Considering the
roles of the champions, the number of different team compositions is at least
(32× 31)5 = 9.60× 1014, i.e. picking 2 champions for each of the 5 roles, one
for the blue team and the other one for the red team. Due to the enormous
number of team compositions and countless interactions between champions,
it is nearly impossible for humans to draft the best possible team composition
against the enemy team. Nowadays, the best champion selection strategies
are based on several criteria, such as (i) player proficiency with the cham-
pions, for instance, factors like winning rate on that champion and mastery
points, (ii) countering relationships between champions, for instance, the
overall winning rate of a champion against another, projectile speed/width
of the champion spells (a faster projectile gives an upper hand in the lan-
ing phase), and (iii) overall popularity of the champions (usually, the higher
the popularity, the higher the tolerance of mistakes, the easier to snowball
with the champions picked). Therefore, most coaches nowadays are retired
professional players with little or no statistical knowledge who have played
a large number of games. They select the champions for the players mostly
based on their intuition.

In the previous section, we saw that the best classifier is the fine-tuned
Random Forest classifier. In this section, we will use the results of the Ran-
dom Forest classifier to determine the outcome of the games. We will consider
the B/P problem as a two-person zero-sum game with perfect information.
We will first present a method for solving a single best-of-1 League of Legends
match, and then we will compare this method with other existing methods
and examine the winning rate.

5.1 Selection criteria

As introduced in section 1 .The champion selection in League of Legends
follows the order 1 -1 -1 -1 -1 -1 -1-2-2-1-1 -1 -1 -1 -1-2-1. However, in League
of Legends matches, banning champions has a strong connection with per-
sonal favorites. Therefore, in most cases, coaches ban specific champions
not because of their strength, but to prevent their opponents from playing
with comfort. Therefore, we may consider a simpler case that has the fol-
lowing selection order: Blue-Red-Red-Blue-Blue-Red-Red-Blue-Blue-
Red. Note that we also simplified the cases where a player is allowed to

30

select 2 champions simultaneously to selecting 2 champions in a row. There
are thus 10 rounds in the selection step. In each round, we need to find the
“legal move”, which is the set of all available champions at that round. The
legal move must satisfy the following criteria:

• Any champion that is already selected, either by ally or enemy team,
cannot be selected again.

• Any number of champions selected cannot have combined less number
of roles than the number of champions selected.

The first criterion must be satisfied because in League of Legends professional
matches, no two identical champions are allowed to appear in the same match.

The second criterion also must be satisfied because otherwise we would
have multiple champions having the same role and possibly zero champion
for some roles, this results in a extremely bad team composition due to
the unique characteristics and roles that different champions have. In other
words, any distinct role has a specific job that can only be done by the cham-
pions with that role. This criterion must be satisfied for every single round of
champion selection. However, it would be extremely computationally heavy
if we verify whether this criterion holds in each round for each iteration of
the MCTS algorithm. To circumvent this problem, we note that the most
champions have only one role and therefore after selecting such a champion,
we can simply remove all other champions with only one role that is the same
as the role of the champion we have selected from the champion set corre-
sponding to the same side (blue or red). In this manner we end up having a
list of champions chosen with at most 3 champions with multiple roles with
a high probability. Also, we are certain that the champions selected with a
single role must be assigned to that role during the process of predicting the
outcome of the game. Therefore, all what is left is to verify whether we can
assign the remaining roles to the multi-role champions left. This is known
as the distinct representatives problem, and we will address it in the next
subsection.

5.2 Distinct representative problem

Note that the dataset we have consists of 5 different positions (Top, Jungle,
Mid, Bot, Sup) on each side. In the previous section, we saw that the MCTS
algorithm selects the champions in an arbitrary order. Moreover, it is likely

31

that at least 2 champions out of 5 have multiple roles. To predict the outcome
of the game, we need to find the corresponding role for each of the champions.

The distinct representative problem is a combinatorial problem in math-
ematics that involves finding representatives from a collection of sets, where
each representative is an element in every other set in the collection. The
problem is known to be NP-complete, which means that there is no known
polynomial-time algorithm that can solve it for all instances [JR11].

In our case, we have a collection of 5 sets containing numbers ranging
from 0 to 4, representing all the possible roles of the champions, where we
let 0 = Top, 1 = Jungle, 2 = Mid, 3 = ADC, 4 = Sup. Our goal is to
find a way to assign 0, 1, 2, 3, 4 to all 5 sets, with the criterion that each
number must be contained in every other set. As stated before, with a high
probability, a champion selection sequence contains at most 3 champions
with multiple roles. Therefore, the problem is reduced to assigning up to 3
numbers from 0 to 4 to a collection of up to 3 sets containing 0 to 4, since
we must assign the only element of the singleton sets to themselves to find
such a system of distinct representatives.

We present a method for finding a system of distinct representatives where
the cardinality of the collection of sets is less than or equal to 3. Denote N
as the size of the collection. First, for the trivial case, suppose we have a
list of representatives [n0] and a collection of sets [S0]. We can immediately
determine whether a system of distinct representatives exists by inspecting
whether n0 is in S0.

Now, suppose we have a list of representatives [n0, n1] and a collection of
sets [S0, S1]. We first check whether n0 is in one of the sets S0 or S1 following
the lexicographic order. If it is not, then we are done and it means that a
system of distinct representatives does not exist.

Suppose n0 is in S0. We remove n0 temporarily from the list and S0 from
the collection, and we are left with the trivial case where N = 1. If we can
find a representative for N = 1, then we are done. Otherwise, we revert n0

back into the list and add S0 to the end of the collection. We then permute
the collection and end up with [n0, n1] and [S1, S0]. We perform the exactly
same search again to find the distinct representatives, if they exist.

At last, suppose we have a list of representatives [n0, n1, n2] and a col-
lection of sets [S0, S1, S2]. Analogously, we check first whether n0 is in one
of S0, S1, S2. If it is not, then we are done. Suppose it is in S0, then as
before, we temporarily remove n0 from the list and S0 from the collection.
We are left with the case where N = 2. We then check whether we can find

32

a solution. If we can, then we are done. If we cannot, we revert n0 back into
the list and put S0 at the end of the collection. We then have [n0, n1, n2] and
[S1, S2, S0]. If n0 is only in S0, then we are done. If n0 is in S1, we perform
the same mechanism as before. We perform at most two permutations to
find at least one system of distinct representatives.

5.3 Minimax algorithm

Based on the winning rate of the champions and their countering relation-
ships, a natural approach is to use the Minimax algorithm to find the best
champion of the current stage. Prior to Stockfish and Deep Blue, numer-
ous chess engines made use of the Minimax algorithm [Mis19]. For chess
engines, it ensures that the picks made by the Minimax algorithm are the
most optimal ones. However, for League of Legends, considering picking a
champion as a move in chess, there are approximately 3 times (31.1 moves in
chess [Bar19] vs 100 moves in League of Legends) as many moves as in chess.
Moreover, the Minimax algorithm is known as an extremely computationally
heavy algorithm as it must store all game states that grow exponentially.

For a two-person-zero-sum game, the Minimax algorithm applies often
when players take turns sequentially (or without knowing the opponent’s
move prior to their own move). However, in League of Legends, the teams
do not select the champions simultaneously and they do not move in an
alternating order. Suppose we consider a pair of champions picked by one
team as one pick, we would be left with a matrix of size 112× 10000 approx-
imately for the very first turn. To elaborate, in the first turn, the blue side
has 112 available picks and the red side has approximately 100 × 100 avail-
able combinations of picks since they have to pick 2 champions in this turn.
For the blue team, completely not knowing what the red team would pick,
approximately 106 outcomes (reward/loss) must be found and filled into the
payoff matrix to derive the optimal pick using the Minimax strategy, which
requires an outrageously large computational power. To circumvent this
problem, we may place “bars” between rounds with each pair of picks as one
single group of picks, and we consider each of those groups as one turn of a
two-person-zero-sum game. Therefore, the whole selection process becomes
Blue−Red︸ ︷︷ ︸

turn 1

|Red−Blue︸ ︷︷ ︸
turn 2

|Blue−Red︸ ︷︷ ︸
turn 3

|Red−Blue︸ ︷︷ ︸
turn 4

|Blue−Red︸ ︷︷ ︸
turn 5

.

Suppose the blue team uses the Minimax algorithm to select the champi-
ons and the red team uses some other algorithm. Then we see in turns 1, 3,

33

and 5, without knowing what the red team would select, the blue team has
to list all the possibilities of the blue champion-red champion pairs to find
the optimal strategy. In turn 1 there are approximately 100 × 100 = 10000
distinct pairs, for each of the pairs, we first complete the rest of the 8 picks
arbitrarily a large number of times using rules defined in section 5.1, then we
predict the outcomes and average them using the fine-tuned Random Forest
classifier in section 4. This yields the reward/loss of all the distinct pairs and
we can now simply put the outcomes in a payoff matrix to find the optimal
strategy, which is the best champion to pick at the current stage. However,
at turns 2 and 4, the blue team picks after seeing the picks of the red team.
We therefore only have to list all the legal picks of the blue team (instead of
red-blue pairs) to find the optimal strategy. The optimal strategy is obvious,
it is the pick whose predicted outcome has the highest reward for the blue
side. Using the Minimax algorithm on the red side is analogous, at turns 1,
3, 5, we predict the outcomes of all the legal picks and take the pick that
yields the least reward/loss with respect to the blue side and at turns 2, 4
we predict the outcomes of all combinations of the blue team-red team pairs
and take the pick that minimizes the maximal reward for the blue team.

5.4 Introduction to MCTS algorithm

Monte Carlo Tree Search (MCTS) is a decision-making algorithm used in for
finding the best move in a game or other types of decision-making problems.
MCTS is a heuristic search algorithm that uses random simulations to build
a search tree, where each node represents a possible game state or decision
point, and each edge represents a possible move or action [Pet+02]. The
algorithm builds the search tree incrementally, by repeatedly selecting nodes
and simulating random moves from a non-leaf node to the leaf node. Once
the leaf node is reached, the result is known and it will be sent back to all
the preceding nodes.

The MCTS algorithm consists of four steps: Selection, Expansion, Sim-
ulation, and Backpropagation. In the selection step, the algorithm traverses
the search tree from the root node to a leaf node based on a proper selec-
tion strategy, such as Upper Confidence Bounds 1(UCT1) [Pet+02], which
tends to select the node with the highest payoff and the least visited node.
In the expansion step, the algorithm creates child nodes of the current node
consisting of legal moves. In the simulation step, the algorithm simulates
a game by arbitrarily selecting from the legal set of moves. Finally, in the

34

root

1

2

3 3

2

3 3

1

2

3 3

2

3 3

1

2

3 3

2

3 3

1

2

3 3

2

3 3

root

1

2

3 3

2

3 3

1

2

3 3

2

3 3

1

2

3 3

2

3 3

1

2

3 3

2

3 3

root

1

2

3 3

2

3 3

1

2

3 3

2

3 3

1

2

3 3

2

3 3

1

2

3 3

2

3 3

root

1

2

3 3

2

3 3

1

2

3 3

2

3 3

1

2

3 3

2

3 3

1

2

3 3

2

3 3

.

Figure 12: The mechanism of MCTS algorithm.

backpropagation step, the algorithm updates the results from the leaf node
to all its ancestor nodes. The mechanism of MCTS algorithm is shown in
Figure 12.

In this figure, the root node is the state in which we apply the MCTS
algorithm. For a chess game, it is then the position in which we “turn on”
the chess engine. The numbered nodes are the states that are 1, 2 or 3 moves
away from the root node, the numbers indicate the depth of the searching
tree. The uncolored nodes (black nodes) are unvisited nodes. Moreover, the
red arrow indicates the selection process, the blue solid arrow indicates the
expansion process, the blue dashed arrow indicates the simulation process,
the green dashed arrow indicates the process where we input the result to
the leaf node and finally the green solid arrow indicates the backpropagation
process. The entire process repeats itself for a large number of times.

5.5 MCTS algorithm for League of Legends

After finding the legal set in each step, we let the algorithm select the cham-
pions by the formula (derived from UCT1) U1 = Qi + C

√
logNi/ni and

35

U2 = Qi − 1 − C
√

logNi/ni, where Qi stands for the average winning rate
of the blue side at the current node, Ni stands for the number of visits of
the parent node of the current node, ni stands for the number of visits of the
current node and C stands for the exploitation rate that theoretically equals
to

√
2 in the optimal situation. Due to the champion selection order shown

in the previous subsection, when it is round 1, 4, 5, 8, 9 the blue side selects
and the red side selects in the rest of the rounds, which are 2, 3, 6, 7, 10.
Moreover, we must also assume that the opponent selects the champion that
most likely leads them to a win. Therefore, when it is round 1, 4, 5, 8, 9, the
algorithm selects the champion that corresponds to the node with the highest
U1 and in other rounds, the algorithm selects the champion that corresponds
to the node with the lowest U2. To wit, U1 increases when the winning rate
for blue increases but decreases when the number of selection increases and
U2 decreases when the winning rate for blue decreases (therefore the winning
rate for red increases) but increases when the number of selection increases.
In a nutshell, the MCTS algorithm tends to choose the champions that lead
to a higher winning rate but it will also choose champions with a low number
of visits in case those champions have a lower winning rate by accident.

The MCTS algorithm for League of Legends can therefore be summarized
as in Figure 13.

36

Select available champion with the highest U1

Multi-role?

Remove only the selected champion Remove all single role champions with the same role

Opponent selects available champion with the lowest U2

Multi-role?

.

Opponent’s all roles uniquely assigned?

Ally’s all roles uniquely assigned?Ally’s all roles uniquely assigned?

Predict the outcome with RFC 0 +1 0

Yes No

Yes No

Yes No Yes No

Figure 13: MCTS algorithm for League of Legends summarized.

5.6 Parallel MCTS algorithm

We see that the MCTS algorithm can help us find the best picking sequence
through a random searching technique. However, the MCTS algorithm is
computationally heavy as we have on average approximately 100 legal moves
per step, compared to only 31.1 moves on average in chess. Parallelizing
the MCTS algorithm is a decent solution to the mentioned problem. There
are multiple types of parallelization including Tree Parallelization, Leaf Par-
allelization, and Root Parallelization. For a Go game, we see that Root
Parallelization and Leaf Parallelization with local mutexes and virtual loss
yield the best result [CWH08].

• Root Parallelization of MCTS: To realize root parallelization of the
MCTS algorithm, we first run the MCTS algorithm simultaneously on
all cores of the CPUs and record all the results. Next, we may either
compare the results and select the one with the highest visit count or
select the one that appears most frequently. We will see later in this

37

section that the more iterations each of the MCTS algorithms has, the
more likely repetitions of the results appear.

• Leaf Parallelization with local mutexes and virtual loss: We may con-
sider the standard MCTS algorithm to be a thread trying to visit the
nodes by some criteria and send back information along the visited
path. This Parallel MCTS can therefore be considered as multiple
threads trying to visit the nodes simultaneously. Moreover, we should
note that in order for different threads to process the searching algo-
rithm in different nodes, we should wisely impose an auxiliary parame-
ter l for all nodes that are searched in parallel. The parameter l stands
for the virtual loss. Whenever a node is visited, the virtual loss in-
creases. Thus, threads in other cores tend to visit other nodes. One
possible way of applying virtual loss is to leave the UCT1 formula un-
changed, but to let virtual loss be 1 and add it to the number of visits of
the nodes. Threads tend to visit nodes with high winning rates as well
as a small number of visits, adding virtual loss to the number of visits
parameter makes different threads choose different nodes unless some
node has a significantly high winning rate, as desired. Note that in this
manner, computing N iterations with multi-threading is no other than
computing kN iterations of the normal version of the MCTS algorithm,
where k stands for the number of cores available. The mechanism of
this type of Parallel MCTS algorithm is shown in Figure 14.

5.7 Results

Suppose at the start of the B/P phase we are on the blue side and our
opponent is on the red side. We use the above algorithm to find the best
champion possible. The result is shown in Table 21. We see that more
iterations lead to a more accurate result. This can be observed by noting that
the predicted winning rate decreases as the number of iterations increases.
Because the blue side and the red side are supposed to be equally strong
and the MCTS algorithm always assumes that the opponent has the best
counter-pick possible, the predicted winning percentage eventually converges
to the baseline winning rate of 0.5. Therefore, when the winning rate of the
selected champion is close to 0.5, we know that the number of iterations is
large enough for us to get a good pick.

38

root

1

2

3 3

2

3 3

1

2

3 3

2

3 3

1

2

3 3

2

3 3

1

2

3 3

2

3 3

root

1

2

3 3

2

3 3

1

2

3 3

2

3 3

1

2

3 3

2

3 3

1

2

3 3

2

3 3

.

Figure 14: The mechanism of the Parallel MCTS algorithm.

39

Selected champion Winning rate Iterations Computation time
Kalista 0.85 1000 3.38
Zeri 0.62 5000 18.91

Xin Zhao 0.60 10000 40.88
Miss Fortune 0.54 50000 163.10

Zeri 0.53 100000 331.50

Table 21: Picks made by standard MCTS algorithm.

Next, we show the theoretical results that can be obtained by using root
parallelization. That is, using the same settings as before, we run the stan-
dard MCTS algorithm eight times simultaneously and select the champion
with the most picks out of the eight best picks the standard MCTS algorithm
generates. The result is shown in Table 22.

Selected champion Winning rate Iterations Computation time
Caitlyn, Zoe, Blitzcrank, Kindred, 0.65, 0.73, 0.71, 0.75, 1000 ∼ 4
Nocturne, Kog’Maw, Azir, Xayah 0.74, 0.74, 0.77, 0.76
Volibear, Olaf, Caitlyn, Karthus, 0.65, 0.66, 0.63, 0.64 5000 ∼ 20
Rek’Sai, Miss Fortune, Poppy, Vi 0.61, 0.61, 0.62, 0.61
Viego, Ezreal, Kalista, Skarner, 0.57, 0.57, 0.58, 0.6, 10000 ∼ 40
Bard, Skarner, Skarner, Kai’Sa 0.56, 0.56, 0.58, 0.61
Jhin, Zeri, Poppy, Bel’Veth, 0.54, 0.53, 0.55, 0.53, 50000 ∼ 200
Zeri, Lee Sin, Zeri, Wukong 0.54, 0.54, 0.54, 0.54

Table 22: Picks made by Parallel MCTS algorithm, only theoretical compu-
tation time is given.

In the above table, the champions highlighted in red denote the champi-
ons with the highest winning rate and the champions highlighted in purple
denote the champions that appear to be the best pick most frequently. We
notice that more iterations lead to more accurate results as before; at 50000
iterations, the Parallel MCTS algorithm selects “Zeri” most frequently, which
is in accordance with the standard MCTS algorithm with 100000 iterations.
Moreover, we observe that the more iterations, the more likely our algorithm
selects the same best champion in eight separate runs, which gives us even
more confidence in picking the champion with the most appearances.

40

5.7.1 MCTS vs Minimax

To compare the performance of the MCTS algorithm against the Minimax al-
gorithm, one of the difficulties we may encounter, compared with the method
mentioned in [Che+20], is that we cannot ensure that both sides of the teams
are equally strong since our algorithm is “tailored” for specific teams while
the authors in the mentioned paper only compare the strengths of the team
composition. In other words, letting the best team play on the blue side and
the worst team play on the red side would almost certainly lead to a win for
the blue side, no matter what champions are picked. Therefore, we aim to
select teams that have approximately the same winning rates on both sides
and we let this team play against itself. In other words, we try to eliminate
all factors other than the team compositions that influence the outcome of
the game. In Figure 15, we show the winning rate of all teams when they are
playing on the blue side and the red side. The blue bars denote the winning
rate on blue sides and the red bars denote the winning rates on red sides;
the purple bars denote the overlapping between the blue and the red bars.
It is obvious that the larger the ratio of the purple bars, the closer the win-
ning rates are between the blue and the red side. We observe that “Weibo
Gaming” has the closest winning rate on the blue side and the red side, and
it is highlighted in red. We will therefore compare the algorithms in various
aspects while letting both sides of the teams be “Weibo Gaming”.

41

Figure 15: Winning rate of the teams when playing on the blue side and the
red side.

First, we let the MCTS algorithm select the champions on the blue side
and, as its adversary, the Minimax algorithm selects on the red side. Then
we let the Minimax algorithm select the champions on the blue side and the
MCTS algorithm select on the red side. Moreover, we impose a time limit
when running the algorithms and we will compare the winning rate of one
algorithm against the other with respect to computation time. The results
are listed in Figure 16.

42

Figure 16: Winning rate of the MCTS algorithm against the Minimax algo-
rithm when imposing a time limit.

We notice that when the allowed computation time is short, the MCTS
algorithm beats the Minimax algorithm with an overwhelmingly large ad-
vantage. However, as the computation time limit becomes larger, the two
algorithms gradually become tied. This is due to the fact that both the
MCTS algorithm and the Minimax algorithm eventually find the optimal
pick; the only difference is that the MCTS algorithm does not select all
combinations of picks equally often while the Minimax algorithm does. The
MCTS algorithm selects the “good” picks more often and has a larger depth
in searching.

Moreover, we are also interested in the number of iterations of the MCTS
algorithm that is necessary to at least tie the well-performed Minimax al-
gorithm. We see that using the time limit of 1400 seconds, the Minimax
algorithm is able to find near-optimal picks in the previous section. The
time limit of 1400 seconds corresponds to 100 Monte Carlo simulations for
predicting the payoffs of all pairs of champions, we therefore use 100 and the
baseline 10 as our parameters for the Minimax algorithm and we compare it
with the MCTS algorithm with different parameters. The results are shown
in Figure 17 and Figure 18.

43

Figure 17: Winning rate of MCTS algorithm on the blue side with different
number of iterations against Minimax algorithm with 100 and 10 iterations.

Figure 18: Losing rate of MCTS algorithm on the red side with different
number of iterations against Minimax algorithm with 100 and 10 iterations.

We notice that when the MCTS algorithm is on the blue side, it requires
2000 and 500 iterations to beat the Minimax algorithm with 100 and 10
iterations half of the time while it requires far more iterations, 10000 and

44

5000 when the MCTS algorithm is on the red side. 3000 and 10000 iterations
of the MCTS algorithm cost 12 seconds and 40 seconds respectively, so on
average we are 50 times faster by using the MCTS algorithm instead of the
Minimax algorithm.

45

6 Conclusion and future works

In this paper, we proposed a new method of selecting champions during the
B/P phase of League of Legends professional matches by using a fine-tuned
Random Forest classifier together with the MCTS algorithm. We compared
different methods of predicting the winner of a game including Logistic Re-
gression, Neural Network, Random Forest, and Embedding, given all the
related information. After finding that the Random Forest outperformed
the rest, we further fine-tuned this classifier and found the best parameters
that increased the AUC and accuracy even more. Furthermore, we used the
MCTS algorithm to select champions by finding a system of distinct represen-
tatives and compared this algorithm to the well-known Minimax algorithm.
With merely 1/50 of the computation time, the MCTS algorithm is already
able to beat the Minimax algorithm.

However, there are also limitations which can be summarized in the fol-
lowing aspects. First, we did not take the banning phase into account be-
cause banning champions is closely related to personal favorites. Moreover,
we have a limited number of matches available. Out of 163 champions, we
only have 112 champions in our record; the algorithm did not consider the
rest of the 51 champions at all. Also, we were not able to perform true root or
leaf parallelization because the programming language we use, i.e., Python,
has the notorious GIL (Global Interpreter Lock), which does not allow true
multi-threading. Because of that, we could only calculate the theoretical
computation time. Lastly, we did not consider the Multi-round version of
the MCTS algorithm, while most professional matches are either best-of-3 or
best-of-5. The Multi-round MCTS is introduced in the following subsection
and, in the future, we will work on this aspect.

6.1 Future work: Multi-round MCTS

In some of the League of Legends regions in 2024, officials will be implement-
ing a new regulation for competitive matches. According to this regulation,
any champions that a team picks in a round cannot be picked again by that
team in later rounds, but the same champions that have been banned can
be banned again. Therefore, in order to win the entire match, teams must
choose their champions wisely, considering their picking strategy for future
rounds. To address this, we modify our MCTS algorithm to the Multi-round
Parallel MCTS algorithm. Figure 19 shows the mechanism of this algorithm.

46

The nodes and arrows have the same indications as before. The difference
between the Multi-round MCTS and the normal MCTS is that after the
searching algorithm reaches the leaf node of the first round, it continues its
simulation to further rounds, and the legal moves reset after each round with
the previously selected champions removed. Additionally, as each time the
thread reaches a leaf node, a round ends, we need to predict the outcome of
the game for every visited leaf node. As the results of early rounds influence
the results of later rounds, but not vice versa, we let the total reward be
the reward backpropagated from all the leaf nodes further down the tree. In
other words, the reward is given by the formula

∑N
i=n vi, where N denotes

the total number of rounds, and n denotes the current round of the node.
Therefore, the reward in the figure is given by v1 + v2, as we are currently at
nodes of depth 1 in the very first round.

47

root 1

1

2

3

leaf 1

3

2

3 3

1

2

3

leaf 1

3

2

3 3

1

2

3

leaf 1

3

2

3 3

1

2

3 3

2

3 3

leaf 1

root 2

1

2

3

leaf 2

3

2

3 3

1

2

3 3

2

3 3

1

2

3 3

2

3 3

1

2

3 3

2

3 3

root 2

1

2

3

leaf 2

3

2

3 3

1

2

3 3

2

3 3

1

2

3 3

2

3 3

1

2

3 3

2

3 3

.

root 1

1

2

3

leaf 1

3

2

3 3

1

2

3

leaf 1

3

2

3 3

1

2

3

leaf 1

3

2

3 3

1

2

3 3

2

3 3

leaf 1

root 2

1

2

3

leaf 2

3

2

3 3

1

2

3 3

2

3 3

1

2

3 3

2

3 3

1

2

3 3

2

3 3

root 2

1

2

3

leaf 2

3

2

3 3

1

2

3 3

2

3 3

1

2

3 3

2

3 3

1

2

3 3

2

3 3

.

∆v = v2 ∆v = v2

∆v =v1 + v2 ∆v =v1 + v2

.

Figure 19: The mechanism of the Multi-round Parallel MCTS algorithm

48

References

[Pet+02] Nicolò Cesa-Bianchi Peter Auer et al. “Finite-time Analysis of
the Multiarmed Bandit Problem.” In: Machine Learning (2002),
pp. 235–256. doi: 10.1023/A:1013689704352.

[CWH08] Guillaume M. J. -B. Chaslot, Mark H. M. Winands, and H. Jaap
van den Herik. “Parallel Monte-Carlo Tree Search”. In: Comput-
ers and Games. Springer Berlin Heidelberg, 2008, pp. 60–71. doi:
10.1007/978-3-540-87608-3_6. url: https://doi.org/10.
1007/978-3-540-87608-3_6.

[Lea10] League of Legends. League of Legends — Wikipedia, The Free
Encyclopedia. [Online; accessed 15-December-2022]. 2010. url:
https://en.wikipedia.org/wiki/League_of_Legends.

[Bru11] J. Bruin. newtest: command to compute new test @ONLINE. Feb.
2011. url: https : / / stats . oarc . ucla . edu / stata / ado /

analysis/.

[JR11] Marshall HALL JR. “Distinct Representatives”. In: Combinato-
rial Theory. John Wiley & Sons, Inc., Aug. 2011, pp. 48–72. doi:
10.1002/9781118032862.ch5. url: https://doi.org/10.
1002/9781118032862.ch5.

[Koe18a] Will Koehrsen. Hyperparameter Tuning the Random Forest in
Python — towardsdatascience.com. https://towardsdatascience.
com/hyperparameter-tuning-the-random-forest-in-python-

using-scikit-learn-28d2aa77dd74. 2018.

[Koe18b] Will Koehrsen.Neural Network Embeddings Explained — towards-
datascience.com. https://towardsdatascience.com/neural-
network-embeddings-explained-4d028e6f0526. 2018.

[Bar19] David Barnes. What is the average number of legal moves per
turn? — chess.stackexchange.com. https://chess.stackexchange.
com/questions/23135/what-is-the-average-number-of-

legal-moves-per-turn. 2019.

[Mis19] Mistreaver. History Of Chess Computer Engines - Chessentials
— chessentials.com. https://chessentials.com/history-of-
chess-computer-engines/. 2019.

49

https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1007/978-3-540-87608-3_6
https://doi.org/10.1007/978-3-540-87608-3_6
https://doi.org/10.1007/978-3-540-87608-3_6
https://en.wikipedia.org/wiki/League_of_Legends
https://stats.oarc.ucla.edu/stata/ado/analysis/
https://stats.oarc.ucla.edu/stata/ado/analysis/
https://doi.org/10.1002/9781118032862.ch5
https://doi.org/10.1002/9781118032862.ch5
https://doi.org/10.1002/9781118032862.ch5
https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74
https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74
https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74
https://towardsdatascience.com/neural-network-embeddings-explained-4d028e6f0526
https://towardsdatascience.com/neural-network-embeddings-explained-4d028e6f0526
https://chess.stackexchange.com/questions/23135/what-is-the-average-number-of-legal-moves-per-turn
https://chess.stackexchange.com/questions/23135/what-is-the-average-number-of-legal-moves-per-turn
https://chess.stackexchange.com/questions/23135/what-is-the-average-number-of-legal-moves-per-turn
https://chessentials.com/history-of-chess-computer-engines/
https://chessentials.com/history-of-chess-computer-engines/

[Che+20] Sheng Chen et al. Which Heroes to Pick? Learning to Draft in
MOBA Games with Neural Networks and Tree Search. 2020. doi:
10.48550/ARXIV.2012.10171. url: https://arxiv.org/abs/
2012.10171.

[Tra20] Eoin Travers.Why does logistic regression overfit in high-dimensions?
— Eoin Travers — eointravers.com. http://eointravers.com/
post/logistic-overfit/#:~:text=Logistic%20regression%

20models % 20tend % 20to , closely % 20to % 20th % 20trainin %

20data.. 2020.

[R21] Sruthi E R. Understand Random Forest Algorithms With Ex-
amples (Updated 2023) — analyticsvidhya.com. https://www.
analyticsvidhya.com/blog/2021/06/understanding-random-

forest/#:~:text=Random%20Forest%20reduces%20overfitting%

20by,feature%20selection%20and%20data%20interpretation..
2021.

[Sha21] Mohammed Shammeer. Random Forest Fails — medium.com.
https://medium.com/swlh/random-forest-fails-a8ca2d46c312.
2021.

[Cri23] Jacob Crick. League of Legends — Red Side vs. Blue Side —
pinnacle.com. https://www.pinnacle.com/en/esports-hub/
betting-articles/league-of-legends/league-of-legends-

red-side-vs-blue-side/kg2jey3lv9q726yz. 2023.

[Xu23] Davide Xu. How many Champions are in League of Legends? -
List by Class and Role — esports.net. https://www.esports.
net/news/lol/how-many-champions-are-in-league-of-

legends/. 2023.

[Has] Muhammad Hassan. Categorical Variable - Definition, Types and
Examples — researchmethod.net. https : / / researchmethod .
net/categorical-variable/.

[IBM] IBM. What is Logistic regression? — IBM — ibm.com. https:
//www.ibm.com/topics/logistic-regression.

[LCK] LCK. LCK/2022 Season/Summer Season/Picks and Bans — lol.fandom.com.
https://lol.fandom.com/wiki/LCK/2022_Season/Summer_

Season/Picks_and_Bans.

50

https://doi.org/10.48550/ARXIV.2012.10171
https://arxiv.org/abs/2012.10171
https://arxiv.org/abs/2012.10171
http://eointravers.com/post/logistic-overfit/#:~:text=Logistic%20regression%20models%20tend%20to,closely%20to%20th%20trainin%20data.
http://eointravers.com/post/logistic-overfit/#:~:text=Logistic%20regression%20models%20tend%20to,closely%20to%20th%20trainin%20data.
http://eointravers.com/post/logistic-overfit/#:~:text=Logistic%20regression%20models%20tend%20to,closely%20to%20th%20trainin%20data.
http://eointravers.com/post/logistic-overfit/#:~:text=Logistic%20regression%20models%20tend%20to,closely%20to%20th%20trainin%20data.
https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/#:~:text=Random%20Forest%20reduces%20overfitting%20by,feature%20selection%20and%20data%20interpretation.
https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/#:~:text=Random%20Forest%20reduces%20overfitting%20by,feature%20selection%20and%20data%20interpretation.
https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/#:~:text=Random%20Forest%20reduces%20overfitting%20by,feature%20selection%20and%20data%20interpretation.
https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/#:~:text=Random%20Forest%20reduces%20overfitting%20by,feature%20selection%20and%20data%20interpretation.
https://medium.com/swlh/random-forest-fails-a8ca2d46c312
https://www.pinnacle.com/en/esports-hub/betting-articles/league-of-legends/league-of-legends-red-side-vs-blue-side/kg2jey3lv9q726yz
https://www.pinnacle.com/en/esports-hub/betting-articles/league-of-legends/league-of-legends-red-side-vs-blue-side/kg2jey3lv9q726yz
https://www.pinnacle.com/en/esports-hub/betting-articles/league-of-legends/league-of-legends-red-side-vs-blue-side/kg2jey3lv9q726yz
https://www.esports.net/news/lol/how-many-champions-are-in-league-of-legends/
https://www.esports.net/news/lol/how-many-champions-are-in-league-of-legends/
https://www.esports.net/news/lol/how-many-champions-are-in-league-of-legends/
https://researchmethod.net/categorical-variable/
https://researchmethod.net/categorical-variable/
https://www.ibm.com/topics/logistic-regression
https://www.ibm.com/topics/logistic-regression
https://lol.fandom.com/wiki/LCK/2022_Season/Summer_Season/Picks_and_Bans
https://lol.fandom.com/wiki/LCK/2022_Season/Summer_Season/Picks_and_Bans

[LPL] LPL. LPL/2022 Season/Summer Season/Picks and Bans — lol.fandom.com.
https://lol.fandom.com/wiki/LPL/2022_Season/Summer_

Season/Picks_and_Bans.

[Rob] Chris Roberts. Matchmaking and Champion Select - Fall 2022 -
League of Legends — leagueoflegends.com. https://www.leagueoflegends.
com/en-gb/news/dev/matchmaking-and-champion-select-

fall-2022/.

[wor] worlds. 2022 Season World Championship/Match History — lol.fandom.com.
https://lol.fandom.com/wiki/2022_Season_World_Championship/

Match_History.

[Zha+] Brandon Zhao et al. League of Legends: An Exploratory Data
Analysis — ucladatares.medium.com. https://ucladatares.
medium.com/league- of- legends- an- exploratory- data-

analysis-11f6022f18be.

51

https://lol.fandom.com/wiki/LPL/2022_Season/Summer_Season/Picks_and_Bans
https://lol.fandom.com/wiki/LPL/2022_Season/Summer_Season/Picks_and_Bans
https://www.leagueoflegends.com/en-gb/news/dev/matchmaking-and-champion-select-fall-2022/
https://www.leagueoflegends.com/en-gb/news/dev/matchmaking-and-champion-select-fall-2022/
https://www.leagueoflegends.com/en-gb/news/dev/matchmaking-and-champion-select-fall-2022/
https://lol.fandom.com/wiki/2022_Season_World_Championship/Match_History
https://lol.fandom.com/wiki/2022_Season_World_Championship/Match_History
https://ucladatares.medium.com/league-of-legends-an-exploratory-data-analysis-11f6022f18be
https://ucladatares.medium.com/league-of-legends-an-exploratory-data-analysis-11f6022f18be
https://ucladatares.medium.com/league-of-legends-an-exploratory-data-analysis-11f6022f18be

	Introduction
	Champion selection

	Methods
	Onehot encoding method
	Binary encoding method
	Classification methods for basic encoding techniques
	Embedding

	Comparison between the methods
	Accuracy
	ROC and AUC
	Testing consistency
	Limitations

	Fine-tuning of the Methods
	Hyperparameter tuning
	Comparison between the default classifier and the fine-tuned classifier

	MCTS algorithm
	Selection criteria
	Distinct representative problem
	Minimax algorithm
	Introduction to MCTS algorithm
	MCTS algorithm for League of Legends
	Parallel MCTS algorithm
	Results
	MCTS vs Minimax

	Conclusion and future works
	Future work: Multi-round MCTS

