
Coordination for Agents with
Freedom of Choice

Henk J. Pijper

Coordination for Agents with
Freedom of Choice

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Henk J. Pijper
born in Dordrecht, The Netherlands

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, The Netherlands

http://www.ewi.tudelft.nl/

http://www.ewi.tudelft.nl/

c© 2010 Henk J. Pijper.

Coordination for Agents with
Freedom of Choice

Author: Henk J. Pijper
Student id: 1174738
Email: H.J.Pijper@student.tudelft.nl

Abstract

Autonomous, self-interested agents have to construct plans for their ac-
tivities. Together, these plans form a joint plan in the multi-agent system the
agents are part of. Merging the plans of these agents is not guaranteed to be
successful as their plans might conflict.

Hence, we require some form of coordination that enables agents to plan
for their tasks autonomously. We will present a pre-planning coordination ap-
proach. Our research focusses on coordination of tasks with preconditions
and effects, which we define as instantiation-coordination. It is based on an ex-
isting approach, called plan-coordination. Verifying instantiation-coordination
is coNP-complete. Ensuring instantiation-coordination is even harder: Σp

2
-

complete.
We apply our approach to a classical planning domain: Logistics. Based

on these experiments, we evaluate the cost involved with our coordination
approach for autonomous agents.

Thesis Committee:

Chair: prof. dr. C. Witteveen, Faculty EEMCS, TU Delft
Committee Member: dr. T.B. Klos, Faculty EEMCS, TU Delft
Committee Member: dr. P.G. Kluit, Faculty EEMCS, TU Delft
University Supervisor: ir. J.R. Steenhuisen, Faculty EEMCS, TU Delft
University Supervisor: C. Yadati Narasimha MSc., Faculty EEMCS, TU Delft

H.J.Pijper@student.tudelft.nl

Preface

More than once, I was asked when my thesis work would be finished. Well, to
all of them: here it is! After several months of hard work, I am pleased with the
result. Coordination for agents with freedom of choice; at the start of my thesis
work not the title I imagined for my report. However, I think it covers an interesting
extension to impressive previous work on coordination.

During my thesis work, I was supported by many others. Without their help,
I doubt whether my work would have reached this level. First of all, I would like
to thank my daily supervisors Renze Steenhuisen and Chetan Yadati Narasimha.
With Renze, I had very valuable discussions on ideas and the theory underlying
my thesis work. Chetan often provided me with new theoretical insights and could
often provide a clear context for the theory.

I would like to thank Cees Witteveen for being my supervisor. During our meet-
ings, he was able to swiftly come up with new ideas and to assess mine. His re-
marks allowed me to considerably enhance this report. Peter Kluit and Thomas
Klos, thanks in advance for reading and assessing my work. As I spend quiet some
time on the 7th floor, I would like to thank all members of the Algorithmics group
for our lunches and discussions at the coffee machine.

Finally, I would like to thank the people closest to me; the ones more distant
from my thesis work. Foremost, I am grateful for the thorough support of my
girlfriend. It must have been dozens of hours that I troubled her with my issues.
I would like to thank my brother for providing me with his opinion. Last, but not
least, I would like to thank my parents for their continuous support during the
period of my thesis and the many years that led me to this point.

This report’s title and preface alone might give you a little sense on the contents
of this report, so I would encourage you to read on!

Henk J. Pijper
Delft, The Netherlands

January, 2010

iii

Contents

Preface iii

Contents v

List of Figures vii

Nomenclature ix

1 Introduction 1

1.1 Coordinating Agents . 2
1.2 Our Research . 2

1.2.1 Contributions . 3
1.3 Outline . 4

2 Planning and Coordination Preliminaries 5

2.1 Multi-agent Planning . 5
2.1.1 Agents and Assumptions . 7
2.1.2 Actions and Classical Planning 7
2.1.3 Tasks . 8

2.2 Task Coordination Framework . 8
2.2.1 Tasks and Relations . 8
2.2.2 Task Allocation . 9
2.2.3 Plans . 10
2.2.4 Coordination . 11

2.3 Instantiating Tasks . 12

3 Instantiation Coordination 15

3.1 Disjunctive Conditions . 15
3.1.1 Assumptions . 16

3.2 Enriching the Task Coordination Framework 17
3.2.1 Tasks . 17

v

CONTENTS

3.2.2 Relations . 19
3.2.3 Agents . 23

3.3 Instantiating Tasks . 24
3.3.1 Selecting and Pruning Dependencies 27
3.3.2 Consistent and Minimal Dependencies Instances 31
3.3.3 Instantiation and the Abstract Complex Task 35

3.4 Coordination . 37
3.4.1 Coordination Verification . 38
3.4.2 Ensuring Coordination . 43

3.5 Discussion . 50

4 Application and Experiments 51

4.1 Logistics Application Domain . 52
4.1.1 Domain Specification . 52

4.2 Experimental Design and Set-up . 57
4.2.1 Decoupling . 57
4.2.2 Performance Measures . 61
4.2.3 Expected Results . 63
4.2.4 Experimental Set-up . 64
4.2.5 Computational Limits . 65

4.3 Planning Results . 65
4.3.1 Instantiated Plan-Decoupling 65
4.3.2 Instantiation-Decoupling . 69

4.4 Discussion . 71

5 Conclusions and Future Work 75

5.1 Conclusions . 75
5.2 Future work . 76
5.3 Applicability . 77

Bibliography 79

vi

List of Figures

2.1 Activity-related process. 6

2.2 Complex task. 9

2.3 Precedences between tasks of two agents. 11

2.4 Dependencies between effects and preconditions of tasks. 13

3.1 Representation of tasks with preconditions and effects. 18

3.2 Condition dependencies for concrete and abstract tasks. 20

3.3 Dependency relations between three tasks. 22

3.4 Conflicting effects between tasks. 22

3.5 Dependencies instance with two feasible instantiations. 25

3.6 Two agents instantiating a dependencies instance. 27

3.7 A dependencies instance. 28

3.8 A reduced dependencies instance. 30

3.9 Cyclic dependency conditions between tasks. 31

3.10 Consistency of a dependencies instance. 32

3.11 Transformation from 3-SAT to CD. 33

3.12 Consistent dependencies instances. 35

3.13 Transformation from PWFP forbidden pair to a task partition in ICC. . . 40

3.14 Transformation of a PWFP instance to a ICC instance. 41

3.15 Abstract Complex Task . 44

3.16 A PWFP instance. 46

3.17 Transformation from p ∈ F1 in ∃∀¬PWFP to a task partition in ID. 46

3.18 Task partition for modelling a path from tt to ts. 47

4.1 Infrastructure for a Logistics instance. 52

4.2 Orders for a Logistics instance. 55

4.3 Boundaries between a city and airplane agent. 56

4.4 A potential cyclic plan for Logistics. 58

4.5 Additional (dashed) precedences for coordinating Logistics. 59

4.6 (Dashed) Dummy task for coordinating Logistics. 59

vii

LIST OF FIGURES

4.7 Plan quality - decoupled planning. 67
4.8 Relative plan quality (decoupled / central). 67
4.9 Run-time - decoupled planning. 68
4.10 Relative run-time (decoupled / central). 68
4.11 Relative plan quality for split instances (decoupled / central). 70
4.12 Relative run-time for split instances (decoupled / central). 70
4.13 Relative plan quality, instantiated plan-decoupled (city / order). 72
4.14 Relative run-time, instantiated plan-decoupled (city / order). 72

5.1 Levels of abstraction. 76

viii

Nomenclature

T a Abstract complex task

α Action

A Set of actions

a Agent

A Set of agents

Ce Set of effects for a set of tasks

Cp Set of preconditions for a set of tasks

T Complex task

- Condition dependency

-inter Inter-agent condition dependency

-intra Intra-agent condition dependency

c Condition

C Set of conditions

∆ Coordination set

ce Effect

Ce Set of effects

φ Boolean formula

Π Joint plan

π Plan

ix

LIST OF FIGURES

cp Precondition

Cp Set of preconditions

t Task

fta Task allocation function

P Environment of tasks

I Set of task instantiations

T Task partitioning

≺ Precedence relation for tasks

≺inter Inter-agent precedence relation for tasks

≺intra Intra-agent precedence relation for tasks

T Set of tasks

x

Chapter 1

Introduction

A soccer match, between robots. . . It is the main focus of the yearly international
research and education initiative: RoboCup.1 In various leagues, teams from all over
the world compete with their robotic teams. Without intervention of their creators,
the robots play soccer matches on a small indoor field.

Except for the smallest, robots have to decide what to do themselves. They
should plan which actions they will perform in the near future. They are autonomous
in deciding what actions to perform and when to execute them. On the other hand,
they should cooperate to win a match. Winning a match is equivalent to achieving
two simple goals: to score goals and to prevent goals against. Robots should con-
struct plans such that these two goals are achieved. Together, their plans form a
joint plan for the team. Just like in ‘ordinary’ soccer, it is the team that wins a match,
not the individual. Hence, planning plays a key role in these soccer robots. The
better robots coordinate for their plans, the better the overall joint plan will be.

Robots in various leagues have to rely on their sensors to explore their envi-
ronment. Each robot has to identify, among other facts, where the ball is, where
teammates and opponents are, and its location on the field. Suppose two robots
both process the information they get from their sensors. One of them constructs
and executes a plan to defend, the other to attack. This would lead to a low qual-
ity joint plan. It hurts the effectiveness of the robots as a team. By communicating
during the match, they can coordinate decisions such as to defend or attack as a
team.

Not every decision is to be communicated during the game. It would be far too
time consuming to coordinate each and every act. Positions as attacker, defender, or
keeper can be easily assigned to robots before the match starts. Similarly, assuming
all robots are identical, it saves communication effort to decide upfront which robot
to take the corner kicks. These coordination measures are defined prior to the match
and hence before the robots start planning.

1The official site of the RoboCup: http://www.robocup.org/.

1

http://www.robocup.org/

1. INTRODUCTION

A soccer robot in the previous example can be seen as an agent. An agent
can be almost any concept or thing that has some form of autonomy. Together,
the soccer robots constitute a multi-agent system. In a multi-agent system, multiple
agents have to cooperate and coordinate their activities to achieve a goal. These
systems are not only used for modelling robots that play soccer. Examples of such
systems are disaster response teams [38], organisations in supply-chains [11], and
examples from nature, like ant colonies [27].

Planning plays a key role in multi-agent systems. It involves reasoning about the
effects of actions one will perform, before actually executing them. We will study
multi-agent systems in which a problem is decomposed in subproblems. Subprob-
lems are assigned to agents, which have to construct plans for them. After plan-
ning, we merge agents’ plans into a joint plan. While each agents constructed its
plan in isolation, their plans might conflict when merging them.

We would like to prevent these conflicts. We will be particularly interested in co-
ordination of agents’ planning processes, prior to planning. This type of coordination
prevents conflicts when merging plans.

1.1 Coordinating Agents

Let’s revisit our soccer robots example. Assume, for simplicity, we have two robots
in our team; robots r1 and r2. Suppose r1 is assigned the task t1 of taking a corner
kick. To achieve this task, r1 has to move to the corner flag, position itself, and shoot
the ball. In this position, it is impossible for r1 to score a goal. Hence, another
task is required to score. Robot r2 is assigned the task t2 to shoot on target when
obtaining the ball.

Robot r1 might pass the ball close to the goal, or further away. Task t1 has a
so-called disjunctive effect; either one of the effects of it will hold. Therefore, robot r2
should position itself either close to the goal, or further from the goal. Its position
depends on the effect of task t1. We define the position of r2 to be the precondition of
t2. We will call this relation a condition dependency between an effect and a precon-
dition.

When robot r1 kicks the ball, it is probably too late for robot r2 to position it-
self. Hence, robots r1 and r2 should coordinate their planning activities to agree on
a single position. Whether it is a successful goal attempt or not, the robots will
probably loose the ball as a team. There default action is therefore to return to their
own half and defend. We will call these tasks t3 and t4 for respectively robot r1 and
r2. While there is no clear dependency between the effects of tasks t1, t2 and the
preconditions of t3, t4 we can simply order them by a precedence relation.

1.2 Our Research

We highlighted various terms in the soccer robot example. In our research, we focus
on achieving coordination for the planning activities of autonomous agents. Pre-

2

1.2. Our Research

vious work, by Valk [35], addressed coordination for tasks and precedences between
tasks. It provides a framework for analysing coordination as well.

In our work, we will extend: (i) the existing framework for analysing coordi-
nation and (ii) the existing coordination mechanism for ensuring coordination. We
study pre-planning coordination. By ensuring pre-planning coordination, each plan
constructed by an agent merges without conflicts into a feasible joint plan. We will
analyse the impact of enriching the task coordination framework on coordination
of autonomous planning agents. Our enrichments are twofold: (i) we extend tasks
to have preconditions and effects and (ii) we add a dependency relation between
effects and preconditions. The extended tasks are abstract tasks.

We formulate the central research question for this thesis as:

How to ensure coordination of autonomous, self-interested planning
agents for dependent abstract tasks?

To answer this research question, we will extend the coordination framework
and mechanism as presented in Valk [35].2 To distinguish between our work and
previous work, we will use the term plan-coordination for the previous work. Our
work extends coordination with the notion of task instantiation; we therefore term
it instantiated plan-coordination.

1.2.1 Contributions

We identify three contributions in our work with respect to the research question.

• We formally extend the task coordination framework, which has been used in
previous work for the analysis of plan-coordination. We will use the enriched
framework to analyse instantiated plan-coordination.

• We state the problem of instantiated plan-coordination in terms of the enriched
task coordination framework. We show that with our enrichments the prob-
lems of verifying and ensuring coordination remain in the same complexity
class. On the other hand, we show that our enrichments in isolation are of
the same complexity classes as well. Hence, the enrichments are not trivial
extensions.

• We analyse the applicability of our coordination approach by applying it to the
Logistics problem.

– We extend the number of Logistics instances we can coordinate.

– We run various planners on instances for this problem to identify the
cost of autonomy for agents.

2Although interesting, we will not consider decomposition [4] and temporal extensions [32] to
this approach.

3

1. INTRODUCTION

1.3 Outline

Our contributions are in Chapters 3 and 4. Some preliminary discussion is required
before introducing instantiated plan-coordination. In Chapter 2, we will therefore
first present the field of multi-agent coordination and the existing task coordination
framework.

Subsequently, we will introduce instantiated plan-coordination in Chapter 3.
There, we discuss the extensions to the task coordination framework and the com-
plexity results we have obtained.

In Chapter 4, we discuss instantiated plan-coordination for the Logistics prob-
lem in a multi-agent setting. We ran domain-independent planners on these in-
stances in a central and multi-agent setting. Both settings are compared in terms
of plan length and run-time to identify the cost of autonomy for the agents in this
specific Logistics problem.

Finally, we will finalise our work in Chapter 5. It concludes this report and
features an outlook for potential future work.

4

Chapter 2

Planning and Coordination
Preliminaries

Our discussion on instantiation-coordination requires several concepts to be clear.
In this chapter, we introduce these concepts. Additionally, we will position our
research in the field and identify research that is related to our work.

First, in Section 2.1, we will sketch the field of multi-agent planning and coordi-
nation. Next, we will discuss the main foundation for our work, the task coordina-
tion framework in Section 2.2. In Section 2.3, we will conclude this chapter with the
incitement for our work.

2.1 Multi-agent Planning

We have a set of agents, grouped into a single system. An agent can be virtually
anything; from a human being to an automated software agent.1 What matters is
that these agents form a system that is able to perform collective tasks. To perform
these tasks, agents have to reason about the activities of other agents to coordinate
for their own activity [24].

Here, we will study coordination for planning by and for a multi-agent system.2

During planning, agents reason about the activities they want to execute. They con-
struct plans that form a blue-print for their activities. These activities result from
the tasks assigned to agents during an allocation process. Finally, we identify the
scheduling phase in which resources are allocated to agents and the activities sched-
uled in time. In Figure 2.1, the overall process is depicted. This process need not be
sequential. Often, phases are repeated with knowledge inferred from subsequent
phases.

Agents each have their own planning, scheduling, and execution phases. If
their activities would not interfere, it would be senseless to study them in a multi-
agent setting. We therefore do assume their activities to interfere and require co-

1Our discussion will not limit itself to a certain type of agent.
2Plans can be constructed by agents and for agents. Here, we have both.

5

2. PLANNING AND COORDINATION PRELIMINARIES

task allocation planning scheduling execution

Figure 2.1: Activity-related process.

ordination to deal with this interference. By coordinating the activities of agents,
possible conflicts can be avoided, resolved, or repaired.

Focussing on planning, we define conflicts between agents as conflicting plans.
Plans conflict if they cannot be merged into a feasible joint plan. We identify three
moments at which coordination can be achieved to deal with conflicting plans [7]:

Before planning When achieving coordination prior to planning, agents do not
have to reason about other agents’ planning processes. By constructing plans
that adhere to the coordination constraints, coordination is ensured and con-
flicts are avoided. An active topic in coordination research is that of social laws
[30]. Social laws are rules for all agents in the multi-agent system. When
agents obey these rules, conflicts will be avoided. Social laws restrict the ac-
tions of agents, depending on the state of the world. An example of social
laws in practise are the rules defined for road traffic.

Another approach is the pre-planning coordination approach introduced by
Valk [35]. Coordination is defined at the level of tasks and precedences be-
tween them. By decoupling [31] for plans cyclic dependencies between agents
are avoided.3 Agents are coordinated by adding dependencies between tasks.
It differs from social laws in that the set of dependencies added to the tasks is
defined on a per-agent basis.

During planning Ensuring coordination during planning requires agents to com-
municate. By communicating, agents can harmonise their activities. An influ-
ential approach is Generalized Partial Global Planning (GPGP) [23]. Agents
in this approach have a limited view of the multi-agent system they oper-
ate in. By communicating about task relations and partial-beliefs of agents,
coordination is achieved.

After planning Finally, we can coordinate the activities of agents after planning.
First, each agent constructs a plan for its local activities. After planning, these
plans are merged. Conflicts that arise during merging might either be re-
solved by repairing the joint plan [6] or by re-planning [26].

In the work of Valk [35], the relation between coordination before and after
planning is acknowledged. A pre-planning coordination approach might coordi-
nate up to the extent that coordination after planning is trivial. We will focus our
attention on coordination before planning.

3Decoupling is a process in which coordination is achieved such that agents do not have to reason
about interactions between their subproblems.

6

2.1. Multi-agent Planning

2.1.1 Agents and Assumptions

Planning and coordination can be applied in various multi-agent systems. Agents
play a key role in such systems. Because we study coordination for these agents,
we have to identify some of their characteristics.

Autonomous Agents require at least some autonomy in constructing their own
plans. Autonomy is the ability of agents to decide on their own activities. Auton-
omy is an ambiguous term in literature on multi-agent systems [2]. For our work,
we will assume that agents do not or cannot communicate at any moment of the
planning phase. Hence, we will have to coordinate for the agents’ activities.

Self-interested We distinguish between cooperative and self-interested agents.
Cooperative agents have the overall goal as their highest goal. They are benevolent
to each other in achieving this. On the other hand, self-interested agents pursue
only their own goals. We model agents to be self-interested.

To conclude, we will study coordination for multi-agent systems with au-
tonomous, self-interested agents. We assume these agents to:

(i) not take the planning process of other agents into account,

(ii) not revise their plans after planning,

(iii) not communicate during planning.

2.1.2 Actions and Classical Planning

Agents perform their activities by executing actions. A partially-ordered set of ac-
tions is a plan for the activity. Instead of ‘activity’, the terms ‘problem’ and ‘task’
are used in the field of classical planning [16]. This active field of planning research
is based on the model of a state transition system. In a state transition system, an
action αi,j in a set of actions A triggers a transition between states si and sj from a
set of states S.

Actions have preconditions and effects. An action α ∈ A is said to be applicable
in a state s ∈ S if s satisfies the preconditions of α. Applying α in s triggers a state
transition.

A plan is constructed from an initial state s0 ∈ S to one of a set of goal states
Sg ⊆ S. We require agents to be able to construct such plans at the level of actions.
We will not reason about such plans, but concern ourselves with coordination only.

To ensure coordination, we could identify the dependencies between actions as
Dimopoulos and Moraitis [8] did. In this approach, however, coordination is inter-
leaved with planning by cooperative agents. We rather abstract from the planning
process and its details. To do so, we will define our coordination approach on a
higher level of abstraction.

7

2. PLANNING AND COORDINATION PRELIMINARIES

2.1.3 Tasks

In Hierarchical Task Network (HTN) planning [9], a hierarchical network of tasks is
used to construct a plan at the level of actions. It starts by decomposing high-
level tasks into subtasks, until the level of actions is reached. We will also use tasks
to abstract away from the level of actions. Our notion of a task corresponds to a
subproblem, that has to be solved by a planner.

In HTN planning, tasks are defined at various levels. On the other hand, in clas-
sical planning literature [10, 18, 20], the entire planning problem is often referred
to as a ‘planning task’. We will abstract away from actions such that the depen-
dencies captured in these actions are preserved in the tasks. A task is therefore the
highest level of abstraction at which all dependencies, relevant for coordination, are
captured. We term these tasks elementary tasks as they are elementary for analysing
coordination. An elementary task will often be simply referred to as a task and will
be represented by a symbol t.

2.2 Task Coordination Framework

We will turn our attention to pre-planning coordination for self-interested, au-
tonomous agents in a multi-agent setting. In this section, we formalise the con-
cepts required for analysing this type of coordination in the task coordination frame-
work. This framework has been introduced by Valk [35]. Our discussion is simi-
lar to Steenhuisen et al. [33]. Various extensions like a decomposition relation [4]
and synchronisation constraints [32] have been proposed, but will not be discussed
here.4

2.2.1 Tasks and Relations

First of all, we assume tasks to be elementary. An elementary task t is defined as
in Section 2.1.3. That is, all relations between tasks relevant for coordination are
captured at this level and all planning details are omitted. We consider all tasks to
be adequately defined with respect to these criteria.

The only relation we identify between tasks is the precedence relation (≺). It
defines a partial order over the set of tasks. If task t has to end before task t′ starts,
we denote this as t ≺ t′. We call this relation a precedence relation. An agent planning
for these tasks has to ensure that t is completed before t′ starts. All actions required
for executing t will therefore precede the actions required for achieving t′.5

Together, a set of tasks T and a precedence relation ≺ over T constitute a plan-
ning problem. We define a planning problem in our framework as a complex task
T.

4In the initial work of Valk [35], capabilities for agents were defined as well. Capabilities are not
relevant for our work and therefore not discussed.

5We define the precedence relation to be transitively closed. That is, if t ≺ t′ and t′ ≺ t′′, then we
have t ≺ t′′ as well.

8

2.2. Task Coordination Framework

t1

t2

t3

t4

Figure 2.2: Complex task.

DEFINITION 2.1 (Complex Task). A complex task is a tuple T = (T,≺), for which T
is a set of tasks and ≺ ⊆ T × T specifies a partial order over T.

EXAMPLE 2.1. In Figure 2.2, a graphical representation for a complex task is shown.
Each plan for this complex task will first have to achieve task t1. Then, it can start
with either t2, t3, or both tasks simultaneously. Task t4 has to go after t2.

In Example 2.1, we identified how a planner for the complex task could order
the tasks in a plan. We will call this more restrictive ordering a refinement of the
complex task. Refinements will be used for the discussion on plans, later on.

DEFINITION 2.2 (Refinement). A complex task T ′ = (T ′,≺′) is a refinement of another
complex task T = (T,≺), if and only if:

T = T ′

≺ ⊆ ≺′

2.2.2 Task Allocation

We define the set of agents as A = {a1, a2, . . . , an}. Before these agents can plan,
tasks need to be allocated to them, as shown in Figure 2.1. For us, only the result of
allocation is relevant; the task assignment. Hence, we assume an assignment to be
given by some task allocation function:

fta : T → A. (2.1)

The task allocation function fta induces a partitioning T = {Ti}
n
i=1 of T into sub-

tasks. Each subtask Ti = {t ∈ T | fta(t) = ai} is the set of tasks assigned to agent ai.
With the tasks assigned to an agent, the agent inherits the precedence relationships
associated with these tasks. An agent is assigned a subtask of a complex task.

DEFINITION 2.3 (Complex Subtask). Given a complex task T = (T,≺), a set of agents
A, and a task allocation function fta, a complex subtask for agent ai ∈ A is a complex
task Ti = (Ti,≺i), for which:

Ti = {t ∈ T | fta(t) = ai}

≺i = ≺ ∩ (Ti × Ti)

9

2. PLANNING AND COORDINATION PRELIMINARIES

All precedences within the subtask of an agent, ≺i, will be taken into account.
These are intra-agent precedences, ≺intra. Precedences between tasks of different
agents are omitted from these subtasks. These are inter-agent precedences. So, we
have that: ≺intra ∩≺inter = ∅ and ≺ = ≺intra ∪ ≺inter.

DEFINITION 2.4 (Inter-agent Precedences). Given a complex task T = (T,≺), a parti-
tioning T = {Ti}

n
i=1 of T, and a set of agents A, with each Ti allocated to ai ∈ A, the set

of inter-agent precedences ≺inter is defined by:

≺inter = ≺ \
n
⋃

i=1

(Ti × Ti)

Assigning tasks to agents results in a partitioning. We represent such a parti-
tioned complex task for the complex task (T,≺) as:

({Ti}
n
i=1 , {≺i}

n
i=1 ∪ ≺inter), or (2.2)

({Ti}
n
i=1,≺). (2.3)

In Equation 2.3, we did not explicitly state the precedences that are projected onto
an agent. These can be inferred from the task partitioning {Ti}

n
i=1.

2.2.3 Plans

During planning for its complex subtask Ti = (Ti,≺i), agent ai plans for its complex
task. It constructs a refinement for it. So, a plan for T is a partial order over T.

DEFINITION 2.5 (Plan). Given a complex task T = (T,≺), a plan π for T is a tuple
(T ′,≺′), which is a refinement of T.

Remark. A plan for a complex task (T,≺) is an abstraction of the concrete plan, at the
level of actions. A concrete plan is a (partially) ordered set of actions, represented
by: (A,<).6 An action α precedes α′ if and only if α < α′. We are given a function
that maps a task to the actions in the plan corresponding to it: fα : T → 2A.7 Using
this function, we can transform the concrete plan (A,<) into the plan π = (T,≺′).
In π, we have t ≺′ t′ if and only if ∀α ∈ fα(t),∀α

′ ∈ fα(t
′) : α < α′.

Each agent constructs a plan for its own complex subtask. Consequently, to get
a joint plan for the complex task, we have to merge the agents’ plans.

DEFINITION 2.6 (Joint Plan). Given a partitioned complex task T = ({Ti}
n
i=1,≺) and a

plan πi = (T ′
i ,≺

′
i) for each subtask (Ti,≺i), a joint plan Π = (T ′,≺′) for T is defined by:

T ′ = T = T ′
1 ∪ T ′

2 ∪ · · · ∪ T ′
n

≺′ = ≺inter ∪ (≺′
1 ∪ ≺′

2 ∪ · · · ∪ ≺′
n).

If a plan or joint plan is acyclic, we say it is feasible. Otherwise, the plan is
infeasible.

6A concrete plan transforms an initial state to a goal state for a state transition system. Each action
in the plan triggers a state transition.

72A is the power set of A.

10

2.2. Task Coordination Framework

a1 a2

t1

t2

t3

t4

(a) Partitioned complex
task.

a1 a2

t1

t2

t3

t4

(b) Cyclic joint plan.

a1 a2

t1

t2

t3

t4

(c) Plan-coordinated.

Figure 2.3: Precedences between tasks of two agents.

2.2.4 Coordination

The autonomous agents we have defined are unwilling to revise the plans for their
complex subtasks afterwards. So, when we merge their feasible plans into a joint
plan, we have to ensure that the joint plan is feasible as well. Agents reason about
their intra-agent precedences, but not about inter-agent precedences. These prece-
dences pose a threat to the construction of a feasible joint plan, as we will see in the
next example.

EXAMPLE 2.2. In Figure 2.3(a), a partitioned complex task ({Ti}
n
i=1,≺), assigned to

two agents a1 and a2 is shown. Agent a1 is assigned tasks t1, t2 and a2 is assigned
t3, t4. For this complex task, the set of intra-agent precedences is empty ≺intra= ∅.

The two inter-agent precedences t1 ≺ t3 and t4 ≺ t2 pose a threat to the con-
struction of a feasible joint plan. When allowing each agent to plan for its complex
subtask, agent a1 might come up with the plan π1 = ({t1, t2}, {t2 ≺ t1}) and a2
with π2 = ({t3, t4}, {t3 ≺ t4}). This situation leads to a cyclic joint plan, as shown
in Figure 2.3(b).

So, what could we do to ensure that each joint plan is feasible? We could prevent
either of the precedence refinements {t2 ≺ t1} or {t3 ≺ t4}. To achieve this, we add
a single intra-agent precedence relation t1 ≺ t2, as shown in Figure 2.3(c). Now,
both agents can construct any plan without having a potential infeasible joint plan.
Hence, the agents are coordinated with respect to their plans.

Coordination is required to ensure a feasible joint plan after merging. In Exam-
ple 2.2, we saw that we can coordinate the agents by adding one intra-agent prece-
dence. This is exactly the idea that we will use for ensuring coordination. Because
we coordinate for the plans of agents, we call it plan-coordination.

First, we should know when a partitioned complex task is coordinated. We
have to verify whether it is impossible for agents to come up with plans for their

11

2. PLANNING AND COORDINATION PRELIMINARIES

complex subtasks, that merge into an infeasible joint plan.8 This problem is the
plan-coordination verification problem.

DEFINITION 2.7 (Plan-Coordination Verification Problem (PCV)). Given a parti-
tioned complex task ({Ti}

n
i=1,≺), does it hold for all feasible plans πi = (Ti,≺

′
i) that

the joint plan is acyclic?

Each yes-instance of PCV is plan-coordinated. With respect to Example 2.2, we can
conclude that the partitioned complex task of Figure 2.3(a) is not plan-coordinated.
There exists a cyclic plan for this complex task. On the other hand, the refined
complex task in Figure 2.3(c) is plan-coordinated.

In Example 2.2, the additional precedence limits agent a1 in its planning free-
dom, while the complex subtask of agent a2 is unaffected. While we will ensure
plan-coordination by adding intra-agent precedences, our aim is to add a minimal
number of such precedences. The set of precedences we add is referred to as the
coordination set ∆.

When we ensure plan-coordination, we enable the agents to plan autonomously
for their complex subtasks. They are able to plan independently from each other.
So, we effectively decouple the agents with respect to plans. We call this plan-
decoupling.

DEFINITION 2.8 (Plan-Decoupling Problem (PD)). Given a partitioned complex task
({Ti}

n
i=1,≺) and an integer K > 0,9 does there exist a coordination set ∆ = ∆1 ∪∆2 ∪

· · · ∪∆n, with ∆i ⊂ Ti × Ti, such that:

(i) ({Ti}
n
i=1,≺ ∪∆) is a yes-instance of PCV,

(ii) |∆| ≤ K?

Note that we achieve plan-decoupling by adding intra-agent precedences be-
tween tasks. We could have defined the plan-decoupling problem in various ways.
Plan-coordination could be achieved by adding inter-agent precedences as well or
by removing tasks.

Verifying whether a partitioned complex task is plan-coordinated and achiev-
ing plan-decoupling for a partitioned complex task are computationally hard prob-
lems. The PCV problem is coNP-complete, while the plan-decoupling problem is
Σ2
p-complete [35].

2.3 Instantiating Tasks

In Section 2.2.1, we assumed tasks to be elementary. In practise, however, tasks are
an abstraction of actions that are based on preconditions and effect conditions. In

8We have to check whether the joint plan is always acyclic.
9For K = 0, PD is equal to PCV.

12

2.3. Instantiating Tasks

t1 t2

a1 a2

t1 t2
c1

c2

c3

c4

Figure 2.4: Dependencies between effects and preconditions of tasks.

classical planning, e.g., a planning task is represented by initial conditions, goal
conditions, and a set of actions.

Because tasks correspond to subproblems, a task has initial and goal conditions
as well. We will call these preconditions and effect conditions, short: effects. Precon-
ditions indicate the conditions required to hold before the actions of a task can be
executed. Effect conditions are achieved when the actions of the task have been
executed.

EXAMPLE 2.3. Suppose we are given the complex task T = ({t1, t2}, {t1 ≺ t2}),
with task t1 assigned to agent a1 and task t2 to agent a2. In the left hand side of
Figure 2.4, the subtasks of T are shown.

In the right hand side of Figure 2.4, we zoom in on the tasks. We see that task
t1 has two possible effects c1, c2 and t2 has two possible preconditions c3, c4. Either
one of the effects could be instantiated during planning. Similarly, for task t2, one of
its preconditions will be instantiated. Because both tasks are assigned to different
agents, the instantiations are constructed independently of each other. If either
conditions c1, c4 or c2, c3 are instantiated, a1 and a2 are not coordinated with respect
to their tasks.

The complex task of Figure 2.4 could e.g. model that soccer robot a1 passes the
ball (t1) either forward (c1) or backwards (c2) to robot a2. Robot a2’s task depends
on this pass and on the direction of it. It should either move forward (c3) or back-
wards (c4).

As long as it is known what the exact preconditions and effects of tasks are,
agents can be plan-decoupled. However, plan-coordination does not imply that
these tasks are coordinated with respect to their instantiations. In practise, the out-
come of tasks depends on the planning process as we saw in Example 2.3. Tasks
could achieve one out of multiple effects, or require only some preconditions. These
preconditions and effects are instantiated during planning. From Example 2.3, we
learn that we have to coordinate for these instantiations of tasks as well. In the
subsequent chapters, we will therefore address coordination for instantiated plans.

13

Chapter 3

Instantiation Coordination

We would like to coordinate for the instantiations agents can construct. Plan-
coordination is insufficient for modelling this issue, as discussed at the end of
Chapter 2. We should come up with a new approach for modelling this type of
coordination. We will base this approach on plan-coordination and the task coordi-
nation framework. Consequently, we will enrich the task coordination framework
in this chapter to facilitate instantiated plan-coordination.

Tasks will be enriched with preconditions and effects. Preconditions are con-
ditions required to hold before the task is executed. Effects are conditions that are
achieved by executing the task. Each task can have multiple preconditions and
multiple effects that are disjunctive. Either one of the conditions is selected to be re-
spectively required or achieved during executing the task. By selecting conditions
for a task, the task is said to be instantiated.

In this chapter, we will focus on coordination for the instantiation of tasks that
have disjunctive preconditions and effects. We will start in Section 3.1 by outlining
the coordination problem. To reason about the problem more formally, in Section
3.2, we will discuss enrichments of the task coordination framework. Next, we
will focus on conditions and the dependencies between them in Section 3.3. How
to coordinate for tasks with disjunctive conditions will be the topic of Section 3.4.
Finally, we will conclude this chapter in Section 3.5.

3.1 Disjunctive Conditions

In the task coordination framework, as discussed in Section 2.2, a task was mod-
elled as a single unit of work. Although this representation is sufficient to coordi-
nate the tasks with respect to precedences, a task is essentially more than that. For
a task be executable, it is likely that some conditions on its surroundings have to
hold. We say a task has a precondition, a condition required to hold right before the
task is executed. By executing the task, it changes the environment in which it is

15

3. INSTANTIATION COORDINATION

executed. We denote the new conditions it achieves by the task’s effect condition, or
short: effect. A plan for a task transforms its precondition into its effect condition.

When the precondition and effect condition of a task are known before plan-
ning, we say the task is concrete. On the other hand, we define abstract tasks as
tasks for which the precondition and effect condition are not set before planning.
For many tasks, one out of multiple preconditions should hold to execute the task.
We call such a precondition a disjunctive condition. Both preconditions and effect
conditions can be disjunctive. So, an abstract task has a disjunctive precondition or
a disjunctive effect condition.

Tasks depend on each other by their preconditions and effects. A task’s pre-
condition is likely to be achieved by another task’s effect. The task that achieves
the effect has to be executed prior to the task that requires it. Such an ordering can
be modelled by the precedence relations of the task coordination framework. This
ordering alone is sufficient for concrete tasks, not for tasks with a disjunctive effect
condition.

Suppose that two tasks depend on each other by a disjunctive condition with
two elements. If the first task chooses to provide the first condition, the plan for the
dependent task might still require the second condition to be achieved. Although
the ordering between these tasks is sufficient, the tasks are not coordinated.

When we allow autonomous agents to plan for tasks with disjunctive conditions,
they would require communication during planning agree on which condition to
select. To assure autonomy of the agents, this coordination issue has to be resolved
prior to planning. Therefore, we will address the following problem in this chapter:

How to ensure that instantiated plans, constructed by autonomous, self-
interested planning agents, can be merged into a feasible joint instanti-
ated plan?

To analyse the coordination problem, we will first enrich the task coordination
framework discussed in Section 2.2.

3.1.1 Assumptions

Related to classical planning, one might expect an initial world state and a goal state
to be part of the planning problem. However, we only defined tasks. Implicitly,
tasks incorporate the notion of an initial and goal state. All tasks that have no
prerequisite tasks, which do not depend on the execution of other tasks, depend
on the initial state. On the other hand, a goal state is modelled such that all tasks
executed at the end, deliver the goal effects.

A task might have a disjunctive precondition and a disjunctive effect. During
planning, one precondition and one effect will be selected. We do not model de-
pendencies between preconditions and effects within a task. This would require
reasoning about a plan for it. Having elementary tasks, we assume that for each
precondition each effect can be achieved for a task.

16

3.2. Enriching the Task Coordination Framework

3.2 Enriching the Task Coordination Framework

A complex task T = (T,≺) is central to the task coordination framework, as dis-
cussed in Section 2.2. Along with a set of agents A and a task allocation function
fta : T → A, plan-coordination between autonomous agents can be analysed. Here,
we will extend this framework to make it suitable for coordination for tasks with
disjunctive preconditions and effects.

For the notion of tasks with disjunctive preconditions and disjunctive effect con-
ditions, the task coordination framework lacks detail about tasks. Modelling them
as elementary tasks is not sufficient. Moreover, relations between these preconditions
and effects cannot be represented in the framework. Therefore, we will incorporate
both of these features in the framework such that we can reason about coordination
for abstract tasks.

3.2.1 Tasks

To start with, we extend the definition of a task with disjunctive preconditions and
effects.

DEFINITION 3.1 (Task). A task t is a single unit of work, represented by a tuple (Cp, Ce),
for which Cp is a set of preconditions and Ce a set of effect conditions, such that:

• right before the execution of t at least one condition cp ∈ Cp holds,

• right after the execution of t at least one condition ce ∈ Ce holds.

We could represent the preconditions Cp = {cp1 , cp2 , . . . , cpn} of a task as a dis-
junction of preconditions: cp1 ∨ cp2 ∨ · · · ∨ cpn . Similarly, the set of effects Ce =
{ce1 , ce2 , . . . , cem} is a disjunction of the effects: ce1 ∨ ce2 ∨ · · · ∨ cem . Within a dis-
junction, one or more conditions might hold to fulfil it.

A condition is represented by a boolean formula. To uniquely identify condi-
tions, we use constant symbols from a formal language L. Hence, a condition is a
tuple (γ, φ) with γ a symbol from L and φ a boolean formula. In our discussion,
we will only represent conditions by a tuple when it is appropriate.

Each effect condition can be identified by its symbol γ in L. We require each
effect to be identifiable in terms of the boolean formula as well. Hence, after ex-
ecuting an effect ce we assume a literal lγ to hold that can only be achieved by
executing ce and cannot be falsified.1 Condition c = (γ, φ) is achieved and holds
when its formula φ evaluates to true.

We will often use a convenient notation to denote the preconditions and effects
of a task. For a task ti = (Cpi , Cei), we define Cp(ti) = Cpi and Ce(ti) = Cei . Both
notations are interchangeable.

For a set of tasks T, we define Cp(T) to be the union of preconditions of t ∈ T:
Cp(T) = {cp | cp ∈ Cp, (Cp, Ce) ∈ T}. Similarly, Ce(T) is the union of the effects of all
tasks: Ce(T) = {ce | ce ∈ Ce, (Cp, Ce) ∈ T}.

1We require this, to define dependencies between conditions later on.

17

3. INSTANTIATION COORDINATION

t

(a) Concrete task.

t

(b) Abstract task.

Figure 3.1: Representation of tasks with preconditions and effects.

Concrete, Abstract, and Instantiated Tasks

We distinguish between three types of tasks: abstract, concrete, and instantiated tasks.
An abstract task is a task with more than one precondition or more than one effect;
|Cp| > 1 or |Ce| > 1. A concrete task is a task with one precondition and one effect
condition, i.e., |Cp| = 1 and |Ce| = 1. Before executing tasks, they have to be
instantiated. For such a task, we require one precondition and one effect to be chosen
for execution.2 We will use the notation: t = (cp, ce).

Concrete tasks correspond to the tasks used in the original coordination frame-
work, as discussed in Section 2.2. Essentially, tasks in the original framework have
a single precondition and effect.

Remark. One might wonder why we define an instantiated task to have a single
precondition and a single effect. In Definition 3.1, we defined at least one precondi-
tion to hold and at least one effect during execution. Hence, potentially, we could
assume more conditions to hold.

However, it is up to a planner to decide whether more than one condition is
made to hold. Our framework strives to abstract away from these planning details.
Therefore, we assume an instantiated task to have a single precondition and effect.

In Figure 3.1, a concrete and an abstract task are shown. An open diamond
represents a precondition, a solid one an effect. The line between preconditions and
effects represents a plan for the task. While multiple plans might exist for a given
task, the line does not represent a certain or single plan.

Instantiating Tasks

By pruning conditions from abstract tasks, we can reduce them into concrete tasks.
For an abstract task t, we define all tasks it can be reduced to as a set of tasks:

P(t) = 2Cp(t) × 2Ce(t). (3.1)

We denote the set of concrete tasks by Pc(t) and the set of abstract tasks by Pa(t).
These disjoint sets constitute P(t): P(t) = Pc(t)∪Pa(t). For concrete task t we have
that: Pc(t) = {t},Pa(t) = ∅.

DEFINITION 3.2 (Concrete Task Instantiation). Given a task t = (Cp, Ce), its instan-
tiation is an instantiated task t′ = (c′p, c

′
e), for which c′p ∈ Cp and c′e ∈ Ce.

2Concrete and instantiated tasks are virtually the same. We classify them to be different to ease
our discussion.

18

3.2. Enriching the Task Coordination Framework

Given the set of tasks Pc(t) an abstract task t can be reduced to, we define the
set of instantiations I(t) for task t to be:

I(t) = {(cp, ce) | cp ∈ Cp, ce ∈ Ce, (Cp, Ce) ∈ Pc(t)}. (3.2)

Finally, we assume each instantiated task t′ ∈ I(t) to be executable. It implies that
each precondition cp ∈ Cp(t) and effect ce ∈ Ce(t) of task t can form an instantiated
task (cp, ce) ∈ I(t).

3.2.2 Relations

Passing a ball between two soccer robots involves two tasks. The robot possessing
the ball has to pass the ball. Its effect is the ball being at the other robot. The other
robot has to take the pass to prevent the ball from bouncing away. Its precondition
is to have the ball at its disposal. We say that the precondition of taking the pass
depends on the effect of passing.

For conditions that depend on each other, we do not require their boolean for-
mulas to be identical. Moreover, several effects might be required to fulfil a single
precondition. We denote the fulfilment of precondition cp = (γcp , φcp) by effect con-
dition ce = (γce , φce) by: ce |= cp. It corresponds to the tautological implication
of their respective formulas: φce |= φcp . Similarly, for a set of effect conditions
Ce = {ce1 , ce2 , . . . , cen} required to fulfil precondition cp, we write

∧n
i=1 cei |= cp.

We say that precondition cp depends on the effects in Ce.

EXAMPLE 3.1. Suppose we have two tasks t1 = (cp1 , ce1), t2 = (cp2 , ce2) with ce1 =
(γ1, φ) and ce2 = (γ2, φ). It would imply that upon completion of task t1 formula φ
is satisfied. But then, condition ce2 is satisfied as well without executing task t2.

Situations, as sketched in Example 3.1, cannot occur in our framework. We
assumed the boolean formula φ of each effect ce = (γ, φ) to have a unique literal lγ
that holds when ce is achieved. Hence, φ in Example 3.1 cannot represent a formula
for two conditions.

DEFINITION 3.3 (Condition Dependency Relation). Given the set of all effect condi-
tions Ce = {ce1 , ce2 , . . . , cen} a precondition cp = (γcp , φcp) depends on, with cei =
(γi, φi), 1 ≤ i ≤ n, a condition dependency cei - cp

3 exists if and only if:

n
∧

i=1

φi |= φcp and

∀C ′
e ⊂ Ce :

m
∧

j=1

φj ∈ C ′
e 6|= φcp .

4

3The condition dependency relation - is a set of (ce, cp)-tuples: - ⊆ Ce × Cp. For readability, we
write ce - cp.

19

3. INSTANTIATION COORDINATION

t

(a) Concrete task.

t

(b) Concrete
task.

t

(c) Abstract task.

t

(d) Abstract task.

Figure 3.2: Condition dependencies for concrete and abstract tasks.

In Definition 3.3, we defined the condition dependency relation -. If achieving a
set of effects Ce is required for fulfilling precondition cp on the level of formula, we
defined that cp depends on these effects Ce. All effects in Ce are required to hold
for achieving cp.

If a precondition cp = (γi, φi) depends on an effect ce = (γj , φj), we assume
literal lγj to be required to satisfy φi. In other words, a precondition that depends
on an effect depends on the literal associated with achieving this effect.

Remark. A condition dependency ce - cp between an effect ce and a precondition
cp models that achieving ce ‘enables’ cp. This relation is similar to the ‘enables’
relation used in the TÆMS-framework [21]. This relation, however, is defined over
tasks, not over preconditions and effects.

Concrete and Abstract Tasks

In Figure 3.2, tasks are shown with condition dependencies depicted by dotted ar-
rows. For concrete tasks, a precondition might require one or more effects to hold. In
Figure 3.2(a), this is represented by multiple incoming arrows. All of these condi-
tion dependencies should hold for a successful execution of the task. On the other
hand, in Figure 3.2(b), the two outgoing arrows represent two preconditions that
depend on this task’s effect.

In Figure 3.2(c), an abstract task is shown. By instantiating this task, at least one
precondition is to be fulfilled. All effects the instantiated precondition depends on
have to be achieved. For the preconditions not instantiated, it is irrelevant whether
the effects they depend on are instantiated. For the task shown in Figure 3.2(d), at
least one effect will be instantiated. Preconditions that depend on the instantiated
effect can be used in an instantiation as well. However, for all effects not instan-
tiated, we cannot ensure the dependencies to hold. Hence, all preconditions that
depend on these effects cannot be used in an instantiation.

So far, we extended the plan coordination framework with (i) abstract tasks
and (ii) dependencies between their conditions . Note that these extensions add
modelling power to the framework. Between preconditions or effects of the same

20

3.2. Enriching the Task Coordination Framework

task, we identified a disjunctive relation. Either one of the preconditions and effects
can be instantiated. On the other hand, all dependencies related to a condition are
conjunctively related. If an effect holds, all ‘outgoing’ condition dependencies hold.
For a precondition to be fulfilled, all ‘incoming’ dependencies are required to hold.

Remark. Our discussion so far leads to a contradiction. On the one hand, we instan-
tiate a single precondition and single effect per task. On the other hand, we allow
these conditions to be involved in various dependencies.

Suppose we have tasks ti = ({cpi}, {cei,1 , cei,2}) and tj = ({cpj}, {cej,1 , cej,2}),
with cei,1 - cpj and cei,2 - cpj . Now, an instantiation for ti should contain both cei,1
and cei,2 to fulfil cpj . However, we do not allow for such instantiations.

Hence, we require in our framework for any effects ce1 , ce2 ∈ Ce(t) of any task t
that we do not have ce1 - cp and ce2 - cp for any precondition cp.

Precedence Relation

Not only tasks are affected by the extensions to the framework. The precedence
relation ≺ is affected as well. Recall that it specifies a partial order over a set of
tasks T. In our extended framework, the set T might contain abstract tasks.

After reducing and instantiating abstract tasks, precedences should be retained.
If a precedence orders abstract tasks t1 ≺ t2, their respective instantiations should
be ordered as well: t′1 ≺ t′2. Precedences propagate under reduction and instantia-
tion of tasks. Formally, if t1 ≺ t2, then:

∀tP1 ∈ P(t1), t
P

2 ∈ P(t2) : t
P

1 ≺ tP2 and

∀tI1 ∈ I(t1), t
I
2 ∈ I(t2) : t

I
1 ≺ tI2.

Dependency and Precedence Relation

A dependency defines an order over effects and preconditions. By ordering these
conditions, the tasks they constitute are implicitly ordered as well. For ordering
tasks, we use precedence relations. One might think that a dependency between a
task t’s effect and a task t′’s precondition implies an ordering t ≺ t′. While true for
concrete tasks, this does not necessarily hold for abstract tasks.

EXAMPLE 3.2 (Multiple Dependencies). Suppose that we have three abstract tasks
t1 = ({c1p1}, {c

1
e1
, c1e2}), t2 = ({c2p1 , c

2
p2
}, {c2e1}), and t3 = ({c3p1 , c

3
p2
}, {c3e1}). For these

tasks, two dependencies are defined: c1e1 - c2p1 , c
1
e2

- c3p1 . In Figure 3.3, these
dependencies are shown. After planning for t, it becomes an instantiated task t′.
This concrete task can be either t′ = ({c1p1}, {c

1
e1
}) or t′ = ({c1p1}, {c

1
e2
}). So, either

one of the dependencies will become unnecessary. When we would have added
the precedence relations t1 ≺ t2, t1 ≺ t3, it turns out that these would have been
too restrictive.

From Example 3.2, we learn that a condition dependency between conditions of
two tasks does not necessarily impose a precedence relation between these tasks.

21

3. INSTANTIATION COORDINATION

t1

t3

t2

Figure 3.3: Dependency relations between three tasks.

t1

t2

t3

a

¬a

a

a

(a) Condition dependencies.

t1

t2

t3

(b) Precedences.

Figure 3.4: Conflicting effects between tasks.

Therefore, by adding condition dependencies between tasks’ conditions, we in-
crease the representational power of the coordination framework.

Violated Conditions

Definition 3.3 poses a problem. A condition dependency cei - cpj does not pre-
clude other tasks from being executed between task ti achieving cei and task tj
requiring cpj . These intermediate tasks might falsify cei , as we will see in the next
example.

EXAMPLE 3.3. Suppose we are given the tasks and dependencies shown in Figure
3.4(a). It shows tasks t1 = ({cp1}, {ce1}), t2 = ({cp2}, {ce2}), t3 = ({cp3}, {ce3}). For
each effect we have cei = (γi, φ

ce
i), for each precondition: cpi = (γi, φ

cp
i). Precon-

ditions cp2 and cp3 depend on ce1 . In terms of the associated boolean formulas, we
have that φce

1 = φ
cp
2 = φ

cp
3 = a ∧ lγ1 .

Dependencies impose an order over tasks, as shown in Figure 3.4(b). This par-
tial order leaves two total orders: 〈t1, t2, t3〉 or 〈t1, t3, t2〉. In total order 〈t1, t2, t3〉, t2
is executed before t3. Hence, literal ¬a will hold and ¬a∧ lγ1 6|= φ

cp
3 . In other words,

t3 cannot be executed.

In Example 3.3, task t3 could not be executed in the plan 〈t1, t2, t3〉. However,
recall from Section 2.1.2 that a task is performed by executing actions [33]. These
actions achieve the preconditions and effects of tasks. So, condition a is achieved
by some action. Like in the task coordination framework, we will assume that all
actions are reversible.5 For Example 3.3, this would imply that despite task t2 being

5Each effect generated by a reversible action, can be reverted.

22

3.2. Enriching the Task Coordination Framework

planned before t3, the condition a can be achieved by a set of additional actions
such that task t2 is executable.

Abstract Complex Task

Having defined abstract tasks and condition dependencies, we are ready to extend
the notion of a complex task. Recall, from Chapter 2, that a complex task is a tuple
T = (T,≺) of tasks and precedences between these tasks.

DEFINITION 3.4 (Abstract Complex Task). An abstract complex task is a 3-tuple
T a = (T,≺,-), for which the precedence relation ≺ specifies a partial order over T, a task
t ∈ T is a tuple (Cp, Ce), and - is a set of condition dependency relations -⊆ Ce(T) ×
Cp(T).

Remark. The way we model precedences and dependencies is similar to Partial-
Order Causal Link (POCL) planning [39], also referred to as plan-space planning
[16]. Planners like UCPOP [28], select actions, order them, and add causal links.
Ordering actions in POCL is similar to the ordering of tasks by the precedence
relation. Causal links represent condition dependencies between actions.

POCL planning differs from task-based planning as discussed here. Tasks are
defined at an abstract level in our framework, whereas concrete actions are used in
POCL.

3.2.3 Agents

Before a set of agents A can plan for an abstract complex task T a = (T,≺,-), tasks
need to be allocated to them. We assume there exists a task allocation function:

fta : T → A (3.3)

Using this function, the set of tasks T is partitioned into subsets T1, T2, . . . , Tn, with
each Ti allocated to agent ai ∈ A. The task allocation function implies a task parti-
tioning T = {Ti}

n
i=1. A set of tasks Ti induces a set of precedence relations ≺i and

condition dependencies -i. This induced problem is an abstract complex subtask for
an agent.

DEFINITION 3.5 (Abstract Complex Subtask for an Agent). Given an abstract com-
plex task T a = (T,≺,-) and a task allocation function fta the abstract complex sub-
task T a

i = (Ti,≺i,-i) an agent ai has to plan for, is defined by:

Ti = {t | t ∈ T, fta(t) = ai}

≺i = ≺ ∩ (Ti × Ti)

-i = - ∩ (Ce(Ti)× Cp(Ti))

Each task t ∈ T of the abstract complex task (T,≺,-) is allocated to exactly one
agent. This allocation induces precedence relations and condition dependencies to

23

3. INSTANTIATION COORDINATION

be allocated as well. However, not all relations are allocated to an agent. In Section
2.2, we identified the precedence relations not assigned to agents to be inter-agent
precedence relations. They represent an order between tasks of different agents. We
define inter-agent condition dependencies to be the dependencies between conditions
of tasks that belong to different agents.

DEFINITION 3.6 (Inter-agent Condition Dependencies). Given an abstract complex
task (T,≺,-), a partitioning T = {Ti}

n
i=1 of T, and a set of agents A, with each Ti

allocated to ai ∈ A, the set of inter-agent dependencies -inter is defined by:

-inter=- \
n
⋃

i=1

(Ce(Ti)× Cp(Ti))

We represent the result of partitioning an abstract complex task (T,≺,-) into
n partitions, by: ({(Ti,≺i,-i)}

n
i=1,≺inter,-inter). However, a task partitioning in-

duces a partitioning of precedence and condition dependency relations. Therefore,
we will use the more concise notations ({Ti}

n
i=1,≺,-) and (T,≺,-) to denote a

partitioned abstract complex task.

3.3 Instantiating Tasks

In this section, we will focus on our extension to the plan coordination framework.
Precedences can be propagated during instantiation, as discussed in Section 3.2.2.
Precedences neither affect condition dependencies nor abstract tasks. Therefore,
we will ignore them in this section. In Section 3.3.3, we will incorporate the abstract
complex task.

So, instead of an abstract complex task T a = (T,≺,-), we will reason about the
dependencies instance (T,-) obtained by ignoring ≺.6 Instead of a plan, we construct
a dependencies instantiation for a dependencies instance. An instantiation is a tuple
of a set of instantiated tasks T ′ and a set of condition dependencies -′ between
conditions of tasks in T ′. We represent all possible instantiations of a set of tasks T
by:

I(T) =
{

{t′1, t
′
2, . . . , t

′
n} | t′i ∈ I(t) (1 ≤ i ≤ n) , t ∈ T

}

. (3.4)

Each T ′ ∈ I(T) is a set of instantiated tasks that contains an instantiated task t′i ∈ T ′

for each task ti ∈ T.
Instantiating the tasks of dependencies instance (T,-) implicitly instantiates con-

dition dependencies. Dependencies between conditions that are not instantiated be-
come irrelevant. If an effect is not instantiated, there cannot be a dependency on
this effect. Similarly, if a precondition is not instantiated, it will not be dependent
on any effect.

6Similarly, we define a partitioned dependencies instance as ({Ti}
n
i=1,-) or (T,-).

24

3.3. Instantiating Tasks

t t′
ce1

ce2 c′p2

c′p1
cp1 c′e1

Figure 3.5: Dependencies instance with two feasible instantiations.

DEFINITION 3.7 (Dependencies Instantiation). Given a dependencies instance
(T,-), a dependencies instantiation (T ′,-′) for it, is defined by:

T ′ ∈ I(T)

-′ = - ∩
(

Ce(T
′)× Cp(T

′)
)

A dependencies instantiation, as defined in Definition 3.7, need not be exe-
cutable. The condition dependencies in an instantiation are inferred from the in-
stantiations of tasks T ′, as defined by the second equation in Definition 3.7. Hence,
preconditions might depend on effects that are not instantiated.

EXAMPLE 3.4. In Figure 3.5, a dependencies instance is shown with two tasks
t = ({cp1}, {ce1 , ce2}), t′ = ({c′p1 , c

′
p2
}, {c′e1}) and condition dependencies ce1 -

c′p1 , ce2 - c′p2 . Not all instantiations for this dependencies instance are executable.
A feasible plan for t and t′ would contain concrete tasks with either both ce1 and c′p1
instantiated, or both ce2 and cp2 . All other instantiations of t and t′ would violate
the dependencies.

In Example 3.4, we informally identified the correctness property of a depen-
dencies instantiation. A dependencies instantiation (T ′,-′) for a dependencies in-
stance (T,-) is said to be correct if all condition dependencies are instantiated that
the preconditions of tasks in T ′ depend on. Otherwise, it is incorrect.

DEFINITION 3.8 (Correct Dependencies Instantiation). Given a dependencies instance
(T,-), an instantiation (T ′,-′) for it is correct if and only if ∀ce - c′p it holds that:

(c′p, c
′
e) ∈ T ′ → (cp, ce) ∈ T ′

Furthermore, to be executable, the dependencies instantiation should be acyclic.
Cyclic instantiations cannot be executed. Now, we can define a feasible dependen-
cies instantiation. Such an instantiation (T ′,-′) of a dependencies instance (T,-)
should satisfy the two properties:

(i) (T ′,-′) is correct with respect to (T,-),

(ii) (T ′,-′) is acyclic.

DEFINITION 3.9 (Feasible Dependencies Instantiation). Given a dependencies instan-
ce (T,-), an instantiation (T ′,-′) for it is feasible if and only if:

25

3. INSTANTIATION COORDINATION

(i) (T ′,-′) is correct,

(ii) after defining for all tasks (cp, ce) ∈ T ′ a dependency cp -′ ce; the condition depen-
dency relation -′ is acyclic, with respect to T ′.7

An incorrect or cyclic dependencies instantiation is infeasible.

Merging Instantiations

Instead of a complex subtask for an agent, each agent ai is allocated a sub-instance
(Ti,-i). This instance is defined like a complex subtask, ignoring the precedence
relation. For a dependencies instance (T,-), a task-partitioning T = {Ti}

n
i=1 in-

duces the partitioned dependencies instance ({Ti}
n
i=1,-).

The next step is to merge those instantiations into a joint dependencies instantia-
tion.

DEFINITION 3.10 (Joint Dependencies Instantiation). Given a partitioned dependen-
cies instance ({Ti}

n
i=1,-) and an instantiation (T ′

i ,-i
′) for each sub-instance (Ti,-i), a

joint instantiation (T ′,-′) for ({Ti}
n
i=1,-) is defined by:

T ′ = T ′
1 ∪ T ′

2 ∪ · · · ∪ T ′
n

-′ = -1
′ ∪-2

′ ∪ . . . ∪-n
′ ∪

(

-inter ∩
(

Ce(T
′)×Cp(T

′)
))

Just like for a dependencies instantiation, we require a feasible joint dependen-
cies instantiation to be:

(i) correct,

(ii) acyclic.

Merging instantiations into a joint instantiation is not trivial. For a set of feasi-
ble instantiations for sub-instances, the joint instantiation need not be feasible. We
illustrate this with an example.

EXAMPLE 3.5. In Figure 3.6(a), a partitioned dependencies instance is shown. Each
instantiation for an agent’s sub-instances is feasible as the dependencies instance
defines only inter-agent dependencies. A joint instantiation is feasible only when
it is correct. If agent a2 instantiates precondition c6, it requires agent a1 to instan-
tiate effects c2, c3. Would a1 instantiate effect c1 or c4, then the joint instantiation is
infeasible.

In Section 3.4, we will turn our attention to this problem. There, we will discuss
how to coordinate agents’ instantiations.

7Note that we can define an effect to depend on a precondition. The dependency relation is
defined over conditions and both preconditions and effects are conditions.

26

3.3. Instantiating Tasks

t1 t3

t2 t4

c1

c2 c6

c7

c5

c8c4

c3

a1 a2

(a) A dependencies instance.

t1 t3

t2 t4

c2 c6

c7c3

a1 a2

(b) A joint instantiation for the dependencies in-
stance.

Figure 3.6: Two agents instantiating a dependencies instance.

3.3.1 Selecting and Pruning Dependencies

In Example 3.5, we saw that along with instantiating a precondition for a task by
one agent, a condition of another agent should be instantiated as well. Moreover,
agent a2 itself is indirectly affected; instantiating c6 imposes instantiating c7 as well.

In this section, we will introduce the concept of selecting and pruning conditions
and condition dependencies. By selecting conditions and effects, we select them to
be part of an instantiation. Similarly, by pruning them, they will not be part of an
instantiation. Essentially, we reduce abstract tasks when we prune conditions and
dependencies from a dependencies instance.

Conditions and dependencies are always pruned or selected with respect to
a dependencies instance.8 After pruning or selecting, the dependencies instance is
altered. We say it has been reduced. When a dependencies instance (T,-) is reduced
until all tasks are concrete, the instance (T,-) can be trivially transformed into an
instantiation.

DEFINITION 3.11 (Condition Selection). Given a dependencies instance (T,-), a con-
dition c ∈ (Cp(T) ∪ Ce(T)) is selected if for all instantiations (T ′,-′) for (T,-), it holds
that:

c ∈ (Cp(T
′) ∪ Ce(T

′)).

Selecting a condition for a dependencies instance implies its use in every instanti-
ation for the reduced dependencies instance. Similarly, pruning a condition implies
that it is not used in any instantiation.

DEFINITION 3.12 (Condition Dependency Selection). Given a dependencies instance
(T,-), a dependency ci - cj is selected if for all instantiations (T ′,-′) for (T,-), it
holds that:

ci -
′ cj .

8In fact, conditions are pruned from abstract tasks. While these tasks are defined for a dependen-
cies instance, we say that we prune this instance.

27

3. INSTANTIATION COORDINATION

t1

t3

t2

t4

c1

c2

c6

c5

c4

c3

c7

c8

(a) Original instance.

t1

t3

t2

t4

c1

c6

c4

c3

c7

c8

(b) Reduced instance (c1 se-
lected).

Figure 3.7: A dependencies instance.

Selecting a condition dependency ce - cp implies the selection of both condi-
tions cp and ce. Similarly, pruning a condition dependency c′e - c′p implies that c′p is
not used in any instantiation.

In practise, one would often like to ensure that a dependency is selected, ir-
respective of whether the dependent precondition is selected. This is an enabled
condition dependency.

DEFINITION 3.13 (Enabled Condition Dependency). Given a dependencies instance
(T,-), a dependency ci - cj is enabled if for all instantiations (T ′,-′) for (T,-), it
holds that:

ci ∈ Ce(T
′).

Propagation of Selecting and Pruning

Selecting an effect ce ∈ Ce, with |Ce| > 1, makes the other effects in Ce irrelevant.
Therefore, we say that the other effects are pruned as a result of selecting ce. The
selection of a condition propagates through a dependencies instance.

EXAMPLE 3.6. In Figure 3.7(a), a dependencies instance is shown.9 Selecting effect
c1 would imply that effect c2 is pruned. Consequently, the condition dependency
c2 - c5 cannot be made to hold and has to be pruned as well. This, in turn, implies
that dependency c2 - c5 cannot be made to hold and precondition c5 has to be
pruned as well. The reduced dependencies instance after selecting c1 is shown in
Figure 3.7(b).10

From Example 3.6, we learn that selecting or pruning a single condition poten-
tially has a lot of impact on the dependencies instance. The selection or pruning
of a dependency might propagate through an instance. In Table 3.1, an overview

9We use a concise representation for the relevant preconditions and effects of tasks only.
10In fact, the instance can be reduced even further. This will be shown in Example 3.7.

28

3.3. Instantiating Tasks

Operation Result of propagation (single step)

Precondition
cp ∈ Cp

Select
Selected ce - cp

Pruned Cp \ {cp}

Prune
Selected if Cp = {cp, c

′
p} then c′p, otherwise

none

Pruned ce - cp

Effect ce ∈ Ce

Select
Selected -

Enabled ce - cp

Pruned Ce \ {ce}

Prune
Selected if Ce = {ce, c

′
e} then c′e, otherwise

none

Pruned ce - cp

Dependency
ce - cp, ce ∈ Ce,
cp ∈ Cp

Select
Selected ce, cp

Pruned -

Enable
Selected ce

Pruned -

Prune
Selected -

Pruned cp

Table 3.1: Operations to reduce a dependencies instance.

of the different types of propagation is shown. Next, we will discuss each of these
into more detail.

Precondition Selecting a precondition results in the selection of all condition de-
pendencies it depends on. On the other hand, all other preconditions in the
disjunctive precondition will be pruned.

Pruning a precondition results in a selection of another precondition only if
it is part of a disjunctive precondition of size two. Because this precondition
is removed, the other has to be instantiated. All dependencies it has can be
pruned, as the pruned condition will not depend on effects.

Effect Selecting an effect prunes all other effects in the disjunctive precondition. All
dependencies on the selected effect will be enabled.

Pruning an effect results in selecting the other effect only if it is part of a dis-
junctive effect of size two. Removing this effect requires the other effect to be

29

3. INSTANTIATION COORDINATION

t1

t3

t2

t4

c1

c6c3

c8

Figure 3.8: A reduced dependencies instance.

instantiated. All dependencies that depend on this effect will be pruned.

Dependency Selecting a dependency requires both its effect and precondition to
be part of each instantiation. Therefore, both the effect and precondition are
selected.

Enabling a dependency requires the effect related to it to be part of each in-
stantiation. It is irrelevant whether the dependent precondition holds.

Pruning a dependency prevents the dependent precondition to hold. There-
fore, it is pruned. The effect is not affected as it is still allowed to hold in an
instantiation.

A dependencies instance can be reduced to contain concrete tasks only by re-
peatedly selecting and pruning conditions. An instance with concrete tasks can be
converted into an instantiation. Hence, an instantiation can be achieved by repeat-
edly selecting, pruning, and propagating.

EXAMPLE 3.7. In Example 3.6, the dependencies instance of Figure 3.7(a) was re-
duced to the instance of Figure 3.7(b). We can propagate even further for this in-
stance. It is clear that the dependency c3 - c6 has to be selected. Otherwise, the
task t3 cannot be instantiated. As a result, effect c3 will be selected and c4 is pruned.
Eventually, c4 - c7 is pruned along with c7. This leads to the instance shown in
Figure 3.8. All its tasks are concrete and therefore the instance can be trivially in-
stantiated.

Cyclic Dependencies

A cyclic instantiation of a dependencies instance cannot be executed. Therefore,
we required instantiations to be acyclic. On a higher level, a dependencies instance
might be cyclic.

30

3.3. Instantiating Tasks

t1 t2
c1

c2

c3 c5 c7

c8c6c4

Figure 3.9: Cyclic dependency conditions between tasks.

DEFINITION 3.14 (Cyclic Dependencies Instance). A dependencies instance (T,-) is
cyclic if and only if - is cyclic with respect to T, after adding the dependencies:

- = - ∪ {cp - ce | cp ∈ Cp(t), ce ∈ Ce(t), t ∈ T}.

A dependencies instance is cyclic if adding the dependencies of a task’s effects
on its preconditions, creates a cycle in the dependencies on conditions. Instantiat-
ing a cyclic dependencies instance might result in a cyclic instantiation. However,
a cyclic dependencies instance does not preclude an acyclic instantiation for it, as
we will see in the next example.

EXAMPLE 3.8. In Figure 3.9, a cyclic dependencies instance is shown with tasks
t1, t2 and dependencies c3 - c5, c8 - c2. Clearly, instantiations t′1 = (c2, c3) and
t′2 = (c5, c8) result in a infeasible plan, with cycle t′1 − t′2 − t′1. However, all other
instantiations of t1 and t2 are acyclic.11

An acyclic instantiation exists for the dependencies instance of Example 3.8.
Hence, it would have been too constraining to prevent cycles in the dependencies
instance. Therefore, we will not require dependencies instances to be acyclic.

3.3.2 Consistent and Minimal Dependencies Instances

A prerequisite for a feasible joint instantiation is the existence of a feasible instanti-
ation for a given dependencies instance. If there exists a feasible instantiation for
a dependencies instance, we call such an instance consistent. Otherwise, the in-
stance is inconsistent. Note that requiring a dependencies instance to be consistent
is weaker than requiring it to be acyclic.

EXAMPLE 3.9. In Figure 3.10(a), three tasks are shown. Task t1 has a disjunctive
effect, while both t2 and t3 have a single precondition. In a feasible instantiation,
t1 should be instantiated with effect condition c1. Instantiating t1 with c2 would
invalidate c1 - c3 and would therefore prevent task t2 from execution. While there
exists a feasible instantiation for this instance, it is consistent.

On the other hand, observe the instance of Figure 3.10(b). Here, both condition
dependencies are required for tasks t2 and t3. However, we can at most instantiate
a single effect of t1. Either c1 - c3 is violated or c2 - c4 is. While there exists no
feasible instantiation for this instance, it is inconsistent.

31

3. INSTANTIATION COORDINATION

t1
t2

c3

c4c2

c1

t3

(a) Consistent.

t1
t2

c3

c4c2

c1

t3

(b) Inconsistent.

Figure 3.10: Consistency of a dependencies instance.

Checking consistency for the instances of Example 3.9 seems to be trivial. How-
ever, checking whether any given dependencies instance is consistent turns out to
be hard.

DEFINITION 3.15 (Consistent Dependencies Problem (CD)). Given a dependencies
instance (T,-), does there exist a feasible instantiation (T ′,-′) for it?

We will prove CD to be NP-complete. First, we will show that CD is in NP.
Thereafter, we reduce 3-SAT to CD to prove it to be NP-hard.

PROPOSITION 3.1. CD is in NP.

Proof. Given an instantiation (T ′,-′) of the dependencies instance (T,-), we have
to check whether it is feasible. An instantiation is feasible if it is correct and acyclic.
Both properties can be checked in polynomial time.

Correct Each task t′ ∈ T ′ is concrete and therefore has a single precondition and
effect. For each precondition cp, it is checked whether for all effects ce it de-
pends on (ce - cp), ce -

′ cp holds. This can be checked in polynomial time.

Acyclic To check whether an instantiation is cyclic, we can represent the instance
as a directed graph G = (V,A). For each task t′i ∈ T ′ we construct a vertex
vi ∈ V. For each condition dependency cj -

′ ck, cj ∈ Ce(t
′
j), ck ∈ Cp(t

′
k), j 6= k

we create an arc (vj , vk) ∈ A. For each vertex v ∈ V of G we can determine in
polynomial time whether it is reachable from itself. If so, G is cyclic. Other-
wise, it is acyclic.

Proving CD to be in NP does not prove CD to be difficult to solve. By proving
the next proposition, we will show CD to be intractable for any given input, unless
P = NP.

PROPOSITION 3.2. CD is NP-hard.

11Note that not all other instantiations are correct, e.g. t′1 = (c2, c4), t
′

2 = (c5, c7).

32

3.3. Instantiating Tasks

¬x1

¬x2

x2

x1 (x2 ∨ x1 ∨ ¬x1)

(¬x1 ∨ x2 ∨ ¬x2)
(x2 ∨ x1 ∨ ¬x1) ∧ (¬x1 ∨ x2 ∨ ¬x2)

Figure 3.11: Transformation from 3-SAT to CD.

Proof. We will prove that CD is NP-hard by reducing 3-SAT to CD. More specifi-
cally, we reduce 3-SAT to the problem of determining whether a correct dependen-
cies instantiation exists for a dependencies instance.

A 3-SAT instance consists of a set of clauses C = {γ1, γ2, . . . , γn} over a set of
variables X = {x1, x2, . . . , xm}. Each clause contains three literals; ∀γ ∈ C : |γ| = 3.

First, we transform a 3-SAT instance to a dependencies instance. For each vari-
able xi ∈ X we define a task ti = (cpi , {cei , c

′
ei
}) with a disjunctive effect of size two.

Effect cei corresponds to the literal xi and effect c′ei corresponds to literal ¬xi.
A clause γj ∈ C is of the form (xq ∨ xr ∨ xs).

12 For each clause, we construct a
task tj = ({c1pj , c

2
pj
, c3pj}, cej) with c1pj corresponding to xq, c2pj to xr, and c3pj to xs.

If the first literal in γj is positive (xq), a condition dependency ceq - c1pj is created.

Otherwise, for a negative literal ¬xq, we create a dependency c′eq - c1pj . Similarly,
we add dependencies for literals xr or ¬xr and xs or ¬xs. In Figure 3.11, an example
of this process is shown.

The tasks defined for variables will be denoted by the set Tx . All tasks defined
for clauses are represented by the set Tγ . For a dependencies instance (T,-), T =
Tx ∪ Tγ .

A yes-instance of 3-SAT should transform into a yes-instance of CD under a
valid reduction. A certificate for 3-SAT is a truth assignment to the variables in X.
It is a set of literals L = {l1, l2, . . . , lm}. For each literal li ∈ L either li = xi or
li = ¬xi evaluates to true.

While L is a certificate for the 3-SAT instance, it makes each clause γ ∈ C eval-
uate to true. At least one literal per clause evaluates to true, which corresponds to
at least one precondition cp ∈ Cp(tγ) for each task tγ ∈ Tγ to hold. Each variable
x ∈ X is assigned a truth value by the certificate. Hence, one effect ce ∈ Ce(tx) per
task tx ∈ Tx holds. In short, for a yes-instance of 3-SAT each task t ∈ T is correctly
instantiated.

Recall from Definition 3.8 that for all instantiated preconditions, the effects they
depend on should be instantiated as well. We defined a condition dependency

12Literals in a clause can be negative as well.

33

3. INSTANTIATION COORDINATION

from the effect corresponding to a literal to preconditions corresponding to the
occurrence of that literal. Each precondition depends on a single effect. As the
precondition corresponds to the literal, the effect will hold as well.

Given a yes-instance for CD, under the transformation from 3-SAT to CD,
it should correspond to a yes-instance for 3-SAT. A certificate for CD is a feasible
dependencies instantiation (T ′,-′). Each task t′ ∈ T ′ is an instantiated task. For
each task ti ∈ Tγ corresponding to clause γi ∈ C, we have that |Cp(ti)| = 1. This
corresponds to a single literal in γi to evaluate to true and thus γi to evaluate to
true. On the other hand, for each task tj ∈ Tx we have that either cej or c′ej holds.
These effects correspond to respectively literals xj and x′j .

The dependencies instantiation (T ′,-′) is correct. Each effect an instantiated
precondition depends on is therefore instantiated as well. A condition dependency
ceq - cp, with ce ∈ Ce(tq), tq ∈ Tx and cp ∈ Cp(tr), tr ∈ Tγ , was created when both
ce and cp correspond to the same literal. No other dependencies than these have
been constructed by our reduction.

Given a feasible dependencies instantiation, we have correspondingly: (i) a
truth-assignment L to all variables in X, (ii) each clause γ ∈ C is satisfied. There-
fore, a yes-instance of 3-SAT corresponds to a yes-instance of CD under the reduc-
tion.13

PROPOSITION 3.3. CD is NP-complete.

The NP-completeness of CD follows directly from Propositions 3.1 and 3.2.
While it is possible to construct inconsistent dependencies instances, we will

assume in subsequent sections that all dependencies instances given are consistent.
When appropriate, we will state this in each of our definitions.

Minimal Dependencies Instance

Consistency of a dependencies instance implies that at least one feasible instantia-
tion exists for it. Suppose a single instantiation is feasible for an instance. If the
instance contains any disjunctive preconditions or effects, only one condition per
disjunctive condition can be feasibly instantiated. All other conditions are redun-
dant.

EXAMPLE 3.10. The dependencies instance of Figure 3.12(a) is consistent. An in-
stantiation of tasks that contains conditions c2, c5, c3 is feasible. For this instance,
condition c1 will not be used in any instantiation because c2 is required for precon-
dition c5. It is therefore redundant. As a result, precondition c4 is redundant as
well. In Figure 3.12(b), the dependencies instance without redundant conditions is
shown.14

13In our proof, we did not check for acyclicity as the reduction always yields an acyclic dependen-
cies instance.

14Note that this is an instantiation for the instance of Figure 3.12(a) as well.

34

3.3. Instantiating Tasks

t2

t1
t3

c4

c3

c2

c1

c5

(a) Non-minimal.

t2

t1
t3

c3

c2 c5

(b) Minimal.

Figure 3.12: Consistent dependencies instances.

By pruning redundant preconditions and effects, a new dependencies instance
is created. If no preconditions and effects can be pruned from a dependencies in-
stance (T,-), without reducing the set of feasible instantiations, the dependencies
instance is called minimal. That is, for the set of conditions C = Cp(T) ∪ Ce(T) the
number of conditions |C| is minimal.

DEFINITION 3.16 (Minimal Dependencies Instance). A dependencies instance (T,-)
is minimal if and only if:

(i) for each precondition cp ∈ Cp(T), a feasible instantiation (T ′,-′) for (T,-) exists,
for which cp ∈ Cp(T

′),

(ii) for each effect ce ∈ Ce(T), a feasible instantiation (T ′,-′) for (T,-) exists, for which
ce ∈ Ce(T

′).

3.3.3 Instantiation and the Abstract Complex Task

So far, we discussed the implications of our extension in isolation. We reasoned
about a dependencies instance and instantiation. This allowed for a clean analysis
of their properties. Now, we would like to discuss our extensions with respect to
the abstract complex task, defined in Definition 3.4.

Incorporating precedences in the previous definitions, related to dependencies
instances and instantiations, is often straightforward. Therefore, we would like
to focus on two aspects of the abstract complex task: (i) consistency and (ii) the
relation between instantiations and plans.

Consistency

Similar to a dependencies instance, we define an abstract complex task to be consis-
tent if and only if at least one feasible plan exists for it. We will reuse the notion of
consistency for a dependencies instance. To do so, we transform the abstract com-
plex task into a dependencies instance. If and only if this dependencies instance is
consistent, the abstract complex task is consistent.

Transformation of an abstract complex task into a dependencies instance can
be performed by Algorithm 3.1. We define a dummy task ti,j for each precedence
between tasks ti ≺ tj . Each precondition of ti,j depends on a single effect of ti.

35

3. INSTANTIATION COORDINATION

Algorithm 3.1 Transformation of an abstract complex task into a dependencies in-
stance.
Input: Abstract complex task (T,≺,-).
Output: Dependencies instance (T ?,-?).

T ? = T
-? = -

for all ti ≺ tj do
define task ti,j = (Cpi,j , cei,j)
T ? = T ? ∪ {ti,j}
for all ce ∈ Ce(ti) do

define a corresponding precondition cpi,j ∈ Cpi,j

define ce -
? cpi,j

end for

for all cp ∈ Cp(tj) do

define cei,j -
? cp

end for

end for

Each precondition of task tj depends on the single effect of ti,j . This way, no matter
which instantiation is constructed, t precedes t′.

To test if an abstract complex task (T,≺,-) is consistent, we transform it into a
dependencies instance (T ?,-?) by applying Algorithm 3.1. We can check whether
(T ?,-?) is consistent by checking for CD. If it is consistent, there exists a feasible de-
pendencies instantiation (T ′,-′) for it. This instantiation is both correct and acyclic.

DEFINITION 3.17 (Consistent Abstract Complex Task). Given an abstract complex
task (T,≺,-), it is consistent if and only if given (T,≺,-) as input to Algorithm 3.1,
Algorithm 3.1’s output (T ?,-?) is a yes-instance of CD.

Instantiations and Plans

Having defined consistency for a complex task, one might wonder what the result
of planning for an abstract complex task will be. In the original framework, a plan
(T ′,≺′) is constructed for a complex task (T,≺). In our extension, a dependencies in-
stantiation (T ′,-′) is constructed for a dependencies instance (T,-). We will merge
both concepts in the instantiated plan.

DEFINITION 3.18 (Instantiated Plan). Given an abstract complex task T a = (T,≺,-),
an instantiated plan π′ = (T ′,≺′,-′) for T a is defined by:

(i) (T ′,≺′) is a refinement of (T,≺),

(ii) (T ′,-′) is an instantiation of (T,-).

An instantiated plan is feasible if and only if (T ′,-′) is correct with respect to
(T,-) and (T ′,≺′,-′) is acyclic under the transformation of Algorithm 3.2. Algo-

36

3.4. Coordination

Algorithm 3.2 Transformation of a dependencies instantiation into a complex task.

Input: Instantiated plan (T ′,≺′,-′).
Output: Plan (T,≺).

for all t′i ∈ T ′ do

define ti ∈ T
end for
for all t′i ≺

′ t′j ; t
′
i, t

′
j ∈ T ′ do

define ti ≺ tj; ti, tj ∈ T
end for

for all cet′
i

- cpt′
j

; t′i, t
′
j ∈ T ′ do

define ti ≺ tj; ti, tj ∈ T
end for

rithm 3.2 converts an instantiated plan into a plan for a complex task. Each concrete
task is transformed into a task for the complex task. All dependencies between a
precondition of task t′i ∈ T ′ and effect of t′j ∈ T ′ are converted into a precedence
ti ≺ tj . Recall from Section 3.2.2 that precedences model the order imposed by
dependencies between concrete tasks.

DEFINITION 3.19 (Joint Instantiated Plan). Given a partitioned abstract complex task
T a = ({Ti}

n
i=1,≺,-) and an instantiated plan (T ′

i ,≺
′
i,-

′
i) for each subtask (Ti,≺,-), a

joint instantiated plan Π′ = (T ′,≺′,-′) for T a is defined by:

T ′ = T ′
1 ∪ T ′

2 ∪ · · · ∪ T ′
n

≺′ = ≺′
1 ∪ ≺′

2 ∪ · · · ∪ ≺′
n ∪ ≺inter

-′ = -′
1 ∪-′

2 ∪ · · · ∪-′
n ∪

(

-inter ∩
(

Ce(T
′)× Cp(T

′)
))

A joint instantiated plan is simply an instantiated plan, but for a partitioned ab-
stract complex task. Hence, a joint instantiated plan is feasible if and only if (T ′,-′)
is correct with respect to ({Ti}

n
i=1,-) and (T ′,≺′,-′) is acyclic under the transfor-

mation of Algorithm 3.2.

3.4 Coordination

In Example 3.5, agent a1 was affected by a2’s selection of preconditions. Not every
instantiation constructed by a1 can be merged with every instantiation of a2’s tasks.
Both agents have to coordinate their instantiations, such that their instantiations can
be merged.

In Section 2.2.4, we identified the problem of plan-coordination with respect to
precedences between tasks. By adding a coordination set of precedences ∆, com-
plex tasks could be decoupled, by which coordination is ensured. In this section, we
will extend the notions of coordination and decoupling for the enriched framework
to include the notion of dependencies instances.

37

3. INSTANTIATION COORDINATION

Partitioned Abstract Complex Task

We will define coordination and decoupling in this section for a partitioned ab-
stract complex task ({Ti}

n
i=1,≺,-). Each agent ai ∈ A is allocated its abstract

complex subtask (Ti,≺i,-i). During planning, it constructs an instantiated plan
π′
i = (T ′

i ,≺
′
i,-

′
i) for it. After planning, agents’ plans are merged into the joint in-

stantiated plan Π = (T ′,≺′,-′).
An instantiated plan π′

i for subtask (Ti,≺i,-i) is assumed to be feasible. That is,
it is executable by the agent that constructed it. However, the joint instantiated plan
Π′ might be infeasible. Inter-agent precedences and dependencies are introduced
during plan merging and pose two threats to the joint plan: (i) the joint instantiated
plan is cyclic or (ii) the joint instantiated plan is incorrect.

3.4.1 Coordination Verification

Suppose a consistent abstract complex task is allocated to a set of autonomous
agents. We would like to know whether these agents are allowed to construct each
feasible instantiated plan for their subtask. Can all feasible instantiated plans for these
sub-instances be merged into a feasible joint instantiated plan?

In other words, given a partitioned consistent abstract complex task, we would
like to verify if it is impossible for agents to construct a feasible instantiated plan for
their subtasks, which merge into an infeasible joint instantiated plan. This is the
instantiation-coordination verification problem.

DEFINITION 3.20 (Instantiated Plan-Coordination Verification Problem (IPCV)).
Given a consistent partitioned abstract complex task ({Ti}

n
i=1,≺,-), does it hold for all

feasible instantiated plans (T ′
i ,≺

′
i,-

′
i) that the joint instantiated plan (T ′,≺′,-′) is

feasible?

IPCV is a generalisation of the PCV problem, defined in Definition 2.7. If we
provide IPCV with a partitioned complex task with only concrete tasks and no
dependencies, the input reads ({Ti}

n
i=1,≺, ∅). This input equals the input to PCV.

A feasible instantiated plan is then equal to an acyclic plan.
Because PCV is coNP-complete, we know that IPCV is coNP-hard. However, we

might tighten this result to IPCV being coNP-complete as well. It would imply that
adding the additional representation of abstract tasks and dependencies to the co-
ordination framework does not harden the complexity of coordination verification
for it.

PROPOSITION 3.4. IPCV is in coNP.

Proof. To prove that IPCV is in coNP, we have to show that a no-instance of ICV can
be verified in polynomial time. A no-instance of IPCV is a set of feasible instanti-
ated plans {(T ′

i ,≺
′
i,-

′
i)}

n
i=1 for which the joint plan Π′ is not feasible. Given such a

set of plans, we can construct in polynomial time the joint plan Π′ = (T ′,≺′,-′) for

38

3.4. Coordination

it. The joint plan is feasible if (T ′,-′) is a correct instantiation for the dependencies
instance ({Ti}

n
i=1,-) and Π′ is acyclic.

A joint instantiated plan that is cyclic or incorrect is infeasible. Hence, we have
verified a no-instance of IPCV.

Adding the notion of abstract tasks and dependencies does not harden the re-
sult for coordination verification. We can, however, not conclude that these enrich-
ments are trivial. By proving the following propositions, we will show that verify-
ing coordination for partitioned dependencies instances is not trivial.15 It turns out
to be coNP-complete as well.

DEFINITION 3.21 (Instantiation-Coordination Verification Problem (ICV)). Given a
consistent partitioned dependencies instance ({Ti}

n
i=1,-), does it hold for all feasible

instantiations (T ′
i ,-i

′) that the joint instantiation (T ′,-′) is feasible?

We will show that ICV is coNP-hard by reducing an NP-complete problem to the
complementary problem of ICV. This is the Instantiation-Coordination Contradic-
tion Problem (ICC): does a set of instantiations exist for which the joint instantiation
is infeasible?

For this reduction, we use the NP-complete path with forbidden pairs problem
(PWFP) [12]. We will adapt this problem from Garey and Johnson [13].

DEFINITION 3.22 (Path with Forbidden Pairs Problem (PWFP)). Given a directed
acyclic graph G = (V,A), two vertices s, t ∈ V, and a set of forbidden pairs F =
{{a1, a

′
1}, {a2, a

′
2}, . . . , {an, a

′
n}}, does a path exist from s to t that contains at most one

arc from each pair {ai, a
′
i} ∈ F?

PROPOSITION 3.5. ICV is coNP-hard.

The proof of coNP-hardness of ICV is based on the proofs of coNP-completeness
of the plan-coordination verification problem, that is defined in Ter Mors [34] and
Valk [35].

Proof. We will represent an instance of PWFP by the tuple (G,F, s, t). Given an
instance of PWFP, we have to transform it into an instance of ICC; a partitioned
dependencies instance (T,-).

First, we define how to transform vertices and the arcs that are not involved
in forbidden pairs. We construct for each of the n vertices vi ∈ V a task partition
Ti = {ti}. Task ti is a concrete task and has therefore a single precondition cip and
a single effect cie. An arc (vi, vj) ∈ A, that is not involved in a forbidden pair, is

converted into a condition dependency cie - cjp.
Second, we have to transform the arcs in the forbidden pairs to the ICC instance.

For a forbidden pair p = {(va, vb), (vc, vd)}, not both arcs (va, vb) and (vc, vd) can be
in the path s − t. To represent this, we will construct a task partition for which a
cyclic instantiation exists. We transform a forbidden pair pj = {(va, vb), (vc, vd)}

15A dependencies instance is an abstract complex task without precedences; (T, ∅,-).

39

3. INSTANTIATION COORDINATION

cp1

cp2

cp2

cp1
ta

td

tb

tc

tja

tjd tjc

tjb

Figure 3.13: Transformation from PWFP forbidden pair to a task partition in ICC.

into a task partition Tn+j = {tja, t
j
b, t

j
c, t

j
d}. Tasks tja = (c

aj
p , c

aj
e) and tjc = (c

cj
p , c

cj
e) are

concrete, tjb = ({c
cj
p1 , c

cj
p2}, c

cj
e) and tjd = ({c

dj
p1 , c

dj
p2}, c

dj
e) have a disjunctive precon-

dition of size two and a single effect. In Figure 3.13, the tasks corresponding to a
forbidden pair are shown.

For forbidden pair pj = {(va, vb), (vc, vd)}, either of the arcs cannot be used in a
path from s to t. We want to model this in the transformation of a forbidden pair

as well. Therefore, we add the condition dependencies c
aj
e - c

bj
p1 , c

bj
e - c

cj
p , c

cj
e -

c
dj
p1 , c

dj
e - c

aj
p . In a feasible instantiation for this sub-instance, either c

aj
e - c

bj
p1 or

c
cj
e - c

dj
p1 will not be selected. In Figure 3.13, these condition dependencies are

shown.
By reducing PWFP to ICC, we will let a path from s to t for PWFP correspond

to a cyclic joint instantiation for ICC. We therefore add dependencies ce(ta) - c
aj
p ,

c
bj
e - cp(tb), ce(tc) - c

cj
p , and c

dj
e - cp(td). If a path from s to t contains an arc of

the forbidden pair, there is a corresponding path through the instantiation of the
dependencies instance.

Finally, we will have to represent s and t in the ICC instance. For both vertices, a
corresponding task partition has already been constructed with a single task. Given
a path from s to t, we would like to have a cyclic ICC instance. Suppose s has been
converted into task ts = (csp, c

s
e) and t in tt = (ctp, c

t
e). We could simply add the

dependency cte - csp. A path from s to t would then correspond with a cyclic joint
instantiation. However, suppose a trivial path s−t exists in the form of an arc (s, t).
This would create a cyclic instantiation. However, it would imply as well that the
dependencies instance is inconsistent. There is no instantiation for this instance that
is acyclic. To accommodate this issue, we construct a task partition Tn+k+1 = {t′s, t

′
t}.

Task t′t = (ct
′

p , c
t′

e) is a concrete task, t′s = ({cs
′

p1
, cs

′

p2
}, cs

′

e) is an abstract task with two

disjunctive preconditions. We add dependencies ct
′

e - cs
′

p1
, cte - ct

′

p , and cs
′

e - csp to

have a consistent instance for which a cyclic instantiation can be constructed.16 In
Figure 3.14, an example transformation is shown from PWFP to ICC.

16By e.g. selecting all preconditions that do not depend on an effect, a feasible instantiation is
constructed. No cycles within task partitions exist and there is no path through partition Tn+k+1.

40

3.4. Coordination

cp1

ta

ts

s t

a

b

tb

tt

cp1

cp2
t′tt′s

cp2

t1a

cp1

cp2
t1t

t1s
t1b

Figure 3.14: Transformation of a PWFP instance to a ICC instance.

A yes-instance for PWFP should correspond to a yes-instance for the con-
structed ICC. A yes-certificate for PWFP is a path from s to t that contains at most
one arc from each forbidden pair {(va, vb), (vc, vd)}. From the path s− t, all arcs that
are in a forbidden pair can be extracted. This is the set Ap . We identify two cases;
Ap is either empty or not.

Ap = ∅ No forbidden pair is used in the path s−t. Therefore, no cyclic instantiation
is created in a task partition that corresponds to a forbidden pair. However,

we can trivially create a cycle by selecting dependency c
tt′
e - c

ts′
p1 . This is a

yes-instance of ICC.

Ap 6= ∅ At least one arc from a forbidden pair is used in the path s − t. Per task
partition, at most one arc from the forbidden pair is used. The corresponding
instantiation for the agent is therefore always acyclic. When we, again, select

c
tt′
e - c

ts′
p1 , the joint instantiation is clearly cyclic. We have a yes-instance of

ICC.

A yes-instance for ICC is an instantiation for the dependencies instance (T,-)
that is not feasible. Such an instantiation can be incorrect or cyclic.

41

3. INSTANTIATION COORDINATION

Note that the constructed instances cannot yield an incorrect instantiation. Each
task has a single effect condition and is therefore always instantiated. Consequent-
ly, all condition dependencies are selected. No precondition can be selected such
that it requires some other effect to hold.

To construct an infeasible instantiation, it has to be cyclic. Cyclic instantiations
can be constructed in two ways. Either local to an agent in a task partition corre-

sponding to a forbidden pair or by instantiating c
tt′
e - c

ts′
p1 . An instantiation for

a task partition that corresponds to a forbidden pair cannot be cyclic because we

assumed agents to construct a feasible instantiation. Therefore, c
tt′
e - c

ts′
p1 has to be

selected in every cyclic instantiation.
A cyclic instantiation has to contain a cycle that involves multiple agents. While

the graph G of the PWFP instance is acyclic, the constructed ICC instance is acyclic
as well.17 Therefore, a path from ts to tt has to exist to create a cycle. If such a path
runs through a task partition for a forbidden pair, only one of the dependencies
that correspond to the forbidden pair will be selected. Otherwise, it would imply a
cyclic instantiation for the partition.

PROPOSITION 3.6. ICV is coNP-complete.

The coNP-completeness of ICV follows directly from Propositions 3.4 and 3.5.
For a yes-instance of ICV, the agents can construct instantiations for their depen-

dencies instance independently of each other. It allows for a concurrent instantiation
of all sub-instances. Agents can only construct instantiations independent of each
other when they know which inter-agent dependencies will be selected and which
will be pruned. Hence, concurrency requires all inter-agent condition dependencies
to be either selected or pruned, prior to planning. For each selected dependency
cei -inter cpj , cei has been selected. For each pruned dependency cek -inter cpl , cpl
has been pruned.

Minimal Dependencies Instance

Even for a minimal dependencies instance, ICV turns out to be coNP-complete. With
a minor restriction to the PWFP problem, we can prove this proposition.

PROPOSITION 3.7. ICV is coNP-complete for a minimal dependencies instance.

Proof. Recall that for a minimal dependencies instance (T,-) each precondition
cp ∈ Cp(T) and effect ce ∈ Ce(T) is part of at least one feasible instantiation. While
all tasks have a single effect, these are always instantiated. Hence, we only have
to show that when each precondition is part of a feasible instantiation, ICV is still
coNP-hard.

For the task partitions that correspond to a forbidden pair, it is clear that there
exists a feasible dependencies instantiation for each of the disjunctive precondi-
tions. In such an instantiation, we should avoid selecting the dependency ct

′

e - cs
′

p1
.

17If we assume feasible instantiations for the task partitions corresponding to forbidden pairs.

42

3.4. Coordination

If we do select this dependency, a trivial path s − t would prevent minimality
for the dependencies instance. Precondition cs

′

p1
then, cannot be part of a feasible

instantiation. But, if we require each path s − t to contain at least one arc from a
forbidden pair, we do have a minimal instance. If an instantiation contains pre-
condition cs

′

p1
, we select for all other task partitions the preconditions that do not

depend on an effect.
In Valk [35], it is shown that PWFP remains NP-complete under the restriction

that a path s − t contains at least one arc from a forbidden pair. This allows us to
conclude that ICV is coNP-complete for minimal dependencies instances as well.

3.4.2 Ensuring Coordination

Given a partitioned abstract complex task, we can verify whether it is instantiated
plan-coordinated or not. If it is, autonomous agents can construct instantiations for
their sub-instances concurrently. Ultimately, we would like to ensure instantiated
plan-coordination. When coordinating the agents for an abstract complex task, we
effectively decouple it into independent subtasks. For each of the subtasks, an in-
stantiated plan can be constructed in isolation. We will therefore use the term
instantiated plan-decoupling for our coordination mechanism to ensure instantiated
plan-coordination.

Several coordination mechanisms exist. One could e.g. remove tasks from the
abstract complex task, prune conditions, or add precedences. The mechanism we
propose prunes conditions and adds precedences. This way, we can ensure that each
consistent partitioned abstract complex task can be decoupled.

Instantiated plan-decoupling will come at a price. By transforming an abstract
complex task, some of the freedom agents have in choosing among conditions and
precedences will be limited. Therefore, we will try to minimise the impact of instan-
tiated plan-decoupling on the abstract complex task.

For the Plan-Decoupling Problem in Section 2.2.4, we minimised the number of
intra-agent precedences added. However, an abstract complex task contains both
dependencies and precedences. These relations interfere with each other. In the
next example, we will present a simple case in which they interfere.

EXAMPLE 3.11. In Figure 3.15, four tasks are shown with precedences t1 ≺ t3, t4 ≺
t2 and dependencies ce2 - cp1 , ce3 - cp4 . Not both cp1 and cp4 can be in a feasible
instantiated plan, as it would be cyclic. To coordinate this abstract complex task, we
could prune either of these preconditions. However, agents could add precedences
between the tasks. As in plan-decoupling, we should add a precedence t1 ≺ t2 or
t4 ≺ t3 to prevent a cyclic joint instantiated plan. Which precedence to add is up to
which preconditions are instantiated.

We define the Instantiated Plan-Decoupling Problem (IPD) to be the problem
of determining whether a consistent partitioned abstract complex task can trans-
formed into a decoupled partitioned abstract complex task. Our optimisation cri-

43

3. INSTANTIATION COORDINATION

t1

t2 t4

a1 a2

t3
cp1

ce2

cp4

ce3

Figure 3.15: Abstract Complex Task

terion for decoupling a partitioned abstract complex task will encompass (i) the
number of added precedences and (ii) the number of pruned conditions.

DEFINITION 3.23 (Instantiated Plan-Decoupling Problem (IPD)). Given a consistent
partitioned abstract complex task T a = ({Ti}

n
i=1,≺,-) with T = T1∪T2∪· · ·∪Tn and an

integer K , can T a be transformed into an abstract complex task ({T ′
i}

n
i=1,≺

′,-′) with:

• C ⊂ Cp(T) ∪ Ce(T) the set of all conditions pruned from T a,

• ∆ = ∆1 ∪∆2 ∪ · · · ∪∆n a coordination set with ∆i ⊂ Ti × Ti and ≺′ = ≺ ∪∆,

such that:

(i) IPCV is a yes-instance for ({T ′
i}

n
i=1,≺

′,-′),

(ii) |C|+ |∆| ≤ K?

IPD is a generalisation of the PD problem, defined in Definition 2.8. If we pro-
vide IPD with no dependencies and concrete tasks ({Ti}

n
i=1,≺, ∅), IPD equals PD.

PD is Σp
2-complete. Hence, IPD is Σp

2-hard. We will tighten this bound to Σp
2-

completeness. The additional representational power of abstract tasks and depen-
dencies does not increase the complexity of decoupling.

PROPOSITION 3.8. IPD is in Σp
2.

Proof. For a consistent partitioned abstract complex task (T,≺,-) and K > 0, a
certificate for IPD is a coordination set ∆ of added precedences and a set of condi-
tions C to be pruned. We have to verify whether:

(i) the result, (T′,≺′,-′), of adding precedences in ∆ to, and pruning the condi-
tions in C from (T,≺,-) is a yes-instance for IPCV,

(ii) |C|+ |∆| ≤ K .

44

3.4. Coordination

Checking whether |C| + |∆| ≤ K is trivial. Next, we have to construct the ab-
stract complex task (T′,≺′,-′). Adding precedences in ∆ and pruning conditions
in C can be performed in polynomial time. Verifying whether this instance is a
yes-instance for IPCV is coNP-complete. Therefore, IPD is in Σp

2.

Just like for verifying coordination, instantiated plan-decoupling for a consis-
tent partitioned abstract complex task is not harder than plan-decoupling. To show
that decoupling with respect to dependencies instances is not trivial, we will prove
instantiated plan-decoupling for these instances to be Σp

2-complete as well. We call
this problem the instantiation-decoupling problem.

DEFINITION 3.24 (Instantiation-Decoupling Problem (ID)). Given a consistent par-
titioned dependencies instance ({Ti}

n
i=1,-) with T = T1∪T2∪· · ·∪Tn and an integer K ,

can ({Ti}
n
i=1,-) be reduced into an instance ({T ′

i}
n
i=1,-

′) for which C ⊂ Cp(T)∪ Ce(T)
is the set of all conditions pruned from ({Ti}

n
i=1,-), such that:

(i) ICV is a yes-instance for ({T ′
i}

n
i=1,-

′),

(ii) |C| ≤ K?

ID turns out to be Σp
2-complete. To prove Σp

2-hardness of ID, we will construct
a reduction from the partitioned path with forbidden pairs problem [34, 35].

DEFINITION 3.25 (Partitioned Path with Forbidden Pairs Problem (∃∀¬PWFP)).
Given a PWFP instance (G = (V,A),F, s, t) and a partitioning {F1,F2} of F, does a
set X1 = {a | {a, a′} ∈ F1} exist such that for every X2 = {a | {a, a′} ∈ F2}, there does
not exist a path from s to t for the set of arcs A′ = (A \ {a, a′ | {a, a′} ∈ F}) ∪ X1 ∪ X2?

For the ∃∀¬PWFP problem, an arc is selected from every forbidden pair. The
set of forbidden pairs is split into two subsets F1,F2. The problem is to determine
if a selection of arcs from the forbidden pairs in p1 can be made such that no path
from s to t exists in the directed, acyclic graph G. Irrespective of the arc selected for
each forbidden pair in F2, no path s− t exists.

EXAMPLE 3.12. In Figure 3.16, a PWFP instance is shown with two forbidden pairs
{a1, a2}, {a3, a4}. If we partition them into the sets F1 = {{a3, a4}} and F2 =
{{a1, a2}} we have a yes-instance for the ∃∀¬PWFP problem. To see this, we let
X1 = {a3}. Clearly, no path from s to t exists whatever choice for X2.18

In Valk [35], ∃∀¬PWFP is proven to be Σ2
p-complete. We will use this result to

prove Proposition 3.9. The proof for this proposition is similar to the proof of Σp
2-

hardness of the plan-coordination problem defined in the same work of Valk [35]
and related work of Ter Mors [34].

PROPOSITION 3.9. ID is Σp
2-hard.

18For F1 = {{a1, a2}} and F2 = {{a3, a4}}, the instance would be a yes-instance as well.

45

3. INSTANTIATION COORDINATION

s

tu

v

a1

a2

a3

a4

Figure 3.16: A PWFP instance.

cp1

cp2

cp2

cp1
ta

td

tb

tc

tla

tld tlc

tlb

ts tttls tlt

cp1

cp2

cp3

Figure 3.17: Transformation from p ∈ F1 in ∃∀¬PWFP to a task partition in ID.

Proof. We start by transforming an instance (G,F1 ∪ F2, s, t) of ∃∀¬PWFP into an
instance (T,-) for ID. This transformation is similar to the transformation used in
proving ICV coNP-hard.

Again, for each of the n vertices vi ∈ V we define a task partition Ti = {ti},
which contains a single concrete task. For each arc (vi, vj) ∈ A not involved in a

forbidden pair, we construct the dependency cie - cjp.
We only transform each of the m forbidden pairs pj = ({(va, vb), (vc, vd)}) in F2

into a task partition Tn+j = {tja, t
j
b, t

j
c, t

j
d}, as shown in Figure 3.13 and discussed in

the proof of the coNP-hardness result for ICV.
The ∃∀¬PWFP problem is to find a set X1 such that no path exists from s to t.

On the other hand, for ID, we have to find a set of conditions C to prune such that
no cyclic instantiation can be constructed for the given instance. The goal of this
reduction is to link the pruned conditions to the arcs in X1. This, we will model by
creating a more sophisticated task partition for each forbidden pair p ∈ F1, which
is shown in Figure 3.17.

For each of the K forbidden pairs pl = {(va, vb), (vc, vd)} ∈ F1 we construct a
task partition Tn+m+l = {tla, t

l
b, t

l
c, t

l
d, t

l
s, t

l
t}. Tasks tla, t

l
c, t

l
s are concrete, tasks tlb, t

l
d

46

3.4. Coordination

ts ttt′s t′t

cp1

cpK

cpK+1

cpK+2

Figure 3.18: Task partition for modelling a path from tt to ts.

have a single effect and a disjunctive precondition of size two. Task tlt is has a single
effect and a disjunctive precondition of size three. Tasks tls and tlt are defined for
vertices s and t respectively.

Note. Because we have K forbidden pairs in F1, we have K corresponding task
partitions as well. This K is the measure |C| ≤ K of the ID problem.

We add the same condition dependencies to this task partition as for the other
task partition: cale - cblp1 , c

bl
e - cclp , c

cl
e - cdlp1 , c

dl
e - calp . These ensure that not both arcs

of a forbidden pair can be selected. Additionally, we add dependencies ce(ta) -

calp , cble - cp(tb), ce(tc) - cclp , c
dl
e - cp(td) to connect this task partition to the other

tasks.
To have a coordinated instance correspond to the non-existence of a path from

s to t, we add the condition dependencies ce(ts) - cslp , c
sl
e - ctlp1 , c

sl
e - ctlp2 , c

tl
e -

cp(tt). If either csle - ctlp1 or csle - ctlp2 is instantiated, a path from ts to tt exists. If

simultaneously cale - cblp1 or ccle - cdlp1 is selected, the instantiation for the partition

is cyclic.19

To have a path from ts to tt correspond with an uncoordinated instance, we
should have a path from tt to ts as well. Therefore, we create a task partition
Tn+m+K+1 = {t′s, t

′
t}. Task t′t is a concrete task, while t′s is an abstract task with K+2

preconditions. These tasks are connected to tasks ts, tt by ce(tt) - ct
′

p , c
s′

e - cp(ts).

Next, we add dependencies {ct
′

e - cs
′

p1
, ct

′

e - cs
′

p2
, . . . , ct

′

e - cs
′

pK+1
}. In Figure 3.18,

this task partition is shown. Precondition cs
′

pK+2
is independent of an effect.

We have to check for the transformation above if it results in a valid instance
of ID. For ID, we require a consistent partitioned dependencies instance (T,-) and
an integer K . The integer K equals the number of forbidden pairs in F1. Consis-
tency of the created instance is easily checked. The PWFP instance used for the
∃∀¬PWFP problem is acyclic. Arcs A are converted straight into dependencies or
into one or more task partitions.

19Note the close relation between the set X1 and the set of conditions C to prune.

47

3. INSTANTIATION COORDINATION

If all arcs would be transformed into dependencies, an acyclic instantiation ex-
ists in which precondition cs

′

pK+2
is selected. In this case, the instance is therefore

consistent. However, for some arcs, task partitions are constructed. For all abstract
tasks, it is possible to select a precondition that does not depend on any effect. This
implies that no cycle can pass through a task partition. Therefore, an instance for
which forbidden pairs are transformed is consistent as well.

A yes-instance of ∃∀¬PWFP should correspond to a yes-instance of ID, un-
der the transformation. A certificate for a yes-instance of ∃∀¬PWFP is the set X1.
Each arc ai ∈ X1 has a corresponding forbidden pair pi ∈ F1, which has been
transformed into a task partition Tn+m+i. So, when arc a = (va, vb) ∈ X1 we will se-

lect dependency c
an+m+i
e - c

bn+m+i
p1 . Upon selecting this dependency, both c

an+m+i
e

and c
bn+m+i
p1 are selected. By propagation, precondition c

bn+m+i
p2 is therefore pruned;

c
bn+m+i
p2 ∈ C.

To see that the pruned conditions coordinate the instance, we have to show that
no path ts − tt exists. First, an almost trivial path could exist within each of the
task partitions {Tn+m+1, Tn+m+2, . . . , Tn+m+K} for forbidden pairs F1. Instantiat-
ing csle - ctlp1 or csle - ctlp2 creates a path from ts to tt. However, neither of these
dependencies can be instantiated because the dependency corresponding to the se-
lected arc from X1 is selected. Selecting either of the dependencies that creates a
path ts − tt would infer a cycle local to the task partition.

In a similar way, the selected arcs X2 for the forbidden pairs F2 correspond
to the selected dependencies in the task partition for the forbidden pair. Because
none of the arcs in X2 can create a path from s to t, none of the corresponding
dependencies can enable a path ts − tt as well.

No path s − t exists that contains only arcs that are not in a forbidden pair. To-
gether with the fact that G is acyclic, we can conclude that the transformed instance
for ID does not contain a path from ts to tt that passes through concrete tasks only.

So, by pruning all conditions in C, the dependencies instance (T,-) is coordi-
nated. Because for each task partition T ∈ {Tn+m+1, Tn+m+2, . . . , Tn+m+K} exactly
one dependency is selected and one precondition pruned, the size of C is exactly
K . This K is minimal. If K would not be minimal, for at least one task partition
Tl ∈ {Tn+m+1, Tn+m+2, . . . , Tn+m+K} no dependency is selected. The agent plan-
ning for (Tl,-l) is free to select e.g. csle - ctlp1 . So, the instance is therefore not
coordinated. We conclude that the set C is a yes-certificate for ID.

A certificate for a yes-instance of ID is a set of conditions C to prune, with
|C| ≤ K . By pruning these conditions from the instance, all potential cyclic in-
stantiations are prevented. We identify three types of task partitions that contain
abstract tasks:20

20Conditions of concrete tasks cannot be pruned.

48

3.4. Coordination

(i) task partitions {Tn+m+1, Tn+m+2, . . . , Tn+m+K}, corresponding with forbid-
den pairs in F1,

(ii) task partitions {Tn+1, Tn+2, . . . , Tn+m}, corresponding with forbidden pairs
in F2,

(iii) task partition {t′s, t
′
t}, connecting tt to ts.

For the first set of task partitions, {Tn+m+1, Tn+m+2, . . . , Tn+m+K}, an agent is
free to select a dependency that connects t′s to t′t. However, this creates a direct path
s−t. So, for coordination we should avoid the selection of such a dependency. With
K task partitions, we cannot prune both ctlp1 and ctlp2 because it would require 2K

conditions to be pruned. Therefore, either cblp2 or cdlp2 should be pruned. As a result,

dependency cale - cblp1 or ccle - cdlp1 will be selected respectively. This selection
prevents the other dependencies within the partition to be selected. Otherwise, a
cyclic instantiation is created for the partition.

For the task partitions {Tn+1, Tn+2, . . . , Tn+m}, corresponding to F2, none of the
task partitions can prevent the path that can be created for a forbidden pair in F1.
For those partitions, at least K conditions have to be pruned. So, no conditions can
be pruned from the task partitions {Tn+1, Tn+2, . . . , Tn+m}.

Finally, we could break all cyclic instantiations by removing all preconditions
of task t′s that depend on ct

′

e . However, t′s has K + 1 preconditions, so removing
them would prune more than K conditions.

Given C, we infer the set of condition dependencies to select. For each depen-
dency cui

e - cvip1 that is selected, the corresponding arc (vu, vv) ∈ pi will be in X1;
ai = (vu, vv) ∈ X1. For each of the task partitions {Tn+m+1, Tn+m+2, . . . , Tn+m+K},
one dependency is selected. So, for each forbidden pair in F1 exactly one arc is
in X1. Since C coordinates the instance, no dependency selection of the task par-
titions {Tn+1, Tn+2, . . . , Tn+m} can create a path from ts to tt. Neither does a path
exist from ts to tt through concrete tasks only, because the instance is coordinated.
Therefore, for each set X2 no path exists from s to t. So, X1 is a yes-certificate for
∃∀¬PWFP.

PROPOSITION 3.10. ID is Σp
2-complete.

The Σp
2-completeness of ID follows directly from Propositions 3.8 and 3.9.

Again, even for a minimal dependencies instance, ID is Σp
2-complete. The proof

is similar to the proof for Proposition 3.7.

PROPOSITION 3.11. ID is Σp
2-complete for a minimal dependencies instance.

Proof. All tasks t ∈ T have a single effect. Again, we have to show that all precon-
ditions cp ∈ Cp(T) are in a feasible joint dependencies instantiation. For the task
partitions, we can easily verify that each precondition can be instantiated in a feasi-
ble dependencies instantiation for it. When selecting cs

′

pK+2
, the joint dependencies

instantiation is feasible if all instantiations for partitions are feasible.

49

3. INSTANTIATION COORDINATION

Would another precondition of t′s than cs
′

pK+2
have been selected than no cyclic

joint instantiation can be constructed. The chosen subset of forbidden pairs X1 ⊆
F1 prevents a path s − t. Hence, we could select any precondition that connects t′t
to t′s.

Optimal instantiated plan-decoupling between agents turns out to be computa-
tionally intractable. For practical uses, heuristics might pose a feasible alternative
to compute sub-optimal decouplings. Despite being interesting, we will not discuss
heuristics.

3.5 Discussion

In this chapter, we enriched the task coordination framework with abstract tasks that
have preconditions and effects, and condition dependencies that relate preconditions
and effects of tasks. These enrichments allowed us to reason about a dependencies
instance and an instantiation. Within the framework, tasks with disjunctive effects
and preconditions can modelled.

By partitioning the abstract complex task, we reasoned about coordination.
With instantiated plan-decoupling, we proposed a pre-planning coordination mecha-
nism which ensures coordination between agents for a given consistent partitioned
abstract complex task. Our mechanism is a generalisation of plan-decoupling, the
coordination mechanism discussed in Chapter 2.

Despite our extensions, the complexity results for IPCV and PCV are identical.
Similarly, we obtained the same result for IPD as has been obtained for PD. While
our enriched framework provides more modelling capabilities, it does not harden
the coordination verification problem and the decoupling problem.

Even better, the enrichments in the enriched task coordination framework are
far from trivial. By neglecting the precedence relation, we obtained the coNP-
completeness result for ICV and Σp

2-completeness for ID. Hence, verifying and en-
suring coordination for abstract tasks and dependencies is just as hard as verifying and
ensuring coordination for concrete tasks and precedences.

50

Chapter 4

Application and Experiments

So far, we formally analysed instantiated plan-decoupling. In our introduction, we
identified various application fields of autonomous agents. We would therefore
like to apply our approach in a more real-life setting. By heuristically ensuring
instantiated plan-coordination, we will conduct experiments by which we analyse
how plan quality and planner run-time are affected by our approach.

In practise, our approach is used for achieving coordination. An agent is likely
to accept the subtask resulting from coordination if it is beneficial to its planning
process. Nevertheless, an agent’s planning freedom is limited by ensuring coordi-
nation. Instantiated plan-coordination alters a partitioned complex task. Agents
are limited in the feasible plans they can construct for their complex subtask. They
have to give up some of their autonomy to ensure coordination for their planning
processes. Giving up autonomy comes at a cost.1

In Steenhuisen et al. [33], the deterioration in agents’ plan quality is called the
price of autonomy. We could measure the price of autonomy by the number of addi-
tional precedences and pruned conditions. However, for an agent it is much more
relevant as to what extend its feasible plans worsen. On the other hand, it is also
important to identify with what ease a solution to its planning problem can be
found.

An agent could plan for its coordinated subtask or have a central authority plan
for it. When planning by itself, the subtask should be constrained by additional
coordination constraints. If an agent perceives these additional costs to be higher
than the costs for getting a plan from the central authority, it would be rational for
agents to let go of their autonomy. In this chapter, we would like to empirically
show how much costs are involved with decoupling. We focus on instantiated plan-
decoupling and the role of instantiation-decoupling on its own. In work of Valk [35],
the costs of plan-decoupling has been empirically tested.

1Costs can be measured in various ways. For us, costs are the degree to which plan quality wors-
ens and planning run-time increases by ensuring coordination, compared to having no autonomy at
all.

51

4. APPLICATION AND EXPERIMENTS

Figure 4.1: Infrastructure for a Logistics instance.

First, we will discuss the experimental design in Section 4.2. We continue
with the experimental set-up in Section 4.2.4. Next, the empirical results for the
experiments are in Section 4.3. Section 4.4 ends this chapter with a discussion.

4.1 Logistics Application Domain

Our goal is to test at what additional cost agents’ autonomy comes. To compute
these additional costs we should have a reference. Our reference will be a situation
in which agents have no autonomy. In this situation, a central authority imposes a
plan on them.

The application domain we will run our experiments for is the Logistics domain.
Logistics is a domain that has been used in the International Planning Competitions
(IPCs) of 1998 and 2000. It provides an intuitive structure and can be easily decou-
pled.

For Logistics problems, both a multi-agent system and a central authority are
able to construct plans. We can decouple central Logistics instances into multi-agent
planning instances. By decoupling central instances for a multi-agent planning
approach, we can compare the performance of decoupled multi-agent planning
to centralised planning. Decoupling allows for both centralised and decoupled
planning to use the same planners.

4.1.1 Domain Specification

In Logistics, the goal is to transport a number of packages from one location to
another. Locations are grouped into cities and only connected to each other within
a city. Cities are connected to other cities by their airports. Airplanes flying between
these airports transport packages. Within a city, trucks are available to transport
packages from location to location.

EXAMPLE 4.1. In Figure 4.1, the infrastructure for a Logistics instance is shown. It
has three cities, with three locations per city. A grey circle represents a city, dots

52

4.1. Logistics Application Domain

(:action LOAD-TRUCK
:parameters (?pkg - package ?truck - truck ?loc - place)
:precondition (and (at ?truck ?loc) (at ?pkg ?loc))
:effect (and (not (at ?pkg ?loc)) (in ?pkg ?truck)))

(:action LOAD-AIRPLANE
:parameters (?pkg - package ?airplane - airplane ?loc - place)
:precondition (and (at ?pkg ?loc) (at ?airplane ?loc))
:effect (and (not (at ?pkg ?loc)) (in ?pkg ?airplane)))

(:action UNLOAD-TRUCK
:parameters (?pkg - package ?truck - truck ?loc - place)
:precondition (and (at ?truck ?loc) (in ?pkg ?truck))
:effect (and (not (in ?pkg ?truck)) (at ?pkg ?loc)))

(:action UNLOAD-AIRPLANE
:parameters (?pkg - package ?plane - airplane ?loc - place)
:precondition (and (in ?pkg ?plane) (at ?plane ?loc))
:effect (and (not (in ?pkg ?plane)) (at ?pkg ?loc)))

(:action DRIVE-TRUCK
:parameters (?truck - truck ?from - place ?to - place ?city -

city)
:precondition (and (at ?truck ?from) (in-city ?from ?city) (in-

city ?to ?city))
:effect (and (not (at ?truck ?from)) (at ?truck ?to)))

(:action FLY-AIRPLANE
:parameters (?plane - airplane ?from - airport ?to - airport)
:precondition (at ?airplane ?from)
:effect (and (not (at ?plane ?from)) (at ?plane ?to)))

Listing 4.1: Operators for Logistics.

locations, and squares airports. The routes airplanes fly are dashed. Trucks drive
the solid lines within a city. Packages reside at any of the locations.2

Before we define tasks, we first present PDDL-operators for Logistics in Listing
4.1.3 Operators can be instantiated into actions. Agents planning for Logistics will
plan with these actions, see Section 2.1.2. This gives insight in the way packages are
transported. Packages can be loaded and unloaded from both trucks and airplanes.
In between, they reside at a location. Trucks drive between locations within a city.
Airplanes fly between the airports.

2An airport is a location as well.
3PDDL is the language used in the IPCs. It was initially developed by McDermott et al. [25].

53

4. APPLICATION AND EXPERIMENTS

(:init
(in-city city0-l0 city0)
(in-city city0-a0 city0)
(in-city city0-a1 city0)
(in-city city1-l0 city1)
(in-city city1-a0 city1)
(in-city city1-a1 city1)
(at airplane0 city0-a0)
(at truck0-0 city0-l0)
(at truck1-0 city1-a0)
(at package0 city0-a0)

)
(:goal
(and

(at package0 city1-l0)
)

)

Listing 4.2: Initial and goal situation for a Logistics instance.

Operators are instantiated into actions during planning. A plan transforms an
initial situation into a goal situation. In Listing 4.2, an example instance for Logis-
tics is shown with two cities, two locations and one truck per city, one airplane, and
one package. The goal is to have package0 at location city1-l0.

Defining Tasks

To transport package0 from city0-a0 to city1-l0, for the problem instance of
Listing 4.2, it should be transported by a plane to either airport city1-a0 or city1
-a1 of city1. From one of these airports, it will be transported to city1-l0 by
truck. Hence, we can define two tasks for this package: one to transport it by plane
and one to transport it by truck.

We define two types of tasks; tasks to transport a package by truck and tasks to
transport by airplane. For trucks, we define the following abstract task:4

tt = (Ct
p, C

t
e), with for each ctp ∈ Ct

p and cte ∈ Ct
e:

ctp = (γcp ,at(?package, ?location))

cte = (γce ,at(?package, ?location)).

Airplane tasks are identically modelled, with the exception that they are defined

4We used the PDDL notation to denote variables and will surround the arguments of atoms by
parenthesis.

54

4.1. Logistics Application Domain

airplane trucktruck

Figure 4.2: Orders for a Logistics instance.

for airports instead of locations:

ta = (Ca
p , C

a
e), with for each cap ∈ Ca

p and cae ∈ Ca
e :

cap = (γcp ,at(?package, ?airport))

cae = (γce ,at(?package, ?airport)).

To transport a package, one to three tasks are required.5 These tasks are chained
one after another. We call this task chain an order. Orders can be either intra-city, or
inter-city. Intra-city orders are defined for packages that have their goal location in
the same city as their origin. An intra-city order is modelled by a single task. We
define intra-city orders for packages that have a goal location in another city than
the city it originates from. These orders consist of one, two, or three tasks. In Figure
4.2, a couple of orders for Logistics are conceptualised.

Abstract Complex Task

In Figure 4.2, we ordered tasks by a precedence relation. In fact, the tasks depend
on each other by literals like at(package0, city0-a0). Hence, we will model
them as condition dependencies. We do not need the precedence relation to model
Logistics problems.6

Given tasks and condition dependencies for Logistics, we can construct an ab-
stract complex task. While it lacks precedence relations, it is a dependencies instance
as well. In Example 4.2, we will discuss an example.

EXAMPLE 4.2. Suppose we have an inter-city order for a Logistics instance with two
cities, one airport per city, and one additional location per city. Package package0

has to be transported from location city0-l0 to city1-l0. For this order, we
define three concrete tasks:

t1 = ({(γ1,at(package0, city0-l0))}, {(γ2,at(package0, city0-a0))})

t2 = ({(γ3,at(package0, city0-a0))}, {(γ4,at(package0, city1-a0))})

t3 = ({(γ5,at(package0, city1-a0))}, {(γ6,at(package0, city1-l0))}).

5If a package’s initial location equals its goal location, we do not define a task for it.
6We will require precedences when decoupling, as we will see later on.

55

4. APPLICATION AND EXPERIMENTS

unload-truck load-airplaneairport1

city agent airplane agent

(a) Concrete boundary.

unload-truck load-airplane
airport1

airport2

city agent airplane agent

(b) Abstract boundary.

Figure 4.3: Boundaries between a city and airplane agent.

Additionally, we define the condition dependencies ce(t1) - cp(t2) and ce(t2) -

cp(t3). This defines the abstract complex task ({t1, t2, t3}, ∅,-) for this Logistics
instance.

Defining Agents

One might expect us to define each truck and airplane to be an agent. However, we
will define agents based on trucks and airplanes on geographic location. For each
city we define single city agent. Additionally, we define a single airplane agent that
reasons about all airplane tasks.

Multiple Airports per City

When dealing with concrete tasks, we have a concrete boundary between agents. In
Figure 4.3(a), this situation is shown.

To test our instantiated plan-coordination approach, we should have disjunctive
conditions at the boundary of agents. It should be unclear for the airplane agent
at which airport packages must be unloaded by the trucks. We should have an
abstract boundary. Therefore, we will need instances that have more than one airport
per city. Figure 4.3(b) shows an example of an abstract boundary for Logistics.

All instances used in the planning competitions of 19987 and 20008 have a single
airport per city. For the problem set of 2000, each city has only a single location
and a single truck. Since we cannot use these instances to test our dependencies
coordination mechanism, we will generate custom Logistics instances with several
airports per city.

7ftp://ftp.cs.yale.edu/pub/mcdermott/aipscomp-results.html
8http://www.cs.toronto.edu/aips2000/

56

ftp://ftp.cs.yale.edu/pub/mcdermott/aipscomp-results.html
http://www.cs.toronto.edu/aips2000/

4.2. Experimental Design and Set-up

In the work of Valk [35], decoupling has been performed on standard Logistics
instances. While his approach is based on plan-decoupling, it cannot handle tasks
with disjunctive conditions. Hence, with instantiated plan-decoupling, we enlarge
the set of Logistics instances we can ensure pre-planning coordination for.

4.2 Experimental Design and Set-up

In the previous section, we already identified the need for Logistics instances with
multiple airports per city to test our coordination approach. In this section, we will
further analyse the Logistics domain and discuss which instances will be used in
our experiments.

4.2.1 Decoupling

To achieve instantiated plan-decoupling, we decouple with respect to both prece-
dences and condition dependencies. In Chapter 3, we did not identify how to co-
ordinate for both relations simultaneously. Here, we will divide instantiated plan-
decoupling into a plan-decoupling phase and an instantiation-decoupling phase. We will
show that for Logistics, the relative order of these phases is irrelevant.

For each package pi to be transported, we can define an order oi. An order
is the sequence of tasks that is required for transporting pi from its initial to its
goal location: o = 〈t1, t2, . . . , tn〉. Each order oi is independent of another order
oj . By this, we mean that none of the tasks in oi depend on a task in oj and vice
versa. Within an order, for all preconditions of tasks t2, . . . , tn, i.e. all tasks except
t1, depend on the effects of the preceding task. In Figure 4.3(b), as an example,
the dependencies between unloading a package from a truck and loading it into an
airplane are shown.

An order can be characterised as either an intra-city or inter-city order. Packages
that have their initial and goal location in the same city have a corresponding intra-
city order. Packages leaving the city have an inter-city order.

PROPOSITION 4.1. Given a abstract complex task (T, ∅,-) for Logistics, each instanti-
ated plan (T ′, ∅,-′) for it transforms into the same plan (T c,≺) by applying Algorithm
3.2.

Proof. Assume the contrary: there exist two different instantiated plans (T ′i, ∅,-′i)
and (T ′j , ∅,-′j) for the abstract complex task (T, ∅,-). Each of these instantiated
plans yields a different plan by applying Algorithm 3.2. These plans are respec-
tively (T ci,≺i) and (T cj,≺j).

The set T ci and T cj will contain the same tasks: T ci = T cj . This is because for
each task t′i ∈ T ′, Algorithm 3.2 constructs a corresponding task tci ∈ T c.9 So, the
sets of precedences between tasks ≺i and ≺j should be unequal. Without loss of

9Note that an instantiation for an instance has a concrete task for each task in the instance. Task
ti ∈ T is therefore instantiated into t′i.

57

4. APPLICATION AND EXPERIMENTS

city agent airplane agent

Figure 4.4: A potential cyclic plan for Logistics.

generality, we can assume that ≺i contains a precedence tk ≺ tl that is not in ≺j .
This implies that there exists a dependency between an effect of tk and a precon-
dition of task tl: cke - clp. In T cj, a different precondition has to be selected for
task tl. However, we observed that each task, except the first, in an order depends
on its predecessor only and has no preconditions that do not depend on an effect.
Therefore, tl ∈ T cj should have a dependency on tk ∈ T cj as well and we have our
contradiction.

By Proposition 4.1, we can conclude that there is a direct relation between prece-
dences and dependencies in Logistics. Given the dependencies, all precedences can
be determined. The other way around, given the precedences between tasks, we
can easily determine the dependencies between conditions. It allows us to inter-
change the phases of plan- and instantiation-decoupling. Precedences in a coordi-
nation set can be trivially converted into condition dependencies.

Plan-Decoupling

The primary goal of our experiments is to test the effect of instantiation-decoupling.
Still, we have to ensure plan-coordination as well. Agents can come up with local
plans that, when merged, result in a cyclic joint plan. In Figure 4.4, a potential cycle
is shown for two agents.

For Logistics, we can plan-decouple heuristically using a depth-partitioning algo-
rithm [36]. Here, we will shortly address how plan-decoupling can be achieved for
Logistics.

In short, for Logistics, plan-decoupling can be achieved by partitioning the set
of tasks assigned to a city agent into three disjoint subsets. Each order is from
the local perspective of an agent either incoming, outgoing, or local. All tasks for
packages that reside in the city and have to leave it are in the outgoing set. Tasks
for packages with their goal location in the city and their initial location outside are
in the incoming set. All remaining tasks that involve packages that reside within
the city are in the local set.

Remark. To fully test the performance of coordination, all Logistics instances are
generated without local orders. Each package will have to be transported from a
location in one city, to a location in another city.

58

4.2. Experimental Design and Set-up

city agent airplane agent

Figure 4.5: Additional (dashed) precedences for coordinating Logistics.

city agent airplane agent

Figure 4.6: (Dashed) Dummy task for coordinating Logistics.

We will achieve plan-decoupling for Logistics instances in either of two ways:

• we add precedences from the outgoing orders to the incoming orders,

• we split each city c into two disjunctive cities ci, co; all tasks of outgoing orders
are defined for co, tasks of incoming orders are defined for ci.

Add Precedences The first approach is identical to the one used by Steen-
huisen et al. [33]. We require all outgoing orders to be completed before any in-
coming order is processed. When we require this for each agent, no cyclic joint in-
stantiated plan can be constructed. In Figure 4.5, the additional precedences from
outgoing orders to incoming orders are shown.

While many precedences might be added between tasks, which are hard to
model in PDDL, we will use a more elegant solution in our experiments. We define
an additional dummy task. This dummy task corresponds to a literal that needs to
be achieved in PDDL. The use of the additional task is illustrated in Figure 4.6.

Splitting Cities Given a Logistics problem instance, we can define a new in-
stance in which each city is split into two new cities: one with only outgoing orders

59

4. APPLICATION AND EXPERIMENTS

and one with only incoming orders.10 In the newly obtained problem instance, all
outgoing orders for the original city have been redefined for the ‘outgoing’ city.
Incoming orders for the original city are redefined for the ‘incoming’ city.

The agent planning for the original city is split into two agents as well. Hence,
we have one agent planning for incoming order, the other for outgoing orders.
By splitting the orders over two cities, we prevent the construction of a cyclic joint
instantiated plan.

Adding precedences to achieve plan-decoupling requires a planner to ‘plan’
for the additional precedences. By splitting cities, we modify the Logistics instances
such that they are inherently plan-coordinated. No additional precedences are re-
quired to ensure plan-coordination.

Instantiation-Decoupling

To achieve instantiation-decoupling, we have to make sure that all feasible instan-
tiations for the agents’ instances can be merged into a feasible joint instantiation.
Such an instantiation is feasible if it is both correct and acyclic. Because a Logistics
instance is always acyclic, its instantiations will be acyclic as well. Consequently,
for instantiation-decoupling we have to ensure that each instantiation yields a cor-
rect joint instantiation.

After planning, each agent has constructed a feasible instantiation for its tasks.
When joining these instantiations, only the inter-agent condition dependencies can
obstruct a feasible joint instantiation.

Each inter-agent dependency is related to the condition of having package pi at
airport apj . If a city has multiple airports, multiple dependencies between the de-
pendent tasks are required. Package pi could e.g. reside at apj , apk, or apl. By select-
ing one of these airports as the intermediate location for pi, we have instantiation-
coordinated these dependencies. In our experiments, we will achieve instantiation-
decoupling by defining intermediate airport locations for packages.

PROPOSITION 4.2. Given a partitioned dependencies instance (T,-) for Logistics, by
selecting a single airport for each inter-city order as intermediate airport results in a min-
imum number of conditions to be pruned.

Proof. First, note that each order has to be instantiation-coordinated. For an inter-
city order, it is required to coordinate the airports at which the package will reside.

We coordinate by selecting a single inter-agent dependency ciek - cjpl . Let us call
the tasks that are related to the dependency ti and tj . By propagation, selecting the

dependency results in pruning all preconditions Cp(tj) except for cjpl . One precon-
dition remains, that has to be achieved, so all other effects Ce(ti) except ciek have to
be pruned as well.

10We will not use instances with local orders.

60

4.2. Experimental Design and Set-up

Finally, we note that orders are independent of each other. Consequently, se-
lecting a dependency does not propagate further than the two tasks involved in the
dependency. Therefore, it is essential to prune all these conditions.

In the Logistics instances used in the experiments, the selection of intermediate
airports is performed in two ways. In one configuration, we randomly selected one
airport per city to be the intermediate airport for all outgoing and incoming orders.
Essentially, it reduces the generated instances to instances with a single airport per
city. In the second configuration, we randomly selected a single airport per order
per city as intermediate airport. So, an inter-city order has two randomly assigned
intermediate airports.

Generated Problem Instances

Based on the discussions on achieving plan- and instantiation-decoupling, we iden-
tify three axes over which instances could be generated. These are:

• central problem or decoupled problem,

• split cities or original cities,

• single airport per city or single airport per order.

While being different instances, we define several instances for a single Logis-
tics problem. In Table 4.1, the characteristics of the Logistics problems used in the
experiments are shown.

The identifier for a problem is in the first column of Table 4.1. Next, the number
of cities in the problem is shown. The next two columns list the number of locations
per city and the number of which are airports. Then, in column five, the number of
trucks per city is shown. The number of airplanes is for the entire problem, not per
city. Finally, the number of packages scales with the problem id x by: b(4+x) · (3+
x)/12c.

4.2.2 Performance Measures

In the introduction of this chapter, we shed some light on how to determine the
price of autonomy. We identified two measures: the quality of a plan and the ease
with which such a plan can be constructed. Both of these terms are ambiguous.
Therefore, we will discuss here what will be the exact measures for determining
the performance of the planners.

Plan Quality

In classical planning, the quality of a plan is measured by the number of actions
in that plan. During IPC-2000, e.g., quality was measured by the number of plan
steps [1], the number of actions. A shorter plan is of higher quality. Later competi-
tions featured more advanced features like temporal and numerical requirements,

61

4. APPLICATION AND EXPERIMENTS

Problem Cities Locations Airports Trucks Airplanes Packages

1 1 2 1 1 1 1
2 1 2 1 1 1 2
3 1 3 1 1 1 3
4 2 3 1 1 1 4
5 2 3 1 1 1 6
6 2 5 2 2 1 7
7 2 5 2 2 1 9
8 3 5 2 2 2 11
9 3 6 2 2 2 13

10 3 6 2 2 2 15
11 3 6 2 2 2 17
12 4 8 3 3 2 20
13 4 8 3 3 2 22
14 4 8 3 3 2 25
15 4 9 3 3 2 28
16 5 9 3 3 3 31
17 5 9 3 3 3 35
18 5 11 4 4 3 38
19 5 11 4 4 3 42
20 6 11 4 4 3 46
21 6 12 4 4 3 50
22 6 12 4 4 3 54
23 6 12 4 4 3 58
24 7 14 5 5 4 63
25 7 14 5 5 4 67
26 7 14 5 5 4 72
27 7 15 5 5 4 77
28 8 15 5 5 4 82
29 8 15 5 5 4 88
30 8 17 6 6 4 93

Table 4.1: Characteristics of the Logistics problems.

enabled by more recent versions of PDDL [14]. In our experiments, plan quality is
measured in terms of the number of actions in a plan. This is the absolute number of
actions in a plan, not the make-span of a plan.11

An IPC features several tracks in which planners can compete. We will focus
here on the satisficing track. In this track, the goal is to find a near to optimal so-

11The make-span of a plan is the ‘time’ required for executing it. By executing actions concurrently,
the make-span can be reduced.

62

4.2. Experimental Design and Set-up

lution. This allows us to use larger problem instances then when using optimal
planners.

Run-time

Is it always better to have a shorter plan? If computing a slightly shorter plan takes
a vast amount more time to compute, we might doubt this. Optimal planners e.g.
use a lot of run-time to compute the best plan there is. Nevertheless, we choose
to use sub-optimal planners for their larger applicability. Therefore, we will take
run-time of planners to be our second measure. While there is clearly a trade-off
between run-time and plan quality, we will and can not indicate how much a dif-
ference in quality is worth in terms of a difference in run-time.

4.2.3 Expected Results

Now we know what instances to test and what to measure, we can come up with
some hypotheses. For each of them, we give a line of reasoning. We do not claim
these hypotheses to be correct, but will later on evaluate them with respect to the
achieved results.

HYPOTHESIS 4.1 (Plan Quality). Given a Logistics problem, the total plan length
for the decoupled instances will exceed the plan length for the central instance.

When planning for a central instance, a planner can come up with the optimal
solution for this Logistics problem. After decoupling, the instances are instantiated
plan-decoupled. This involves choosing intermediate airports and ordering the
incoming and outgoing orders. Without knowledge of the planning problem, we
cannot determine which airport to select for optimality. The decoupling heuristics
are therefore likely to reduce the problem to an instance for which only sub-optimal
plans exist.

On the other hand, by decoupling, the size of the subproblems is smaller than
the problem itself. As a result, planners will have to search a smaller search space.
Therefore, they should be able to find relatively good solutions for subproblems.

HYPOTHESIS 4.2 (Run-time). Given a Logistics problem, the total run-time for the
decoupled instances will be less than the run-time for the central instance.

Despite classical planning being harder, plan-existence for Logistics is in P [17].
Plan-optimality, in terms of plan-length, is NP-complete [17]. Domain-independent
planners, however, cannot exploit domain-knowledge. They often search a state
space. By decoupling, these state spaces are made considerably smaller. As a result,
finding a solution should be easier and take less time.

HYPOTHESIS 4.3 (Airport per City and per Order). Given a Logistics problem, the
instantiation-decoupled instances with a random single airport per city will have
a shorter plan length and require less run-time than the instances with a random
single airport per order.

63

4. APPLICATION AND EXPERIMENTS

To start with the run-time aspect; if we remove airports from cities, the subprob-
lems for city agents become smaller. Moreover, the largest reduction in subproblem
size can be attributed to the airplane problem. Hence, we would expect run-time
for instances with a single airport per city to be shorter than for instances with a
single airport per order. While in principle it might be arbitrary to select a sin-
gle airport for all orders, or an airport per order, the reduction in size of the city
subproblems might raise plans of better quality.

4.2.4 Experimental Set-up

Before we can continue to with the empirical results, we first have to identify our
experimental set-up. What domain-independent planners will be used and what
restrictions do we impose on them during testing?

Planners Used

We selected five planners out of the many domain-independent planners for clas-
sical planning problems. These are: FF, LAMA, LPG, SGPlan and YAHSP. We se-
lected these planners because they are either overall top-performers, very influen-
tial, or perform very well on Logistics instances. Next, we will shortly discuss each
of these planners.

FF 2.3 FF [19] stands for ‘Fast-Forward’, which relates to the forward heuristic
search it performs. FF has been one of the most influential planners for classical
planning. It is based on the ground-breaking planner Graphplan [3]. In 2000 and
2002 it performed in its original form at the IPCs. Later editions featured planners
based on ideas of FF or even FF itself. It won the 2000-competition and performed
very well on Logistics.

LAMA LAMA [29] is the winner of the most recent planning competition of
2008 in the sequential satisficing track. It is a heuristic search planner, which com-
bines the FF-heuristic with a heuristic based on landmarks. Given the fact that
Logistics contains many landmarks, we included this planner here.12

LPG-td-1.0 LPG [15] competed in the 2002 and 2004 competition. It won the
first and achieved a second place in 2004. LPG uses heuristics for guiding its local
search for a plan. It provides good performance for Logistics instances.

To get the best possible plan, LPG can optimise for plan quality. On the other
hand, it can optimise for speed as well. Either of these optimisation criteria can be
given at the command line of LPG. In our results, we ran LPG for both quality as
speed.

12A landmark is a fact that has to hold in each plan for a planning problem.

64

4.3. Planning Results

SGPlan-6 SGPlan-6 [22] competed in the sequential satisficing track of IPC-
2008. Previous versions took part in the competitions of 2004 [5] and 2006. SGPlan
won the 2006-competition and reached a second place at the 2004 edition. It par-
tially decomposes a planning problem to solve each subproblem by another plan-
ner.

YAHSP 1.1 YAHSP [37] competed only in IPC-2004. It achieved the second
price in the suboptimal track. YAHSP turns out to be a very fast planner for Logis-
tics, as we will see next. This is why we included it in our experiments.

4.2.5 Computational Limits

Each of the planners was bound to two computational limits. We limited the maxi-
mum amount of memory to 2GB and the run-time to 30 minutes. These limits are in
line with the computational limits of the most recent IPC in 2008. We ensured that
each planner got a dedicated processor and 2GB of memory during its operation
such that no other processes would interfere with it.

4.3 Planning Results

We ran each of the planners of the previous section on the generated Logistics in-
stances. In this section, we will discuss the main results that can be obtained from
these experiments. Both of the performance measures, plan quality and run-time,
will be discussed.

First, we will discuss how plan quality and run-time of the planners are af-
fected by decoupling. Next, we will study instantiation-decoupling in isolation
by testing the instances with split cities. Finally, we will identify which heuristic
for instantiation-decoupling gives better results. We compare randomly selecting a
single airport for all orders within a city with randomly selecting airports per order.

4.3.1 Instantiated Plan-Decoupling

We ran each of the planners of Section 4.2.4 on both central and decoupled instances
corresponding to the problems of Table 4.1. The cities of these instances are not
split. In the decoupled instances, a random intermediate airport per order is selected
to achieve instantiation-decoupling and a dummy task is added to achieve plan-
decoupling.

Plan Quality

In Figure 4.7, plan quality is shown for the decoupled instances. All planners, except
LPG, were able to solve all instances. Some planners perform better than others, but
in general they perform alike. For instances corresponding to problems 27, 29, and
30, LPG was unable to solve one city subproblem as it ran out of memory.

65

4. APPLICATION AND EXPERIMENTS

Figure 4.8 shows the plan quality relative to the central instances. It shows the
ratio between the number of actions required for the decoupled instances and the

central instances:
decoupled

central . Note that for the larger problem instances, many data
points are omitted. These correspond to planners that were not able to construct a
plan within the computational limits.

Only two of the tested planners, SGPlan and YAHSP, were able to solve all cen-
tral instances. Both runs of LPG-td, for quality and speed, ran out of memory for
instances 24 till 27. For the largest three problems, the number of facts in the in-
stance was too large for them to handle. LAMA, top-performer in IPC-2008, ran
out of memory for the central instances related to problems 18 and higher. For
problems 14 and 15 it ran out of memory as well. FF could not plan for instance 24
and up because it required more than half an hour of CPU time.

In Figure 4.8, we see that plan quality is not affected much by instantiated plan-
decoupling. Quality ranges between approximately 15% longer and 15% shorter
plans. For larger instances, the margin narrows to around 10%. Therefore, auton-
omy of agents does not lead to a significant higher price to be paid in terms of plan
quality. Moreover, it allows for larger instances to be solved as well.

Run-time

Plan quality is hardly affected by instantiated plan-decoupling. Now, we will see
what the effect of instantiated plan-decoupling is for our second performance mea-
sure: run-time. In Figure 4.9, the run-time of the planners for the decoupled instances
is shown.13 As discussed earlier, YAHSP is an excellent performer on the Logis-
tics domain. The largest decoupled instance took just over three seconds to plan
for. The data points missing in the plot correspond to the data points that lack in
Figure 4.7.

In Figure 4.10, we plot the ratio between the run-time required for the decou-
pled instances and the central instances. As we see, especially FF benefits from
decoupling these instances. For larger problems, the speed-up is over a factor one
hundred. For the other planners, the speed-up is more modest.

YAHSP benefits the least from decoupling. The type of heuristic search it per-
forms might explain why. It uses a look-ahead strategy, combined with a best-first
search [37]. In Logistics, this appears to be very beneficial. Mainly because Logis-
tics problems only have reversible actions [40]. Hence, a planning process cannot
run into dead-ends in the search space.

Remark. The run-time of LPG-td speed and SGPlan on the decoupled instances is
very similar. In Chen et al. [5], LPG is explicitly mentioned as one of the base plan-
ners used in SGPlan. SGPlan pre-processes a planning instance and subsequently
feeds it to one of its base planners. Curiously, it is able to plan for problem in-
stances 27, 29, and 30. This is likely due to the fact that it uses a version of LPG that
is compiled with a larger upper bound for the number of facts it can process.

13Note that the vertical scale is a log scale.

66

4.3. Planning Results

YAHSP 1.1
SGPlan6

LPG-td 1.0 speed

LPG-td 1.0 quality
LAMA

FF 2.3

problem

ac
ti

o
n

s

30252015105

900

800

700

600

500

400

300

200

100

0

Figure 4.7: Plan quality - decoupled planning.

YAHSP 1.1
SGPlan6

LPG-td 1.0 speed

LPG-td 1.0 quality
LAMA

FF 2.3

problem

re
la

ti
v

e
ac

ti
o

n
s

30252015105

1.4

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

Figure 4.8: Relative plan quality (decoupled / central).

67

4. APPLICATION AND EXPERIMENTS

YAHSP 1.1
SGPlan6

LPG-td 1.0 speed

LPG-td 1.0 quality
LAMA
FF 2.3

problem

ru
n

ti
m

e
(s

)

30252015105

1000

100

10

1

0.1

0.01

Figure 4.9: Run-time - decoupled planning.

YAHSP 1.1
SGPlan6

LPG-td 1.0 speed

LPG-td 1.0 quality
LAMA
FF 2.3

problem

re
la

ti
v

e
ru

n
ti

m
e

30252015105

10

1

0.1

0.01

0.001

Figure 4.10: Relative run-time (decoupled / central).

68

4.3. Planning Results

4.3.2 Instantiation-Decoupling

Instantiated plan-decoupling does not impose a heavy burden on either plan qual-
ity or run-time. In terms of run-time, decoupling is even beneficial to the plan-
ning process. However, in the previously discussed experiments, we combined
instantiation-decoupling and plan-decoupling. We would like to know what influ-
ence our extension, instantiation-decoupling, has on both plan quality and run-time.

We achieve instantiation-decoupling by selecting a random intermediate air-
port per order. Instead of using plan-decoupling to achieve plan-coordination, we
split each city of a planning problem into a city with incoming and a city with
outgoing orders. In this manner, we ensure the planning instances to be plan-
coordinated. To allow for a fair comparison, both central and decoupled instances
have split cities.

Plan Quality

By splitting each city into two, the size of the instances increases. We would there-
fore expect planners to have more difficulty with planning for the central instances.

In Figure 4.11, the ratio between plan quality of instantiation-decoupled split in-
stances and of central split instances is shown. Most planners’ plan quality im-
proves by instantiation-decoupling. YAHSP benefits the most from instantiation-
decoupling, especially compared to the relative plan quality of non-split instances,
shown in Figure 4.8.

As expected, planners solved fewer instances. YAHSP was the only planner
capable of solving problem 30. LPG ran faster into its maximum number of facts,
because of the additional cities. All other planners reached their time or memory
limit at a smaller problem instance.

FF is an exception on plan quality and the number of instances solved. It is
the only planner that suffered from instantiation-decoupling. Moreover, compare
Figure 4.11 to Figure 4.8. FF is the only planner capable of solving significantly
more instances with split cities than without split cities. We have no idea as to why
FF exhibits this behaviour.

Run-time

In Figure 4.12, the run-time ratio between decoupled split instances and central split
instances is shown. Data points not in this figure correspond to the points not in
Figure 4.11. Overall, the improvements in run-time are in line with the improve-
ments shown in Figure 4.10 for the non-split instances.

Again, FF performs differently. Between problem instances 15 and 23, similar
relative speed-ups are achieved. For larger instances however, FF’s relative run-
time decreases. Compared to its run-time for non-split instances, see Figure 4.10, it
is less aided by decoupling. Nevertheless, for most instances, it achieves a greater
speed-up than the other planners.

69

4. APPLICATION AND EXPERIMENTS

YAHSP 1.1
SGPlan6

LPG-td 1.0 speed

LPG-td 1.0 quality
LAMA
FF 2.3

problem

re
la

ti
v

e
ac

ti
o

n
s

30252015105

1.4

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

Figure 4.11: Relative plan quality for split instances (decoupled / central).

YAHSP 1.1
SGPlan6

LPG-td 1.0 speed

LPG-td 1.0 quality
LAMA
FF 2.3

problem

re
la

ti
v

e
ru

n
ti

m
e

30252015105

10

1

0.1

0.01

0.001

Figure 4.12: Relative run-time for split instances (decoupled / central).

70

4.4. Discussion

Intermediate Airports for Orders

In Section 4.2.1, we identified two ways to perform instantiation-decoupling. So
far, the results presented have been achieved by randomly selecting intermediate
airports on a per-order basis. Here, we will compare this method to the selection of
a single airport per city. We only vary the instantiation-decoupling method, but we
ensure plan-coordination as well. Hence, the cities are not split.

In Figure 4.13, the plan quality ratio between an instantiation-decoupling per

city and per order is shown:
per city

per order . Almost all data points lie above the line
per city

per order = 1. For most of the Logistics planning problems, ensuring instantiation-

decoupling by randomly selecting an airport per-order leads to shorter plans than
selecting a single airport per city.

LPG is the only planner that is unable to construct a plan for some instances, as
we already saw in Figure 4.7. This explains why no data points for LPG speed and
LPG quality appear for instances 27, 29, and 30.

In terms of run-time, it is better to coordinate by selecting a single airport
per city. This follows from Figure 4.14. In this figure, we observe that for larger
instances, it becomes more and more beneficial to do so. Only LAMA already ben-
efits for small problems from selecting a single airport per city instead of one per
order.

4.4 Discussion

Having discussed the results of our experiments, we will now evaluate Hypotheses
4.1, 4.2, and 4.3. After that, we will discuss some additional findings from our
experimental work.

In Hypothesis 4.1, we suggested that the total plan length for decoupled in-
stances would exceed the plan length for central instances. In general, we have
no evidence that supports this hypothesis. On average, plan quality for decou-
pled instances is comparable to the quality of central instances. For instances with
split cities, results vary more. Some planners benefit a little from instantiation-
decoupling, while others perform worse after instantiation-decoupling.

Planning for larger instances did benefit from decoupling, in terms of run-time.
While smaller problems have a run-time in the order of milliseconds. Hence, these
measurements are not representative for the performance of instantiated plan-de-
coupling and instantiation-decoupling. For large planning instances, we a clear im-
provement in run-time compared to the planning for the central instances. Hence,
we have evidence that supports Hypothesis 4.2.

Run-time decreases by decoupling, because decoupled instances are smaller in
size than their central equivalents. They contain less objects and literals. Conse-

71

4. APPLICATION AND EXPERIMENTS

YAHSP 1.1
SGPlan6

LPG-td 1.0 speed

LPG-td 1.0 quality
LAMA
FF 2.3

problem

re
la

ti
v

e
ac

ti
o

n
s

30252015105

1.4

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

Figure 4.13: Relative plan quality, instantiated plan-decoupled (city / order).

YAHSP 1.1
SGPlan6

LPG-td 1.0 speed

LPG-td 1.0 quality
LAMA
FF 2.3

problem

re
la

ti
v

e
ru

n
ti

m
e

30252015105

10

1

0.1

0.01

0.001

Figure 4.14: Relative run-time, instantiated plan-decoupled (city / order).

72

4.4. Discussion

quently, the search space for planners becomes considerably smaller and it is easier
for a planner to find a plan.

Finally, we have Hypothesis 4.3. It is two-fold; we suggested that achieving
instantiation-decoupling by randomly selecting a single airport per city results in
a better plan quality and run-time compared to randomly selecting an airport per
order. We conclude that plan quality benefits from selecting airports per order.
Run-time, on the other hand, benefits from selecting airports per city. Hence, we
have no conclusive evidence for Hypothesis 4.3.

Plan quality seems to suffer from carrying all packages through a single airport
per city. The explanation for this is simple. Some packages initially reside at an
airport. After coordination, it is likely that these packages have to be transported
to another airport. By coordinating on a per-order basis, these packages already are
at their intermediate airport. We might explain the behaviour of run-time as well.
By selecting a single airport per city, the decoupled airplane subproblem becomes
less complex. Per city, only a single airport has to be considered.

We conclude that the price of autonomy agents have to incur for their auton-
omy is minimal. In terms of run-time, it is beneficial to decouple Logistics instances.
While plan quality is hardly affected, especially run-time of the planners for Logis-
tics improves by instantiated plan-decoupling. With the experiments discussed in
this chapter, we have shown the applicability of instantiation-decoupling and the
advantages it potentially has.

Moreover, more planning instances could be solved by using instantiated plan-
decoupling. Subinstances for Logistics are smaller than the original instance and
therefore more tractable to plan for. Hence, decoupling allowed us to plan for larger
instances than a central planning process would.

One might wonder why plan quality is hardly affected. Adding precedences
and pruning conditions could only worsen plan quality. However, we conducted
our experiments with satisficing planners. These planners construct sub-optimal
plans. By constructing a decoupling, planners were able to construct compara-
tively better plans for subproblems. This improvement covers to a large extend the
burden decoupling puts on it.

73

Chapter 5

Conclusions and Future Work

The central research question for our work is how to ensure coordination of au-
tonomous, self-interested planning agents for dependent abstract tasks.1. We pre-
sented instantiated plan-decoupling as an approach for ensuring instantiated plan-
coordination. Instantiated plan-coordination is a composition of both plan-coor-
dination and instantiation-coordination. By constructing a coordination set and
pruning conditions from a dependencies instance, we ensure that all instantiated
plans an agent comes up with, can be merged into a feasible joint plan. Optimal
instantiated plan-decoupling for a given problem is in general computationally in-
tractable. However, we used the application domain Logistics to show that instan-
tiated plan-decoupling is more easily achieved for some types of abstract complex
tasks. By ensuring instantiated plan-coordination prior to planning, planners re-
quired less run-time to construct a plan of comparable plan quality.

To start with, we will discuss our conclusions in Section 5.1. Based on our work,
we will identify viable directions for future research in Section 5.2. Finally, in Sec-
tion 5.3, we will broaden our scope and discuss the applicability of our instantiated
plan-decoupling approach.

5.1 Conclusions

In retrospect, we used four levels of abstraction to reason about planning problems.
At the highest level, we have the planning problem itself. In the task coordination
framework, a finer grained notion of tasks was used. In the enriched task coordi-
nation framework, we defined abstract tasks with preconditions and effects. At the
lowest level of abstraction, we identified actions.

Plan-coordination is defined at the level of tasks. However, for various prob-
lems, tasks are at a too high level of abstraction to reason about coordination. They
prevent us from reasoning about preconditions and effects of these tasks. To ac-
commodate this, we refined the notion of tasks to include these conditions. We
positioned abstract tasks between the abstraction level of tasks and that of actions.

1See Section 1.2.

75

5. CONCLUSIONS AND FUTURE WORK

problem

tasks

abstract tasks

actions

instantiation-coordination

plan- coordination

highest

planning
lowest

Figure 5.1: Levels of abstraction.

At this level, instantiation-coordination is defined. At the level of actions, plans are
constructed. In Figure 5.1, the various abstraction levels are shown.

Instantiated plan-decoupling allows the coordination and planning phases to
be separated. Decoupling is independent of the planning technique used at the
level of actions. This ensures a broad applicability of our approach with respect to
planning techniques.

Even better, decoupling could benefit these planners in some cases. We ob-
tained significantly shorter planner run-times for decoupled Logistics instances,
compared to the run-time required for non-decoupled instances. Despite this re-
duction in run-time, plan quality is hardly affected.

Given this observation, we note that the state-of-the-art planners we used might
even benefit from decoupling planning problems. However, there is a snag in it.
A domain-engineer, we, defined the tasks for Logistics. For decoupling to be a
feasible extension to automated planners, tasks should be automatically detectable.
This, we will identify as an interesting issue for future work in Section 5.2.

5.2 Future work

Our instantiated plan-decoupling approach is an enrichment of the plan-decoup-
ling approach. We would like to see our approach as a stepping-stone towards
an even more comprehensive pre-planning coordination approach. Hence, we will
define, to our opinion, interesting issues that could be addresses in future work.

• By instantiated plan-decoupling, we allow agents to construct plans for their
decoupled subproblems concurrently. On the other hand, we might construct
an instantiated plan-decoupling approach that allows for a coordinated se-
quential planning process. In such a process, a set of agents constructs an
instantiated plan. The implications of this plan for other agents are propa-
gated to the next set of agents in the sequence. It would provide agents with
more freedom to instantiate tasks. We wonder whether the instantiated plan-
decoupling approach could be extended to allow for a sequential planning
process.

76

5.3. Applicability

• Tasks for the Logistics problem have been defined by us, the domain-engi-
neer. In all previous work based on the task coordination framework, tasks
were defined by hand. We initiated research to infer task definitions from
classical planning problems. However, this research did not make it into this
thesis.

We defined tasks based on landmarks in classical planning problems.2 A land-
mark is a fact that has to hold in every plan for the problem. In this sense, it
is similar to a task, which has to be part of every plan as well.

5.3 Applicability

Our pre-planning decoupling approach might seem distant from any real-life ap-
plications. So far, our discussion was either formal or we applied our approach
to an artificial planning problem. We do, however, feel that our approach has a
broader applicability. It is not only applicable to the field of classical planning, as
illustrated by the Logistics problem, but to other planning formalisms as well.

By means of our levels of abstraction, shown in Figure 5.1, we are able to ab-
stract away from planning details. Whether tasks model actions in a classical plan-
ning problem or in an inter-organisational setting is irrelevant for our approach.
We only require tasks to be defined for the application at hand. If only precedences
and condition dependencies are required to model the problem, we can decouple
it for use in a multi-agent setting with autonomous, self-interested agents.

When tasks, precedences, and dependencies are correctly defined, we proved
that our instantiation plan-decoupling approach ensures agents to be coordinated
with respect to their instantiated plans. Complications arise when other relations
between tasks, like mutexes, are required. However, this leaves us with plenty of
future work to be performed.

2A thorough discussion on landmarks can be found in Hoffmann et al. [20].

77

Bibliography

[1] F. Bacchus. The AIPS ’00 planning competition. AI Magazine, 22(3):47–56, 2001.

[2] K.S. Barber and C.E. Martin. Autonomy as decision-making control. In In-
telligent Agents VII. Agent Theories Architectures and Languages, 7th International
Workshop, pages 343–345, 2000.

[3] A.L. Blum and M.L. Furst. Fast planning through planning graph analysis.
Artificial Intelligence, 90(1-2):281–300, 1997.

[4] P. Buzing, A. ter Mors, J. Valk, and C. Witteveen. Task coordination for non-
cooperative planning agents. In C. Ghidini, P. Giorgini, and W. van der Hoek,
editors, Proceedings of the Second European Workshop on Multi-Agent Systems
(EUMAS 2004), pages 87–98, dec 2004.

[5] Y. Chen, C. Hsu, and B.W. Wah. SGPlan: Subgoal partitioning and resolu-
tion in planning. In Proceedings of the Fourth International Planning Competition,
pages 30–33. International Conference on Automated Planning and Schedul-
ing, 2004.

[6] J.S. Cox and E.H. Durfee. An efficient algorithm for multiagent plan coordina-
tion. In Fourth International Joint Conference on Autonomous Agents and Multia-
gent Systems, pages 828–835, 2005.

[7] M.M. de Weerdt, A.W. ter Mors, and C. Witteveen. Multi-agent planning: An
introduction to planning and coordination. In Handouts of the European Agent
Summer School, pages 1–32, 2005.

[8] Y. Dimopoulos and P. Moraitis. Multi-agent coordination and cooperation
through classical planning. In Proceedings of the 2006 IEEE/WIC/ACM Inter-
national Conference on Intelligent Agent Technology, pages 398–402, 2006.

[9] K. Erol, J. Hendler, and D.S. Nau. HTN planning: complexity and expressivity.
In Proceedings of the twelfth national conference on Artificial intelligence, volume 2,

79

BIBLIOGRAPHY

pages 1123–1128, Menlo Park, CA, USA, 1994. American Association for Arti-
ficial Intelligence.

[10] R. Fikes and N.J. Nilsson. STRIPS: A new approach to the application of theo-
rem proving to problem solving. Artificial Intelligence, 2(3/4):189–208, 1971.

[11] M.S. Fox, M. Barbuceanu, and R. Teigen. Agent-oriented supply-chain man-
agement. 12:165–188, April 2000.

[12] H.N. Gabow, S.N. Maheshwari, and L.J. Osterweil. On two problems in the
generation of program test paths. IEEE Transactions on Software Engineering,
SE-2(3):227–231, September 1976.

[13] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

[14] A. Gerevini and D. Long. Plan constraints and preferences in PDDL3. Tech-
nical report, Dipartimento di Elettronica per lAutomazione, Università degli
Studi di Brescia, via Branze 38, 25123 Brescia, Italy, August 2005.

[15] A. Gerevini and I. Serina. LPG: A planner based on local search for planning
graphs with action costs. In M. Ghallab, J. Hertzberg, and P. Traverso, editors,
Proceedings of the Sixth International Conference on Artificial Intelligence Planning
Systems, pages 13–22. AAAI, 2002.

[16] M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory & Practice.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[17] M. Helmert. Complexity results for standard benchmark domains in planning.
Artificial Intelligence, 143(2):219–262, 2003.

[18] M. Helmert. Concise finite-domain representations for pddl planning tasks.
Artificial Intelligence, 173(5-6):503 – 535, 2009. Advances in Automated Plan
Generation.

[19] J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, 14:253–302,
2001.

[20] J. Hoffmann, J. Porteous, and L. Sebastia. Ordered landmarks in planning.
Journal of Artificial Intelligence Research, 22:215–278, 2004.

[21] B. Horling, V. Lesser, R. Vincent, T. Wagner, A. Raja, S. Zhang, K. Decker, and
A. Garvey. The TÆMS white paper, January 1999.

[22] C.W. Hsu and B. W. Wah. The SGPlan planning system in IPC-6. In Short
Papers of the Sixth International Planning Competition, September 2008.

80

Bibliography

[23] V. Lesser, K. Decker, T. Wagner, N. Carver, A. Garvey, B. Horling, D. Neiman,
R. Podorozhny, M. Nagendra Prasad, A. Raja, R. Vincent, , P. Xuan, and X.Q.
Zhang. Evolution of the GPGP/TÆMS domain-independent coordination
framework. Autonomous Agents and Multi-Agent Systems, 9:87–143, 2004.

[24] T.W. Malone and K. Crowston. The interdisciplinary study of coordination.
ACM Computing Surveys, 26(1):87–119, 1994.

[25] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso,
D. Weld, and D. Wilkins. PDDL - the planning domain definition language.
Technical Report CVC TR-98-003/DCS TR-1165, Yale Center for Computa-
tional Vision and Control, 1998.

[26] B. Nebel and J. Koehler. Plan reuse versus plan generation: A theoretical and
empirical analysis. Artificial Intelligence, 76(1-2):427–454, 1995.

[27] H.V.D. Parunak. Go to the ant: Engineering principles from natural multi-
agent systems. Annals of Operatins Research, 75:69–101, 1997.

[28] J.S. Penberthy and D.S. Weld. UCPOP: A sound, complete, partial order plan-
ner for ADL. In KR, pages 103–114, 1992.

[29] S. Richter and M. Westphal. The LAMA planner, using landmark counting in
heuristic search. Short Paper of the Sixth International Planning Competition,
September 2008.

[30] Y. Shoham and M. Tennenholtz. On the synthesis of useful social laws for
artificial agent societies (preliminary report). In AAAI, pages 276–281, 1992.

[31] J.R. Steenhuisen and C. Witteveen. Coordinating planning agents for mod-
erately and tightly-coupled tasks. In Hamid R. Arabnia and P. L. Zhou, ed-
itors, Proceedings of the International Conference on Foundations of Computer Sci-
ence (FCS), pages 3–9. CSREA Press, jun 2007.

[32] J.R. Steenhuisen and C. Witteveen. Plan decoupling of agents with qualita-
tively constrained tasks. Multiagent and Grid Systems, 5(4), December 2009.

[33] J.R. Steenhuisen, C. Witteveen, and Y. Zhang. Plan-coordination mechanisms
and the price of autonomy. In Fariba Sadri and Ken Satoh, editors, Compu-
tational Logic in Multi-Agent Systems, volume 5056 of Lecture Notes in Artificial
Intelligence, pages 1–21. Springer-Verlag, 2008.

[34] A.W. ter Mors. Coordinating autonomous planning agents. Master’s thesis,
Delft University of Technology, Delft, The Netherlands, apr 2004.

[35] J.M. Valk. Coordination among Autonomous Planners. PhD thesis, Delft Univer-
sity of Technology, Delft, The Netherlands, 2005.

81

BIBLIOGRAPHY

[36] J.M. Valk and C. Witteveen. Multi-agent coordination in planning. In
M. Ishizuka and A. Sattar, editors, PRICAI 2002: Trends in Artificial Intelligence:
7th Pacific Rim International Conference on Artificial Intelligence, volume 2427 of
Lecture Notes in Artificial Intelligence, pages 335–344. Springer, 2002.

[37] V. Vidal. A lookahead strategy for heuristic search planning. In S. Zilberstein,
J. Koehler, and S. Koenig, editors, Proceedings of the Fourteenth International
Conference on Automated Planning and Scheduling (ICAPS 2004), pages 150–160.
AAAI Press, 2004.

[38] T. Wagner, J. Phelps, V. Guralnik, and R. VanRiper. An application view of
COORDINATORS: Coordination managers for first responders. In Proceedings
of the Sixteenth Innovative Applications of Artificial Intelligence Conference, 2004.

[39] D.S. Weld. An introduction to least commitment planning. AI Magazine,
15(4):27–61, 1994.

[40] B.C. Williams and P.P. Nayak. A reactive planner for a model-based executive.
In Proceedins of the Fifteenth International Joint Conference on Artificial Intelligence,
pages 1178–1185, 1997.

82

	Preface
	Contents
	List of Figures
	Nomenclature
	Introduction
	Coordinating Agents
	Our Research
	Contributions

	Outline

	Planning and Coordination Preliminaries
	Multi-agent Planning
	Agents and Assumptions
	Actions and Classical Planning
	Tasks

	Task Coordination Framework
	Tasks and Relations
	Task Allocation
	Plans
	Coordination

	Instantiating Tasks

	Instantiation Coordination
	Disjunctive Conditions
	Assumptions

	Enriching the Task Coordination Framework
	Tasks
	Relations
	Agents

	Instantiating Tasks
	Selecting and Pruning Dependencies
	Consistent and Minimal Dependencies Instances
	Instantiation and the Abstract Complex Task

	Coordination
	Coordination Verification
	Ensuring Coordination

	Discussion

	Application and Experiments
	Logistics Application Domain
	Domain Specification

	Experimental Design and Set-up
	Decoupling
	Performance Measures
	Expected Results
	Experimental Set-up
	Computational Limits

	Planning Results
	Instantiated Plan-Decoupling
	Instantiation-Decoupling

	Discussion

	Conclusions and Future Work
	Conclusions
	Future work
	Applicability

	Bibliography

