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Executive summary
In this thesis project, model-based testing (MBT) is applied for the verification of simple simulation
models used in modeling & simulation for decision-making. MBT is an approach to testing where test
suites are generated by a test model, usually with the aim of automating most parts of the testing
process. While MBT necessitates additional effort to design test models, applying MBT can lead to
more efficient tests compared to manual approaches, as many test cases can be generated at once.
An additional efficiency benefit is improved adaptability because large test suites can be changed by
only updating the test model(s) used to generate them. Furthermore, test models could be reused for
systems under test (SUTs) that have similar functional requirements. Literature also indicates that MBT
can improve the quality and effectiveness of tests.

It is found relevant to research MBT of simulation models, because some proposed benefits of
MBT may be especially relevant for simulation models. Firstly, MBT is often used to generate many
test cases, while verification often needs analysis of many simulation runs. Secondly, MBT can be done
reactive, meaning that the generation of test cases is influenced during test execution by the (internal)
states of the SUT. This is relevant for simulation models as SUTs, because of the unpredictable and
stochastic nature of simulation models.

Literature review shows that not many publications exist where MBT is considered for testing sim-
ulation models specifically. Only some case studies are known where MBT techniques are used with
a simulation model as the SUT, with varying levels of automation. Some literature on MBT for systems
similar to simulation models does give general guidelines for specific choices for test design, espe-
cially on test execution. However, no general guidelines are known on a fundamental issue for MBT for
simulation models specifically: the specification of the test model(s). The design of test models is there-
fore the focus of this project. The goal is to demonstrate the feasibility and to develop a methodology.
An assessment of the efficiency and effectiveness of MBT for simulation models is not within the scope.

A case study approach is used to explore how test models can be designed. Three test packages
are made where three different simple simulation models are used as SUT. An existing MBT software
tool, AltWalker, is selected for this purpose. It is shown that AltWalker can be used to test reactive
systems, but that it is not practical for testing long simulation runs.

In the process, it is found that MBT is useful for step-by-step verification of the dynamic behavior of
simulation models. Test models are developed that are aware of the SUT’s current states, and that can
generate its expected behavior and select relevant tests for each time advancement of the simulation
model that is used as SUT. This allows failures of the SUT to be detected as they occur, along with
information on the SUT’s state during a failure, and which state was expected. This can allow amodeler
to better understand when, where, and possibly why faults occur.

The research is limited in that the test models only advance time in the SUTs and do not give other
types of inputs to the SUTs. An alternative approach where test models give specific inputs to simulation
models has been found in literature and is recommended for further research. Such an approach can
lead to more efficient tests where the test model triggers specific events in the SUT that are suspected
to cause failures. With this approach, test models can also be used to simulate the environment that
a SUT normally interacts with. Such environment test models have been explored in earlier literature,
but not in this project. This last approach is useful for more effective component testing and integration
testing of simulation components that are part of a simulation environment.

In addition, the case studies show how dynamic verification of simulation models using MBT tech-
niques can be combined with verification of the results from multiple simulation runs, in one test pack-
age. This is deemed essential to reach a complete verdict on the correct functioning of a simulation
model given its requirements, especially because the influence of the input parameter space and the
simulation model’s stochasticity should be taken into account. It is found that automated test pack-
ages can be made that combine both purposes, but that separate test suites should be generated for
dynamic verification and verification of results to prevent computationally expensive tests.

vii



viii Executive summary

It is further demonstrated how black-box tests could be used to perform reactive tests with minimal
communication between the SUT’s interface and the test model. This is recommended for further re-
search, as it may results in a modular approach where test models can be reused for SUTs that have
similar requirements.

The project shows the feasibility of MBT of simulation models and shows different options for test
model design. It is unfortunately not shown how well the developed test packages can detect faults in
simulation models by using them on mutant SUTs. That is recommended for further research.



Glossary
Abstract (test) model A test model or part of a test model that is used to generate test paths that

cannot be executed on the system under test directly.

Behavior (test) model A test model that is specifically used to generate the expected behavior of the
system under test. Also called ‘SUT models’ in some sources.

Environment (test) model A test model that is specifically used to generate inputs to the system under
tests. This is also called an input model in some literature.

Extended finite state machine (EFSM) An extension of finite state machines that adds internal vari-
ables, actions that can assign these internal variables, and trigger conditions with logic called
guards.

Finite state machine (FSM) A transition-basedmodel that consists of states (including an initial state),
state transitions, and trigger inputs for these transitions.

Model-based testing (MBT) Techniques for testing of (software) systems where test models are used
to make test suites, in order to automate some parts of the test.

MBT software tool An existing software tool for MBT that provides themeans to developmodel-based
test packages. These tools can use test models written in a specific notation to generate and
execute tests.

Oracle A function used to assign a verdict to some part of a test. An oracle consists of an expected
behavior, and a procedure for how this is compared with outcomes from the system under test.
(Richardson et al., 1992)

Oracle checking Evaluation of an oracle during testing, in order to get a verdict on some part of the
test. Term introduced by Utting and Legeard (2007).

Reactive systems System that give a response to external events which depends on their internal
states (Richardson et al., 1992, p.105).

Reactive tests Online, model-based tests where the output of the system under test can influence the
test path generation. Term introduced by Zander et al. (2011).

System under test (SUT) The system that is being tested. The system under test can be a component
of a larger system.

Test case A sequence of inputs for the system under tests, and associated expected behavior, op-
tionally with oracles (Utting & Legeard, 2007, p.407).

Test model A model that can generate inputs and/or expected behavior, possibly with oracles, in a
model-based test. In this project, it refers to the combination of an abstract model and the map-
pings that make the abstract model executable on the SUT.

Test path An abstract test case that is generated using an abstract test model.

Test suite A set of test cases made for a specific test goal.

Test package A collection of programs that are developed to generate and execute test suites for a
specific system under test. This term is only used in this project to distinguish it from the more
general-purpose MBT software tools.
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1
Introduction

This thesis project is about the application of model-based testing (MBT) for the verification of simulation
models. Testing of simulation models is a crucial step to assess if a model works as intended and that
it gives the expected results. Testing is often a time-consuming endeavor in which most processes are
typically not automated or formalized. MBT is a method to do this automation and formalization of some
steps of the testing process. This could increase the efficiency and effectiveness of the verification of
simulation models.

Testing, or dynamic verification, of simulation models is known to be an especially challenging task
because of some distinguishing properties that simulation models possess: they are reactive systems
with a time axis, stochasticity, and many states. This thesis aims to address the research gap in the
literature by specifically considering simulation models as the systems under test (SUTs) for MBT.While
most MBT literature focuses on testing software systems in general or (real-time) embedded systems,
only a few sources specifically address MBT of simulation models.

Only some case studies have applied MBT for testing simulation models before, but they do not
provide details on their test design processes, nor do they draw conclusions on how test design should
be done. Therefore, this thesis project will use case studies to demonstrate some considerations of
MBT for dynamic verification of simulation models. In this process, the usefulness of a specific MBT
software tool will also be evaluated.

In this introduction, the relevance of testing for simulation models is first described in Section 1.1.
Then, the problem statement of this thesis project is given first in Section 1.2 gives the problem state-
ment and briefly states the research gap. Section 1.3 gives the research objectives and the associated
research methods and questions. A short overview of the report is given here as well.

1.1. Relevance of testing for simulation models
Modeling & simulation for decision-making (M&S) is an important research field for all domains of en-
gineering. Simulation models are used to better understand systems for which experiments cannot be
conducted, or are too expensive to conduct (Sokolowski & Banks, 2010, p.3). This project focuses on
components of stochastic discrete-event simulation models, which are used widely in domains such
as supply chain management and logistics (Ullrich & Lückerath, 2017), manufacturing, defense oper-
ations, finance, and many more (Fu & Gross, 2013).

Properties of simulation models
Verification of simulation models is difficult for multiple reasons. The properties of simulation models
make the definition of functional requirements for their behavior and results difficult, and they make
it difficult to assess whether a simulation model meets these requirements. Simulation models may
consist of many states and interacting processes that can change over time, which is already hard to
analyze. Stochasticity is added to simulation models to represent the randomness and uncertainties of
the systems that they represent (Mihram, 1972). This stochasticity means for verification that further
analysis using statistical techniques is needed to draw conclusions (Sokolowski & Banks, 2010, p.21).
Furthermore, simulation models are reactive, meaning that their next generated events or response
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2 1. Introduction

to given inputs depends on the current state. Likewise, the end results of a simulation run may be
highly dependent on its initial conditions. In addition, the problem of testing is even more pronounced
for large and complex simulation environments where synchronization problems and interoperability of
components are additional issues that can be tested.

Importance of efficient and effective testing
Testing means dynamic verification of a simulation model: the model is executed during a test so that
all potential faults can become apparent. Extensive testing is needed for simulation models because
of their aforementioned properties. Many test cases must be run at different input parameters, in order
to make a verdict that is statistically significant (Sokolowski & Banks, 2010).

Testing and debugging add extra costs to the development process of simulation models. Testing
should be done continuously throughout the development cycle of a simulation model. This prevents
problems from being found too late, which would lead to extra costs (Huq, 2000). Techniques that could
lead to more efficient tests, such as MBT, must therefore be considered for simulation models.

Furthermore, a modular approach to testing itself is advised for large and complex simulation envi-
ronments, as verification of an entire simulation environment in one go is not feasible. By partitioning
the simulation model into modules that can be (re)composed, verification and validation can be made
more achievable (Sokolowski & Banks, 2010, p.403). MBT is an adaptable technique that may help for
such a modular approach, as is explained later.

1.2. Problem statement
The problem addressed in this thesis project is now explained. It is first defined what MBT is. The
supposed advantages and disadvantages of MBT are summarized from literature, along with some
MBT options that may be relevant for testing simulation models specifically. Furthermore, two relevant
problems for testing are discussed: a distinction between dynamic behavior and results, and between
black-box and white-box testing. Lastly, the research gap is formulated.

The term ‘MBT’ can refer to several testing approaches. A common feature is that the generation
and/or selection of test cases is done by using one or multiple models, which are called ‘test models’
(Zander et al., 2011). Some authors further require that the expected behavior of the SUT is generated
by this model (Pretschner et al., 2005; Utting & Legeard, 2007). The degree of automation of the
testing process differs between MBT approaches. Utting and Legeard (2007) define MBT as the testing
approach that has the highest level of automation, where not only the execution of tests but also the
generation of test cases is automated, to some extent.

1.2.1. Advantages and disadvantages of MBT
The potential advantages of MBT are often explained in literature by contrasting them with the difficul-
ties and shortcomings of manual testing. A complete overview of MBT including its advantages and
disadvantages is given by Utting and Legeard (2007); these are now summarized.

Strengths of MBT in general
An important disadvantage of manual testing is that it can often be laborious, inefficient, and costly
because it is not automated (Tretmans, 2008). This is especially relevant for tests of complex or reactive
SUTs which necessitate a large number of test cases. MBT can be used to make the generation of
these test cases more efficient by automation (Zander et al., 2011).

Another disadvantage of a manual test approach is that it may not guarantee that all functionality
of the SUT is covered by the test cases. This is due to the unstructured nature of manual test designs.
A test design is often made as a document that describes what should be tested and how that should
be done. This is often done by a single engineer, and it may not be based on a rational or complete
specification. For these reasons, the design process of manual tests can be called “unstructured, not
reproducible, and not documented” (Utting et al., 2012, p.297). MBT alternatively uses formalized test
models that can give a more clear and explicit representation of what is being tested, and how this
should be done. Tretmans (2008) further states that the quality of tests can be improved by using mod-
els. A more formalized test design has the additional benefit that it can create a common understanding
among engineers of the SUT’s requirements (Pretschner et al., 2005), and of the SUT implementation
and the testing process itself.
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An additional advantage of MBT is that a test model or even a test suite could be reused for testing
multiple SUTs or similar components within a SUT. Such reusable, modular tests can be achieved with
MBT when the test model is made abstract, meaning that it is only based on the functional requirements
of the SUT. The test cases generated from such abstract test models are themselves only abstract.
These can later be made executable on the SUT by mapping abstract steps to low-level instructions
and the expected behavior of the SUT. An abstract model could thus easily be reused for testing an
updated SUT. Only the mapping of instructions would have to be changed to achieve this (Utting &
Legeard, 2007, p.29). Similarly, MBT could be used to make a test suite implementation-agnostic: an
abstract test model could be used to test different SUTs that have similar functional requirements. And
lastly, one abstract model could be used to test similar components of a SUT.

A similar advantage of MBT is that test models are adaptable. The maintenance of a test suite has
been found easier when abstract models are used (Pretschner & Philipps, 2005). It is expected that
MBT test suites can more easily adapt to changes in the SUT or its requirements. Whereas manual test
cases would have to be written again, in MBT ideally only a part of the abstract model(s) and mapping
have to be changed to make a large number of updated test cases.

Strengths of MBT for testing simulation models
It is assumed in this project that some potential advantages of MBT are especially relevant for testing
simulation models. A first advantage holds specifically for online, reactive tests. Online tests are tests
in which test case generation and test execution on the SUT are done simultaneously. Reactive tests
are tests where the test generation is influenced by the SUT’s outputs. Relevant test sequences can
then be selected automatically during testing. Zander et al. (2012) indicate that reactive testing can
be more effective than manual testing for reactive SUTs because faults can be noticed at the moment
that they happen. Online, reactive tests are mentioned as an option for MBT in most literature, but
they are not often presented as a key advantage for MBT. It is hypothesized in this project that reactive
testing could be especially advantageous for testing simulation models. Because of the stochastic and
complex nature of these models, (manually) writing a test sequence before a simulation run will not
enable this test sequence to adapt to unforeseen behavior of the SUT. Marques et al. (2014) show in
their empirical review of the effectiveness of MBT for simulation models that MBT can be better suited
to find defects in scenarios that were not foreseen in manual ‘ad-hoc’ tests.

A second point for MBT of simulation models is an assumption that the aforementioned drawbacks
of manual testing are even more pronounced for simulation models. This is because simulation mod-
els of complex problems can be seen as black-box models: the models are too complex to completely
understand the causalities that lead to certain outputs (Kleijnen, 1995). Many test cases should be
made to verify the simulation model’s behavior, for two reasons, Firstly, an understanding and verifica-
tion of the causalities can be improved by running the models with different sets of input parameters.
And secondly, simulation models have inherent stochasticity, which means that all model runs will give
different outputs, even when the same input parameters are used. Therefore, even multiple test cases
may be needed where the SUT uses the same input parameters. This makes manual testing even
more time-consuming. Thus, a method to automatically test a sequence of simulation model runs is
expected to increase the efficiency of the testing process.

1.2.2. Empirical evidence of the effectiveness of MBT
Empirical research exists on the effectiveness of MBT compared to manual testing. It is deduced from a
case study comparison by Marques et al. (2014) that achieving time benefits and improved test quality
are not guaranteed. It depends on the scale and complexity of the SUT, and on the specific test goals,
whether MBT can make a test more efficient or effective. On the other hand, Binder et al. (2015) found
in a survey among 45 organizations where MBT was introduced that only 13% found it ineffective.

A trade-off for test efficiency can be formulated based on the potential advantages of MBT compared
against the known drawbacks of manual testing. Applying MBT can initially require more work and
costs, but it may save costs in the long run. Utting and Legeard (2007) exemplify this trade-off with a
hypothetical comparison where for testing a small software system a choice has to be made between
MBT and manual testing. They argue that if the software is developed with iterative versions, then
using MBT becomes more efficient for every new software version since many (manual) adaptations
of the test suite do not have to be repeated. Schieferdecker and Hoffmann (2012) list the types of
additional costs that can be expected when MBT is applied to large software systems: more qualified
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personnel may be needed, existing testing methods must be changed, and new models and test suites
must be developed and validated. Regarding improved effectiveness or quality of testing, Pretschner
et al. (2005) show in a case study the MBT detects “significantly more” errors related to requirements
compared to manual tests. There was no difference found for errors related to programming.

The efficiency and effectiveness will not be quantified in this thesis. Rather, the feasibility and
methodology of MBT for testing simulation models are explored.

1.2.3. Dynamic behavior and simulation results
An additional problem for testing simulation models is on what scale and about which aspects the
functional requirements are. Dynamic verification, the main goal of MBT, could mean different things
for a simulation model. It is found in this report that MBT is often used for step-by-step verification of the
dynamic behavior of a SUT. This means that for every input, it is assessed whether the correct response
is given by the SUT. This would mean for a simulation run that one unexpected event, not prescribed
by the requirements, will lead to a ’failed’ verdict of the test case. However, the functional requirements
for simulation models often include more aspects than only the correct type of events. The (range of)
values of variables generated during a simulation run, given the values of initial parameters, may be
prescribed as well. Based on this principle, it can be imagined that a wrongly implemented simulation
model would generate the correct sequence of events given its input, but would still give the wrong
results. This could be because the distributions for random numbers are implemented incorrectly,
or wrong assumptions are implemented in the model. Verification of the outputs against a known or
expected solution is then helpful to further detect faults.

Even this verification of values can be done on different scales. An approach for verification by
Mihram (1972) is used to explain this. Two categories for the analysis of simulation models are distin-
guished: it can focus on static effects by looking at outcomes at the end of a run, or it can focus on
dynamic effects by considering the model’s behavior during a run. Mihram (1972) concludes that both
categories are needed for the analysis of stochastic models.

This point is similar to the earlier mentioned theory of Kleijnen (1995) that complex simulationmodels
can be seen as black-box models. Kleijnen (1995) explains that analysis of these models is difficult
because their expected output is not clearly defined. Techniques like sensitivity analysis and uncertainty
analysis can be used for this purpose. These are also techniques where only the final outputs and the
initial (input) parameters of a simulation run are considered, instead of the dynamic behavior.

Therefore, complete coverage of a simulation model’s requirements will necessitate more than step-
by-step testing only. It must be explored whether MBT techniques can be used for verification against
known (analytical) solutions, or how this aspect can be integrated in automated test packages.

1.2.4. Black-box testing and white-box testing
Most literature on MBT states that it is purely aimed at black-box testing. It is found that ‘black-box
testing’ can refer to two related concepts: testing of a black-box SUT, or test development based solely
on (functional) requirements. Tretmans (2008) and Utting and Legeard (2007) primarily use the first
definition: black-box tests are tests where the SUT is seen as a black box. The test suite can only in-
teract with the interface of the SUT, i.e. its accessible inputs and outputs. The SUT’s internal variables
cannot be accessed by the test package. The second definition is based on a common ground rule for
MBT that the development of test models should only be done based on the requirements documen-
tation, as is argued by Utting and Legeard (2007). They state that therefore MBT is black-box testing
by definition. This concept can also be referred to as ‘requirement-based testing’. White-box testing
then means in contrast that the test design is (partly) based on the actual SUT code implementation.
The term grey-box testing is sometimes used for test design that is based on both requirements and
implementation (Shafique & Labiche, 2010, 4). Some literature mentions that MBT has been used for
white-box testing in recent years (Zander et al., 2011).

It is hypothesized that using white-box testing to some extent may be useful for developing test
models for testing simulation models. Using some knowledge of the SUT implementation during test
model development can help in designing tests that cover all code and functionality of the SUT. Similarly,
accessing some internal variables of the SUT may be necessary during testing. Still, the usefulness
of white-box testing may depend on the scale and goals of testing. This idea can be exemplified by
Kleijnen (1995) who explains that for the complete verification of a simulation model, one may even
need to verify the ready-made components of the simulation language that are used. An example given
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is that the pseudo-random number generators may be faulty; without testing it can only be assumed
that they are not.

An obvious middle ground is to do requirement-based test development in order to make a test
model that has all the advantages of an abstract model, and then use mappings to low-level internal
SUT variables to make the tests executable and comprehensive. The development step would then
be ‘black box’, while the test generation and execution is more ‘white box’ since not only the original
SUT interface is interacted with. No term has been found for this approach. Of course, it is also up to
the modeler or tester which SUT variables are internal and which are not. Because of this vagueness
in definitions, this thesis project must call attention to the distinction between requirement-based vs.
implementation-based testing, and between testing of black-box SUTs vs. white-box SUTs. It can be
explored whether requirement-based testing leads to different test model designs.

1.2.5. Research gap and scope
It is found from literature research that most MBT literature does not specifically focus on the testing of
simulation models. The leading taxonomies for MBT, by Marinescu et al. (2015), Utting et al. (2012),
and Zander et al. (2011), only describe the testing of general software systems or embedded systems.
A concept from these taxonomies that is closest to a simulation model is a reactive system, i.e. a
system whose response to an event depends on its state. Some guidelines are given for testing such
reactive systems.

Only some case studies have been found where MBT is applied to testing simulation models. Holl-
mann et al. (2012) also states in a case study for MBT of DEVS simulation models that the application
of MBT is limited for M&S, while it is often used for other software programs. The case studies from
literature are lacking in some points. Most do not provide clear guidelines on how MBT can be ap-
plied, or on how test models can be designed. Furthermore, none describe the need to consider both
dynamic and static outcomes, or results, for verification of simulation models. A distinction between
requirement-based and implementation-based testing is not enforced as well. A case study approach
from TNO (2021) does work towards a standard methodology for MBT of simulation models, by select-
ing MBT software tools and by presenting simple test designs in two case studies. This work has been
used in this thesis as a starting point for selecting certain MBT options that may be relevant, and for
defining requirements and preferences for the selection of an MBT software tool.

More research into this topic is clearly needed. An overview of relevant options for MBT and further
exploration of test model design in case studies can give a better understanding of the feasibility and
usefulness of MBT for testing simulation models. This can be a first step to use this technique for
developing more efficient and effective automated test tools for simulation models.

As mentioned earlier, the focus is on testing discrete-event, stochastic simulation models that are
used for analysis and experimentation. This is because these are relevant to M&S for decision-making,
well-known from literature, and because they possess many of the properties that make verification dif-
ficult. Topics like real-time, distributed, or live simulation are not within the scope. As a first attempt to
develop a methodology, the focus in the case studies is on simple components of simulation models
only. Furthermore, (model-based) testing is commonly seen as a method for verification, not for valida-
tion (Utting & Legeard, 2007). Validation is therefore not a subject in this project. Only the requirements
and implementation are compared; the modeled system and usefulness of results are not considered.

1.3. Research design
The objective of this project is to develop MBT suites for simulation models used in M&S. The devel-
opment process should lead to relevant options, considerations, and difficulties for applying MBT to
simulation models. The main focus is on developing test models and integrating these into tests that
can accurately assess whether a simulation model has been implemented correctly. The technology
needed for running model-based tests is taken from existing MBT software tools, so this aspect is not
focused on. As stated earlier, the term ‘MBT’ can refer to test suites with different levels of automation.
The aim of this project is to automate as much of the test suite as possible, to get comprehensive con-
clusions. It is not the aim to automate any part of the test development process itself. This leads to the
main research questions of this project:

How can model-based testing be applied for automated dynamic verification of simulation
models?
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The research design is made by considering what has to be developed for a MBT suite. Literature
can first be used for this to get an overview of how the necessary programs and models can be made.
Taxonomies for MBT are available that list options for all dimensions relevant to MBT: test goals, test
model specification, test case generation, test execution, and test evaluation (Marinescu et al., 2015;
Utting et al., 2012; Zander et al., 2011). It can be chosen based on the properties of simulation models,
which options may be relevant for further exploration in this project. This leads to the first subquestion:

1. What known options for model-based testing are relevant for testing simulation models?

This is also relevant for the selection of the MBT software tool that will be used. Requirements and
preferences for such tools can be based on the options taken from taxonomies.

The chosen options for MBT are then explored by using the chosen MBT software tool to make
test suites. This is done using case studies: example simulation models of increasing complexity are
used as SUTs. Different simulation model paradigms are used to see if certain paradigms necessitate
different approaches to MBT. As mentioned before, the main focus is on developing test models. A tra-
ditional goal of MBT, step-by-step dynamic verification, is first considered. This gives the subquestion:

2. How can test models be designed for step-by-step verification of the dynamic behavior of a sim-
ulation run?

The topic of black-box approaches to testing must be explored further, because this relates to two
important concepts discussed in existing MBT literature: specification-based testing and testing with
the SUT as a black box, as argued in Section 1.2.3. While black-box tests are already developed
to answer subquestions 2 and 3, more focus should be given to explore whether different test model
designs are needed when to test model can only interact with a limited SUT’s interface. This could help
to make tests that are composable or specification-agnostic. The following subquestion is defined for
this:

3. How can test models be designed for verification of simulation models, with minimal knowledge
of the SUT implementation and/or its internal variables?

Lastly, verification of a simulation model’s results against known values is important as well, as is
argued in Section 1.2.3. It is therefore explored how this aspect of verification can be integrated into
an automated test suite. Ideally, the test suite should be able to run model-based tests of multiple
simulation runs with different input parameters automatically. This is researched again by a case study
with a simulation model as SUT. The following subquestion is defined for this:

4. How can automated test packages be developed, that use or integrate MBT techniques for veri-
fication of a simulation model’s results?

Chapter 2 gives a literature study and case study analysis in order to answer subquestion 1. Section 3.1
then gives the requirements and preferences for the selection of an MBT software tool to be used in this
project. Among several available open-source options, the tool AltWalker has been selected. The basic
functionality and potential problems of this tool are explained in Section 3.2 based on documentation
and experience with it.

The simulation models used in the case studies are given in Chapter 4. The intended purpose of
each developed test package is introduced here as well1. Chapter 5 shows how test models have been
developed in the case studies to answer subquestion 2, the step-by-step verification of the dynamic
behavior of simulation runs. The options chosen from MBT taxonomies in Chapter 2 are explored
here. Black-box testing with a restricted SUT interface is considered for one case study in particular,
to answer subquestion 3.

Chapter 6 focuses on subquestion 4: the verification of the results of multiple simulation runs. A
simulation model for which analytical solutions are known is analyzed. Numerical options for this aspect
of verification are given. Functionality is added to a test suite here to automatically run and analyze
multiple test cases. Finally, a discussion and conclusion are given in Sections 7 and 8.
1The code for the developed simulation models and test packages is available online at https://github.com/montequercus/
MBT-sim

https://github.com/montequercus/MBT-sim
https://github.com/montequercus/MBT-sim


2
Literature study

This chapter discusses the literature study that is done to answer subquestion 1: “What known op-
tions for model-based testing (MBT) are relevant for testing simulation models?” This is done by first
considering the different definitions of MBT in Section 2.1. Then, it is summarized which properties of
simulation models make testing in general, in Section 2.2. Dimensions of MBT are taken from three
taxonomies and discussed in Section 2.3. It is hypothesized here which options may be relevant for
testing simulation models, and therefore which options need to be explored in the case studies in Chap-
ters 4 - 6. The chosen options are also used for the selection of an MBT software tool in Chapter 3.
In Section 2.4, case studies from literature are used to further determine which options for MBT may
be relevant for testing simulation models. Reading questions for this case study review are based on
definitions and options from taxonomies and other literature discussed in Sections 2.1 - 2.3.

2.1. Model-based testing
The most common definitions for MBT are discussed first to distinguish what features MBT can refer
to, what a typical testing process looks like, and how MBT techniques are currently used. Reading
questions are formulated along this process for the case study review in Section 2.4.

2.1.1. Definitions for model-based testing
MBT means, in the broadest sense, that some parts of a software testing process are automated by
the use of a model. The system under test (SUT), which itself can be a (simulation) model, is tested
using a ‘test model’. The test model can be used to generate a large number of test cases, which are
a series of inputs to the SUT along with the associated expected behavior.

The degree of automation in the testing process can vary. For example, some case studies that
claim that they apply MBT use a test model only to generate the initial parameters for a test case. Utting
and Legeard (2007) therefore draw a line of what constitutes MBT based on the level of automation: at a
minimum, the SUT’s expected behavior should be generated automatically using a test model. The test
package should be able to “accurately” assign verdicts on whether the SUT’s behavior conforms to the
expected behavior. This is done with oracles, that can be defined in the test model. The term ‘oracles’
is used for the functions that can generate verdicts on the test, by comparing the SUT’s behavior to
the (generated) expected behavior. Assertion functions are examples of oracles (Li & Offutt, 2017).
Checking of these oracles during test execution should be automated as well, according to Utting and
Legeard (2007), so that a ‘pass’ or ‘fail’ verdict can be assigned automatically to a test case 1. Oracle
checking is often still done by hand.

Similar requirements for what constitutes MBT are given by other authors. Tretmans (2008) for
example states that MBT implies that a model of the “desired behavior” of the SUT is used. Such test
models are often based on the same requirements as the SUT, but they are more simplified or focus
only on some part of the SUT (Utting & Legeard, 2007)
1Oracle checking thus means that verdicts on test cases are made automatically using the oracles in the test model. The term
‘automatic generation of oracles’ is used for this process in some literature, but this term could also mean automation of the
test development process, when functions are generated based on requirements. This is not required for MBT.

7
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Even with these stricter definitions of MBT, there are choices left regarding which parts of the testing
process to automate. Some tasks will however always need a manual tester, such as: defining the test
objectives, writing code to make the tests executable on the SUT, and drawing conclusions from the
test’s verdicts. Manual testers may also be needed to make verdicts of entire test cases, if no oracles
are written to do so automatically. The notion of different levels of automation leads to a question for
the case study review: “Which parts of the testing process have been automated?”

2.1.2. Functioning and development of model-based tests
Any testing process can generally be divided into three phases: (i) Test generation, (ii) Test execution,
and (iii) Analysis of test results. The first phase, test generation, results in a test suite consisting of
a number of test cases. Each test case defines a sequence of interactions with the SUT, and the
associated expected behavior. Oracles are included in the test cases, to compare the SUT’s output to
the expected output and make verdicts.

In the second phase, a test suite is executed on the SUT. This can be done automatically with a test
execution tool (Utting & Legeard, 2007). An option for execution is to do it step-by-step, which means
that for every interaction with the SUT a verdict is made using the oracles. In the third phase, analysis
of results, a manual tester is still needed to interpret the verdicts and take action.

There are two main approaches for the order in which test generation and execution are done:
offline and online testing. In offline testing, test cases are generated first, and they are executed on
the SUT afterward. In online testing, the generation of test cases and the execution are one integrated
process (Utting & Legeard, 2007). Online testing can be done step-by-step: an MBT tool may generate
one step of a test case, execute it, process the SUT’s response, and only then generate the next step.
This step-by-step approach enables reactive testing, where the SUT’s output is used as an input for the
generation of the next test steps. Reactive testing is generally done when the SUT is nondeterministic
(Utting et al., 2012, chap.3). Since simulation models for M&S are often nondeterministic, this project
will consider online, reactive tests.

MBT is unique in that a large number of test cases can be generated by a program (Tretmans, 2008).
The development process for MBT starts with making one or multiple abstract model(s) of the SUT. An
abstract model can be used to represent the SUT’s behavior, or it can represent the environment that
the SUT interacts with. Formally, there is a distinction between abstract test cases and executable test
cases. Abstract test cases can already describe the inputs to the SUT and the expected output, but
this is limited to high-level concepts of the SUT only. Abstract test cases are made into executable test
cases, also called scripts, by making references to low-level concepts of the SUT and its code for each
step in the test case. (Tretmans, 2008; Utting & Legeard, 2007). This distinction between abstract and
executable tests is less formalized for online testing. There, what should be done in the next step is
generated by a model, and this is immediately mapped to low-level instructions for the SUT. (Utting &
Legeard, 2007, chap. 2)

Many programs are needed for an MBT package to perform the aforementioned steps. Utting and
Legeard (2007) give an overview of the required programs. This overview is extended by distinguishing
between functionalities that are covered by pre-existing MBT software tools, and functionalities that the
developer of anMBT package has to develop themselves. A schematic based on this overview is shown
in Figure 2.1. The required programs are:

• One or multiple abstract test models. Again, these can be an abstract model of the SUT’s behavior
or environment. This is one of the main programs that needs to be developed in order to do MBT.
An abstract model is preferably based on the same functional requirements that were used for
the SUT, but not on the SUT’s implementation of these requirements, i.e. the SUT code. Choices
must be made by the modeler on what aspects of the SUT to focus on. This is informed by the
testing objectives (Utting & Legeard, 2007, chap. 2). When an MBT package is used, it must be
assumed that its abstract model is valid, meaning that it represents the modeled system correctly
(Tretmans, 2008)

• A program must be used that can generate abstract test cases, also called test paths, based on
the test model(s). This functionality of test path generation is commonly provided byMBT software
tools, thus it does not have to be developed from scratch. These tools often let a manual tester
choose settings for how test cases are generated based on the models, the most important being
coverage criteria. Coverage criteria can be used to instruct that certain parts of the (abstract) test
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Figure 2.1: Functioning of a model-based test package. The dotted line indicates an option that is only available
for online (reactive) testing. The gray lines indicate what information is used during the development or use of the
associated programs. The programs in orange are the ones that will be developed for the test packages in this
project. All other programs can be provided by pre-existing MBT tools. Adapted from Utting and Legeard (2007,
p. 27) and Marinescu et al. (2015, p. 94).

model should be covered in a test case (Utting & Legeard, 2007, chap. 2). MBT tools can often
provide coverage reports, that show what parts of the abstract model have been covered in a test
case.

• A program must be made that can map the abstract test cases to concepts of the SUT’s im-
plementation, in order to make executable test cases. Such a program is named a ‘test case
generator’ in Figure 2.1. This functionality is provided by most MBT software tools as well; ab-
stract test cases can be mapped to sets of instructions for the SUT, and to oracles, including
expected behavior, that can be checked during test execution.

• The actual mapping of abstract test cases to SUT instructions and oracles must be made by a
developer. This is a tedious process, that can be done along with the development of the abstract
test model(s). Unlike for the abstract model, the developer needs knowledge of the SUT’s low-
level implementation for this process. The program that contains the mappings will be called
‘mapping of instructions’ throughout this project.

• A test execution tool is needed to execute the test suits. MBT software tools often provide the
following functionalities for this: messages for interactions with the SUT can be sent, the SUT’s
output can be compared to the expected output, and verdicts on entire test cases can be gener-
ated, for example by using the oracles present in the test case. One important functionality is not
always provided by MBT tools, namely APIs to interact with specific SUTs.

• Adapter code has to be developed for this last purpose. The code should let the MBT software
tool interact with the SUT, and it should interpret the SUT’s outputs for use in the test execution
tool.

2.2. Properties of simulation models
Dynamic verification, or testing, of simulation models is a difficult problem. The properties of discrete-
event, stochastic simulation models that make them difficult to verify are now summarized. Some of
these properties distinguish simulation models from other types of software programs. These difficulties
may explain why MBT of simulation models is not an established field of research, while MBT is broadly
used for other software programs. The properties are summarized in Table 2.1, and they are further
discussed below.

Outputs are time series. The outputs of simulation models can be time series, which are difficult
to analyze, naturally because they can show different features over time. That also makes it hard
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Table 2.1: Summary of relevant properties of simulation models that make testing difficult

Property of simulation models Consequences for testing

Outcomes are time series
Hard to define requirements.
Further analysis such as statistical tests are needed.
A warm-up period may be needed to reach steady state.

Model is stateful and reactive Relevant variables must be chosen to test.
Causality of outcome patterns and faults is concealed.

Output is highly dependent on inputs Tests of simulation runs with different input parameters are needed.

Model has inherent stochasticity Multiple replications with the same input parameters should be tested.
Exogenous stochasticity can be fixed.

Model may have unknown nondeter-
minism

Internal processes of execution should be considered as well.

to define requirements for how a variable may change over time. Analysis of time series data often
requires statistical techniques, for which the mean or variance of the data must be taken (Roungas
et al., 2018). Furthermore, a warm-up period may be needed until a timed variable reaches a steady
state that is useful for analysis (Sokolowski & Banks, 2010).

Model is stateful and reactive. Large and complex simulation models simply have many states
that contribute to the end result, or that can be subject to testing. Defining and testing whether all
states are correct, at all given times, is difficult. Furthermore, executing large simulation models can
be computationally expensive, but execution is needed for testing. And lastly, simulation models are
reactive systems, which means that their response to (external) events depends on the current state.

Output is highly dependent on inputs. A simulation model is meant to be used for a certain range
of input parameters. The outputs (over time) of a simulation model can be highly dependent on the
initial inputs given. The inner workings and effects of interacting processes cannot be overseen before
execution. Otherwise, there would be no reason to build an executable simulation model. This means
that simulation runs that use different sets of input parameters should be tested.

Model has inherent stochasticity. The project focuses on stochastic simulation models, as they can
be used to analyze systems with many uncertainties as are common for decision-making. Stochastic
simulation models are more difficult to analyze than deterministic models, as statistical techniques must
be chosen and used (Sokolowski & Banks, 2010, p.21). Multiple simulation runs with the same initial
conditions, also called replications, will still give a range of results because of this. Therefore, multiple
replications must be considered in testing. Which number of replications is needed, must itself be
analyzed based on statistical tests (Sokolowski & Banks, 2010).

Two types of stochasticity can be distinguished. Endogenous stochasticity arises from within the
model itself when (pseudo-) random values are taken from a distribution. This can be the time for a
future event or an updated value for a property (Mihram, 1972, p.20). Exogenous stochasticity arises
from different initial parameters or from random events from the environment that influence a simulation
run. Mihram (1972) proposes that stochastic effects can be partially suppressed for dynamic verification
by making exogenous variables deterministic. It is hypothesized that this can be achieved with MBT
when a test model is used to make inputs for a simulation model.

Model may have unknown nondeterminism Lastly, there are potential issues with simulation mod-
els that could lead to unexplained results or faults, that are difficult to test. For example, synchronization
issues in distributed simulations can lead to inconsistent results, not because of faults in the simulation
model, but because of faults in the machines that execute them. Topics that lead to such problems,
such as distributed simulation and real-time simulation, are not within the scope of this project.



2.3. Relevant options from MBT taxonomies 11

Figure 2.2: Taxonomy of MBT and dimensions of testing. The options that have been chosen to use or further
explore in this project are given on the right. Options of focus for this project are given in boldface. Adapted from
Marinescu et al. (2015), Utting et al. (2012), and Zander et al. (2011)

2.3. Relevant options from MBT taxonomies
Taxonomies for MBT from literature are now used to list the known dimensions of MBT. The available
options for each dimension are summarized. Dimensions of testing mentioned in the following three
taxonomies are considered: a main taxonomy by Utting et al. (2012), a more restricted version by
Marinescu et al. (2015), and an altered version by Zander et al. (2011) that is specifically about testing
embedded systems. Embedded systems are deemed relevant for this project, as many MBT case
studies are about testing embedded systems, and because embedded systems share some similarities
to simulation models. The reader is referred to these sources for a more thorough explanation of all
dimensions and options. The taxonomies are overall divided into four classes: model specification, test
generation, test execution, and test evaluation. A fifth class is added to this: dimensions for testing in
general.

The taxonomies are used to further scope this project by hypothesizing which options may be rele-
vant for testing simulation models. This is done by matching options to relevant properties of simulation
models, as defined in 2.2, where applicable. If this is not possible, it is considered what options are
supported by most MBT tools. The results of this analysis are shown in Figure 2.2. The chosen options
will be further explored in the test packages that are developed in this project.
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2.3.1. Model specification
The model specification concerns the test model(s), what their purpose is, and how they are modeled.

Scope
‘Scope’ is only mentioned by Utting et al. (2012). It simply means whether the test model only provides
inputs for the SUT, or whether it gives the expected input-output behavior. Only this last option is
considered in this project. Some existing case studies on MBT do not use the test model to generate
expected behavior, as is later exemplified in Section 2.4. These test models have an input-only scope.
That does not count as MBT according to the definition of Utting and Legeard (2007) that is used
throughout this report. The related question in the case study review is: “Is the expected behavior
generated by a test model?” This also gives insight into what phases of the testing process have
actually been automated.

Utting and Legeard (2007) further indicate that test models can be ‘input models’, also known as
‘environment models’. These are made to give the same inputs that the SUT’s environment would
normally give. This can be contrasted with test models that simulate the SUT itself in some way, in
order to generate its expected behavior. A term for such test models is ‘behavior model’. A test with an
input-output scope means that “some aspects of the environment and some aspects of the SUT” are
specified in the test model (Utting & Legeard, 2007, p.302).

Model paradigm
An important dimension is the modeling paradigm, or notation, of the test model. The main options for
notations are state-based (pre/post), transition-based, stochastic, and data flow notations (Marinescu
et al., 2015; Utting et al., 2012). Only transitions-based notations will be considered in this project.
This choice is made because this type of notation is most discussed and recommended in literature.
Furthermore, it is the most supported by MBT software tools (Marinescu et al., 2015, p.129). TNO
(2021) also recommends transition-based models for MBT of simulation models for the same reasons.
These claims are further substantiated in Chapter 3 of this report. Another advantage of transition-
based models is that they have notations that are familiar to developers of simulation models, such
as finite state machines, labeled transition systems, and input-output automata. Since there are many
options for transition-based models, a question is added for the case study review: “What notation is
used for the transition-based test model?”

It is found in Chapter 3 that many transition-based MBT software tools support directed graphs that
are in essence extended finite state machines (EFSMs). These are graphs consisting of vertices that
represent states, connected by edges that represent state transitions. The EFSMs can have internal
variables, which can be assigned by state transitions or actions related to states. Edges can have
guards, which are conditions for certain transitions to be available or not. Sabbaghi and Keyvanpour
(2017) argue in a comparison of state-based models that EFSMs are suitable to test reactive systems.
TNO (2021) also recommend EFSMs for MBT of simulation models. Other options like timed automata
or timed labeled transitions systems exist, but these are more suitable for real-time systems with timing
issues (Sabbaghi & Keyvanpour, 2017). Such systems are not within this project’s scope, see “Model
characteristics” further on.

A hypothesized difficulty of testing simulation models is that they can generate events themselves
without any input given. These are endogenous events. New events, and thereby eventual state
transitions, are generally created in simulation models by advancing the simulated time. ‘Time advance’
can thus be seen as another input to the simulation model. This means that in this project the test
models could give ‘time advance’ instructions to the SUTs. It is also recommended by TNO (2021) that
MBT tools for testing simulation models should be able to advance the (logical) time in the SUT. A test
model then also needs to keep track of its own time variable, in order to compare this to the SUT’s time.

This approach can be expanded with a test model that also gives proper inputs, namely exogenous
events, to the SUT apart from advancing its time. However, that may not be needed for simulation
models where inputs from the environment are not necessary for proper functioning.

This issue of model notation leads to another reading question: “How is time advancement imple-
mented in the test model?” The model paradigm of a simulation model that is being tested may be
relevant for answering this question as well. Berkenkötter and Kirner (2005) mention for testing real-
time and hybrid systems that if a SUT has discretized time, the time can simply be kept in the abstract
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model by incrementing a counter. However, if ‘dense time’ is used, modeling time becomes more com-
plex. As simulation models are software programs, they only use a discrete time domain. Still, different
approaches to the time domain in the modeling paradigm used in the SUT may influence the test model
design. For example, a formalism like agent-based modeling uses discrete time steps of fixed length,
while a formalism like discrete event simulation has time steps of varying length. It is not found in the
literature if this would matter for test model design, so this should be further explored in this project.

Model characteristics
Utting et al. (2012) distinguish some special characteristics that may occur in the SUT: the type of
dynamics, timing issues, and nondeterminism. Their idea is that the test model should accommodate
or include these characteristics of the SUT.

The type of dynamics means that the SUT can be a discrete, continuous, or hybrid system (Utting
et al., 2012). This relates to the time domain that is used: a discrete system uses a discrete time
domain, while continuous and hybrid systems use a dense time domain. Real-time systems will not be
considered in this project; only simulation models that use discrete time will be tested. Therefore, the
test models will only use discrete time.

If the SUT were a real-time system, then timing issueswould be relevant. Utting et al. (2012) explain
that these should then be accounted for in the test model as well. Timing issues occur when amodel has
to give a response within a certain time frame to their environment or to other components, as is often
the case for real-time systems. Utting and Legeard (2007, p.302) conclude that systems with timing
issues are “hard to test”, and do not indicate how a test model should be designed to accommodate
for it.

While real-time systems are not considered in this project, simulation models for M&S often have
a problem similar to timing issues, namely timing constraints. This means that a response to an input
is expected within a certain response time. Timing constraints can be relevant to include in tests. The
time dimension of simulation models then should be considered in the test design. This gives a similar
conclusion as found for the ’Model paradigm’: the test model should have the same notion of time as
the SUT, and it should be able to advance the logical time in the SUT.

The last characteristic given by Utting et al. (2012) is that the SUT and test model can be either
nondeterministic or deterministic. They relate nondeterminism to two issues: time jitter and concur-
rency. These two issues are outside the scope of this project. A related issue that is not mentioned
in the taxonomies is nondeterminism due to the stochasticity that is built into simulation models. This
important characteristic of simulation models may require nondeterminism in the test models as well.
A set of input parameters can and should lead to different outcomes from the SUT every run, so the
expected behavior modeled by the test model can be a range of values. It must therefore be explored
how a test model can make verdicts for a range of possible outcomes.

Utting et al. (2012) further mention that a nondeterministic test model can be used to test deter-
ministic systems. From the search for MBT tools in this project, see Chapter 3, it is found that such
nondeterministic test models are often used for testing user interfaces like websites. A test model is for
example made that represents a user who gives inputs to the website. Nondeterministic path-finding
algorithms are used to produce a large number of test cases from such test models. These test cases
are used as inputs for navigating the SUT, which is deterministic in this case.

It is unknown how a nondeterministic test model could be used to test a nondeterministic SUT. A
question related to this issue is defined for the case study review: “Are the SUT and/or test model
deterministic or nondeterministic?”

Test artifact
Marinescu et al. (2015) extend the taxonomy with the test artifact, which is the type of information or
requirements that are modeled for testing. The options given are functional behavior, extra-functional
behavior, and architectural descriptions. Zander et al. (2011) mention one other option: a model of the
testing strategy itself. The main goal of this project is to test the behavior to functional requirements,
so only the SUT’s functional behavior will be modeled in the test models.

2.3.2. Test generation
Test generation includes all dimensions for generating tests from the test model.
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Test selection criteria
Test selection criteria are needed to select relevant test cases to be generated using the test model.
Across the three taxonomies considered many options are given for test selection criteria. No reasons
are found now to not consider any of these options for the purpose of testing simulation models. Utting
et al. (2012, p.303) mention too that “the ‘best’ criterion is not possible in general”. It is found that two
options are most supported by MBT tools: structural model coverage criteria, and ad-hoc (manual) test
case specification criteria (Marinescu et al., 2015, p.130). This last option is not considered, as it is not
relevant for a truly automated testing process.

Structural model coverage criteria are relevant for transition-based models. A criterion can indicate
whether all nodes (states), all edges (state transitions), or certain paths through the EFSM should be
covered (Utting et al., 2012). It should be noted that this means coverage of the test model; this does
not guarantee coverage of the SUT’s code, which would be relevant for structural or white-box testing.

Another idea is that test models could model states or transitions that are not supposed to happen in
the SUT, for fault detection. It is unknown how coverage criteria would work for this purpose. Therefore,
this idea is further explored in this project.

Other criteria are data coverage criteria and random generation, which includes input parameter
sampling. Data coverage may be relevant for making test cases that describe different simulation
runs with varying input parameters. This includes boundary analysis and domain analysis Utting et
al. (2012). TNO (2021) also recommends that MBT tools for simulation models should support data
coverage criteria for these purposes. Lastly, fault-based andmutation-analysis-based criteria could be
used to validate the test package once completed.

Technology for generation
Zander et al. (2011) extend the taxonomy with the ‘technology’ used for test generation. Relevant to this
project is that automatic generation of test cases will be used. Some options on how to do automatic
generation are given: by randomized generation, graph search algorithms, or model checking. These
options are left open for this project.

Modularity
Modularity of the test models is not mentioned as a dimension in any of the taxonomies. It is added
as a dimension in this project, as it may enhance the benefits of MBT. Many MBT software tools for
test generation support modular test models, see Chapter 3. As simulation models are often built
out of similar components, the use of modular or even composable test models may be useful to test
different compositions of these components. Likewise, one test model could be reused to test similar
components within the SUT. TNO (2021) also recommends that an MBT tool for simulation models
should support modular test models.

While not mentioned is a dimension, examples of modular test models are found in the literature.
The taxonomy of Utting et al. (2012) does not mention modularity or composability, but an example
is given of an MBT software tool that uses state-based test models that are composed out of more
simple models. A concept related to modular test models is testing of components within a SUT. Only
the taxonomy of Zander et al. (2011) mentions such method, where the SUT exists out of ‘subsystems’
that can be tested separately.

The dimension ‘modularity’ could also be placed under the dimension of model specification. It is
relevant for test generation as well, in the sense that an MBT tool should have somemethod to combine
multiple test models and use them for test generation. Options for transition-based models are that
(sub)models are combined into one test model or that concurrent states are used. Since modularity is
not required for testing simulation models but may be valuable for MBT, it is decided to consider both
non-modular and modular setups in this project.

2.3.3. Test execution
Test execution includes all dimensions about making abstract test cases executable and executing test
cases on the SUT.

Technology for execution
Online vs. offline testing can be seen as properties of both test generation and execution, and these
options are mentioned in all three taxonomies. As explained in Section 2.1.2, only online testing will
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be considered as it allows the SUT’s outputs to be used for test generation. Reactive testing is a more
specific term for this approach Zander et al. (2011). Online, reactive testing is generally recommended
for nondeterministic SUTs, and TNO (2021) recommends online testing for MBT of simulation models
specifically. However, it is found that most MBT literature, except for some case studies, does not
explain how test models can be designed for reactive tests. A related question is therefore used in the
case study review: “Is online testing applied, and is it reactive?”

Execution options
Zander et al. (2011) extend the taxonomy with execution options specifically for embedded systems,
such as hardware-in-the-loop and processor-in-the-loop. No relevant simulation-like concepts aremen-
tioned here. A promising idea mentioned is to generate test logs along with the verdicts, that give more
information on the SUT’s or test model’s internal states. That would bemost useful for white-box testing.

2.3.4. Test evaluation
The taxonomy by Zander et al. (2011) uniquely identifies test evaluation as a distinct category, with two
categories: specification of evaluation, and technology of evaluation. In order to understand options for
evaluation, a clear definition must first be given of what an ‘oracle’ is. Oracles are defined as functions
or methods that are used to assign a verdict to test cases, or to some part of a test case. An oracle can
consist of two parts: an expected behavior, and a procedure to assign a verdict to the SUT’s behavior
by comparing it to this expected behavior. Assertion functions are examples of oracles (Richardson
et al., 1992, p.106). Because ‘expected behavior’ and ‘oracles’ are closely related terms, literature
often blurs the distinction between them. Another source of confusion is that case studies often do not
make clear whether an oracle assigns a verdict to one step in a test case, or to an entire test case. This
is likely seldom mentioned because in many MBT tools, a ‘fail’ verdict in one step immediately leads to
a ‘fail’ verdict for the entire test case.

Specification of evaluation
Zander et al. (2011) distinguishes multiple options for the specification of evaluation, i.e. which proce-
dures can be used to assign verdicts to tests. An option, derived from this taxonomy, is to use oracles in
a step-by-step approach, as explained earlier. Inputs from the test cases can be associated with some
expected behavior, which is compared to the SUT behavior in an oracle; for example, an assertion
function. This approach is useful for detecting failures, which are undesired outputs or even crashes
that occur during test execution (Utting & Legeard, 2007, p.405). It is hypothesized that a step-by-step
approach with oracles can help to precisely indicate where in the SUT a fault exists, and why.

Zander et al. (2011) show that there are alternatives for this step-by-step approach. These alterna-
tives aremostly relevant for testing systems that give (continuous) signals over time, such as embedded
systems. If a reference signal is available for testing, that can be seen as the expected behavior. It is
then an option to compare the entire SUT signal to the reference signal. Another option is to focus on
the features of both signals. This means for instance that it is expected that a signal increases for a
particular time, and then decreases.

Since simulation models for M&S often produce time series data, which are similar to signals, these
options could be used in this project as well. Especially the comparison of the features of time series
data may be useful since the output of a simulation model can be a range of variables over time due
to stochasticity. If tests were to integrate sensitivity analysis, it could be useful to examine only the
direction (ascending, descending, or static) of a variable over time.

An option that can be added is to use aggregate data generated from time series outcomes, such
as the mean and (standard) distribution. Aggregates can condense the results of the SUT and the
associated test cases into single numbers. This makes it more convenient to compare multiple runs of
a simulation model, and to consider a range of outputs. Statistical tests could be used for this. This
method is therefore considered to address subquestion 4 in this project. The use of aggregate data
and statistical tests in an MBT test package is not mentioned in any of the taxonomies. This is likely
because MBT is more geared towards a step-by-step approach.

Some other events should lead to a ‘passed’ or ‘failed’ test verdict, which do not involve the expected
(functional) behavior of the SUT. If the SUT or test model for example has a crash during test execution,
then naturally the test has failed. The test selection criteria mentioned in 2.3.2 can be involved in test
evaluation as well. For example, a criterion commonly used for test models is that all vertices should



16 2. Literature study

be reached in one test case. If the test path generator fails to do so, then the test case has ‘failed’ as
well. In reactive tests, failure to traverse the entire test model can indicate a fault in the SUT as well.

Technology of evaluation
Zander et al. (2011) give some options for the technology used for evaluation. Firstly, the expected
behavior can be automatically generated using a test model, or it can be made by hand. This dimension
is similar to the ‘model scope’ mentioned in Section 2.3.1. As established earlier, this project only
focuses on automatic generation of the expected behavior.

Secondly, the assessment itself can be automated or not. This refers to the checking of oracles: is
it done automatically during test execution, or is a manual tester needed for this? To exemplify: a test
could have automatically generated expected behavior, but still necessitate manual assessment. For
instance, if the test model generates time series data, a manual tester compares this to data from the
SUT based on face validity.

Of course, the assignment of verdicts should be done automatically in this project, as the intent is
to automate as much as possible. This topic is related again to the reading question for the case study
review: “What parts of the testing process have been automated?”

2.3.5. Test dimensions
Some other considerations are important for software testing in general. These are not part of the MBT
taxonomies, but they are relevant nonetheless. These dimensions are the intended goal, scope, and
level of abstraction of the test package (Zander et al., 2011).

Test goal or test characteristics
The terms ‘test goals’ and ‘test characteristics’ are used with overlapping meanings by different authors.
Zander et al. (2011) state that the test goal is simply the purpose of testing a SUT. They give three
options for dynamic testing: structural, functional, and nonfunctional tests. Nonfunctional tests are
outside this project’s scope: they focus not on the SUT’s behavior but on metrics like performance
and usability (Zander et al., 2011). Functional tests assess whether the functional behavior of the SUT
conforms to its functional requirements. Structural tests concern the internal structure of the SUT’s
implementation (Zander et al., 2011). Utting and Legeard (2007) further distinguish robustness testing
from functional testing. In robustness tests, errors are found when the SUT is run with invalid conditions
(Utting & Legeard, 2007). This can be a quick way to test a simulation model: MBT could be used to
automatically generate and run many (exogenous) events that are possible but unlikely to happen
during a normal simulation run.

This dimension of test goals can be related to two approaches for MBT, introduced in Section 1.2.4:
functional tests are done as black-box tests according to Zander et al. (2011), while structural tests
are done as white-box tests. Here again, the two related definitions of black-box tests are relevant.
Black-box tests can mean that the test model is developed based on the functional requirements rather
than on the SUT’s implementation, or it can mean that the SUT is seen as a black-box model during
testing. The test suite ideally only has interaction with the SUT’s interface. This last definition gives
the most common approach for MBT. Utting and Legeard (2007) even state that MBT per definition is
black-box testing. The functional requirements do not describe details of the SUT’s implementation,
so the implementation is unknown to the test. They also state, using the same logic, that testing is
a distinct phase of a software development process that comes before debugging. Tretmans (2008)
treats MBT as a formal technique that is only for functional testing with a black-box approach as well.

However, some authors state that MBT has been used for automated white-box testing in recent
years (Zander et al., 2011). White-box testing implies that the test model is developed with knowledge
of the SUT’s code (Utting & Legeard, 2007), or that the test package can access internal variables or
interact with internal processes of the SUT. The distinction between black-box and white-box testing
can therefore be vague: a test package can also be made that applies both approaches (Zander et
al., 2011, p.4). Of course, a test may access more variables of the SUT than that it would generally
use for communication with its environment. Then, the SUT interface is changed for testing. Similarly,
one could make a test model based only on requirements, thus a black-box approach, and include
white-box and even debugging features in the mapping of abstract test cases to executable code. With
this hypothesis, special attention is given in this project to whether test development is done based on
requirements or not.
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Because of the unclear distinction between black-box and white-box testing, this issue is considered
in the case study review with the question: “Can the process be considered black-box and/or white-box
testing?”

Test scope
The test scope or scale is the “granularity of the SUT” (Zander et al., 2011, p.6), or which parts of
the SUT the test focuses on. The options are in order of decreasing granularity: unit, component, in-
tegration, or system testing. In unit testing and component testing, small parts of the SUT would be
tested in isolation. These two scopes are not relevant for this project, because the interaction between
components during execution is essential to understand how a simulation model works. Therefore,
only integration and system testing are considered. Integration testing focuses on specific compo-
nents functioning within their environment, while system testing focuses on an entire simulation model
(Zander et al., 2011).

The test scope, test goal, and model specification are closely related (Utting et al., 2012, p.298). It is
hypothesized that a full system test of a large model could require a more white-box approach. In order
to test a large simulation model, it is less useful to make a distinction between the SUT’s interface and
its internal variables or this distinction may even be left out. For component and integration testing,
however, a SUT component is tested of which the interface can be clearly defined. The inputs and
outputs on the interface are simply what the SUT component uses to communicate with its environment,
i.e. other components. Such SUT components can thus be regarded as a black box during testing.
TNO (2021) gives two case studies of similar tests, where a test model simulates the environment of
an SUT component, and checks if it responds to messages as expected.

Test abstraction
The level of abstraction of the test objectives and the test model is a difficult problem. It has been called
the “key step” for developing transition-based test models (Utting & Legeard, 2007, p.187). It could also
be seen as a dimension of model specification. A test model becomes more understandable and can
be reused for other SUT implementations if it is more abstract. However, the mapping to executable
test cases must still be feasible (Zander et al., 2011). This problem may be even more difficult when
the SUTs are simulation models, because they often have many possible states and their response to
inputs is complex. The right elements from a simulationmodel must thus be chosen if an abstraction of it
would bemade. This problemmust therefore be explored further in this project’s case studies in Chapter
5. Apart from the taxonomies, a case study by Pretschner et al. (2005) mentions two approaches to
achieve abstraction: by encapsulation or by leaving out details of the SUT or requirements.

2.4. Review of case studies
A review is made of several case studies where MBT is applied. It is found through literature search
that only a few papers discuss SUTs that are simulation models. Therefore, other case studies are
discussed as well that have SUTs that are similar to simulation models, or that use test models with a
time domain or a nondeterministic aspect. Only papers that use transition-basedmodels are considered
as only that notation type will be used in this project.

This case study review supplements the discussion of taxonomies from Section 2.3. The goal is
again to find options for MBT that may be relevant for testing simulation models. It is also reviewed if
the taxonomies should be extended with additional dimensions. Two general reading questions for this
case study review are now given:

• What is the main reason that MBT is used?
• Is the SUT a simulation model?

The other reading questions for analysis, which were formulated throughout Sections 2.1 - 2.3, are
now repeated:

• What parts of the testing process are automated?
• Test approach: Can the process be considered black-box and/or white-box testing?
• Model scope: Is the expected behavior generated by a test model?
• Model characteristics: Are the SUT and/or test model deterministic or nondeterministic?
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• Model paradigm: What notation is used for the (transition-based) test model?
• Technology of execution: Is online testing applied? Is the test reactive, meaning that it uses the
SUT’s output for test generation?

2.4.1. Summary of relevant case studies
The approaches used in noteworthy case studies are now summarized using the reading questions.
This will show that MBT is applied for different purposes, with varying levels of automation of the tests.

Embedded systems as SUT
MBT can be a cost-effective method to test a piece of hardware and/or its computer system, without
actually using that hardware in its real environment. Most research on (model-based) testing of embed-
ded systems is from the automotive industry. Embedded systems are deemed relevant in this project,
because much research is done on them, and because of their similarities to simulation models. Some
properties of simulation models given in Section 2.2 can be compared. Firstly, both embedded systems
and simulation models are reactive systems. The response reactive systems give to external events,
or inputs, depends on their internal state (Richardson et al., 1992, p.105). A second similarity is that
embedded systems have a time domain. And thirdly, embedded systems can be nondeterministic (with
endogenous stochasticity), and they can be integrated in a nondeterministic environment (giving ex-
ogenous stochasticity). A difference from the simulation models used in this project is that embedded
systems run in real-time. However, testing can sometimes be done in logical time.

Keränen and Räty (2012) use MBT for a hardware-in-the-loop (HiL) test with as SUT an embedded
system of a car’s automatic transmission controller. A simple test model generates the expected be-
havior. Online testing is used: a single input for the SUT, called a ‘stimulus’ in this context, is made at
a time and immediately executed on the SUT. The test is reactive as well: the test generation is based
on the SUT’s outputs. And lastly, verdicts are made automatically during test execution. The authors
believe that this online, dynamic, and reactive application of MBT is unique for HiL testing. For this
reason, it is mentioned in this report; it is found that most other case studies on HiL testing do not focus
on these topics.

Keränen and Räty (2012) interpret MBT as a purely black-box testing approach, and they see the
SUT as a black-box model. Therefore, they recommend using MBT to test the “overall behavior of the
SUT” (p.375). This is best done for system or integration testing.

Zander et al. (2011) apply MBT to testing of (real-time) embedded systems. Their considerations
have been discussed in Section 2.3. They use reactive testing because the SUT is nondeterministic
so that the test “can react to changes in model variables within one simulation step.” (p.13).

Software-in-the-loop tests
Some (embedded) systems are tested in a software-in-the-loop test. Poncelet and Jacquemard (2016)
do this for testing of their Interactive Music System. This is a real-time human-in-the-loop system that
can play electronic musical instruments along with human players. The aim here is to automate all
steps of the testing process, and it is found that custom MBT tools must be developed for this purpose.
The SUT itself has no stochasticity, but its inputs are highly stochastic human players. The reason to
apply MBT here is that testing would have to be done with real musicians, and would not guarantee
fault coverage. Testing is done as software-in-the-loop using two test models: an environment model
simulates inputs that musicians would give, and a behavior model simulates how the SUT should handle
these inputs. The behavior model is notated as a network of EFSMs that have some stochasticity built
in: it features “delays, asynchronous communications, and alterations” (Poncelet & Jacquemard, 2016,
p.144). While the SUT is real-time in its normal application, it is run with virtual clocks during testing.
Therefore, this SUT is similar to the non-real-time simulation models that are focused on in this report.
It is mentioned that the tests are black box.

Unique in this case study is that the behavior model itself is automatically generated from the func-
tional requirements. Full automation is considered feasible here because the functional requirements
are very clear and formalized: they are musical scores. Poncelet and Jacquemard (2016) further show
how both online and offline testing can be done. Online, reactive testing is done so that the behavior
test model can adapt to the nondeterministic SUT, and so that step-by-step path generation can be
used. Interestingly, Poncelet and Jacquemard (2016, p.165) explain how online testing can “prevent
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state explosion”. State explosion means for a transition-based model that to have any complexity a
vast number of states and even more state transitions must be modeled.

A similar software-in-the-loop approach is used by Iftikhar et al. (2015). They apply MBT for verifi-
cation of a simple platform video game. This SUT is normally a real-time system, but it is executed with
virtual clocks during testing. Similar to Poncelet and Jacquemard (2016), two test models are used:
an environment model mimics the inputs that a human player would give, while a behavior model sim-
ulates what the SUT should do in an abstract manner. The generated inputs are used on both the
behavior model and the SUT. The main incentive to apply MBT here is also similar to the music system
case study: manual testing would be very laborious, as manual testers would need to actually play the
video game for hours.

They intend to automate all steps of the testing process. A custom MBT tool is developed for this
purpose. The abstract behavior model consists of separate UML state diagrams for all components
of the game. For example, there is a state diagram of all possible behaviors of ‘Super Mario’. The
(generated) user inputs are used as guards on this state diagram. Testing is done online, but reactive
testing is not needed: themodeled user inputs are fixed, and the abstract test model should do the same
as what the SUT is doing. Step-by-step, it is tested if the SUT’s behavior is as expected, otherwise the
test fails. The test generation uses specific technologies such as ‘sneak path’ and ‘round trip’ strategies.

Iftikhar et al. (2015) stress that their case study is about functional, black-box testing: seeing where
the game crashes, whether certain events happen when they should, and if scores are tracked correctly.
The game’s internal states are checked continuously to assess this. A wrapper is made to summarize
these into states that are similar to the more abstract states of the test model. This is done for the
dynamic behavior, and the SUT’s internal variables are considered: the intent is in line with the idea
of identifying where (in which process) and when (during which states) a crash or wrong count occurs.
That is different from, for example, having a verdict for a finished game on whether the score is correct.

Lastly, Pretschner et al. (2005) test a complex software-in-the-loop deterministic simulation model.
The SUT is composed of many components, and therefore a modular test model is used: it too consists
of components. A simple method is used to keep time synchronized between these submodels. All
components are tested at virtually the same time.

Simulation models as SUT
Lastly, some case studies that apply MBT to simulation models are discussed. Schmidt et al. (2016,
2015, 4) base their case study on the research on MBT for embedded systems of Zander et al. (2011),
but they claim that the SUTs used in such research are “not necessarily simulation models” (p.829).
Schmidt et al. (2015, 4) therefore provide a framework based on Discrete Event System Specification
and the Experimental Frame, to conduct such experiments for simulation models in a structured man-
ner. They exemplify this with a case study of MBT applied to a simulation model. This has a clear time
axis: it is a Matlab/Simulink model of a robot arm with a controller that must reach certain positions at
certain times. The test model is used to make test cases, which are a few positions that the robot must
reach at certain times. The main efficiency benefit of using MBT is the automatic generation of many
such position scenarios. Online testing is not needed: it appears that the test cases, the positions,
are merely initial input parameters for a simulation run of the SUT. It is not mentioned whether the test
model is deterministic.

Verification is done by simply letting a real robot arm reach these positions, which are compared to
the SUT’s simulated positions. Thus, the scope of the test model is input-only: no expected behavior
(outputs) is generated by the test model. Rather, the SUT models a real-life system, and the same
inputs are given to both the SUT and the system. While the generation of expected behavior is not
automated, oracle checking is. It is compared at many (sampled) points in time whether the SUT
trajectory is close enough to the actual trajectory. The approach is thus clearly not step-by-step; many
more points in time are evaluated, compared to the number of points in the test cases. The level
of automation does not align with the definition of MBT by Utting and Legeard (2007) that is used in
this project. However, a useful aspect that can be taken for testing simulation models may be the
comparison of time series data.

Lindvall et al. (2017) also apply MBT to a simulation model of a real-life system: the SUT is a
simulated autonomous drone that flies around in a simulated 3D environment. The inputs, or initial
conditions, for each simulation run are more complex here: they are not merely some values for pa-
rameters. Rather, the entire simulated 3D environment can be seen as an input. This is thus a clear
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example of where a test model is used to generate test cases, but the scope is input-only again, and
oracle checking is not automated. Instead, the verdicts should be made by a manual tester who checks
animations. The test execution does automatically summarize the results into short videos to be used
for this manual verdict.

Van Osch (2005) apply MBT to discrete-event simulation models in the context of embedded sys-
tems. Simulation models are often used for validation of hardware implementations. These simulation
models are however often not validated themselves. Two case studies are done. The first tests a simple
simulation model of the alternating bit protocol modeled in 𝜒, a discrete-event process interaction lan-
guage. The MBT tool TorX is used, which uses test models notated as labeled transition systems. This
is related to input-output conformance theory (ioco): the behavior model must be input-output conform
to the SUT. The SUT’s process that normally would generate inputs, namely input messages, for the
alternating-bit protocol is replaced by an input generator that communicates with the test script. TorX
then generates some messages and the expected (eventual) answer, thus the scope is input-output.
The test package is validated by running it with mutated versions of the SUT.

Van Osch (2005) thus uses step-by-step testing. It is unclear whether it is reactive. The SUT is
deterministic, but the test model has stochasticity implemented: it simulates a random input process,
in the sense that the input times are randomized. However, for each input, exactly one expected output
is known a priori. The second case study by Van Osch (2005) uses a more complex test model that
uses the same principles. The intent is named here to make as few changes to the SUT’s code as
possible. This can be seen as a black-box approach: only the SUT’s interface is considered.

Gerhold et al. (2019) also use ioco theory for MBT, but now with SUTs that have stochasticity.
Two MBT model notations are used: input-output Markov automata (IOMO) and stochastic automata
(IOSA). Both can be represented as states with transitions in extended finite state machines (EFSMs).
They add probabilistic choices to these graphs, i.e. the probability of going to either edge, and stochas-
tic delays. These delays give the time that the system spends in a certain state. The IOSA can model
delays from any distribution and are therefore seen as the better option. A case study is given of a test
of the Bluetooth communication protocol. The SUT is nondeterministic, while the behavior model is
kept simple with some stochasticity: it is an IOSA, that only sets up a delay for a ‘connect?’ message,
taken from a distribution, that counts until an ‘acknowledge!’ message is expected. Similarly to Lindvall
et al. (2017) and Van Osch (2005), the test model generates inputs that are used on both the abstract
test model and SUT. The resulting behaviors over time are compared afterward; it is checked whether
the entire SUT trajectory is similar enough to the generated trajectory.

The tests have two goals: there is functional testing of single simulation runs, here called ‘traces’,
and statistical evaluation of the results from multiple traces. It is checked if the results are within a
certain confidence interval. A separate test (verdict) model is used for this last goal. This test package
was validated with mutant SUTs, similarly to Van Osch (2005).

TNO (2021) apply MBT to simple simulation models in two case studies. The SUTs are components
of a complex simulation environment. The test models are environment models that simulate other
components that normally interact with the SUT. The test models give messages to the SUT, in order to
test if the SUT gives the expected response within an expected time. The SUT is thus seen as a black
box. Online, reactive test execution is used, so that the test model can check whether certain objects
in the SUT exist, which it can send messages to. Interestingly, the test model also instructs the SUT
to advance its logical time, until an event warrants an assertion is generated by the SUT. The scope is
input-output and testing is done step-by-step, as the expected behavior from certain events is given in
the test model. The case studies explore the use of two existing MBT tools for path generation using
transition-based models: GraphWalker and OSMO. The test results are given in coverage reports,
that show whether certain requirements for the path generation have been met during the test. The
test models are nondeterministic: they randomly select objects in the SUT to test, or send randomly
selected messages to the SUT.



2.4. Review of case studies 21

2.4.2. Conclusion from review of case studies
It can be seen that every case study uses a different approach for MBT. New insights taken from the
case studies are now discussed.

Level of automation
As expected, different parts of the testing process are automated. Some approaches use only a be-
havior test model while others use an environment test model or multiple test models, and some tests
are reactive while others are even offline. The papers by Van Osch (2005) and Gerhold et al. (2019)
are the main examples where a simulation model is tested with a test model that generates expected
outputs. The paper by Poncelet and Jacquemard (2016) is an example where almost all steps of the
testing process have been automated. No clear guidelines on applying MBT to simulation models can
be taken from these case studies. The report by TNO (2021) uses test models of the SUT’s environ-
ment, and gives some recommendations for applying MBT to simulation models. These are mentioned
throughout this report where relevant.

Oracle specification and types of inputs
A few considerations are found that were not mentioned in some of the taxonomies. By considering
the dimensions ‘specification of evaluation’ as defined by Zander et al. (2011), see Section 2.3.4, some
differences between the case studies become clear. When online testing is used, in some studies
oracles are not specified or checked for each step of the test case. For instance, only the traces of
intermediate results are compared by Gerhold et al. (2019) to make verdicts. For offline testing on
the other hand, sometimes many more data points are evaluated in oracles than there are data points
in the test cases. This is done by Van Osch (2005). This seems like an important distinction to see
what an MBT package may be used for. If oracles make verdicts for the SUT’s response to every input
that is sent to the SUT, then the test can give a clearer idea of where and when a fault occurs. This
step-by-step approach is also most in line with the common practice of MBT found in the literature.

Another point taken from the case studies is that a distinction is often made between an environ-
ment test model and a behavior test model. This can be linked back to the dimension ‘model scope’
discussed in Section 2.3.1. Environment models are mostly used to generate inputs, thus exogenous
variables, while behavior models in some way simulate the SUT’s expected behavior, thus its endoge-
nous variables. In some studies, inputs from environment models are used on both a behavior model
and the SUT. In other studies, the test model is only used to generate the initial values for a (test)
execution of the SUT. The point from Section 2.3.1 should be added that the test model may not even
need to provide input events when the SUT is a simulation model. This is because a simulation model
will generate endogenous events upon time advancement.

From the aforementioned points on oracle specification and types of inputs from test models, three
approaches to testing can be deduced:

1. Step-by-step verification of endogenous variables. This lends itself to oracles that are specified
for every step of the generated test case, in order to answer the question: is the event generated
by the SUT, a simulation model, expected given its previous state? The oracles can represent all
logic that the SUT should adhere to in a detailed manner.

2. Verification of responses to exogenous variables. Oracles can be specified for this purpose, that
check whether the response that the SUT (eventually) generates is correct or within the specified
time constraints. An oracle for each step in the test case is thus not necessary for this approach.

3. Verification of a simulation model’s results, given its initial input values. This is what is studied
with subquestion 4 in this report. Oracles should be made to check whether a given set of input
parameters leads to the expected outcomes. This can be done for an entire simulation run, for
instance by taking the mean or variance of time series data. It could also be done for traces of
intermediate results, or by time series analysis with a reference time series or spectrum.

It should be noted that the third approach, the analysis of end results given the initial conditions,
is similar to what is done for validation of simulation models. This project only considers verification,
specifically the correct implementation of the functional requirements in an executable model. Vali-
dation is ”always relative to a model’s intended use” (Roungas et al., 2017, p.4); the practical use of
the SUTs is not considered in this project. Moreover, validation is a distinct phase that is done after
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verification, and all MBT sources indicate that testing is strictly for verification (Utting & Legeard, 2007).
Numerical comparison of (means of) outputs to theoretical values is recognized as part of verification
(Kleijnen, 1995).



3
Selection and functioning of MBT

software tools
This chapter discusses the selection of anMBT software tool. An existingMBT software tool will be used
to build test packages for the case studies. As explained in Section 2.3, existing tools can provide the
core functionality of the MBT process: test path generation, test case generation, and test execution.
The MBT tool further dictates aspects like what notation is used for test models, what types of coverage
can be achieved, and whether test models can be combined. The choice of an adequate MBT tool is
therefore important. This chapter therefore first gives the selection process for finding a tool. The tool
AltWalker is chosen to be used in this project. Its functionality is discussed in this chapter as well. A
conclusion is given on what features are missing from this tool. Further practical problems encountered
during the development of the case studies are discussed in Appendix A.

3.1. Selection process for an MBT software tool
The selection process for an MBT tool is done at the start of this project. Naturally, the MBT tool
should support the relevant options for MBT of simulation models that have been defined based on
the taxonomies in Section 2.3. More requirements and preferences are partly taken from previous
research by TNO (2021) which focused on MBT for simulation models as well. In addition to the known
dimensions from the taxonomies, some practical requirements and preferences are decisive for the
selection. Based on the selection process, a number of MBT tools have been tried in practice. This is
described in Section 3.1.2.

3.1.1. Requirements and preferences
The technical requirements for a MBT tool that are based on analysis of the taxonomies are first dis-
cussed. The tool should support test models specified as nondeterministic transition-based models.
Extended finite state machines (EFSMs) are preferred, but other transition models could be used as
well: it is important that internal variables and guards can be specified in the test model. The test gen-
eration should support automatic generation of tests. The user should be able to specify the technology
used for generation, such as random generation or path finding. Regarding test selection criteria, data
coverage is a preferred option, so that simulation runs with different input parameters can be easily
tested. Structural model coverage must be supported as well because it must be explored how this
option can be relevant for testing simulation models, see Section 2.3.1. For test execution, the tool
should support online, reactive testing. The tool thus has to support some method of influencing the
path generation based on the SUT’s outputs. And lastly, the tool should be geared towards automatic
oracle checking, so that it can assign verdicts to test cases.

The practical requirements for selection are partly taken from TNO (2021). A practical requirement
for the test models is that they should be editable using a graphical user interface (GUI). That feature
enhances the usefulness of an MBT tool for making (abstract) models that are visual, easy to edit, and
easy to communicate. A preference is that the test model is composable into submodels, that can be
used in varying compositions. Another preference is that concurrent states can be used for increased
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flexibility in designing test models. Additionally, the overall preference for parallel execution is regarded
as well. A preference is that the MBT tool can run test cases in parallel, or that it would be possible
to adapt it for this purpose. Another preference is that adapter code exists or can be made readily for
communication with a SUT simulation model.

Lastly, the selection process is narrowed down by only considering open-source tools. It was found
during the search for tools that many open-source MBT tools are Java-based. During the selection,
a requirement is established that only those tools would be considered which can operate within a
Python environment. This is because the author mostly has experience with Python, and the simulation
models used as SUTs will be in Python as well. A related preference is that as much code that the tester
provides as possible should be in Python. Some other requirements can only be checked by actually
installing and using MBT tools: installation must be feasible and usage of the tool must not be too
convoluted. Related preferences are that the documentation is clear and complete, the tool is in active
development, and code examples are available.

3.1.2. Search for MBT tools
The features, alignment with the requirements and preferences, and ease of use are now discussed
for MBT tools that have been found in the selection process.

Types of notations used in open-source MBT tools
A broad search for any open-source MBT tools is first done. A finding from this search was that most
open-source tools are based on Java. It is found that most tools will use some semi-structured data
format such as JSON to specify the test models. Interestingly, a variety of notations for transition-based
test models are used by the tools. Some examples of tools with different notations are:

• GraphWalker uses a transition-based notation: EFSMs, that can be edited with a GUI. It is Java-
based but the test models are specified with semi-structured data files. A Python port called
AltWalker is available as well.

• OSMO does not give a name for its test model notation. It continuously checks guards, and will
check the state before and after an event is triggered in the SUT. It has no GUI for the test models.
It is Java-based and the test models are specified in Java as well by using annotations. A Python
port is available as well, namely py-osmo.

• Modelator uses models notated with TLA+ (Temporal Logic of Actions), a specific language that
can describe concurrent states. Java and Python versions are available.

• TorXakis uses labeled transition systems, a transition-based notation that can have an infinite
number of states. This is more geared towards complex systems and supports concurrent states.
A domain-specific language is used to specify the test models, which can be viewed with a GUI.

Candidate Python-based MBT tools
With the requirement to only consider open-source Python-based tools in active development that use
transition-based notations, the candidate tools are narrowed down to the following ones: AltWalker, Py-
Model, andModelTestRelax. It is first checked which requirements and preferences theymeet based on
their documentation and repositories. After this, the practical considerations are checked by installing
the tools and attempting to run their code examples.

AltWalker is a Python port of GraphWalker. The models are transition-based EFSMs. Many test
generation options are available. The documentation is quite complete, and a few code examples
are available. Even more examples are available for GraphWalker. While it is Python-based, the test
models are given in JSON data files, and the path generation is actually done by GraphWalker, which
must be installed separately. Test models can be (re)composed out of submodels (AltWalker, 2023a).
AltWalker meets most technical requirements and preferences that were given in Section 3.1.1, except
that concurrent states and parallel execution are not supported. It was unclear during the selection
process whether data coverage requirements for path generation were feasible with AltWalker.

PyModel is not a port of another tool. Its model notation can be seen as EFSMs because guards and
internal variables are available. Interestingly, a feature is included specifically for making environment
models of the testing strategy. These are called ‘scenario machines’ and are used to more specifically
select test cases. A viewer for the test models is available, but they cannot be edited with aGUI. The test
models can be (re)composed as well, but concurrent states or parallel execution are not possible (Jacky,
2011). PyModel’s documentation is less clearly presented than AltWalker’s, but many code examples
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are available. Some simple structural coverage criteria for path generation are available, but more
complex coverage criteria and generation technologies must be made by the modelers themselves.

ModelTestRelax lastly is only Python-based, as it can be controlled by a Python script, and the
mapping of abstract to executable test cases can be done in Python. As with AltWalker, the test models
are specified in JSON files. Even GraphWalker’s GUI editors can be used for the models. A difference
with AltWalker is that an executable (written in C++) is used for path generation and for part of the
test execution. Also, no Python package exists for communication with this tool. ModelTestRelax uses
EFSMs for model notation as well (ModelTestRelax, 2023). It is documented thoroughly and has some
code examples as well. Many options are given for (re)composition of test models, and many coverage
criteria and path generation options are available as well. Concurrent states and parallel execution are
not possible. ModelTestRelax supports batch runs, making it possible to easily define a sequence
of test cases to be run. A GUI is even available for this. That can be useful for implementing data
coverage requirements.

It seems that ModelTestRelax meets roughly the same technical requirements that AltWalker does.
An exception is that test execution with a connection to the SUT is not part of the tool yet. The test
case must be run on GraphWalker for this.

Selection based on practicality
It is found that AltWalker can be easily installed as a Python package. The installation of the Graph-
Walker Java executable has some caveats but these have been solved ultimately. The online available
code examples of AltWalker have been successfully executed. AltWalker’s file structure is easy to un-
derstand. Simply put, one data file is the test model, another script is the mapping, and another script
or commands set up the execution. Tests can be run with commands in the CLI, or they can be de-
scribed using objects in Python. The altwalker package will interpret these objects into commands
that are executed by GraphWalker. PyModel is easily installed as a Python package as well. As it does
not depend on other programs like AltWalker does, the basic functionality of a test package can be
specified entirely using Python scripts. However, the tester must specify commands for execution as
strings. These cannot be generated based on objects as is done in AltWalker. A PyModel test pack-
age generally consists of many files. ModelTestRelax relies on some Python packages that could be
installed. However, the installation of the ModelTestRelax executable was successful. Unfortunately,
the code examples that work with Python scripts could not be executed by following the instructions.

It is decided to use AltWalker as the MBT tool in this project. This is based on the complete doc-
umentation, the ease of use of a GUI for editing test models, the option to run tests based on Python
objects, and the fact that installation was successful and the code examples could be executed. A
reader interested in using Python-based MBT tools is recommended to reconsider this choice based
on personal preferences. For example, PyModel and ModelTestRelax provide better functionality for
batch execution and ad-hoc specification of tests.

3.2. Functionality of AltWalker
The functionality of AltWalker is now further discussed. It is shown how important options from the
MBT taxonomy can or cannot be implemented using AltWalker. This explanation will help to further
understand the case studies in Chapters 4 - 6. Details on the file structure, code used, and different
approaches that have been tried for new functionality are given in Appendix A. Note that AltWalker can
run tests written in Python or C#; only Python is considered in this project.

Section 3.2.1 shows how abstract models are notated and how test generation can be influenced in
AltWalker. Section 3.2.2 shows how a missing feature is solved, so that simulations of fixed run length
can be tested. The findings are demonstrated with an example test model in Section 3.2.3. Section
3.2.4 shows how tests are set up and executed. Section 3.2.5 shows how automated testing of multiple
simulation runs can be achieved. Features that are missing are discussed throughout the report. These
are given in Section 3.3.

3.2.1. Functioning of test models
AltWalker supports many concepts from the taxonomies regarding model notation, test selection crite-
ria, and test generation technology. An overview is now given based on the documentation (AltWalker,
2023a).
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Abstract test models
Abstract test models are called graphs or directed graphs in AltWalker. They are specified as data
structures in JSON or GraphML format; only JSON is used in this project. Vertices represent states and
edges represent state transitions. The directed graphs can be seen as extended finite state machines
(EFSMs) because they have internal variables and trigger conditions. The internal variables are called
graph variables. These variables must be declared in amodel action, and new values can be assigned
in vertex actions or edge actions when an element is passed. The trigger conditions are called guards.
Guards are used on edges: they are if-statements that use the graph variables to decide whether an
edge may be passed. Multiple actions and guards can be combined (AltWalker, 2023a).

Both the actions and guards are written with snippets of JavaScript inside the abstract model’s JSON
file. (Sub)models can be combined by declaring the same shared states on vertices. Two similar GUI
editors for graphs are available: GraphWalker Studio and AltWalker’s Model Editor.

Mappings to executable test cases
The mappings to make the test cases executable are given in a test script, which is a Python file. Every
element in a graph must be associated to a function in this test script. During a test, GraphWalker will
generate a path through the elements in the graph, given all conditions. For each element that is
passed, the associated function in the test script will be executed. The test scripts can also contain
fixtures, which are functions with predefined names that are always executed before or after a test case
run.

The functions in the Python test script can use assertion functions as oracles. Specialized assertion
functions from the unittest library can be used. During test execution, these oracles are checked
automatically step-by-step. An oracle that gives a False outcome will mark that test step and therewith
the entire test case as ’failed’. This means that path generation and test execution will stop. As stopping
test generation may be unwanted for testing simulation runs of fixed length, in this project sometimes
error messages are used instead of assertion function in the the script. This ensures that a manual
tester will be alerted of potential problems, while the test case keeps running. The warnings library is
used for this purpose.

Since the test script is simply a Python script, it too can keep internal variables, that are different
from the directed graph’s internal variables. The test script and its oracle functions, or assertions,
can access the directed graph’s internal variables as well. This gives various possibilities for how the
expected behavior can be expressed.

Other than the step-by-step oracle function in the test script, more implicit oracles can be prescribed
by coverage criteria that can be set per test case. If the path generation fails to meet the coverage
criteria, a ’failed’ verdict will be assigned to the test case after execution.

Reactive tests
The graph, which is used for path generation, cannot access the SUT’s interface directly. Reactive
tests, thus tests where the SUT’s output is used for path generation, are made possible with AltWalker’s
data functionality. An object called data is then used in the test script to access and update the graph’s
internal variables.

In this report the term ’test model’ is used to refer to one or multiple graph(s), thus abstract model(s),
along with their test script(s) that are used for a test case run. It is likely that an abstract model designed
for reactive tests cannot be run isolated from the test execution. The internal variables and edges may
rely on the SUT’s output, which means that running the abstract model isolated would likely lead to
deadlock. This makes it more difficult to validate abstract models that are made for reactive tests.

Modularity of test models
The user has the option to use multiple models in the execution of one test suite. For example, two
models with an associated test script can each be run on one SUT sequentially. Another option is to
combine multiple models, now called ’submodels’, into one graph by using shared states on vertices,
which are declared by giving two vertices from different submodels the same shared name. If the path
generator comes across a vertex with a shared name, there is a probability that it will transition to a ver-
tex in another model with the same shared name (AltWalker, 2023a). A limitation is that this probability
cannot be influenced: guards and weights are not available for this transition between models.
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It should be noted that this AltWalker feature is not the same as having concurrent states; rather
the two submodels are combined into one graph. The path generation thus never considers multiple
elements, or states, at once. Parallel execution of submodels is therefore not supported as well.

The setup for test models is modular: if a user makes two models with shared states, they could still
choose to run a test with only either of these models. This may be useful for selectively testing certain
components of the SUT using only one test package. One JSON file may contain multiple submodels,
and likewise, submodels from different JSON files could be composed into one test model.

Test generation
AltWalker gives many options for path generation. A model can be run with different path generation
options; this adds flexibility to the test design. Path generation options are specified by a combination
of a generator, which defines the technology of generation, and a stop condition, which gives the test
selection criteria.

Appendix A.2 gives all relevant options for path generation. It is found that random generation and
graph search algorithms are available in AltWalker. Path generation can be influenced by guards on
edges, by weights on elements, and by requirements, which are elements that must be passed. The
supported test selection criteria are structural model and requirements-based coverage criteria. It is
found that no distinct functionality is available for data coverage criteria and random generation.

A start element can be defined in the graph, but it is not possible to explicitly set an element where
test generation should stop. An end element can be attempted by setting a requirement on an element
and then running a test with a ’requirement coverage’ as its stop condition.

3.2.2. Testing simulation runs of fixed length
A finding important to this project is that most path generation options will generate paths of unpre-
dictable lengths. This means for testing simulation models that it is unknown a priori at what simulation
time in the SUT the test execution would stop. Ideally, it would be possible to stop test execution once
the SUT reaches its simulation end time 𝑡end. It would therefore be useful if path generation and test
execution can be stopped based on the value of a graph variable or SUT variable. Unfortunately, none
of the test generation options of AltWalker (see Appendix A.2) are found capable of this.

Some approaches have been tried to stop test execution based on a variable. These are discussed
in Appendix A.1.2. The solution used throughout this project is to include an ’end vertex’ in each abstract
model, which can be reached with incoming edges from all other vertices in the graph. These edges
have guards for the time like 𝑡 ≥ 𝑡end. A drawback of this approach is that it makes the graphs harder
to understand visually. These ’end vertices’ will therefore not be displayed in the figures in this report.

This simple problem shows an advantage of MBT software tools that use abstract models with
different notations as is done by AltWalker. The MBT tool Osmo will for example check all guards
during any step of test execution. Thus, implementing this feature would be easier with a MBT tool like
Osmo.

3.2.3. Example of a directed graph
An example is now given of how a directed graph is made for AltWalker. The example is outside the
context of a test package, and it is made to show how the aforementioned features of AltWalker can
be used in practice. The (test) model has simple functional requirements. It should either increase an
integer clock value 𝑡 by 1, or it should run some other checks. These checks should be in a separate
submodel. The path generation should end if 𝑡 reaches 20.

The implementation of this model is shown in Figure 3.1. It consists of two (sub)models: A and B.
Two graph variables are used, these are initialized using a model action. The variable global.done
is made global so that it can be used by both submodels. One vertex, shown in green, is chosen as a
start element. From v_check_clock the path generation can choose between increasing the clock 𝑡
or going to a check. The guards t<20 are included so that the path is guaranteed to take e_end once
t==20. This model can be run with a path generation option like random(edge_coverage(100) &&
reached_vertex(v_end)) to ensure that it stops at v_end.

Increasing the clock is done with a vertex action. The check is implemented in a submodel. This
submodel can be reached through a shared name between v_random_check and v_start_check.
This already shows a limitation of how shared states work in AltWalker. Because they are not given
with normal edges, no guards or weights can be added to them. It can therefore not be prevented that
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Figure 3.1: Implementation of a simple graph using twomodels in AltWalker. The actions and [guards] on elements
are added in dark red text. An implicit edge is drawn between the two vertices which have a shared name.

the path randomly goes back to model A, before going to edge e_check1. Adding a weight to this edge
did not change this. Lastly, guards and edge actions that use the variable global.done are included
to make sure that the path returns to model A once v_end_check has been passed.

Other limitations that were identified while creating this example concern the GUI editor. Guards
and actions cannot be shown on elements in the edges, so the information shown at a glance does
not give the entire abstract model. Screenshots of these graphs must be edited further, to give all
information of an EFSM.

3.2.4. Structure of test packages and test execution
An understanding of the file structure that AltWalker uses is important to further discuss how test exe-
cution works.

File structure of an AltWalker test package
A test package made for AltWalker will at least consist of four files: (i) One or multiple abstract models,
or directed graphs, in JSON or GraphML files. (ii) A test script made as a Python script. This contains
the mappings to executable instructions on the SUT, as explained previously. The test script can com-
municate with the abstract model via the data functionality, and a method is needed to communicate
with the SUT. Oracles, given as assertion functions, can be associated with elements of the abstract
model. (iii) The SUT can be any application. In the case of this project, the SUTs are all simulation
models written in Python. (iv) An empty Python script __init.py__ is needed to make the test folder
into a module.

Test cases can be either set up using AltWalker’s command line interface or from a Python script.
This last option is used in this project, as Python can be used to set up a sequence of multiple test
cases. For this purpose, a fifth file is introduced: a test execution script. The test execution script uses
the API functionality of the altwalker library to set up one or multiple test case runs. It can contain
an experimental set-up in order to run multiple experiments with different initial parameters for the SUT
and/or test model. The term ’test execution script’ is not found in AltWalker’s documentation; most
code examples there use the command line interface.

Test execution with AltWalker and GraphWalker
AltWalker’s test execution is complicated as it uses multiple programs. Upon initialization of a test
case, AltWalker in Python will set up a GraphWalker client, which is a Java program. GraphWalker is
responsible for path generation using the abstract model. Communication between AltWalker (Python)
and GraphWalker is done via TCP/IP messages. Communication between Python and the SUT may
necessitate adapter code. In this project, the problem of establishing communication with the SUT is
mitigated by loading the SUT directly into the test script. This can be done because the SUTs used are
Python scripts as well. Further details on how the test execution script works and how the API is used
are given in Appendix A.3.

Figure 3.2 gives a schematic overview of how test execution is done using the different programs
and files in this project. Note that a line is drawn between the abstract model and the test script: this
represents the data functionality that allows reactive tests to be done. The test script may thus read the
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Figure 3.2: Scheme of how all files and programs for an AltWalker test package are used for one online, reactive
test case in this project. This can be compared to the general process of a test package given in Figure 2.1

SUT’s output, and based on this assign new values to graph variables in the abstract model. Hereby
the path generation is influenced by the SUT’s output. This also gives a method to verify the abstract
model and/or the SUT: the graph variables can be continuously accessed and compared to the SUT’s
outputs. This can be taken a step further by having shadow variables in the test script for each graph
variable.

3.2.5. Automated testing of multiple simulation runs
An important step for the verification of simulation models is to analyze multiple simulation runs. This
can be either about simulation runs with different input parameters, or replications, which are defined
here as repeated simulation runs that use the same values for the input parameters. This step is mostly
related to the goal of verification of a simulation model’s results, see Chapter 6, rather than step-by-step
verification of the dynamic behavior.

A reason to vary the input parameters for testing is that a fault in a simulation model may only occur
for a certain set of input parameters. The simulation model may even show specific behavior patterns
only for certain inputs, so full coverage of (sensible) inputs is needed for full coverage of the model’s
potential behavior. Replications with the same input parameters must be done to test if the model’s
stochasticity does not lead to faults or unexpected behavior, or if the influence of stochasticity is as
expected.

It is found that AltWalker’s documentation does not mention specific methods to run a sequence of
test cases or to pass initial parameter values to a graph and/or SUT. The AltWalker API is therefore
used to add this functionality to the test execution script. This can be done in several ways; different
approaches are discussed in Appendix A.3.2.

The approach used throughout this project is that an experimental set-up is defined in the test
execution script. Each experiment consists of a combination of input parameter values, and multiple
replications per experiment can be run. These input parameter values are passed via the abstract
model (using data) to the test script. The test script in turn can pass these to the SUT. Unfortunately,
direct communication between the test execution script and the test script is not possible in AltWalker.
Along with input parameters, a simulation end time and seed for the SUT can be given. Each AltWalker
test case run only tests one simulation run of the SUT. A new GraphWalker instance is therefore set up
by AltWalker for each experiment or replication.

A bug has been found with the communication between AltWalker and GraphWalker. This prob-
lem causes the computer system to run out of TCP/IP ports, which means that no more tests can be
executed. This bug and potential solutions are further discussed in Appendix A.3.3. The bug became
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apparent in this project, because step-by-step testing of (multiple) simulation runs requires large paths
to be generated, meaning that much communication is needed between AltWalker and GraphWalker.
No true solution has been found. The bug is partly mitigated by periodically halting all test execution
for two minutes, so that the operating system will automatically reset all ports. This naturally gives long
execution times, and the bug may still occur if the computer system uses ports for something else.
Therefore, this bug is a serious practical issue for using AltWalker for any tests with long paths.

3.3. Conclusions for usage of MBT software tool
Six features missing in AltWalker have been found, that would be helpful for doing MBT for simulation
models:

1. Stopping conditions based on a value of variables of the SUT and/or abstract model. Alternatively,
continuous checking of specific guards. This would allow a test package to run a simulation model
until a specified simulation end time, with a more intuitive syntax.

2. A formalized method for making a test execution script. The method used in this project is based
only on the AltWaker API documentation and on trial and error. No term is given in the AltWalker
documentation for something like a test execution script.

3. A formal method for a test execution script to do batch execution of multiple test cases and asso-
ciated SUT runs. This should support data coverage criteria, and include a method to pass input
parameters to the abstract model and preferably to the SUT as well. Such method has been
developed in Chapter 6 using the data functionality and GraphWalker API.

4. Guards, weights, and actions on (implicit) edges between submodels. This would help to get the
clarity that submodels provide with the flexibility that normal edges provide. This would improve
the composability of test models.

5. A live GUI overview of the abstract model being traversed during online testing would help the
understanding and troubleshooting of a test package. AltWalker only provides an animated ab-
stract model that is disconnected from the SUT. This is not useful for reactive tests, where the
SUT’s output is essential to get full coverage of the abstract model.

6. Lastly, concurrent states of different submodels could be useful in some cases. However, this
could quickly get too complicated for simulation models, because multiple states in different pro-
cesses of the simulation model can be expected to change if time is advanced.

The first and second missing features could be resolved more easily if direct communication be-
tween the test execution script and test script were possible.
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Test packages for case studies

This project uses case studies as the main method to further explore the options for MBT that have
been selected in Section 2.3. These are mainly options that are deemed relevant for testing simu-
lation models, but that have not been described in that context in existing literature or case studies.
Exploration of these options in the case studies is aimed to answer subquestions 2, 3, and 4.

Each case study consists of a simulation model as the SUT, along with an AltWalker test package
developed with a specific purpose. The results of developing test packages for these case studies will
be a number of considerations and problems that one may encounter during MBT test development
for simulation models. These considerations are given in Chapters 5 and 6. Additionally, eventual
problems with the MBT software tool AltWalker come to light.

Furthermore, the simulation models that are used as SUTs utilize different modeling paradigms,
namely agent-basedmodeling (ABM) and discrete eventmodeling. By considering these two paradigms,
it may be found that certain modeling approaches in simulation models may require different ap-
proaches in the MBT test packages that are developed for them.

This chapter first gives a short overview of the test packages that have been developed for the case
studies in Section 4.1. Then, an overview is given of the three simulation models that are used as
SUTs in Section 4.2. The modeling paradigm, functioning of the model, and model results and options
for analysis are given. The code for the simulation models and test packages is available online at
https://github.com/montequercus/MBT-sim

4.1. Overview of developed test packages
Each case study is meant to focus on one or multiple of the subquestions, as given in Section 1.3, and
on some specific features of AltWalker. The first test package is developed for a simple SUT. With the
experience from developing this package, further test packages are made increasingly complex with
regard to the SUT, test goals, and the AltWalker features that are used. An overview is now given of
the three test packages that are developed in this project, see Table 4.1. These are in increasing order
of complexity.

Table 4.1: Test packages developed in this project

System under test Explored topics Focus on feature of test
package

Sub-
questions

A Two-way switch Verification of dynamic behavior Online testing, graph data
manipulation

2

B M/M/1 queue Verification of dynamic behavior,
verification of results, batch runs

Test execution scripts,
graph data manipulation

2, 4

C Airport check-in Verification of dynamic behavior,
implementation-based testing, modular
test models

Modularity,
communication with SUT

2, 3
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Test package A is developed to answer subquestion 2: test model design for step-by-step verifica-
tion of a simulation model’s dynamic behavior. This is done by developing an AltWalker package for
online testing. The test is made reactive: the SUT’s outputs are continuously used for path generation.
This is achieved by incorporating AltWalker’s data functionality to access and update graph variables
in the abstract model from the test script.

The same concepts are explored again in test package B, but now for a discrete event model,M/M/1
queue. In addition, subquestion 4 is explored: verification of a simulation model’s results. This can be
done for this SUT, because analytical solutions are available for M/M/1 queue. It is given in Chapter 6
how for this purpose functionality is added to AltWalker for defining multiple test runs and replications.

Lastly, test package C is made for a more complex SUT, Airport, that consists of multiple compo-
nents. Therefore, a more modular setup is developed where the test package uses multiple abstract
models; one for each component in the SUT. This is done to answer subquestion 3: specification-
based test design for MBT. It is in line with a black-box approach to functional testing. In this context,
this means that the test model should only interact with the SUT’s interface, and not with its internal
states. An effort is made as well to develop this test based on the functional requirements only.

4.2. Overview of simulation models used as SUT
The three aforementioned simulation models that are used as SUTs are now further explained. For
each model, the following is explained: the fundamentals of the modeling paradigm used, the problem
that is modeled, how it is implemented as a simulation, and what the simulation’s results are.

4.2.1. Two-way switch model
The first simulation model is called Two-way switch. It is a simple model of a two-way light switch. It
uses the modeling paradigm of ABM and it is implemented in Python using the Mesa package. ABM
can be used to make models with complex behavior, but this case study only uses a rudimentary ABM.

As mentioned before, the development of the associated test package will mainly be done to answer
subquestion 2; test model design for step-by-step verification. It is established in Section 2.3.1 that
time advancement is an important topic for test model specification, in the context of testing simulation
models. It must be explored what it means if time is advanced within the simulation model, and how this
could be done from the test model. Furthermore, it is hypothesized in Section 2.3.1 that the modeling
paradigm of the simulation model that is used as the SUT may influence the test model design. For
these reasons, a brief summary is now given for Two-way switch on the fundamentals of ABM and
Mesa, and on how time advancement works in this context.

Fundamentals of agent-based modeling and Mesa
ABM is a paradigm in which the model is composed of autonomous entities, called agents, that exist
in an environment. An agent-based model describes for each agent its properties and behavior. An
agent’s behavior can be that they perform some action or change their own properties, but they can
also interact with other agents or their environment (C. M. Banks, 2010, p.18). For example, an agent
may trigger an action from another agent. An important concept within ABM is emergence: the idea is
that the system’s behavior emerges from the behaviors of different agents and their interactions. This
makes ABM suitable for modeling complex systems: a few interacting agents with simple individual
behavior may well lead to complex emergent behavior (Wilensky & Rand, 2015, p.6). The Python
package Mesa is used to write the agent-based simulation models in this project. Mesa is object-
oriented: different types of agents are described with Agent classes. A Model class must be made as
well, which essentially serves as the agent’s environment. The model contains a scheduler, to which
instances of the agent classes can be added (Kazil et al., 2020).

Like many other ABM packages, Mesa uses discrete time steps of a fixed length. The modeler must
therefore think of what simulated time is represented by one time step. In the Two-way switch model,
for example, each time advancement represents one second of simulated time. A time step must be
sufficiently small as to accurately represent the time scales of processes in the modeled system. This
is an important difference between ABM and discrete event simulation (DES), which is used in another
case study, see Section 4.2.2. Where the time steps have a fixed length in ABM, the simulation time
may take on any value in DES.



4.2. Overview of simulation models used as SUT 33

Table 4.2: Possible inputs and outputs for Two-way switch

inputs output

switch a switch b light

0 0 0
0 1 1
1 0 1
1 1 0

Time advancement is done in Mesa with the step function. Both the Model class and Agent classes
have a step function, which gives the instructions that get executed for each time advancement. The
model’s step function activates the scheduler, which in turn triggers the step functions from each
agent to be executed in a certain activation order. This order can often have a notable effect on the
simulation’s results (Kazil et al., 2020, p.311; Sokolowski and Banks, 2010, p.63). For example, if ‘agent
0’ always gets to act first after a time advancement, this could turn out as a preferential treatment for
this agent. For this reason, Mesa offers a random scheduler, which will randomize the agent activation
order for time advancement (Kazil et al., 2020). This is an important source of stochasticity in the
model. The seed for the random number generator that is used for this activation order and for other
stochastic processes can be controlled in Mesa. This ensures that the simulation runs are replicable. A
modeler can do multiple simulation runs with the same input parameters but with different seeds; these
similar runs are called replications in this project. The outcomes should be different for each replication
because of themodel’s stochasticity. For the analysis of the results of an agent-based simulationmodel,
it is therefore essential to consider multiple replications and the variance in their results (Wilensky &
Rand, 2015, p.130).

It should be stressed that because ABM advances time in fixed increments, multiple events may
happen during one time step. This is problematic: if the activation order is not considered, it may appear
that these events happen at the same time, while the actual, hidden order of events still influences the
outcomes (Sokolowski & Banks, 2010, p.75). In ABM software, agent variables and model variables
are often only updated and/or saved after the completion of a time advancement (a step function in
Mesa). This means that each time step can be seen as a black-box model, with the previous states
as the inputs, and the new states as outputs. Verification of the dynamic behavior may therefore be
difficult if the modeler does not know what events, or state transitions, have taken place during a step
and in which order they did.

Modeled system
As explained before, only a rudimentary ABM model is used for this case study. The modeled system
is a two-way switch, also known as a staircase switch. This refers to a commonly known electrical
network, in which a light is controlled by two or more switches. The switches are wired such that, at
any time, the power to the light can be controlled by any one of the switches. A network with two
switches and one light is used in this case.

This network can be represented as a system with two inputs and one output. The inputs are the
positions of switches a and b, which are either in a on (1) or off (0) position. The output is the power
state of the light, which is also either on (1) or off (0). Table 4.2 gives the combinations of inputs and
output that are possible. This is essentially the truth table of an Exclusive OR (XOR) gate.

Because time advancement of the SUT should be explored, the simulation model should represent
a system that has some time aspect. This is achieved by adding a requirement: both switches should
toggle their position independently at random times taken from an interval between 2 and 10 seconds.
An analytical solution can be hypothesized easily for the system’s only output, the power state of the
light. Both switches will be in either position for 50% of the time. This means that the system is in any
of the four states from Table 4.2 for 25% of the time. Thus, the model’s steady-state solution is that the
light should be on 50% of the time.

Simulation model implementation and results
The Two-way switch model is implemented in Mesa with two agent classes: a Light class, and a
Switch class. Two instances of the switch class are initialized in the model. The light has only one
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(a) Switch and light agent states over time (b) Counting variable of light over time

Figure 4.1: Results from one run of Two-way switch model

property, the Boolean power, which shows if the light is either on or off. Each switch has two properties:

1. position: Boolean that gives the position of the switch, either down (0) or up (1)

2. counter: Integer to count down until the switch’s position is toggled. The counter value is sam-
pled from a uniform distribution between 2 and 10 seconds. This value is decreased by 1 for
every time step until it is 0. Once counter is 0, the switch’s position is toggled, and it instructs
the light to toggle its power too.

The results of the model are shown in Figure 4.1 to illustrate. Clearly, the analytical steady-state
solution is accurately simulated: the light is on for 50% of the time.

The model results thus give the XOR logic that is typical for a two-way light switch, while this logic is
not explicitly modeled. This is one of the properties that are typical for ABM that this model represents.
Another property is that multiple events can happen during one time step. For example, it is possible
that both switches toggle at the same time.

It must be noted that many other properties typical for ABM cannot be demonstrated with this simple
model. Herd et al. (2014) list some characteristics that make verification & validation difficult for ABM
specifically, such as the output variance due to stochasticity, the large set of possible input parameter
values, and the various macro-behaviors that could occur. Such properties have not been included, as
they were deemed less relevant for developing the first test package as a proof of concept.

4.2.2. M/M/1 queue model
The second simulation model considered is an M/M/1 queue model. This is a common example of
a simple discrete event simulation (DES) model. It is relevant to consider DES after the previous
ABM example, because the modeling paradigm of DES has a fundamentally different approach to time
advancement (Sokolowski & Banks, 2010, p.75). The test packages to be developed for this model will
again be used to answer subquestion 2: step-by-step verification of the dynamic behavior. Subquestion
4 is now considered as well: verification of a simulation model’s results. As mentioned before, an M/M/1
queue problem is suitable for this aspect of verification because analytical solutions are known for most
outputs.

Fundamentals of discrete event simulation and Salabim
DES is a simulation modeling paradigm that makes use of next-event time advance, which means that
future events are placed on an event list. The time is advanced by any amount until the time of the
next scheduled event. Thus, different from ABM, the time steps have no fixed length (Diaz & Behr,
2010). Each time advancement should in principle produce only one event. That is unless two events
are scheduled at exactly the same time, in some DES implementation.

An advantage over ABM is that all variables can be updated precisely when an event actually occurs,
instead of at pre-set intervals. All variables and statistics are thus always up-to-date. This makes DES
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suitable for supply chain problems, which are best expressed in discrete variables and events, instead
of continuous variables (Diaz & Behr, 2010). For example, the current state of a server with queue can
be expressed by only using integers: how many entities are waiting, and how many are in the server?

This project uses Salabim, a Python package for DES based on the principle of process interaction
(Van der Ham, 2023), where the model is decomposed into components, and for each component, a
process is modeled that describes what it should do. The processes can interact with other processes,
forming a network (J. Banks & Carson, 1986, p.4).

Simple and custom components are made in Salabim by defining a Component class, while ready-
made component classes exist for common features. Components may have a process function that
describes their behavior. Future events of all components are put on an event list. If a component has
no future events, it is put in a ‘waiting’ state, until it is prompted by some other component to become
active again. (Van der Ham, 2023). An Environment class must be initialized as well, in order for the
simulation to run.

Time is advanced with the run function. This will keep advancing time until a certain stop condition
is reached, or until no more events are scheduled. For each time advancement, the simulation time is
set to that of the next scheduled event of one process. Some events may have the same timestamp.
For instance, most processes will have some initialization events at 𝑡 = 0. In Salabim, one time
advancement will then still only execute one event, instead of all events scheduled for that exact time.

The ready-made components that Salabim offers are useful for supply chain problems. These
classes have built-in data collection and summary statistics can be easily shown. An example is the
Queue class, which can be used to let other components enter and leave a queue. It will automatically
keep track of the number of entities in queue, and of statistics like the average waiting time.

Modeled system
A queue, here called a server with queue, is a concept from queueing theory. It is a system that entities
can arrive and depart from. It can be decomposed into four processes: arrivals, queueing, service, and
departures. In the arrival process, a new entity will enter the system at certain times. It is supposed
to go through service in the server, which takes some time. The server may have limited capacity. If
the server capacity is already in use by other entities, a newly arrived entity will join the queue instead,
and wait until a place for service becomes available. The M/M/1 queue is a server with queue that has
some specific settings:

• The arrival process has an interarrival time taken from an exponential distribution with mean 𝜆−1.
Here, 𝜆 is the interarrival rate.

• The service process has a service time taken from another exponential distribution with mean
𝜇−1. Here, 𝜇 is the service rate.

• There is one server with capacity 𝑐 = 1. Thus, only one entity can be in service at a time.

Once an entity has completed service, it will depart from the system. Therefore, 𝜇 can be inter-
preted as the departure rate as well. In addition to these settings, the queue will use ‘first-in-first-out’
(FIFO) as its queue discipline in this case. This means that the first entity to leave the queue, once a
place becomes available in the server, is the entity that has been in the queue for the longest time. A
schematic of an M/M/1 queue is given in Figure 4.2.

The only input parameters that can be set are thus 𝜆 and 𝜇. This case study uses specific settings
in most examples: a mean interarrival time of 𝜆−1 = 1s, and a mean service time of 𝜇−1 = 0.9s.

Analytical solution from queueing theory
Verification of the simulation model’s results, to answer subquestion 4, is feasible because of the ana-
lytical solutions that exist for M/M/1 queues. The relevant variables and summary statistics for servers
with queues are now discussed, along with their analytical steady-state solution for the M/M/1 case.
These analytical solutions can be used in the test packages to verify the simulation model’s outcomes.
Oracles should be added to the test package that assess, at the end of a test case, whether the out-
comes give an accurate approximation of the known solutions.

Firstly, the utilization factor 𝜌 gives the average fraction of time that the server is utilized, i.e. that
an entity is in the server. It is given by:

𝜌 = 𝜆/𝜇 (4.1)
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Figure 4.2: M/M/1 queueing system, with processes and their parameters. The object names of the Salabim
implementation are shown on top.

A steady-state solution is only defined for a server with queue if 𝜌 < 1, thus if 𝜆 < 𝜇. Otherwise, the
system becomes unstable, because on average more entities will arrive instead of depart (Gross &
Harris, 1974, chap. 2). This means for the M/M/1 queue simulation model, that the exact outcomes
can only be verified if input parameters 𝜆 and 𝜇 are set so that 𝜌 < 1. For 𝜌 > 1, it could only be verified
if the queue length indeed becomes high. The definitions of other relevant outcomes of a server with
queue are taken from Gross and Harris (1974):

• 𝐿: Mean number of entities in system. It is the expected value of 𝑁, the number of entities in
system in steady-state.

• 𝐿𝑞: Mean queue length. It is the expected value of 𝑁𝑞, the number of entities in queue in steady-
state. This should include times when the queue is empty.

• 𝑊: Mean time in system for entities. It is the expected value of 𝑇, the time that an entity spend
in system in steady-state.

• 𝑊𝑞: Mean waiting time. It is the expected value of 𝑇𝑞, the time that an entity spends in system in
steady-state.

The analytical solutions for these outcomes for a M/M/1 queue are given in Equations 4.2 – 4.5
(Gross & Harris, 1974, chap. 2). For the standard input parameters used in this case, 𝜆 = 1 and
𝜇 = 0.9, the outcomes are: 𝜌an = 0.9, 𝐿an = 9, 𝐿q,an = 8.1,𝑊an = 9s, and𝑊q,an = 8.1s.

𝐿an =
𝜆

𝜇 − 𝜆 (4.2)

𝐿q,an =
𝜆2

𝜇(𝜇 − 𝜆) (4.3)

𝑊an =
1

𝜇 − 𝜆 (4.4)

𝑊q,an =
𝜆

𝜇(𝜇 − 𝜆) (4.5)

Lastly, there are relations between these variables that must hold for a M/M/1 queue. The most
important one is Little’s law, see Equation 4.6. This is extended to the queue’s variables in Equation
4.7.

𝐿 = 𝜆𝑊 (4.6)
𝐿𝑞 = 𝜆𝑊𝑞 (4.7)

Simulation model implementation and results
The simulation model is adapted from one of Salabim’s sample models, MMc (Salabim, 2023). The
names of the component (classes) used for each process are shown in the M/M/1 schematic in Figure
4.2. The entities are called Client, which are simple Component classes that try to join the server with
the request function. The arrival process is implemented with another simple Component, namely
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ClientGenerator which generates a new Client at rate 𝜆. For the server and queue, Salabim’s built-
in Resource class is used. This class will put entities that must queue on its requesters list, and an
entity in service is put on the claimers list.

Some relevant variables for a server with queue can be tracked with this class. The outputs 𝜌, 𝐿𝑞
and 𝑊𝑞 can be approximated as follows. For the occupancy 𝜌, the server’s utilization state 𝐵(𝑡) is
tracked for each time step with time 𝑡 (Diaz & Behr, 2010):

𝐵(𝑡) = {0 if no entity in server
1 if an entity is in server

(4.8)

𝜌(𝑡) = ∫𝑡0 𝐵(𝑡)d𝑡
𝑡 (4.9)

The mean queue length 𝐿𝑞 is calculated by tracking 𝑁𝑞(𝑡), the number of entities in queue at time 𝑡.
The time-average until time 𝜏 is taken for this:

𝐿𝑞(𝜏) =
∫𝜏0 𝑁𝑞(𝑡)d𝑡

𝑡 (4.10)

Similarly, the mean waiting time𝑊𝑞 is calculated by saving all 𝑇𝑞,𝑖, the time in queue for entity 𝑖. The
average is taken over 𝑁�(𝑡), the total number of entities that have been in the system until time 𝜏 (Diaz
& Behr, 2010):

𝑊𝑞(𝜏) =
∑𝑁tot(𝜏)𝑖=0 𝑇𝑞,𝑖
𝑁tot(𝜏)

(4.11)

To illustrate the outputs of this model, some results for a single run are shown in Figure 4.3. It has
been extensively verified, before developing the test package, that the M/M/1 queue model’s results
are good approximations of the analytical solutions. The variables 𝜌, 𝐿𝑞 and𝑊𝑞 ara approximated well
when run for a sufficiently large simulation time of 𝑡 = 100000 s. The approximations are better in the
input parameter space where 𝜌an is low. Furthermore, it is found that Little’s law (see Equations 4.6–
4.7) holds for the model’s results as well, even at low simulated times 𝑡. An analysis of convergence
and sensitivity is given in Section 6.2.2

Figure 4.3: Results over time for a single run of the M/M/1 queue model, with input parameters 𝜆 = 1, 𝜇 = 0.5.
The waiting times 𝑇𝑞,𝑖 are taken for each entity 𝑖 at the time when they leave the queue. If an entity did not join the
queue, then 𝑇𝑞,𝑖 = 0.
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4.2.3. Airport model
The third simulation model considered is called Airport. It is made for a more complex system: an
airport check-in consisting of multiple components, with some parallel and conditional components
as well. The idea is based on a study exercise where groups of students used the same functional
requirements to each make a simulation model using different modeling languages. The ultimate goal
of the test package to be developed for Airport is therefore to be as agnostic to the SUT implementation
as possible. Ideally, it would be able to test implementations of Airport in different modeling languages
using the same test model. This is in line with subquestion 3: requirement-based testing with minimal
communication with the SUT.

To achieve this, the test model should be as abstract as possible so that it can be used with multiple
test scripts developed for SUT implementations in specific modeling languages. A common syntax for
communication messages between the test script and SUT is made for this. This is further described
in Section 5.4.

Five simulation models have been viewed, that were developed for the aforementioned study exer-
cise. An adaption of an ABM for Airport made in Mesa has been developed in this project. An ABM is
chosen because servers with queues in discrete event models are already considered in the case study
ofM/M/1 queue. Unfortunately, the test package of the Airport case study has not been adapted to any
of the five student’s simulation models due to lack of time. However, the test package is developed to
be adaptable: the test models are abstract and modular.

Subquestion 4 can be considered again as well in this case study. The system’s processes are
similar to theM/M/1 queue example, as they are servers. A difference is that there are multiple servers,
and that some have unlimited capacity, thus no queue. Furthermore, the arrival processes are unknown
and not analytically solvable. Therefore, no analytical solution is available to verify Airport and its
components in this manner. Still, conformance to Little’s law can be analyzed, but this has not been
implemented in the test package for Airport.

Modeled system

Figure 4.4: Flowchart for passengers and their luggage that traverse the Airport system. Components that are
modeled as servers are numbered and colored gray.

The functional requirements are taken from the aforementioned study exercise. The system is a
passenger check-in of a small airport. A new passenger arrives on average every 60 s. Passengers
first go through a passport check, which takes between 30 s to 90 s with a median of 45 s. Then one
passenger at a time can place one piece of hand luggage on an accumulating conveyor belt. Luggage
drop-off takes between 20 s to 40 s. A piece of luggage traverses the belt of 10m with a speed of
0.5m/s. Meanwhile, a passenger goes through a scanner, which takes 30 s to 85 s. A subsequent
manual check is needed for 10% of passengers. Only one passenger can be checked manually at a
time. After these scans, passengers can pick up their luggage, if it has traversed the conveyor belt.
Picking up the luggage takes between 20 s to 40 s. There is a walking distance of 5 meters between
all processes and the passengers walk with an average speed of 2.5 km/h.
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A flowchart of passengers and their hand luggage that traverse the Airport is given in Figure 4.4.
This figure already implicates how this system can be implemented in a simulation model: all stages
of the check-in can be seen as separate components. Some components can be modeled as servers
with infinity capacity, thus without a queue. The manual check and luggage pickup components can be
modeled as single-server queues.

Simulation model implementations
The ABM model developed in Mesa is divided into components, or processes, as illustrated in Figure
4.4. A class of Passenger agents is made that are either performing an action at a component or walking
in between components. The arrival process is made with a simple agent called PassengerSource
that creates new passengers at set intervals. The agents for the servers are based on two classes:
ServerWithQueue and ServerWithoutQueue. All server agents will add passengers in service to a
list. A passenger that enters service is assigned a service time clock, taken from a distribution that
is specified per server. Each time step, this clock is reduced by 1. Once the clock reaches 0, the
passenger leaves the server and walks to the next server. Walking is implemented with another clock
in the passengers. The ServerWithQueue class has an additional list, to which passengers that have
to wait are added if the server is utilized. If the passenger in service is done, the server agent will
prompt the passenger at the head of the queue to go into service.

The agent classes of specific servers add functionality to their parent classes. LuggagePlacing
adds instructions for the passengers to wait for their luggage. The conveyor belt is simply implemented
by starting a counter of 20 s in the passenger once it finishes the luggage drop-off. The luggage con-
veyor belt is thus not implemented as a separate agent. Since there is only one piece of luggage per
customer, and the conveyor belt is accumulating, this solution suffices. PassengerScan is based on
ServerWithQueue and is extended with routing of the passengers to either the manual scan or the
luggage pick-up. The attribute that a passenger needs a manual check is assigned to 10% of pas-
sengers at their creation already. LuggagePickup is based on ServerWithoutQueue and adds the
restriction that a passenger can only enter service if their luggage clock has reached zero. Otherwise,
the passenger is put on a waiting list.

Stochasticity is added to the model by sampling the interarrival time of the passenger source and
the service times of the servers from distributions. Distribution for service times can be given to the
servers as an argument. An overview of distributions used is given in Table 4.3. The walking speed
is taken per passenger from a distribution as well: uniform on [0.611,0.777] m/s. Further stochasticity
is added by a random activation order of the passenger agents. The five servers do a step in a fixed
order after the passenger agents so that the passenger’s updated clocks are taken into account by the
servers.

Table 4.3: Components and associated classes and service time distributions for the Airport Mesa model

Server 𝑖 Component name Agent class Service time distribution

Arrivals PassengerSource Uniform on [50,70]
1 Passport check ServerWithQueue Triangular on [30,90] with mode 35
2 Luggage placing LuggagePlacing Uniform on [20,40]
3 Passenger scan PassengerScan Uniform on [30,85]
4 Manual check ServerWithQueue Uniform on [120,300]
5 Luggage pickup LuggagePickup Uniform on [20,40]

Variables and results
Many variables are collected during each model run. Per server 𝑖 the instantaneous queue length
𝑁q,𝑖(𝑡) is collected. Once a passenger 𝑗 leaves a queue at server 𝑖, its time in queue 𝑇q,𝑖,𝑗 is collected.
These values are shown for one run in Figure 4.5. To compare with other simulation runs, these values
are used to calculate the mean 𝐿q,𝑖 and 𝑊q,𝑖 per server using Equations 4.10 and 4.11. The mean
throughput time is calculated similarly from the time in system 𝑇system,𝑖 of all 𝑁tot passengers:

𝑊system(𝜏) =
∑𝑁tot(𝜏)𝑖=0 𝑇system,𝑖

𝑁tot(𝜏)
(4.12)
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(a) Instant. queue lengths 𝑁q,𝑖 per server 𝑖 over time
(b) Time in queue 𝑇q,𝑖,𝑗 for passengers 𝑗 that have left queue
𝑖.

Figure 4.5: Results from one run with 5 simulated hours of the Airport model, for the four servers with queue.

The model cannot be verified using an analytical solution, but the results from Figure 4.5 can be
understood well. Some periods have relatively more arrivals, which gives longer queues at the passport
check. There are rarely queues at the luggage placing because luggage placing takes way shorter
than the passport check. The passenger scan then has the longest queue times because it has longer
service times. The manual check only has queues sometimes since only 10% of passengers go there.
However, the time in queue of these passengers can be very long, since the service times are high for
the manual check.

Figure 4.6: Comparison of mean throughput times𝑊system from 100 replications of the Airport Mesa model. Black
lines give the 10% confidence interval per replication.

Summary statistics 𝐿q, 𝑊q and mean system throughput time 𝑊system must be approximated by
running with sufficiently long simulation times. Then still, differences between replications can be found.
The range of outcomes that is deemed correct by a test packagemust therefore be based on a thorough
analysis of the results of a verified Airport simulation model implementation. This is exemplified with the
throughput times𝑊system from 100 replications in Figure 4.6. Clearly, some slight outliers are possible.

Modularity
This implementation in Mesa is made such that all components are modular: a modeler could easily
change the distributions of interarrival times per server, add or remove servers, or assign which servers
use a queue and what their capacity is. The ultimate goal is that the test package is modular in a similar
way, by testing the dynamic behavior components individually. However, the actual simulation results
from different runs depend on the interactions between these components and cannot be verified easily.
A thorough analysis of the model at certain settings is needed for this, as explained earlier. It seems
infeasible to make a test model that simulates the total (expected) system behavior and the interactions
of all components: one would essentially be making the SUT simulation model again.
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Design of test models for dynamic

verification
In this chapter, it is explored how the model specification and test generation can be done for each case
study. The objective of developing test models is to further explore the dimensions of MBT, which were
selected or left open from the literature study in Chapter 2. These choices were based on literature and
reasoning; they are now put into practice. The acquired knowledge is used to answer subquestion 2;
test model design for step-by-step verification of the dynamic behavior of simulation models. Further-
more, subquestion 3 is researched by developing a test model based on functional requirements only,
that uses minimal communication with the SUT. In the process, again some features and limitations of
AltWalker, the MBT software tool selected in Chapter 3 will come to light.

The model specification options relevant to MBT of simulation models that have been established in
the literature study are now repeated. The test models should be input-output, which means that they
should model inputs to the SUT, as well as the SUT’s expected behavior. Furthermore, some model
characteristics of the SUTs should be present in the test models as well: they should be nondetermin-
istic, and have a discrete time axis. The test models should be transition-based, more specifically they
should be extended finite state machines (EFSMs) as that is supported by AltWalker. And lastly, only
the functional behavior of the SUT should be modeled.

This chapter is structured around the options for model specification that were left open in the
literature study in Chapter 2. The choices made for these options are discussed in Sections 5.2 - 5.4:
the selection of representative states of the SUT, event triggering and time advancement, and a more
strict black-box approach to testing. First, Section 5.1 gives an overview of how the three developed
test models work. This chapter will also discuss in passing the MBT dimensions that are not model
specification, namely test generation, test execution, test evaluation, and general test dimensions.

5.1. Overview of test models for case studies
Three test models have been developed, in order to test the SUTs Two-way switch, M/M/1 queue, and
Airport. The term ’test model’ is used to refer to the combination of an abstract test model and a test
script. The abstract model is a directed graph for AltWalker, and the test script is a Python script. A
common characteristic of the test models is that they are made to generate one test case in order to test
one simulation run of the SUT. This approach is substantiated in Appendix A.3. Due to this approach,
the test models do not contain the experimental set-up for batch runs nor for the interpretation of results
from multiple simulation runs of the SUT. Instead, a setup for batch runs is implemented in the test
execution script. This approach is further explained in Chapter 6.

5.1.1. Test package A: test model for Two-way switch
The test model of test package A mostly advances time until an event should occur in the Two-way
switch SUT. Then, it does some assertions to see if the outputs from these events are as expected.
The AltWalker abstract model used for testing is given in Figure 5.1. Three graph variables are used:
the current tick 𝑡, the maximum number of ticks 𝑡end, and a Boolean bool_counter_zero. The current
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Figure 5.1: EFSM overlayed on AltWalker graph for test model used for Two-way switch. Guards and actions are
given with dark red text. The time advancement signal is given in bold text.

tick is set as 𝑡 = 0 for every model run. The maximum number of ticks is updated by the test script
during the setUpModel function. Lastly, bool_counter_zero represents whether one of the counters
of either switch a or switch b has reached zero in the SUT. These counters can be given as 𝑐𝑎,𝑏 ∈ ℕ.
This logic is updated by the test script after each time advance, based on the SUT’s outputs. Guards
on the edge e_counter_empty ensure that that edge is only taken if bool_counter_zero is true. The
test execution is thus reactive: the counters in the SUT’s agents influence the path generation.

Once a counter is zero, the vertex v_position checks if the positions of switches a and b are as
expected. v_power checks if the light’s power state is as expected given the Exclusive-OR (XOR)
logic. From v_ticks, the abstract model will only go to e_step until 𝑡 = 𝑡end. The start vertex
v_existence is used at the start to check if all of the SUT’s objects have been initialized. The end
vertex v_data_collected checks if the correct data has been collected by Mesa at the end of the
simulation run.

5.1.2. Test package B: test model for M/M/1 queue

Figure 5.2: EFSM overlayed on AltWalker graph for test model used for M/M/1 queue. Guards and action are
given with dark red text.
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The test model for test package B follows the state of the queue and server in the M/M/1 queue
SUT. This is achieved with many guards on the edges. This gives the EFSM as given in Figure 5.2,
which may be harder to interpret at first sight. Three graph variables are used: the current queue
length 𝑞, the current server utilization 𝑠 (number in server), and the time 𝑡. Note that the test model’s 𝑡
is a floating-point number because the SUT uses discrete event simulation. The values for these three
graph variables are updated by the test script based on the SUT’s values after each time advancement
of the SUT. As these graph variables are used in the guards, the test execution is reactive here as well.

All state transitions in the test model denote potential events in the SUT, including those that are
faulty. In other words, the edges represent what may happen in the SUT due to a time advancement.
These events are either arrivals or departures from the server. That is except for the self-transitions in
the test model, that denote (faulty) events of the SUT where no arrival or departure would occur. The
states of the test model are distinguished by different values of 𝑞 and 𝑠 for which distinct assertions
would be needed, as is further explained in Section 5.2. A simplified representation of this model is
given in Figure 5.5.

The start vertex v_NoStepYet and the next vertex v_TimeZero are included because the first
few time advancements in Salabim give events that all have time 𝑡 = 0.000 s, and where the sys-
tem’s state does not change. These events are used to initialize all processes. Note that there is
no end vertex in the test model: a different approach is used to end the test and simulation run at
a certain simulated time 𝑡 via the test script. The inclusion of an end vertex would have made the
graph even more complicated. An end vertex would have edges coming from the bottom four vertices
with guards 𝑡 ≥ 𝑡end. All other state transitions should then have 𝑡 < 𝑡end added to their guards,
to ensure that the model always transitions to the end vertex. Alternatively, a stop condition like
quick_coverage(reached_vertex(v_end)) could be used.

5.1.3. Test package C: test model for components of Airport

Figure 5.3: EFSM overlayed on AltWalker graph for test model used for Airport. Guards and edge action are given
with dark red text. Vertex actions are given with bold text.

The test model for test package C is made to test one component of the Airport SUT, namely one of
its servers with queue. The developed test model for test package C is similar to that of B because the
SUTs are similar. In both test models, the states represent a combination of the current server utilization
and queue length in the SUT. However, the test model’s state transitions are now based on input events



44 5. Design of test models for dynamic verification

for the SUT component, namely arrivals and departures. This is different from test package B, where
the transitions are based on the current values of the SUT’s internal variables. The test model for C
is thus more a model of the SUT’s behavior: the states now represent what state the SUT should be
in, rather than what state the SUT is in. This is achieved by modeling the queue length 𝑞 and server
utilization 𝑠, instead of updating these values from the SUT. The time variable 𝑡 also does not have
to be copied from the SUT, because the SUT is an agent-based model that uses time steps of fixed
length. The time 𝑡 is now an integer for the same reason.

Additional graph variables are needed to represent the SUT component’s input events: 𝑎 and 𝑑
give respectively the number of arrivals and departures from a server during one time step. These are
updated from the SUT’s interface via the test script. A simple communication method between the test
script and SUT is implemented so that any SUT based on the functional requirements of Airport could
pass values for 𝑎 and 𝑑.

A vast number of guards, edge actions, and vertex actions is needed to model the server component
based on arrival and departure events only, as can be seen in Figure 5.3. A vertex v_impossible can
be reached from all other vertices: this is needed for when a faulty combination of input events should
occur. The test execution is made reactive as 𝑎 and 𝑑 are used in the guards on edges.

All vertices are again associated with oracles, but this is done differently from test package B.
Different assertions were needed for each vertex in test package B, to compare the expected values to
the SUT’s internal variables. This is no longer the case in test package C: each vertex can be associated
with the same assertion function, namely that the SUT’s behavior should equal the expected behavior
that is modeled.

It should further be noted that test packages B and C test different aspects of their SUT, a server with
queue. Only test package C takes into account the time constraints. It is checked whether a departure
happens within the expected time interval in the SUJT after an arrival or an entry into service, based
on the server’s service time distribution. For this purpose the time since the last departure is saved in
the test script (it is thus not a graph variable).

5.2. Selection of representative states from the SUT
The choices made during the design process of test models are now discussed in more detail. An
important choice that one encounters is how an abstract version of the SUT and/or functional require-
ments should be made and what aspects of the SUT are to be modeled. This section gives the thought
process behind this design process. Some dimensions mentioned in the taxonomies in Section 2.3 are
relevant here again.

The model paradigm will be transition-based, which means that distinct (system) states and state
transitions should be selected, that can abstractly represent the SUT’s states. The SUT’s functional
behavior that is expected given some inputs should be generated in some way by the test model, and
this should be done step by step. An input can also be an instruction for a time advance of the SUT.
The test model should thus model what events the SUT may or may not generate upon a time advance,
given its current state.

It was decided in Section 2.3.5 that the test scope should be either integration testing or system test-
ing. This means that the SUT or a component of the SUT should not be tested in isolation. The inputs
and outputs to and from other components of the SUT or its environment should thus be incorporated
as well in the test models where relevant. It was further explained why the level of abstraction is key
to choosing an MBT approach. It was left undecided how the level of abstraction should be chosen. It
must therefore be decided per test package which states and state transitions can represent the SUT
in a way that is understandable, finite, and meaningful for testing.

5.2.1. Test package A: state transitions based on SUT’s current state and test
sequence

The first attempts at making test models in this project focused on ‘pure’ behavior models: simple finite
state machines (FSMs) where all elements mimic (aggregated) states and state transitions of the SUT.
That means in essence that the abstract model made in AltWalker is similar to a conceptual model that
one would during the development of the SUT. An example of this simple approach is given for the
Two-way switch SUT in Figure 5.4. The conceptual model is an FSM where each unique set of inputs
and outputs forms a system state. The inputs are the states of the switches, and the output is the state
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of the light. State transitions occur when one or both inputs change.

(a) FSM of conceptual model
(b) AltWalker graph based on conceptual model. This graph is not
useful for testing.

Figure 5.4: Development of a simple test model based on a conceptual model of the Two-way switch.

A problem with this approach is that it does not make sense for automated testing. AltWalker
associates each vertex, thus a system state in this case, with a number of oracles that are checked on
the SUT by the test script. However, this particular SUT is a simulation model that is simple enough
that the exact same assertion functions would be sufficient as oracles for testing each of these system
states. Each state transition here means only that one of the switches has been toggled. The main
assertion needed after a transition is that the XOR logic still applies given the inputs and output. Thus,
the distinction between system states as done in this simple FSM, see Figure 5.4, is unnecessary for this
SUT. Furthermore, such a test model could not explicitly show how the other functional requirements of
this SUT are tested. An example is the timing constraints: how would this FSM show the requirements
that the toggle times of switches should be taken from a uniform distribution between 2 and 10 seconds?

Another reason to not use a ‘pure’ behavior model is a problem known as state explosion. One
could imagine a model similar to Two-way switch, but with even more switches or a light that cycles
through different brightness settings. That would mean more state variables and processes, which
would result in more states and exponentially more state transitions. The FSM and abstract model as
in Figure 5.4 would then be even more unwieldy. And for the case of Two-way switch, all vertices would
still only need the same assertion functions, because the model is not complex.

This idea that any distinction between the SUT’s system states is not relevant for testing the Two-
way switch SUT leads to a new test model as given in Figure 5.1. This test model advances time until
any event happens in the SUT, and then runs a series of assertions once an event has occurred. This
EFSM is thus less of a behavior model of the SUT since it does not (explicitly) convey some important
variables of the SUT, such as the positions of the switches. The only graph variables that are kept
analogous to the SUT is the time 𝑡 and bool_counter_zero; this is what makes the test reactive. This
Boolean bool_counter_zero is thus not modeled by the test model, since it is only updated from the
SUT’s current state. It is used on the guards for edges e_counting and e_counter_empty to ensure
that the test model only runs the relevant assertions once an event should have occurred in the SUT.
That is when one of the clocks 𝑐𝑎 or 𝑐𝑏 of the switches reaches 0. Then, in the next time step, a fixed
oracle is checked: has the switch’s position been toggled, and does the XOR logic still apply?

A shortcoming of this new test model is that it no longer gives the tester a helpful abstract and visual
representation of what the SUT’s current state is or should be. That aspect is still a reason to consider
test models that are more based on the system states, especially for more complex SUTs.

5.2.2. Test package B: state transitions based on SUT’s current state
The same initial idea of making a test model based on the conceptual model has been used for the
M/M/1 queue example. This SUT is a more complex simulation model, therefore more choices have to
be made. With the experience from developing a test model for Two-way switch, it was decided to look
for (system) states of the SUT that would actually necessitate different oracle functions, i.e. different
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Figure 5.5: Simple representation of the meaning of states in test model for M/M/1 queue. Solid lines give state
transitions that are permitted. Dotted lines give transitions that are faulty.

assertions. The simulation model’s current system state can be represented by a set of variables. The
first is the instantaneous queue length𝑁𝑞(𝑡), called 𝑞 in the test model. The second is the instantaneous
server utilization 𝐵(𝑡), called 𝑠 in the test model.

A simple representation of this conceptual model is given in Figure 5.5. This has been made into
an AltWalker test model, which was given in Figure 5.2. While the state transitions are based on arrival
and departure events, these events themselves are not used to traverse the test model. Instead, the
aforementioned queue length 𝑞 and utilization 𝑠 are checked in the SUT by the test script after each time
advancement of the SUT. The vertex corresponding to a SUT state is reached in the test model because
of the many guards used on the edges. This test model is thus not strictly a behavior model, because
it does not simulate what state the SUT should be in. Instead, it follows which state transitions the SUT
makes, and does the relevant assertions on the SUT’s internal variables for each state. Additionally, it
will notice if the SUT makes a faulty transition.

The assertions made in the test script for each vertex are now listed. One assertion is common
to vertex: the number of entities in the SUT may not change by more than 1 for each event. This is
implemented by keeping a memory (list) of the number of entities 𝑁𝑞(𝑡) + 𝐵(𝑡) in the test script. The
assertions unique to different vertices are as follows:

• v_NoneInSystem: It is checked that the SUT’s number in queue 𝑁q(𝑡) and number in service
𝐵(𝑡) are indeed 0. This is a method to validate the test model.

• v_NoneInQueue: The same thing is checked, but now 𝐵(𝑡) = 1 should hold.
• v_OneInQueue: The same thing is checked, but now 𝑁𝑞(𝑡) = 1 and 𝐵(𝑡) = 1. Furthermore, it is
checked whether the time of creation (timestamp) of the entity in service is lower than that of the
entity in queue.

• v_MultipleInQueue: The same thing is checked, but now𝑁𝑞(𝑡) > 1 and 𝐵(𝑡) = 1. Furthermore,
the timestamps of all entities in queue are now compared to ensure that the first-in-first-out (FIFO)
discipline is applied correctly.

In conclusion, the MBT technique of having a test model is only used here to select the assertions
that are relevant given the SUT’s current state. The assertions contain the expected behavior for all
internal variables in that state. This is thus clearly white-box testing. And again, not all functional
behavior is covered in this test package. For example, the test model by itself does not test whether
the interarrival times and service times follow the correct distributions. It is chosen for test package B
that this, among other requirements, is checked by analysis of multiple test cases: see the steady-state
results are verified against the analytical solutions that are available for M/M/1 queue, see 6.2. Testing
of distributions by the test model itself is also possible; this is done in test package C.

5.2.3. Test package C: state transitions based on SUT interface
The test models in test package C only do test on individual components of Airport. The test models
for test package C are for component of the SUT, which are servers with or without queues. The test
model can therefore be similar to the one developed for test package B. Similarities are that both are
based on the server utilization 𝑠 and queue length 𝑞. The vertices have a similar meaning to those in
test package B as well. The state transitions are now however based on the SUT’s input and output
events, rather than the SUT’s internal variables. The number of arrivals and departures per time step
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are the only SUT variables that are used for path generation by the test model. This way, the test model
actually models what the SUT should be doing given its inputs over time. The SUT’s internal variables
such as 𝑁q(𝑡) and 𝐵(𝑡) are still used for the assertions, so it is not purely black-box testing.

Design of test model
Figure 5.6 gives a simple representation of the test model. More edges, guards, and actions are needed
compared to test package B, because the graph variables 𝑞 and 𝑠 must be tracked by the test model
itself, instead of being updated from the SUT.

The choices for including particular edges are based on the assumption that two arrivalsmay happen
during one time advance. This ensures that test package is adaptable to different input parameters for
the Airport model. Simultaneous arrivals are not forbidden by the functional requirements, and they are
theoretically possible because of the random walking times between servers. For the SUT’s standard
settings however, the service time distributions and walking distances are such that this should not
happen: the maximum walking time is lower than the lowest minimum service time. The edges with
two arrivals therefore give warnings. Two departures from a server will however always give a transition
to v_impossible (not included in Figure 5.6); this should not be possible in any implementation of this
system, and will throw an exception during a test.

Figure 5.6: Simple representation of meaning of states in test model for Airport. Solid lines give state transitions
that are permitted. Dotted lines give transitions that are questionable. The events arrivals (arr) and departures
(dep) are used as guards on edges. Edges for impossible transitions are left out in this figure.

The assertions associated with all vertices now simply check if the test model’s state is equal to
the SUT’s state, for all representative variables. This means that the SUT’s number in queue 𝑁q,𝑖(𝑡)
should equal the test model’s 𝑞. Similarly, the SUT’s server utilization 𝐵(𝑡) and the test model’s 𝑠
are compared. This this means that all vertices can use the same sequence of assertions, which is a
slightly different approach as was used in test package B.

Against a validated SUT, these tests will show if the test model’s guards and actions have been
implemented correctly. The test script also saves a number in queue based on the number of arrivals
and departures for even more validation of the test model. Lastly, it is checked that the number of
entities in the SUT component has not increased or decreased by more than 2 overall after a time
advance.

Testing of time requirements
It is not possible to use multiple test models with concurrent states from one AltWalker run, see Section
3.2.1. For this reason, one server of the Airport SUT must be chosen to run a test case on at a time.
The test scope is still integration or system testing, so all SUT components are still executed during a
test case, in order to incorporate the interactions between components.
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Due to these interactions the arrival processes per server are not known in Airport. This means
that the distributions cannot be tested by validation of steady-state results against known (analytical)
solutions as was done for M/M/1 queue. Therefore, the correct use of distributions is tested inside the
test model itself. Assertions associated with edges are used for this. Each edge with a departure event
as a guard (𝑑 = 1) will assert that this departure happened from within the expected time interval since
the last entry into service. This is implemented by starting a clock in the test script each time that a
new passengers enters into service.

5.3. Event triggering and time advancement
Another choice that one encounters is how time should be advanced and how events should be trig-
gered in both the test model and SUT during testing. From the taxonomy and case studies in Chapter 2,
it was found that no guidelines exist regarding test model specification for MBT of simulation models or
similar systems. It must therefore be explored here what event triggering means for simulation models.
We can distinguish four factors that will determine a simulation model’s behavior during a simulation
run. These can be related to endogenous variables, which can be explained within the model itself,
and exogenous variables which come from the model’s environment.

1. The actual simulation model itself will determine what sequence of events can be generated
during a run, given the inputs. Endogenous events are generally created in a simulation model
when a time advance function is executed. This can be tested step-by-step, as explained in
Section 2.4.1.

2. Exogenous parameters or events from the environment can further influence the model run. Initial
input parameters must always be set before a run, and generally influence the entire sequence
of events that follows.

3. Optionally, exogenous events, or ‘triggers’, can be used as further input during a simulation run.
When considering components of simulation models, the outputs of other connected components
can be seen as exogenous events. An oracle for this could simply specify what counts as a correct
response, or within what period a response is expected (see again Section 2.4.1).

4. All stochasticity present in a model will make the output nondeterministic. Therefore, a range of
outputs is possible for a given set of input parameters and/or a sequence of external events.

As established in Section 2.2, this reactive nature of simulation models makes dynamic verification
difficult. Naturally, it is found to give a problems for the specification of test models as well. Test models
are often used to generate exogenous parameters: initial parameters and/or exogenous events, that
are used as inputs on the SUT during a test run. The testing of real-time embedded systems is a good
example of this: in most case studies discussed in Section 2.4 one test model, called the environment
model, is used to generate input parameters and/or events. These inputs are then used by another test
model which models the behavior, and they are used as inputs for SUT itself. The expected behavior
and the SUT’s actual behavior can then be compared. The stochasticity that can be built into the
test models is a great advantage for this purpose: it allows a tester to automatically generate many
(sequences of) input and/or event triggers.

However, most simulation models used for M&S are different from such real-time embedded sys-
tems because they generate events themselves and have inherent stochasticity. Giving event triggers
during a simulation run is then not needed; given some inputs, the simulation run (SUT) itself will gen-
erate events when time is advanced. This means that the test model does not necessarily have to give
exogenous events, and that it should be able to generate the behavior that is expected for the next time
advance in the SUT. This last goal is difficult because of the stateful and reactive nature of simulation
models.

5.3.1. Classification of options for event triggering
A choice must thus be made on whether the test model triggers specific events in the SUT, or only
monitors what a SUT does ‘by itself’ during a run. Based on this dilemma, a classification is made of
how time can be advanced by a test package during functional testing of a simulation run:

Monitoring only The test package only executes the SUT’s time advance function. The behavior of
the SUT is monitored and compared to the expected behavior, which is generated by a behavior
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model. Another test model or (automated) sampling can be used to generate initial parameters
for both the behavior model and the SUT.

Mediated run The test package executes the SUT’s time advance function, and will occasionally send
event triggers to the SUT when some conditions are met. The setup with different test models
can be similar to the first option. The difference is that the test model now sends inputs to the
SUT, that are not only time advance instructions.

Explorative run The test package sends a predefined or generated sequence of event triggers to
the SUT, and executes the time advance function when there are no event triggers. A more
complex and nondeterministic test model is needed for this. A goal can be to simulate the SUT’s
environment during a run or to quickly simulate and test what may occur during a run.

Note that in a monitoring run, the test model only gives two types of inputs to the SUT: initial param-
eters at the start of a run, and time advance signals during a run. Thus, no exogenous inputs are given
during the run. A mediated or explorative run would give exogenous inputs during a simulation run.
That is in line with the idea by Mihram (1972), see Section 2.2, to suppress the exogenous stochasticity
for dynamic verification. Only test packages with monitoring runs are developed in this project. The
other two options may be useful for testing of simulation models as well and are thus recommended
for further research.

5.3.2. Implementation of time advancement in a test model
It has been found from the literature study, see 2.3.1, that the test model should have the same notion
of time as the SUT, and it should have a method to advance the logical time in the SUT. It has been left
open for the case studies how this can be implemented in test models for MBT.

The first problem is which elements of the abstract test model should be associated with a time
advance function in the test script. It is found in the case studies that this depends on how the test
model is specified. The test model specification of test package A needs a time advance only on
one edge, while the specification of test package B needs a time advance on all vertices. Figure
5.7 illustrates which elements of the abstract models are associated with time advance functions. Test
package A uses the two edges between v_end and v_counters to iteratively advance time, then check
if the SUT’s system state has changed in any way. Thus only one edge in the test model has a time
advance function associated with it. Test package B on the other hand uses a vast number of edges
with guards to let the test model follow the SUT’s system state. The path generation must be based on
the SUT’s current state, and the path generation will only choose a certain edge based on its guard.
Therefore, the time advance must be done here before the guards are checked. This is achieved
by having the time advance on vertices: the functions in the test script that are associated with each
vertex have the SUT instruction MM1.env.step() after all assertions are made. After this instruction,
the graph variables are updated based on the SUT’s new variables so that these can be considered
for the guards.

(a) Test package A: Two-way switch (b) Test package B: M/M/1 queue

Figure 5.7: Elements in test models where a time advance signal is sent to the SUT by the associated function in
the test script. The time advance signal is indicated with a clock.

The approach for test package B is counter-intuitive to how EFSMs and AltWalker’s implementation
of them are supposed to work: it seems like state transitions now happen on the vertices instead of



50 5. Design of test models for dynamic verification

the edges. That is only partly true: the vertices will cause a state transition in the SUT, but the state
transitions of the test model itself still happen on the edges. This distinction must be kept in mind when
this approach is used for designing a test package. The main advantage of this approach is that the
abstract test model (graph) needs fewer elements and will be easier to understand once it has been
designed.

The design choice of which elements to associate with time advancement functions did not depend
on whether the SUT was an ABM or discrete event model in this project. Test package C is used to test
an ABMmodel, and it uses time advancements on vertices similarly to how test package B does this for
a DES model. However, a time advance here may not necessarily lead to a significant event, because
the test model only considers one component of the SUT, and because ABM is used. Therefore the
test script will advance time after running all assertions of a vertex. This is done until a message arrives
from the SUT about an arrival or departure. The test model may thus stay in one state with no new path
being generated, while the SUT does multiple time advances. A maximum number of time advances
for waiting until a new message is implemented to prevent an infinite loop during test execution. This
does mean that conditions for path generation are now present in both the abstract model and the test
script, which makes the test package more difficult to maintain.

In short, three subtly different methods for advancing time with a test script have been used:

1. Explicit time advance with an edge. This makes the abstract model of test package A easier to
understand.

2. Implicit time advance on vertices, after running all assertions. This is more suitable for an abstract
model with some complexity like in test package B, to reduce the number of elements needed.

3. Multiple implicit time advances on vertices, until a condition is met. This is useful for complex
abstract models where time advances do not necessarily lead to events that are significant for
testing, like in test package C.

5.3.3. Communication between test model and SUT
A common problem in the development of MBT packages is the communication between the SUT and
the test package. This is not part of any of the MBT taxonomies, but the concepts relevant to this
communication have been explained in Section 2.1.2. Abstract test cases must be made executable
by mapping them to instructions for the SUT. This is done in this project by associating oracles, i.e.
assertion functions, with vertices and edges in the test models. These assertions must access the
SUT’s outputs or internal variables, so the test package must support communication with the SUT.
Adapter code may be needed for this.

Note that this problem of communication is not fully considered in this project. All test packages of
the case studies simply import the simulation model as a module and execute functions on it directly.
Thus no adapter code for communication is truly made. Where it is stated in this report that a time
advance signal is sent from the test script to the SUT, this actually means that the SUT’s time advance
function is run within the test script. No statements can therefore be made on how to solve problems
of communication with external SUTs and the associated timing issues.

Test package C gives a first attempt at having minimal and formalized communication between
the test package and the SUT using messages. This is further discussed in Section 5.4.2. Similar
approaches could be useful for communication when the test package and SUT are actually different
programs that are executed separately.

5.4. Requirement-based test design and modular test models
It is hypothesized in Section 2.3.5 that MBT could be an approach to white-box testing, whereas model-
based tests are usually seen as black-box tests. It is concluded that many examples of MBT are not
strictly black-box tests, in the sense that internal variables of the SUT are accessed during testing for
either oracles or even to influence path generation. However, a general rule exists in literature that
MBT packages should be developed based on the functional requirements, and not on the SUT imple-
mentation. This is a requirement-based test design, where there is minimal communication with the
SUT, as is formulated for subquestion 3. Special attention is given to this topic during the development
of test package C. It is now evaluated whether this approach is implemented in any of the developed
test packages.
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5.4.1. Strictness of requirement-based test design
The rule that the model specification should be done based only on the functional requirements is not
strictly followed in this project. This can be illustrated by the distinction between how time is advanced
between test packages A and B. That is already based on how respectively the Two-way switch and
M/M/1 queueSUTs have been implemented, see Section 5.3. Not adhering to this rule is not necessarily
a bad thing. Considerations like when to advance time are simply needed to create a test model that
can function with the given SUT.

For another example: test package B even adds the vertices v_NoStepYet and v_TimeZero to
account for a characteristic of the SUT’s simulation package Salabim: processesmust first be initialized.
These could have been left out of the test model by including them in the test script’s setUpRun fixture.
That would have made the test model more agnostic to the SUT’s implementation.

For test generation and execution, all test packages use assertions that are done on internal vari-
ables of their respective SUT’s. Test package C is a good example: the path generation and test model
behavior is solely based on the SUT’s interface, but still internal variables from the SUT are accessed
by the test script for the oracles. That means that the test cases are abstract at first, and are then
made executable. That is within the definition of black-box testing for MBT. It could have been made
even ‘more black-box’ by only asserting that departures happen when expected: only the SUT’s output
would then be tested, but the test package becomes less useful in return for understanding what faults
the SUT may have.

In short, for the test model specification of test packages A and B the SUT implementation was
definitely considered. This was only not done for test package C. Test package C only assumes that
the SUT consists of similar components, that can be tested separately.

5.4.2. Minimal communication between test package and SUT
Test package C demonstrates how minimal communication between the test model and SUT can give
a test package that is based more on the SUT’s requirements, rather than its implementation. Com-
munication between the SUT and the test script for path generation is done here with messages. The
Airport SUT will output strings that describe how many arrivals and departures occurred at each com-
ponent during the last time step. These strings are formatted as either ‘arrival’ or ‘departure’,
along with the associated server’s name. The test script will check for these messages, after each time
advance signal that it sends to the SUT. The messages are filtered for the name of the component that
the test model is currently testing, and they are counted to get the number of arrivals 𝑎 and number of
departures 𝑑 for that time step.

This simple method of communication also enables a modular setup, where test package C can
be used to test similar components within the Airport SUT. Furthermore, this method could enable test
package C to be more agnostic to the SUT implementation. It could ideally be used with other SUTs
that model the same system. The modeler then only has to include an interface that denotes arrivals
and departures per time advance in this specific format. Testing of similar SUTs has not been done in
this project.

5.4.3. Specification of oracles
The test models mainly test the dynamic behavior of the SUTs: each time advancement is a step in the
test case, and an oracle is used on each step. Up-to-date values of the SUT’s internal variables are
needed for this step-by-step approach.

Alternatives to a step-by-step approach can also be named a ‘more black-box’ approach to testing,
particularly to oracle checking. This can be related to the three approaches to testing defined in Section
2.4.2. A first alternative is that the SUT’s state is not assessed after every time advancement, but that
its eventual correct response to a given input is only tested. Another alternative is that the test package
only assesses the correctness of a simulation run’s output or aggregate of outputs, given its initial
values. For testing simulation models, this should even be done for multiple runs, because the SUT
then has inherent stochasticity. This is the topic of subquestion 4. As mentioned before, batch runs are
implemented outside of the test model: each test model run is used to test only one SUT simulation
run. This implementation of batch runs is discussed in the next chapter.





6
Automated tests of multiple simulation

runs
This chapter aims to answer subquestion 4: the development of automated test packages that use
or integrate MBT techniques to verify the results of a simulation model. It has been discussed that
verification of a simulation model’s outputs necessitates that multiple runs are considered because
of the inherent stochasticity of simulation models, see Section 2.2. Some batch-run functionality of
test cases is thus needed. Such functionality is missing from AltWalker, see Section 3.2.5. A choice
has been made to make test models that only consider one SUT simulation run at a time. Additional
functionality must thus be developed to enable batch runs.

It is first shown in Section 6.1 how a functionality for batch run has been added to test package B.
Section 6.2 shows what numerical tests can be used for verification of (time series) results, and what
analysis of a simulation model is needed to define the expected results used that will be used in the
tests for M/M/1 queue. Lastly, Section 6.3 shows how numerical tests of multiple simulation runs have
been implemented in test package B

6.1. Test package design for analysis of multiple simulation runs
An experimental setup must be defined to get a test suite that can reach a certain testing goal. The
experimental setup includes the number of experiments, the input values for each experiment, the
number of replication runs per experiment, and the simulation end time. In this project, a setup is chosen
where each experiment tests one simulation run, using one AltWalker run. The reasons for choosing
this approach and details on its implementation are discussed in Section 3.2.5. The experimental setup
is defined in the test execution script, so a batch run functionality must be implemented here.

Test package B, the test of a M/M/1 queue discrete event model, has been developed to answer
subquestion 4 specifically because analytical solutions are known for this problem. A version of test
package B is now considered, that runs many replications for a given set of input parameters.

6.1.1. Experimental setup via test execution script
The experimental setup for test package B is simple: the SUT only uses two input parameters. These
are the iat (interarrival time) and server time. The test package further has three parameters itself: the
number of experiments with distinct input parameters, the number of replications to be run and tested
per experiment, and the simulation end time 𝑡end for each SUT run.

The simulation end time is now implemented by adding a vertex v_FailOrEnd to the abstract model.
This vertex can be reached from all other vertices, with the guard t > t_end. These transitions are
guaranteed to be taken because a requirement is added to the vertex, and the model is run with a
requirement coverage condition. This new vertex and associated edges were not shown in Figure 5.2.

Two options are mentioned in Appendix A.3.2 for passing initial values from the test execution script
to the AltWalker abstract model: directly via the Planner and abstract model, or with a parameters
JSON file that is loaded by the test script. Both options have been found feasible while developing the
test packages. Packages A and B use the first option, while package C uses the latter.
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The current implementation will sample values for input parameters uniformly from a range that
is specified in the experimental setup. Of course, this can be extended with more complex sampling
techniques.

6.2. Verification of simulation model results to analytical solutions
The outputs of single or multiple experiments can be verified if the expected outputs for certain initial
parameters are specified in the functional requirements. Options are now given for how to implement
verification for test package B, because analytical solutions are known for the SUT M/M/1 queue.

To define in the requirements and in the test package what outputs of M/M/1 queue are allowed,
an analysis of the results of this simulation model is first needed. This analysis has been done using
three experiments, to establish the stochasticity, convergence, and sensitivity of this simulation model.
This is discussed in Section 6.2.2. The M/M/1 queue simulation model is assumed to be valid. The
results of these experiments are therefore used to inform what numerical tests can be implemented in
test package B. The choice of numerical tests is now first discussed.

6.2.1. Options for numerical methods for verification
An applicable numerical method must be chosen to define in a test package what range of outputs is
deemed expected or correct, given some inputs. This must be a range because a simulation model with
inherent stochasticity will give different outputs for each replication, and the outputs will never exactly
equal the (analytical) solution. It is useful to consider only aggregate results from simulation runs, such
as the mean and standard deviation of a variable, instead of the full time-series data.

A numerical method can be used during test development to analyze the aggregate results of a
validated SUT. The resulting ranges of outputs can then be used as the expected behavior in oracles
in the test package. These oracles can likely be specified in the test model as the same numerical
functions that were used for analysis, possibly using the same numerical methods. Two numerical
methods are now discussed: statistical tests, and more simple output ranges.

Use of statistical tests
Statistical tests are an obvious choice for a numerical method that can consider a range of outputs. The
student’s t-test is commonly used to compare the mean and standard deviation of a sampled population
to a theoretical mean. This is useful for problems like theM/M/1 queue for which analytical steady-state
solutions exist for some outcomes; these solutions are the theoretical means.

For the M/M/1 queue, some important outcomes are the steady-state 𝐿, 𝑊 and utilization 𝜌 found
with long simulation times. The sample is then a set of these outcomes of many replications. These
can be compared to the analytical means 𝐿an, 𝑊an and 𝜌an calculated from Equations 4.1, 4.2, and
4.4. A condition is that the system should be stable, meaning that input parameters 𝜆 and 𝜇 should be
such that 𝜌an = 𝜆/𝜇 ≤ 1.

There are some problems with using the student’s t-test for a model likeM/M/1 queue. The student’s
t-test is based on the assumption that the sample follows a normal distribution. It can be assumed that
the samples from many replications have a normal distribution for 𝐿𝑞, 𝑊𝑞, and 𝜌. This is found to only
be the case for 𝜌. This can be seen on face value in Figure 6.1.

Another problem is that the t-test becomes stricter if it considers more samples because the number
of degrees of freedom increases. So even if the mean of means is very close to the analytical mean,
the t-test may still indicate that it is not significantly proven that the sampled means give the correct
mean. This can be clearly seen from 1000 runs of theM/M/1 queuemodel with input 𝜌an = 0.9 in Figure
6.1. The mean of means �̄� over 1000 replications is 0.89904. Thus, with many runs the steady-steady
behavior of this simulation model is very close to the analytical solution on face value. However, a t-test
of these 1000 𝜌 values against 𝜌an will give a p-value of only 0.0158. That would mean that there is
no significant proof that this close approximation was not only due to coincidence. The same problem
occurs when time series results from one simulation run are used in a t-test: these are generally many
data points, resulting in an unnecessarily strict test.

Statistical tests like the student’s t-test are therefore not used for analysis of M/M/1 queue. Devel-
opers that want to incorporate such tests into automated test packages are advised to choose the 𝛼
value such that type 2 errors are avoided, while some type 1 errors may occur. Type 1 errors can be
seen as false negatives. The automated test package can show these to a manual tester, who can
further check if the results are indeed wrong.
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Figure 6.1: Distributions of mean outputs from 1000 replications of M/M/1 queue with 𝑡end = 10000 s. Analytical
solutions are given in light blue.

Simple numerical methods for acceptable output ranges
A more simple numerical method is therefore used to analyze and later testM/M/1 queue: a bandwidth
of acceptable results is defined. For instance, a tester can define a relative deviation of 𝑑 = 0.5% from
the analytical mean �̄� as acceptable. This gives lower bound 𝑥lower = �̄� ⋅ (1 − 𝑑) and upper bound
�̄�upper = 𝑥 ⋅ (1 + 𝑑).

Such analysis is done on the results of M/M/1 queue with 𝜌an = 0.9 for 1000 replications, with
a simulation end time of 𝑡end = 10000 s. It is found that 𝜌 is within the bounds for 28.3% of runs if
𝑑 = 0.5%. When 𝑑 = 1.0%, this increases to 54.2% of runs with 𝜌 ∈ [0.891, 0.909].

6.2.2. Analysis of M/M/1 queue results and decisions for test package
Three experiments are done withM/M/1 queue to analyze the results and sensitivity of this model. The
results from these experiments are used to inform the development of the test package in Section 6.2.3.

Stochasticity of M/M/1 queue
The experimental setup to analyze the influence of stochasticity in M/M/1 queue is to run 1000 replica-
tions of the model with input parameters 𝜆 = 0.9 s−1 and 𝜇 = 1.0 s−1. This is done with 𝑡end = 10000 s.
This should give a utilization 𝜌an = 𝜆/𝜇 = 0.9. This value is chosen, because it is close to the unstable
system 𝜌an > 1; a broader distribution of the outputs can be expected for higher 𝜌an.

The distributions for the mean 𝜌, 𝐿, and𝑊 of 1000 replications are shown in Figure 6.1. As stated
before, only the results for 𝜌 follow a uniform distribution. 𝑊 and 𝐿 have more outliers that are higher
than their mean values. That can be explained: periods of congestion in the queue randomly occur
during some runs. These take long to clear and will therefore give higher queue length and waiting
times during some runs. Meanwhile, there is a minimum to 𝐿 and 𝑊 because the server’s utilization
is high. The mean of means from 1000 replications almost equals the analytical solution for 𝜌. For
the mean of means of 𝐿 and𝑊, there is respectively a 0.61% and 0.68% deviation from the analytical
solution.

For test package B, this means that it is most useful to focus on 𝜌: the means taken from runs
show are uniformly distributed, and it is proven that the analytical solution can be well estimated by a
model. It can thus be tested at the end of each test case whether 𝜌 is within acceptable bounds of 𝜌an.
Furthermore, it can be tested from multiple simulation runs whether the mean of means �̄� is close to
the analytical solution 𝜌an given the inputs. The exact settings and bandwidths used in test package B
are defined in the next section.

The outputs 𝐿 and 𝑊 can be tested as well. While there are some high outliers for the means of
these outputs, it is found that Little’s law, 𝐿 = 𝜆𝑊, always holds for long runs of M/M/1 queue. This is
shown in Figure 6.2a. An option is therefore to test the SUT for the deviation 𝛿 from Little’s law. This
is defined by rewriting Equation 4.6:

𝛿 = 𝑊 − 𝐿/𝜆 (6.1)

Ideally, the difference 𝛿 is only due to the model’s stochasticity, meaning that it should be normally
distributed and should have a mean of 0. It is found that this is the case for 𝛿 from 1000 replications, see
Figure 6.2b. Furthermore, 𝛿 only depends on 𝜌, not on either𝑊 or 𝐿. The difference 𝛿 can thus be used
in test package B to further verify the SUT’s results. An acceptable bandwidth for 𝛿 is defined based
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(a) Relation between mean 𝑊, 𝐿, and 𝜌 for 1000 replications
of M/M/1 queue with 𝜌an = 0.9.

(b) Distribution of difference 𝛿.

Figure 6.2: Conformance to Little’s law for 1000 replications of M/M/1 queue with 𝜌an = 0.9. This shows that
Little’s law holds: 𝑊 is proportional to 𝐿/𝜆.

on the results from these stochasticity experiments: an absolute difference of |𝛿| = 0.5 is deemed
acceptable. This way, if the mean 𝐿/𝜆 is unexpectedly high or low compared to the mean𝑊, the tester
knows that something is wrong with the SUT.

Convergence of results for M/M/1 queue
The convergence experiment aims to find the order of magnitude for simulation end time 𝑡end that gives
an adequate steady-state solution for the most important outputs of M/M/1 queue. This is only done
for the result 𝜌, since it was found in the previous experiment that the validated model gives the most
consistent approximation of this variable. It will be assumed in test package B that if 𝜌 is close enough
to the analytical solution, and Little’s law holds for 𝐿q and𝑊q, then the model’s results are as expected.

The experimental setup is as follows: the model is run with the same input parameters giving 𝜌an for
4 different simulation end times. Per experiment 100 replications are run to account for stochasticity.
The end times used are 𝑡end ∈ {100, 1000, 10000, 10000} s. The mean outcomes for 𝜌 are compared
to the analytical solution 𝜌an = 0.9.

It is found that the solution converges for longer simulation times. This is illustrated in Figure 6.3: all
replications approach the analytical solution over time, and the distribution of values for 𝜌(𝑡) becomes
more narrow over time. It is still up to the tester which requirements on the steady-state value for 𝜌 can
be defined based on these results. A trade-off between a required level of accuracy and simulation
time must be made, since the automated test package will be used to test many runs.

This is further illustrated in Figure 6.4, which gives the distribution of the same results. The test
package could again use a bandwidth to define which range of outputs is accepted for 𝜌. With an
accepted relative deviation of 𝑑 = 1% from the analytical solution, 97% of runs of M/M/1 queue will be
‘acceptable’ if 𝑡end = 100000 s. However, that takes a long time to run. For 𝑡end = 10000 s, only 47%
of runs is acceptable. This is of course worse for a more strict bandwidth of 𝑑 = 0.5%; then only 28%
of runs is acceptable for 𝑡end = 10000 s, versus 83% for 𝑡end = 100000 s.

Input experiments for M/M/1 queue
With the stochasticity and convergence ofM/M/1 queue defined, this model can be further analyzed for
different sets of input parameters. The experimental setup for this is 7 experiments with different input
parameters. 𝜆 is kept at 1.0 so that 𝜌an = 1/𝜇, while 𝜇 is varied: 𝜇−1 ∈ {0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4}.
Per experiment 100 replications are run. This is repeated with 𝑡end = 10000 s and 100 000 s.

The results for the mean 𝜌 are shown in Figure 6.5. The M/M/1 queue model clearly gives a good
estimation of the analytical solution for all inputs where 𝜌an < 1 where this is possible. The variances
in results are not constant over the input space, thus not the same percentages of runs would be within
the accepted bandwidth for different inputs. With higher 𝑡end = 100000 s, all experiments with 𝜌an < 1
give at minimum 94% of replications with results within the bandwidths.
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Figure 6.3: Time-average utilization 𝜌(𝑡) until time 𝑡 for 100 replications of M/M/1 queue, with 𝜌an = 0.9. The
results converge to the a steady-state solution over time.

Figure 6.4: Distribution of mean utilization 𝜌 for 100 replications with different 𝑡end. The red dotted lines give the
bandwidth for 𝑑 = 1% deviation from the analytical solution. The red text gives the percentages of samples that is
within this bandwidth.

Again, a lower number of runs has results for 𝑊 and 𝐿 that are within a 𝑑 = 1% bandwidth. This
is summarized in Figure 6.6. Clearly, the variance in mean 𝑊 and 𝐿 across runs is less for lower 𝜌an.
That is as expected: a lower utilization means less probability for random congestions. It is found that
Little’s law also holds for all inputs, even when 𝜌an ≥ 1. The difference 𝛿 = 𝑊 − 𝐿/𝜆 has a higher
variance for higher 𝜌an. The maximum |𝛿| is almost 0.5.

6.2.3. Decisions for verification of results in test package B
In conclusion, a test developer must make many choices in order to implement an idea of what accept-
able outputs should be. Some considerations for implementing simple bandwidth tests are now listed,
along with decisions made for test package B based on the stochasticity and convergence experiments.

• The representative outputs that can prove the SUT’s functioning must be chosen. It is found that
aggregates of a run’s outputs are most convenient to use: the mean and/or standard deviation. It
is further hypothesized that for using a bandwidth test, the mean of an output ideally has a normal
distribution. For test package B, the mean utilization 𝜌 and the difference 𝛿 = 𝑊 − 𝐿/𝜆 are thus
chosen as outputs.

• An adequate simulation end time 𝑡end must be chosen, that is known to give results that have
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Figure 6.5: Distributions of mean utilization 𝜌 from 100 replications of M/M/1 queue with 𝑡end = 10000 s, for
different input values of 1/𝜇. The analytical solutions are given in blue where applicable. The blue text indicates
the number of means that are within a 𝑑 = 1% bandwidth from the analytical solution for 𝜌.

converged to a steady state. For test package B, it is chosen that 𝑡end = 10000 s is a good
trade-off between accuracy and execution time.

• The number of replications needed to account for the model’s stochasticity must be defined. This
is again a trade-off. The analysis ofM/M/1 queuewas done with 100 or 1000 runs per experiment,
but it is decided to use 10 replications per experiment in test package B.

• The acceptable relative deviation 𝑑 from the analytical solution must be chosen based on an
analysis of the stochasticity of a validated simulating model across its input space, or if available
from a known distribution that is found analytically. For test package B, 𝑑 = 1% is used for the
mean 𝜌. For 𝛿, no relative deviation can be used, since its mean should be 0. Therefore, an
absolute margin of |𝛿| = 0.5 is used.

• The acceptable number of runs with outlier results can be defined based on the other criteria
and experimental setup. For test package B, it is decided that 40% of runs should be within the
bandwidth for 𝜌, combined with the requirement that the mean of means �̄� should be within the
bandwidth. Furthermore, 100% of runs should be within the bandwidth for 𝛿.

6.3. Implementation of verification of results in MBT test packages
It is now explained how the aforementioned methods for verification from multiple runs can be imple-
mented in an AltWalker test package with a test execution script, as is done for test package B.

6.3.1. Implementation in AltWalker
The experimental setup for batch runs and the oracles that do numerical tests on the results must be
implemented in the MBT packages. It is now explained how this is done in AltWalker. The oracles are
specified on two levels: there are bandwidth tests per test case (thus per simulation run), and there is
an analysis of the results from multiple test cases.

Bandwidth tests per test case
The bandwidth tests can be easily implemented into the AltWalker test package. The analytical so-
lutions must be defined for each set of inputs used in the test execution script. The lower and upper
margins of the associated acceptable bandwidths are then calculated as well. These are passed to
the test script for each test case run. The test script then evaluates the representative outputs at the
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Figure 6.6: Percentage of mean outcomes that are within 1% of the analytical solution, from 100 replications with
𝑡end = 100000 s.

end of a test run in a function associated with the end vertex, or in the tearDownModel or tearDown‐
Run fixtures. A verdict is generated per representative outcome that summarizes that test case: within
bounds, outside of bounds, or unexpected. This is passed again to the test execution script, before the
next test case is run in a new AltWalker instance.

Analysis of results from multiple test cases
Once all experiments defined in the test execution script have been completed, the results frommultiple
test cases can be considered. This is done in the test execution script as well. Functionality is added
that checks whether the number of runs within bounds is as expected. Furthermore, the mean of means
is calculated for the representative variables. This finally results in a verdict on whether the SUT has
the expected outcomes.

6.3.2. Combining verification of dynamic behavior and verification of results
Test package B with the experimental setup as just described takes a long time to run. This is because
verification of the dynamic behavior is combined with verification of the model’s aggregate outcomes.
This first goal is done with more usual MBT techniques that are computationally expensive: tests are
executed for each step of a simulation run. Long simulation times may not be crucial for this testing
goal. It may be assumed for simple SUTs such as M/M/1 queue that if its dynamic behavior is as
expected for a short run, it will be as expected for a long run. On the other hand, long simulation times
are crucial for the goal of verifying a simulation model’s steady-state outcomes, as is established in this
section. The same holds for the use of multiple replications.

A hybrid can be achieved by developing an automated test package that combines model-based
test cases of shorter simulation runs with (aggregate) output verification of longer simulation runs. The
use of the test model and an MBT tool such as AltWalker is then not needed for this verification phase.
This can again be put into terms of white-box testing vs. black-box testing: an MBT approach with a
test model is shown to be feasible for white-box testing of a simulation model in Chapter 5, while it is
now shown that simple black-box testing of only the inputs and some inputs can work for the verificaiton
of simulation models if the expected outputs are known. These methods combined give insights into
potential faults in the SUT; where in the code they occur, when during a simulation run they occur, and
whether they affect the model’s results.





7
Discussion

The results presented in Chapters 2 – 6 are now discussed. This is done to answer the four subques-
tions as defined in Chapter 1, which are repeated here:

1. What known options for model-based testing are relevant for testing simulation models?
2. How can test models be designed for step-by-step verification of the dynamic behavior of a sim-

ulation run?
3. How can test models be designed for verification of simulation models, with minimal knowledge

of the SUT implementation and/or its internal variables?
4. How can automated test packages be developed, that use or integrate MBT techniques for veri-

fication of a simulation model’s results?

In addition, the advantages and disadvantages of the MBT software tool of choice, AltWalker, are
discussed.

7.1. Relevant options for MBT of simulation models
Options for different dimensions of MBT have been summarized based on taxonomies and case stud-
ies from literature in Section 2 to answer subquestion 1. The relevance of some options for testing
simulation models has been hypothesized mainly by identifying which properties of simulation models
make them hard to test, and by exploring which MBT options can address these properties.

Options selected for automation of testing
Some relevant options for MBT dimensions could be selected by simply adhering to a strict definition of
MBT as a test technique that should involve the automation of the following steps of the testing process:
(i) test path generation, (ii) mapping to executable test cases including oracles with expected behavior,
(iii) test execution on the system under test (SUT), and (iv) oracle checking to assign verdicts to test
cases. This means that the model scope is input-output, the modeled artifact is functional behavior, and
the technologies of generation and execution are trivially automatic. Adherence to this strict definition
of MBT is justified as automation is one of the main potential benefits of MBT over manual testing.

A step-by-step approach is also generally expected within this definition of MBT. This term is used in
this report to indicate that for every input in a test case, an oracle with expected behavior is present as
well. This approach is most in line with the purpose of verification of the dynamic behavior of the SUT.
By assessing the SUT’s response to every input, the test package can be used to precisely analyze
when a failure occurs. With a more white-box approach, it can further identify what part of the SUT
implementation produces the failure. The manual tester can use this information to see why a failure
occurs.

Options selected for testing reactive systems and simulation models
Other options for dimensions have been adapted from previous research on MBT for reactive systems
and simulation models. The test model should use a transition-based modeling paradigm. The test
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model should mostly have the same characteristics as the SUT. A focus is made on non-real-time
simulationmodels with a discrete-time base and inherent stochasticity. Therefore, the test model should
have the same notion of time. Based on this idea, it is hypothesized that the simulation modeling
paradigm used in the SUT may influence what design works best for the test model. Previous research
indicates that a deterministic test model could be used for nondeterministic SUTs, and vice versa, so
this option is left open for exploration.

The use of online, reactive test execution is another option taken from previous research. This is
seen as the only relevant option for testing reactive systems such as simulation models. It cannot be
known before a reactive system is executed what events it will produce exactly, as its response to inputs
depends on its internal states. Therefore, the path generation should be aware of the SUT’s states, in
order to select paths that lead to relevant test cases. This need for reactive tests is even greater for
nondeterministic SUTs, such as the simulation models with inherent stochasticity used in this project.
Furthermore, simulation models are made to generate endogenous events upon time advancement. A
test model must thus also know what event the SUT may or may not generate next, given the SUT’s
state.

Options left for case studies
It is now summarized which options are left open for exploration in the case studies. Firstly, how
automatic test generation and test execution can be achieved is no topic of research, as existing MBT
software tools provide this functionality. This means that this project has mainly focused on how test
models can be designed for model-based dynamic verification of simulation models. It is left open
whether test models should be nondeterministic, what test selection criteria should be used, and how
paths should be generated through the transition-based abstract models. It was not clear how online,
reactive testing ties in with path generation, and how the notion of time can be kept the same between
the test model and SUT.

Furthermore, it was found from the case studies that a separation of the test model into an environ-
ment model and a behavior model could be beneficial. And lastly, it is known from the literature that the
problem of test abstraction is fundamental to any MBT development process. This means: how can
the SUT’s expected behavior be represented and generated from the test model in an abstract manner.
It is assessed to what extent these problems have been solved by looking into the other subquestions.

An option that is left open, that is relevant for the verification of a simulation run’s results, is data
coverage criteria for test generation. It has been shown in Chapter 6 that these can be implemented
by simple sampling of (initial) input parameters for the SUT, and making multiple test cases based on
these parameters.

Lastly, it was concluded in Section 2.4.2 that the level of oracle specification must be decided on. A
choice can be made on whether oracles are specified for every step of the test path, and whether the
test model gives exogenous inputs or only time advance instructions to the SUT. It is further discussed
in Section 7.3 how oracle specification and inputs from the test model have been implemented in the
developed test models.

7.2. Verification of dynamic behavior
To answer subquestion 2, test models have been developed for the case studies in Chapter 5 with
three different simulation models used as SUT. The case studies demonstrate that MBT of simulation
models is feasible. However, they do not provide a complete exploration of all MBT that were left open
in the literature study. Some additional approaches to test model design are given in Chapter 5, but
these are not further explored.

Usage of online, reactive test execution and test generation options
It has been explored what online, reactive test execution means for MBT of simulation models, and with
what path generation options it can be integrated. Three options are defined in Section 5.3.1 for how
a test model can trigger events in the SUT. The first option is named ‘monitoring-only’, where the test
model only gives time advance instructions to the SUT during a test, and input parameters only at the
start. Giving the same input over and over is unusual for MBT, but it is adequate here because the SUT
is a simulation model that generates endogenous events upon time advancements. This ‘monitoring-
only’ approach has led to three test models for different SUTs, with the common characteristic that
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path generation closely follows the SUT’s state. It is discussed later what implications this monitoring
approach has for the test model characteristics and the usefulness of MBT.

Two other options defined for event triggering by the test model are ‘mediated runs’ and ‘explorative
runs’. Unfortunately, these options have not been further explored in this project. They would be useful
for the second type of verification defined in Section 2.4.2; verification of responses to exogenous
variables. In both approaches, specific inputs, along with time advancement instructions, are given to
the SUT by a test model. These two approaches seem most in line with the existing MBT case studies
from literature. A behavior test model (also called an input model) is often used to provide inputs.
These inputs are then used both on the SUT and on a behavior test model (also called a SUT model)
that models how the SUT should respond.

Because they are not explored, the distinction implied between ‘mediated runs’ and ‘explorative
runs’ may be unclear. The ideas tie in with two benefits that triggering events in the SUT could have for
testing simulationmodels. Firstly, a ‘mediated run’ could be useful for integration testing and component
testing, where the test model generates inputs that a SUT would normally get from the environment
that it is connected to, for example, other simulation model components. Secondly, an ‘explorative run’
could be useful to make more efficient and specified test cases, and for robustness testing. The test
model rapidly causes events in the SUT that are suspected to give faulty behavior, instead of waiting
for the SUT to generate such events by chance.

Implications of a monitoring approach
The use of a monitoring-only approach has some implications for the usefulness of MBT. Firstly, a prob-
lem left open for the case studies was the selection criteria, such as coverage criteria, and technology
for test (path) generation. In the end, path generation algorithms and complex coverage criteria have
not been used much in the case studies: only a ‘random coverage’ criterion has been used to run the
test models. It is now further explained why complex path generation is not needed in a monitoring
approach where the test models are designed to follow the SUT’s state.

Stochasticity of test path generation, often the main reason to choose for MBT, has actually not
been used in this project, because the SUT is now stochastic itself. With the use of online, reactive
tests, the path generation is continuously influenced by the SUT’s current state. The best example is
the test model for M/M/1 queue. All transitions in the test model are completely ‘locked’ by guards: a
transition in the test model will only be triggered if it is detected that a (relevant) variable has changed
in the SUT. The test model for Airport works similarly: here transitions are triggered by messages about
events in the SUT. This means that the test models themselves are in fact deterministic.

The fact that the test models are deterministic, is not necessarily bad design. MBT is usually applied
when it is deemed efficient to generate a vast number of test cases with a stochastic test model. Here,
similar techniques are used to automatically follow the states of a stochastic SUT during testing. Thus,
test generation and execution are automated, meaning that the benefits of MBT over manual testing
are still relevant. Alternative approaches that do not use test models would probably involve assertion
functions in the SUT that are less clearly selected based on the SUT’s state. Moreover, manual testing
alternatives could mean that a tester has to look at a list of events produced during a simulation run.

The design choice to have the test model’s state follow the SUT’s state also means that eventual
faulty transitions or events of the SUT should be implemented in the test model as well. The step-by-
step oracles are thus specified in two ways: 1) Given the test model’s current state, assertion functions
are used to evaluate the SUT’s current state. This is done by mapping the vertices of the abstract
model to assertion functions. 2) Given the test model’s current state, an unexpected state transition
and/or message from the SUT triggers a transition in the test model that is defined as faulty. A ‘failed’
verdict is then assigned.

Selection of representative states
A problem that is relevant not only to a monitoring-only approach is the selection of representative
states. It is found in the case studies that the problem of test abstraction is indeed fundamental to MBT.
This requires creativity from the test developer, and how this problem can be solved highly depends on
the inner workings of the simulation model under test. Given the test goal, the most important functional
behavior should be taken from the functional requirements. For example, the testing goals for M/M/1
queue and Airport are different, while these SUTs have similar functional requirements. The test model
for M/M/1 queue only tests whether entities are in the correct ‘order’ in the SUT, while the test model
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for Airport also involves time constraints for the processing of entities. The test model forM/M/1 queue
would thus not notice a faulty SUT where the entities stay in service longer than their maximum service
time.1

An idea is mentioned in Chapter 5 that representative states could be defined by determining which
system states of the SUT warrant that different assertion functions are used. The test model thus
selects some unit tests that are particular given the SUT’s state. It is found that for simple simulation
models, such distinctions cannot always be made. Two-way switch for example could be ‘tested’ by
asking one question during the entire simulation run: is exclusive-OR logic followed? What is missing
in this research is therefore testing of more complex simulation models that can show different patterns
of behavior. For these systems, what type of behavior is expected and what assertions should be run
is even more dependent on the SUT’s state. The M/M/1 queue has such a distinct pattern of behavior
because it becomes unstable when 𝜌 > 1. Test model B is (unintentionally) adequate for that situation
in terms of step-by-step verification

On a related note, the process of selecting representative states has shown that the idea found in
literature is true, that the validity of the test model itself should be continuously checked during test
development. Even for the simple SUTs used in this project, it is a time-consuming process to make
abstract test models and mappings that somehow model what the SUT should be doing. When one
assumes that the test model could be invalid, a failure found in a test case could be either due to a fault
in the SUT or a fault in the test model.

Options for time advancement and model notation
One novel idea is found for time advancement in the case studies. Normally, edges of the transition-
based abstract test model are associated with inputs to the SUT. However, it can be useful to use
the vertices instead of edges of the abstract models for time advancement, so that guards in the test
model are aware of new state transitions in the SUT. This is again a consequence of the reactive and
monitoring design of tests in this project.

The hypothesis that the simulation modeling paradigm used in the SUT dictates how the test model
should be designed is only partly true. One relevant difference is found between agent-based modeling
(ABM) and discrete event simulation (DES): the test model can model time on its own if the SUT uses
ABM, while the test model must query the SUT’s logical time if the SUT uses DES. That is no problem
for online, reactive tests. Furthermore, it is found that step-by-step testing is easier to conceptualize
for DES, as every time advancement will generally give one output from the SUT, namely one event.
This is different for an ABM, where during one time step many events of different processes may have
happened in unknown order, or potentially no event may have happened.

Regarding the modeling notation of the test model, a few new insights can be given. Only one
type of notation for transition-based models has been used: extended finite state machines (EFSMs).
EFSMs seem adequate for testing simulation models: time can be kept as an internal variable, the path
generation can be guided with guards and coverage criteria, and elements of the abstract model can
be mapped one-to-one to assertion functions. Furthermore, state machines are familiar to simulation
model developers, they have graphical representations, and they are supported by most MBT tools. A
disadvantage is the problem of state explosion: the number of states needed to represent a system
increases rapidly with the system’s complexity, and the number of state transitions needed increases
exponentially. This is especially relevant for simulation models, which consist of multiple processes that
all have states. Selection of representative states and encapsulation into system states is therefore
essential for test model design, as explained earlier. A remedy against defining many state transitions
by hand is to make submodels of separate processes in the SUT, and to compose these into larger
state machines. This is supported even by some MBT tools, but it has not been explored in this project.

Some literature on MBT of real-time systems, which deal with similar problems as in this project,
have used transition-basedmodels where time is kept as a variable that is different from other variables.
For example, the case study by Poncelet (2016) uses timed input-output systems with timed automata,
where advancement of clocks is done separately from the state machine. It is advised for further
research to focus on such model notations for tests that involve timing issues.

1Luckily, for M/M/1 queue such faults would lead to mean outputs that are different from the analytical solution, which may be
noticed by the test package once it verifies the steady-state outcomes from multiple simulation runs.
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7.3. Requirement-based testing and modular approaches
Subquestion 3 has been defined as was found in that functional, black-box testing is strongly recom-
mended for MBT. It has been found in the literature study that the term ‘black-box testing’ can refer to
two closely related concepts: test design based on the SUT’s requirements instead of its implementa-
tion, and tests where the SUT’s internal states are not accessible.

Feasibility of black-box tests
It seems that requirement-based test design is an ideal. It is hypothesized in literature that doing
design of the abstract model only based on the functional requirements will improve the test quality.
This hypothesis cannot be discussed based on this project’s results, as test quality is not within the
scope, and the validity of the developed test packages has not been assessed. However, it has been
demonstrated that model-based black-box tests could need a different test model design compared to
more white-box tests. The test package for Airport has been developed for this purpose. For further
discussion, it must be noted again that what counts as the SUT’s interface and its internal variables is
arbitrary; this can be changed for testing purposes.

As said earlier, the requirements for M/M/1 queue and components of Airport are similar: both
should simulate a server with a capacity of 1 and a queue. The test model for M/M/1 queue follows
what state the SUT is in: it is made for a reactive test where the SUT’s state determines what state
the test model transitions to. The test model for Airport on the other hand models what state the SUT
should be in. The test model’s state transitions are based on the SUT’s interface only, where ‘arrivals’
are the inputs that the SUT gets, and ‘departures’ are outputs of the SUT. The idea in this project is
that this is a more black-box design, compared to the test package for M/M/1 queue, because the SUT
is seen as a black box. The test model has access to fewer internal variables of the SUT.

This approach seems more in line with the approaches to MBT found in the case study review of
Section 2.4: the same inputs are used on the SUT and on a behavior test model of the SUT. The
difference to most existing case studies is that no environment test model had to be used for Airport:
the inputs are taken from other components of the SUT. This is thus an example of integration testing,
where a component is tested in its actual environment.

Three points can be made on the idea of more black-box testing. Firstly, the test model development
was still done with knowledge of the SUT’s implementation in mind, so it is not truly requirement-based
testing. Secondly, the test model for Airport had to be made more complex than the test model for
M/M/1 queue, as it is based on minimal information. This means that its test model almost has the
same functionality as the SUT; it could be seen as a reference for the SUT. Of course, for testing more
complex SUTs, one would be advised to develop a test model that focuses only on the core functions
of the SUT. And thirdly, a developer may be more tempted to design the test models based on the
SUT implementation, when reactive testing is used. In non-reactive tests, the SUT’s states are only
accessed for oracles. But in reactive tests, the SUT’s states are accessed to influence path generation
as well. This closer integration between the test model and SUT thus means that the test design may be
more implementation-based, or more white-box. This idea is not only relevant for testing of simulation
models, but for any type of SUT.

Modular approach to MBT
Another hypothesis was added in Chapter 2 that black-box testing may give two additional uses for
MBT: one test model could be used to test SUT components, or to test SUTs with similar functionalities.

For the first use case, it has been demonstrated with the test package for Airport that one test model
can indeed be used to test components of a SUT that are very similar. Unfortunately, an attempt was
unsuccessful to develop a test package where multiple test models test multiple components of the
SUT, ideally during one run. It is unclear how path generation should traverse the different test models,
while the SUT’s states change for every time advancement. Concurrent states and parallel execution
may solve this problem, and much research on MBT with concurrent states is available. However, this
will make test development more complex.

For the second use case, the test package for Airport has not been executed with other similar SUTs
due to lack of time. It is likely that this is possible: the test model includes an impromptu message
protocol that could be used on other SUTs with minimal effort. This alleviates the problem mentioned
in literature, that development of mappings is time-intensive. In conclusion, using a test package on
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similar SUTs could be an interesting step in further research. It can further demonstrate the usefulness
of using abstract test models.

Approaches to verification based on oracle specification and types of inputs
The three approaches to verification, as distinguished in Section 2.4.2, are also relevant to discuss the
difference between black-box andwhite-box testing. These approaches are now repeated: 1) step-by-step
verification of endogenous variables, 2) verification of responses to exogenous variables, and 3) verifi-
cation of a simulation model’s results, given its initial input values. This classification was made with the
idea that different levels of oracle specification are needed and that the SUT’s state should be verified
after every time advancement. These approaches are now linked to the levels of oracle specification
mentioned throughout this report. An overview is given in Table 7.1

Table 7.1: Levels of oracle specification and approaches to verification as mentioned in this project

Level of oracle specification Approach to verification Done in test
package

Oracles on many steps for internal logic of
generated events

Verification of dynamic behavior A, B, C

Oracles on some steps for correct response
or time constraints

Verification of dynamic behavior, Verification
of responses to exogenous inputs

C

Oracles at last step of test case, Oracle of en-
tire test suite

Verification of (end) results B

The first approach, step-by-step verification of endogenous variables, is the main idea behind the
test models that have been developed. It seems that most existing MBT applications also use a step-
by-step approach, with oracles specified to all steps of the test case. However, now that every step of
the test case can lead to endogenous events in the SUT, because it is a simulationmodel, the test model
could make verdicts on every event that SUT generates. Evaluating the SUT’s state for each step and
specifying oracles for many steps then seems more like a white-box approach. It can be explored in
further research whether this step-by-step approach is useful for structural testing of simulation models.

The second approach, verification of the response to exogenous variables, is partly done in test
package C. A component within the SUT is tested, of which the inputs from other components can
be seen as exogenous events. The test model determines within what time the SUT should respond
to these events, and checks this. This test model is designed somewhat differently for this purpose:
it uses multiple implicit time advances associated with the vertices, see Section 5.3.2. However, test
package C is made for monitoring only, while verification of the response to inputs would be most useful
for mediated and explorative runs, where the test model gives inputs to the SUT during a simulation
run. That is in line with controlling the exogenous stochasticity of a simulation model, in order to make
dynamic verification more feasible, as proposed by Mihram (1972).

The third approach has been explored in Chapter 6, where oracles are only specified for the end
results of (multiple) simulation runs, specifically for the means of results. This is clearly a black-box
approach. It could be useful for more complex simulation models to consider the other options men-
tioned in Chapter 2, such as verification of intermediate results or time series analysis techniques. This
approach is now further discussed.

7.4. Verification of results of a simulation run
Subquestion 4, the automated verification of a simulation model’s results, has been explored in Chapter
6. A point must first be made on the research design itself. Functional requirements for verifying results
should be specified differently than those for step-by-step verification of dynamic behavior. For dynamic
verification, the functional requirements could thus specify which events the simulation model (being
the SUT) may generate given its state and inputs. For verification of the simulation model by its results,
the functional requirements should include some known solution or an expected range of outputs of
the system that the simulation model is modeled to.

It can be concluded from the developed case studies that verification of the dynamic behavior is
the goal that is most in line with the functionality provided by MBT techniques. Verification of the
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results of multiple simulation runs, on the other hand, does not necessitate the use of test models as is
done for MBT. Oracles only need to be specified to compare the SUT’s results to the expected results,
given the initial conditions. Analysis of the results of multiple runs is however an important step for
the verification of simulation models, and after this for validation as well. One can think of a simulation
model that generates the correct events and responds to exogenous inputs as specified, but that still
gives outcomes that are not correct. This could be especially true for the stochastic simulation models
used in modeling and simulation for decision-making (M&S).

Therefore, an attempt has been made to combine verification of dynamic behavior and verification
of simulation run results in this project. Chapter 6 shows that this is feasible, but that it is best to
separate test cases for dynamic verification from test cases for validation of results. This is because
of a trade-off for how long tested simulation runs should be: step-by-step testing as is done in MBT
is computationally expensive, while the statistic analysis used on the results often necessitates many
long simulation runs.

7.5. Advantages and disadvantages of AltWalker
Throughout the project, the features and problems with the MBT software tool of choice, AltWalker,
have been explored as well. It is found that the GUI editor is useful for quickly building test models,
and that it is convenient that test mappings can be written in Python using common testing libraries.
A disadvantage for practicality is that the functionality is scattered across two programs: Java and
Python. A bug in communication between these programs makes AltWalker not suited for step-by-step
testing of simulation models.

For efficiency, it would be nice if some conditions were continuously checked, regardless of which
state the test model is in. This is useful for ending the test execution when a time value or error
has been reached, or to temporarily disengage the entire test model until a condition holds. This last
approach would be helpful for efficiently testing long simulation runs, where a different behavior pattern
is expected later on.

Other missing features are concurrent states, conditional transitions between submodels, and par-
allel execution of test cases. Concurrent states would especially be useful for testing multiple compo-
nents of one simulation model at once. It was found during the selection process that other open-source
Python-based MBT tools lack similar features. It is recommended to reconsider these options and to
check if batch execution and analysis of multiple test cases is supported.
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Conclusion

This report has discussed how model-based testing (MBT) can be applied for the dynamic verification
of simulation models. This has been done first by a literature review to find MBT options that may be
relevant for testing simulation models. MBT taxonomies and case studies have been considered for
this. These options have been further explored in new case studies, consisting of test suites for three
simple simulation models. This is done to see what considerations a test developer may encounter
during test development. An existing MBT software tool has been selected for this purpose. The
requirements and preferences for the selection process of this tool have been based again on the
relevant options for MBT of simulation models.

It is found that current MBT literature and MBT software tools are mostly not focused on testing
simulation models. Most literature found on this topic consists of case studies, where it is often not
described what options for test model design are considered, and how the choices can be justified.
Moreover, often only some steps of the testing process are automated. Most existing case studies
further do not describe the influence on test model design that some unique properties of simulation
models may have: timed variables, many states at once, stochasticity, unknown output traces, and
large input spaces.

Three main topics have been explored in this thesis: verification of dynamic behavior during a sim-
ulation run, verification of a simulation model’s results against known solutions, and the distinction
between black-box and white-box testing. This demarcation into topics is based on the idea that ver-
ification of dynamic behavior is in line with the step-by-step approach commonly used in SUT, while
verification of (end) results, given the initial inputs, is a common step for testing simulation models.
The implications of black-box testing are deemed important as well, because test design based on
requirements only is often advised for MBT.

It is demonstrated how a test package can combine dynamic verification and verification of results,
but that MBT techniques are only needed for the dynamic verification step. Moreover, verification
of results may necessitate long simulation runs, while long simulation runs are taxing for dynamic
verification as this is computationally expensive. It is therefore advised to use different test suites for
these two purposes. Automated verification of end results can be regarded as a better choice than step-
by-step dynamic verification for testing whether a simulation model’s aggregate results or variance in
results is conform an (analytical) solution or another validated model.

The development of different case studies has indicated that black-box testing, where only the inter-
face of the system under test (SUT) can be accessed, may necessitate a more complicated test model.
This is because test models for this purpose can only work if they model the SUT’s state, whereas test
models for more white-box testing can access and follow the SUT’s internal states. Modeling the SUT’s
state implies that the test model needs more internal variables, state transitions, and guards.

It is found through literature search that some options for MBT are advised for SUTs that have
properties that are similar to simulation models, namely timing constraints, nondeterminism, and a
reactive nature where the response to inputs depends on the internal states. Online, reactive test
execution is seen as the best option, as the generation of test cases can be directly influenced by the
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SUT’s internal states on a step-by-step basis. Furthermore, it is decided to automate as much of the
testing process as possible, since automation is one of the main reasons to use MBT.

The technology needed for model-based test case generation and test execution is already pro-
vided by existing MBT software tools. Therefore, this project has mainly focused on another dimension
of MBT: test model specification. It is found that transition-based test models are most commonly
used, recommended, and supported for MBT. Other aspects of how the test models should be de-
signed are left open for exploration in three case studies. Each case study shows the development of
a test package for MBT of a simple simulation model. Simulation models that use different modeling
paradigms have been to explore whether this has an influence on how test models should be designed.

By developing test models for the case studies, it is found that event triggering in the SUT is an
important design choice. A property of simulation models is that they will generate endogenous events
when their logical time is advanced. This means that some simulation models do not need exogenous
inputs during a simulation run to show their normal behavior. With such simulation models as SUT, a
test model only has to give ‘time advance’ instructions as input to the SUT during a run, along with initial
values at the start of a run. This approach is named a ‘monitoring-only’ run. Alternative approaches
named ‘mediated’ and ‘explorative’ runs are defined in this report, but have not been implemented in
the case studies. These involve a test model that gives exogenous inputs to the SUT during a run,
along with the instructions for time advancement.

The case studies demonstrate options for test model design using a monitoring approach. The test
models are made to closely follow the SUT’s current state. This demonstrates the usefulness of online,
reactive tests for MBT of simulation models: the test model is aware of what the SUT does and can
select relevant oracles accordingly. The problem of test abstraction can be approached with this in
mind: the SUT can be abstracted into representative states or patterns of behavior, based on when
different assertions would be relevant.

Combined with a step-by-step approach, where the expected behavior is generated and checked
for each time advancement, this monitoring-only design can already give a modeler insight into when,
where, and why faults occur. This can be seen as an advantage of MBT over manual testing for
simulation models specifically: checking what happens at every time advancement by hand would be
labor-intensive, especially as verification of simulation models often necessitates that many simulation
runs are analyzed.

It is argued that this ‘monitoring-only’ approach is not in line with how MBT has been applied for
testing reactive systems in case studies from previous literature. Usually, a test model simulates what
the SUT should be doing, instead of following what the SUT is doing. One example is therefore de-
veloped of a test model that uses the same inputs as the SUT gets, in order to generate the SUT’s
expected behavior. It is shown that this necessitates a more complex abstract model. This approach
can be applied to use MBT for another potential advantage: reusing test models to test similar com-
ponents within SUTs, or to test similar SUTs. This use has not been successfully demonstrated in this
project. An extensive effort into this topic may lead to composable test packages, that can test different
compositions of SUT components and their interoperability.

The aforementioned alternatives to the ‘monitoring-only’ approach are be more in line with how
MBT is often used, namely with a test model that gives exogenous inputs to the SUT during a run.
This can be done to trigger specific events in the SUT, or to test its response to inputs. This approach
may demonstrate additional benefits of using MBT. The approach can be useful for component and
integration tests, where the test model simulates the environment that a SUT normally interacts with.
It can also be used to generate more efficient test cases as specific events could be triggered in the
SUT, without waiting for those events to be generated by the SUT itself. This approach is therefore
recommended for further study.

Lastly, it is found that existing case studies from literature often do not mention on what level oracles
are specified, while this is an important choice for test design. In the case studies developed in this
project, the SUT’s state is evaluated after every time advancement, and oracles are specified for rele-
vant state transitions. This approach is called ‘step-by-step’ and is found useful for the monitoring-only
testing of dynamic behavior as done in this project. It is hypothesized that verification of the response
to exogenous inputs does not necessitate oracles for every step. Furthermore, it is found for the veri-
fication of a simulation model’s results, only oracles are needed that compare the results at the end of
a run to known solutions, given the initial conditions.
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In conclusion, this project has demonstrated that MBT of simulation models is feasible and that it
is most useful for verifying the dynamic behavior. Test suites generated with MBT techniques can be
combined with other verification techniques to give a full assessment of a simulation model’s functional
behavior. A focus on test model design by developing case studies for different SUTs has highlighted
an approach where a test model follows the SUT’s states and selects relevant oracles, as assertions
functions, accordingly. Other approaches where the test model provides inputs to the SUT during a run
have been described, but not demonstrated.

Recommended further steps are the development of test models to test simulation models that show
different patterns of behavior. Furthermore, test models should be developed that give inputs to the
SUT during a run. And lastly, test packages should be proven useful by showing that they can detect
faults in mutant SUTs, as is done in other research.
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A
Functionality of AltWalker

This appendix gives details on the functionality of AltWalker, in addition to Section 3.2. Mainly the
features, problems, and added functionality that are relevant to this project are given. For a full under-
standing of AltWalker and its uses, the reader is referred to “AltWalker 0.3.1 Documentation” (2023).

The reader is again referred to the code of the simulation models and test packages as developed
in this project, on https://github.com/montequercus/MBT-sim

A.1. Model specification
A.1.1. Additions to abstract models
The notation of abstract models, or directed graphs, in AltWalker is discussed in Section 3.2.1. It can
be added that functions in the test scripts can be re-used by using elements that have the same name.
Furthermore, AltWalker’s documentation mentions that (only) vertices are used to execute assertions
on the SUT’s output, but that is not true in practice. Edges and their associated functions in the test
script can be used for this as well. Thus, the only real difference between vertices and edges is that
edges can have guards. The modeler can specify a start vertex where the path generation should
always start. An end vertex is not mentioned in the documentation, but can be implemented by setting
a requirement on one vertex, and running with a requirement_coverage option.

A.1.2. Stopping path generation based on variable
An important feature in this project would be to stop path generation and test execution based on the
value of a graph variable or SUT variable, as explained in Section 3.2.1. That would enable path
generation to stop once the SUT reaches its simulation end time. This cannot be specified by simply
setting a length for path generation, because the path length needed in the abstract model to reach a
certain time in the SUT is unknown before running a (stochastic) reactive test. AltWalker unfortunately
has no built-in stop condition that checks the graph variables. Options have therefore been explored
to stop test execution based on a variable, such as time, from either the abstract mode, the test script,
or the test execution script.

Options on how this is possible are explored by use of an example: an abstract model and a SUT
simulation model both have time variable 𝑡. The test case must end if 𝑡 reaches 50. An option is to
create an end vertex, for example named v_end, in the abstract model. The abstract model can then be
run with generator option random(reached_vertex(v_end)), as was done for the example in Figure
3.1. However, for this option it is necessary that many vertices will have an edge to v_end, with a guard
t==50 on each edge. This will make more complex abstract models unnecessarily confusing and less
adaptable. An advantage of this options is that it can be easily combined with other conditions (guards)
for when a simulation run should end, for example due to an external event. For this reason, this option
is used in some of the test packages developed in this project.

Unfortunately, the need to add many edges to an end vertex cannot be avoided by running with the
random(requirements_coverage(<int>)) option, and setting requirements on all edges or vertices
where the time 𝑡 is increased. This will not work, because a requirement will only be counted by Alt-
Walker the first time that it is passed. Similarly, the simple length<num‐of‐elements> stop condition
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is also not an option. It is unknown how long a test path needs to be for a given SUT simulation end
time, because the SUT is stochastic.

Another solution is to force the execution to stop from the test script, instead of from the abstract
model. This seems sensible, as the test script has direct access to the current simulation time of
the SUT, so it can easily check if the end time is reached. However, no function has been found
that will successfully end the AltWalker test case from the test script in a normal way. Calling the
tearDownModel() or tearDownRun() functions from another function in the test script does nothing:
the functions are not executed. An option is to force some function to throw an exception, so that
AltWalker is forced to immediately execute tearDownModel() and end test execution. This works, but
it has disadvantages: this will give the verdict ‘failed’ for every test case, and the coverage will not be
indicated as 100% in the coverage report.

There is no method found as well to stop test execution from the test execution script, because
this script cannot be ‘accessed’ from the test script or vice versa during test execution. AltWalker
API functions like planner.stop() and function.restart() can therefore not be executed when
relevant to stop a test case.

A.2. Test generation
AltWalker gives many options on how a path will be generated through the graph. A model can be
run with different path generation options; this adds flexibility to the test design. A path generation
option is given by a combination of a Generator along with a stop condition. These can be related to
concepts known from the taxonomies of MBT (see Section 2.3): the generators give the test generation
technologies, and the stop conditions give the test selection criteria.

The four available generators can be categorized as follows:

• Random generation: The random generator will generate a random path through the graph. If a
vertex has multiple outgoing edges, an edge will simply be chosen with equal probabilities. These
probabilities can be influenced with the weighted_random generator. For this to work, weights
must have been set on (some) edges in the graph itself. Note that guards are respected by all
generators.

• Graph search algorithms: The options quick_random and a_star try to generate the shortest
path through the graph that satisfies the stop conditions. This is done with path search algorithms,
respectively Dijkstra’s algorithm and A*.

Thus, test generation technologies like (bounded) model checking and symbolic execution are not
supported with the simple directed graphs that AltWalker uses. The stop conditions options are now
related to the known test selection criteria.

• Structural model coverage criteria: The percentage of vertices or edges that must be covered
can be set with vertex_coverage(<percentage>) and edge_coverage(<percentage>).

• Requirements-based coverage criteria: The tester has options to ‘steer’ the path generation
through certain elements. The option requirement_coverage(<percentage>) is used to give
the percentage of requirements that must be covered. For this option to work, certain elements
must be taggedwith a ‘requirement’ field. Similarly, dependency_edge_coverage(<threshold>)
is used to specify a threshold. Dependency values can be set on edges. The path generation will
only stop if all edges with a dependency equal or greater than the threshold have been traversed.
Lastly, reached_edge(<name>) and reached_vertex(<name>) are used to specify a specific
element that must be passed. These can thus be used to specify an end element for the test.

Data coverage and random generation are thus test selection criteria that are not supported out-of-
the-box by AltWalker. It is review in Section 3.2.5 and the case studies if and how functionality can be
added for these criteria.

Note that certain path generation options can lead to (long) paths of unpredictable length. For
instance, a large graph with run with random(edge_coverage(100)) will generate a path of different
length each time, and no seed can be set for this in AltWalker. If the graph would contain a deadlock,
this test generation would even go on indefinitely. Endless path generation can be prevented with
stop conditions length(<no_elements>) or time_duration(<seconds>) to specify the (maximum)
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number of elements or time duration to do path generation. If needed, endless path generation can also
be chosen by running with random(never). If a vertex is reached from which no edges are available
(given the guards), then AltWalker will stop path generation and mark the test as ‘failed’. It is further
explored in Appendix A.1.2 how SUT simulation runs of fixed length can be tested with AltWalker.

An example of a simple directed graph and its features is given in Section 3.2.3.

A.3. Test execution and APIs
The file structure used by AltWalker and the general test execution process are given in Section 3.2.4.
This appendix gives further details on how the AltWalker API and GraphWalker REST API are used,
and which problems are known with these. For a full understanding the reader is referred again to the
documentation, see ”API documentation” (2023b) .

A.3.1. Executing test cases from a Python script
The term test execution script has been introduced for a Python script that sets up and executesmultiple
test cases. It uses AltWalker API functions and classes from the altwalker library to do so. Three
classes must be initialized: a Planner, a Executor and a Reporter. The purposes of these classes
can be understood by considering the general function of an (online) MBT package again, which was
shown in Figure 2.1. The scheme of how all programs and objects are used was given in Figure 3.2.

Firstly, the Planner is the test path generator. It specifies which model(s) should be run and with
what generator option(s). AltWalker relies on the Java application GraphWalker CLI for path generation.
In online testing, AltWalker will request the next step on the path from GraphWalker if it has finished
its current step. Secondly, the Executor functions as a test case generator and test execution tool
combined. For each step on the path, the associated function from the test script will be run. The test
script thus gives the mapping of instructions. The test script is also used as the adapter in this model,
because it sets up the SUT’s run. This can be done by simply importing the SUT as a module, since all
SUTs are written in Python for this project. Lastly, one or multiple Reporter are used to print or export
the test verdicts and coverage report. The test verdict can be displayed step-by-step: each element
on the path is displayed, along with the verdict ‘pass’ or ‘fail’.

The Planner, Executor, and Reporter are combined into a Walker class instance. This is what
is ultimately used to run tests with the command Walker.run(). The test execution script must also
contain an instance of the class GraphWalkerClient that sets up the GraphWalker Java process.
Communication between AltWalker’s Planner and GraphWalker is done with TCP/IP messages, so a
port must be opened.

A.3.2. Options for automated testing of multiple simulation runs
As established in Section 3.2.5, it is important that multiple simulation runs with different input param-
eters can be tested automatically with one test package. This functionality is not included in AltWalker
itself, and has been built into the test execution script. This appendix explains three approaches that
have been explored. Two options that were not chosen to be used in practice are discussed first.

Batch runs from one test case run
A first option considered is to use built-in functionality of AltWalker and/or GraphWalker for batch runs.
However, no such functionality exists, or it is not documented thoroughly enough. The closest func-
tionality in AltWalker is that ”configuration options” can be passed as environment variables in the CLI
to a test package. It is however unclear what is meant with configuration options, and no examples
have been found where this functionality is used in practice. It appears to be a method to pass data
to the directed graph before running a test. That would be useful to set initial parameters for the direct
graph, and to pass the same parameters to the SUT.

Another option is to test a sequence of model runs using one test case. The input parameters
for all runs are then contained or passed to the abstract model. Extra elements should be added to
the abstract model, which indicate that a model run has been finished, and that the graph variables
should be reset and a new model run should be started. This is a feasible option, but it has some
disadvantages regarding practicality. The abstract model becomes more complex: it is then no longer
a behavior model of the SUT, but it contains information about the test environment itself. Coverage
reports will no longer relate to one simulation run, but to multiple, making them harder to interpret.



80 A. Functionality of AltWalker

Furthermore, faults found in the SUT or errors in the abstract model will stop test execution. This would
mean that subsequent simulation runs are not tested automatically, when a fault occurs before. And
lastly, with this option it will no longer be possible to extend the test package’s functionality with parallel
execution of test cases in the future.

Options for automated batch runs from a test execution script
The option used in this project is to declare the experimental set-up in the test execution script, without
using AltWalker functions. The abstract model is reset from the test execution script for each simulation
run that is tested. Input parameters can be sampled by the test execution script, and passed to both the
abstract model(s) and simulation run. For running replications, seeds can be passed to the SUT. This
method alleviates all problems mentioned before of using one test case run to test multiple simulation
runs: the coverage reports and faults are now given per simulation run and are thus easy to interpret,
the abstract model remains a simple behavior model of the SUT, and parallel execution of test runs
could in theory be implemented.

A disadvantage is that the test package now needs additional analysis functions that save and
compare the output from multiple runs. Each test case run will still give the usual test results made
with AltWalker: warnings throughout the run and a coverage report at the end of the run. However,
additional analysis is needed the verify the results from multiple runs. Mostly statistical tests will be
used for this.

A challenge for implementing this option is that both the AltWalker objects and SUT must be re-
set. Additionally, the GraphWalker process could be reset as well, or a new process must be started.
Additionally, input parameters must somehow be passed from the test execution script to the abstract
model(s). Various attempt are developed to achieve this, since no similar implementation has been
found in previous literature or AltWalker code examples.

The general method developed for the test execution script is best explained with the simplified
code, see Listing A.1. Options for the pseudo functions named are given further on, specifically for
starting a new test case run, and for passing input parameters values to the test model and SUT.

ListingA.1: Pseudecode for sampling input parameters andmaking test cases per SUT run from the test execution
script

gw_client = GraphWalkerClient(...)
gw_service = GraphWalkerService(...)

planner = OnlinePlanner(client=gw_client, service=gw_service)
executor = create_executor(...)
reporter = ClickReporter()
walker = Walker(planner, executor, reporter)

num_experiments = 3
num_replications = 5
input_data_dict = {'value1' : [1,2,3],

'value2' : [1,2,3]}

for i in range(num_experiments):
for j in range(num_replications):
startNewRun()
passParametersToModel()
walker.run()
collectData()

Starting a new test case run The function startNewRun() in Listing A.1 indicates that the AltWalker
run should somehow be reset once a test case has completed and a coverage report has been made.
Two viable options have been developed to do this functionality. The first option will keep the Graph-
Walker Java process running. It uses the restart() and reset() options from the AltWalker REST
API:

Listing A.2: Reset AltWalker run but keep GraphWalker Java process running.
for i in range(num_experiments):
for j in range(num_replications):
[...]
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walker.run()
planner.restart()
executor.reset()

The second option will make a new GraphWalker Java process for each test case that is run. This
is simply done by declaring all objects again for each experiment. The Java process of each new
GraphWalker service can be closed with the kill() function. The implementation is as follows:

Listing A.3: Reset AltWalker run and make a new GraphWalker process.
for i in range(num_experiments):
for j in range(num_replications):
gw_client = GraphWalkerClient(...)
gw_service = GraphWalkerService(...)
planner = OnlinePlanner(client=gw_client, service=gw_service)
executor = create_executor(...)
reporter = ClickReporter()
walker = Walker(planner, executor, reporter)
[...]
walker.run()
gw_service.kill()

An advantage of the second option is that it could be adapted to allow for parallel execution, because
separate GraphWalker services are used. The current implementation is unfortunately still sequential,
because the next iteration of this loop will only be executed once walker.run() has finished. Note
that while the service can be killed, the TCP/IP ports used by the client cannot be killed. This problem
is discussed in Section A.3.3.

Passing parameters to the test model and SUT Two working options are made as well to pass
(input) parameters from the test execution script to the test model(s) and SUT. AltWalker’s aforemen-
tioned data functionality can be used again to pass parameters to the abstract model. This is a method
to give initial values for graph variables if needed:

Listing A.4: Function in test execution script for passing input parameters to the abstract model.
for i in range(num_experiments):
for j in range(num_replications):
[...]
for key, value in input_data_dict.items():
planner.set_data(key=key, value=value[i])
walker.run()

The problem still remains on how to pass variables to the SUT. As mentioned earlier, the test script
contains instructions that are executed on the SUT. Because all SUTs are made as Python scripts in
this projects, the instructions are run on the SUT by simply loading the SUT as a module in the test
script. Thus, the SUT and test script can be regarded as one program. The problem can therefore be
rephrased as: how can data be passed from the test execution script to the SUT? Unfortunately, there
is no direct connection between these two programs. A solution for this first method is to pass any data
for the SUT first to the abstract model. This data can be saved in graph variables that remain unused
by the abstract model. The test script can then access these graph variables with the data functionality
and use them to initialize the SUT in the setUpRun function.

It is crucial that the SUT is reset as well from the test script. This is can be done with the reload()
function from the importlib library. An example is given for the test script:

Listing A.5: Function in test script for loading input parameters from the abstract model.
import importlib
import SUT_script as SUT
[...]

class ModelName(unittest.TestCase):
def setUpModel(self, data):
# Load parameters from abstract model
self.seed = int(data['seed'])
self.val1 = int(data['val1'])
self.val2 = int(data['val2'])
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# Reset SUT
importlib.reload(SUT)
# Make SUT objects with new parameters
[...]

The second option works the other way around. The test execution script exports the input pa-
rameter data to a JSON file. This file is loaded into the test script during the setUpRun or setUpModel
function. The input parameters that are relevant to the abstract model are passed to the abstract model
using the data functionality. The data is passed to the SUT by either loading the data JSON in the
SUT script or from the test script. This method is implemented as follows:

Listing A.6: Function in test execution script for passing parameters to the test script directly via a JSON file.
import json
[...]

for i in range(num_experiments):
for j in range(num_replications):
# Get parameters for this experiment
params = {'val1': input_params_dict['val1'][i],

'val2': input_params_dict['val2'][i],
'seed': seeds[j]

}

with open(' SUT_settings.json', 'w') as f:
json.dump(params, f)
walker.run()

A clear disadvantage of the first method is that the abstract model must be changed: the variables
to be passed to the SUT must be initialized as graph variables. An advantage of the first option is that
it may be easier to adapt for parallel execution: there is no JSON data file that can be overwritten.

A.3.3. Problems with communication between AltWalker and GraphWalker
A problem with AltWalker was encountered while developing test packages for the case studies. The
problem is that GraphWalker stops path generation and throws exceptions when test packages are
run that have use long SUT simulation times and/or many experiments. It is found that this problem
is caused by how communication is done between AltWalker and GraphWalker, which causes the
computer to run out of TCP/IP ports.

Diagnosis of the problem
More specifically, a GraphWalker service is run in a Java process and uses one port. AltWalker’s
Planner class is a client that communicates with this service using TCP/IP request. Upon inspection,
it is found that AltWalker will create a new port for every request made to the GraphWalker service.
This means that if many requests are made in a short time, the system will eventually run out of ports.
This problem occurs both when experiments are run using one GraphWalker service, or when a new
GraphWalker service is started and closed for each experiment. It is unknown whether this is a bug; a
more logical method seems to be using one port for all requests.

This problem is hard to solve. Declaring another IP address for the service does not work: the
problem is with the client, and that will always use address 127.0.0.1. The function GraphWalk‐
erService.kill() is successful in closing the Java process, but this will not close the ports as well.
The ports cannot simply be closed by closing another process or with system commands because they
are in TIME_WAIT state. Microsoft Windows, the operating system used for this project, assigns a spe-
cial process ID to ports in this state, that is different from the IDs of the associated Java and Python
processes. It does not allow these ports to be closed manually. TIME‐WAIT ports will automatically be
closed a few minutes after the last message in all operating systems.

Temporary solution in test packages
Due to time constraints no true solution is developed. The problem is mitigated for now by pausing the
execution in Python periodically for two minutes, so that all TCP/IP ports in TIME‐WAITING state will be
closed automatically. A convenient implementation of this in a test package, is to introduce the function
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time.sleep(120) in the test execution script after each experiment has finished. Test package B will
however run out of ports during the first experiment already. This is because it has an experimental
set-up with high simulation end times, and the SUT M/M/1 queue needs many simulation steps, thus
much communication between AltWalker and GraphWalker is done.

It is found that after approximately 1800 time advances of M/M/1 queue in a test case, the system
runs out of ports. The simulated time is then almost 500 s. With some safety factor, the sleep()
function is executed every 1000 time advances by the test script. A count of time advances is kept
across different AltWalker runs by the test script. If a simulation run has ended, the number of time
advances since the last pause are passed to the test execution script. The test execution script can
then pass it to the AltWalker run of the next experiment as a graph variable.
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