
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

Noise minimization on houses around airports

A thesis submitted to the
Delft Institute of Applied Mathematics
in partial fulfillment of the requirements

for the degree

MASTER OF SCIENCE
in

APPLIED MATHEMATICS

by

Teun Michiel Louis Janssen

Delft, the Netherlands
October 2013

Copyright c© 2013 by T.M.L. Janssen. All rights reserved.

MSc THESIS APPLIED MATHEMATICS

“Noise minimization on houses around airports”

Teun Michiel Louis Janssen

Delft University of Technology

Daily supervisor Responsible professor

Prof. dr. G. Schäfer Prof. dr. K.I. Aardal

Other thesis committee members

Dr. M.J.A. van Eenige Dr. R.J. Fokkink

October, 2013 Delft

Abstract

This thesis was a combined project of the CWI (the national research institute
for mathematics and computer science in the Netherlands) and the NLR (National
Aerospace Laboratory of the Netherlands). In this thesis we examine noise pollution
around airports. Given an airport we will consider the problem maximizing the
number of flights, while minimizing the number of houses suffering more than the
threshold amount of noise pollution. We will formulate this problem as a multi-
objective optimization problem. We will look at the computational complexity of
the problem and its approximability. Using the concept of Pareto optimality we will
consider methods to rewrite our problem to a single objective optimization problem.
Using the methods and the computational complexity and approximability results
obtained, we will construct algorithms to solve them problem. Finally we will use
these algorithm on problem instances to give insights in their performance.

v

vi

Preface

The master thesis marks the end of my study and my time as a student at the TU Delft. Seven
years ago, I started my study mathematics. I want to thank the people who supported me
during these years. I want to thank Chris, Elwin, Jacob, Jarno and Paolo, who I live with most
of these years at the Markt in Delft. I would like to thank Rens en Mark with whom I could
share my love for mathematics, games and other things.

I want to thank my brother Reinier and my little sister Marieke, who always showed interest in
what I was doing. I want to thank my girlfriend Stefanie, who was a great support and kept my
going during my years as a Master student. But I special word of thanks goes to my mother,
who was always there when needed. No matter what I was doing, she was interested and more
than happy to offer a helping hand. Even if she would have to drive all the way to Osnabrück.

I did my master thesis as a combined project of the CWI (the national research institute for
mathematics and computer science in the Netherlands) and the NLR (National Aerospace Lab-
oratory of the Netherlands). I would like to thank them for the educational environment and the
interesting conversations we had during the last nine months. A special thanks goes out to my
roommates Anarchyros and Bart at the CWI, who always were ready to help me when needed
and enjoy the little things in life, while desired. I also want to thank Sander at the NLR for
helping me with obtaining the different problem instances and making them error free. I would
also want to thank Christiaan, Jacob, Jarno and Rens for commenting on me and my writing.

Lastly, I would like to thank my three supervisor Guido, Michel and Theo. I would like to thank
Michel for his interest in my work, always ready to help me or proof read some part of my thesis,
as “optimally as possible”. I would like to thank Theo. Although Markenesse is quite far, it
never stopped you from helping and keeping a watchful eye on my thesis and its progress, either
by email, phone or if needed in person. My last thanks goes out to Guido, who during these
nine months showed my the beauty of discrete optimization. His enthusiasm for the problem we
worked on inspired me during the past nine months and I always looked forward to our meetings.
I felt privileged working with all three of them.

Teun Michiel Louis Janssen
Delft, the Netherlands

September 27, 2013

Contents

1 Introduction 1

2 Preliminaries 3

2.1 Linear programming . 3

2.1.1 Duality theory . 4

2.1.2 Sensitivity analysis . 5

2.1.3 Integer linear programming . 6

2.2 Complexity theory . 6

2.3 Approximation algorithms . 8

3 The model 11

3.1 Problem description . 11

3.2 Big-M formulation . 12

3.3 Maximum feasible subsystem formulation . 13

4 Complexity Analysis 15

4.1 Complexity . 15

4.2 Approximation . 18

4.3 Maximum Covered Edges and Maximum Coverage 21

4.3.1 Complexity and approximability . 22

4.3.2 Extended versions . 24

4.3.3 Integrality gap . 28

4.3.4 Dense k-Subgraph problem . 29

4.4 Summary . 30

5 Pareto optimality 31

5.1 Definitions . 31

5.2 Weighted sum method . 32

5.3 Bounded objective function method . 33

5.4 Normalized normal constraint method . 33

6 Algorithms 37

6.1 Integer linear program (exact) . 37

6.2 Chinneck heuristics . 38

6.3 Dynamic approximation algorithm . 41

6.4 Pre- and postprocessors . 43

7 Experimental results 45

7.1 Linear airport . 45

vii

viii CONTENTS

7.1.1 Description . 45
7.1.2 Results . 48

7.2 Andijk airport . 56
7.2.1 Description . 56
7.2.2 Results . 57

7.3 Random locations . 75
7.3.1 Description . 75
7.3.2 Results . 77

8 Conclusion and further research 81

A Additional results 85
A.1 Model of predecessor . 85
A.2 Relaxing from integer to real valued variables . 86

A.2.1 Andijk airport without measure points on a fine grid 86

B Additional plots 91
B.1 Addition plots linear airport . 91
B.2 Addition plots Andijk airport . 93

B.2.1 Without measure points . 95
B.2.2 Fine grid . 97

C Animations 99

List of Figures

7.1 Linear airport top view . 46

7.2 Linear airport side view . 46

7.3 Noise pollution for flight routines for linear airport 47

7.4 Fronts of maximum flight against minimum houses 48

7.5 Values of x1 and x2 for solutions generated by the Big-M method 50

7.6 Fronts of solutions of maximum flight against minimum houses 51

7.7 Computation time per solution of our algorithms for the linear airport 53

7.8 Values of x1 and x2 for solutions generated by the Big-M method 54

7.9 Values of x1 and x2 for solutions generated by the Chinneck heuristics 55

7.10 Andijk airport layout . 57

7.11 Fronts of maximum flight against minimum houses for Andijk airport 58

7.12 Fronts of maximum flight against minimum houses for Andijk airport for 5 ·105 ≤∑
r∈R xr ≤ 106 . 59

7.13 Solutions - time needed for computation . 60

7.14 Relative of amount of flights per flight routine per solution 62

7.15 Pareto point with maximum number of flights . 63

7.16 Possible violated constraints for Andijk airport 64

7.17 Fronts of maximum flight against minimum houses with Pareto filter 65

7.18 Fronts of maximum flight against minimum houses 67

7.19 Pareto point Andijk airport with infinite amount of flights scheduled 68

7.20 Andijk airport layout with 250 meter grid . 70

7.21 Fronts of maximum flight against minimum houses for Andijk airport with 250
meter grid . 71

7.22 Fronts of heuristics solutions with 250 meter grid and the front of solutions of the
Big-M method on the 500 meter grid . 74

7.23 Aiport layout for airport with randomly generated housing locations 77

7.24 Empirical distribution and fitted distributions for the number of houses per hous-
ing location . 78

A.1 Fronts of maximum flight against minimum houses for Andijk airport with 250
meter grid and no measure points . 87

A.2 Pareto point Andijk airport with infinite amount of flights scheduled 88

B.1 Solutions - time needed for computation . 91

B.2 Fronts of solutions linear airport with postprocessor 92

B.3 Housing location with number of houses per location 93

B.4 Approximation ratio of the number of flights scheduled for the three Chinneck
algorithms . 94

ix

x LIST OF FIGURES

B.5 Approximation ratio of the number of houses with more then the threshold
amount of noise pollution for the three Chinneck algorithms 94

B.6 Fronts of maximum flight against minimum houses with Pareto filter 95
B.7 Relative of amount of flights per flight routine per solution of Andijk airport

without measure points . 96
B.8 Solutions - time needed for computation for Andijk airport with a 250 meter grid 97
B.9 Fronts of maximum flight against minimum houses with Pareto filter for Andijk

airport with a 250 meter grid . 98

List of Tables

4.1 Theoretical results for the route scheduling problem 30

7.1 Performance of algorithms for linear Airport with integer valued flights 49
7.2 Performance of algorithms for linear Airport with real valued flights 52
7.3 Performance of algorithms for Andijk airport . 59
7.4 Computation time with and without preprocessor 64
7.5 Performance of algorithms for Andijk airport after Pareto filter 66
7.6 Performance of algorithms for Andijk airport without measure points 69
7.7 Performance of algorithms for Andijk airport for 250 and 500 meter grid size . . 72
7.8 Performance of algorithms for Andijk airport for 250 and 500 meter grid size with

Pareto filter . 73
7.9 Performance of algorithms for 250 and 500 meter grid for approximating Andijk

airport with a 500 meter grid . 75
7.10 Performance of algorithms for random housing locations 79

A.1 Performance of algorithms for Andijk airport without measure points for 250 and
500 meter grid size . 89

A.2 Performance of algorithms for Andijk airport without measure points for 250 and
500 meter grid size with Pareto filter . 90

xi

xii LIST OF TABLES

Chapter 1

Introduction

Air transport has seen an enormous increase in demand over the last decades and forecast
suggest an increase of 2.3% for the next 7 years [10]. This growth of air transport is likely to
be accompanied with an increase of enviromental pollution. This thesis focuses on the noise
pollution. To fulfill the increasing demand of air transport and taking into account its effects on
noise pollution, it is important to schedule flight movements efficiently, i.e., scheduling enough
flights to cope with the demand while limiting the noise pollution suffered.

Currently the Dutch government attempts to limit the noise pollution by enforcing legislations
on air traffic. One of these legislations prescribes a maximum level of yearly noise pollution
outside a predefined zone around an airport. Inside this zone there is no legal limit to the noise
pollution. The general idea behind this legislation is that, if one is living outside the zone,
the noise pollution will not affect ones quality of life. However even outside the zone one can
experience nuisance due to noise produced by aircrafts [9].

Thus from an environmental point of view one wants to keep noise pollution at a minimum,
while from an economic and operational point of view one wants to schedule an amount of flight
movements in accordance with demand. These are two conflicting objectives and a decision
maker has to strike a golden mean between the two. In the thesis by Jonker [16] this is modeled
as a multi-objective optimization problem. In this problem one tries to maximize the number of
flights, while also maximizing the gap between the legislated maximum level and the total noise
pollution of the flight movements on the zone around the airport. A more formal definition of
the problem can be found in Appendix A.1.

However, since the goal of the legislator is to keep the noise pollution suffered by people living in
the neighborhood of an airport acceptable, we chose to focus on the houses in the vicinity of the
airport. So opposed to Jonker, for noise pollution, our objective will be to minimize the number
of houses suffering more than an acceptable amount of noise pollution. This objective does
more justice to the goal of the legislator. The multi-objective optimization problem this thesis
considers becomes then: maximizing the number of flights, while minimizing the number of
houses suffering more than an acceptable amount of noise pollution given a certain airport. We
will refer to this problem as the route scheduling problem. In this multi-objective optimization
problem we will take into account the effects of the legislation that defines a zone around an
airport.

The goals of this thesis are to find the different features of the route scheduling problem, to find
the connection it has with other known problems and to find efficient and effective algorithms

1

2 CHAPTER 1. INTRODUCTION

to solve the problem.

In line with our goals we will begin by identifying the features of the problem and connections it
has to know problems. Then based on these features and connections we will devise algorithms
to solve the problem. After obtaining these, we will use them to solve problem instances and
look at their performance.

The thesis is organized as follows. In Chapter 2 we will review the mathematical theory needed
for the remainder of the thesis. In Chapter 3 we will describe the problem in more detail and
describe it mathematically. In Chapter 4 we will look at the features of the problem in terms
of and establish connection to known problems. In Chapter 5 we will look at Pareto optimality,
which is concept used to describing optimality in multi-objective optimization problems. Then
in Chapter 6 we will describe the algorithm we use to solve the problem based on the results
of Chapter 4. In Chapter 7 we will consider three different problem instances. We will solve
these problems using our algorithms and analyze their performance. Finally in chapter 8 we will
present the conclusion and our recommendations.

Chapter 2

Preliminaries

In this chapter we will consider some basics definitions and concepts, which we will use in
subsequent chapters. First we will shortly review the basic concepts of linear programming and
sensitivity analysis in linear programming. This theory is based on the book by Bertsimas and
Tsitsiklis [5]. We will use this theory devising our algorithm and solving our problem. Then, we
will consider the basics of complexity theory and approximation algorithms. The theory found
for these two topics is based on the books by Papadimitriou and Steiglitz [22] and Vazirani [26].
The theory found in these sections we be used in Chapter 4 to analyze our problem.

2.1 Linear programming

Linear programs are optimization problems, where one tries to minimize (or maximize) a linear
objective function (sometimes called cost/profit function) given certain requirements to which
it has to comply. These requirements are linear equalities or inequalities. A linear program in
standard form is defined as

minimize cTx
subject to Ax ≥ b

x ≥ 0
. (2.1)

Here c = (c1, . . . , cn)T ∈ Rn is the cost vector, A the coefficient matrix of size m × n, i.e.,
A ∈ Rm×n and b = (b1, . . . , bm)T ∈ Rm the requirement vector. We assume that the columns
of A are linearly independent. The vector x contains the variables x1, . . . , xn. A vector x that
satisfies all the linear constraints is called a feasible solution. A feasible solution x∗ is called an
optimal solution if it is feasible and it minimizes the objective function, that is cTx∗ ≤ cTx for
all feasible solutions x. A linear program for which such a x∗ exist is called bounded. A linear
program is called unbounded if for every constant ω ∈ R there exists a feasible solution x such
that cTx ≤ ω.
The set SLP := {x : Ax ≤ b, x ≥ 0} is called the feasible set and is a polyhedron, i.e.,
the intersection of a finite set of half spaces. It has the property that it is convex, i.e.,
∀x, y ∈ SLP , ∀λ ∈ [0, 1] it holds that λx + (1 − λ)y ∈ SLP . If a polyhedron is bounded it is
called a polytope. A point x ∈ SLP is an extreme point of SLP if x cannot be written as a convex
combination of two other points in SLP . If SLP = ∅ the linear program is called infeasible.
Any extreme point of a polyhedron in Rn can be written as an intersection of n linearly in-
dependent hyperplanes, that are bounding the polyhedron. In the case of a linear program,
these hyperplanes are defined by the linear constraints. A constraint is called tight or active in

3

4 CHAPTER 2. PRELIMINARIES

a point x ∈ SLP if the constraint is satisfied with equality. In an extreme point of the LP n
constraints are satisfied with equality. Of these n constraints m are from Ax ≤ b. The other
n −m constraints are from non-negativity constraints. Such an extreme point is called a basic
feasible solution.
In a basic feasible solution we distinguish between basic variables and non-basic variables. In
our basic feasible solution we have n−m of the non-negativity constraints satisfied with equality.
The n−m variables associated with these constraints are the non-basic variables. The other m
variables are the basic variables. Let B(1), . . . , B(m) denote their indices and let Ai denote the
ith column of the matrix A. Then the basis matrix B is defined as

B :=

 | | |
AB(1) AB(2) . . . AB(m)

| | |

 .
Since the columns of A are linearly independent, it holds that Bx = b and that the values of x
on the indices B(1), . . . , B(m) are determined uniquely by xB = B−1b.
In many optimization algorithms one starts with a feasible solution and after finding one, one
searches in the neighborhood of this feasible solution for a new one with an improved cost. If the
algorithm cannot find a new feasible solution it has obtained a local optimum and terminates.
In linear programming we are minimizing a convex function over a convex space, therefore, a
local optimum is a global optimum. Thus, using an algorithm as described above will give a
global minimum. In order to find a new solution with improved cost, most algorithms use the
concept of reduced cost.

Definition 2.1.1. Let x be a basic solution, let B be the associated basis matrix and let cB
be the vector of costs of the basic variables, i.e., cB = (cB(1), . . . , cB(m))

T . Then, we define, for
each j ∈ {1, . . . , n}, the reduced cost of variable xj as

c̄j = cj − cTBB−1Aj .

Given a feasible solution the objective function can be improved by adding a basis variable for
which c̄j < 0 and removing another basis variable accordingly. To assert that a basic solution is
optimal, we need it to be feasible and to have nonnegative reduced costs.

Definition 2.1.2. A basic solution is optimal if its basis matrix B satisfies the following opti-
mality conditions:

1. It is feasible, i.e., B−1b ≥ 0, and

2. It has nonnegative reduced cost, i.e., c̄T = cT − cTBB−1A ≥ 0.

2.1.1 Duality theory

One topic often considered in combination with linear programming is duality. In duality theory
one considers the original optimization problem (known as the primal problem) and constructs
an associated dual optimization problem. This dual problem gives a lower bound to the solu-
tion of the primal problem. The linear program (2.1) has the following dual problem (or dual
program)

maximize pT b
subject to pTA ≤ c

p ≥ 0
(2.2)

2.1. LINEAR PROGRAMMING 5

Here p = (p1, . . . , pm)T ∈ Rm is the dual vector. There are two import concepts in duality theory
for linear programming. The first one is that he dual of the dual problem is the primal problem.
Thus the primal and the dual problem form a pair. The second one is that the dual problem
gives a lower bound to the solution of the primal problem. This relation will be expressed in
the following two theorems.

Theorem 2.1.1 (Weak duality). If x is a feasible solution to the primal problem and p is a
feasible solution to the dual problem, then

pT b ≤ cTx.

Proof. Suppose that x and p are a primal and a dual feasible solution. Then because of feasibility
and because x ≥ 0 and p ≥ 0, it holds that

(cT − pTA)x ≥ 0

and

pT (Ax− b) ≥ 0

Thus

0 ≤ (cT − pTA)x+ pT (Ax− b) = cTx− pTAx+ pTAx− pT b = cTx− pT b.

Theorem 2.1.2 (Strong duality). If a linear program has an optimal solution x∗, the dual also
has an optimal solution p∗ and the objective value of the two problems is equal, (p∗)T b = cTx∗.

Proof. We consider the dual pair (2.1) and (2.2). Let x∗ be an optimal basic feasible solution
to the primal problem and let B be the corresponding basis matrix. Because x∗ is optimal, it
holds that cT − cTBB−1A ≥ 0. Now, take pT = cTBB

−1. Then, it follows that

0 ≤ cT − cTBB−1A = cT − pTA.

Hence p is feasible. Furthermore cTx = cTBxB = cTBB
−1b = pT b and thus, the two objective

values are equal. This, together with weak duality, proves the theorem.

Note that it is a consequence of weak duality that if the primal problem is infeasible, then the
dual is unbounded, and vice versa. Furthermore, by the proof of strong duality, we know that
if p∗ is an optimal solution to the dual, it holds that p∗ = B−1b, where B−1 is the basis matrix
of the optimal primal solution x∗.

2.1.2 Sensitivity analysis

It is interesting to look at the dependence of the optimal solution x∗ on A, b and c. This is an
important issue in practice because often one does not know the exact values of certain elements
in A, b and c. We will look thus at some methodologies used in sensitivity analysis for linear
programming problems.
After a change of these elements one considers whether or not the original optimal solution is
still feasible and optimal for the new linear program. In other words, one determines whether
or not the optimality conditions are still satisfied. In our case we want to understand what
happens if we change the requirement vector b. Suppose that we only change one entry in the
vector b. The vector b is changed to b + δei, where ei is the ith unit vector. Since b does not

6 CHAPTER 2. PRELIMINARIES

influence the optimality conditoin, we only need to check the feasibility condition for the new
linear program is still satisfied

B−1(b+ δei) ≥ 0. (2.3)

We see that δ is only multiplied with the ith column of B−1. Let β = {β1, . . . , βm} be the ith
column of B−1, then we can reformulate (2.3) as

xB(j) + δβj ≥ 0, j = 1, . . . ,m .

From this it follows that in order for B to also be the optimal basis for the new linear program,
we need that

max
{j:βj>0}

−xB(j)

βj
≤ δ ≤ min

{j:βj<0}

−xB(j)

βj
.

If δ falls in this range, the solution remains feasible and the basis does not change. If for δ the
above equation does not hold, the basis is no longer feasible and thus, no longer the optimal
solution. Given that the above equation does hold, the optimal cost is given by

cTBB
−1(b+ δei) = pT b+ δpi, (2.4)

where p is the optimal dual solution associated with the basis B.

2.1.3 Integer linear programming

Integer linear programming is closely related to linear programming. In integer linear program-
ming one does not only require the variables to be positive, one also requires them to be integer,
sometimes even binary. Let Z+ = {z ∈ Z : z ≥ 0}. Then we can define an integer program as
the follows

minimize cTx
subject to Ax ≥ b

x ∈ Zn+
(2.5)

Where again c = (c1, . . . , cn)T ∈ Rn is the cost vector, A the coefficient matrix of size m × n
and b = (b1, . . . , bm)T ∈ Rm the requirement vector.

2.2 Complexity theory

In computational complexity theory one studies the resources, i.e., the memory and time, needed
to solve a computational problem. One considers the relations between different problems and
at the relations between different classes of problems. These are called complexity classes. These
classes consist of decision problems. A decision problem is an arbitrary yes-or-no question on
an infinite set of inputs. More formaly we have the following definition

Definition 2.2.1. A decision problem Π is given by a set of of instances I. Each instance I ∈ I
specifies the following

• a set F of feasible solutions for I;

• a cost function c : F → R;

• a constant k.

2.2. COMPLEXITY THEORY 7

Given an instance I the objective is to determine whether or not there exist a feasible solution
F ∈ F , such that c(F) ≤ k. If such a solution exist, we will call I a yes-instance, if such a
solution does not exist, we will call I a no-instance.

Note that in our case, we may want to write our multi-objective optimization problems as deci-
sion problems. If we do this we will have multiple cost functions c1, . . . , cs and multiple k1, . . . ks.
We then only have a yes-instance if ci(F) ≤ ki,∀i ∈ {1, . . . , s}.

The two main classes we will consider are the classes P and NP.

Definition 2.2.2. The complexity class P consists of all decision problems for which there exist
an algorithm that for every instance I ∈ I can determine whether I is a yes- or a no-instance
in polynomial-time, i.e., the time it takes to compute a solution to the decision problem, is
polynomial in the input size.

The complexity class P contains, for example, the shortest path problem and linear programming.
Now suppose we have yes-instance I ∈ I for a given decision problem Π, then we say that F is a
certificate for I if F ∈ F and c(F) ≤ k. Every yes-instance I must have at least one certificate,
since otherwise it would not be a yes-instance.

Definition 2.2.3. The complexity class NP consist of all decision problems with the property,
that every yes-instance I ∈ I admits a certificate that can be verified to be a yes-instance in
polynomial time.

The complexity class NP contains, for example, the set cover problem, the traveling salesman
problem and integer linear programming. Although no proof exists, it is considered unlikely
that for all problems in NP there is a polynomial time algorithm solving it, i.e., P 6= NP. But
it is true that P ⊂ NP. Another important subclass of NP is the class NP-complete. This
is the subclass of the most difficult problems in NP. To define it, we first need to define a
polynomial-time reduction.

Definition 2.2.4. A polynomial-time reduction from a decision problem Π1 to another decision
problem Π2 is a function φ : I1 → I2 that maps every instance I1 ∈ I1 to an instance I2 =
φ(I1) ∈ I2 of Π2 such that

1. the transformation is done in time that is polynomially bounded in the input size of I2;

2. I1 is a yes-instance of Π1 if and only if I2 = φ(I1) is a yes-instance of Π2.

Often we will state that if there is a polynomial time reduction from Π1 to Π2 that Π1 can be
reduced to Π2. Note that if a polynomial-time algorithm for Π2 is known and Π1 can be reduced
to Π2, then we can also solve Π1 in polynomial-time. Furthermore if Π1 can be reduced to Π2 and
Π2 can be reduced to Π3, then also Π1 can be reduced to Π3. In other words polynomial-time
reductions are transitive.

Definition 2.2.5. The class NP-complete consist of all problems Π for which it holds that

1. Π ∈ NP, and

2. for every problem Π̄ ∈ NP there is a polynomial-time reduction form Π̄ to Π.

Problems who possesses the second property are called NP-hard decision problems. At first
sight, the second property seems very hard to prove, since one has to find a polynomial-time
reduction for all problems in NP. However, because of the transitivity of polynomial-time
reduction, one can prove that a decision problem Π is NP-hard by reducing a NP-complete

8 CHAPTER 2. PRELIMINARIES

problem Π̄ to Π. Thus, in order to prove that a decision problem Π is in NP-complete one
needs to show that

1. It is in NP, i.e., every yes-instance I ∈ I admits a certificate that can be verified to be a
yes-instance in polynomial time.

2. It is NP-hard, i.e., there is a problem Π0 ∈ NP-complete, which can be transformed in
polynomial time to Π.

Furthermore, we will consider two subclasses of NP-complete. Weakly NP-complete is a sub-
class of NP-complete, where problems can be solved in pseudo-polynomial time. This means
that the problem can be solved in time bounded by a polynomial function in the input size and
the inputs numerical values. The length of storage needed for the numerical values do not have
to be polynomial1. A problem is strongly NP-complete, if it remains NP-complete even if all
numerical values in the input are bounded by some polynomial.

2.3 Approximation algorithms

Because, in general, it is believed that P 6= NP, there is very little hope that we can find
efficient algorithms to solve decision problems, which are NP-complete. Therefore we look at
different kind of algorithms to solve these NP-complete problems.

• Exponential algorithms: These algorithms solve the problem, but in the worst case can
take exponential running time.

• Approximation algorithms: These are algorithms that compute a solution efficiently and
with a certain performance guarantee. In our case we consider algorithms that run in
polynomial time and for which we can prove that they are ‘close’ to the optimal solution.

• Heuristics: In this category are all the algorithms that solve a problem, but cannot give any
formal guarantee on the quality of the solution. Heuristics are interesting when a problem
cannot be approximated well and known exact algorithms take to much computation time.

For all three types of algorithms, it holds that in practice some may perform very well. The
most notorious is the simplex algorithm for solving linear programming. In theory the simplex
algorithm can run for exponential time in the input size, but in most practical instances it solves
a linear program quite fast.
For an exponential algorithm it is required that it computes an optimal feasible solution, while
the time needed to compute this solution is not an issue. A heuristic algorithm only requires a
feasible solution, while one does not consider optimality or computation time. A heuristic that is
neither fast nor performs well will not be considered. For an approximation algorithm one needs
a time guarantee and a performance guarantee. We will consider approximation algorithms that
run in polynomial time and are not more than a certain factor from the optimal solution. More
formally, we have the following definition:

Definition 2.3.1. An algorithm for a problem Π is an α-approximation algorithm (α ≥ 1) if for
every instance I it computes, in polynomial time, a solution such that for the objective value of
the problem ALG(I), it holds that

ALG(I) ≤ αOPT(I) if Π is a minimization problem,

1For example, take the Knapsack problem which can only be solved in pseudo-polynomial time O(nW), where
n is the number of items and W the size of the knapsack. For example if W is 2(2n) then it takes up 2n bits to
represent this number, while the running time is O(n2(2n)) which is exponential in n.

2.3. APPROXIMATION ALGORITHMS 9

ALG(I) ≥ 1
αOPT(I) if Π is a maximization problem,

where OPT(I) is the optimal solution for instance I. α is called the approximation ratio of the
algorithm.

We see from the definition that we desire an approximation ratio as close to 1 as possible.

Inapproximability

For some problems we know an upper bound on how well they can be approximated within
polynomial time. For example, it was proved by H̊astad [14], that the maximum independent
set problem cannot be approximated better than within a factor of n1−ε, for any ε > 0, unless
NP-hard problems have randomized polynomial algorithms. Such a result is called an inapprox-
imability result. Thus, given an NP-complete problem Π1 an inapproximability result states
that there is a function f(n), dependent on the instance size n, such that for the approxima-
tion ratio α1 of Π1, it must hold that α1 > f(n). Inapproximability results are often proven
using approximability preserving reductions. One of the best known approximability preserving
reductions is the L-reduction.

Definition 2.3.2. Suppose we are given twoNP-complete problems, Π1 and Π2, and a polynomial-
time transformation φ : I1 → I2 that maps every instance I1 of Π1 to an instance I2 of Π2. Here
I1 and I2 are the collections of all instances of the given problems. Then, φ is an L-reduction
from Π1 to Π2 if there are constants α > 0 and β > 0 such that, for every instance I1, it holds
that

1. OPT2(φ(I1)) ≤ αOPT1(I1)

2. For every feasible solution F2 of φ(I1), with objective value c2(φ(I1), F2) = γ2, we can find
a feasible solution F1 of I1, with c1(I1, F1) = γ1, such that |OPT1(I1)−γ1| ≤ β|OPT2(φ(I1))−
γ2| in polynomial-time.

Where OPT1(I) and OPT2(I) are the optimal values of the two problems given an instance I and
where c1(I, F) and c2(I, F) are the objective function values given instances I and yes-instance
F for the two problems.

Now suppose we are given a L-reduction from problem Π1 to problem Π2 and suppose that for
the problem Π2 we have a polynomial-time algorithm that approximates every instance I2 of Π2

to within a factor θ. Then, from the L-reduction, we know that Π1 can also be approximated
by a polynomial time algorithm within a factor αβθ. On the other hand, suppose that we know
that problem Π2 cannot be approximated within a factor τ . Then from the L-reduction we
know that Π1 cannot be approximated within a factor αβτ [23]. If for an L-reduction, we have
α = β = 1 then, we have a cost preserving transformation.

Most inapproximability results are obtained in this way by doing a long sequence of reduc-
tions. Often the first reduction in this sequence is the famous PCP-theorem [3, 4, 12]. Without
going in too much detail, the PCP-theorem states that NP = PCP(O(log n), O(1)). Here
PCP(O(log n), O(1)) is the class containing all decision problems that have probabilistically
checkable proofs that can be verified in polynomial time ,using at most O(log n) random bits
and by reading at most O(1) bits of the proof.
One of its implications is on maximum 3 satisfiability problem (MAX-3SAT). In MAX-3SAT
one is given a set of clauses with at most three variables. One tries to find a truth assignment,

10 CHAPTER 2. PRELIMINARIES

such that the maximum amount of clauses is satisfied. The PCP-theorem implies that for some
ε > 0 it is NP-hard to approximate MAX-3SAT within a factor of 1− ε. The result by H̊astad
[14], that the maximum independent set problem cannot be approximated better then within a
factor of n1−ε, for any ε > 0, unless NP-hard problems have randomized polynomial algorithms,
is also due to the PCP theorem.

Chapter 3

The model

In this chapter we will begin by describing the problem mentioned in Chapter 1 in more detail.
After this we will describe it formally as a multi-objective optimization problem. We will find
two formulations, which we will use in subsequent chapters to analyze and solve the problem.

3.1 Problem description

We consider an airport. For this airport we are given the location of its runways and the locations
of houses in its neighborhood. Furthermore we are given a collection of flight routines. Each
flight routine is a unique combination of the following:

• The aircraft type associated with the flight movement.

• The runway used and in what direction.

• The flight procedure the aircraft is following (which incorporates its ascend or descend, its
speed profile and the accompanying thrust settings.)

• The flight trajectory it follows, i.e., the coordinates a flight is traversing in the plane.

Now for every single flight routine and every housing location we are given an amount of noise
pollution that this flight routine confers to that housing location. For the noise pollution on
the houses we are given a threshold. This threshold represent the maximum amount of noise
pollution, that is acceptable.
Around the airport we are also given a zone imposed by government legislations. Outside this
zone the noise pollutions may not exceed a maximum legislated level. The government enforces
this legislation by set set of measure points in the neighborhood of this zone. Since this measure
points will not always be on the zone, maximum levels in the measure points may defer from the
government legislated level. Given these, we will consider the problem of maximizing the number
of fights, while minimizing the number of houses suffering more than the threshold amount of
noise pollution.

We will now formulate this problem as a multi-objective optimization problem. As mentioned
before we will call it the route scheduling problem (RS). For an instance IRS of the route schedul-
ing problem, we have the following sets given

Furthermore we have the following given constants

11

12 CHAPTER 3. THE MODEL

Flight routines {r1, . . . , rm} = R
Measure points {q1, . . . , ql} = Q
Housing locations {h1, . . . , hn} = H

αqr ∈ R+ ∀q ∈ Q,∀r ∈ R Representing the noise pollution of flight routine r
on measure point q

βhr ∈ R+ ∀h ∈ H,∀r ∈ R Representing the noise pollution of flight routine r
on house h

ωh ∈ R+ ∀h ∈ H Representing the number of houses on every
housing location h

θ ∈ R+ The maximum noise allowed by the
government

λ ∈ R+ The maximum noise allowed on
every house

An instance IRS will contain the above constants and sets. Now we introduce the set of variables
x = {xr1 , . . . , xrm} which represent the amount of times a routine r is used with xr ∈ Z+,∀r ∈ R.
Note that sometimes we assume without loss of generality that xr ∈ {0, 1},∀r ∈ R. In this case
we assume that we have enough duplicates of every flight movement in our set R such that we
can take any reasonable amount of every flight movement, i.e., we consider R as a multiset. For
modeling the noise pollution around airports we will consider two different problem formulations;
the Big-M formulation and the maximum feasible subsystem formulation.

3.2 Big-M formulation

We can formulate our problem as an integer linear program using the ‘big-M trick’. In order to
do this we introduce the following set of variables z = {zh1 , . . . , zhn} with zh ∈ {0, 1},∀h ∈ H.
A variable zh is assigned to the constraint corresponding to the housing location h. It is set
to one, if the constraint for house h is violated and to zero otherwise. We want to construct
our problem in such a way that if zh = 1 the constraint for h is always satisfied. Therefore we
introduce the large constant Mh ∈ R+, ∀h ∈ H,Mh � 0, which whenever a housing location
h suffers to much noise pollution makes sure the constraint associated with h is still satisfied.
Thus for every feasible x we need that

∑
r∈R xr −Mh ≤ λ,∀h ∈ H. We have the following

multi-objective formulation ΠBigM of our problem

max
∑

r∈R xr and min
∑

h∈H ωhzh

s.t.
∑

r∈R αqrxr ≤ θ, ∀q ∈ Q∑
r∈R βhrxr ≤ λ+Mhzh, ∀h ∈ H

xr ∈ Z+, ∀r ∈ R
zh ∈ {0, 1}, ∀h ∈ H

(3.1)

Note that if we would impose a ordering on the sets R and H, we can also write our lesser-or-
equal constraints in matrix vector notation.

3.3. MAXIMUM FEASIBLE SUBSYSTEM FORMULATION 13

3.3 Maximum feasible subsystem formulation

It would be better to have a formulation which does not use the big-M method. The problem
with using this method is the dependent on the choice of the Mh’s. If one does not take
Mh,∀h ∈ H large enough one cannot find a feasible solution, while if one take them to large this
may lead to numerically instability ([8, 18]). Therefore in this subsection we will formulate the
problem as a maximum feasible subsystem problem (MFS). In MFS we are given a set of linear
relations and we want to find a solution that satisfies the most of these relations. A relation can
be of the type =, ≥, > or 6=. More formally one is given a linear system Ax3b, with A ∈ Rn×m,
b ∈ Rn and with 3 = {=,≥, >, 6=}, where one wants to find an x ∈ Rm that satisfies the most
linear equations.
In addition to the set of optional relations Ax3b, one sometimes also has a set of binding relations
Cx3d that have to be satisfied, with C ∈ Rl×m, d ∈ Rl. This version of MFS is called the
constrained maximum feasible subsystem problem. Furthermore sometimes one requires x to be
binary or integer instead of real valued. Lastly one can also consider a weighted version of MFS,
where all optional constraints have a certain weight wi assigned to them for all i ∈ {1, . . . , n}.
One then maximizes the weight of the satisfied constraints instead of the number of satisfied
constraints.
Since MFS only has one objective function, we need to get rid of one of the objective functions.
In Chapter 5 we will look at different ways of doing this. For now we will stick to setting a lower
bound on the number of flights. ∑

r∈R
xr ≥ κ

We will proceed by writing our problem as a weighted constrained integer maximum feasible
subsystem problem. We consider the following system of constraints

∑
r∈R βhrxr ≤ λ ∀h ∈ H (optional constraints)∑
r∈R αqrxr ≤ θ ∀q ∈ Q (binding constraints)∑
r∈R xr ≥ κ (binding constraint)

xr ∈ Z+, ∀r ∈ R (binding constraints)

(3.2)

Thus we have a system of n optional constraints and l + n + 1 binding constraints. Lastly we
assign weights to our optional constraints, i.e., wh = ωh, ∀h ∈ H. We will refer to this problem
as ΠMFS. If we would relax xr ∈ Z+,∀r ∈ R to xr ≥ 0,∀r ∈ R in (3.2), we could rewrite our
problem in the general form of a constrained maximum weighted feasible subsystem problem.

14 CHAPTER 3. THE MODEL

Chapter 4

Complexity Analysis

In this chapter we will analyze the problem in terms of complexity and approximability. We
will show the results found in chronological order. We will begin by proving that that the route
scheduling problem is weakly NP-complete and afterwards that it is strongly NP-complete. In
Section 4.2 we will consider the approximability of our problem and will obtain an inapproxima-
bility result. Because of this inapproximability result, we will consider more restricted version of
the route scheduling problem. We will see that given certain restrictions on our input variables
the route scheduling problem is equal to the maximum edge cover problem and to the maximum
multi-coverage problem, two problems which we define ourselves, and to the maximum coverage
problem, which is know in literature. In Chapter 4.4 we will summarize the results found.

4.1 Complexity

We want to investigate the complexity of our route scheduling problem (RS). Therefore we first
need to reformulate it as a decision problem. We will consider for our complexity results ΠMFS

with Q = ∅ and binary variables. This is a special case of RS, where we do not have any measure
points. Thus we want to maximize the number of optional constraints that can be satisfied given
the following set of inequalities∑

r∈R βhrxr ≤ λ ∀h ∈ H (optional constraints)∑
r∈R xr ≥ κ (binding constraint)

xr ∈ {0, 1}, ∀r ∈ R (binding constraints)
(4.1)

Let S(x) be the set of optional constraints satisfied given a specific x ∈ {xr ∈ Z+,∀r ∈ R}, i.e.,

S(x) := {h ∈ H :
∑
r∈R

βhrxr ≤ λ}.

Let |S(x)| denote the cardinality of S(x), i.e., the number of constraints satisfied. The corre-
sponding decision problem for RS is defined as follows

RS-DECISION(R,H, β, λ, κ, c) =

∃x with∑
r∈R xr ≥ κ

xr ∈ {0, 1},∀r ∈ R
such that
|S(x)| ≥ c

 .

15

16 CHAPTER 4. COMPLEXITY ANALYSIS

Now we will prove that the decision variant of RS is weakly NP-complete for c ≥ 2.

Theorem 4.1.1. For c ≥ 2 the route scheduling decision problem RS-DECISION is weakly
NP-complete.

Proof. We first show that a yes-instance can be verified in polynomial time. Suppose that
R, H, β, λ, κ and c are given. Furthermore suppose that we are given a yes-instance, i.e.,
xr ∈ {0, 1}, ∀r ∈ R such that |S(x)| ≥ c.
Then we can verify that this is a yes-instance by checking which of the |H| + 1 constraints of
(4.1) are satisfied, i.e., a matrix vector multiplication, a vector subtraction and a check whether
their signs are positive or negative. If the binding constraint is satisfied and we satisfy at least c
optional constraints, then we have a yes-instance. Since all this can be done in polynomial time
RS-DECISION is in NP.
For the reduction from an NP-complete problem to our route scheduling problem we will con-
sider the equipartition problem (EP). Suppose we have a set of items X = {1, . . . , n} with integer
weights wj for item j ∈ 1, . . . , n and n = |X| even. In the equipartition problem EP one searches
for a subset of the items SEP ⊆ X such that SEP consist of exactly half of the items and the
total weight of the items in SEP is equal to the total weight of the items not in SEP.
We can state the equipartition problem more formally as the following decision problem.

EP-DECISION(X,w) =

∃SEP ⊆ X with∑

j∈SEP
wj =

∑
j /∈SEP

wj
|SEP| = n

2

 .

From Garey and Johnson [13] we know that equipartition is weakly NP-complete. Now we take
for RS-DECISION the following values for its input variables R = X, |H| ≥ 2 and λ = 1. Let
W :=

∑n
j=1wj and wmax := maxj∈{1,...,n}wj . We take κ = n/2, c ≥ 2 and set

βhr =

2wr
W if h = 1

wmax−wr
n
2
wmax−W

2

if h = 2
1
|R| if 2 < h ≤ c
2 otherwise

(4.2)

Thus we have the following binding and optional constraints

∑
r∈R

xr ≥
n

2
(binding constraint)

∑
r∈R

2wr
W

xr ≤ 1 ∀h ∈ {c+ 1, . . . , |H|} (optional constraint) (4.3)

∑
r∈R

wmax − wr
n
2wmax − W

2

xr ≤ 1 (optional constraint) (4.4)

∑
r∈R

1

|R|
xr ≤ 1, ∀h ∈ {3, . . . , c} (optional constraint)∑

r∈R
2xr ≤ 1, ∀h ∈ {c+ 1, . . . , |H|} (optional constraint)

with xr ∈ {0, 1}, ∀r ∈ R. Note that the constraints for h ∈ {3, . . . , c} are always satisfied,
since

∑
r∈R xr ≤ |R|, and that the constraints for h ∈ {c+ 1, . . . , |H|} cannot be satisfied, since

4.1. COMPLEXITY 17

∑
r∈R xr ≥

n
2 , we will therefore not list them explicitly in the discussion below. We can rewrite

the above system as ∑
r∈R

xr ≥
n

2
(4.5)

∑
r∈R

wrxr ≤
W

2
(4.6)

∑
r∈R

(wmax − wr)xr ≤
n

2
wmax −

W

2
(4.7)

Suppose that we have a yes-instance of EP-DECISION. Then by setting xr = 1 if r ∈ SEP and
xr = 0 if r /∈ SEP, we see that (4.5) is satisfied with equality, i.e

∑
r∈R xr = n

2 . Since S is a
yes-instance EP-DECISION we know by our choice of the xr that

∑
r∈R wrxr = W

2 and thus
(4.6) is also satisfied with equality. Now since (4.5) and (4.6) are satisfied with equality also
(4.7) is satisfied with equality and we have a yes-instance of our RS-DECISION.
Now suppose we have a yes-instance of RS-DECISION with the values as above. Then by adding
(4.6) and (4.7) we obtain that

wmax

∑
r∈R

xr ≤
n

2
wmax ⇔

∑
r∈R

xr ≤
n

2

This together with (4.5) yields
∑

r∈R xr = n/2. But this implies that (4.7) is equivalent to

−
∑
r∈R

wrxr ≤ −
W

2
,

which together with (4.6) implies that ∑
r∈R

wrxr =
W

2
.

Hence by letting r ∈ SEP if xr = 1 and r /∈ SEP if xr = 0, we obtain a yes-instance of our
EP -DECISION. Thus RS-DECISION is NP-hard and thus NP-complete.

Note that in the proof of Theorem 4.1.1 we choose the βhr in (4.2) such that in order to have a
yes-instance of RS one must satisfy (4.3) and (4.4). One could say, that we make them binding
instead of optional. We will use the same method in the following proof where we show that for
c large, RS is strongly NP-complete. We will use a polynomial-time reduction from maximum
independent set to prove this.

Theorem 4.1.2. For c = |H| large the route scheduling problem RS is strongly NP-complete.

Proof. From Theorem 4.1.1is in NP. Therefore we will continue by showing a polynomial-time
reduction from maximum independent set to our route scheduling problem. Let G(V,E) be a
graph with vertices V and edges E. In the maximum independent set problem (MIS) one wants
to find a subset of vertices V ′ such that no vertices in E′ share an edge. We will call such a
subset E′ an independent set. We can formulate the maximum independent set problem as the
following decision problem.

MIS-DECISION(V,E,K) =

∃x with∑
v∈V xv ≥ K

xu + xv ≤ 1, ∀{u, v} ∈ E
xu ∈ {0, 1}, ∀u ∈ V

 . (4.8)

18 CHAPTER 4. COMPLEXITY ANALYSIS

Thus this decision problem tells us whether or not a graph has an independent set with cardinally
K or more.
For the route scheduling problem take R = V , H = E, λ = 1 and

βhr =

{
1, if r ∈ {u, v} and h ∈ {u, v}
0, if otherwise

Furthermore take κ = K > 0 and c = |E|. We will show the following: there is a independent
set with cardinality K or bigger if and only if there is a feasible solution to RS with κ = K or
more flights scheduled and satisfying c = |E| constraints.
Suppose we have a yes-instance of MIS-DECISION. We take R, H, λ and β as above and we set
xr = xu. Then we have an instance of RS-DECISION that satisfies c = |E| optional constraints
and for which

∑
r∈R xr ≥ κ = K, since

∑
v∈V xv ≥ K = κ. Thus we have a yes-instance of

RS-DECISION.
Now suppose we have a yes-instance of RS-DECISION with input parameters as above. Then it
holds that

∑
r∈R xr =

∑
v∈V xv ≥ K and since c = |E| it also holds that ∀{u, v} ∈ E, xu+xv ≤ 1

by our construction of β. Thus we have a yes-instance of MIS-DECISION. Hence a yes-
instance of MIS-DECISION corresponds to a yes-instances of RS-DECISION and thus the route
scheduling problem RS is strongly NP-hard for large c (i.e., c = |E| the number of edges of the
maximum independent set problem).

Now that we know that RS is NP-complete for c ≥ 2 we are interested in whether or not the
problem is also NP-complete for c = 1 the following theorem shows it is not.

Theorem 4.1.3. For c = 1 the route scheduling problem RS is polynomial-time solvable.

Proof. If c = 1 we want to find (at least) one optional constraint that we satisfy. Suppose that we
are given a certain constraint υ. Then we can formulate a decision problem RS(υ)-DECISION
to decide whether we can satisfy this constraint given R, β, λ and κ.

RS(υ)-DECISION(R, β, λ, κ) =

∃x with∑
r∈R xr ≥ κ∑

r∈R βυrxr ≤ λ
xr ∈ {0, 1}, ∀r ∈ R

 (4.9)

Thus if we find an algorithm that solves the above decision problem in time T then we can solve
RS-DECISION in time nT , where n = |H|.
We can solve RS(υ)-DECISION as follows: Without loss of generality we assume that βυr
are ordered such that βυ1 ≤ . . . ≤ βυm, where m = |R|. Then set x1 = 1, . . . , xκ = 1 and
xκ+1 = 0, . . . , xm = 0 Then it follows that we have a yes-instance if and only if

m∑
j=1

βυjxj =
κ∑
j=1

βυj ≤ λ.

Since the running time is O(m) we have a polynomial-time algorithm to solve (υ)RS-DECISION
and thus we can solve RS-DECISION in O(nm)-time for c = 1.

4.2 Approximation

We will again consider RS, which was ΠMFS with Q = ∅ and binary variables. Since the RS
problem is NP-hard for c ≥ 2, it is very unlikely (unless P = NP) that there is an algorithm

4.2. APPROXIMATION 19

that can solve RS efficiently. Therefore we are interested in how well this problem can be
approximated in polynomial-time. Before we look into the approximation of RS, we first consider
the following

Lemma 4.2.1. RS has an optimal solution with
∑

r∈R xr = κ

Proof. Suppose we have an optimal solution to our problem RS which gives us OPT optional
constraints satisfied with

∑
r∈R xr = κ + η. Now select η of the xr, r ∈ R, for which it holds

that xr = 1. Call this selection R(η). Then for all optional constraints satisfied it holds that∑
r∈R

βhrxr −
∑

r∈R(η)

βhrxr ≤
∑
r∈R

βhrxr ≤ λ

since βhr ≥ 0,∀h ∈ H and ∀r ∈ R.
Thus by setting xr = 0,∀r ∈ R(η), we get a solution satisfying OPT equations and with∑

r∈R xr = κ. Note that the number of satisfied equations is never greater than OPT since
we assumed this to be the optimal amount satisfied.

Now we will look at approximability of RS.

Theorem 4.2.2. The problem RS is as hard to approximate as maximum independent set.

Proof. We proof this by using a cost/measure preserving polynomial transformation from max-
imum independent set (MIS).
Let G(V,E) be a graph of an arbitrary instance of MIS and let |V | = η be the cardinality of V .
For every node v ∈ V let N(v) denote the nodes incident to v, i.e., N(v) := {u ∈ V : {u, v} ∈ E}.
We then consider the following |V | inequalities

−xv +
∑

u∈N(v) xu ≤ −1 ∀v ∈ V (Optional constraints)

xv ∈ {0, 1} ∀v ∈ V .

We see that we satisfy the inequality for v if and only if xv = 1 and xu = 0,∀u ∈ N(v). Thus
if we satisfy s inequalities, we obtain an independent set of size s by taking all vertices v for
which xv = 1. Conversely if we have an independent set I of size s we can satisfy s inequalities
by setting xv = 1 if v ∈ I and setting xv = 0 if v ∈ V \ I.
Now consider the following instance of RS. Let R = V ∪ V̄ = {v1, . . . , vη}∪{v̄1, . . . , v̄η}, H = V ,
κ = |V | and λ = |V | − 1. Note that |R| = 2|V | and |H| = |V |. Furthermore we take βhr as
follows for every v ∈ H

βvr =

0 r = v
2 r = u ∈ N(v)
1 r = u ∈ V \ (N(v) ∪ v)
1 r = ū ∈ V̄

(4.10)

Then we have the following set of inequalities

0xv +
∑

r∈N(v) 2xr +
∑

r∈V \(N(v)∪v) xr +
∑

r∈V̄ xr ≤ λ ∀h = v ∈ H (Optional constraint)

xr ∈ {0, 1} ∀r ∈ R

We can assume by Lemma 4.2.1 that
∑

r∈R xr = κ. But we could also see this from the
fact that we can only satisfy an optional equation if

∑
r∈R xr = κ. To see this suppose that∑

r∈R xr = κ+ 1. Then

0xv +
∑

r∈N(v)

2xr +
∑

r∈V \(N(v)∪v)

xr +
∑
r∈V̄

xr ≥ κ > λ

20 CHAPTER 4. COMPLEXITY ANALYSIS

Thus we can substitute the following equality in our optional constraints∑
r∈V̄

xr = κ−
∑
r∈V

xr

Then we get the following set of optional constraints

−xv +
∑

r∈N(v) xr ≤ λ− κ = −1 ∀h ∈ H (Optional constraint)

xr ∈ {0, 1} ∀r ∈ R

Which is in one to one correspondence to the MIS-problem and can be constructed in polynomial
time. Thus we have a cost preserving transformation from MIS to RS.
For every independent set I of size s we can satisfy s inequalities. We do this by setting xr = 1
if r ∈ I and by setting κ− s times an arbitrary xr = 1 where r ∈ V̄ .

Note that this proof also holds for βhr ∈ {0, 1, 2}, C ∈ Z and λ ∈ Z. Since RS is as hard to
approximate as maximum feasible subsystem, the best approximation algorithm we can hope
has an approximation ratio of n, i.e., ALG ≥ 1

nOPT, Zuckerman [27].
An easy way of attaining the approximation ratio for RS found is doing the following: Select
the first constraint of RS. Try to satisfy this constraint and

∑
r∈R xr = κ. If the constraint is

satisfied, output the xr, otherwise one picks the next constraint and tries again. If one would
continue in this way, one will satisfy at least 1 constraint or none. When one satisfies a single
constraint one has an n-approximation. If one satisfies zero constraints, there were no constraints
that could be satisfied, hence one has the optimal solution.

However we can do even (a little) better than this approximation bound. Take RS with xr ∈
Z+, ∀r ∈ R instead of xr ∈ {0, 1}, ∀r ∈ R. Consider the following algorithm.

Algorithm 1 for RS-problem

Input: Houses H, routines R, noise level βhr,∀h ∈ H,∀r ∈ R and an integer κ
Output: xr,∀r ∈ R and an integer s denoting the number of satisfied constraints

1. Initialize s = 0, xr = 0, ∀r ∈ R
2. for i = 1, . . . ,m do
3. Let x̂r s.t. x̂r = k if r = i and x̂r = 0 if r 6= i
4. Let ŝ be the number of constraints satisfied by x̂r
5. if ŝ ≥ s set s = ŝ and xr = x̂r, ∀r ∈ R
6. end
7. return xr and s

Then we can prove the following

Proposition 4.2.3. Algorithm 1 gives an approximation for the route scheduling problem with
an approximation ratio of max

{
1
n ,

1
m

}
.

Proof. Let βhmin
be the minimum βhr for a h ∈ H, i.e.,

∀h ∈ H,βhmin
= min

r∈R
βhr

Then we know for every optional constraint that either κ ·βhmin
≤ λ or the constraint cannot be

satisfied. Since during our algorithm we consider all r ∈ R in step 3, every constraint, that can
be satisfied, will satisfied at least once in step 4. If for it least one of the optional constraints
it holds thatκ · βhmin

≤ λ, our algorithm will obtain a solution with s ≥ 1 and we get an n-
approximation.

4.3. MAXIMUM COVERED EDGES AND MAXIMUM COVERAGE 21

Now suppose that in total a constraints can be satisfied. Then we will satisfy each of these
constraints at least once during our m iterations. Per iteration we will satisfy on average a

m
constraints and due to the pigeonhole principle there will be at least one iteration for which
it satisfies at least a

m , thus s ≥ a
m . Since OPT ≤ a we also have ALG ≥ a

m ≥
1
mOPT, i.e., an

m-approximation.

4.3 Maximum Covered Edges and Maximum Coverage

The approximation result for the route scheduling problem RS in Section 4.2 is fairly negative.
It implies that the best approximation ratio is obtained by satisfying 1 optional constraint.
In Theorem 4.1.3 we saw that this can be done in polynomial time. Therefore it would be
interesting to see what happens if we restrict our input variables further.
We will first consider our route scheduling problem rewritten as the maximum covered edges
problem (MCE). We define the maximum covered edges problem as follows: Suppose that we
have a graph G = (V,E) with vertices v ∈ V and edges e ∈ E, we want to know how many
edges we can cover if we color c vertices. An edge e = {u, v} is covered if u or v is colored.
Furthermore let m denote the number of vertices and n the number of edges.
More formally given a graph G = (V,E) considering the following constraints∑

v∈V xv ≤ k (Binding constraint)
xu + xv ≥ 1, ∀{u, v} ∈ E (Optional constraints)
xv ∈ {0, 1}, ∀v ∈ V (Binding constraints)

where we want to maximize the number of optional constraints satisfied. The following theorem
shows that given certain restriction on input variables of our route scheduling problem, RS is
equal to MCE.

Theorem 4.3.1. Given the route scheduling problem with

Q = ∅ (4.11)

λ = 1 (4.12)

βhr ∈ {0, 1} ∀h ∈ H,∀r ∈ R (4.13)∑
r∈R

βhr = 2 ∀h ∈ H (4.14)

the route scheduling problem is equivalent to the maximum covered edges problem.

Proof. Given (4.11)-(4.14) we can rewrite constraints of the route scheduling problem as follows
by taking xr = 1− yr ∑

r∈R
xr ≥ κ⇔

∑
r∈R

(1− yr) ≥ κ

⇔ n−
∑
r∈R

yr ≥ κ

⇔
∑
r∈R

yr ≤ n− κ∑
r∈R

βhrxr ≤ λ⇔
∑
r∈R

βhr(1− yr) ≤ λ

22 CHAPTER 4. COMPLEXITY ANALYSIS

⇔
∑
r∈R

βhr −
∑
r∈R

βhryr ≤ λ

⇔
∑
r∈R

βhryr ≥
∑
r∈R

βhr − λ

⇔
∑
r∈R

βhryr ≥ 1

If we set k = n− κ, V = R and E = H, we get the maximum covered edges problem and thus
given (4.11)-(4.14) MFS and RS are equivalent.

4.3.1 Complexity and approximability

If we restrict the input variables of RS according to (4.11)-(4.14) we get a one to one cor-
respondence to the maximum covered edges problem. By doing these restrictions we hope
to get better approximability results. We will first proof the maximum covered edges prob-
lem is NP-complete. In order to do this we need a decision version of MCE. Let SMCE(x)
be the set of optional constraints satisfied given a specific x ∈ {xv ∈ {0, 1}, ∀v ∈ V }, i.e.,
SMCE(x) := {{u, v} ∈ E : xu + xv ≥ 1} and let again |SMCE(x)| denote the cardinality of
SMCE(x). The corresponding decision problem for MCE is defined as follows

MCE-DECISION(V,E, k, c) =

∃x with∑
v∈V xv ≤ k

xv ∈ {0, 1},∀v ∈ V
such that

|SMCE(x)| ≥ c

 . (4.15)

Theorem 4.3.2. For c = |E| the maximum covered edges problem is NP-complete.

Proof. First we will show that MCE is in NP. Suppose we have a yes-instance of MCE. Then
to verify that this is indeed a yes-instance, one needs to check whether or not

∑
v∈V xv ≤ k and

whether or not c of the n linear constraints for the edges are satisfied, i.e., |SMCE(x)| ≥ c. This
can be done in polynomial time, thus MCE is in NP.
Now we will show that MCE is NP-hard by reducing minimum vertex cover problem (MVC)
to it. Given a graph G(V,E) with vertices V and edges E, a vertex cover is a subset V ′ of
the vertices, such that each edge of the graph is incident to at least one vertex of the set V ′.
Minimum vertex cover is one of the 21 NP-complete problems proved by Karp [17]. We can
formulate the minimum vertex cover problem as the following decision problem

MVC-DECISION(V,E, d) =

∃x with

xu + xv ≥ 1,∀{u, v} ∈ E
xv ∈ {0, 1}, ∀v ∈ V

such that
∑

v∈V xv ≤ d

 . (4.16)

Thus this decision problem tells us whether or not a graph has an edge cover of size d or less.
Now we want to show the following: there is a vertex cover with cardinality d or less if and only
if there is a solution to the MCE with k = d and satisfying c = |E| constraints.
Take for both the same graph G and set the variables as above. Suppose we have a yes-instance
of MVC-DECISION. Then by setting xv = 1 in MCE if xv = 1 in MVC, we get a yes-instance
of MCE-DECISION with k = d and c = |E|.

4.3. MAXIMUM COVERED EDGES AND MAXIMUM COVERAGE 23

Now suppose we have a yes-instance of MCE-DECISION with k = d and satisfying c = |E| of the
optional constraints. Then by setting xv = 1 in MVC if xv = 1 in MCE, we get a yes-instance
of MVC-DECISION with d = k.
We conclude that for large c the MCE is NP-hard and thus NP-complete.

Since the maximum covered edges problem is NP-complete, it is of interest to know how well
it can be approximated. For this we look at the following approximation algorithm, which is a
greedy type algorithm.

Greedy Algorithm for MCE

Input: Undirected graph G = (V,E) and integer k
Output: Colored vertices V ′ and covered edges E′

1. Initialize V ′ = ∅ and E′ = ∅
2. for i = 1, . . . , k do
3. Let v be a vertex of maximum degree in G′ = (V \ V ′, E \ E′)
4. Add v to V ′

5. Add all edges e = {v, u} incident to v to E′

6. end
7. return V ′ and E′

Theorem 4.3.3. For all k the greedy algorithm for the MCE-problem gives an approximation
with ratio of 2− |S|k .

Proof. Let VALG = {v1, v2, . . . vk} denote the vertices we color in steps 1, 2, . . . , k of our algo-
rithm and let d1, d2, . . . dk denote the number of edges we cover in steps 1, 2, . . . , k, respec-
tively. Furthermore let OPT denote the optimal amount of edges that could be covered and let
VOPT = {v̂1, v̂2, . . . , v̂k} be the vertices who need to be picked to obtain this amount.
Let

S := VOPT ∩ VALG = {vi : ∃j s.t. vi = v̂j}
S′OPT := VOPT \ S = {v̂j : v̂j 6= vi,∀i ∈ {1, . . . , k}}

We define the remaining cardinality of a vertex v after k steps of the algorithm, as the number
of edges incident to node v in the graph Gk = (V \VALG, E \EALG), where EALG contains all edges
that are incident to the vertices in VALG. Then after k steps of the algorithm the remaining
cardinality of the nodes in S is zero. Furthermore the remaining cardinality of the nodes in S′OPT
after k steps of the algorithm is at most dk, because this is the remaining cardinality we may
have removed as much as

∑k
i=1 di from the original cardinality of the nodes in VOPT. Thus we

get the following bound for our optimal solution

OPT ≤ |S′OPT|dk +
k∑
i=1

di.

Since d1 ≥ d2 ≥ . . . ≥ dk we obtain∑k
i=1 di
OPT

≥
∑k

i=1 di

|S′OPT|dk +
∑k

i=1 di
(4.17)

It holds that |S′OPT| = k − |S|. Thus we can rewrite (4.17) as∑k
i=1 di
OPT

≥
∑k

i=1 di

(k − |S|)dk +
∑k

i=1 di
=

1
(k−|S|)dk∑k

i=1 di
+ 1
≥ 1

(k−|S|)dk
kdk

+ 1
≥ 1

2− |S|k

24 CHAPTER 4. COMPLEXITY ANALYSIS

Thus we have our approximation ratio.

Note that because |S| ≥ 0 we have at least an 1
2 -approximation. Furthermore also note that

we took two very crude bounds for our approximation, namely kdk ≤
∑k

i=1 di and taking the

difference between the cardinality and the remaining cardinality of VOPT to be at most
∑k

i=1 di.
Therefore one has the suspicion that the approximation ratio could be improved. We will see in
the next section that the approximation ratio can be improved to 1− 1

e , where e is the base of
the natural logarithm.

4.3.2 Extended versions

In order to bridge the gap between the MCE-problem and the route scheduling problem we will
be considering more general settings. These may give us insight in where the complexity of the
problem comes from.

Hyper-edges

We again consider a graph G = (V,E) but now the edges are not restricted to edges from one
node to another, but we consider hyper-edges which may connect from 1 up to n nodes. Thus
an edge e ∈ E is a subset of the vertices, i.e., e ⊆ V . An edge e is covered if at least 1 node v ∈ e
is colored. In the literature this problem is know as the maximum coverage problem (MC). Note
however that normally this is defined as a set U and a collection of subsets S = {S1, . . . Sm}
where Si ⊆ U,∀i ∈ {1, . . . ,m}. But by taking U = V and S = E we can stick to our graph
representation.
Formally we can write our problem as follows. Given a hyper-graph G = (V,E), where E is a
set of hyper-edges, considering the following constraints∑

v∈V xv ≤ k (Binding constraint)∑
v∈e xv ≥ 1, ∀e ∈ E (Optional constraints)

xv ∈ {0, 1}, ∀v ∈ V (Binding constraints)

we want to maximize the number of optional constraints satisfied. Now we will continue by
showing that given certain restriction on the input parameters of the route scheduling problem,
RS and MC are equivalent. The prove will be similar to the prove of Theorem 4.3.1.

Theorem 4.3.4. Given the route scheduling problem with

Q = ∅ (4.18)

and

βhr = βeu =

{
λ
|e|−1 if r = u ∈ e
0 if r = u /∈ e

∀h ∈ H,∀r ∈ R (4.19)

the route scheduling problem is equivalent to the maximum coverage problem.

Proof. If we take λ ∈ Z+ arbitrary and set xr = 1 − yr, then given (4.18) and (4.19) we can
rewrite our problem constraints as follows∑

r∈R
xr ≥ κ⇔

∑
r∈R

yr ≤ n− κ

4.3. MAXIMUM COVERED EDGES AND MAXIMUM COVERAGE 25

∑
r∈R

βhrxr ≤ λ⇔
∑
r∈R

βhr(1− yr) ≤ λ

⇔
∑
r∈R

βhryr ≥
∑
r∈R

βhr − λ

⇔ λ

|e| − 1

∑
r∈R

1r∈e yr ≥ |e|
λ

|e| − 1
− λ

⇔
∑
r∈R

1r∈e yr ≥
|e| − 1

λ

(
|e| λ

|e| − 1
− λ

)
⇔
∑
r∈R

1r∈e yr ≥ 1

Where 1r∈e is the indicator function for the event that e ∈ R. By again taking k = n − κ,
H = E and R = V we obtain the maximum coverage problem.

Note that we can write the MCE-problem as the maximum coverage problem, thus also this
problem is NP-hard. Since also yes instances can be checked in polynomial time because MC is
a restricted version of RS, we can conclude that MC is in NP-complete. Therefore we are again
interested in the approximation ratio for this problem. For the maximum coverage problem we
have the following greedy algorithm, which is similar to the greedy algorithm for MCE

Greedy Algorithm for MC

Input: Undirected hyper-graph G = (V,E) and integer k
Output: Colored vertices V ′ and covered hyper-edges E′

1. Initialize V ′ = ∅ and E′ = ∅
2. for i = 1, . . . , k do
3. Let v be a vertex of maximum degree in G′ = (V \ V ′, E \ E′)
4. Add v to V ′

5. Add all hyper-edges e incident to v to E′

6. end
7. return V ′ and E′

The maximum coverage problem is a known problem and therefore analysis has been done on
its approximation. From Hochbaum and Pathria [15] we get the following theorem.

Theorem 4.3.5. Hochbaum and Pathria [15] For all k the greedy algorithm for the MC-problem
gives an approximation for the maximum coverage problem with an approximation ratio of e−1

e ,
where e is the basis number of the natural logarithm.

Proof. Again let VALG = {v1, v2, . . . vk} denote the vertices we colour in steps 1, 2, . . . , k of our
algorithm and let d1, d2, . . . dk denote the number of hyper-edges we cover in steps 1, 2, . . . , k
, respectively. Let OPT be the optimal amount of edges covered by coloring k vertices VOPT =
{v̂1, v̂2, . . . , v̂k}.
After l ≤ k steps of our greedy algorithm we will have covered

∑l
i=1 di edges. Thus the remaining

uncovered edges incident to VOPT will be at least

OPT−
l∑

i=1

di.

26 CHAPTER 4. COMPLEXITY ANALYSIS

Since VOPT contains k vertices, then due to the pigeon hole principle there is at least one vertex
vi ∈ VOPT with at least the following number of uncovered edges incident to it

OPT−
∑l

i=1 di
k

.

Since our greedy algorithm picks a vertex with maximum remaining cardinality we have

dl ≥
OPT−

∑l−1
i=1 di

k
(4.20)

for all l ∈ {1, . . . , k}. We will proceed by proving that

l∑
i=1

di ≥ (1− (1− 1
k)l)OPT. (4.21)

First for l = 1 we know that d1 ≥ 1
kOPT, thus (4.21) holds. Suppose that for l ≥ 1 equation

(4.21) holds, then for l + 1 we know from (4.20) that

l+1∑
i=1

di = dl+1 +
l∑

i=1

di

≥
OPT−

∑l
i=1 di

k
+

l∑
i=1

di

=
OPT

k
+ (1− 1

k)
l∑

i=1

di

≥ OPT

k
+ (1− 1

k)(1− (1− 1
k)l)OPT

= (1− (1− 1
k)l+1)OPT

By setting l = k it follows that

k∑
i=1

di ≥ (1− (1− 1
k)k)OPT

> (1− 1
e)OPT

=
1
e−1
e

OPT

Multi-covering

We consider the maximum coverage problem but now an edge e is covered if at least l vertices of
e are colored. We call this problem the maximum multi-coverage problem. Thus given a hyper-
graph G = (V,E), with vertices V and hyper-edges E, considering the following constraints∑

v∈V xv ≤ k (Binding constraint)∑
v∈e xv ≥ l ∀e ∈ E (Optional constraint)

xv ∈ {0, 1}, ∀v ∈ V (Binding constraint)

4.3. MAXIMUM COVERED EDGES AND MAXIMUM COVERAGE 27

we want to maximize the number of optional constraints satisfied with l ∈ Z+. Note that a hyper-
edge e needs to have at least cardinality l, i.e., |e| ≥ l, otherwise it could never be covered. We
will show that given certain restriction on the input parameters of the route scheduling problem,
RS and the maxumum multi-coverage problem are equivalent. The prove will again be similar
to the prove of Theorem 4.3.1.

Theorem 4.3.6. Given the route scheduling problem with

Q = ∅ (4.22)

and

βhr = βeu =

{
λ
|e|−l if r = u ∈ e
0 if r = u /∈ e

∀h ∈ H,∀r ∈ R (4.23)

(4.24)

the route scheduling problem is equivalent to the maximum multi-coverage problem.

Proof. We take λ ∈ Z+ arbitrary, and set xr = 1 − yr. Then given (4.22) and (4.22) we can
rewrite our problem constraints as∑

r∈R
xr ≥ κ⇔

∑
r∈R

(1− yr) ≥

⇔
∑
r∈R

yr ≤ n− κ∑
r∈R

βhrxr ≤ λ⇔
∑
r∈R

βhr(1− yr) ≤ λ

⇔
∑
r∈R

1r∈eyr ≥
|e| − 1

λ

(
|e| λ

|e| − l
− λ

)
⇔
∑
r∈R

1r∈eyr ≥ l

Setting κ = n− k, H = E and R = V we get the desired maximum multi-coverage problem.

Note that this problem is NP-hard because we can reduce our MCE-problem to it. Since also
yes instances can be checked in polynomial time because MC is a restricted version of RS, we
can conclude that MC is in NP-complete.

Now if we consider our greedy algorithm for the MC-problem to approximate the maximum
multi-coverage problem, we run into problems. Consider the following example:
We have the graph G = (V,E) with V = {v1, . . . v6} and E = {e1, . . . e6} with

e1 = {v1, v3, v4}
e2 = {v1, v5, v6}
e3 = {v1, v3, v5}
e4 = {v2, v3, v4}
e5 = {v2, v5, v6}
e6 = {v2, v4, v6}

28 CHAPTER 4. COMPLEXITY ANALYSIS

Furthermore we have k = 2 and λ = 2. Then our greedy algorithm for the MC-problem could
color v1 and v2, covering none of the edges. The optimal solution would color the pair v3 and v4

or the pair v5 and v6, yielding 2 covered edges. Hence our approximation ratio would be infinite.
Thus we need another algorithm to approximate the maximum multi-coverage problem.

4.3.3 Integrality gap

One of the techniques often used to construct approximation algorithms for optimization prob-
lems is to construct an integer linear program (ILP) for the problem and relax the integrality
constraints to make it a linear program (LP-relaxation), i.e., one changes xi ∈ Z+ to xi ∈ R+,
which makes it easier to solve. The LP-relaxation can be solved to optimality in polynomial
time and gives an upper bound for the optimal solution of the ILP.
In general one is interested in how tight the LP-relaxation bounds the ILP. Therefore we will
introduce the notion of the integrality gap of an LP-relaxation. Given an LP-relaxation for
a maximization problem Π, let OPT(I) be the optimal integer valued solution to instance I of
problem Π and let OPTLP(I) be the optimal solution in real numbers of instance I. Then the
integrality gap is defined to be

inf
I

OPT(I)

OPTLP(I)

In order to construct an approximation algorithm via LP-relaxation for our maximum multi-
coverage problem (MMC-problem) we first need an ILP-formulation.

max
∑

e∈E ze
such that

∑
v∈V xv ≤ k∑
v∈V 1{v∈e}xv ≥ lze ∀e ∈ E

xv ∈ {0, 1} ∀v ∈ V
ze ∈ {0, 1} ∀e ∈ E

By relaxing the binary constraints for xv and ze we get the following LP-relaxation for the
MMC-problem

max
∑

e∈E ze
such that

∑
v∈V xv ≤ k∑
v∈V 1{v∈e}xv ≥ lze ∀e ∈ E

0 ≤ xv ≤ 1 ∀v ∈ V
0 ≤ ze ≤ 1 ∀e ∈ E

Now we want to know the size of the integrality gap. For this we consider the following instance
I1. Let E = {e1, . . . , en} and V = {v1, . . . , vn+2}, where n is an even integer. Set k = 2, l = 2
and

ei =

{
ei = {vi, vn+1}, if i ∈ {1, . . . , 1

2n}
ei = {vi, vn+2}, if i ∈ {1

2n+ 1, . . . , n} .

Then for the ILP we can satisfy at most one constraint, hence OPT(I1) = 1. In the LP-
relaxation we set vn+1 = 1 and vn+2 = 1. Then we can set ze = 1

2 , ∀e ∈ E. Thus it follows that
OPTLP(I1) = 1

2n. We conclude that the integrality gap of the MMC-problem is

inf
I

OPT(I)

OPTLP(I)
≤ OPT(I1)

OPTLP(I1)
=

2

n

4.3. MAXIMUM COVERED EDGES AND MAXIMUM COVERAGE 29

Since we know that the approximation ratio is bounded by the integrality gap, if we base our
approximation algorithm on the LP-relaxation, we conclude that this is not the way to go.

4.3.4 Dense k-Subgraph problem

In the previous section we have seen that if we assume certain bounds for our route scheduling
problem, this problem can be written as maximum coverage problem. After relaxing l = 1 to
l ∈ Z+ we could not use our greedy algorithm to approximate it. Because we want to know more
about the approximability of maximum multi-coverage problem, we will now look at the dense
k-subgraph problem (DkS) and show that for it is equivalent to the maximum multi-coverage
problem with l = 2.
The dense-k-subgraph problem is the problem of finding a subgraph of k-vertices which has
maximum average degree. In other words, given a graph G = (V,E) and a parameter k, we
want to find k vertices such that the subgraph induced by these vertices is of maximum average
degree. In other words we search for a subgraph of k vertices of which the average degree is
maximized. An integer linear program formulation of this problem would be

max 1
k

(∑
e∈E ze

)
such that

∑
v∈V xv = k,

xu + xv ≥ 2ze, ∀e = {u, v} ∈ E
xv ∈ {0, 1}, ∀v ∈ V
ze ∈ {0, 1}, ∀e ∈ E

For the dense-k-subgraph problem Feige [11] proves that there is no polynomial time approx-
imation scheme (PTAS). More recently, Alon et al. [1] show that dense-k-subgraph is hard to
approximate within any constant factor in polynomial time. They actually show that assuming
no nO(logn) algorithm solves the hidden CLIQUE problem, DkS cannot be approximated up to
a factor of 2(logn)2/3 in polynomial time. The currently best know approximation is by Bhaskara
et al. [6]. The algorithm they present approximates DkS for every ε > 0 within a ratio of n1/4+ε

in time nO(1/ε).

Proposition 4.3.7. The maximum multi-coverage problem is at least as hard to approximate
as the dense-k-subgraph problem.

Proof. For the dense-k-subgraph problem we are given a graph G = (V,E) and an integer k.
First notice that by multiplying the objective function of DkS by k we do not change the optimal
solution only its optimal value. Hence we take the following objective function

max
∑
e∈E

ze

We want to reduce DkS to the maximum multi-coverage problem. To do this we consider the
same graph G = (V,E), set l = 2 and we take k for the maximum multi-coverage problem equal
to the k from DkS. By using Lemma 4.2.1 we get the following instance of the multi-coverage
problem

which is in one to one correspondence with the DkS problem, where the objective function is
multiplied by k.

30 CHAPTER 4. COMPLEXITY ANALYSIS

max
∑

e∈E′ ze
such that

∑
v∈V xv = k∑
v∈V I{v∈e}xv ≥ 2ze ∀e ∈ E

xv ∈ {0, 1} ∀v ∈ V
ze ∈ {0, 1} ∀e ∈ E

4.4 Summary

In this chapter we proved that we Q = ∅ the route scheduling problem is strongly NP-complete
and that it can be approximated with an approximation of n, the number of optional constraint.
Afterwards we looked RS with more restriction on the input variables. We saw that for certain
restrictions, our route scheduling problem was equivalent to the maximum covered edges problem,
to the maximum coverage problem and to the maximum multi-coverage problem. All these
problems wereNP-complete. Table 4.1 summarizes our results for the route scheduling problem.

Restrictions Equivalent to Approximation ratio

Q = ∅ - α = n

Q = ∅ - α = n 1

βhr ∈ {0, 1, 2}
Q = ∅ maximum covered edges α = e

e−1

λ = 1 problem
βhr ∈ {0, 1}∑

r∈R βhr = 2

Q = ∅ maximum coverage α = e
e−1

βhr = βeu =

{
λ
|e|−1 if r = u ∈ e
0 if r = u /∈ e

problem

Q = ∅ maximum multi-coverage α > 2(logn)2/3 2

βhr = βeu =

{
λ
|e|−l if r = u ∈ e
0 if r = u /∈ e

problem

Table 4.1: Theoretical results for the route scheduling problem

Chapter 5

Pareto optimality

The model we described in Chapter 3 is a multi-objective optimization problem with conflicting
objective functions. The conflict in our route scheduling problem is that by scheduling more
flights, there is the possibility that less of the houses remain below the noise pollution threshold.
Because of this conflict there will be no global optimal solution for our problem. There will
always be a trade-off between the two objectives. Therefore we will construct for our problem a
set of solutions which are Pareto optimal. In this Chapter we will first consider multiobjective
optimization problems and we will define Pareto optimality. After this we will consider three
different methods of constructing a Pareto optimal set.

5.1 Definitions

We consider a multi-objective optimization problem Πmulti in its most general form

maxx F (x) = [f1(x), . . . , fs(x)]

subject to
gj(x) ≤ 0, j ∈ {1, . . . , n1}
hl(x) = 0, l ∈ {1, . . . , n2}
li ≤ xi ≤ ui, i ∈ {1, . . . ,m}.

Note that we take s ≥ 2, otherwise we would not have multiple objective functions. All variables
xi have lower bounds li and upper bounds ui with li ≤ ui. Furthermore all functions fi, gj and hl
are functions from Rm to R. Lastly x denotes the vector of all variables, thus x = {x1, . . . , xm}.
Define X as the feasible space, i.e.,

X = {x : gj(x) ≤ 0, j ∈ {1, . . . , n1} and hl(x) = 0, l ∈ {1, . . . , n2}}
and li ≤ xi ≤ ui, i ∈ {1, . . . ,m}} .

We assume that X is non empty. We also define the feasible criterion space Z as

Z = {F (x) : x ∈ X} .

Thus Z is the space in Rs of all possible combinations of objective values. As discussed before
Πmulti in general does not have a single optimal solution. The most used definition for defining
an optimal point is that of Pareto optimality [24], it is defined as follows:

31

32 CHAPTER 5. PARETO OPTIMALITY

Definition 5.1.1. A point x∗ is said to be Pareto optimal if and only if there does not exist
another point x ∈ X such that fi(x) ≥ fi(x

∗), ∀i ∈ {1, . . . , s} and there is at least one i ∈
{1, . . . , s} such that fi(x) > fi(x

∗).

All Pareto optimal points (or Pareto points for short) will lay on the boundary of Z. Choosing
which Pareto point to use as a final solution is up to a decision maker. Therefore our goal is
not to find a single Pareto optimal point, but is to construct a set of Pareto optimal points
from which the decision maker can choose. In order to do this we will look at three different
methods of constructing this set of Pareto optimal points. These three methods all have different
properties. For a method that generates Pareto points the following properties are important:

1. The method generates an evenly distributed set of Pareto points in Z. It does not neglect
any region.

2. The method should have the ability to generate all possible Pareto points if necessary.

3. The method should generate only Pareto solutions.

4. The method should be relatively easy to apply.

From these four properties the first three are the most important ones. The third one may seem
obvious but there are many methods that do not guarantee this. These methods often generate
weakly Pareto optimal points instead of Pareto optimal points.

Definition 5.1.2. A point x∗ is said to be weakly Pareto optimal if and only if there does not
exist another point x ∈ X such that fi(x) > fi(x

∗),∀i ∈ {1, . . . , s}.

Thus a weakly Pareto optimal point is a point for which there is at least one objective function
that cannot be improved. One may be able to improve all others.

5.2 Weighted sum method

One of the most used techniques for generating a Pareto optimal set is the weighted sum method.
It is especially useful if one already knows the preferences of the decision maker. In the weighted
sum method we introduce weights wi ∈ [0, 1] for our objective functions, such that

∑s
i=1wi = 1.

With these weights we transform our multi-objective function to a single objective function f(x):

max
x

f(x) =

s∑
i=1

wifi (5.1)

If we then optimize this single objective function we get an optimal point according to the
decision makers preferences. If we do not know his preferences we can also generate a Pareto
optimal set by systematically varying the weights.
The weighted sum method is very easy to implement and if all objective functions are convex
it can generate all Pareto points. Also if wi > 0,∀i ∈ {1, . . . , s}, it will only generate Pareto
optimal points. On the other hand we cannot guarantee that the weighted sum method will
generate an evenly distributed set of Pareto points if the weights are uniformly distributed.
Furthermore if the set Z is not convex, there may be regions of Z which cannot generated, see
Marler and Arora [19].
In our route scheduling problem we have integer valued variables. This implies that our solution
spaces are not convex and thus some points we may not be able to generate. Another drawback
of the weighted sum method for us is the fact that it does not generate an even spread of Pareto

5.3. BOUNDED OBJECTIVE FUNCTION METHOD 33

points. Note that we can only use this method for the ILP-formulated problem ΠBigM . If we
use this method our objective function becomes

maxw1

(∑
r∈R

xr

)
− w2

(∑
h∈H

ωhzh

)
.

With w1 + w2 = 1.

5.3 Bounded objective function method

In the bounded objective function method one only maximizes the single most important objec-
tive function fI . All the other objective functions are bounded by a constant and form additional
constraints. Thus we transform problem Πmulti to

maxx fI(x)

subject to
fi(x) ≥ κi i ∈ {1, . . . , I − 1, I + 1, . . . , s}
gj(x) ≤ 0, j ∈ {1, . . . , n1}
hl(x) = 0, l ∈ {1, . . . , n2}
li ≤ xi ≤ ui, i ∈ {1, . . . ,m}.

Here κi ∈ R,∀i ∈ {1, . . . , I − 1, I + 1, . . . , s}. The decision maker can choose the κi’s as minimal
values for the associated objective functions. If one wants to generate a Pareto optimal set one
has to vary the κi. In each iteration one then obtains a weakly Pareto optimal solution.
The bounded objective function method is easy to implement and if the feasible space X is
convex and all objective functions are quasi convex then from Miettinen [21] we know that we
can generate any weakly Pareto optimal point. On the downside we can not guarantee that we
have a Pareto optimal point. Only if the found point x∗ is unique, then it is a Pareto optimal
point (Miettinen [21]). Another drawback is that if we vary the κi’s uniformly, we will not get
an evenly distributed Pareto set.
In our formulation ΠMFS we actually already used the bounded objective function method. We
could also use the bounded objective function method on ΠBigM . Then we either introduce the
constraint

∑
r∈R xr ≥ κ or the constraint

∑
h∈H ωhzh ≤ κ.

Since we only have two objective functions we can iteratively construct a Pareto optimal set. We
do this by first setting

∑
r∈R xr ≥ κ1 and maximizing the number of satisfied housing constraints.

Then after obtaining a set of satisfied constraints, we fix this set and maximize the number of
flights. In this way we obtain a number of flights κ2. We have then obtained our first (weakly)
Pareto point. Then we return to maximizing the number of satisfied housing constraints, but
now with

∑
r∈R xr ≥ κ2 +1. We have to violate the same amount of housing constraints or more

then in our first iteration to obtain a feasible optimal solution. We continue in this way until
we have found the entire weakly Pareto optimal set, containing all Pareto optimal solutions. If
in the final step we remove all weakly Pareto optimal points, which are not Pareto optimal, we
end up with a Pareto optimal set.

5.4 Normalized normal constraint method

The normalized normal constraint method was introduced by Messac et al. [20]. It has the
advantage that it satisfies all the four properties for a method for generating a Pareto set, if one

34 CHAPTER 5. PARETO OPTIMALITY

has convex objective functions and real valued variables. A downside is that it requires a little
more notation and insight than the weighted sum and the bounded objective function method.
First let us introduce the concept of anchor points, the Utopia point and the Nadir point.
An anchor point or optimal vertex f∗i is obtained by maximizing over only the objective function
fi. In this way we obtain the maximal value of every objective function given the constraints.
If we put this differently f∗i = [f1(xi∗), . . . , fs(x

i∗)], where xi∗ is the unique solution of

maxx fi(x)

subject to
gj(x) ≤ 0, j ∈ {1, . . . , n1}
hl(x) = 0, l ∈ {1, . . . , n2}
li ≤ xi ≤ ui, i ∈ {1, . . . ,m}.

The Utopia point fU is the point consisting of all maximal values of the s objectives, i.e.,

fU = [f1(x1∗), . . . , fs(x
s∗)].

The Nadir point fN is the point consisting of all minimal values of the objective functions, if
we would optimize over the other objective functions. In other words

fN = [fN1 , . . . , f
N
s],

where fNi = min{fi(x1∗), . . . , fi(x
s∗},∀i ∈ {1, . . . , s}. The Utopian plane is the plane in the

objective space between the anchor points. We can describe any point on the Utopian plane as
a convex combination of the anchor points.
Let us define li = fi(x

i∗)− fNi , thus li is the distance between the maximum and the minimum
optimal value. Then with this distance we can normalize our objective functions as follows:

f̄i(x) =
fi((x

1∗))− fi(x)

li

With these normalize objective function we define the vectors f̄1∗, . . . f̄s∗ as

f̄ i∗ = [f̄1(xi∗), . . . , f̄s(x
i∗)],∀i ∈ {1, . . . , s}.

These vectors are the corners (or vertices) of the Utopian plane. Now the normalized normal
constraint method comprises of five steps

1. The anchor points f∗1 , . . . , f
∗
s are computed and the Utopia point fU , the Nadir point fN

and the Utopia plane constructed.

2. Using the Utopia and and Nadir point normalize the objective functions to obtain f̄1, . . . , f̄s.

3. Define the direction vector N1, . . . Ns−1 which are the vectors from the anchor point f∗s to
the other anchor points, i.e.,

Ni = f̄∗s − f̄∗i = [f1(xs∗), . . . , fs(x
s∗)]− [f1(xi∗), . . . , fs(x

i∗)], ∀i ∈ {1, . . . , s− 1}

4. Define a set of points X = {X1, . . . , Xk} on the Utopian plane. One takes Xp for all
p = {1, . . . , k} such that

Xp =
∑s

i=1 αpif̄
i∗

with
∑s

i=1 αpi = 1,
0 ≤ αpi ≤ 1,∀i ∈ {1, . . . , s}.

Note that one can choose the αpi in such a way that the points are evenly distributed on
the Utopian plane.

5.4. NORMALIZED NORMAL CONSTRAINT METHOD 35

5. Generate a set of well distributed Pareto solutions by solving the following problem for
each XP ∈ X.

maxx fs(x)

subject to
gj(x) ≤ 0, j ∈ {1, . . . , n1}
hl(x) = 0, l ∈ {1, . . . , n2}
li ≤ xi ≤ ui, i ∈ {1, . . . ,m}.
Nk

(
f̄(x)−XP

)T ≤ 0, k ∈ {1, . . . , s− 1}

Where f̄(x) = [f̄1(x), . . . , f̄s(x)].

The power of the method lies in the fact that a constraint Nk

(
f̄(x)−XP

)T ≤ 0 defines a half
space of which the boundary is perpendicular to the Utopian plane. This makes sure that for
convex objective functions it will only generate Pareto optimal points. Furthermore if the points
are evenly distributed on the Utopian plane, they will also be evenly distributed on the Pareto
front [20].

We will now consider the Normalized normal constraint method for our route scheduling problem.
Because we need an explicit formula for the objective functions we again only can use formulation
ΠBig-M . To write the second objective function as a maximization instead of a minimization we
multiply by −1. Thus we consider the following problem Apllying the method as described above

max [f1, f2] = [
∑

r∈R xr,
∑

h∈H −ωhzh]

s.t.
∑

r∈R αqrxr ≤ θ, ∀q ∈ Q∑
r∈R βhrxr ≤ λ+Mhzh, ∀h ∈ H

xr ∈ Z+, ∀r ∈ R
zh ∈ {0, 1}, ∀h ∈ H

we obtain two anchor point f∗1 = [f1(x1∗, z1∗), f2(x1∗, z1∗)] and f∗2 = [f1(x2∗, z2∗), f2(x2∗, z2∗)].
The Utopian point will be fU = [f1(x1∗, z1∗), f2(x2∗, z2∗)] and the Nadir point will be fN =
[f1(x2∗, z2∗), f2(x1∗, z1∗)]. Note that f2(x2∗, z2∗) = 0 and f1(x1∗, z1∗) could be infinite. If one
would end up with an infinite amount of flights for f1(x1∗, z1∗) it is better to set this value as
small as possible while keeping f2(x1∗, z1∗) housing constraints violated.
With these anchor points we normalize our objective function to

f̄1(x, z) =
f1(x1∗, z1∗)− f1(x, z)

f1(x1∗, z1∗)− f1(x2∗, z2∗)
=

f1(x1∗, z1∗)−
∑

r∈R xr

f1(x1∗, z1∗)− f1(x2∗, z2∗)

and to

f̄2(x, z) =
f2(x2∗, z2∗)− f2(x, z)

f2(x2∗, z2∗)− f2(x1∗, z1∗)
=

∑
h∈H ωhzh)

−f2(x1∗, z1∗)

We have

N1 =

[
−1
1

]
.

Furthermore since we only have two objective values we have for all p = {1, . . . , k}

Xp =

[
αp

1− αp

]
,with 0 ≤ αp ≤ 1.

36 CHAPTER 5. PARETO OPTIMALITY

We can evenly distribute points on our Pareto front by varying α uniformly. We now only have
to construct the addition constraint for our problem.

N1

(
f̄(x, z)−XP

)T ≤ 0[
−1
1

] f1(x1∗,z1∗)−
∑

r∈R xr
f1(x1∗,z1∗)−f1(x2∗,z2∗)∑

h∈H ωhzh
−f2(x1∗,z1∗)

− [α
1− α

]T

≤ 0

−f1(x1∗, z1∗) +
∑

r∈R xr

f1(x1∗, z1∗)− f1(x2∗, z2∗)
+ α+

∑
h∈H ωhzh

−f2(x1∗, z1∗)
− 1 + α ≤ 0

−f1(x1∗, z1∗) +
∑

r∈R xr

f1(x1∗, z1∗)− f1(x2∗, z2∗)
+

∑
h∈H ωhzh

−f2(x1∗, z1∗)
≤ 1− 2α

Hence we can obtain a weakly Pareto optimal set by varying α ∈ [0, 1] uniformly, while solving
the following problem

min
∑

h∈H ωhzh

s.t.
∑

r∈R αqrxr ≤ θ, ∀q ∈ Q∑
r∈R βhrxr ≤ λ+Mhzh, ∀h ∈ H

−f1(x1∗,z1∗)+
∑

r∈R xr
f1(x1∗,z1∗)−f1(x2∗,z2∗) +

∑
h∈H ωhzh

−f2(x1∗,z1∗) ≤ 1− 2α

xr ∈ Z+, ∀r ∈ R
zh ∈ {0, 1}, ∀h ∈ H

Chapter 6

Algorithms

In Chapter 4 we have seen several negative results about our route scheduling problem. We
know that in general the problem is NP-hard and from Theorem 4.2.2 we know that it cannot
be approximated well. Because of these results it is very unlikely to find an algorithm that
will solve the route scheduling problem optimally in polynomial time or to find a good solution
in polynomial time that comes with a provable approximation guarantee. Therefore we will
consider an algorithm that solves it optimally in exponential time and use heuristics that work
in polynomial time, but do not have any approximation guarantee. In this chapter, we will first
look at an integer linear program solver to obtain optimal solutions. After this, we will consider
two heuristics to obtain solutions, namely Chinnecks algorithms and a dynamic approximation
algorithm.

6.1 Integer linear program (exact)

An integer linear programming problem can be solved exactly, but it might take exponential
time to do this. Using one of the Pareto methods as described in Chapter 5 we can use our
problem formulation ΠBigM to construct an input for an ILP solver. We will then use the solver
lp_solve1 to solve this ILP and obtain a (weakly) Pareto optimal solution. lp_solve uses
a ‘branch and bound’ method to do this. In this method the integer linear program is first
solved without the integer restrictions. Then we investigate if there are variables which are
non-integral. If such a variable xi exists we split the problem in two subproblems. Suppose that
xi = γ, then in the first subproblem we require that xi ≥ dγe and in the second subproblem we
require that xi ≤ bγc. We choose one of these subproblems and then we investigate if there are
still other fractional variables. If so we split the problem again in a similar fashion. We continue
this process until we have found an integer solution. This solution is stored and we remember
its objective value as the current best. We continue then with a subproblem we did not explore
yet until we find an integer solution or until its objective value falls below the current best.
We continue this process until there are no subproblems left to explore. Since the number of
subproblems grows exponentially with the number of integer variables, this method can take
exponential time. Often if we solve our problem in this way, we will refer to it as the Big-M
method.

1http://lpsolve.sourceforge.net/5.5/

37

38 CHAPTER 6. ALGORITHMS

6.2 Chinneck heuristics

We will consider a heuristic for solving the maximum feasible subsystem problem (MFS) by
Chinneck [7]. We will afterwards change this heuristic slightly in order to use it to solve ΠMFS.
As said before in MFS one is given an infeasible linear system Ax3b of linear (in)equalities and
we want to find a subsystem of this system with maximum cardinality, that is feasible. Here
again A ∈ Rn×m, b ∈ Rn and we will consider 3 = {≤,≥,=}.
A closely related problem is the problem of finding a minimum cardinality irreducible infeasible
subsystem cover. An irreducible infeasible subsystem of constraints or IIS is a set of constraints
that is infeasible and has the property that any proper subsystem is feasible. In other words
an IIS is an infeasible set of constraints, with the property that if we would remove a single
constraint from the IIS it would be feasible. Thus if we could identify in an infeasible set of
constraints all IISs we could solve a covering problem and by removing the cover we would
obtain a feasible set. This is the minimum cardinality IIS cover problem.
The heuristic we will be considering will make extensive use of the standard elastic program.
In the standard elastic program we consider the elasticized version of our constraints. This is
done by adding nonnegative elastic variables εi, ∀i ∈ {1, . . . , n}. The following table summarizes
how this is done. The associated elastic objective function seeks to minimize the sum of the

Original constraint Elasticized constraint∑m
j=1 aijxj ≥ b

∑m
j=1 aijxj + εi ≥ b∑m

j=1 aijxj ≤ b
∑m

j=1 aijxj − εi ≤ b∑m
j=1 aijxj = b

∑m
j=1 aijxj + εi − ε′i = b

elastic variables. We will call it the sum of the infeasibilities (SINF). The set of elastic
constraints is always feasible, but the values of the εi’s give insight in where the infeasibility
could come from in the original set of constraints. Each nonzero elastic variable indicates a
violated constraint. Another measure of the infeasibility in the original set of constraints is the
number of infeasibilities (NINF). In MFS we want to minimize NINF .
In the heuristic we consider, we will iteratively remove constraints from Ax3b to end up with a
feasible subsystem of the constraints. In the heuristic we will solve the standard elastic program
and use its solution to find possible candidates for removal. We use the following six observations
as described in Chinneck [7]:

1. The number of violated constraints in the original standard elastic program is an upper
bound on the cardinality of the IIS set cover. The set of violated constraints is in itself an
IIS set cover.

2. If an original standard elastic program has only one nonzero elastic variable εi, then the
constraint associated with this elastic variable is the minimum cardinality IIS cover.

3. Removing a constraint that is part of the minimum cardinality IIS cover should reduce
SINF more, than removing a constraint that is not part of this cover.

4. Constraints to which the elastic objective function is not sensitive (i.e., their reduced cost
is zero) do not reduce SINF when removed from the set of constraints.

Having a nonzero elastic variable εi in the elastic program, actually means a change of b by an
amount of εi in the original set of constraints. Following from the sensitivity analysis in Section
2.1.2 we then know that if we remove constraint i, a good estimator for the change in the elastic

6.2. CHINNECK HEURISTICS 39

objective function would be εipi, where pi is the variable associated with constraint i in the dual
problem. This leads to the following observation

5. For a constraint in the elastic program, a good estimator for the drop in SINF , if we
would remove the constraint, is εipi.

Lastly there may be constraints, that are not violated in the elastic program but that do give a
large drop in SINF when removed. This leads to the last observation.

6. For a constraint which has εi = 0 in the elastic program, a good estimator for the drop in
SINF , if we would remove the constrain, is pi.

With these six observations we can define a heuristic that solves the maximum feasible subsystem
problem. In the article by Chinneck [7] there are actually three algorithms that are considered.
The difference of these algorithms lies in the way we choose the candidates for deletion SCandidate.
In the first algorithm, which we will call Chinneck1, the set of candidates is composed of all
constraints with nonnegative reduced cost (this follows from Observation 4). In the second
algorithm, which we will call Chinneck2(k), SCandidate consist of the k constraints for which
εipi is the greatest. We only consider the first k constraints because often the constraint, which
constitutes the biggest drop in SINF , is among these first k and considering only the first k can
speed up the algorithm. In the third algorithm, which we will call Chinneck3(k), the candidates
set SCandidate consists of the k constraints for which εipi is the greatest and the k constraints for
which pi is the greatest.
We now state the algorithm.

40 CHAPTER 6. ALGORITHMS

Chinneck Algorithm for MFS-problem

Input: A set of (infeasible) linear constraints Ax3b with 3 = {≤,≥,=}.
Output: Set S of constraints to be removed.

1. Initialize Set S = ∅, SHold = ∅ and set up elastic LP.
2. Solve elastic LP
3. If SINF = 0 EXIT.
4. If NINF = 1 do
5. Set S to violated constraint and EXIT.
6. Else
7. Set SHold to currently violated constraints.
8. While SINF > 0 and |S| < |SHold| do
9. Set MINSINF = inf
10. Set SCandidate according to algorithm.
11. For each member in SCandidate do
12. Delete constraint
13. Solve elastic LP
14. If SINF = 0 do
15. Add constraint to S
16. EXIT
17. If SINF < MINSINF do
18. Set winner to current constraint
19. Set MINSINF = SINF
20. If NINF = 1 do
21. Set Nextwinner equal to violated constraint
22. Else
23. Set Nextwinner equal ∅
24. Add winner to S
25. Delete winner constraint permanently
26. If Nextwinner 6= ∅ do
27. Add nextwinner to S
28. EXIT
29. If |S| < |SHold| do
30. Return S
31. Else
32. Return SHold

Note that in each iteration we solve a number of linear programming problems, which is at most
m (for Chinneck1). Furthermore since there are n constraints we will have at most n iterations.
Thus in total we will solve at most nm linear programs. For Chinneck2(k) this will be at most
km LPs and for Chinneck3(k) at most 2km. Since we can solve a linear program in polynomial
time, the heuristic runs in polynomial time.

6.3. DYNAMIC APPROXIMATION ALGORITHM 41

Adaption to route scheduling problem

In order to solve ΠMFS we need to adapt the heuristic. First we need to introduce the binding
constraints. We do this by adding a set of constraints Cx3d to the elastic program with
C ∈ R(l+1)×m, d ∈ Rl+1, which we do not elasticize. Furthermore we need to take into account
the weights ωh associated with each optional constraint. We can consider the following two
elastic objective functions

min
∑
h∈H

ωhεh (6.1)

or
min

∑
h∈H

(ωmax − ωh)εh (6.2)

where ωmax = maxh∈H ωh. The objective function in (6.1) works well, because it makes sure that
the elastic program violates those constraints that have lower weights. The objective function
in (6.2) works well, because we use the drop in SINF as a measure for dropping a constraint.
Therefore we want the drop in SINF to be high if ωh for the constraint is low. Lastly we relax
the integer variables to real valued variables, since otherwise the algorithms would probably not
have polynomial running time.

6.3 Dynamic approximation algorithm

Although our route scheduling problem cannot be approximated well in general, we can formulate
an algorithm for which we can obtain a bound dependent on the instance. Since this bound is
instance dependent it does not fall in the category of approximation algorithms. To emphasize
that we can give a bound, we will call it a dynamic approximation algorithm, although technically
it is a heuristic.
For the algorithm we consider ΠBigM with real valued xr ≥ 0, where we use the bounded
objective function method to find a Pareto optimal solution. We bound the objective function
of maximizing the flights by κ. Furthermore we also relax our variables zh, demanding that
zh ∈ [0, 1],∀h ∈ H instead of zh ∈ {0, 1}. Then we have to following linear program

min
∑

h∈H ωhzh

s.t.
∑

r∈R xr ≥ κ,∑
r∈R αqrxr ≤ θ, ∀q ∈ Q∑
r∈R βhrxr −Mhzh ≤ λ, ∀h ∈ H

xr ≥ 0 ∀r ∈ R
zh ∈ [0, 1], ∀h ∈ H.

(6.3)

Now suppose that we consider ΠBigM with real valued xr ≥ 0 and know the set of constraints
violated, i.e., we know zh,∀h ∈ H. Then we only have to maximize the number of flights to
obtain a solution. We thus have the following LP

max
∑

r∈R xr

s.t.
∑

r∈R αqrxr ≤ θ, ∀q ∈ Q∑
r∈R βhrxr ≤ λ, ∀h ∈ H with zh = 0

xr ≥ 0 ∀r ∈ R

(6.4)

With the above two linear programs we can formulate the following algorithm.

42 CHAPTER 6. ALGORITHMS

Dynamic approximation algorithm for route scheduling problem

Input: An instance IRS of the route scheduling problem as defined in
Chapter 3 and a constant κ.
Output: A Pareto solution (xr, ∀r ∈ R and zh, ∀h ∈ H of the route
scheduling problem with real valued xr.

1. Initialize Set Mh = (maxr∈R βhr)κ− λ and set up LP as in (6.3).
2. Solve LP obtaining x̄r, ∀r ∈ R and z̄h,∀h ∈ H
3. Set zh = 1 if z̄h > 0 and zh = 0 otherwise
4. Given zh, ∀h ∈ H, set up LP as in (6.4)
5. Solve LP obtaining xr, ∀r ∈ R
6. Return xr, ∀r ∈ R and zh,∀h ∈ H

Theorem 6.3.1. For all κ the dynamic approximation algorithm for the route scheduling prob-
lem gives in polynomial time for the route scheduling problem an approximation for the number
of houses receiving an excess amount of noise pollution with

ALGH

OPTH
≤
∑

h∈H ωhzh∑
h∈H ωhz̄h

,

where ALGH is the number of houses receiving an excess amount of noise pollution calculated by
the algorithm given that at least κ flights are scheduled, i.e., if z is the solution calculated by our
algorithm then ALGH =

∑
h∈H ωhzh with

∑
r∈R xr ≥ κ, and OPTH is the minimum number of

houses receiving an excess amount of noise pollution given that at least κ flights are scheduled.
Where z̄h, ∀h ∈ H are the valued obtained by solving (6.3) in step 2 of the algorithm.

Proof. The algorithm runs in polynomial time. This is due to the fact that it consists of con-
structing and solving two linear programs. Given a linear program optimal solution OPTLP

and an integer linear program optimal solution OPTILP for the same problem we know that
OPTLP ≤ OPTILP for a minimization problem.
Suppose that for an instance of ΠBigM with real valued xr ≥ 0, ∀r ∈ R. OPTH is the minimum
number of houses receiving an excess amount of noise pollution given at least κ flights. Fur-
thermore suppose ALGH is the number of houses receiving an excess amount of noise pollution
computed by our algorithm given at least κ flights. Let OPTLP be the optimal value of the LP
(6.3). Then since ΠBigM is an integer linear program we know that

OPTLP ≤ OPTH ≤ ALGH .

From this we can conclude that

ALGH

OPTH
≤ ALGH

OPTLP
=

∑
h∈H ωhzh∑
h∈H ωhz̄h

(6.5)

Note that the linear program in (6.3) is actually the elastic LP defined for Chinnecks algorithm
only now with its variables scaled to be between zero and one. Since Chinnecks algorithm
uses the amount of constraints violated in the initial elastic LP as an upper bound, Chinnecks
heuristics will always perform at least as good as the dynamic approximation algorithm. Thus
equation (6.5) will also hold for Chinnecks algorithms.
For stability purposes we might also like to consider the elastic LP instead of the linear program

6.4. PRE- AND POSTPROCESSORS 43

in (6.3). We do this by removing Mh in our constraints and taking zh ≥ 0,∀h ∈ H. Then due
to Theorem 4.2.1 equation (6.5) becomes

ALGH

OPTH
≤ ALGH

OPTLP
=

∑
h∈HMhωhzh∑
h∈HMhωhz̄h

with Mh = (maxr∈R βhr)κ− λ.

6.4 Pre- and postprocessors

In this section we consider a few algorithms that we will run either before or after our main
algorithm. These pre- and postprocessors will tackle small problems or deficiencies. One of the
problems with all our algorithms is that given sets of binding and optional constraints, there
may be optional constraints that are always satisfied due to the bindings ones. Therefore when
solving the problem we can consider a smaller problem by removing these optional constraints.
For this we use the following preprocessor.

Preprocessor for constrained MFS-problem

Input: A set of (infeasible) linear constraints Ax3b with 3 = {≤,≥},
which are optional and a set of (feasible) linear constraints Cx3d.
Output: Set S of optional constraints that could be violated

1. Initialize Set S = ∅
2. For every optional ≤ (≥)-constraint i do

3. f = maxx≥0

{∑n
j=1 aijxj |Cx3d

} (
or f = minx≥0

{∑n
j=1 aijxj |Cx3d

})
4. If f > bi (f < bi) do
5. Add constraint i to S
6. Return S.

The main idea behind the preprocessor is that one tries to maximize the value of a constraint,
pushing it towards violation. If this maximum amount is still smaller then the allowed amount
bi one removes the constraint from the set of optional constraints considered.
Furthermore we will also make use of a postprocessor. It may happen in our algorithms (es-
pecially our heuristics) that it violates or removes constraints, that are in the solution given
the flights are not violated. Thus these constraints can be reinserted. Especially Chinnecks
algorithm may select a number of constraints in the initial iterations that are not violated in
the final solution. Thus we have the following postprocessor

Postprocessor for MFS-problem

Input: A set of optional (infeasible) linear constraints Ax3b with 3 = {≤,≥},
a feasible (optimal) solution x∗ ∈ Rn and a set of violated constraints S.
Output: Set S of optional constraints that could be violated

1. For every ≤-constraint i ∈ S (or ≥-constraint) do
2. f =

∑n
j=1 aijx

∗
j

3. If f ≤ bi (f ≥ bi) do
4. remove constraint i from S
5. Return S.

Another deficiency that may occur is when we try to produce a Pareto front using our heuristics.
Since we are making use of a heuristic, we will in general not produce a set of solutions that

44 CHAPTER 6. ALGORITHMS

are Pareto optimal. Therefore it is quite common that in the set of solution there is a solution
σ1 = {x1, z1} and a solution σ2 = {x2, z2} such that solution σ2 has more flights than σ1 and
less houses exceeding their threshold noise pollution. In other words for these two solution σ1

and σ2 it holds that
∑

r∈R x
1
r <

∑
r∈R x

2
r and

∑
h∈H ωhz

1
h >

∑
h∈H ωhx

2
h. We therefore could

use a Pareto filter that removes these solutions as proposed by Messac et al. [20]. We state
the Pareto filter for our route scheduling problem, but it can easily be adapted for any set of
solutions for a multi-objective optimization problem.

Pareto filter for RS-problem

Input: A instance IRS of the route scheduling problem as defined in
Chapter 3 and set of solutions to the instance Ssol = {σ1, . . . , σq}, with
σi = {xi, zi}, ∀i ∈ {1, . . . , q}.
Output: A set of solutions S′sol to IRS that for which it hold that there
are no σ, σ̂ ∈ S′sol such that

∑
r∈R x̂r <

∑
r∈R xr and

∑
h∈H ωhẑh >

∑
h∈H ωhzh.

1. Initialize Set S′sol = Ssol

1. For i = 1, . . . , q do
3. For j = i+ 1, . . . , q do

4. If
∑

r∈R x
i
r <

∑
r∈R x

j
r and

∑
h∈H ωhz

i
h >

∑
h∈H ωhz

j
h do

5. remove σi from S′sol

6. If
∑

r∈R x
i
r <

∑
r∈R x

j
r and

∑
h∈H ωhz

i
h >

∑
h∈H ωhz

j
h do

7. remove σj from S′sol

8. Return S′sol.

Note that we can only conclude that the removed points are not weakly Pareto optimal. The
solutions that remain in the set, do not have to be weakly Pareto optimal.

Chapter 7

Experimental results

In this chapter we will examine three types of airports for of our route scheduling problem. We
will consider an abstract linear airport, a fictitious airport based on real world data and consider
the same fictitious airport where random locations for the houses are taken. We will compute
solutions to these instances using our exact algorithm and the heuristics described in Chapter
6. We will evaluate the performance of our algorithms in terms of optimality and computation
time.

7.1 Linear airport

We will consider the abstract linear airport. We will first describe the linear airport. Then we
will solve two problem instances; one with integer valued flights and one with real valued flights.

7.1.1 Description

We consider an airport which has two runways, one runway to the west of length l and a second
one to the east also of length l. Furthermore we have two flight routines with associated variables
x1 and x2. Flight routine x1 takes the lane to the west and flight route x2 takes the lane to the
east. After take-off these flights will continue in a straight line. The plane around the airport
considered is the plane [0, X] × [0, Y], where the airport is located in the middle of this plane,
i.e., (1

2X,
1
2Y).

45

46 CHAPTER 7. EXPERIMENTAL RESULTS

This set up is described in Figure 7.1 and Figure 7.2.

Figure 7.1: Linear airport top view

Figure 7.2: Linear airport side view

The rectangle in the middle of Figure 7.1 and Figure 7.2 represents the terminal, i.e., the location
where the flight routines begin. We take X ∈ Z+ and Y ∈ Z+. Then we divide the plane into X
parts on the horizontal axis and Y parts on the vertical axis. This way we obtain XY squares
of size one. In the center of these squares we define our housing locations with one house per
housing location, i.e., ωh = 1,∀h ∈ H. What remains is to define the noise pollution for each
flight routine per flight. We do this in such a way that the two flights only create noise pollution
on the half of the plane which they fly through. In other words, flight routine x1 creates noise
pollution on [0, 1

2X]× [0, Y] and flight routine x2 on [1
2X,X]× [0, Y]. Furthermore, in their half

of the plane a flight will give noise pollution of 1 on the runways and 0 on the boundaries of
the plane. In between the noise pollution drops linear in the distance horizontal and vertical
distance to the runway. If we formalize this we get the following.

7.1. LINEAR AIRPORT 47

For a house h on location [ghX , g
h
Y], we define γ(gY) with gY ∈ [0, Y] as

γ(gY) =

{ 2gY
Y , 0 ≤ gY ≤ 1

2Y

2− 2gY
Y , 1

2Y < gY ≤ Y
.

For flight routine x1 we have the following noise pollution on house h with location [ghX , g
h
Y]

βh1 =

γ(ghY)

2ghX
X−2l , 0 ≤ ghX ≤

X
2 − l

γ(ghY), X
2 − l ≤ g

h
X ≤

X
2

0, X
2 < ghX ≤ X

.

For flight routine x2 given ε > 0 we have the following noise pollution on house h with location
[ghX , g

h
Y]

βh2 =

0, 0 ≤ ghX < X

2

γ(ghY) + ε, X
2 ≤ g

h
X ≤

X
2 + l

γ(ghY)
(

2ghX
−X+2l + 2X

X−2l

)
+ ε, X

2 + l < ghX ≤ X
.

For example if we take X = 26, Y = 11 and l = 4 we would get the following noise pollution for
the flight routines.

Figure 7.3: Noise pollution for flight routines for linear airport

Note that we introduce the increase of ε > 0 in the noise pollution for flight routine x2, because
otherwise we could always interchange the values of x1 and x2 in our solutions.

48 CHAPTER 7. EXPERIMENTAL RESULTS

7.1.2 Results

Integer values

We first consider the linear airport with integer valued flights, i.e., xr ∈ Z+, ∀r ∈ R. We
will consider a smaller instance than for the real valued case, because of computation time.
Therefore we take X = 12, Y = 4, l = 2 and λ = 100. We solve the problem optimally with
Big-M integer linear programming and heuristically with the three Chinneck algorithms and the
dynamic approximation algorithm. We use k = 3 with Chinnecks second and third algorithm.
We can use any weight rule for our Chinneck algorithms, since the two are identical given weights
of one.
For each algorithm we construct a set of solutions by using the bounded objective function
method as described in Section 5.3. We use the iterative scheme, described in that section. For
our five algorithms we obtain a set of solutions. In case of the Big-M method, these are all
Pareto optimal, but using the iterative scheme we can also construct all weakly Pareto optimal
solutions. We get the following solutions for the different algorithms

Figure 7.4: Fronts of maximum flight against minimum houses

Note that we interpolated between the different solutions to construct the fronts. We see that
the three Chinneck algorithms perform optimally for this instance. We already see from the
above that the dynamic approximation algorithms performs to within a factor of two of the
optimal solution. The Table 7.1 sums up the different performance statistics.

In terms of computation time, all algorithms finish within a second. In Appendix B.1 a figure

7.1. LINEAR AIRPORT 49

Approximation ratio flights

mean max

Chinneck 1 1.0003 1.0023
Chinneck 2(3) 1.0003 1.0023
Chinneck 3(3) 1.0003 1.0023
Dyn. Approximation 1.0866 1.3341

Approximation ratio houses

mean max

Chinneck 1 1 1
Chinneck 2(3) 1 1
Chinneck 3(3) 1 1
Dyn. Approximation 1.3648 1.8182

Computation time (sec)

mean max

Chinneck 1 0.011823 0.01547
Chinneck 2(3) 0.012185 0.014167
Chinneck 3(3) 0.015123 0.032565
Dyn. Approximation 0.012588 0.016534
Big-M 0.036667 0.10471

Table 7.1: Performance of algorithms for linear Airport
with integer valued flights

can be found of the computation time per solution. Also an animation can be found in Appendix
C, which rotates through the found solutions for the Big-M method. Looking at this animation,
one can see that between certain subsequent Pareto points there is a large change in value of x1

and x2. In other words the flight schedule changes from favoring one flight to favoring the other.
This can also be seen in Figure 7.5, which shows the values of the flight routines for different
Pareto points found by the Big-M method.

50 CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.5: Values of x1 and x2 for solutions generated by the Big-M method

For example from the Pareto point with 18 violated housing constraints to the Pareto point with
22 housing constraints violated we see a huge change in the values of x1 and x2. Thus the solution
may greatly depend on the number of housing constraints that are violated or in the same sense
the minimum number of flights that have to be scheduled. Note that from a sensitivity analysis
point of view, both x1 and x2 stay in the basis the entire time, thus x1 and x2 are not sensitive
from this point of view. However, since their values chance there is also a big change in which
constraints are violated. This is due to the way we set up or problem. Scheduling flights x1

will violate constraints on the left, while scheduling x2 will violate constraints on the right. Due
to the show changes in the flights schedule, the variables associated with which constraint is
violated and which not, can be very sensitive. To make this statement more clear, one should
look at the animation in Appendix C.

Real values

We will now consider the linear airport with real valued xr, i.e., xr > 0,∀r ∈ R. We have the
X = 26, Y = 11, l = 4 and λ = 100. We solve the problem optimally with Big-M integer linear
programming and solve it heuristically with the three Chinneck algorithms and the dynamic
approximation algorithm. We use k = 3 with Chinnecks second and third algorithm. We
construct sets of solutions for our algorithms in a similar fashion as in the integer valued case.
We then get the following set of solutions given in Figure 7.6.

7.1. LINEAR AIRPORT 51

Figure 7.6: Fronts of solutions of maximum flight against minimum houses

Note that we did not compute a solution with the Big-M method for
∑

r∈R xr ≥ 558. The
computation for the next solution in the set run for more then 8 hours, before we cut it off.
From Figure 7.6 of the solution sets we see that in this instance the Chinneck heuristics are not
optimal anymore, but remain very close to the optimal solution. Another thing that we see in
the solution front of the Chinneck heuristics, is that they have a drop in the number of houses
suffering an excess amount of noise pollution while they can schedule more flights. This can
occur because we are using heuristics to solve the problem. If we would use the postprocessor as
described in Section 6.4, we would remove these solutions that are clearly suboptimal. Figure 7.6
with postprocessor can be found in Appendix B.1. We can also see these results from the Table
7.2. Note that for the approximation ratios we only consider solutions found by the heuristic
for which

∑
r∈R xr ≤ 558, because otherwise we would not have an optimal solution to compare

it to.

52 CHAPTER 7. EXPERIMENTAL RESULTS

Approximation ratio flights

mean max

Chinneck 1 1.0003 1.0023
Chinneck 2(3) 1.0003 1.0023
Chinneck 3(3) 1.0003 1.0023
Dyn. Approximation 1.0866 1.3341

Approximation ratio houses

mean max

Chinneck 1 1.0199 1.1193
Chinneck 2(3) 1.0197 1.1193
Chinneck 3(3) 1.0205 1.1193
Dyn. approximation 1.0765 1.3035

Computation time (sec)

mean max

Chinneck 1 23.092 82.5625
Chinneck 2(3) 1.9742 4.1542
Chinneck 3(3) 3.0838 7.119
Dyn. approximation 0.021893 0.0544
Big-M 1759.1206 24779.8285

Table 7.2: Performance of algorithms for linear Airport
with real valued flights

In Table 7.2 we see that given a number of violated housing constraints, the Chinneck algorithms
approximate the optimal number of flights scheduled quite well where the dynamic approxima-
tion algorithm performs bad, compared to them. If we look at the approximation of the number
of violated housing constraints given the number of flights, we see that the Chinneck heuristics
on average are within 2.05 percent of the optimal solution. In the worst case they are within
12 percent. The dynamic approximation algorithm performs worse then the Chinneck heuris-
tics. It does however perform much better then its theoretical approximation bound as found
in Theorem 6.3.1, since this bound has a mean of 26.3630 and a maximum of 1909.9.
In terms of computation time we see the behavior we expect. The dynamic approximation al-
gorithm for each solution only solves one linear program, thus its computation time is constant
and small. For the second Chinneck algorithm we solve 3 linear programs before removing a
constraint and the third will solve 6 before doing so. The first Chinneck algorithm solves a
number of LP’s equal to the number of constraints with nonnegative dual variables. This will
in general be more LP’s than the second and third Chinneck algorithms. The Big-M method
may take time exponential in the input size and we see this reflected in its computation time.

7.1. LINEAR AIRPORT 53

Figure 7.7 further emphasizes the computation time behavior of our algorithms.

Figure 7.7: Computation time per solution of our algorithms for the linear airport

54 CHAPTER 7. EXPERIMENTAL RESULTS

As in the case with integer values, we can also look at the values of x1 and x2 for the solutions
found by the Big-M method.

Figure 7.8: Values of x1 and x2 for solutions generated by the Big-M method

We see that between certain subsequent Pareto points there is a large change in value of x1 and
x2. These are found, for example, between the solution which violates 38 constraints and the
solution which violates 39 constraints constraints. Another example where this can be found is
between the solution which violates 61 constraints, the solution which violates 62 constraints
constraints and the solution which violates 63 constraints constraints. Thus, again we see that
the constraints that are violated are very sensitive to the amount of violated constraint or equally
to the amount of flights scheduled.

7.1. LINEAR AIRPORT 55

A remarkable thing is that the solutions found by the Chinneck heuristics show this behavior a
lot less extreme. We get a set of solutions for which the change in value of x1 and x2 between
subsequent Pareto points seems to be more due to an increase in flights scheduled, see Figure
7.9.

Figure 7.9: Values of x1 and x2 for solutions generated by the Chinneck heuristics

An animation rotating through the found solutions for the Big-M method and those found by
the Chinneck algorithms can be found in Appendix C.

56 CHAPTER 7. EXPERIMENTAL RESULTS

7.2 Andijk airport

We will consider the fictitious Andijk airport. We will first describe the airport. Then we will
solve three problem instances; Andijk airport consider on a 500 meter grid with measure points,
Andijk airport consider on a 500 meter grid without measure points and Andijk airport consider
on a 250 meter grid with measure points.

7.2.1 Description

We consider a fictitious airport in the neighborhood of Andijk. Andijk is a village in the North-
West of the Netherlands. The fictitious Andijk airport lays South-West of Andijk and has 4
runways.

Although this airport does not exist in real life, it resembles a real life airport quite well.
The airport layout, the types of airplanes and the flight routines could be realized in the real
world. The locations of the houses are based on the real world. The amount of noise pollution
per flight routine scheduled these locations suffer are obtained through the same calculations
currently used for real airports. Thus, we can conclude that calculations done on Andijk airport
although fictitious, could also be obtained by doing calculations on a real airport.
For Andijk airport we have 112 governmentally imposed measure points. In the proximity of
Andijk airport there are 33999 houses. We will group these houses using a 500 by 500 meter grid
into 420 housing locations. Given the housing locations we have calculated the noise pollution
on these locations for all 2408 flight routines. We will consider this amount expressed in ‘Kosten

7.2. ANDIJK AIRPORT 57

eenheid’ (Ke)1, which is one of the noise measures used by the Dutch government. The maximum
amount of noise pollution a housing location may receive is Hmax = 35 Ke. In this abstract form
the airport will be as in Figure 7.10.

Figure 7.10: Andijk airport layout

In Figure 7.10 the size of the green dots indicates the order of magnitude of the amount of houses
on every location. The real number of houses can be found in Figure B.3 which can be found in
Appendix B.2. We make a distinction between the government imposed measure points. Some
have a imposed noise level smaller than 35 Ke, thus a housing location in the same region cannot
receive an excess amount of noise pollution, while for others the level is more than 35 Ke, thus
a housing location in the same region can receive too much noise pollution.

7.2.2 Results

For Andijk airport we only solve the problem with real valued flights, i.e., xr ≥ 0,∀r ∈ R. This
is because solving the problem for integer valued flights would take to much computation time.
We will solve the problem using the five algorithms described in Chapter 6. We solve it optimally
with Big-M integer linear programming and heuristically with the three Chinneck algorithms
and the dynamic approximation algorithm. We used k = 3 with Chinnecks second and third
algorithm and for all three Chinneck algorithm used the weighting as described in (6.1). For
all five algorithms we use the bounded objective function method as described in Section 5.3 to

1‘Kosten eenheid’ is named after prof.dr.ir. C.W. Kosten who introduced the measure in the sixties.

58 CHAPTER 7. EXPERIMENTAL RESULTS

obtain solutions. We use the iterative scheme we described in that section to obtain a set of
solutions for every algorithm. After solving we get for every algorithm a set of solutions. If we
interpolated between the different solutions to construct fronts, we get Figure 7.11. This front
is actually the (weak) Pareto front in the Big-M methods case.

Figure 7.11: Fronts of maximum flight against minimum houses for Andijk airport

Note that up to this point we did not use any pre- or postprocessors. Furthermore note that
we stopped computation for the Big-M method for

∑
r∈R xr ≥ 2081520. This because the next

computation took more than 8 hours to complete. We see that indeed the Big-M method pro-
duces a real Pareto front. Chinnecks algorithms are quite close and the dynamic approximation
algorithm can be quite off. Table 7.3 illustrates this further.

From Table 7.3 we see that the Chinneck heuristics are on average performing much better than
the dynamic approximation algorithm. From the three Chinneck heuristics the second algorithm
has on average and in the worst case the best approximation ratios. The approximation ratio of
the Chinneck algorithms per solution can be found in Figure B.4 in Appendix B.2. There we see
that the worst case performance of the first and third algorithm in approximating the number
of houses receiving an excess amount of noise pollution, is the solution found for 53431 flights.
The Figure 7.12 looks more closely at this solution.

7.2. ANDIJK AIRPORT 59

Approximation ratio flights

mean max

Chinneck 1 1.0751 1.4212
Chinneck 2(3) 1.0303 1.4212
Chinneck 3(3) 1.0683 1.4212
Dyn. Approximation 1.2203 1.4737

Approximation ratio houses

mean max

Chinneck 1 1.7149 4.2
Chinneck 2(3) 1.3166 2.2176
Chinneck 3(3) 1.6323 4.2
Dyn. Approximation 20.1463 82

Computation time (sec)

mean max

Chinneck 1 109.3784 219.0582
Chinneck 2(3) 18.1761 44.585
Chinneck 3(3) 20.856 40.8931
Dyn. Approximation 0.37338 0.43565
Big-M 154.2396 1867.882

Table 7.3: Performance of algorithms for Andijk airport

Figure 7.12: Fronts of maximum flight against minimum houses for Andijk airport for 5 · 105 ≤∑
r∈R xr ≤ 106

Looking at Figure 7.12 we see that we can improve this worst case performance by using a Pareto
filter. The solutions is obviously not a Pareto optimal solution, since we can also schedule 9.0·105

flights using the same algorithms with only 15 instead of 21 houses receiving an excess amount
of noise pollution. For the dynamic approximation algorithm, its approximation ratio for the
number of houses is still much better than its theoretical approximation bound as found in
Theorem 6.3.1. This bound has a mean of 8.44 · 108 and a maximum of 7.59 · 109.

60 CHAPTER 7. EXPERIMENTAL RESULTS

If we look at the computation time of our five algorithms we see results similar to those of
the linear airport with real valued flights. Next we comment on the computation time of our
algorithms. The computation time for the dynamic approximation algorithm for each solution
is almost constant and small, due to the fact that the algorithm solves only a single LP. For
the second Chinneck algorithm we solve 3 linear programs before removing a constraint and the
third will solve 6 before doing so. The first Chinneck algorithm solves a number of LP’s equal to
the number of constraints with nonnegative dual variables, which in general will be more than
for the second and third Chinneck algorithms. The Big-M method may take exponential time
and this is reflected in its computation time, which is the largest computation time of all our
algorithms, even though we stopped its computation at 2081520 scheduled flights. Figure 7.13
shows the computation time per solution. It further illustrates the computation time behavior
of our algorithms.

Figure 7.13: Solutions - time needed for computation

We will now look at the flight routines which are used to schedule flights. For the Big-M method
a total of 84 different flight routines have values greater than zero in at least one of the found
solutions. To get an insight in the solutions found by the Big-M method we can look at the
Figure 7.14. It shows for every solution the fraction of total flights scheduled per flight routine.
We see, that from the solutions where we have 22 or more houses getting an excess amount of
noise pollution, the flight routines 5, 157, 690, 763, 776, 823 and 887 are always greater then zero
and account on average for 65% of the total flights scheduled. Thus, after a certain point these
flight routines are not sensitive to the amount of flights scheduled or the amount of constraints
violated. Because these flight routines are not sensitive there also will be a set of constraints
that is not, and will be violated in the solutions, where 22 or more houses get an excess amount

7.2. ANDIJK AIRPORT 61

of noise pollution. On the other hand there are also a few flight routines which are sensitive. For
example routines 1431, 1435, 1479 and 1483 are switching between equal to zero and greater to
zero for the solution with 27 upto 37 houses having an excess amount of noise pollution. Thus
their are some flight routines, which are very sensitive to the amount of flights scheduled or the
amount of constraints violated.

62 CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.14: Relative of amount of flights per flight routine per solution

7.2. ANDIJK AIRPORT 63

For the algorithms we obtain a real valued solution xr, ∀r ∈ R. Of course we are also interested
in an integer valued solution. One way of obtaining an integer solution is by rounding down every
xr to the nearest integer. Since all our constraints are less-or-equal constraints this procedure
produces a feasible solution. When doing this we lose at most 30.01 flights. With a minimum
of 226168.17 flights scheduled this is a loss of less than 0.014 %. Thus we can get an integer
valued solution, which is close to its optimal solution quite easily for Andijk airport.

Pre and postprocessors

If we consider only the binding and not the optional constraints, we obtain the Pareto point
(i.e., the anchor point for this objective function) given in Figure 7.15.

Figure 7.15: Pareto point with maximum number of flights

From this plot we see that a lot of housing locations are not violated. Thus, it may be that some
optional constraints cannot be violated at all due to the binding ones and that we should use
the preprocessor as described in Section 6.4 to remove some constraints from our computation.
If we test which can and which cannot be violated we get the plot in Figure 7.16

64 CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.16: Possible violated constraints for Andijk airport

We see that there are 127 locations for which the constraint is always satisfied, thus, we could re-
move these constraints to obtain faster algorithms. We compute solutions with the preprocessor
for
∑

r∈R xr ≤ 1800000

Computation time (sec)

Without preprocessor With preprocessor

mean max mean max

Chinneck 1 36.3625 95.4999 30.5803 71.5745
Chinneck 2(3) 8.68754 16.5397 6.7131 12.3754
Chinneck 3(3) 9.7793 22.9615 8.6452 26.9939
Dyn. Approximation 0.35965 0.40393 0.30556 0.35554
Big-M 17.1556 70.6871 14.035 42.9641

Table 7.4: Computation time with and without preprocessor

The preprocessor itself takes 82 seconds to complete. Thus we can conclude that the prepro-
cessor is effective in reducing the computation time. We also implemented the postprocessor
as described in Section 6.4 but this was not effective for Andijk airport. It only reinstated one
constraint in total (this was for a solution found by the third Chinneck heuristic).
We already saw that in the solution sets found by the Chinneck algorithms there are several
obvious non optimal solutions. We can remove this by using our Pareto filter. If we again
interpolated between the different points in the set, given in Figure 7.17.

7.2. ANDIJK AIRPORT 65

Figure 7.17: Fronts of maximum flight against minimum houses with Pareto filter

Note that we did not plot the solutions for the dynamic approximation algorithm, since the
Pareto filter did not remove any solutions. We see from this figure that all algorithms now have
a increasing set of solutions. If for the filtered solutions we look at their approximation ratios
we get the results given in Table 7.5.

66 CHAPTER 7. EXPERIMENTAL RESULTS

Approximation ratio flights

Before Pareto filter After Pareto filter

mean max mean max

Chinneck 1 1.0751 1.4212 1.0571 1.4212
Chinneck 2(3) 1.0303 1.4212 1.0209 1.4212
Chinneck 3(3) 1.0683 1.4212 1.0541 1.4212
Dyn. Approximation 1.2203 1.4737 1.2203 1.4737

Approximation ratio houses

Before Pareto filter After Pareto filter

mean max mean max

Chinneck 1 1.7149 4.2 1.5577 3.2
Chinneck 2(3) 1.3166 2.2176 1.2446 2.0458
Chinneck 3(3) 1.6323 4.2 1.5711 3
Dyn. Approximation 20.1463 82 20.1463 82

Table 7.5: Performance of algorithms for Andijk airport
after Pareto filter

We see that given the number of houses getting an excess amount of noise pollution, the average
approximation ratio of the number of flights is improved for the three Chinneck algorithms. Their
worst case performance is not improved. Given the number of flights the average approximation
ratio for the number of houses is improved for all three Chinneck algorithms as well as their
worst case performance. The second Chinneck algorithm is still performing the best.

Without measure points

One of the questions posed before is whether or not we could schedule more flights while giving
less houses to much noise pollution (i.e., more than its threshold amount) if we would remove the
government imposed measure points. Therefore we will now consider Andijk airport without the
measure points, i.e., Q = ∅. This also means that we do not have any binding constraints, which
implies that there will be a solution for which we can schedule an infinite amount of flights. We
use the same algorithms as for our original airport to obtain solutions for this instance of Andijk
airport. If we again interpolated between the different solutions to construct fronts, we get the
results presented in Figure 7.18

7.2. ANDIJK AIRPORT 67

Figure 7.18: Fronts of maximum flight against minimum houses

Note that our algorithms find solutions that violate the same constraints for 7 · 105 flights
scheduled as for an infinite number of flights scheduled. We see that we could schedule an
infinite amount of flights while only giving 6 houses more than the threshold amount of noise
pollution. This infinite amount of flights is scheduled by using flight routine 823 and 928 by
the Big-M method and the three Chinneck heuristics. The dynamic approximation algorithm
uses flight routine 157. The Pareto point for the infinite amount of flights found by the Big-M
method (and the three Chinneck heuristics) is shown in Figure 7.2.2.

68 CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.19: Pareto point Andijk airport with infinite amount of flights scheduled

7.2. ANDIJK AIRPORT 69

Table 7.6 summarisses the performance of our algorithms for this instance of Andijk airport.

Approximation ratio flights2

Before Pareto filter After Pareto filter

mean max mean max

Chinneck 1 1.1007 1.4653 1.0892 1.4653
Chinneck 2(3) 1.0864 1.4653 1.0765 1.4653
Chinneck 3(3) 1.0922 1.4653 1.0823 1.4653
Dyn. Approximation NA NA NA NA

Approximation ratio houses

Before Pareto filter After Pareto filter

mean max mean max

Chinneck 1 1.2167 2 1.1762 1.5
Chinneck 2(3) 1.12 2 1.0875 1.5
Chinneck 3(3) 1.1533 2 1.1292 1.5
Dyn. Approximation 3.3 7 3 7

Computation time (sec)

mean max

Chinneck 1 10.8933 21.4314
Chinneck 2(3) 2.4724 3.8327
Chinneck 3(3) 3.8496 6.3904
Dyn. Approximation 0.51497 0.54709
Big-M 1.1083 2.2462

Table 7.6: Performance of algorithms for Andijk airport without measure points

We did not consider the preprocessor because since Q = ∅ all constraints could be violated. We
see that for the approximation ratio of the number of flights, the three Chinneck algorithms
have similar results as those for the Andijk airport instance with measure points. For the
dynamic approximation algorithm we give no approximation ratio since it has a solution for
which it cannot schedule an infinite amount of flights while it does give 6 houses more than their
threshold amount of noise pollution.
For the approximation ratio, for the number of houses which receive more than their threshold
amount of noise pollution, we see that all algorithm perform better than for the instance with
measure points. Especially the second Chinneck algorithm performs well. On average, it is only
9% away from the optimum if we use our Pareto filter. The dynamic approximation algorithm
is again performing the worst for approximating the number of houses, although it is still better
then its theoretical approximation bound, which has a mean of 1.5 · 109 and a maximum of
7.6 · 109 for this instance of Andijk airport.
In terms of computation time we see that the Big-M method is fastest after the dynamic
approximation algorithm. This is the case because it has to violate at most 4 constraints
to obtain a solution. When comparing this to figure 7.13 this is not unexpected, also there the
Big-M method is faster than the Chinneck heuristics if the number violated constraints is less
than 6 (which is for 652922 flights scheduled and 10 houses receiving more than their threshold
amount of noise pollution).

2We did not consider the last solutions found per algorithm for this approximation ratio (the solutions having
an infinite amount of flights), since this would make this ratio arbitrary bad for two of our heuristics.

70 CHAPTER 7. EXPERIMENTAL RESULTS

For this instance if we would round down our real valued solution to an integer valued solution
we would lose at most 30.08. With a minimum of again 226168.17 flights scheduled this is a loss
of less then 0.014 %.
In Appendix B.2.1 a figure can be found with the solutions after using a Pareto filter, furthermore
in this Appendix there are also figures showing the flight routines which are used to schedule
flights for the different solutions found by the Big-M method. In Appendix C their is an
animation available which shows the solutions found by the Big-M method. One thing that is
interesting, is that the flights scheduled in the solutions of the Big-M method for this instance of
Andijk airport have a lot of similarities with the flights scheduled for the first 7 solutions of the
Big-M method for Andijk airport with measure points, i.e., the mostly use the same routines to
construct these solutions.

Fine grid

Up until now we have considered Andijk airport where we calculated noise pollution levels for
our flight routines on a grid of 500 by 500 meters. Of course this grid can have an influence on
the solutions found because we will group houses together in housing locations using this grid.
Therefore we will now consider Andijk airport only now on a grid of 250 by 250 meters. This
will give use the airport layout found in Figure 7.20.

Figure 7.20: Andijk airport layout with 250 meter grid

It is obvious that we have 960 housing locations which is 540 more than in the original set up.
We solve this instance using the same algorithms as before and with our preprocessor active.
Our preprocessor removes 411 constraints from the computation. For all five algorithms we use
the bounded objective function method as described in Section 5.3 to obtain solutions and we

7.2. ANDIJK AIRPORT 71

use the iterative scheme we also described in that section to obtain a set of solutions. If we then
interpolate between the different solutions to construct fronts, we get Figure 7.21.

Figure 7.21: Fronts of maximum flight against minimum houses for Andijk airport with 250
meter grid

Note that we again stop the computation of the Big-M method because it took more than 8
hours to complete. This is for

∑
r∈R xr ≥ 734317. We see that the three Chinneck algorithm

are quite close to the optimal solution for
∑

r∈R xr ≤ 734317 and the dynamic approximation
algorithm is also closer compared to Figure 7.11. If we compare our results for Andijk airport
on a 250 meter grid as to those for Andijk airport on a 500 meter grid with preprocessor we
get the Table 7.7. Note that for the results on the 500 meter grid we only take solutions into
account with a number of flights less or equal then the maximum number of flights found by our
algorithms on the 250 meter grid. Thus, for Big-M method for Andijk airport on a 500 meter
grid the results are based on the solutions found with

∑
r∈R xr ≥ 734317.

72 CHAPTER 7. EXPERIMENTAL RESULTS

Approximation ratio flights

500 meter grid 250 meter grid

mean max mean max

Chinneck 1 1.0751 1.4212 1.2371 1.6585
Chinneck 2(3) 1.0303 1.4212 1.0804 1.3326
Chinneck 3(3) 1.0683 1.4212 1.2295 1.6768
Dyn. Approximation 1.2203 1.4737 1.1838 1.4968

Approximation ratio houses

500 meter grid 250 meter grid

mean max mean max

Chinneck 1 1.7149 4.2 1.6904 3
Chinneck 2(3) 1.3166 2.2176 1.2583 2
Chinneck 3(3) 1.6323 4.2 1.65 3
Dyn. Approximation 20.1463 82 2.5667 4

Computation time (sec)

500 meter grid 250 meter grid

mean max mean max

Chinneck 1 109.3784 219.0582 326.8861 1147.4636
Chinneck 2(3) 18.1761 44.585 51.9041 97.5534
Chinneck 3(3) 20.856 40.8931 66.3837 151.9274
Dyn. Approximation 0.37338 0.43565 1.02 1.1901
Big-M 154.2396 1867.882 402.1131 3869.1713

Table 7.7: Performance of algorithms for Andijk airport for 250 and 500 meter grid size

If we look at the approximation ratio for the number of flights scheduled, we see that in general,
the heuristic perform better for the 500 meter grid than for the 250 meter grid. Only the mean
of dynamic approximation algorithm and the maximum of the second Chinneck algorithm are a
little better.
For the approximation ratio of the number of houses receiving an excess amount of noise pollution
it is the complete opposite. Here the first Chinneck algorithm, the second Chinneck algorithm
and the dynamic approximation algorithm perform better on the 250 meter, than on the 500
meter grid. Especially the dynamic approximation algorithm sees a great improvement. Also
the worst case performance of all heuristics is better on the 250 meter grid. The theoretical
bound for the dynamic approximation algorithm has an average of 1.93 · 109 and a maximum of
2.32 · 1010.
In terms of computation time we see an increase, which is to be expected. We had 297 housing
locations remaining after the preprecessor with the 500 meter grid and we now have 549 with
the 250 meter grid after the preprecessor. Since we do not have more houses, more constraints
will probably need to be violated to attain the same amount of flights. So computation times
increase. We see that they increase with a factor between 2 and 6 depending on the algorithm.

In Figure 7.21 we have seen that our heuristic produce some obvious non optimal solutions. We
therefore use our Pareto filter to remove these for the solutions sets. We get the following results
given in Table 7.8.

7.2. ANDIJK AIRPORT 73

Approximation ratio flights

500 meter grid 250 meter grid

mean max mean max

Chinneck 1 1.0571 1.4212 1.2297 1.6195
Chinneck 2(3) 1.0209 1.4212 1.0591 1.2112
Chinneck 3(3) 1.0541 1.4212 1.2235 1.6768
Dyn. Approximation 1.2203 1.4737 1.1838 1.4968

Approximation ratio houses

500 meter grid 250 meter grid

mean max mean max

Chinneck 1 1.5577 3.2 1.6714 3
Chinneck 2(3) 1.2446 2.0458 1.2218 2
Chinneck 3(3) 1.5711 3 1.6357 3
Dyn. Approximation 20.1463 82 2.5667 4

Table 7.8: Performance of algorithms for Andijk airport for 250 and 500 meter grid size with
Pareto filter

We see that the Pareto filter improves the approximation ratios for our Chinneck heuristics
a little for the 250 meter grid. On the 500 meter grid we see small improvements for the
approximation ratio of the number of flights scheduled, but we see a bigger improvement for the
the approximation ratio for the houses getting an excess amount of noise pollution given the
number of flights scheduled.
In Appendix B.2.2 figures can be found of the computation time needed per solution found
and of the solutions when filtered by the Pareto filter. Furthermore in Appendix C their are
animations available which show the solutions found by the Big-M method and by the second
Chinneck algorithm.

Seeing the results from Table 7.8 one might wonder whether or not one can improve the ap-
proximation ratio of our heuristics for the 500 meter grid by solving the problem heuristically
for a 250 meter grid. Thus, we want to compare the solutions found by the heuristics for the
250 meter grid to the solutions found by the Big-M method for the 500 meter grid. Figure 7.22
depicts the sets of solutions we are comparing.

74 CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.22: Fronts of heuristics solutions with 250 meter grid and the front of solutions of the
Big-M method on the 500 meter grid

We look at the solutions obtained by our heuristics for Andijk airport with a 250 meter grid
and with a 500 meter grid to approximate the the solutions for Andijk airport with a 500 meter
grid found by the Big-M method. Table 7.9 summarizes the results. Note that we consider our
solutions without Pareto filter.

We see in Table 7.9 that for the three Chinneck algorithms this approach does not work to
improve the approximation ration. For the dynamic approximation algorithm, on the other
hand, we see quite an improvement in the approximation ratio for the number of houses getting
an excess amount of noise pollution. Since we already saw that the dynamic approximation
algorithm was still fast on calculation with the 250 meter grid this may be an option to improve
the performance of the algorithm. Note that the theoretical bounds found for the dynamic
approximating algorithm are worse and therefore there are no guarantees that this will work.

In Appendix A.2.1 we also look at Andijk airport with a 250 meter grid but now without measure
points as also done with the 500 meter grid. We see that it produces results similar to those
with the 500 meter grid, i.e., the second Chinneck has the best approximation ratios and we can
schedule an infinite amount of flights by using flight routine 823 and 928. On the other hand we
do see a change in that the Big-M method takes the most time to complete its computations
(this was not the case on the 500 meter grid without measure points) and that we will give 7

3The approximation ratios are for approximating the optimal solution of Andijk airport with 500 meter grid

7.3. RANDOM LOCATIONS 75

Approximation ratio flights3

500 meter grid 250 meter grid

mean max mean max

Chinneck 1 1.0751 1.4212 1.3544 1.9587
Chinneck 2(3) 1.0303 1.4212 1.1758 1.8743
Chinneck 3(3) 1.0683 1.4212 1.3398 1.97
Dyn. Approximation 1.2203 1.4737 1.5734 2.0896

Approximation ratio houses3

500 meter grid 250 meter grid

mean max mean max

Chinneck 1 1.7149 4.2 2.2593 6
Chinneck 2(3) 1.3166 2.2176 1.7126 5.5
Chinneck 3(3) 1.6323 4.2 2.2549 6.5
Dyn. Approximation 20.1463 82 7.1658 22.5946

Table 7.9: Performance of algorithms for 250 and 500 meter grid for approximating Andijk
airport with a 500 meter grid

houses an excess amount of noise pollution to schedule this infinite amount of flight instead of
6.

7.3 Random locations

For the linear airport and Andijk airport we considered the experimental approximation ratios
for our heuristics. We saw that the Chinneck algorithms had approximation ratios for the
number of houses receiving an excess amount of noise pollution given the number of flights
scheduled, were often below 2 and in the worst case the ratio was 4.2. In order to get even more
insight in the performance of our heuristics, we want to test these on more problem instances.
We will therefore consider the airport as described in Section 7.2 only now with different housing
locations. We will generate these new housing locations randomly with also a random amount of
houses per location. We will generate multiple of these instances and look at the approximation
ratios of our heuristics for the number of houses receiving an excess amount of noise pollution
given the number of flights scheduled.

7.3.1 Description

As mentioned before we will consider the same airport as described in Section 7.2. Thus, we have
an airport with 4 runways. Around the airport we have 112 governmentally imposed measure
points. There are 2408 flight routines which can be scheduled and for every flight routine the
amount of noise pollution per flight per (possible) housing location is given. Again we set the
maximum amount of noise pollution a housing location may receive to 35Ke. We will divide the
area around the airport into squares by using a 250 meter grid. It is divided into 69 parts on the
east-west axis and in 45 parts on the north-south axis. We take our possible housing locations
in the center of each square. In this way their are 3105 possible housing locations.
For each instance, we will consider, we will randomly determine which possible locations will
contain houses and, if so, how much houses are on that housing locations. A possible housing

76 CHAPTER 7. EXPERIMENTAL RESULTS

location will contain houses with probability p1 , i.e. P (ωh > 0) = p1, ∀h ∈ H. Thus a housing
locations will not have any houses with probability (1 − p1) and we will omit these locations
from our calculations.
If for a certain h we know that ωH > 0 then ωh follows a bounded Pareto distribution. The
bounded Pareto distribution is the Pareto distribution as defined by Arnold [2] truncated to the
interval [ρ, τ]. We choose this distribution because, for Andijk airport, the number of houses
per housing location seem to follow a power law probability distribution. It has the following
probability density function

fPar(x) = Pr(X = x) =
aρax−a−1

1−
(ρ
τ

)a (7.1)

where ρ ≤ x ≤ τ and a > 0. And is has the following cumulative distribution function

FPar(x) = Pr(X ≤ x) =
1− ρax−a

1−
(ρ
τ

)a (7.2)

where ρ ≤ x ≤ τ and a > 0. Since we have ρ = 1 we can rewrite (7.1) as

fPar(x) = Pr(X = x) =
ax−a−1

1− 1
τa

and we can rewrite (7.2) as

FPar(x) = Pr(X ≤ x) =
1− x−a

1− 1
τa

.

Since the bounded Pareto distribution is a continuous distribution, we will can obtain non integer
values when sampling from this distribution, while we need integer values for our houses. We will
therefore round the sampled values to the nearest integer. Thus, given that a housing location
has houses associated with it, i.e., ωh > 0, we will have the following probability mass function

Pr(ωh = y) = FPar

(
y + 1

2

)
− FPar

(
y − 1

2

)
=

(
y − 1

2

)−a − (y + 1
2

)−a
1− 1

τa

where y ∈ {1, . . . , τ}. Note that we take FPar

(
1
2

)
= 0 and FPar

(
τ + 1

2

)
= 1 for the left and right

boundaries of our support and thus the last equality will not hold for these values. Summarizing
for a possible housing location h we have the following probability mass function for ωh

fHouses(y) = Pr(ωh = y)

1− p1, if y = 0

p1 ·
1−
(
y+

1
2

)−a

1− 1
τa

, if y = 1

p1 ·
(
y−1

2

)−a
−
(
y+

1
2

)−a

1− 1
τa

, if y = y ∈ {2, . . . , τ − 1}

p1 ·

(
1−

1−
(
y−1

2

)−a

1− 1
τa

)
, if y = τ

0, otherwise

(7.3)

Note that if for a possible housing location h we have ωh = 0 we will remove this location from
our computations, i.e. h is not a housing location for that instance.

7.3. RANDOM LOCATIONS 77

If we take for example p1 = 0.0451, τ = 894 and a = 0.3800 we could generate the following
airport layout given in Figure 7.23.

Figure 7.23: Aiport layout for airport with randomly generated housing locations

Note that for Andijk airport we saw housing locations often grouped together and locations
where ωh was big often where near other locations where ωh was large. This is not the case for
our randomly generated housing locations as we can see in this figure.

7.3.2 Results

In total we consider 14 instances of our airport with random locations. When generating our
housing locations we take p1 = 0.0451, τ = 894 and a = 0.3800. We take τ = 894, because this
is the maximum number of houses for a single house locations for Andijk airport on the 500
meter grid. We take a = 0.3800, because this is equal to the maximum likelihood estimator of
the Pareto distribution if we consider the housing locations of Andijk airport is random data,
i.e. a = n

n ln(ρ)−
∑

h∈H ln(ωh) . This estimator is close to the maximum likelihood estimator for the

bounded Pareto distribution since ρ
τ is small. Lastly p1 is equal to one third of the number of

housing locations for Andijk airport on the 500 meter grid divided by the total possible housing
locations, i.e., p1 = 1

3 ·
420
3105 . We take p1 smaller than 420

3105 , because otherwise we would generate
solutions, that the Big-M method cannot solve in an acceptable amount of time. The following
figure shows the empirical distribution of the houses per housing location for Andijk airport, the
probability density function of the fitted bounded Pareto distribution and the probability mass

78 CHAPTER 7. EXPERIMENTAL RESULTS

function of the rounded fitted bounded Pareto distribution is given in Figure 7.24.

Figure 7.24: Empirical distribution and fitted distributions for the number of houses per housing
location

Note that the figure only runs up until y = 80 while the actual distribution functions actually
run up until y = 834.
Since we are primarily interested in the approximation ratio of the number of houses getting an
excess amount of noise pollution given the number of flights scheduled, we will generate solution
for our algorithm by using a method different to the method we used for Andijk airport. We
will first use the normalized normal constraint method on ΠBig-M . By using our Big-M method
in combination with our preprocessor we can obtain 11 weakly Pareto optimal points by setting
α = {0, 1

10 , . . . ,
9
10 , 1}. In this way we obtain 11 values for the number of flights κ1, . . . , κ11.

We continue by using bounded objective value method to obtain ΠMFS. We then solve this
problem using our three Chinneck heuristics and the dynamic approximation algorithm for
κ = κ1, . . . , κ11. This way we obtain 11 solutions which schedule at least κ1, . . . , κ11 respectively.
Using the solutions obtained by our heuristics and those obtained by the Big-M method we can
compute the experimental approximation ratios for our heuristics. Table 7.10 summarizes these.

7.3. RANDOM LOCATIONS 79

Approximation ratio houses

mean mean of max max over all
per instance instances

Chinneck 1 1.5091 3.4692 4.3636
Chinneck 2(3) 1.0872 1.768 3.2338
Chinneck 3(3) 1.4902 3.4692 4.3636
Dyn. Approximation 10.3849 49.3651 103.5833
Dyn. Approx. (Theoretical) 1.0132 · 105 3.4372 · 105 6.8205 · 105

Computation time (sec)

mean mean of max max over all
per instance instances

Chinneck 1 22.6881 52.2413 65.9736
Chinneck 2(3) 7.2277 14.0074 17.1042
Chinneck 3(3) 10.1134 23.9163 29.6909
Dyn. Approximation 0.43491 0.49303 0.85011
Big-M 272.1062 2960.7794 8079.8936

Table 7.10: Performance of algorithms for random housing locations

The second Chinneck algorithm again performs quite will. Most of the time it is not more than
a factor 2 away from the optimum and in the worst case it has an experimental approximation
ratio of 3.2338. After looking into this worst case performance we saw that only for 3 of the 154
solutions found the approximation ratio of the second Chinneck algorithm is above 2. The first
and third Chinneck algorithm perform less but are still within a factor of 3.5 of the optimum for
most of the time. Our dynamic approximation algorithm performs the worst. In the worst case
it is a factor of 103.5833 away from the optimum, which is still much better than its theoretical
approximation bound.
In terms of computation time we get similar results as Andijk airport. The dynamic approxi-
mation algorithm is the fastest, then Chinnecks second algorithm, followed by Chinnecks third
and Chinnecks first algorithm. The Big-M method is again slow compared to the others. Its
average computation time is already longer than the worst case performance of the heuristics.

80 CHAPTER 7. EXPERIMENTAL RESULTS

Chapter 8

Conclusion and further research

We have considered the route scheduling problem, which is a multi-objective optimization prob-
lem where given an airport one wants to maximizing the number of flights, while minimize
the number of houses suffering more than an acceptable amount of noise pollution. We have
modeled this problem as a multi-objective optimization problem. We proved that the route
scheduling problem is NP-complete and proved that it is as hard to approximated as maximum
independent set. Because of these features of the problem, it is unlikely that we can find an
efficient algorithm with an approximation ratio smaller than the input size.

We discussed the concept of Pareto optimality and devised methods to rewrite our multi-
objective optimization problem to single objective optimization problem. By using these meth-
ods we could rewrite our problem to an integer linear programming problem and to the maximum
weighted feasible subsystem problem. Using this single objective formulations of our problem,
we devised algorithms to solve it. We saw that we can solve the route scheduling problem op-
timally using an integer linear programming solver, which may take exponential time to find
this (Pareto) optimal solution, and we saw that we can solve it efficiently using one of the three
Chinneck heuristics or the dynamic approximation heuristic. We tested these algorithms on
three different problem types. We saw that the Chinneck heuristics perform well in practice,
especially the second Chinneck algorithm. It stays within a factor 2 of the optimal solution for
most of the instances considered.

Further research can be done on the Chinneck heuristics to better incorporate the weights
associated with optional constraints. We saw that we could incorporate these in two ways in our
elastic program. The first one had the advantage that the elastic program will violates those
constraints that have lower weights. While the second one had the advantage that removing
a constraint with high valued weight is expensive. Thus if one would alter the algorithm to
incorporate both, this could improve the performance of the Chinneck heuristics.

We now only computed exact solutions for our problems using the Big-M method, which we
use to solve ΠBig-M . But there is also an the exact algorithm by Parker and Ryan [25] for
the weighted maximum feasible subsystem problem. If one would adapt this algorithm to also
incorporate binding constraints, one could use this algorithm to solve ΠMFS.

In terms of the problems we considered up until this point, we did not take into account any
operational requirements. For example, we did not require that we have the same amount of
take-offs as landings. Therefore it could be interesting to consider our route scheduling problem

81

82 CHAPTER 8. CONCLUSION AND FURTHER RESEARCH

only now also with operational constraints incorporated. In this way one could obtain more
realistic flights schedules. One could obtain such a solutions that better represent real world
operations by introducing more binding constraints.

When considering the problem instance of Andijk airport we considered an instance with the
current government regulations, i.e., the zone around the airport, and without the current reg-
ulation. Our experiments on the instance implicate that if one would remove the government
regulations one would be able to schedule more flights while giving less houses an excess amount
noise pollution. Thus one might argue from these results, that by removing the current regula-
tions and imposing them on the number of houses suffering more than the acceptable amount of
noise pollution, one could improve the overall quality of life of people living around an airport.
More research needs to be done to prove this claim.

Bibliography

[1] Noga Alon, Sanjeev Arora, Rajsekar Manokaran, Dana Moshkovitz, and Omri Weinstein.
On the inapproximability of the densest k-subgraph problem. Manuscript, 3(4):7, 2011.

[2] Barry C Arnold. Pareto distribution. Wiley Online Library, 1985.

[3] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and intractibility of approximation problems. In Proceedings of the 33rd IEEE
Symposium on Foundations of Computer Science, IEEE Computer Science Press, Los
Alamitos, CA, pages 14–23, 1992.

[4] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. J. ACM, 45
(3):501–555, May 1998. ISSN 0004-5411. doi: 10.1145/278298.278306. URL
http://doi.acm.org/10.1145/278298.278306.

[5] Dimitri Bertsimas and J Tsitsiklis. Introduction to linear programming. Athena Scientific,
1:997, 1997.

[6] Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vijayaragha-
van. Detecting high log-densities: an o(n1/4) approximation for densest k-subgraph. In
Proceedings of the 42nd ACM symposium on Theory of computing, pages 201–210. ACM,
2010.

[7] John W Chinneck. Fast heuristics for the maximum feasible subsystem problem. INFORMS
Journal on Computing, 13(3):210–223, 2001.

[8] Guy de Ghellinck and Jean-Philippe Vial. A polynomial newton method for linear pro-
gramming. Algorithmica, 1(1-4):425–453, 1986.

[9] dr. F.W.J. van Deventer. Basiskennis geluidshinder luchtvaart. 2004.

[10] EUROCONTROL. Seven years flights service units forecast 2013-2019. 2013.

[11] Uriel Feige. Relations between average case complexity and approximation complexity. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages
534–543. ACM, 2002.

[12] Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy. Interactive
proofs and the hardness of approximating cliques. Journal of the ACM (JACM), 43(2):
268–292, 1996.

[13] MR Garey and DS Johnson. Computers and intractability-a guide to the theory of np-
completeness, 1979.

[14] Johan H̊astad. Clique is hard to approximate within n1−ε. 1997.

83

84 BIBLIOGRAPHY

[15] Dorit S Hochbaum and Anu Pathria. Analysis of the greedy approach in problems of
maximum k-coverage. Naval Research Logistics (NRL), 45(6):615–627, 1998.

[16] TL Jonker. Multiobjective optimization of aircraft noise and operational flexibility around
airports. Master’s thesis, University of Amsterdam.

[17] Richard M Karp. Reducibility among combinatorial problems. Springer, 1972.

[18] Irvin J Lustig. Feasibility issues in a primal-dual interior-point method for linear program-
ming. Mathematical Programming, 49(1-3):145–162, 1990.

[19] R Timothy Marler and Jasbir S Arora. Survey of multi-objective optimization methods for
engineering. Structural and multidisciplinary optimization, 26(6):369–395, 2004.

[20] Achille Messac, Amir Ismail-Yahaya, and Christopher A Mattson. The normalized nor-
mal constraint method for generating the pareto frontier. Structural and multidisciplinary
optimization, 25(2):86–98, 2003.

[21] Kaisa Miettinen. Nonlinear multiobjective optimization, volume 12. Springer, 1999.

[22] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms
and complexity. Courier Dover Publications, 1998.

[23] Christos H Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and com-
plexity classes. Journal of computer and system sciences, 43(3):425–440, 1991.

[24] Vilfredo Pareto. Manuale di economia politica, volume 13. Societa Editrice, 1906.

[25] Mark Parker and Jennifer Ryan. Finding the minimum weight iis cover of an infeasible
system of linear inequalities. Annals of Mathematics and Artificial Intelligence, 17(1):107–
126, 1996.

[26] Vijay V Vazirani. Approximation algorithms. springer, 2001.

[27] David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. Theory OF Computing, 3:103–128, 2007.

Appendix A

Additional results

A.1 Model of predecessor

Before the route scheduling problem as we discuss in this thesis was considered, T. L. Jonker
in her thesis looked at a different model for noise minimization around airports. In this model
Πpre we want to maximize the number of flights, while also maximizing the gap between the
used amount and the amount allowed of noise pollution on the measure points imposed by the
government. We have the following given

Flight routines {r1, . . . , rm} = R
Measure points {q1, . . . , ql} = Q

With this we have the following constants

αqr ∈ R+ ∀q ∈ Q,∀r ∈ R Representing the noise pollution of flight routine r
on measure point q

θ ∈ R+ Constant for the maximum noise allowed by the
government (mostly 35 Ke)

Now we introduce the variables {xr1 , . . . , xrm} = X, with xr ∈ Z+, ∀r ∈ R, which represent the
amount of times routine r is used. Furthermore we introduce g ∈ R+, which represents the gap
between the used amount and the amount allowed by the government. We have the following
formulation Πpre

max
∑

r∈R xr and max g

s.t.
∑

x∈X αqrxr ≤ θ − g ∀q ∈ Q
x ∈ Z+, g ∈ R+

If we use one of the method as described in Chapter 5 one could rewrite Πpre as an mixed integer
linear program and solve it using an MILP solver. Afterwards one can analyze the solutions
found and impose more constraints to find a more realistic flight schedule. This is in short what
is done in the thesis by Jonker [16].

85

86 APPENDIX A. ADDITIONAL RESULTS

A.2 Relaxing from integer to real valued variables

Suppose we want to turn our maximum feasible ILP problem into a maximum feasible LP
problem. Then we want to relax xr ∈ Z+ to xr ∈ R+. We could after computing all xr round
every value down, which gives us a solution satisfying the same amount of constraints and having
Σr∈Rxr ≥ κ−m. Thus we have two options. We could solve the LP with κ′ = κ and then round
down. This would give us Σr∈Rxr ≥ κ−m. Which can be zero in the worst case when m > κ.
Or we could solve for κ′ = κ + σ where 0 < σ ≤ m and then round down. This will result in
Σr∈Rxr ≥ κ −m + σ. For large σ one can easily see that this may give very bad estimate for
the number of constraints satisfied. Let σ = ε, where 0 < ε << 1. Then consider the following
example with R = {r1, r2}.

42xr1 + 1
κ+εxr2 ≤ 1 for h1

1
κxr1 + 42xr2 ≤ 1 for h2, . . . , hn

(A.1)

In this example one could only satisfy 1 constraint when
∑

r∈R xr ≥ κ+σ, but one could satisfy
n−1 when

∑
r∈R xr ≥ κ. Thus for every choice of rounding, one will encounter examples, where

the LP gives a bad approximation of the ILP.

A.2.1 Andijk airport without measure points on a fine grid

We already saw that for Andijk airport with a the 500 meter grid, that if we would remove
the measure point we could schedule an infinite amount of flights, while only having 6 houses
suffering more then their threshold of noise pollution. We could do the same analysis for Andijk
airport on the 250 meter grid. We use the bounded objective function method to transform the
multi-objective optimization problem in a single objective optimization problem. We again us
the Big-M method to solve it exactly and use the first Chinneck algorithm, the second Chinneck
algorithm with k = 3, the third Chinneck algorithm with k = 3 and the dynamic approximation
algorithm to gain approximate solutions. For all five algorithms we use the iterative scheme as
described in Section 5.3 to obtain sets of solutions with an increasing number of flights. After
obtaining these sets we interpolated between these different solutions to construct fronts and we
get Figure A.1.

In figure A.1 we see that the Big-M method again constructs a (weak) Pareto front. The second
Chinneck algorithm performs again the best of the four heuristics. One remarkable feature of
this instance is that the dynamic approximation algorithm for certain number of flights performs
better than the first and third Chinneck heuristic.
Just as with the 500 meter grid we can schedule an infinite amount of flights. In order to
schedule this infinite amount of flights the Big-M , the first Chinneck algorithm and the second
Chinneck algorithm use again flight routine 823 and 928 by and the three Chinneck heuristics.
The dynamic approximation algorithm uses again flight routine 157, which is now also used by
the third Chinneck algorithm (for the 500 meter grid it used flight routine 823 and 928).

A.2. RELAXING FROM INTEGER TO REAL VALUED VARIABLES 87

Figure A.1: Fronts of maximum flight against minimum houses for Andijk airport with 250
meter grid and no measure points

The Pareto point found by the Big-M method (and first two Chinneck heuristics) which schedules
the infinite amount of flights is shown in Figure A.2.

88 APPENDIX A. ADDITIONAL RESULTS

Figure A.2: Pareto point Andijk airport with infinite amount of flights scheduled

While scheduling the infinite amount of flights we now give 7 houses more than thir threshold
amount of noise pollution. This is one more than for Andijk airport on a 500 meter grid. Table
A.1 summarized the results for the five algorithms for Andijk airport without measure points
on a 500 meter and a 250 meter grid.

A.2. RELAXING FROM INTEGER TO REAL VALUED VARIABLES 89

Approximation ratio flights 4

500 meter grid 250 meter grid

mean max mean max

Chinneck 1 1.1007 1.4653 1.19 1.4768
Chinneck 2(3) 1.0864 1.4653 1.0526 1.2181
Chinneck 3(3) 1.0922 1.4653 1.1086 1.2237
Dyn. Approximation NA NA 1.0822 1.2026

Approximation ratio houses

500 meter grid 250 meter grid

mean max mean max

Chinneck 1 1.2167 2 1.9123 3
Chinneck 2(3) 1.12 2 1.2403 2
Chinneck 3(3) 1.1533 2 1.9504 3
Dyn. Approxation 3.3 2 2.781 4

Computation time (sec)

500 meter grid 250 meter grid

mean max mean max

Chinneck 1 10.8933 21.4314 45.7576 107.295
Chinneck 2(3) 2.4724 3.8327 6.0849 12.3344
Chinneck 3(3) 3.8496 6.3904 13.8179 25.4905
Dyn. Approximation 0.51497 0.54709 1.1043 1.1849
Big-M 1.1083 2.2462 122.712 761.609

Table A.1: Performance of algorithms for Andijk airport without measure points for 250 and
500 meter grid size

First note the the approximation ratio for the dynamic approximation algorithm does not say
much. Only the first few solutions can be used to obtain the bound, since for 3 · 105 it already
has 7 houses receiving an excess amount of noise pollution. Thus again we see that the second
Chinneck algorithm has the best approximation ration for the number of flights given the number
of houses receiving more than their threshold amount of noise pollution. For Chinnecks second
and thrid algorithm, the ration is better than for the 500 meter grid case, while for the first
Chinneck algorithm it is worse.
The approximation ratio for the houses receiving an excess amount of noise pollution given the
number of flights, is in general worse than for Andijk airport on a 500 meter grid. Although the
values for the second Chinneck heuristic are still quite close to those for the 500 meter grid and
thus still quite good. In terms of computation time we see an increase of time needed of a factor
between 3 and 6 for our Chinneck algorithms. For the dynamic approximation algorithm it is
about doubled, while for the Big-M method we see a huge increase. Its valued for the 250 meter
grid is more in line with what we saw for other instances (other than Andijk airport without
measure points on a 500 meter grid).
We can again also use our Pareto filter to try to improve on the approximation ratios and obtain
better sets of solution for our heuristics. If we do so we get the approximation ratios shown in
Table A.2.

4We did not consider the last solutions found per algorithm for this approximation ratio (the solutions having
an infinite amount of flights), since this would make this ratio arbitrary bad for three of our heuristics.

90 APPENDIX A. ADDITIONAL RESULTS

Approximation ratio flights 3

500 meter grid 250 meter grid

mean max mean max

Chinneck 1 1.0892 1.4653 1.19 1.4768
Chinneck 2(3) 1.0765 1.4653 1.0526 1.2181
Chinneck 3(3) 1.0823 1.4653 1.1086 1.2237
Dyn. Approximation NA NA 1.0822 1.2026

Approximation ratio houses

500 meter grid 250 meter grid

mean max mean max

Chinneck 1 1.1762 1.5 1.5917 3
Chinneck 2(3) 1.0875 1.5 1.25 2
Chinneck 3(3) 1.1292 1.5 1.8973 3
Dyn. Approxation 3 7 2.4933 4

Table A.2: Performance of algorithms for Andijk airport without measure points for 250 and
500 meter grid size with Pareto filter

We see that the filter has no influence on the approximation ratio for the number of flights,
but it does improve the mean approximation ratio for the number of houses getting an excess
amount of noise pollution.
In Appendix C their is an animation available which shows the solutions found by the Big-M
method for Andijk airport without measure point on a 250 meter grid.

Appendix B

Additional plots

B.1 Addition plots linear airport

For the linear airport with integer values we did not plot the computation time because for all
our algorithms these we less then a second. Figure B.1 gives the full picture.

Figure B.1: Solutions - time needed for computation

91

92 APPENDIX B. ADDITIONAL PLOTS

For the linear airport with real values we saw that the Chinneck algorithms sometimes compute
solutions which are clearly suboptimal. These solutions can be removed by using the postpro-
cessor in Section 6.4. We would then obtain the following solution sets.

Figure B.2: Fronts of solutions linear airport with postprocessor

B.2. ADDITION PLOTS ANDIJK AIRPORT 93

B.2 Addition plots Andijk airport

To give further insight in the values obtained for Andijk airport we have listed the number of
houses per location in the following figure.

Figure B.3: Housing location with number of houses per location

We already saw the average and worst case performance of our Chinneck heuristics. To give
even more insight in their performance the following figures show their performance per found
solution.

94 APPENDIX B. ADDITIONAL PLOTS

Figure B.4: Approximation ratio of the number of flights scheduled for the three Chinneck
algorithms

Figure B.5: Approximation ratio of the number of houses with more then the threshold amount
of noise pollution for the three Chinneck algorithms

B.2. ADDITION PLOTS ANDIJK AIRPORT 95

B.2.1 Without measure points

Figure B.6 shows the solutions found for Andijk airport after we have use a Pareto filter.

Figure B.6: Fronts of maximum flight against minimum houses with Pareto filter

We can also look at which flight routines are scheduled per weakly Pareto point found by the
Big-M method. Figure B.7 shows the relative amount of flights scheduled per flight routine per
weakly Pareto point. Note that we did not plot the last point that schedules an infinite amount
of flights, because it would greatly increase the range of the plot. This last point schedules flight
823 and 928 an infinite amount of times.

96 APPENDIX B. ADDITIONAL PLOTS

Figure B.7: Relative of amount of flights per flight routine per solution of Andijk airport without
measure points

B.2. ADDITION PLOTS ANDIJK AIRPORT 97

B.2.2 Fine grid

We also consider Andijk airport on a grid of 250 meters instead of 500 meters. This will give
different solutions since housing locations will have different weights and there will be more
options available. This will increase the computation time of our algorithms. Figure B.8 shows
the computation time per solution found.

Figure B.8: Solutions - time needed for computation for Andijk airport with a 250 meter grid

98 APPENDIX B. ADDITIONAL PLOTS

Also for this problem instance we saw that the heuristics generate some obvious non optimal
solutions. Thus we can use a Pareto filter to remove these. Figure B.9 we interpolated between
the solutions in these filtered sets to obtain fronts for all our algorithms.

Figure B.9: Fronts of maximum flight against minimum houses with Pareto filter
for Andijk airport with a 250 meter grid

Appendix C

Animations

This appendix contains animations of the different solutions obtained for the problem instances
we considered. These can only be viewed in its digital format.

Only included in digital version

99

