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SUMMARY

Two-dimensional (2D) layered materials are integral to modern condensed matter re-
search due to their remarkable electronic and optical properties. A key feature of these
materials is that their properties can be adjusted by making small changes to their struc-
ture at the nano- and atomic scale. Understanding and linking these electronic and op-
tical properties to structural features at the nanoscale is crucial for unlocking the full
potential of 2D layered materials and maximizing their use in advanced devices.

This thesis uses electron-based microscopy and spectroscopy to achieve the high
spatial and energy resolution required for this goal. These techniques address the limi-
tations of optical and X-ray spectroscopy, which, while offering excellent spectral reso-
lution, lack the spatial precision needed to resolve nanoscale morphologies and atomic
structures critical for understanding 2D materials.

To achieve this, we employ two advanced electron microscopy methodologies: probe-
corrected Scanning Transmission Electron Microscopy (STEM) and monochromated Elec-
tron Energy-Loss Spectroscopy (EELS). Together, these techniques enable the acquisi-
tion of high-quality Spectral Images (SIs) with both exceptional spatial and spectral res-
olution, providing a powerful platform for the detailed characterization of 2D layered
materials. To further enhance the potential of STEM-EELS, we integrate Machine Learn-
ing (ML)-based approaches. These approaches introduce innovative solutions such as
the removal of the dominant Zero Loss Peak (ZLP) background in the low-loss energy
region, peak identification and multivariate techniques to separate overlapping signals
and so fully leverage the rich information contained in STEM-EELS SIs

Chapter 2 establishes the data processing methodology used in this work. It provides
an overview of STEM-EELS SIs, detailing how they are acquired, interpreted, and the
challenges involved in processing these high-dimensional datasets. A key focus is on
our ML-based approach for image-wide subtraction of the ZLP in SlIs. This step is crucial
for isolating spatially localized information in the low-loss energy region, which would
otherwise be obscured by the ZLP tail. The methodology incorporates ML techniques
originally developed in high-energy physics for probing the interior structure of protons,
demonstrating the adaptability of these methods to electron microscopy. This analysis
framework, named EELSFITTER, serves as the foundation for the remainder of the thesis,
where it is applied to the characterization of 2D layered materials. Developed in Python,
the framework is open-source and freely available for use by the research community.

In Chapter 3, the framework EELSFITTER is applied to investigate Indium Selenide
(InSe) nanosheets and Tungsten Disulfide (WS,) flakes with mixed polytipism (2H/3R).
The thickness and stacking order of layers are critical structural features that influence
the optoelectronic properties of 2D materials, including their band gap. For InSe, the
stacking order or crystalline phase determines whether the band gap is direct or indirect
and affects its value. In the case of WS,, a member of the Transition Metal Dichalco-
genides (TMDs) family, thickness plays a direct role in tuning the band gap, making it an
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ideal benchmark for validating the ML-based approach. Using robust ZLP subtraction
in the SIs of these materials, we achieve nanoscale precision in spatially resolving their
band gap and dielectric function. Additionally, we correlate the electronic properties to
structural features, with a particular focus on local specimen thickness, demonstrating
the effectiveness of this methodology.

We extend the data processing techniques and analytical methods to tackle auto-
mated feature identification within the energy-loss and energy-gain region of EELS in
Chapter 4. The first part of this chapter focuses on one-dimensional (1D) Molybdenum
Disulfide (MoS;) nanostructures. As a TMD material similar to WS,, MoS, in a 1D mor-
phology allows us to study the effects of curvature-induced strain on its optoelectronic
properties. We characterise excitonic and plasmonic resonances, revealing how these
features are influenced by the 1D geometry. Additionally, we investigate excitonic be-
haviour and the band gap value in relation to localized curvature-induced strain, com-
paring the properties at the tips of the 1D structures with those at the body.

The second part of the chapter examines the layered topological insulator Bismuth
Telluride BipTes. Here, we focus on the energy-gain region, applying ML-based tech-
niques originally developed for modelling the loss region of the ZLP. Using this approach,
we extract a well-defined collective excitation at -0.8 eV on the energy-loss axis. By re-
lying on the energy-gain region, we avoid complications from multiple scattering, en-
abling the characterization of this excitation with enhanced spectral precision. This
chapter highlights the versatility of our methods for analysing diverse materials and
morphologies.

In Chapter 5, we focus on WS, nanotriangles, examining localised plasmonic res-
onances that form along their edges. By employing non-negative matrix factorization
(NMF), we identify the spatial distribution of these resonances and successfully sepa-
rate them from signals originating from overlapping WS, nanotriangles. The results of
the NMF analysis are compared with electrodynamical simulations, which reveal strong
agreement with the observed localized plasmonic resonances. Further, we quantify these
resonances by analysing their dispersion relation through a 1D Fabry-Perot model. This
analysis demonstrates a quadratic dispersion characteristic of surface plasmonic phe-
nomena, offering deeper insights into the optical behaviour of WS, nanotriangles.

This thesis presents the development of novel strategies for processing and inter-
preting STEM-EELS SIs in both the low energy-loss and energy-gain regions. Through
these advancements, we provide valuable insights into the relationship between struc-
tural and physical properties across various morphologies and material types of layered
materials. Importantly, all computational frameworks developed during this work are
open-source and freely available, ensuring that the methodologies and approaches can
be easily adopted by other researchers. This accessibility promotes the wider application
of electron microscopy and related techniques to the study of nanostructured materials,
fostering further advancements in the field.



SAMENVATTING

Twee-dimensionale (2D) gelaagde materialen zijn integraal voor hedendaags geconden-
seerde materie onderzoek vanwege hun opmerkelijke elektrische en optische eigenschap-
pen. Een belangrijk kenmerk van deze materialen is dat hun eigenschappen aangepast
kunnen worden door kleine aanpassingen in hun structuur op nano- en atomaire schaal.
Het begrijpen en koppelen van deze elektrische en optische eigenschappen naar struc-
turele eigenschappen op nanoschaal is cruciaal om de volledige potentie van 2D mate-
rialen te benutten en hun gebruik in geavanceerde apparaten te maximaliseren.

Dit proefschrift richt zich op het gebruik van elektronen-gebaseerde microscopie en
spectroscopie, die bij uitstek geschikt zijn voor het bereiken van de hoge ruimtelijke re-
solutie en energie resolutie die nodig zijn voor dit doel. Deze technieken kaarten de
tekortkomingen van optische en réntgenstraling spectroscopie aan, die, hoewel ze uit-
stekende spectrale resolutie bieden, ruimtelijke precisie missen die nodig is om nano- en
atomaire vormen in beeld te brengen en kritisch is voor het begrijpen van 2D materialen.

Om dit te bereiken passen we twee geavanceerde elektronen microscopie methodo-
logieén toe: bundel-gecorrigeerde Raster Transmissie Elektronen Microscopie (Engels:
Scanning Transmission Electron Microscopy (STEM)) en monochromatische Elektronen
Energy-Verlies Spectroscopie (Engels: Electron Energy-Loss Spectroscopy (EELS)). Deze
technieken samen zijn in staat Spectrale Afbeeldingen (Engels: Spectral Image (SI)) van
hoge kwaliteit op te nemen, met zowel een exceptionele ruimtelijke als spectrale reso-
lutie, en dus een krachtig platform bieden voor gedetailleerde karakterisatie van 2D ge-
laagde materialen. Om de potentie van STEM-EELS verder te verhogen integreren we
Machinaal Leren (Engels: Machine Learning (ML)) gebaseerde benaderingen. Met deze
aanpak introduceren we innovatieve oplossingen zoals het verwijderen van de domi-
nante Nul Verlies Piek (Engels: Zero Loss Peak (ZLP)) achtergrond in the lage energie
verlies regio, piek identificatie en multivariate technieken om overlappende signalen te
separeren om zo de informatie rijke STEM-EELS SIs te benutten.

In Hoofdstuk 2 wordt de gegevensverwerking methodologie van dit proefschrift vast-
gesteld. Er wordt een overzicht van STEM-EELS SIs gegeven, met details over hoe deze
worden opgenomen, geinterpreteerd en welke uitdagingen te pas komen bij het verwer-
ken van deze hoge-dimensionale gegevensset. Een belangrijk aandachtspunt is op onze
ML-gebaseerde benadering voor het afbeeldingsbrede verwijdering van de ZLPs in SIs.
Deze stap is cruciaal voor het isoleren van ruimtelijk gelokaliseerde informatie in de lage
energie verlies regio, die anders verborgen zou zijn door de ZLP staart. Deze methodolo-
gie bevat ML technieken oorspronkelijk ontwikkeld in hoge-energie fysica voor het be-
studeren van het interieur van protonen en demonstreert hiermee het aanpassingsver-
mogen van deze methodes in elektronen microscopie. Dit kader, genaamd EELSFITTER,
dient als basis voor de rest van het proefschrift, waar het wordt toegepast voor het karak-
teriseren van 2D gelaagde materialen. Geschreven in Python is dit kader open-source en
gratis beschikbaar voor gebruik door het onderzoeksgemeenschap.

Xiii
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In Hoofdstuk 3 wordt EELSFITTER toegepast om Indiumselenide (InSe) nanobladen
en Wolfraamdisulfide (WS;) schilfers van gemixte polytipisme (2H/3R) te onderzoeken.
De dikte en de stapelvolgorde van de lagen zijn belangrijke structurele eigenschappen
die invloed hebben op de opto-elektronische eigenschappen van 2D materialen, onder
andere hun verboden zone. Voor InSe bepaalt de stapelvolgorde of kristalfase, of de ver-
boden zone een directe of indirecte transitie bevat en bepaalt het van de waarde van de
verboden zone. In het geval van WS;, een lid van de familie van Transitiemetaal Dichal-
cogenides (TMDs), speelt de dikte direct een rol in het afstemmen van de verboden zone,
wat het een ideale maatstaf maakt voor het valideren van de ML-gebaseerde benadering.
Gebruikmakend van een robuuste verwijdering van de ZLP in de SIs van deze materia-
len, bereiken we nanoschaal precisie in het ruimtelijke bepalen van hun verboden zone
en diélektrische functie. Daarbij komend correleren we de elektronische eigenschap-
pen met de structurele eigenschappen, met een specifieke focus op de lokale dikte en
demonstreren hiermee de effectiviteit van de methodologie.

We breiden de gegevensverwerkingstechnieken en analytische methodes uit met au-
tomatische kenmerk identificatie in de energieverlies en energiewinst regio van EELS
in Hoofdstuk 4. In het eerste deel van dit hoofdstuk bestuderen we één-dimensionale
(1D) Molybdeendisulfide (MoS;) nanostructuren. MoS; is net als WS, een TMD, en met
het bestuderen van MoS; in een 1D morfologie kunnen we de effecten bestuderen van
kromming-geinduceerde spanning op de opto-elektronische eigenschappen. We karak-
teriseren de excitonische en plasmonische resonanties en onthullen hoe deze eigen-
schappen worden beinvloed door de 1D geometrie. Daarbij onderzoeken we het ex-
citonische gedrag en de waarde van de verboden zone in relatie tot de gelokaliseerde
kromming-geinduceerde spanning door het vergelijken van de eigenschappen aan de
puntjes van de 1D structuren ten opzichte van hun kern.

In het tweede deel van het hoofdstuk onderzoeken we de gelaagde topologische iso-
lator Bismuttelluride (Bi»Tes). Hier zetten we de focus op de energiewinst regio en pas-
sen de ML-gebaseerde technieken toe oorspronkelijk ontwikkeld voor de energieverlies
regio van de ZLP. Met deze benadering extraheren we een goed gedefinieerde collectieve
excitatie op -0.8 eV op de energieverlies as. Door het gebruik van de energiewinst regio
voorkomen we complicaties van meervoudige verstrooiing waardoor we deze excitatie
kunnen karakteriseren met verbeterde spectrale precisie. Dit hoofdstuk benadrukt de
veelzijdigheid van onze methodes voor het analyseren van diverse materialen en vor-
men.

In Hoofdstuk 5 leggen we de focus op WS, nanodriehoeken en onderzoeken we gelo-
kaliseerde plasmonische resonanties die vormgeven aan hun randen. Met het toepassen
van niet-negatieve matrix factorisatie (NMF) identificeren we de ruimtelijke verdeling
van deze resonanties en scheiden we ze met succes van signalen die komen van over-
lappende WS, nanodriehoeken. Het resultaat van de NMF analyse wordt vergeleken
met elektrodynamische simulaties, die in sterke overeenstemming zijn met de geobser-
veerde gelokaliseerde plasmonische resonanties. Verder kwantificeren we deze resonan-
ties door het analyseren van hun dispersie middels een 1D Fabry-Perot model. Deze
analyse demonstreert een kwadratische dispersie karakteristiek voor plasmonische op-
pervlak fenomenen en biedt een dieper inzicht in het optische gedrag van WS, nano-
driehoeken.
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Dit proefschrift presenteert de ontwikkelingen van nieuwe strategieén voor het ver-
werken en interpreteren van STEM-EELS Sls in zowel lage energieverlies en energiewinst
regio’s. Door deze vooruitgangen zorgen we voor waardevolle inzichten in the relatie
tussen structurele en fysische eigenschappen over verscheidene vormen en materiaal
types van gelaagde materialen. Belangrijk is dat alle computationele kaders ontwikkeld
tijdens dit werk open-source en gratis beschikbaar zijn, zodat deze methodologieén en
benaderingen makkelijk door andere onderzoekers gebruikt kunnen worden. Deze toe-
gankelijkheid bevordert de bredere toepassing van elektronen microscopie en verwante
technieken voor de studie van nano-gestructureerde materialen, en behartigt verdere
vooruitgangen in het veld.






INTRODUCTION

Seeing the small is called clarity

- Tao Te Ching chapter 52



2 1. INTRODUCTION

TwO-DIMENSIONAL LAYERED MATERIALS

Since the groundbreaking first isolation and identification of graphene, a single layer
of graphite, in 2004 [1], two-dimensional (2D) layered materials, also known as van der
Waals (vdW) materials, have grown to be present in nearly every field of condensed mat-
ter research [2], [3].

The characteristic feature of these materials is that, when one zooms into a bulk crys-
tal, one finds layers neatly stacked on top of each other that can be easily separated
among them. Indeed, while within a single layer the atoms are strongly held together
by covalent bonds, between adjacent layers they are instead loosely bound together by
the weak Van der Waals force. These defining structural properties of 2D layered ma-
terials have a profound impact on their electronic properties, which have been shown
to depend on the underlying atomic arrangement down to the single monolayer level.
Furthermore, in order to satisfy the requirements of smaller, faster, and more efficient
performance for optoelectronic and nanophotonic applications, 2D materials are par-
ticularly attractive since they can be tuned to exhibit specific properties on demand [4],
[5]. In this endeavour, the precise characterisation and correlation of their structural
properties and optoelectronic plays an essential role.

Of direct relevance for this thesis are the 2D materials of the family of Transition
Metal Dichalcogenides (TMDs). These compound materials are composed by a tran-
sition metal element sandwiched by chalcogen atoms [6]. Two particularly relevant in-
stances of TMDs are Tungsten Disulfide (WS,) and Molybdenum Disulfide (MoS;,). TMDs
typically exhibit, as opposed to graphene, a semiconducting behaviour, and hence offer
great potential to eventually replace silicon in a wide variety of applications such as flex-
ible and transparent electronics [7], light-harvesting technologies [8]-[10], and quantum
optics [5].

As extensive research has demonstrated, the remarkable properties of layered mate-
rials can be successfully tailored by varying structural parameters such as the number
of layers, strain, or the relative angle (twist) between adjacent layers. Using WS, as an
example, when going from bulk material to the monolayer level, its band gap transitions
from a 1.3 eV indirect gap to a 2.0 eV direct gap with as a result an enhanced optical re-
sponse [11]. Another powerful handle that can be deployed to harness their electronic
properties is the stacking order among layers. This is highlighted by Indium Selenide
(InSe), another of the materials studied in this thesis, where the choice of arrangement
of its layers can either result in a direct band gap at 1.29 eV or an indirect band gap at
1.4 eV [12].

The overall morphology of 2D materials can also have a profound impact on the re-
sulting properties, and in particular it can induce the localisation of excitonic and plas-
monic resonances (among others), which is a highly desirable feature for a broad palette
of optoelectronic applications. It has been reported that localised excitons in TMD-
based nanostructures exhibit strikingly different behaviours compared to their bulk coun-
terparts, directly impacting the resulting optoelectronic functionalities. To emphasize
the potentialities of this important feature, one can mention that localised excitons in
TMD materials exhibit longer lifetimes [13] and narrower photoluminescence line widths [14]
which make them highly appealing for applications such as single-photon emitters [15],
[16], to be deployed in future quantum technologies like quantum optics [17], [18] and



quantum networking [19], [20].

With this motivation, a particularly attractive route to realise exciton localisation in
TMDs is based on exploiting the effects of strain in these materials [21]-[23]. Indeed,
strain has been shown to induce shifts in the exciton energy, and therefore by precisely
controlling the level of strain present in the TMD nanomaterial, one can robustly adjust
the excitonic properties [21]-[23]. Intrinsic strain can be conveniently induced in TMDs
by departing from the traditional planar configuration of layered materials and mov-
ing to novel morphologies, such as the one-dimensional (1D) configuration. This route
enables accurate control over the resulting intrinsic strain arising in the crystal struc-
ture and its localisation across the material [24], [25], by means of suitable adjusting the
nanofabrication strategies adopted to grow TMDs in 1D morphologies.

The remarkable versatility of van der Waals materials is also reflected by their demon-
strated potential to exhibiting localised plasmonic properties, which are convention-
ally considered mostly in noble metals but not in semiconductor materials. Indeed,
spatially-localised plasmonic resonances in 2D materials have garnered increasing in-
terest due to their ability to confine electromagnetic fields at the nanoscale, hence en-
abling enhanced light-matter interactions [26]-[29]. In the case of TMD materials, the
morphology and edge configurations play a critical role in determining their plasmonic
response. In particular, edge structures in TMDs are instrumental to harness this plas-
monic response [30], [31], for instance by inducing metallic behaviour due to the ex-
posed transition metal atoms [32], [33]. Additionally, 2D topological insulator materials
such as Bi, Tes also provide a possible path to tune plasmonic resonances thanks to their
metallic surface states, which induce plasmonic localisation at the edges [34].

BOOSTING ELECTRON-BASED SPECTROSCOPY WITH Al

Given that, for TMD materials, their structural characteristics down to the atomic scale
determine the resulting optoelectronic properties, in order to fully exploit the potential
of TMDs and related 2D materials, charting both their crystal structure and their opto-
electronic response with the highest possible resolution becomes of utmost importance.

For such a task, optical and X-ray spectroscopies benefit from excellent spectral (en-
ergy) resolution, but lack the spatial resolution necessary to fully resolve nanoscale mor-
phologies and atomic lattices. For instance, in optical and X-ray spectroscopies, as-
sessing the impact of structural defects is challenging since it relies on the assumption
that these are present without the explicit confirmation from direct measurements of
the crystal lattice. Similar considerations apply when assessing the effects of strain on
the optoelectronic properties of TMD nanomaterials. Although externally-applied strain
can be quantified using light-based spectroscopies at microscale level [35], gauging the
consequences of intrinsic strain fields remains elusive for these techniques, in particular
concerning nanoscale-size specimens and 1D morphologies. This limitation introduces
a fundamental ambiguity when interpreting the interplay between electronic and struc-
tural properties, hindering the development of TMD-based devices.

To bypass these challenges of light-based microscopy and spectroscopy techniques,
electron-based microscopy and spectroscopy techniques provide a way forward. In par-
ticular, in this thesis we adopt Scanning Transmission Electron Microscopy (STEM) in
combination with Electron Energy-Loss Spectroscopy (EELS) to provide a comprehen-
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sive characterisation of the functionalities of different TMD materials for novel mor-
phologies and configuration. Here we benefit from recent advances in TEM instrumen-
tation, such as probe correctors and electron monochromators, which have turned STEM-
EELS into a state-of-the-art method for the analysis of nanoscale materials and struc-
tures [36]-[38], providing access to key properties such as band gaps [39], [40], excitonic
transitions [23], localised plasmonic resonances [41]-[45], and phonons [46], [47].

Crucially, most of these important features arise as signals in the low-loss region of
the electron energy-loss spectra, defined as the contributions of those electrons that
have lost an energy of Ej,s < 50 eV after interacting with the specimen. The theoretical
interpretation of this low-loss region is however complicated by the overwhelming Zero-
Loss Peak (ZLP) background, associated to electrons which do not interact inelastically
with the specimen together with the associated instrumental broadening, and which is
specially dominant in the Ejys < 5 €V region. Several strategies have been proposed to
solve the problem of ZLP subtraction, such as the power-law approach commonly ap-
plied for core-loss EELS (Ejqss =, 50 €V), but these fail to model the steeply-falling ZLP
background. Other approaches include taking measurements of the ZLP in the vac-
uum and using those as a baseline for its subtraction, but this approach neglects the
influence of the specimen thickness on the overall ZLP shape. Mirroring the ZLP us-
ing data from the energy-gain region, Ejoss < 0, has also been attempted, however this
requires the dubious assumption that the ZLP is fully symmetric. More recently, novel
approaches to this problem based on machine learning (ML) algorithms to model the
ZLP have been put forward. ML and related Artificial Intelligence (AI) tools have become
ubiquitous in about every aspect of science as exemplified with the recent 2024 Nobel
Prize in Physics [48], and hence their increasing use in the field of EELS [49]-[51] is not
an exception.

Another defining feature associated to STEM-EELS measurements is that these can
be acquired as spectral images (SI), whereby each pixel corresponds to a highly localised
region of the specimen. The capabilities of STEM-EELS for producing high quality SI
make it possible to visualise the effects of morphology, strain, defects, and interface ef-
fects on their electronic and optical properties with nanoscale resolution in 2D materi-
als. A trade off in the acquisition of SI is the dwell time per pixel, given that higher pixel
counts and longer dwell times imply longer measurement times, putting the sample at
risk for radiation damage or contamination, as well as the reliability of the measure-
ment itself due to instrumental instabilities. While these issues exacerbate the problems
of traditional approaches for removing the ZLP, in the context of ML-based techniques
the abundance of spectra in the SI taken under the same microscope conditions pro-
vides instead previous information for accurately modelling the ZLP. Indeed, thanks to
EELS-S], several hundreds of ML models for the ZLP can be trained in parallel to infer a
confidence level interval for the ZLP model. In turn, this enables a reliable uncertainty
estimate for related quantities such as the band gap energy extracted from the onset of
the ZLP-subtracted inelastic spectra.

Another benefit of ZLP-subtracted EELS-SI is that they are further amenable to ad-
vanced data processing techniques to robustly extract physical signatures from the data.
Multivariate techniques that deal with multidimensional data are of particular inter-
est for this thesis, in particular non-negative matrix factorization (NMF), which among



many other uses has been shown to efficiently identify plasmonic resonances in noble
metals [52]. In case of 2D materials such as TMDs, these plasmonic resonances may be
less well defined due to their dielectric nature, thus the need for proper removal of the
ZLP before performing NMF becomes more pressing. Furthermore, the combination of
EELS-SI with NMF should enable a clean identification of the spatially-localised plas-
monic resonances which may arise, for instance, at the edges of TMD nanomaterials.

SCOPE AND OUTLINE OF THE THESIS

The aim of this thesis is two-fold. First, to develop novel computational frameworks
tailored to the processing and theoretical interpretation of spectral images acquired in
STEM-EELS in an effective and robust manner. We achieve this goal by realizing novel
data processing algorithms based on machine learning techniques developed in the field
of high energy physics and applying them to STEM-EELS SI, in particular for the mod-
elling and subtraction of the ZLP. Subsequently, we combine our approach with ad-
vanced processing techniques, such as non-negative matrix factorisation, in order to
identify subtle signals in the low-loss EELS region, such as localised plasmonic reso-
nances in TMD materials, which would otherwise remain hidden were one to use more
traditional techniques.

The second, and closely connected, aim of the present thesis is to deploy these novel
computational strategies to characterise the optoelectronic response of van der Waals
materials, focusing in particular in non-conventional morphologies from nanosheets
and 1D nanostructures to nanotriangles. The developed strategies successfully reveal
novel insights into the fascinating structure-property relationships in low-dimensional
nanostructured TMD materials, despite the challenging environment posed by these
specimens with various confounding factors that potentially challenge the interpreta-
tion of the results, hence highlighting the robustness and flexibility of our approach.
These findings provide valuable inputs to harness the tunability of the physical proper-
ties of TMD nanomaterials, also by studying them in morphologies which may be more
suitable for their eventual deployment in TMD-based devices.

The outline of this thesis is as follows. First, we establish our data processing method-
ology and in particular how STEM-EELS SI measurements are acquired and interpreted.
In Chapter 2 we therefore begin with an overview of the acquisition of spectral images
and address the complexities that the processing of such high dimensional datasets in-
volve. We also present the model-independent deep-learning approach that is used for
the image-wide subtraction of the ZLP in SIs and required to extract spatially-localised
information from the low-loss region. In addition, we provide the formalism underly-
ing the extraction of single-scattering distributions, important in subsequent chapters
in order to quantify optoelectronic features form the EELS-SI. This chapter hence lays
the theoretical foundations for the processing and interpretation of EELS-SI deployed in
the rest of the thesis.

Moving to Chapter 3, we present a first direct application of the deep learning ap-
proach described in Chapter 2. We first examine Sn-doped InSe nanosheets, where op-
toelectronic properties such as the band gap value and type depend sensitively on struc-
tural factors such as layer stacking (phase like 3, v, and €) and doping levels. The same
method is applied to a different TMD nanostructure, WS, flakes, showcasing mixed poly-
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typism (2H/3R) and that is chosen as a benchmark to validate the ML-based approach.
This application, accompanied by the release of an updated version of the EELSFITTER
open-source code, validates our new ML approach for bias-free ZLP removal, makes
possible the spatially resolved determination of the band gap energy and the dielectric
function across a specimen, and highlights the capabilities of our approach for efficiently
handling higher-dimensional STEM-EELS datasets.

Subsequently, we extend the data processing techniques and analytical methods that
were introduced in Chapter 2 and Chapter 3 to tackle automated feature identification
within the energy-loss and energy-gain regions of the EEL spectrum in Chapter 4. We
consider two case studies to emphasize the impact of advanced EELS-based feature
techniques to resolve and identify optoelectronic properties in nanostructured mate-
rials. In the first part, we study 1D Molybdenum Disulfide (MoS;) nanostructures, char-
acterising excitonic and plasmonic resonances and their interplay with the curvature-
induced strain associated to the specimen morphology. We reveal spatially-dependent
variations in both the excitonic behaviour and the band gap energy value, and correlate
these effects to the localised strain arising in the 1D material.

In the second study, we investigate Bi, Tes, a topological insulator, focusing on collec-
tive excitations arising in the energy-gain region with Ej,s < 0. Using a Gaussian model
for the ZLP in combination with the Monte Carlo replica method for uncertainty esti-
mation, our analysis determines that energy-gain EELS can reveal low-energy collective
excitations with enhanced spectral precision, circumventing issues associated with mul-
tiple scattering, and stablish their correlation with structural features in the specimen
such as rapid thickness variations.

In Chapter 5 we investigate WS, in a nanotriangle configuration, and characterise
localised plasmonic resonances situated along the edges of the nanotriangles. We un-
cover the spatial localisation of these resonances with the use of non-negative matrix
factorization (NMF), which makes it possible to disentangle resonances from overlap-
ping WS, nanotriangles in a stacked configuration with otherwise remain undetected.
The obtained results of the NMF components are scrutinised against electrodynami-
cal theoretical simulations, showing good agreement between all localised plasmonic
resonances observed and the various specimen morphologies. We further quantify the
dispersion relation of the edge-localised plasmonic resonances using a 1D Fabry-Perot
model, finding agreement with the expected quadratic dispersion relation associated to
surface plasmonic phenomena.

We conclude this thesis (Chapter 6) summarising the key results from the presented
studies and provide an outlook for further research prospects.
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DEEP LEARNING FOR THE ZERO
LOSS PEAK

Electron Energy Loss Spectroscopy (EELS) in combination with Scanning Transmission
Electron Microscopy (STEM) provides a plethora of access to structural, chemical and lo-
cal electronic information. A key aspect in EELS is the zero-loss peak (ZLP), a narrow and
high intensity peak centred around 0 eV. A result of the requirement that TEM specimens
have to be electron transparent and most incident electrons not interacting with the spec-
imen at all. The ZLP acts as both a feature (proxy for the specimen thickness) and back-
ground masking low-loss features of the EEL spectrum. Due to the irregular shape of the
ZLP that can depend on several factors, current methods for modelling the ZLP fall short
for effectively processing spectral images. Here, we built upon previous work in our group
for modelling the ZLP using machine learning. We extend capabilities of the framework
to process spectral images and malke use of the large number of individual spectra present
to change the underlying Monte Carlo replica method from a parametric to empirical. A
key aspect to achieve this is the use of K-means to cluster the spectral image based on the
known integrated intensity of the ZLP. The addition of a penalty term in the cost function
of the network and a new automated process for determining the hyperparameters further
increase the robustness of our approach. The models for the ZLP can then be used for de-
convolution of EEL spectra to obtain the single scattering distribution (SSD) and quantify
the aforementioned properties found in the EELS data.

13
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2.1. INTRODUCTION

Accelerating ongoing investigations of two-dimensional (2D) materials, whose electronic
properties depend on the underlying atomic arrangement down to the single monolayer
level, demands novel approaches able to map this sensitive interplay with the highest
possible resolution. In this context, Electron Energy Loss Spectroscopy (EELS) analyses
in Scanning Transmission Electron Microscopy (STEM) provide access to a plethora of
structural, chemical, and local electronic information [1]-[5], from thickness and com-
position to the band gap and complex dielectric function. Crucially, EELS-STEM mea-
surements can be acquired as spectral images (SI), whereby each pixel corresponds to a
highlylocalised region of the specimen. The combination of the excellent spatial and en-
ergy resolution provided by state-of-the-art STEM-EELS analyses [6]-[3] makes possible
deploying EELS-SI as a powerful and versatile tool to realise the spatially-resolved simul-
taneous characterisation of structural and electric properties in nanomaterials. Such ap-
proach is complementary to related techniques such as cathodoluminescence in STEM
(STEM-CL), which however is restricted to radiative processes while STEM-EELS probes
both radiative and non-radiative processes [9]-[11].

Fully exploiting this potential requires tackling two main challenges. First, each SI is
composed by up to tens of thousands of individual spectra, which need to be jointly pro-
cessed in a coherent manner. Second, each spectra is affected by a different Zero-Loss
Peak (ZLP) background [12], which depends in particular with the local thickness [5],
[13]. A robust subtraction of this ZLP is instrumental to interpret the low-loss region,
E <few eV, in terms of phenomena [9] such as phonons, excitons, intra- and inter-band
transitions, and to determine the local band gap. Furthermore, one should avoid the pit-
falls of traditional ZLP subtraction methods [14]-[22] such as the need to specify an ad
hoc parametric functional dependence.

In this work we bypass these challenges by presenting a novel strategy for the spatially-
resolved determination of the band gap and complex dielectric function in nanostruc-
tured materials from EELS-SI. Our approach is based on machine learning (ML) tech-
niques originally developed in particle physics [23]-[25] and achieves a spatial resolu-
tion down to a few nanometers. Individual EEL spectra are first classified as a function
of the thickness with K-means clustering and subsequently used to train a deep-learning
model of the dominant ZLP background [26]. The resultant ZLP models are amenable to
theoretical processing, in particular in terms of Fourier transform deconvolution of the
complete spectral image and Kramers-Kronig analyses, leading to a precise determina-
tion of relevant structural and electronic properties at the nanoscale.

2.2. THE SPECTRAL IMAGE

Spectral images in EELS-STEM are constituted by a large number, up to @(10°), of in-
dividual spectra acquired across the analysed specimen. They combine the excellent
spatial resolution, €¢'(40 pm), achievable with STEM with the competitive energy resolu-
tion, (20 meV), offered by monochromated EELS. From these EELS-SI it is possible to
evaluate key quantities such as the local thickness, the band gap energy and type, and
the complex dielectric function, provided one first subtracts the ZLP background which
dominates the low-loss region of the EEL spectra. The information provided by an EELS-
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SI can hence be represented by a three-dimensional data cube, Fig. 2.1a,

i, J i, J i, J) . .
5 E) =150 EN+ 10D By, i=1,..,n,, j=1..,ny, £=1..,np @1

where Ié’E]L)S indicates the total recorded intensity for an electron energy loss E, corre-
sponding to the position (i, j) in the specimen. This intensity receives contributions
from the inelastic scatterings off the electrons in the specimen, Ij,j, and from the ZLP
arising from elastic scatterings and instrumental broadening, Izip. In order to reduce
statistical fluctuations, it is convenient to combine the information from neighbouring
spectra using the pooling procedure described in Section 2.2.1.

Since the ZLP intensity depends strongly on the local thickness of the specimen, first
of all we group individual spectra as a function of their thickness by means of unsuper-
vised machine learning, specifically by means of the K-means clustering algorithm pre-
sented in Section 2.2.1. The cluster assignments are determined from the minimisation
of a cost function, Cgmeans, defined in thickness space,

( N )
In| —
N(r )

tot

p
, r=i+(n,-1)j, (2.2)

nxxny K

Ckmeans = Z Zdrk
r=1 k=1

with d, being a binary assignment variable, equal to 1 if r belongs to cluster k (d,x =1

for r € T}) and zero otherwise, and with the exponent satisfying p > 0. Here Nt(gz rep-

I(i, 1)l

EELS
suitable proxy for the local thickness, and N® is the k-th cluster mean. The number of
clusters K is a user-defined parameter.

Subsequently to this clustering, we train a deep-learning model parametrising the
specimen ZLP by extending the approach that we developed in [26]. The adopted neural
network architecture is displayed in Figure 2.1b, where the inputs are the energy loss
E and the integrated intensity Ni,:. The model parameters 0 are determined from the
minimisation of the cost function,

resents the integral of over the measured range of energy losses, which provides a

o & 11 E) = I () s0)
0) x
oL k=10,=1 o7 (Ee,)

v Epes=Eyk, (23

where within the k-th thickness cluster a representative spectrum (i, ji) is randomly
selected, and with o (Ey, ) being the variance within this cluster. The hyperparameters
Ej ;. in Equation (2.3) define the model training region for each cluster (E,, < Ey ;) where
the ZLP dominates the total recorded intensity. They are automatically determined from
the features of the first derivative dIggrs/dE, e.g. by demanding that only f% of the
replicas have crossed d Iggrs/dE = 0, with f = 10%. Typical values of Ej ;. are displayed in
Figure 2.1c, where vacuum measurements are also included as reference. To avoid over-
learning, the input data is separated into disjoint training and validation subsets, with
the latter used to determine the optimal training length using look-back stopping [24].
Figure 2.1d displays the distribution of the training and validation cost functions, Equa-
tion (2.3), evaluated over 5000 models. Both Figure 2.1c and d correspond to the WS,
nanoflower specimen first presented in [26] and revisited here. Further details on the
deep-learning model training are reported in Section 2.3.
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Figure 2.1: (a) Schematic data-cube representing EELS-SI measurements, with two directions labelling the
location across the specimen and the third one the energy loss, and whose entries are the total intensity

Il(SlEfS (Ep) in Eq. (2.1). (b) The network architecture parametrising the ZLP. The input neurons are the energy

loss E and the integrated intensity Niot, while the output neuron is the model prediction for the ZLP inten-
sity. (c) The Ef hyperparameter defines the model training region, and is determined from the first derivative
dIggrs/dE in each thickness cluster. (d) The training and validation cost function Cz;p, Eq. (2.3), evaluated
over 5000 models. Both (b) and (c) correspond to the WS, nanoflower specimen.

This procedure is repeated for a large number of models Nyep, each based on a dif-
ferent random selection of cluster representatives, known in this context as “replicas”.
One ends up with a Monte Carlo representation of the posterior probability density in
the space of ZLP models, providing a faithful estimate of the associated uncertainties,

Y = {0 (EInWNi), n=1,..., Nep (2.4)

which makes possible a model-independent subtraction of the ZLP and hence disentan-
gling the contribution from inelastic scatterings Ii,e]. Following a deconvolution pro-
cedure based in discrete Fourier transforms and reviewed in Section 2.4.3, these sub-
tracted spectra allow us to extract the single-scattering distribution across the specimen
and in turn the complex dielectric function from a Kramers-Kr6nig analysis. In contrast
to existing methods, our approach provides an detailed estimate of the uncertainties as-
sociated to the ZLP subtraction, and hence quantifies the statistical significance of the
determined properties by evaluating confidence level (CL) intervals from the posterior
distributions in the space of models.
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2.2.1. POOLING OF THE SPECTRAL IMAGE

Let us consider a two-dimensional region of the analysed specimen with dimensions
Ly x L, where EEL spectra are recorded for n, = ny x ny pixels. Then the information
contained within an EELS-SI may be expressed as

()] . .
Lips(Ep, i=1,..,ny, j=1,..,ny,, €=1,.,ng, (2.5)
where IéEJL)S(E ¢) indicates the recorded total electron energy loss intensity for an energy

loss E; for a location in the specimen (pixel) labelled by (i, j), and ng is the number of
bins that compose each spectrum. The spatial resolution of the EELS-SI in the x and y
directions is usually taken to be the same, implying that

Ly Ly

Ax:Ay:n—zn—. (2.6)
x y

For the specimens analysed in this work we have n), = 0(10% spectra corresponding
to a spatial resolution of Ax = 10 nm. On the one hand, a higher spatial resolution is
important to allow the identification and characterisation of localised features within a
nanomaterial, such as structural defects, phase boundaries, surfaces or edges. On the
other hand, if the resolution Ax becomes too small the individual spectra become noisy
due to limited statistics. Hence, the optimal spatial resolution can be determined from a
compromise between these two considerations.

In general it is not known what the optimal spatial resolution should be prior to the
STEM-EELS inspection and analysis of a specimen. Therefore, it is convenient to record
the spectral image with a high spatial resolution and then, if required, combine subse-
quently the information on neighbouring pixels by means of a procedure known as pool-
ing or sliding-window averaging. The idea underlying pooling is that one carries out the
following replacement for the entries of the EELS spectral image listed in Equation (2.5):

(i) (i, ) 1
Tggrs(Ee) = Tggpg(Er) pooled N(”) 2 2 (‘U\i’—il,\j’—jl x I EELS (E/)) 2.7
pool li'-il=d|j'-jl=d
where d indicates the pooling range, w); ;|| j- j| is @ weight factor, and the pooling nor-
malisation is determined by the sum of the relevant weights,
(i,)) _
Npgol= 2. 2 @j-ilj-jI- 2.8)

li'=il=d|j'~jl<d

By increasing the pooling range d, one combines the local information from a higher
number of spectra and thus reduces statistical fluctuations, at the price of some loss on
the spatial resolution of the measurement. For instance, d = 3/2 averages the informa-
tion contained on a 3 x 3 square centred on the pixel (i, j). Given that there is no unique
choice for the pooling parameters, one has to verify that the interpretation of the infor-
mation contained on the spectral images does not depend sensitively on their value. In
this work, we consider uniform weights, w;_;| .- j| = 1, but other options such as Gaus-
sian weights
(i_i/)z (] ]/)2
2d? 2d%> )’

Wyir—j|j'—j) = €xXp |- (2.9)
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with 02 = d? as variance are straightforward to implement in EELSFITTER. The outcome
of this procedure is a modified spectral map with the same structure as Equation (2.5)
but now with pooled entries. In this work we typically use d = 3 to tame statistical fluc-
tuations on the recorded spectra.

2.2.2, CLUSTERING THE SPECTRAL IMAGE
As indicated by Equation (2.5), the total EELS intensity recorded for each pixel of the SI
receives contributions from both inelastic scatterings and from the ZLP, where the latter
must be subtracted before one can carry out the theoretical interpretation of the low-loss
region measurements. Given that the ZLP arises from elastic scatterings with the atoms
of the specimen, and that the likelihood of these scatterings increases with the thickness,
its contribution will depend sensitively with the local thickness of the specimen. Hence,
before one trains the deep-learning model of the ZLP it is necessary to first group indi-
vidual spectra as a function of their thickness. In this work this is achieved by means
of unsupervised machine learning, specifically with the K-means clustering algorithm.
Since the actual calculation of the thickness has as prerequisite the ZLP determination
(see Equation (3.1) in Chapter 3), it is suitable to use instead the total integrated intensity
as a proxy for the local thickness for the clustering procedure. That is, we cluster spectra
as a function of
NG = foo dETSD () = foo dE (I(i'j) (B)+ 107 (E)) =N+ NED (2.10)
tot — EELS - ZLP inel -0 inel ’ :
—00 —00

which coincides with the sum of the ZLP and inelastic scattering normalisation factors.
Equation (2.10) is inversely proportional to the local thickness ¢ and therefore represents
a suitable replacement in the clustering algorithm. In practice, the integration in Equa-
tion (2.10) is restricted to the measured region in energy loss.

The starting point of K-means clustering is a dataset composed by n, = ny x n,
points,

(N, r=l..mp,  r=ity-1j, @2.11)

which we want to group into K separate clusters Ty, whose means are given by
n(N®), k=1,.,K. 2.12)

The cluster means represent the main features of the k-th cluster to which the data
points will be assigned in the procedure. Clustering on the logarithm of Nt(gz rather than
on its absolute value is found to be more efficient, given that depending on the specimen
location the integrated intensity will vary by orders of magnitude.

In K-means clustering, the determination of the cluster means and data point as-
signments follows from the minimisation of a cost function. This is defined in terms of a

distance in specimen thickness space, given by

np K N®\|P
Ckmeans (Ntot, T) = Z Z dri |In ol (2.13)
r=1k=1 Nyt

with d, being a binary assignment variable, equal to 1 if r belongs to cluster k (d,x =1
for r € T) and zero otherwise, and with the exponent satisfying p > 0. Here we adopt
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Figure 2.2: The outcome of the K-means clustering procedure applied to the InSe specimen, where each colour
represents one of the K=10 thickness clusters. This clustering map can be compared with the thickness map
of Figure 3.1d, highlighting how the total integrated intensity Niot provides a good proxy for the thickness.

p = 1/2, which reduces the weight of eventual outliers in the calculation of the cluster
means, and we verify that results are stable if p = 1 is used instead. Furthermore, since
clustering is exclusive, one needs to impose the following sum rule

K
Y dye=1, VYr. (2.14)
k=1

The minimisation of Equation (2.13) results in a cluster assignment such that the internal
variance is minimised and is carried out by means of a semi-analytical algorithm. This
algorithm is iterated until a convergence criterion is achieved, e.g. when the change in
the cost function between two iterations is below some threshold. Note that, as opposed
to supervised learning, here is it not possible to overfit and eventually one is guaranteed
to find the solution that leads to the absolute minimum of the cost function. The end
result of the clustering process is that now we can label the information contained in the
(pooled) spectral image (for r = i + (n, — 1) j) as follows

(r) :
(i,f) _ IEELS(E() if re Tk _
I (Ep) = , k=1,...,K. (2.15)
EELS k¢ { 0 otherwise

This cluster assignment makes possible training the ZLP deep-learning model across the
complete specimen recorded in the SI accounting for the (potentially large) variations in
the local thickness.

The number of clusters K is a free parameter that needs to be fixed taking into con-
sideration how rapidly the local thickness varies within a given specimen. We note that
K cannot be too high, else it will not be possible to sample a sufficiently large number of
representative spectra from each cluster to construct the prior probability distributions,
as required for the Monte Carlo method used in this work. We find that K = 10 for the
InSe and K = 5 for the WS, specimens are suitable choices. Figure 2.2 displays the out-
come of the K-means clustering procedure applied to the InSe specimen, where each
colour represents one of the K=10 thickness clusters. It can be compared with the cor-
responding thickness map in Fig. 2(d); the qualitative agreement further confirms that
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the total integrated intensity in each pixel Nt(;’t] ) represents a suitable proxy for the local
specimen thickness.

2.3. A DEEP-LEARNING MODEL FOR THE ZERO-LOSS PEAK

Given that the zero-loss peak background cannot be evaluated from first principles, in
this work we deploy supervised machine learning combined with Monte Carlo methods
to construct a neural network parametrisation of the ZLP. Within this approach, one can
faithfully model the ZLP dependence on both the electron energy loss and on the local
specimen thickness. Our approach, first presented in [26], is here extended to model the
thickness dependence and to the simultaneous interpretation of the @ (10*) spectra that
constitute a typical EELS-SI. One key advantage is the robust estimate of the uncertain-
ties associated to the ZLP modelling and subtraction procedures using the Monte Carlo
replica method [27].

The neural network architecture adopted in this work is displayed in Fig. 2(b). It con-
tains two input variables, namely the energy loss E and the logarithm of the integrated
intensity In (Niot), the latter providing a proxy for the thickness ¢. Both E and In (Vo)
are preprocessed and rescaled to lie between 0.1 and 0.9 before given as input to the
network. Three hidden layers contain 10, 15, and 5 neurons respectively. The activation
state of the output neuron in the last layer, ¢ (1"” , is then related to the intensity of the
ZLP as

I3 (B In(Nwo) = exp (¢ (B, In(Nor) (2.16)

where an exponential function is chosen to facilitate the learning, given that the EELS
intensities in the training dataset can vary by orders of magnitude. Sigmoid activation
functions are adopted for all layers except for a ReLU in the final layer, to guarantee a
positive-definite output of the network and hence of the predicted intensity.

The training of this neural network model for the ZLP is carried out as follows. As-
sume that the input SI has been classified into K clusters following the procedure of
Section 2.2.1. The members of each cluster exhibit a similar value of the local thickness.
Then one selects at random a representative spectrum from each cluster,

(G (i2,j2) (ix,jK)
{2 B, 12 @), g (B 2.17)
each one characterised by a different total integrated intensity evaluated from Equa-
tion (2.10),

(i1,71) nr(i2,j2) (ix,jK)
{Ntot 1 Neot ™+ +r Nyot }’ (2.18)

such that (i, ji) belongs to the k-th cluster. To ensure that the neural network model
accounts only for the energy loss E dependence in the region where the ZLP dominates
the recorded spectra, we remove from the training dataset those bins with E = AEj ; with
AE; i being a model hyperparameter [26] which varies in each thickness cluster. The cost
function Cy;p used to train the NN model is then

(k)
1 "E

1 LB i)

IE j=1¢,=1 Ui (Ee,)

, Ey, < Ey, (2.19)
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where the total number of energy loss bins that enter the calculation is the sum of bins in
each individual spectrum, ng = 2115:1 n'® . The denominator of Equation (2.19) is given
by o (E¢, ), which represents the variance within the k-th cluster for a given value of the
energy loss Ey,. This variance is evaluated as the size of the 68% confidence level (CL)
interval of the intensities associated to the k-th cluster for a given value of Ey, . u

For such a random choice of representative cluster spectra, Equation (2.17), the pa-
rameters (weights and thresholds) of the neural network model are obtained from the
minimisation of Equation (2.19) until a suitable convergence criterion is achieved. Here
this training is carried out using stochastic gradient descent (SGD) as implemented in
the PyTorch library [28], specifically by means of the ADAM minimiser. The optimal
training length is determined by means of the look-back cross-validation stopping. In
this method, the training data is divided 80%/20% into training and validation subsets,
with the best training point given by the absolute minimum of the validation cost func-
tion Cé‘ﬁl,) evaluated over a sufficiently large number of iterations.

In order to estimate and propagate uncertainties associated to the ZLP parametri-
sation and subtraction procedure, here we adopt a variant of the Monte Carlo replica
method [26] benefiting from the high statistics (large number of pixels) provided by an
EELS-SI. The starting point is selecting Nrep = @ (5000) subsets of spectra such as the
one in Equation (2.17) containing one representative of each of the K clusters consid-
ered. One denotes this subset of spectra as a Monte Carlo (MC) replica, and we denote
the collection of replicas by

(m) _ (im,1,Jm,1) (im,2,Jm,2) (lm vam,K) _
100 = {1 ), D (), g Bl m=1,, N (220)

where now the superindices (i, k, jm k) indicate a specific spectrum from the k-th clus-
ter that has been assigned to the m-th replica. Given that these replicas are selected at
random, they provide a representation of the underlying probability density in the space
of EELS spectra, e.g. those spectra closer to the cluster mean will be represented more
frequently in the replica distribution.

By training now a separate model to each of the Niep replicas, one ends up with an-
other Monte Carlo representation, now of the probability density in the space of ZLP
parametrisations. This is done by replacing the cost function Equation (2.19) by

n! I(lm,k,lm,k)(E e I(NN)(m)( ln( (lmkvfm,k)))]

K
cm _ EELS ZLP tot
P AN

ntk

, Ep. = AEpg,

(2.21)
and then performing the model training separately for each individual replica. Note that
the denominator of the cost function Equation (2.21) is independent of the replica. The
resulting Monte Carlo distribution of ZLP models, indicated by

7NN (Niep)

15 = LI (B, In (N, Ly (B, In(Nigo)) | (2.22)

makes possible subtracting the ZLP from the measured EELS spectra following the match-
ing procedure described in [26] and hence isolating the inelastic contribution in each
pixel,

JEpm ) (NN)(m) NG —
1 B = [ 1l (B - 15N (En(NGP))] . m=1,..., Neep. (2.23)
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The variance of Ii(:l’ejl) (E) over the MC replica sample estimates the uncertainties associ-
ated to the ZLP subtraction procedure. By means of these MC samplings of the probabil-
ity distributions associated to the ZLP and inelastic components of the recorded spectra,
one can evaluate the relevant derived quantities with a faithful error estimate. Note that
in our approach error propagation is realised without the need to resort to any approxi-
mation, e.g. linear error analysis.

One important benefit of Equation (2.21) is that the machine learning model training
can be carried out fully in parallel, rather than sequentially, for each replica. Hence our
approach is most efficiently implemented when running on a computer cluster with a
large number of CPU (or GPU) nodes, since this configuration maximally exploits the
parallelisation flexibility of the Monte Carlo replica method.

As mentioned above, the cluster-dependent hyperparameters Ej ;. ensure that the
model is trained only in the energy loss data region where ZLP dominates total inten-
sity. This is illustrated by the scheme of Figure 3.3 in [26], which displays a toy simu-
lation of the ZLP and inelastic scattering contributions adding up to the total recorded
EELS intensity. The neural network model for the ZLP is then trained on the data cor-
responding to region I, while region II is obtained entirely from model predictions. To
determine the values of Ejy, we evaluate the first derivative of the total recording in-
tensity, d Igprs(E)/dE, for each of the members of the k-th cluster. When this derivative
crosses zero, the contribution from I, will already be dominant. There are then two
options. First, one sets Ej ;. = f x Epin k, Wwhere f <1 and Epjy  is the energy where the
median of dIggrs/dE crosses zero (first local minimum) for cluster k. Second, one sets
E; i to be the value where at most f% of the models have crossed dIggrs/dE = 0, with
f = 10%. This choice implies that 90% of the models still exhibit a negative derivative.
We have verified that compatible results are obtained with the two choices, indicating
that results are reasonably stable with respect to the value of the hyperparameter Ej .

The second model hyperparameter, denoted by Ej; . in Fig. 3.3 in [26], indicates the
region for which the ZLP can be considered as fully negligible. Hence in this region III
we impose that Iz;p(E) — 0 by means of the Lagrange multiplier method. This condition
fixes the model behaviour in the large energy loss limit, which otherwise would remain
unconstrained. Since the ZLP is known to be a steeply-falling function, Ejj ;. should not
chosen not too far from Ej ;. to avoid an excessive interpolation region. In Chapter 3 we
use Eyp x = 3 x Ej , though this choice can be adjusted by the user.

2.3.1. IMPROVING THE DEEP LEARNING MODEL

The deep learning model has been improved throughout the years of development on
EELSFITTER. The previously described methods are applied in Chapter 3, however the
updated methods describe in this section are applied in Chapter 4 Starting with the hy-
perparameters, as mentioned before, the spectra in the spectral image are separated into
three regions. In region I the recorded intensity is dominated by the contribution from
the ZLP. In region II, the inelastic scattering contribution is significant in comparison to
the contribution from the ZLP. Finally, in region III, the contribution to the intensity from
the ZLP is approximately zero. The updated approach to determine Ej ;. and Ejj i is by
using the kneedle algorithm to determine the kneedle location and the first local mini-
mum [29]. The kneedle refers to the point of highest curvature in a concave or convex
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curve. By taking the region between the Full Width at Half Maximum (FWHM) and the
first local minimum of the spectra we obtain such a curve. In the cases of spectra where
the signal of the sample might not overcome the signal of the ZLP tail + noise floor (which
could occur in aloof areas of a spectral image) the first local minimum could be located
far beyond the initial onset of the signal. E; ; is then determined by multiplying the knee-
dle location by some factor, this way we ensure E ;. is much more reliably located near
the ZLP. Ey; . is determined by fitting a log10 function through the kneedle location and
the local minimum and finding where it intersects with a single count (minimal possible
contribution from the ZLP). We find that this approach puts Ejj . in a similar location
compared to the SNR method presented in the first version of EELSFITTER, without the
need for a separate vacuum measurement of the ZLP with the same microscope condi-
tions [26].

The second notable improvement is regarding the cost function. A key requirement
of the ZLP is that it monotonically decreases in region II. As mentioned before, the dis-
tance between Ey and Ej ;. should not be too far for avoiding excessive interpolation
in this region, as region II is simply unseen during the training of the deep learning net-
work. Nonetheless, we observed that a handful of models would always shoot upwards
regardless of the distance, as the generalisation of the network in such cases is poor, re-
sulting in incorrect predictions for the ZLP intensity. To solve this issue, the cost function
was updated to include a regularisation term that incurs a penalty if the derivative turns
positive in region II. The updated cost function to minimise during training on replica m
then becomes

n® [ (ko Jmk) (NN)(m) (tm e Jm k)
i [IEELS (Ee) = Ippp (E oIn (Npeak ))]
cm-Ls v

RE k=10=1 ot (Eg,)
nh (lm ]mk)
gy dINNV (B n (NYmE (2.24)
+/IZ Y RelU| —= [Ertn (i) ,
“1re=1 dE

Ep. = Erk, Epxk<Er < Eng

where I, (NN)(’") is the ZLP intensity predicted by the neural network for replica m, n( )i
the number of energy bins in region i of the spectrum originating from cluster k, n E1 is
the sum of n! E ) over all clusters, ot (Ez, ) is the variance within cluster k at the energy
loss E¢,, and p) weighs the two terms in the cost function against each other.

Comparing models before and after the regularisation term, models no longer shot
upwards. Thus, by adding a regularisation term the generalisation capability of the neu-
ral network is improved.

2.4. DECONVOLUTION OF EEL SPECTRA

Here we provide an overview of the theoretical formalism, based on [19], adopted to
evaluate the single-scattering distribution, local thickness, band gap energy and type
and complex dielectric function from the measured EELS spectra. As indicated by Equa-
tion (2.1) these spectra receive three contributions: the one from inelastic single scat-
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terings off the electrons in the specimen, the one associated to multiple inelastic scat-
terings, and then the ZLP arising from elastic scatterings and instrumental broadening.
Hence a generic EEL spectrum Igg1s(E) can be decomposed as

()
Tgprs(B) = Izip(E) + Iinel(B) = Izip(B) + ) I (E), (2.25)
n=1
where E is the energy loss experienced by the electrons upon traversing the specimen,
Iz1p is the ZLP intensity, and Ii(:gl indicates the contribution associated to n inelastic
scatterings. The ZLP intensity can be further expressed as

Iz1p(E) = NoR(E), f dER(E) =1, (2.26)

where R(E) is known as the resolution or instrumental response function whose full
width at half-maximum (FWHM) indicates the resolution of the instrument. The nor-
malisation factor Ny thus corresponds to the integrated intensity under the zero-loss
peak. In the following, we assume that the ZLP contribution to Equation (2.25) has al-
ready been disentangled from that associated to inelastic scatterings by means of the
subtraction procedure described in Section 2.3.

2.4.1. THE SINGLE-SCATTERING DISTRIBUTION

If one denotes by ¢ the local thickness of the specimen and by A the mean free path of
the electrons, then assuming that inelastic scatterings are uncorrelated and that ¢ < A,

one has that the integral over the n-scatterings distribution I, | (”) | is a Poisson dlstrlbutlon

f dEI" (E)=B n=12,..,00, (2.27)

me

A" iz
n )

with B a normalisation constant. From the combination of Equations. (2.25) and (2.27)
it follows that

mel—f dE Iipe (E) = Z N,=B Z (”M —IM=B(1—e—”’L), (2.28)

and hence one finds that the integral over the n-scatterings distribution is such that

Ninel (t//l)n -t/
(1—et4) n! ¢

N, = (2.29)
in terms of the normalisation Nj,e of the full inelastic scattering distribution, the sample
thickness t and the mean free path 1. Note also that the ZLP normalisation factor Nj is
then given in terms of the inelastic one as
Ninel

N() = m , (230)
and hence one has the following relations between integrated inelastic scattering inten-
sities "

L =nN't, Vn=1. (2.31)

n
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In order to evaluate the local thickness of the specimen and the corresponding dielec-
tric function, it is necessary to deconvolute the measured spectra and extract from them
the single-scattering distribution (SSD), Issp(E). The SSD is related to the experimen-
tally measured n = 1 distribution, Iigil(E) by the finite resolution of our measurement
apparatus:

i

(e 9)
inel (B) = R(E) ® Issp (E) = f dE' R(E-E')Issp(E"), (2.32)
—00
where in the following ® denotes the convolution operation. It can be shown, again
treating individual scatterings as uncorrelated, that the experimentally measured n = 2
and n = 3 multiple scattering distributions can be expressed in terms of the SSD as
@

inel

(E) = R(E)8Issp(E)@Issp(E)/ (2!Ng) , (2.33)
12 (B) R(E) ® Issp(E) ® Issp (E) ® Issp (E)/ (3!NG) (2.34)

ine

and likewise for n = 4. Combining this information, one observes that the spectrum
Equation (2.25) can be expressed in terms of the resolution function R, the ZLP normal-
isation Ny, and the single-scattering distribution Issp as follows

Igpis(E) = NoR(E) + R(E) ® Issp (E) + R(E) ® Issp (E) ® Issp (E)/ (2!Np) + ...

= R(E) ® (No6 (E) + Issp (E) + Issp (E) ® Issp(E)/ (2!Np) +...)

=NoR(E)® |6(E) + Y_ [Issp(E)®]" 6(E)/ (n!N)|, (2.35)
n=1

where 6 (E) is the Dirac delta function. If the ZLP normalisation factor Ny and resolution
function R(E) are known, then one can use Equation (2.35) to extract the SSD from the
measured spectra by means of a deconvolution procedure.

2.4.2. FOURIER LOG DECONVOLUTION

The structure of Equation (2.35) indicates that transforming to Fourier space will lead to
an algebraic equation which can then be solved for the SSD. Here we define the Fourier
transform f(v) of a function f(E) as follows

FfB]v=fw= f dE f(E)e MEV, (2.36)
whose inverse is given by
F W] (E) = fE) = f = dv f(v)e? it (2.37)

which has the useful property that convolutions such as Equation (2.32) are transformed
into products,

if f(B)=g(E)®h(E) then Z[f(B)]=fW)=gWhv). (2.38)
The Fourier transform of Equation (2.35) leads to the Taylor expansion of the exponential
and hence

Tss,D(w) 2.39)
N )’ ’

Iepis(v) = NoR(v) exp (
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which can be solved for the Fourier transform of the single scattering distribution

~ Teprs () F [Iges(BE)] (v)
I =Nl o = 1 .
s =Nl g ) ~ M NF RETW)

(2.40)

By taking the inverse Fourier transform, one obtains the sought-for expression for the
single scattering distribution as a function of the electron energy loss

& IggLs]

Issp(B) = NgF 1 |1
ssp (E) 0 nNogﬁ’[R]

) (2.41)

where the only required inputs are the experimentally measured EELS spectra, Equa-
tion (2.25), with the corresponding ZLP.

2.4.3. DISCRETE FOURIER TRANSFORMS.

Equation (2.41) can be evaluated numerically by approximating the continuous trans-
form Equation (2.36) by its discrete Fourier transform equivalent. The discrete Fourier
transform of a discretised function f(E) defined at E,, € {Ey, ..., EN—1} is given by:

o~ N_l .,
Fp[fB)v=fovp =Y e N r(E) Vke(o,.,N-1}, (2.42)
n=0

with the corresponding inverse transformation being

1 N-1 ~
2 Z elznkn/Nf(Vk) Vnel0,..,N—-1}. (2.43)

Fo [F)] (En) = f(En) =
N k=0

If one approximates the continuous function f(E) by its discretised version f(Ey + nAE)
and likewise f(v) by f(kAv) where AxAv =N ~1 one finds that

f) = Axe 7B g [ £(B)], (2.44)

and likewise for the inverse transform
1 . ~
f(B) = 5951 [8kAV)],  E(kAv) = e2TAVE0 fkav). (2.45)

In practice, the EELS spectra considered are characterised by a fine spacing in E and the
discrete approximation for the Fourier transform produces results very close to the exact
one.
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SPATIALLY RESOLVED BAND GAP
AND DIELECTRIC FUNCTION

The electronic properties of two-dimensional (2D) materials depend sensitively on the un-
derlying atomic arrangement down to the monolayer level. With Electron Energy Loss
Spectroscopy (EELS) we can correlate these electronic properties with the structural mor-
phology at nanoscale precision. In this Chapter we apply EELS in junction with our novel
strategy for processing EEL spectral images, as discussed in Chapter 2 of this thesis, and
spatially resolve the local thickness, band gap and complex dielectric function in indium
selenide (InSe) flakes and polytopic tungsten disulfide(WS,) nanoflowers. The first mate-
rial, InSe, is a direct band gap semiconductor and the specimen presented in this study in
particular has a staircase structure. This gives the opportunity to study this material at
different levels of thickness in a single dataset. The second material is the polytopic WS,
is an indirect band gap semiconductor and the specimen has the shape of a flower petal,
with varying thickness from the centre to the edges of the petal. This specimen was used
in the first iteration of our machine learning approach and acts as a benchmark to show
the improvements added to the framework. With our approach, we are able to process and
quantify structural and electronic properties with relative ease.

Parts of this chapter have been published in The Journal of Physical Chemistry A: A. Brokkelkamp, ]. ter Hoeve,
I. Postmes, S. E. van Heijst, L. Maduro, A. V. Davydov, S. Krylyuk, J. Rojo, S. Conesa-Boj, J. Phys. Chem. A 126,
1255-1262 (2022).
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3.1. INTRODUCTION

Electron Energy Loss Spectroscopy (EELS) in combination with Scanning Transmission
Electron Microscopy (STEM) offers unprecedented access to spatial and spectral resolu-
tion in nanoscale research. The ability to study electronic properties at nanoscale res-
olution, such as the band gap [1]-[3] and dielectric function [4], [5] and correlate them
with morphology and structural properties holds great potential in the development of
novel technologies. The group of van der Waals materials specifically benefit from EELS-
STEM as research methodology. The structural and electronic properties are intrinsically
linked, such as layer dependence the band gap or strain causing exciton shifts [6]-[9].
These unique characteristics has made this class of materials of great interest in a wide
range of fields, from nanoelectronics to nanophotonics.

Accessing properties such as the band gap, excitons, phonons and interband tran-
sitions in EELS is not straightforward, the dominance of the zero-loss peak (ZLP) tends
to overshadow these features. In Chapter 2 of this thesis we outline our novel strategy
for dealing with the ZLP and the processing of EEL spectral images, using a machine
learning (ML) based approach using techniques from high-energy physics [10]-[12].

In this chapter, as a proof-of-concept we employ our strategy to the determination
of the band gap and the complex dielectric function in two representative van der Waals
materials. First, to InSe nanosheets prepared by exfoliation of a Sn-doped InSe crystal
and deposited onto a holey carbon TEM grid. The electronic properties of InSe, such
as the band gap value and type, are sensitive to both the layer stacking (8, y, or e-
phase) as well as to the magnitude and type of doping [13]-[16]. Second, to horizontally-
standing WS, flakes belonging to flower-like nanostructures (nanoflowers) characterised
by a mixed 2H/3R polytypism. This nanomaterial, member of the transition metal dichalco-
genide (TMD) family, was already considered in the original study [17], [18] and hence
provides a suitable benchmark to validate our new strategy. One important property of
WS, is that the indirect band gap of its bulk form switches to direct at the monolayer
level [19]-[21]. Our approach is amenable to generalisation to other families of nanos-
tructured materials, is suitable for application to higher-dimensional datasets such as
momentum-resolved EELS, and is made available as a new release of the EELSFITTER
open-source framework [18].

3.2. THICKNESS DETERMINATION BY KRAMERS-KRONIG ANAL-

YSIS

The first step in quantitive analysis of EEL spectra is obtaining the Single Scattering Dis-
tribution (SSD) (as explained in Section 2.4.1). Once the SSD has been determined by
means of the deconvolution procedure summarised by Equation (2.41), it can be used
as input in order to evaluate the local sample thickness ¢ from the experimentally mea-
sured spectra [22]. Kramers-Kronig analysis provides the following relation between the
thickness ¢, the ZLP normalisation Ny, and the single-scattering distribution,

4apFEy Issp(E)
~ No(1—Re[1/6(0)]) P 1+ﬁ2/92)

(3.1)
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where we have assumed that the effects of surface scatterings can be neglected. Here,
ap = 0.0529 nm is Bohr’s radius, F is a relativistic correction factor written as,

1+ Ep/(1022 keV)
1+ Ep/(511 keV)]?’

(3.2)
with Ej being the incident electron energy, e(E) is the complex dielectric function, and
0 is the characteristic angle defined by

_E E
Cymov?  (Ep+moc?) (v/c)?

0F (3.3)

with y being the usual relativistic dilation factor, y = (1 - v/ 62)71/2, and f the collection

semi-angle of the microscope. ' For either an insulator or a semiconductor material with
refractive index 7, one has that
Re[l/e(0)] =n"?, (3.4)

while Re[1/€(0)] = 0 for a metal or semi-metal. Hence, the determination of the dielectric
function is not a pre-requisite to evaluate the specimen thickness, and for given micro-
scope operation conditions we can express Equation (3.1) as

= i[m __fso® 35)
No Jo Eln(1+p?/6%)

with A constant across the specimen. If the thickness of the specimen is already known

at some location, then Equation (3.5) can be used to calibrate A and evaluate this thick-

ness elsewhere. Furthermore, if the thickness of the material has already been deter-

mined by means of an independent experimental technique, then Equation (3.1) can be

inverted to determine the refractive index n of an insulator or semi-conducting material

using
f°° gp_ Issp(B) )
0 Eln(1+p%/6%)

Figure 3.1a shows a representative EEL spectrum from the InSe specimen, where
the original data is compared with the deep-learning ZLP parametrisation and the sub-
tracted inelastic contribution. The red dashed region indicates the onset of inelastic
scatterings, from which the band gap energy Ejg and type can be extracted from the
procedure described in Section 3.3. We zoom in Figure 3.1b in the low-loss region of the
same spectrum, where the ZLP and inelastic components become of comparable size.
The error bands denote the 68% CL intervals evaluated over Nip = 5000 Monte Carlo
replicas.

By training the ZLP model on the whole InSe EELS-SI displayed in Figure 3.1c (see
Figures B.1a,b in the Supplementary Information for the corresponding STEM measure-
ments) we end up with a faithful parametrisation of ISEN) (E, Niot) which can be used

P
to disentangle the inelastic contributions across the whole specimen and carry out a

-1/2
1 4a0FE0

Not

n=

(3.6)

IWhich should not be confused with the normalised velocity often used in relativity, § = v/c.
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Figure 3.1: (a) Representative EEL spectrum from the InSe specimen, where we display the data, the ZLP
parametrization, and the subtracted inelastic spectrum. The red dashed region indicates the onset of inelastic
scatterings where the bandgap is extracted. (b) Same spectrum, now zooming in the low-loss region marked
with a blue square in (a). (c) EELS-SI acquired on the InSe specimen displayed on Fig. E.1(a,b) in the Sup-
plementary Information, where each pixel corresponds to an individual spectrum. (d,e) The thickness map
corresponding to the InSe SI of (c) and the associated relative uncertainties respectively.

spatially-resolved determination of relevant physical quantities. To illustrate these ca-
pabilities, Fig. 3.1d,e displays the maps associated to the median thickness and its corre-
sponding uncertainties respectively for the same InSe specimen, where a resolution of 8
nm is achieved. One can distinguish the various terraces that compose the specimen, as
well as the presence of the hole in the carbon film substrate as a thinner semi-circular re-
gion, (see Section B.2 of the Supporting Information). The specimen thickness is found
to increase from around 20 nm to up to 300 nm as we move from left to right of the map,
while that of the carbon substrate is measured to be around 30 nm consistent with the
manufacturer specifications. Uncertainties on the thickness are below the 1% level, as
expected since its calculation depends on the bulk (rather than the tails) of the ZLP.

3.3. BAND GAP ANALYSIS OF THE EELS LOW-L0OSS REGION

In the same manner as for the thickness, the ZLP-subtracted SI contains the required
information to carry out a specially-resolved determination of the band gap. The reason
is that the onset of the inelastic scattering intensity provides information on the value
of the band gap energy Ej,g, while its shape for E 2 E,g is determined by the underly-
ing band structure. Different approaches have been put forward to evaluate E,g from
subtracted EEL spectra, such as by means of the inflection point of the rising intensity
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or a linear fit to the maximum positive slope [1], [23]. Following [18], here we adopt the
method of [24], [25], where the behaviour of [j,¢ (E) in the region close to the onset of
the inelastic scatterings is described by

Tinel(B) = A(E=Eng)”, EZ Eug, 3.7)

and vanishes for E < Epg. Here A is a normalisation constant, while the exponent b pro-
vides information on the type of band gap: it is expected to be b = 0.5 (1.5) for a semi-
conductor material characterised by a direct (indirect) band gap. While Equation (3.7)
requires as input the complete inelastic distribution, in practice the onset region is dom-
inated by the single-scattering distribution, since multiple scatterings contribute only at
higher energy losses.

The band gap energy Eyg, the overall normalisation factor 4, and the band gap expo-
nent b can be determined from a least-squares fit to the experimental data on the ZLP-
subtracted spectra. This polynomial fit is carried out in the energy loss region around the

band gap energy, [Egl?l, E,(E;)X] . A judicious choice of this interval is necessary to achieve

stable results: a too wide energy range will bias the fit by probing regions where Equa-
tion (3.7) is not necessarily valid, while a too narrow fit range might not contain sufficient
information to stabilise the results and be dominated by statistical fluctuation.

InSe — bandgap fit WS, nanoflower — bandgap fit
a) Tinel (median) b) Tiner (median)

fit (median) fit (median)

Intensity [a.u.]

0.5 10 15 20 25 15 20 25 3.0 35
Energy Loss [eV] Energy Loss [eV]

Figure 3.2: Representative examples of band gap fits to the onset of inelastic spectra in the InSe (a) and WS, (b)
specimens. The red shaded areas indicate the polynomial fitting range, the blue curve and band corresponds
to the median and 68% CL intervals of the ZLP-subtracted intensity Ij,,¢] (E), and the outcome of the band gap
fits based on Eq. (3.7) is indicated by the orange dashed curve (median) and band (68% CL intervals).

Figure 3.2a,b displays representative examples of band gap fits to the onset of the
inelastic spectra in the InSe and WS, specimens respectively. The red shaded areas indi-
cate the fitting range, bracketed by E I(Ifliltl)l and EI(E;)X The blue curve and band corresponds
to the median and 68% CL intervals of the ZLP-subtracted intensity [, (E), and the out-
come of the band gap fits based on Equation (3.7) is indicated by the green dashed curve
(median) and band (68% CL intervals). Here the onset exponents b have been kept fixed
to b= 0.5 (1.5) for the InSe (WS;) specimen given the direct (indirect) nature of the un-
derlying band-gaps. One observes how the fitted model describes well the behaviour of
Iinel (E) in the onset region for both specimens, further confirming the reliability of our
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strategy to determine the band gap energy Epg. As mentioned in [25], it is important

to avoid taking a too large interval for [E. fgfg,Eg&], else the polynomial approximation

ceases to be valid, as one can also see directly from these plots.
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Figure 3.3: (a) Spatially-resolved map of the bandgap for the WS, nanoflower specimen, where a mask has
been applied to remove the vacuum and pure substrate pixels. (b,c) The median value of the bandgap energy
Epg and its corresponding 68% CL relative uncertainties across the InSe specimen, respectively.

Figure 3.3a displays the band gap map for the WS, nanoflower specimen, where a
mask has been applied to remove the vacuum and pure-substrate pixels. A value b =1.5
for the onset exponent is adopted, corresponding to the reported indirect band gap. The
uncertainties on Eyp,g are found to range between 15% and 25%. The map of Figure 3.3a is
consistent with the findings of Reference [18], which obtained a value of the band gap of
2H/3R polytypic WS; of Epg = (1.6 +0.3) eV with a exponent of b = 1.3f8:$ from a single
spectrum. These results also agree within uncertainties with first-principles calculations
based on Density Functional Theory for the band structure of 2H/3R polytypic WS, [26].
Furthermore, the correlation between the thickness and band gap maps points to a pos-
sible dependence of the value of Epg on the specimen thickness, though this trend is not
statistically significant.

Moving to the InSe specimen, Figures 3.3b and c display the corresponding maps for
the median value of the band gap energy and for its uncertainties, respectively. Photo-
luminescence (PL) measurements carried out on the same specimen, and described in
the Supporting Information Section B.1, indicate a direct band gap with energy value
around Epg ~ 1.27 eV, hence we adopt b = 0.5 for the onset exponent. The median val-
ues of Epg are found to lie in the range between 0.9 eV and 1.3 eV, with uncertainties of
10% to 20% except for the thickest region where they are as large as 30%. This spatially-
resolved determination of the band gap of InSe is consistent with the spatially-averaged
PL measurements as well as with previous reports in the literature [27]. Interestingly,
there appears to be a dependence of Eyg with the thickness, with thicker (thinner) re-
gions in the right (left) parts of the specimen favouring lower (higher) values. This corre-
lation, which remains robust once we account for the model uncertainties, is suggestive
of the reported dependence of Ey,g in InSe with the number of monolayers [28].

Within our approach it is also possible to determine simultaneously the exponent b
together with the band gap energy Epg. As already observed in Reference [18], this expo-
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nent is typically affected by large uncertainties. Nevertheless, it is found that in the case
of the InSe specimen all pixels in the SI are consistent with b = 0.5 and that the alterna-
tive scenario with b = 1.5 is strongly disfavoured. By retaining only those pixels where the
determination of b is achieved with a precision of better than 50%, one finds an average
value of b = 0.50 + 0.26, confirming that indeed this material is a direct semiconductor
and in agreement with the spatially-integrated PL results. In addition, the extracted val-
ues of Epg are found to be stable irrespective of whether the exponent b is kept fixed or
instead is also fitted.

3.4. COMPLEX DIELECTRIC FUNCTION FROM EEL SPECTRA US-

ING KRAMERS-KRONIG ANALYSIS
The dielectric function of a material, also known as permittivity, is a measure of how easy
or difficult it is to polarise a dielectric material such an insulator upon the application
of an external electric field. In the case of oscillating electric fields such as those that
constitute electromagnetic radiation, the dielectric response will have both a real and a
complex part and will depend on the oscillation frequency w,

€(w) =Rele(w)] +ilm[e(w)], (3.8)

which can also be expressed in terms of the energy E = fiw of the photons that constitute
this electromagnetic radiation,

€(E) =Rele(E)] +ilm[e(E)] . (3.9)

In the vacuum, the real and imaginary parts of the dielectric function reduce to Re [e(E)] =
1 and Im [e(E)] = 0. Furthermore, the dielectric function is related to the susceptibility y
by
e(E)=1-vy(b), (3.10)
where v is the so-called Coulomb matrix.
The single scattering distribution Issp (E) is related to the imaginary part of the com-
plex dielectric function e(E) by means the following relation

2
1+ (ﬁ)

Ok
in terms of the sample thickness ¢, the ZLP normalisation Ny, and the microscope oper-
ation parameters defined in Section 3.2. We can invert this relation to obtain

[ -1
Im|—
e(E)

-1

m In , (3.11)
e(E)

Not
Issp(B) = ————
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Since the prefactor in Equation (3.12) does not depend on the energy loss E, we see that
Im[—-1/e(E)] will be proportional to the single scattering distribution Issp (E) with a de-
nominator that decreases with the energy (since 0 o< E) and hence weights more higher
energy losses.
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Given that the dielectric response function is causal, the real part of the dielectric
function can be obtained from the imaginary one by using a Kramers-Kronig relation of
the form

Re

-1 ] E
e(E) e(E) | E?-E?’
where 22 stands for Cauchy’s prescription to evaluate the principal part of the integral. A
particularly important application of this relation is the E = 0 case,

(3.13)

2 (o]
=1——9>f dE'Im
n Jo
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€(0)

Re (3.14)
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=1——9]’f dEIm
4 0

-11]1
e(E)] E’
which is known as the Kramers-Kronig sum rule. Equation (3.14) can be used to deter-
mine the overall normalisation of Im [—1/e(E)], since Re[1/¢(0)] is known for most ma-
terials. For instance, as mentioned in Equation (3.4), for an insulator or semiconductor
material it is given in terms of its refractive index .

Once the imaginary part of the dielectric function has been determined from the
single-scattering distribution, Equation (3.12), then one can obtain the corresponding
real part by means of the Kramers-Kronig relation, Equation (3.13). Afterwards, the full
complex dielectric function can be reconstructed by combining the calculation of the
real and imaginary parts, since

€(E) =Re[e(E)] + ilm [e(E)] = €1(E) + iez(E), (3.15)
implies that
Re| |- @B Lo __e® | (3.16)
eB)| (B +e3(E) €(B)]  €f(E)+€5(E)

and hence one can express the dielectric function in terms of experimentally accessible
quantities,

1 . -1
Re[@] + llm[m]

1 1)? 1)
(e[ )"+ (im [ 5 )
Once the complex dielectric function of a material has been determined, it is possible
to evaluate related quantities that also provide information about the opto-electronic

properties of a material. One example of this would be the optical absorption coefficient,
given by

e(E) =

(3.17)

E 1/2
uE) = — 2E®+em) " -2em)] (3.18)

which represents a measure of how far light of a given wavelength A = hc/E can pen-
etrate into a material before it is fully extinguished via absorption processes. Further-
more, combining Equations (3.4) and (3.16) one has that for a semiconductor material,
such as those considered in this work, the refractive index is given by the relation

6’(0) —-1/2
1
=1 , 3.19
" (e§(0)+e§(0)) 5-19)
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which implies a positive, non-zero value of the real part of the complex dielectric func-
tionat E=0.

The complex dielectric function e (E) provides direct information on the opto-electronic
properties of a material, for example those associated to plasmonic resonances. Specifi-
cally, a collective plasmonic excitation should be indicated by the condition that the real
part of the dielectric function crosses the x axis, €1 (E) = 0, with a positive slope. These
plasmonic excitations typically are also translated by a well-defined peak in the energy
loss spectra. Hence, verifying that a plasmonic transition indicated by €; (E) = 0 corre-
sponds to specific energy-loss features provides a valuable handle to pinpoint the nature
of local electronic excitations present in the analysed specimen.

3.4.1. THE ROLE OF SURFACE SCATTERINGS.

The previous derivations assume that the specimen is thick enough such that the bulk
of the measured energy loss distributions arises from volume inelastic scatterings, while
edge- and surface-specific contributions can be neglected. However, for relatively thin
samples with thickness ¢ below a few tens of nm, this approximation is not necessarily
suitable. Assuming a locally flat specimen with two surfaces, in this case Equation (2.25)
must be generalised to

Igp1s(E) = Iz1p(E) + Iinel (E) + Is(E) (3.20)
with Is(E) representing the contribution from surface-specific inelastic scattering. This

surface contribution can be evaluated in terms of the real €; and imaginary €2 compo-
nents of the complex dielectric function [29],

Ny |tan”'(B/6p) B
ﬂaokoT QE ﬁz+9]25

Is(E) = ) (3.21)

4eo -1
—Im|—
( €1+1)%+e5 e(E) ]
where the electron kinetic energy is T = m,v?/2.

The main challenge to evaluate the surface component from Equation (3.21) is that
it depends on the complex dielectric function e¢(E), which in turn is a function of the
single scattering distribution obtained from the deconvolution of Ij,¢ (E) obtained as-
suming that Is(E) vanishes. For not too thin specimens, the best approach is then an
iterative procedure, whereby one starts by assuming that Ig(E) = 0, evaluates e(E), and
uses it to evaluate a first approximation to Is(E) using Equation (3.21). This approxima-
tion is then subtracted from Equation (3.20) and hence provides a better estimate of the
bulk contribution [j,e (E). One can then iterate the procedure until some convergence
criterion is met. Whether or not this procedure converges will depend on the specimen
under consideration, and specifically on the features of the EELS spectra at low energy
losses, E < 10 eV. For the specimens considered in this work, it is found that this iterative
procedure to determine the surface contributions converges best provided that the local
sample thickness satisfies ¢ > 20 nm. We evaluate now the properties of the complex
dielectric function e(E) using the aforementioned Kramers-Kronig analysis. The local
dielectric function provides key information on the nature and location of relevant elec-
tronic properties of the specimen.
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3.4.2. COMPLEX DIELECTRIC FUNCTION IN INSE AND WS,

To illustrate the adopted procedure, Figure 3.4a displays another representative InSe
spectrum from the same EELS-SI of Figure 3.1c. Noticeable features include a marked
peak at E = 14 eV, corresponding to the bulk plasmon of InSe, as well as a series of smaller
peaks in the low-loss region. The real and imaginary parts of the complex dielectric func-
tion associated to the same location in the InSe specimen are shown in Figure 3.4b. The
values of the energy loss for which the real component exhibits a crossing, €;(E;) = 0,
with a positive slope can be traced back to collective excitations such as a plasmonic res-
onances. Indeed, one observes how the real component €, (E) exhibits a crossing in the
vicinity of E = 13 eV, consistent with the location of the bulk plasmon peak.
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Figure 3.4: (a) A representative EEL spectrum from the InSe specimen. (b) The real, €1 (E), and imaginary,
€2(E), components of the complex dielectric function associated to the same location. (c) The energy value
associated to the global maximum of the inelastic scattering intensity i) (E) across the InSe specimen. (d,e)
The numbers of crossings of €] (E) and the associated value of the E respectively across the same specimen,
where the SI has been masked to remove pixels with carbon substrate underneath.

Furthermore, the local maxima of the imaginary component €, (E) can be associated
to interband transitions. From Figure 3.4b, one finds that €, (E) exhibits local maxima in
the low-loss region, immediately after the onset of inelastic scatterings, at energy losses
around 3 eV, 6 eV, and 9 eV. The location of these maxima do match with the observed
peaks in the low-loss region of Figure 3.4a, strengthening their interpretation of inter-
band transitions between the valence and conduction bands, and consistent also with
previous reports in the literature [30]. The dielectric function in Figure 3.4b provides
also access to €1 (0), the static dielectric constant and hence the refractive index »n of bulk
InSe. Our results are in agreement with previous reports [31] once the thickness of our
specimen is taken into account.

As for the thickness and the band gap, one can also map the variation of relevant
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features in the dielectric function e¢(E) across the specimen. Extending the analysis of
Figures 3.4a,b, Figure 3.4c shows the value of the energy loss associated to the maximum
of the inelastic scattering intensity I (E), while Figures 3.4d,e display the numbers of
crossings of € (E) and the corresponding value of the energy loss respectively. In Fig-
ures 3.4d,e, the SI has been masked to remove pixels with carbon substrate underneath,
the reason being that its contribution contaminates the recorded spectra and hence pre-
vents from robustly extracting e(E) associated to InSe. It is found that the specimen ex-
hibits a single crossing whose energy E. ranges between 12.5 eV and 13 eV, close to the
maximum of [;,e] and hence consistent with the location of the InSe bulk plasmonic res-
onance. Uncertainties on E. are below the 1% level, since the calculation of e(E) depends
mildly on the onset region where model errors are the largest. Dielectric function maps
such as Figure 3.4e represent a sensitive method to chart the local electronic properties
of ananostructured material, complementing approaches such as fitting multi-Gaussian
models to EELS spectra to identify resonances and transitions. In particular, maps for
the local maxima of €; (E) and €2 (E) could be also be constructed to gauge their variation
across the specimen.

Interestingly, as was also the case for the band gap energy in Figure 3.3c, by com-
paring Figure 3.4e with Figure 3.1d there appears to be a moderate correlation between
the crossing energy and the specimen thickness, whereby E. decreases as the specimen
becomes thicker. While dedicated theoretical and modelling work would be required
to ascertain the origin of this sensitivity on the thickness, our results illustrate how our
framework makes possible a precise characterisation of the local electronic properties of
materials at the nanoscale and their correlation with structural features.

Next, we characterise the complex dielectric function of the 2H/3R WS, nanoflower
specimen from [17], [18] across the whole EELS-SI and present the corresponding re-
sults for the spatially-resolved determination of the real, €;(E), and imaginary, €2 (E),
parts. Figure 3.5 displays €1 (E) and €2 (E) corresponding to two representative spectra
of this WS, nanoflower specimen. In this analysis we account for the effects of the sur-
face contributions and the error bands quantify the uncertainties associated to the ZLP
subtraction procedure.

Of particular interest are the values of the energy loss for which the real component
of the dielectric function exhibits a crossing, €; (E) = 0 with a positive slope. These cross-
ings can be interpreted as indicating a phase transition involving a collective electronic
excitation, such as a plasmonic resonance. Here we define that a crossing takes place
wherever €1 (E) = 0 at the 90% CL as estimated from the Monte Carlo representation. For
the selected spectra displayed in Figures 3.5a,b, this condition is satisfied for E = 22 eV
and E = 18 eV respectively. These values are consistent with the bulk and surface plas-
monic resonances in 2H/3R polytypic WS, identified in [17].

Figure 3.5¢ displays the number of such crossings exhibited by the real part of the di-
electric function across the whole WS, nanoflower specimen. The vacuum and substrate
regions have been masked such that only the spectra corresponding to the specimen are
retained. One finds that the majority of the spectra are characterised by either one or
zero crossings, while a minority showing two or even three crossings. By comparing
with Figure B.4b, one observes how it is in the thicker region of the specimen for which
the condition €; (E) = 0 is typically not satisfied, with the exception of the very bottom
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Figure 3.5: (a,b) The real €1 (E) and imaginary €2 (E) components of the complex dielectric function corre-
sponding to two representative spectra of the WS, nanoflower specimen. The energy values for which the real
component exhibits a crossing, € (E) = 0 with positive slope, can be attributed to collective electronic transi-
tions. (c) The number of crossings exhibited by the real part of the dielectric function for the same specimen.
(d) The energy value of the left-most crossing in (c) for the pixels with = 1 crossings. Both in (c) and (d) only
the pixels corresponding to the specimen are retained.

region which consistently displays one crossing.

Finally, Figure 3.5d displays the energy E associated to the left-most crossing in Fig-
ure 3.5c for those pixels with = 1 crossings. For the upper region of the specimen (char-
acterised by smaller thicknesses), the first crossing is found to be in the low-loss region,
while in the bottom (thicker) region, one has a first crossing at E; =~ 21 eV consistent with
the WS, bulk plasmon peak. We note that one could also show the values of E, for the
subsequent crossings, for those pixels exhibiting more than one crossing.

3.5. CONCLUSIONS AND OUTLOOK

In this work we have presented a novel framework for the automated processing and
interpretation of spectral images in electron energy loss spectroscopy. By deploying ma-
chine learning algorithms originally developed in particle physics, we achieve the robust
subtraction of the ZLP background and hence a mapping of the low-loss region in EEL
spectra with precise spatial resolution. In turn, this makes possible realising a spatially-
resolved (= 10 nm) determination of the bandgap energy and complex dielectric func-
tion in layered materials, here represented by 2H/3R polytypic WS, nanoflowers and by
InSe flakes. We have also assessed how these electronic properties correlate with struc-



REFERENCES 43

tural features, in particular with the local specimen thickness. Our results have been im-
plemented in a new release of the PYTHON open-source EELS analysis framework EELS-
FITTER, available from GitHub?, together with a detailed online documentation®.

While here we have focused on the interpretation of EELS-SI for layered materials,
our approach is fully general and can be extended both to higher-dimensional datasets,
such as momentum-resolved EELS [32] acquired in the energy-filtered TEM mode, as
well as to different classes of nanostructured materials, from topological insulators to
complex oxides. One could also foresee extending the method to the interpretation of
nanostructured materials stacked in heterostructures, and in particular to the removal
of the substrate contributions, e.g. for specimens fabricated on top of a solid substrate.
In addition, in this work we have restricted ourselves to a subset of the important features
contained in EEL spectra, while our approach could be extended to the automated iden-
tification and characterisation across the entire specimen (e.g. in terms of peak position
and width) of the full range of plasmonic, excitonic, or intra-band transitions to stream-
line their physical interpretation. Finally, another exciting application of our approach
would be to assess the capabilities of novel nanomaterials as prospective light (e.g. sub-
GeV) Dark Matter detectors [33] by means of their electron energy loss function [34],
[35], which could potentially extend the sensitivity of ongoing Dark Matter searches by
orders of magnitude.
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PEAK IDENTIFICATION IN LOSS
AND GAIN REGIONS OF EELS

In this chapter, we discuss peak identification in the loss and gain regions of the electron
energy-loss spectroscopy (EELS) spectrum through two case studies. The first study exam-
ines electronic properties and band gap variations in one-dimensional (1D) molybdenum
disulfide (MoS») nanostructures, revealing excitonic peaks around 2 eV and 3 eV at the
ends or sides and a plasmonic resonance at 8.3 eV in the inner region, with a band gap of
approximately 1.2 eV affected by curvature-induced strain. We used SciPy’s find_peaks()

function, pooling and smoothing spectra to construct histograms of detected peaks, en-

abling analysis of spatial distribution and strain effects. The second study investigates
the energy-gain peak around —0.8 eV after subtracting the zero-loss peak (ZLP) using a
Gaussian model. Robustness was ensured by comparing various ZLP models and using
the Monte Carlo replica method to estimate uncertainties, demonstrating the capability of
energy-gain EELS in mapping collective excitations in van der Waals materials.

Parts of this chapter have been published in Advanced Functional Materials: S. van der Lippe, A. Brokkelkamp,
J. Rojo, S. Conesa-Boj, Adv. Func. Mat. 33, 2307610 (2023) and Ultramicroscopy: H. La, A. Brokkelkamp, S.
van der Lippe, J. ter Hoeve, J. Rojo, S. Conesa-Boj, Ultramicroscopy 254, 113841 (2023).

47



48 4. PEAK IDENTIFICATION IN LOSS AND GAIN REGIONS OF EELS

4.1. INTRODUCTION

Developing techniques for automatic feature identification is more relevant than ever to
keep up with technological advances. In this chapter, we present two case studies that
address feature identification using different approaches, focusing on both the loss and
gain regions of the EELS spectrum.

Peak identification is particularly crucial for the group of layered materials. For in-
stance, central to the optical functionalities of the transition metal dichalcogenide (TMD)
MoS; are excitons, electron-hole bound states whose behaviour can be modified by lo-
calisation arising from potential minima [1] induced by defects [2], [3], strain [4], [5], or
local potential variations [6]. Additionally, topological insulator (TI) materials, such as
Bi, Tes can support plasmonic excitations, leading to enhanced light-matter interactions
such as strong scattering, absorption, and emission. Notably, low-energy plasmons have
been reported in BiyTez below 3 eV and correlated plasmons at around 1 eV in BiyTes [7],
[8].

Electron-based spectroscopic techniques, such as electron energy-loss spectroscopy
(EELS), have demonstrated their suitability to investigate the electronic and optical prop-
erties of a wide range of materials, including the study of their plasmonic resonances [9]-
[15]. Moreover, recent advancements in instrumentation, such as the improvement in
the stability of electron sources, have greatly enhanced the precision of electron energy-
loss spectroscopy. [16], [17] These development have helped uncovered features that
where previously either not visible, have shifted based on a multitude of factors, or even
uncovered new yet unidentified phenomenon. In this chapter, we present two case stud-
ies that address feature identification using different approaches, focusing on both the
loss and energy-gain regions of the EELS spectrum.

For MoS,, we take a look at the TMD in a one dimensional configuration and explore
the low-loss energy region to study the exciton behaviour. In contrast, for Bi,Tes, we
investigate the energy-gain region. The latter offers the advantage of avoiding obscura-
tion by multiple scattering continua and other electronic transitions in the energy-loss
(AE > 0) region, allowing for the clean identification of narrow collective excitations with
enhanced spectral resolution. In both case studies, accurate and automated peak identi-
fication can reveal significant variations in electronic properties, exciton behaviour, and
band gap modulation. By understanding the spatially dependent electronic properties
of these nanostructures, we can design and optimise nanoscale devices more effectively,
resulting in enhanced performance and advancements in nanophotonics and optoelec-
tronic applications.

4.2. CASE STUDY: 1D-M0OS, NANOSTRUCTURES

Two-dimensional (2D) van der Waals (vdW) materials, both in the traditional planar con-
figuration as well as in their one-dimensional (1D) counterpart, have captivated sub-
stantial interest due to their remarkable electrical and optical properties. In this context,
the study of 1D-MoS; nanostructures holds tremendous potential for unlocking novel
possibilities in customisation and design complementing those provided by the planar
configuration. Understanding these properties is crucial for the design and optimization
of nanoscale devices in applications to nanoelectronics and optoelectronics.
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The unique platform provided by 1D-MoS;, nanostructures is expected to allow the
hosting of localised excitons through curvature-induced quantum confinement. How-
ever, a comprehensive understanding of the properties of these localised excitons in 1D-
MoS, remains so far elusive. A challenge of this configuration is the possible presence
of several confounding effects, including strain fields and structural defects, which may
alter the optoelectronic properties such as the band gap and the location and intensity
of localised excitonic transitions.

In this study, we undertake a thorough investigation of localised excitons in 1D-
MoS; nanostructures, complemented by the assessment of their band gap energy mod-
ulation. This is achieved by leveraging and extending our previously developed ap-
proach [18], [19] for the automated processing and interpretation of electron energy-
loss spectroscopy (EELS) spectral images (SI) with nanometer spatial resolution imple-
mented within the open-source EELSFITTER framework.

4.2.1. STRUCTURAL CHARACTERISATION

The 1D-MoS; nanostructures investigated in this work were synthesised by means of
chemical vapour deposition (CVD) techniques [20]. They were directly grown on a 5
nm thick SisN4 membrane spanning the Transmission Electron Microscopy (TEM) grid.
More details on the growth methodology can be found in the Methods section.

The synthesised nanostructures exhibit a characteristic core-shell structure as illus-
trated in the bright-field TEM image of Fig. 4.1a. Confirmation of the presence of MoS,
in both the core and the shell regions was achieved by acquiring EELS at two distinct
positions within the nanostructure, Figure 4.1b, displaying the plasmon peak located at
22.5 eV consistent with previous studies [21]-[25]. Further evidence is provided in Fig-
ure 4.1d with line profiles extracted from the high-resolution HAADF-STEM image of the
tip of the same 1D-MoS; nanostructure (Figure 4.1c. The distances between the peaks in
the line profile provides information on the interlayer spacing, which is found to be ap-
proximately 6 A and consistent with the interlayer distance of MoS, reported in the liter-
ature [26]. We also observe that as we move closer to the outer layer of the nanostructure,
this interlayer distance increases. Upon closer examination of the nanostructure’s edge,
we observe bright spots (indicated with a blue rectangle in Figure 4.1c indicating atomic
contrast arising from Mo atoms. To determine the Mo-Mo distance, we also conducted
a line profile analysis finding the expected separation of approximately 0.262 nm. The
1D-MoS; nanostructures considered in this work are showcased in Figure C.1 in the Sup-
porting Information and exhibit an average length and diameter of 960 nm and 60 nm
respectively. Their close examination reveals several interesting features. In particular,
the rolling up of the MoS, sheets along the MoS, core leads to the formation of tubu-
lar structures, which display distinctive faceted caps at their tips (see Figure 4.1a, with
dashed lines highlighting these features) which should induce the formation of localised
tensile strain. To quantify the strain distribution within the 1D-MoS; nanostructures,
we employ the Geometrical Phase Analysis (GPA) method [27], [28]. Figure 4.2 presents
the GPA strain analysis of two representative regions of the 1D-MoS;, nanostructure, one
located near the maximum bending point in the tip and providing insight into the strain
distribution in a highly curved region, while the other is positioned along the length of
the nanostructure and allowing us to examine strain variations in a relatively straight
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Figure 4.1: Morphology of the 1D-MoS3 nanostructures. (a) Bright-field image of a representative 1D-MoS»
nanostructure. The size of the scale bar is 50 nm. (b) High-resolution EEL spectra corresponding to the regions
indicated in (a) and displaying the MoS bulk plasmon peak at 22.5 eV. (¢) High-resolution HAADF-STEM im-
age of the tip of the same 1D-MoS; nanostructure. The size of the scale bar is now 5 nm. (d) Line scans acquired
in the regions marked in (c) with green and blue rectangles. The top line scan identifies the separation between
atomic planes to be approximately 0.63 nm, while the inter-atomic distance is determined to be around 0.262
nm from the bottom line scan. The line scan origin corresponds to the left-most end of the marked regions.

section. In the vicinity of the maximum bending point, the MoS; layers are found to ex-
hibit tensile strain, with values reaching up to 0.45 % (Figures 4.2b,c) with respect to the
reference region for the diagonal components €, and €y,. Interestingly, strain is com-
paratively lower at the precise maximum bending region, marked by a dashed white rect-
angle in Figure 4.2a, and which also reveals the presence of structural defects in the form
of discontinuous layers in this region. The observed decrease in strain at the maximum
bending point, accompanied by the presence of structural defects, can be attributed to
the inherent requirements for the MoS, layers to satisfy stacking order and orientation
relationship with respect to the previous layer. The strain involved in the formation of
these 1D-MoS; nanostructures, especially at their pronounced tips, is therefore relaxed
through the formation of structural defects. The type of defects identified in Figure 4.2a
correspond to basal plane dislocations, which in turn can lead to twin defects. [29] The
formation of the latter in 2D materials minimises the total energy by balancing the strain
energy caused by lattice distortion with the van der Waals energy between neighbouring
planes.
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Terminated
growth y.A

Figure 4.2: Strain analysis of 1D-MoS2 nanostructures. (a) HAADF-STEM image of a region located around
the bend region of the tip of a 1D-MoSy nanostructure. The size of the scale bar is 5 nm. (b,c) The strain
components €xy and €y extracted by means of GPA from (a), revealing the presence of tensile strain peaking
at 0.45 % near the bend with a decrease at the point of maximum bending. This tensile strain is associated
with the presence of structural defects. (d) High-resolution TEM image of a region along the length of the
nanostructure close to the tip, displaying terminated growth of the inner layers of the 1D-MoS, nanostructures
leading to variations in wall thickness and diameter along this length. The size of the scale bar is 10 nm.
(e,f) Strain components e€xx and € yy extracted by means of GPA from (d). Tensile strain is observed along the
length, which gradually increases as the shell thickness varies. The reference regions for strain calculation are
indicated with a white solid rectangle in (a) and (d).

Furthermore, one observes that the inner layers of the 1D-MoS; nanostructure con-
sidered exhibit terminated growth (marked by an arrow in Figure 4.2d). This results in
variations in the wall thickness on the two sides of the 1D-MoS, nanostructures and
leads to a varying diameter of the shell along the length of the nanostructure (see Fig-
ure C.1 in the Supporting Information). This type of terminated growth has been pre-
viously reported in metallic-filled carbon nanotubes [30] and in WS, nanotubes [31].
Strain is also observed along the length of the 1D-MoS, nanostructures, as quantified by
the €, and €, maps in Figures 4.2e and 4.2f. In particular, we find tensile strain which
gradually increases as the shell thickness varies.

As shown in Figure C.2, our growth strategy also results in alternative morphologies
for the 1D-MoS; nanostructures, and in particular a fraction of them are connected by
their end regions. In the subsequent analysis, we consider both a individual 1D-MoS,
nanostructure as well as joint pair of nanostructure. The presence of bent layers, varying
diameters, and interconnected arrangements in these nanostructures has associated the
potential to modulate their local electronic properties, demonstrated in the next section.
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Figure 4.3: Spatially-resolved EELS analysis of a 1D-MoS; nanostructure. (a) HAADF-STEM image of a MoS»
nanostructure with a length of 760 nm and a diameter of 40 nm. The size of the scale bar is 200 nm. (b)
The corresponding EELS-SI, where the colour map corresponds to the total integrated intensity per pixel. (c)
Representative spectra associated to the pixels indicated in (b). These spectra exhibit intensity enhancements
at specific energies and are offset in the vertical direction for clarity. (d)-(f) Same as (b), now with the intensity
of the EEL spectra integrated over the indicated energy windows, also highlighted as vertical grey bands in (b),
where intensity enhancements are observed. A black curve indicates the boundary of the nanostructure, and
we filter out the substrate. Each panel uses a different intensity range.

4.2.2. SPATIALLY-RESOLVED STEM-EELS CHARACTERISATION
The morphological and structural features of 1D-MoS;, nanostructures reported in Fig-
ures 4.1 and 4.2 motivate the in-depth analysis of their local optoelectronic properties.
To this end, we conduct electron energy-loss spectroscopy (EELS) measurements on
individual nanostructures to identify and study collective electronic excitations, such
as excitons and plasmons, and to determine their band gap energy. Our focus is pri-
marily the low-loss region, with energy losses AE < 50 eV, providing direct insights into
the sought-for excitonic and plasmonic behaviour. This analysis builds upon the open-
source EELSFITTER framework [18], [19] for the processing of spatially-resolved EELS data
(as explained in Chapter 2), here extended with automated peak-tracking algorithms.
Figure 4.3a displays a HAADF-STEM image of a representative 1D-MoS, nanostruc-
ture. Figure 4.3b displays the EELS spectral image acquired on this specimen, where the
colour map corresponds to the total integrated intensity per pixel. In Figure 4.3c, indi-
vidual EEL spectra acquired at two distinct positions on the nanostructure (indicated in
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Figure 4.3b) are shown. In order to reduce statistical noise, spectra are pooled using a
3 x 3 mask. They are also normalised to a common factor and offset in the vertical di-
rection to facilitate visualisation. The highlighted spectra exhibit significant variations
between the two positions in the specimen, one close to the surface (spectrum 1, sp1 for
short) and another towards the center (sp2). Specifically, spl (surface) displays promi-
nent peak-like features at energies of around 1.9 eV and 3.0 eV, while sp2 (central region)
exhibits instead localised intensity enhancements around 3.0 eV and 8.3 eV.

4.2.3. AUTOMATED EELS PEAK DETECTION AND ANALYSIS

Analysing individual spectra within an EELS spectral image to identify intensity enhance-
ments by manual inspection is both inefficient and challenging, especially when dealing
with multiple spectral images. To automate the peak detection and analysis in EELS-SI,
here we employed the find_peaks () function from ScIiPy. To optimise the results, we
pooled spectra within a 3 x 3 area and applied a smoothing process to prevent the algo-
rithm from erroneously identifying peaks caused by measurement noise. By repeating
this approach for all pixels within the EELS spectral image and constructing a histogram
based on the positions of the detected peaks, we are able to automatically determined
energy-loss regions displaying intensity enhancements for their subsequent inspection.

As an illustration, we applied the described procedure to the 1D-MoS;, specimen
analysed in Figure 4.9 In Figure 4.4a, we present a histogram displaying the identified
peaks within the [0,10] eV range across the whole specimen. The histogram indicates
that intensity enhancements are clustered at energy losses of approximately 1.7 eV, 2.0
eV, 2.7 eV, 3.0 eV and 8.3 eV. Manual inspection of the spectral image in the vicinity of
these energy values confirms the presence of peaks within the data, as shown in Fig-
ure 4.9b. By applying this procedure to all the EELS-SI images considered, we are able
to identify in an unbiased manner the most relevant energy-loss windows for further
analysis, in particular concerning their spatial distribution across the specimen.
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Figure 4.4: (a) Histogram of identified peak locations associated to the EELS-SI of Fig. 4a. (b) Same for the
EELS-SI of Fig. 3b.
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The same procedure applied to the EELS-SI of Figure C.4b is shown in Figure 4.4b.
For this specimen, the algorithm does not find a cluster of peaks around 2.0 eV. Manual
inspection of EEL spectra reveals nevertheless the clear presence of the peak at AE ~ 2.0
eV also for this specimen. The reason it is not identified by our algorithm is that the
resonant feature at AE ~ 2.8 eV is quite broad and partially overlaps with the one at 2 eV.
This result highlights the importance of complementing the outcome of the automated
peak finding algorithm with manual inspection of the acquired spectra.

The spatially-resolved EELS analysis of Figure 4.3d-fillustrates how the peak-like fea-
tures reported in the individual spectra of Figure 4.3c vary across the 1D-MoS; nanos-
tructure. In the energy-loss range of [1.8,2.1] eV, the strongest signal intensity is observed
at one of the tips of the nanostructure as well as along the sides, specially in the central
region. For the energy-loss range of [2.9,3.1] eV, the signal is most marked along the
sides of the nanostructure, with a moderate enhancement observed at one of the tips as
well. In the [8.2,8.4] eV energy-loss range, the intensity is mostly enhanced along half of
the length of the nanostructure, excluding the tip regions. It has been reported [13] that
for MoS; the peaks at 8.3 eV appear only for non-zero momentum ¢q. Overall, one finds
that the energy value and intensity of several peak-like features in the EELS spectra vary
sensitively with respect to the spatial location within the nanostructure.

Figure 4.5 then presents a similar analysis as that of Figure 4.3 now for a different
morphology: two 1D-MoS, nanostructures connected by their endpoints, as demon-
strated by the HAADF-STEM analysis presented in Figure C.2 in the Supporting Infor-
mation and in particular by the HAADF-STEM image of Figure C.2a. With the aim of
identifying the implications of this interconnected configuration, Figure 4.5b displays
three representative spectra taken at different locations in the specimen, again exhibit-
ing distinctive features depending on the location. Marked peak-like intensity enhance-
ments at around 1.7 eV (spl), 2.0 eV (sp2) and at both 2.7 eV and 8.3 eV (sp3) respectively
are observed. The integrated intensity maps shown in Figures 4.5c-f indicate that these
intensity enhancements are localised in the range [1.6,1.8] eV at the tips of the bottom
nanostructure, along the edge in the middle region of the top nanostructure for [1.9,2.1]
eV, at the middle parts of the nanostructures as well as at the region where the nanostruc-
tures are connected for [2.6,2.8] eV, and at the inner part of the nanostructures for the
[8.2,8.4] eV energy-loss range. The reproducibility of this analysis is confirmed by the
results in section C.1.4 in the Supporting Information, corresponding to another con-
nected specimen with a similar morphology. The intensity enhancement around 1.7 eV,
absent for the nanostructure in Figure 4.3, can be ascribed to strain effects shifting the
exciton peak at 2 eV to smaller energies.

The energies of some of the observed peak-like intensity enhancements in the anal-
ysed 1D-MoS; nanostructures align closely with values reported in the literature for two-
dimensional MoS; specimens based on theoretical calculations [32], EELS studies [13],
[33], [34] and photoluminescence studies [35]. Specifically, the peaks located around 2
and 3 eV can be explained as arising from excitonic transitions, while the peak at 8.3 eV
can be attributed to a plasmonic resonance [13]. For the latter case, an enhancement
around 8.3 eV is observed in the inner region of the 1D-MoS; nanostructures across all
the analysed structures, in alignment with previous reports on plasmonic resonances in
2D-MoS, nanosheets [13].
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Figure 4.5: Spatially-resolved EELS analysis of connected 1D-MoS nanostructures. Same as Fig. 4.3 now for
two 1D-MoS; nanostructures, with a length of 540 nm and a diameter of 57 nm (top), and a length of 336 nm
and a diameter of 62 nm (bottom) respectively, connected by their ends. The corresponding HAADF-STEM
image is provided in Figure C.2a.
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The main differences between our findings on 1D-MoS; nanostructures and pre-
vious investigations on the 2D configuration are summarised by the spatially-resolved
analyses of Figures 4.3 and 4.5, as well as in Figure C.4, which establish their correlation
with specific locations in the specimen. In contrast with results on 2D-MoS; nanosheets,
where intensity enhancements are typically observed at the edge regions [13], we find
that the enhancements around 2 and 3 eV are localised at either end of the 1D-MoS,
nanostructures (Figures 4.5c and C.4c) or along their lateral sides (Figures 4.3d, 4.5d,
and C.4d). The fact that these peaks are associated to excitonic transitions [13] and that
our analysis indicates that these are restricted to specific regions in the 1D-MoS; nanos-
tructures appears to indicate that the observed signals can be associated to spatially-
confined Mo§S; excitons.

The origin of the peaks observed around 2.7 and 3.0 eV in Figures. 4.5b and C.4b and
(see also Figures. 4.5e and C.4d,e) therefore admits a common origin. Indeed, as previ-
ously reported [13], the enhancement observed at around 3 eV can experience an energy
downshift and exhibit a tail extending up to 3.5 eV, consistent with our observations. Fur-
thermore, the intensity distribution across the specimen in the energy intervals around
2.7 and 3.0 eV demonstrates a similar pattern, as displayed in Figures C.4d,e.

4.2.4. SPATIALLY-RESOLVED BAND GAP ENERGY OF 1D-M0S, NANOSTRUC
TURES

Complementary insights on the local electronic properties of the 1D-MoS;, nanostruc-
tures are provided by the spatial distribution of their band gap energy Ey,g. Here spatially-
revolved maps of Ejpg are determined by analysing individual EEL spectra after subtract-
ing the ZLP background, following the procedure in [18], [19]. Figure 4.6 displays the
Epg maps associated to the 1D-MoS; nanostructures studied in Figures 4.3 (individual)
and 4.5 (connected). The first and third columns display the lower (upper) bound of the
90% CL interval for Epg while the second displays the median. The corresponding band
gap analysis for the specimen analysed in the Supporting Information are collected in
Section C.1.5. For all specimens considered we obtain an indirect band gap.

The spatially resolved maps of Figure 4.6 enable identifying correlations between the
Eyg sensitivity and specific structural features. On the one hand, in the central region
of the nanostructures the median Ejg is approximately 1.2 eV, consistent with previous
findings for bulk MoS; [36], [37]. On the other hand, one observes how the values of
Epg tend to decrease, as compared to the central region, in the endpoint regions and
in the connection region for the joint nanostructure. To quantify this trend, we evalu-
ate in Table 4.1 the weighted average band gap energy in distinct regions within each
nanostructure. Specifically, we define the endpoint regions as 20% of the total length of
the 1D-MoS; nanostructures with the central region given by the remaining 60%. This
analysis confirms that Ey, is reduced in the endpoint regions as compared to the central
ones. The statistical significance of this band gap energy variation is found to be between
the 10 and 20 level, depending on the nanostructure.

A possible explanation of this trend is provided by the presence of curvature-induced
local strain identified in Figures 4.2b,c and e,f in the endpoint and in the lateral regions
respectively, which has been reported to modify the band gap energy. The relative de-
crease of Eyg observed in regions with tensile strain at the level quantified in Figure 4.2
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Figure 4.6: Spatially-resolved band gap energy in 1D-MoS; nanostructures. The median value (second col-
umn) and 90% CL lower and upper bounds (first and third column, respectively) for the band gap energy Epg
determined across the 1D-MoSy nanostructures considered in Figs. 4.3 (top) and 4.5 (bottom).

Table 4.1: The weighted average for Ej,g (in eV) for the 1D-MoS; nanostructures analysed in Fig. 4.6, separated
into three regions: the left-most endpoint (20% of the total length of the nanostructure), the central region
(60%), and right-most endpoint (20%). We also indicate the uncertainty obtained from the 90% CL interval for
the weighted average band gap energy.

Specimen Left-most endpoint Central region Right-most endpoint
Fig. 4.3 1.2+0.2 1.3+£0.1 1.2+0.2
Fig. 4.5 (bottom) 0.8+0.1 1.1£0.3 1.0+£0.2
Fig. 4.5 (top) 0.8+0.2 1.2+0.2 1.0+£0.3
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is consistent, within uncertainties, with previous reports on 2D-MoS; [38], [39].

Local strain is also known to induce a downshift in the excitonic transition ener-
gies [28], [40]. We verify in Section 4.2.5 which analyses the modulation of the 1.9 eV
exciton peak location across the specimen, that indeed a downshift between 3% and 4%
is obtained in our 1D-MoS; specimens. The decrease in the band gap energy E, in the
endpoint regions of the 1D-MoS; nanostructures as compared to the central region may
hence be attributed to curvature-induced local strain fields, which in turn is consistent
with the observed exciton localisation pattern.

4.2.5. SENSITIVITY OF THE EXCITON PEAK LOCATION

It has been reported that strain fields can induce a shift in the energy of MoS, exciton
peak located near 1.9 eV peak [28], [40]. To study whether this is also true in our speci-
mens, we analyse here the exciton peak position at various locations within the samples
studied in the main manuscript. Figure 4.7a presents the spectral image from Figure 4.3,
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Figure 4.7: Strain-induced exciton energy shift. (a) Same as Figure 4.3a indicating pixels distributed across
the specimen. (b) The location of the excitonic peak in the spectra corresponding to the pixels marked in (a).

with a selection of pixels marked across the sample. These marked pixels correspond to
specific regions of interest for analysis. To improve the signal-to-noise ratio, the spec-
tra associated with these pixels underwent principal component analysis. Afterwards, a
least-square fit was performed on the resulting spectra, involving the subtraction of the
zero loss peak (ZLP) background and the fitting of a sum of two Gaussian distributions
within the [1.3,3.5] eV range. The purpose of this fitting process was to extract the pre-
cise location of the excitonic peak near 1.9 eV, as shown in Figure 4.7b. The fitting results
for spectra 1 through 4 are displayed in Figure 4.8a through d, respectively.

A similar analysis was conducted for the sample corresponding to Figure 4.5, as shown
in Figs. 4.9and 4.10. We indeed observe a decrease in the energy of the exciton peak near
1.9 eVin regions affected by strain. This phenomenon is evident in spectrum 1 of Fig. 4.7
and spectrum 1 and 2 in Fig. 4.9), aligning with previous studies [28], [40]. Conversely,
spectrum 4 in both figures corresponds to region where the layers do not wrap around
the nanostructure, resulting in open-ended tips which are unaffected by strain. Conse-
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Figure 4.8: Least-square sum of Gaussians fit to individual spectra. (a)-(d) correspond to spectra 1 —4 in
Figure 4.7a. The spectra are treated with principal component analysis to improve signal-to-noise ratio.

< 1.850 {
2
c
2 1.825 1
: {
o
=< 1.800 A
&
17754 ¢ t
0 200 400 600 1 5 3 1
x (nm) Spectrum

Figure 4.9: Same as Figure 4.7 for the sample analysed in Figure 4.5
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Figure 4.10: Same as Figure 4.8 for the sample analysed in Figure 4.5.

quently, no energy downshift is observed in these spectra.

4.2.6. CONCLUSIONS

Our investigation of the electronic and structural characteristics of 1D-MoS, nanostruc-
tures has resulted into several key insights. Firstly, we observed excitonic transitions
localised at either the endpoints or the lateral sides of the nanostructures, particularly
around energy losses of 2 eV and 3 eV, at odds with the case of 2D-MoS;, materials where
the analogous intensity enhancements are typically observed across the structure. Sec-
ondly, our studies identifies the presence of plasmonic resonances localised at 8.3 eV
in the inner region of the 1D-MoS; nanostructures, aligning with previous observations
in 2D-MoS;. Thirdly, we have quantified the spatial modulation of the band gap en-
ergy across the 1D-MoS; nanostructures, finding that the endpoint regions display a de-
creased band gap as compared to the bulk MoS; value due to the presence of curvature-
induced local strain effects. The same curvature-driven strain fields are likely to be re-
sponsible for the localisation of the confined excitonic transitions observed.

Our results underscore the rich diversity of electronic behaviours in 1D-MoS; nanos-
tructures and highlight the potential for tailoring these properties for specific applica-
tions by engineering the nanostructure’s morphology and spatial configuration. In par-
ticular, they showcase the potential of curvature-induced strain as a useful handle to
tune optoelectronic properties. This strain-dependent modulation of the band gap en-
ergy in 1D-MoS; nanostructures could be leveraged in strain-engineered optoelectronic
devices, while being able to reproducibly generate strain-confined excitons opens new
avenues for single-photon emitters to be used in quantum optics and quantum net-
works.
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4.3. CASE STUDY: TOPOLOGICAL INSULATOR BI,TEj3

Topological insulator (TT) materials, such as BiyTes [41]-[43] and Bi,Ses, possess unique
properties that make them well suited for the design of nanoplasmonic devices oper-
ating in the THz and mid-infrared frequency ranges. [44]-[48] Topological insulators
can also support plasmonic excitations, collective oscillations of electrons that interact
strongly with light or other electrons and lead to enhanced light-matter interactions such
as strong scattering, absorption, and emission. In particular, low-energy plasmons [7]
have been reported in BiyTes below 3 eV while correlated plasmons at energies ~ 1 eV
have been identified for BizSes [8]. In this context, advancing our understanding of how
to optimally deploy TIs for the development of tunable plasmonic devices that operate
efficiently in optical frequencies has the potential to benefit a wide range of applica-
tions, including quantum computing [49], [50], terahertz detectors [51], and spintronic
devices [52].

Here we investigate low-energy collective excitations in the TI material Bi,Te3 by
means of EELS spectral images focusing on the energy-gain (AE < 0) region [14], [53]-
[55]. As compared to traditional EELS, this strategy offers the key advantage that gain
peaks are not obscured by the multiple scatterings continuum and other electronic tran-
sitions taking place in the energy-loss region (AE > 0), enabling the clean identification
of narrow collective excitations with enhanced spectral resolution. The resulting charac-
terisation of Bi, Tes specimens makes it possible to search for collective resonances in the
low-gain region, and correlate their spatial distribution with distinct structural features
such as surfaces, edges, and regions with sharp thickness variations.

4.3.1. STRUCTURAL COMPOSITION
Figure 4.11a displays a high-angle annular dark-field (HAADF) Scanning Transmission
Electron Microscopy (STEM) image of a representative BiyTes specimen. For closer ex-
amination, Figure 4.11b shows the magnified top right corner of the same specimen.
Further characterisation of the atomic structure of this specimen is provided in Sec-
tion C.2.2 of the Supplementary Information. By means of electron energy-loss spec-
troscopy (EELS), we acquire a spectral image (Figure 4.11c) of the specimen in the same
region, indicated with a white square in Figure 4.11a. The colour map corresponds to
the integrated intensity in the energy range [—9.05,92.3] eV in each pixel, covering the
total energy range in which signal was acquired. The black line indicates the edge of the
Bi,Tes specimen, which is automatically determined from the spatially-resolved thick-
ness map associated to the spectral image [19], specifically from its local rate of change.
Figure 4.11d displays EELS spectra taken at three different locations within the spec-
tral image, labelled as spectra spl, sp2, and sp3 in the following. Spectra sp1, sp2, and
sp3 are acquired in the region between the vacuum and the edge of the specimen, in
the vicinity of the specimen edge towards the inner region, and in the innermost part
of the specimen, respectively. The three spectra reveal the presence of distinct spectral
features located at approximately energy losses of 8.6 eV and 16.6 eV, where the latter
corresponds to the bulk plasmon peak in accordance with previous studies. [56] Fur-
thermore, the peaks at 25.6 eV and 27.9 eV observed in sp3 can be identified with the Bi
04,5 edges excited from Bi 5d electrons, also reported in the literature. [57] Figure 4.11e
compares three other EEL spectra (labelled as sp4, sp5, and sp6) acquired in the immedi-
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Figure 4.11: Spatially-resolved EELS analysis of BizTez. (a) HAADF-STEM image of a representative BiyTe3
flake. (b) Magnified region of the top right corner of the specimen around the white square in (a). (c) EELS
spectral image corresponding to the white square region in (a). The colour map corresponds to the total inte-
grated intensity in each pixel. The black line indicates the edge of the BixTe3 specimen, determined from the
thickness map as described in the text. (d) EELS spectra corresponding to the different regions of the specimen
indicated in (c): between the vacuum and the edge (sp. 1); the vicinity of the edge towards the inner region
(sp. 2); and the innermost, thicker part (sp. 3). Spectra sp. 1, sp. 2 and sp. 3 display the bulk plasmon peak of
BipTe3 at around 16 eV. Additionally, sp. 3 also shows the Bi Oy 5 edges excited from Bi 54 electrons at 25.6 eV
and 27.9 eV. (e) Same as (d) for EELS spectra in the immediate vicinity of the BipTe3 edge, displaying charac-
teristic features of BioO3. (f) A comparison of sp. 2, sp. 3, and sp. 7 in the low loss and gain regions (JAE| <2
ev).

ate vicinity of the specimen edge. The three spectra exhibit a broad peak located around
21 eV, which can be identified with the bulk plasmon of Bi, O3. [58], [59] It is worth noth-
ing that the presence of Bi; O3 in the surfaces of the specimen is not visible from the
HAADF images. The reason is that HAADF intensity scales with Z", with Z being the
atomic number, which is much smaller in O as compared to Te. This presence of Bi,O3
in the edge region of the Bi, Tes specimen is further supported by a High-Resolution TEM
(HRTEM) analysis reported in Section C.2.6 of the Supplementary Information.

4.3.2. SPATIALLY RESOLVED EEGS

Figure 4.11f compares the EELS intensities in the region of energy losses AE restricted
to the window [-2 eV, 2 eV] for spectra sp2, sp3, and sp7. This comparison illustrates
the dependence of the dominant Zero-Loss Peak (ZLP) background with respect to the
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location in the specimen: bulk (sp3), close to edge (sp2), and vacuum (sp7). On the one
hand, as one moves from the vacuum towards the bulk region, the ZLP intensity gradu-
ally decreases. This effect can be ascribed to the greater number of inelastic scattering
events that occur in the bulk (thicker) regions, compared to the vacuum where the beam
electrons do not experience inelastic scatterings. On the other hand, we also observe an
enhanced intensity in the specimen regions as compared to the vacuum for |[AE| = 0.6
eV, highlighting material-sensitive contributions to the spectra which contain direct in-
formation on its local electronic properties.

Removing this ZLP background is instrumental in order to identify the presence of
localised collective excitations such as phonons [60] and plasmon peaks [15] in the low
energy-loss region. The same considerations apply to the cleaner energy-gain region [55],
where the continuum of inelastic scattering contributions is absent. Here we model
the ZLP in terms of a Gaussian distribution following the procedure described in Sec-
tion 4.3.3, with the fitting region restricted to [-0.4,0.4] eV to remove the overlap with
AE values at which plasmonic modes of Bi,Tes have been reported. [7] Subsequently,
the ZLP is removed pixel by pixel in the EELS spectral image and the resulting spectra
are inspected to identify peaks and other well-defined features in an automated man-
ner. We note that the small band gap [43], [52] of BipTes, Epg ~ 0.15 eV, prevents reliably
training deep learning models for the ZLP parametrisation and subtraction as done in
previous studies from our group. [18], [19], [61] Furthermore, although here we focus on
a Bi, Tes specimen, the procedure is fully general and applicable to other materials which
can be inspected with EELS.

4.3.3. PEAK IDENTIFICATION PROCEDURE
Here we describe the procedure used to identify and characterise energy-gain peaks in
Bi, Tes. We demonstrate how our approach is robust with respect to the model adopted
for the ZLP. While here we focus on a Bi,Te; specimen, our energy-gain peak identifica-
tion algorithm is general and could be applied to other materials.

The results presented are based on a Gaussian model for the ZLP,

2
_ p(max) exp (_ (AE - AE)p) ) ’

I71p(AE) 4.1

ZLP 202
with AE being the energy loss (and hence AE < 0 implies energy gains), AEy and o being
the mean and variance of the distribution, and 1. g‘;") is the maximal intensity of the ZLP.
This Gaussian model for the ZLB, Equation (4.1), is fitted independently to each individ-
ual spectra composing the spectral image. The fit region is restricted to [-0.4,0.4] eV in
order to remove the possible overlap with those values of AE at which plasmonic modes
of Bi, Te; have been previously reported. Subsequently, the ZLP Gaussian model Equa-
tion (4.1) is removed from the measured spectral image and the resulting subtracted
spectra are inspected to identify peaks or other relevant features in a fully automated
manner.

In this work we identify energy-gain peaks by fitting the subtracted spectra in the
energy region [-3.5,—0.4] eV with a Lorentzian function given by

1'*2

I AE)=Ihax -5————
peak( ) max o (AE—Eg)2

(4.2)
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where Inay is the height of the peak, I'its width, and E its median, the latter correspond-
ing to the most likely location of the peak being identified. Once one has determined the
parameters of the Lorentzian model Equation (4.2) for each of the pixels composing the
spectral image, we can determine relevant estimators such as the FWHM and the area
underneath it. This way;, it is possible to determine the statistical significance of the ob-
served features. Although in this work we consider only single-peak identification, in the
presence of multiple features in the energy-gain region Equation (4.2) could be extended
to a sum of a series of independent Lorentzian resonances.

In order to further characterise the energy-gain peak identified in Figure 4.12c and to
correlate its properties with local structural features of the specimen, Figures 4.13a and
b display the intensity of the ZLP-subtracted EEL spectra integrated in the energy win-
dows [-1.1,—0.6] eV and [0.6,1.1] eV for the gain and loss regions respectively. These AE
intervals are chosen to contain the range of E; values displayed in Figure 4.12c and then
mirrored to the energy-loss region. In the latter case, the EEL spectra receive additional
contributions to the inelastic scattering distribution beyond those considered here. The
most notable feature of Figure 4.13a is an enhancement of the integrated intensity in
the edge region of the specimen characterised by a sharp variation of the local thickness
(Figure 4.12d).

To quantify the statistical significance of the identified energy-gain peak, it is conve-
nient to evaluate the ratio

sg = (Ag/ Azlp)g—fwhm ) 4.3)

where Ag and Ay, are defined as the areas under the full width at half-maximum (FWMH)
of the Lorentzian fit signal, filled region in Figure 4.12b, and under the ZLP in the same
AE region, respectively. In other words, s; measures the significance of the energy-gain
peak in units of the ZLP background. Figure 4.13c displays a spatially-resolved map of
sg across the specimen. The region of enhanced intensity reported in Figure 4.13a and
associated to the specimen edge corresponds to the highest values of sz in Figure 4.13c,
reaching up to a factor two. This high significance confirms that the observe intensity
enhancement in the gain region is a genuine feature of the data rather than an artefact
of the ZLP removal procedure.

It is also interesting to compare the features of the approximately symmetric peaks
appearing in the energy-gain and energy-loss regions, whose values Eg and E, respec-
tively are mapped across the specimen in Figure C.8 of the Supporting Information.
One observes in general a stronger intensity of the energy-gain peak as compared to its
energy-loss counterpart. To quantify this observation and to compare their relative in-
tensities, we display in Figure 4.13d the ratio Ag/ A, of the areas under the FWHM of the
energy-gain Lorentzian fit to that of the energy-loss peak. The vacuum region is masked
out to facilitate readability. As can be seen, in the bulk of the sample the ratio Ag/ Ay is
of the order unity, whereas in the edge region of the specimen the ratio reaches a factor
of around 4. The latter result indicates that surface and edge effects enhance the relative
intensity of the energy-gain peak. The combination Figures 4.12 and 4.13 demonstrates
the presence of a well-defined, significant energy-gain peak in Bi, Te3 located around
Eg = —0.9 eV whose intensity is enhanced in the edge regions of the specimen close to
the boundary.
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Figure 4.12: Energy-gain peak identification in BizTez. (a) The EEL spectrum (solid) in the pixel indicated
with a star in Figure 4.11c together with the corresponding fit to the ZLP (dashed curve). (b) Close-up of the
dashed rectangle in (a), now adding the Lorentzian fit (thick solid line) to the subtracted spectrum (dotted
line). The vertical line indicates the mean of the Lorentzian energy-gain peak Eg, while the filled region indi-
cates the corresponding FWHM. (c) Spatially-resolved map displaying the location of the energy-gain peak Eg,
determined following the procedure of (b) across the whole spectral image of Figure 4.11c. (d) Same as (c) now
for the local specimen thickness. The dark blue region beyond the specimen edge corresponds to the vacuum

region of the spectral image.
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Figure 4.13: Spatially-resolved characterisation of energy-gain peaks. (a) Same as Figure 4.11c, now with the
intensity of the EEL spectra (after ZLP subtraction) integrated in the window [-1.1,—-0.6] eV where the gain
peak identified in Figure 4.12c is located. (b) Same as (a) for the mirrored energy-loss window, [0.6,1.1] eV. (c)
Spatially-resolved map of the ratio sg, Equation (4.3), defined as the area under the FWHM of the Lorentzian
fit to the energy-gain peak, filled region in Figure 4.12b, to the area under the ZLP in the same AE window. (d)
Ratio of the area Ag under the FWHM of the Lorentzian fit to the energy-gain peak to its counterpart Ay in the
loss region, where the vacuum region is masked out for clarity.
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4.3.4. UNCERTAINTY PROPAGATION IN EEGS

A potential limitation of this analysis concerns the lack of a systematic estimate of the
functional uncertainties associated to the ZLP modelling and its subsequent subtrac-
tion from the EELS spectral image. To this purpose, we deploy the Monte Carlo replica
method for error propagation, originally developed for proton structure studies in high-
energy physics [62]-[66] and then extended to deep learning models of the ZLP within
the EELSFITTER framework. [18], [19] First, one applies K-means clustering to the EELS
spectral image with the similarity measure being the area under the three bins of the
EELS intensity around AE = 0, which operates as a proxy for the local thickness map of
Figure 4.12d. This procedure results in the 20 clusters shown in Figure 4.14a, each of
them composed by pixels with similar thickness. Within each cluster, the EELS intensi-
ties are assumed to be sampled from the same underlying distribution, and Nep spectra
(“replicas”) are randomly selected from each cluster. By fitting a separate ZLP model to
each replica, one ends up with a sampling of Nrep models of the ZLP which can be used
to estimate uncertainties and propagate them to the subtracted spectra and the subse-
quent Lorentzian fits.

Figure 4.14b displays the same ZLP-subtracted spectrum as in Figure 4.12b now with
the Monte Carlo replica method used to estimate ZLP model uncertainties. For the ZLP
fit, the subtracted spectrum, and the Lorentzian fit to the latter the bands indicate the
68% confidence level (CL) intervals evaluated over the Ny, replicas. By repeating this
approach in all clusters, we calculate the area ratio sg defined in Equation (4.3) for all
pixels in the spectral image using the replicas to propagate uncertainties. This results in
lower and upper bounds of the 68% confidence interval of the area ratio shown in Fig-
ure 4.14c and d respectively. The corresponding map of the median of s; is consistent
with that reported in Figure 4.13c and shown in Figure 4.15 in the Supplementary Mate-
rial. Given that a good significance (above unity) of the energy-gain peak is still observed
in the map of the lower limit of the 68% CL interval for the relevant edge region, one can
conclude that the results of this work are not distorted by unaccounted-for methodolog-
ical or procedural uncertainties.

To confirm the reproducibility of our findings, we have performed additional mea-
surements on a different Bi,Te; specimen characterised by the same crystal structure
and with comparable features as the one discussed here. The resulting analysis is sum-
marised in Section C.2.5 of the Supplementary Material and reveals the same qualitative
features in the energy-gain region, namely a well-defined, narrow peak at energy gains
around —0.7 eV whose intensity is enhanced in edge and surface regions and whose sig-
nificance reaches values of sg ~ 4. The lower and upper 68% confidence level intervals
computed on the ratio between the area within the FWHM of the gain peak and that of
the ZLP in the same AE region, estimated from the spread of the Monte Carlo replicas,
were already showed in the bottom panels of Figure 4.14. In Figure 4.15, for complete-
ness, we also report on the corresponding spatially-resolved map for the median of this
68% CL interval. The qualitative agreement between panels a-c of Figure 4.15 indicate
that uncertainties associated to the ZLP modelling and substraction procedure are mod-
erate and do not distort the main results obtained in this work.

This independent analysis further confirms the robustness of our results, in partic-
ular the strong correlation between the enhanced intensity of the energy-gain peak lo-
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Figure 4.14: Energy-gain peak characterisation with the Monte Carlo replica method. (a) The EELS spectral
image of Fig. 4.11c classified into 20 clusters, each of them composed by pixels with similar thickness. (b)
Same as Fig. 4.12b now using the Monte Carlo replica method to estimate and propagate the ZLP fitting model
uncertainties. For the ZLP Gaussian fit, the subtracted spectrum, and the Lorentzian fit to the latter we display
both the median over replicas and the 68% CL intervals. (c,d) Same as Fig. 4.13¢ now the lower and upper
ranges respectively, of the 68% CL interval for the area ratio evaluated over the Monte Carlo replicas. See

Fig. 4.15 in the Supplementary Material for the corresponding median map.
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Figure 4.15: Spatially-resolved map of the lower 68% CL bound (a), median (b), and upper 68% CL bound (c)
of the ratio between the area within the FWHM of the gain peak and that of the ZLP in the same AF region,
estimated from the spread of the Monte Carlo replicas. The lower and upper bounds were already showed in
the bottom panels of Fig. 4.14 and are repeated here for completeness.

cated around [-0.9,—-0.7] eV and specimen regions displayed sharp thickness variations
including edges and surfaces.

It is beyond our scope to identify the underlying physical phenomena leading to
the observed edge- and surface-induced energy-gain peaks in Bi;Tes. Several mecha-
nisms have been explored leading to resonance signatures in the AE region relevant for
our results, such as wedge Dyakonov waves [67] and edge- and surface-located Dirac-
plasmons in the closely related TI material Bi»Se3. One can in any case exclude thermal
effects associated to a Bose-Einstein distribution, given that states with ~ 1 eV have a
very low occupation probability at room temperatures. Disentangling the specific mech-
anisms explaining our observations requires dedicated theoretical simulations mapping
the EELS response of Bi,Tes with different structural and geometric configurations and
is left for future work.

4.3.5. CONCLUSIONS

In this work we have presented a systematic, spatially-resolved investigation of the energy-
gain region of EELS spectral images acquired on Biy Tes specimens. The main motivation
was to avoid the inelastic continuum that pollutes the energy-loss region, which may
prevent identifying exotic phenomena appearing at AE values below a few eV. An au-
tomated peak-identification procedure identifies a narrow feature located around AE ~
—0.8 eV whose intensity and significance are strongly enhanced in regions characterised
by sharp thickness variations, such as surfaces and edges. We assess the role of method-
ological uncertainties associated to e.g. the ZLP subtraction procedure and find that our
results are robust against them. The observed resonance could be the signature of edge-
and surface-plasmons such as those reported in Bi,Ses, thought dedicated simulations
would be required to unambiguously ascertain its origin.
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4.4. SUMMARY AND OUTLOOK

The goal of the two case studies presented in this chapter was to detect, quantify and
spatially resolve the peaks present in EELS data and do this in an automated manner.
As energy resolution improves, peaks become more defined and the necessity of peak
tracking will increase in importance. While here we focus on 1D-MoS, and Bi,Te3 as
a proof-of-concepts for these approaches, our approach for ZLP subtraction and peak
tracking is fully general and can be deployed to any specimen for which EELS-SI mea-
surements are acquired.

Our approach is made available in the new release of the EELSFITTER framework and
hence can be straightforwardly used by other researchers aiming to explore the infor-
mation contained in the energy-gain region of EELS-SI to identify, model, and correlate
localised collective excitations in nanostructured materials. Possible future improve-
ments include the extension to multiple gain-peaks deconvolution and the improved
modelling of the loss region describing the inelastic continuum background. All in all,
our findings illustrate the powerful reach of energy-loss & gain EELS to accurately map
and characterise the signatures of collective excitations and other exotic resonances aris-
ing in quantum materials.
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EDGE-LOCALISED PLASMONIC
RESONANCES IN WS,
NANOSTRUCTURES FROM
ELECTRON ENERGY-LOSS
SPECTROSCOPY

Localised plasmon resonances in two-dimensional (2D) transition metal dichalcogenides
(TMDs) offer a powerful means to enhance light-matter interactions at the nanoscale,
making them ideal candidates for advanced optoelectronic applications. However, dis-
entangling the complex plasmonic interactions in these materials, especially in the low
energy regime, presents significant challenges. In this work, we investigate localised plas-
mon resonances in chemical vapour deposition (CVD)-grown tungsten disulfide (WS)
nanotriangles, using a combination of advanced spectral analysis and simulation tech-
niques. By combining Non-Negative Matrix Factorization (NMF) with Electron Energy
Loss Spectroscopy (EELS), we identify and characterise distinct plasmonic modes to pro-
vide a comprehensive analysis of the plasmonic landscape of individual and stacked WS,
nanotriangles. Furthermore, we quantify the dispersion relation of these localised plas-
mon resonances and demonstrate their evolution across different WS triangular geome-
tries. We validate our experimental characterisation of plasmonic resonances in WS,
through dedicated numerical simulations based on the PYGDM package.. Our findings
highlight the critical role of localised plasmon resonances in modulating the electronic
and optical properties of WS, offering new insights into the design and optimisation of
TMD-based devices for optoelectronic and nanophotonic applications.

Parts of this chapter have been published in Small Science : A. Brokkelkamp, S. E. van Heijst, S. Conesa-Boj,
Small Science, 2400558 (2025)
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5.1. INTRODUCTION

Two-dimensional (2D) transition metal dichalcogenides (TMDs) have emerged as a ver-
satile family of materials with extraordinary optoelectronic properties [1]-[5], position-
ing them at the forefront of nanoscale device research. Among TMDs, tungsten disulfide
(WS,) stands out due to its direct bandgap and strong excitonic effects [5]-[9], making
it highly attractive for applications in light harvesting [10]-[12], sensing [13]-[15], and
quantum optics [16]-[18]. However, while excitonic behaviour of WS, has been exten-
sively studied, its plasmonic properties, particularly in the low-energy regime, remain
less explored.

Specifically, spatially-localised plasmon resonances in 2D materials have garnered
increasing interest due to their ability to confine electromagnetic fields at the nanoscale,
hence enabling enhanced light-matter interactions [19]-[22]. In WS, nanostructures,
the geometric arrangement, thickness, and edge configurations play critical roles in de-
termining the plasmonic response, which can be tuned to optimize device performance.
The ability to precisely characterise these localised plasmonic modes at the nanoscale is
key to harnessing them for applications in optoelectronics and nanophotonics [23], [24].

To this aim, electron energy-loss spectroscopy (EELS) provides a powerful technique
for probing localised plasmonic excitations [25]-[27], uniquely combining high spatial
precision with competitive energy resolution [28]. In particular, EELS enables a detailed
characterisation of the low-loss region (AE < 50 eV) where multiple plasmonic and exci-
tonic resonances are expected. The main challenge here lies in the interpretation of the
complex spectral data, where overlapping signals make it difficult to cleanly disentangle
localised plasmon resonances in dielectrics [29] and fully resolving the individual modes.
Tackling these challenges requires advancements in data analysis techniques, such as
non-negative matrix factorization (NMF), which have shown considerable promise in
separating overlapping spectral features [30]-[32] and unveiling hidden plasmonic reso-
nances.

Here, we report the identification of localised plasmonic modes in WS, nanostruc-
tures using a combination of advanced EELS and NMF analyses. By applying NMF to
low-loss EELS data, we disentangle the distinct localised plasmonic components arising
across various WS; triangular geometries. To further validate our findings, we demon-
strate the agreement of the experimental results with dedicated electrodynamical sim-
ulations. These numerical simulations confirm the features of the extracted localised
plasmonic modes, and provide complementary insights on their spatial and spectral
evolution.

Our results pave the way for the enhanced design of WS,-based devices, where the
precise control over the performance of localised plasmonic resonances leads to im-
proved functionalities in next-generation optoelectronic and nanophotonic technolo-
gies.

5.2. RESULTS AND DISCUSSION

The WS; nanostructures investigated in this work were synthesized using chemical vapour
deposition (CVD) and directly grown on a 5 nm thick SisN; membrane. This process
yielded well-defined triangular WS, morphologies, with side lengths ranging from 330 nm
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Figure 5.1: Characterization of the stacked WS nanotriangles. (a) High-angle annular dark field (HAADF)
scanning transmission electron microscopy (STEM) image of the stacked WSy nanotriangles, revealing their
morphology and relative arrangement. (c) The associated thickness map obtained from the EELS spectral
image. Scale bars indicate 200 nm. (b) Averaged EEL spectra taken from the three regions highlighted in (c):
WS; edge, WS, bulk, and Si3gNy substrate. The shaded area indicates the energy range between 0.5 eV and
2.5 eV. (d) Close up of the energy range highlighted in (b) and displaying, as will be shown in Fig. 5.2, periodic
oscillations corresponding to distinct plasmonic modes.
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to 980 nm (see Supplementary Sect. D.1). In addition to single WS, nanotriangles, more
complex configurations such as the stacked WS, nanotriangles shown in Fig. 5.1(a) are
also present. In this nanostructure, two misaligned triangles are stacked on top of each
other, with the smaller triangle (side lengths 680 nm) rotated by 6° relative to the larger
one at the base (side lengths 980 nm).

Both single and stacked WS, nanostructures exhibit uniform thicknesses, as verified
through scanning transmission electron microscopy (STEM) and electron energy loss
spectroscopy (EELS) measurements (see Supplementary Sect. D.1). These nanostruc-
tures represent a flexible platform to investigate spatially-localised WS, plasmons, with
the single triangles providing the baseline and the stacked structures a complementary
avenue for exploring novel plasmonic phenomena in WS,. Detailed information regard-
ing the growth methodology is provided in the Methods section.

Our investigations of the WS, specimens focus on the low-loss EELS region, target-
ing energy losses AE < 50 eV to uncover plasmonic or excitonic signatures [29], [33].
Representative EEL spectra obtained from the stacked nanotriangles of Fig. 5.1(a) are
displayed in Fig. 5.1(b), corresponding to the regions marked by the star-shaped sym-
bols (10 x 10 pixel area average) in the thickness map of Fig. 5.1(c). The chosen regions
highlight the bulk WS; region, the transition zone at the WS, edges, and the surrounding
Si3sN4 membrane.

The spectra for both the bulk WS, region and the Si3N; membrane show distinct
features characteristic of each material. The SizN4 membrane spectrum displays, as ex-
pected, the bulk plasmon peak at 22.3 eV. This Si3N4 contribution appears superimposed
with the spectrum of WO3 used for the CVD growth process, which is indicated by the
small peak at 10.2 eV and characteristic for oxides [34]. The bulk WS, region exhibits a
pronounced peak at 23 eV corresponding to the bulk plasmon and a peak at 8 eV associ-
ated to the surface plasmon [35], [36].

Interestingly, in the transition region at the WS, edges, one finds sizeable new con-
tributions to the spectrum for energy losses between the Zero Loss Peak (ZLP) and the
onset of the inelastic scattering continuum. These contributions are highlighted in gray
in Fig. 5.1(b) and further amplified in Fig. 5.1(d). This energy window reveals periodic
oscillations spanning from 0.5 eV to 2.5 eV, which are absent from the spectra of either
bulk WS; or SizNy, suggesting the presence of low-energy excitations localised at the WS,
edges. Given that TMDs such as WS, are known to exhibit metallic-like edge states, es-
pecially for sharp geometries [12], [37]-[39], these edge regions may provide favourable
conditions for the formation of localised plasmon resonances. While surface plasmon
resonances are primarily influenced by geometry and refractive index, the presence of
metallic edge states in TMDs can enhance plasmonic behaviour by supporting free or
quasi-free charge carriers along the edges.

5.2.1. NMF DECOMPOSITION OF SPECTRAL FEATURES

The recorded WS, EELS spectra are composed by a complex mixture of overlapping fea-
tures. To investigate the physical mechanisms underlying the periodic signals identified
in the edge regions of the WS, nanotriangles between 0.5 eV to 2.5 eV in Fig. 5.1, we em-
ploy two complementary EELS data processing techniques. First, a machine learning ap-
proach was deployed [40]-[43] for the model-independent subtraction of the ZLP back-
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ground contaminating the inelastic scattering onset region, enhancing feature signifi-
cance for energy losses critical for our analysis (see Supplementary Fig. D.4). Next, non-
negative matrix factorization from scikiT-LEARN was applied to the ZLP-subtracted EELS
spectral image to disentangle and resolve specific features arising for specific energy-loss
windows, enabling the interpretability of the individual components to the total low-loss
spectra.

NMF is a blind-source separation technique that can efficiently disentangle individ-
ual features present in the measured EELS spectra, enabling a refined understanding of
the different plasmonic and excitonic resonances in a material. As such, it has found
widespread use in EELS analyses of e.g. metallic nanostructures [44]-[48]. Similarly to
the popular Principal Component Analysis (PCA) method, NMF also ranks the identified
components by their statistical significance, starting from the most dominant feature. To
reduce statistical noise while preserving spatial resolution, we applied pooling with a 2D
Gaussian profile before performing the NMF decomposition to the complete EELS spec-
tral image. Further details about the NMF decomposition of the WS, nanostructures are
provided in the Supplementary Sect. D.2.1.

Fig. 5.2 displays the result of applying NMF to the EELS spectral image associated to
the WS, stacked nanotriangles specimen of Fig. 5.1 when restricted to the energy win-
dow of interest, namely [0.5,2.5] eV. The outcome of a NMF decomposition is given by
two elements for each components: the endmember, which corresponds to the identi-
fied unique spectral feature, and an abundance map, indicating the spatial distribution
of the corresponding endmember across the EELS spectral image. In Fig. 5.2 we limit
ourselves to the first four components, which represent a cumulative variance of around
98.5% as shown in the Supplementary Fig. D.4(c). Although endmembers are defined
as pure signals, in some cases a given component may still reflect a superposition of
multiple signals exhibit overlapping features or abundances. In the particular case of
dielectric materials, it has been shown that their resonance modes are less defined as
compared to their counterparts in metals [29], which can lead to features having a resid-
ual contribution to other NMF components beyond the main associated one.

Inspection of the NMF components reported in Fig. 5.2, together with analogous
studies for individual WS, nanotriangles, reveal localised plasmon resonances arising
in both the single and stacked triangular configurations. In the latter case, resonance
modes in the two overlapping triangles may overlap in both energy loss and spatial lo-
calisation, which together with the worse definition of spectral features in dielectric ma-
terials demands a careful interpretation of the identified components.

The NMF component 1 in Fig. 5.2 corresponds to the bulk WS, spectrum. The char-
acteristic A and B exciton peaks at the expected values around 1.9 eV and 2.3 eV are ob-
served. Additional features at approximately 1.2 eV and 1.4 eV can also be seen. Though
their origin remains unclear, their presence in component 1 suggest they are features
related to the crystal structure, in particular to the surface of the smaller nanotriangle
which may exhibit structural defects and strain [49].

NMF components 2 to 4 in Fig. 5.2 provide direct insights into the nature of the lo-
calised plasmonic behaviour of the inspected WS, nanostructure, with each component
revealing different features which would otherwise remain hidden in the EELS spec-
tral image due to overlapping signals. The abundance map associated to component
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Figure 5.2: NMF decomposition of EELS spectra in stacked WS2 nanotriangles. (a-d) The abundance maps
(left) and endmembers (right panels) of the first 4 components of the NMF decomposition of the stacked WS,
nanotriangles. Component 1 represents the bulk WS spectrum, with the A- and B-exciton peaks at 1.9 and
2.3 eV. Component 2 corresponds to the 2nd-order resonance mode centred around 1.25 eV, with the abun-
dance map displaying its characteristic node structure. Components 3 and 4 are dominated by the 1st-order
and 3rd-order resonance modes of the large triangle, peaking at 0.75 eV and 1.75 eV respectively. In the right
panels, vertical axes are uniformly scaled. Scale bars represent 200 nm.



5.2. RESULTS AND DISCUSSION 83

2 clearly reveals its association with the second-order plasmonic resonance localised at
the edges of the larger triangle, with three maxima and two minima across each edge.
The corresponding endmember reveals a broad peak around 1.25 eV together with addi-
tional weaker signals. Component 3 displays two distinct peaks at 0.75 and 1 eV, which,
based on the abundance map, are associated to the first-order resonances of both the
large and small triangle, as confirmed by the dedicated theoretical EELS simulations to
be discussed in Fig. 5.4 and Supporting Fig. D.15. The overlap in their spatial localisation
at the corners of the triangles likely causes the two features to appear associated to the
same component. Finally, component 4 features a broad peak centred around 1.75 eV,
whose periodicity indicates the association with the third-order resonance in large tri-
angle. We compare the components to point spectra selected from regions of high and
low abundance in the abundance maps (see Supplementary Fig. D.10) and confirm the
presence/absence of these features depending on the high/low abundance.

The NMF decomposition of Fig. 5.2 is restricted to the [0.5,2.5] eV and finds first-
, second-, and third-order resonance modes. By extending the analysis to a broader
energy window to [2.0,4.0] eV, it is possible to identify higher-order modes, as demon-
strated in the Supplementary Fig. D.6. Specifically, we detect fourth- and fifth-order res-
onance modes for the large triangle, as well as indications for third- and fourth-order
resonance modes in the small triangle.

The same NMF analysis has also been applied to stand-alone WS, nanotriangles
with side lengths of 330, 880, and 920 nm single nanotriangles. For the 880 and 920 nm
nanotriangles, we uncover the first-, second- and third-order resonance modes in the
[0.5,2.5] eV energy window (Supplementary Fig. D.9 and Fig. D.7, respectively). For the
330 nm nanotriangle, an energy window of [0.5,4.0] eV reveals the first- and second-
order resonance modes (Supplementary Fig. D.8). All in all, the emerging picture of lo-
calised low-energy plasmonic resonances in WS is fully consistent between single and
stacked nanotriangles.

5.2.2. ELECTRODYNAMICAL SIMULATIONS OF EELS EDGE PROFILES

To validate the plasmonic interpretation of the localised NMF components identified
in the WS, nanostructures in Fig. 5.2, we have carried out dedicated electrodynamical
simulations. Specifically, we numerically simulate the expected energy loss of the STEM-
EELS electrons interacting with the edges of the large WS, nanotriangle using the PyGDM
Python package [50], [51], denoted as edge profiles in the following. This package can be
used to solve Maxwell’s equations for arbitrary geometries and is based on a discretisa-
tion technique, the Green dyadic method (GDM), together with a generalised propagator
for fast simulations. Here we simulate the EELS edge profiles of our WS, geometries us-
ing the fast electron module of PYGDM, with the incident electrons impinging at 200 keV
perpendicular to WS, specimen. The simulations accounts for the experimental con-
ditions with the WS, nanotriangles on top of a SigN,4 substrate surrounded by vacuum.
Optical constants for WS, were taken from refractiveindex.info [52].

Fig. 5.3 displays the comparison between the experimental and simulated EELS pro-
files for the edge of the large WS, nanotriangle indicated in the inset. The theoreti-
cal prediction, Fig. 5.3(b), shows that plasmonic resonances tend to disperse towards
a lower energy losses as they propagate from the centre toward the tip of the triangle, as
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Figure 5.3: Experimental and predicted EELS edge profiles in WSy nanotriangles. (a) Experimental EELS
edge profile (indicated in the inset, length of 980 nm) of the stacked WS, nanotriangles of Fig. 5.1. (b) The
predictions of the corresponding electrodynamical simulation based on the PYGDM package. Both maps are
normalized to their maximum value. Qualitative agreement in the energy-loss region of interest [0.5,2.5] eV
is observed, in particular concerning the oscillatory resonance structure characteristic of the identified plas-
monic edge modes. The marked enhancement of the EELS edge profiles at 1.9 eV observed in both the data
and the prediction is likely related to the resonance at 1.75 eV, as indicated by component 4 in Fig. 5.2(d).

also observed in the experimental EELS measurements. This behaviour, combined with
the worse definition of plasmonic modes in dielectrics, leads to slight overlaps between
higher-order plasmon modes at the tips and lower-order modes at the centre of the WS,
specimen and a broadening of the associated energy peaks, as indicated by the NMF
components 2 and 4 of Fig. 5.2(b,d). Inspection of Fig. 5.3 highlights the good agreement
between the main qualitative features of the electrodynamical simulations of the EELS
edge profiles and the associated experimental measurement is found, confirming their
underlying plasmonic nature.

In Fig. 5.3(a) one observes the third-order plasmonic resonance mode between 1.7 eV
and 2.0 eV, captured by the NMF component 4, Fig. 5.2(d), at approximately 1.75 eV and
matching with the theoretical prediction in Fig. 5.3(b). For higher energy losses, both the
data and the simulation display increases in the EELS intensity, which can be explained
by the fourth- and fifth-order resonance modes as shown in the Supplementary Fig. D.6.
In the Supplementary Sect. D.3.1 the edge dispersion of all triangular WS, nanostruc-
tures are compared to their simulated counterparts, see Supplementary Fig. D.12, find-
ing also in this case agreement between data and predictions.

Despite this overall agreement between data and simulations, one should also note
that some of the experimental features are not fully reproduced. For instance, the 1.0 eV
peak in the experimental data, not captured by the prediction, can be attributed to the
1st-order resonance mode of the small WS, triangle leaking to the edge of the large tri-
angle. The same phenomenon is reported for all three edges of the stacked WS, nanotri-
angles (Supplementary Fig. D.11).

Next, we compare the abundance maps obtained from the NMF decomposition (e.g.
left panels of Fig. 5.2) with the simulated EELS maps for the associated plasmonic reso-
nances. First, in Fig. 5.4(a-f) we compare the abundance maps of the 1st, 2nd, and 3rd
resonance modes of the stand-alone triangle with side length of 920 nm, which has a
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similar morphology to the stacked nanotriangles and hence provides a suitable baseline
for the latter. The simulated abundance maps are constructed by filtering the predicted
EELS intensity in the energy-loss window associated to the corresponding endmember
of the NMF component. The centre and width of this window are determined from a
Gaussian fit to the endmembers (e.g. right panels of Fig. 5.2). Good agreement is ob-
tained between the experimental and simulated abundance maps, further validating our
interpretation of the EELS data in terms of the localised plasmonic resonances of WS;.
For the first-order mode, the bottom left corner of the triangle has a higher abundance
compared to the other corners, most likely due to the thickness being slightly higher, see
Supplementary Fig. D.1(b). A similar effect can be seen in the abundance maps of the
second- and third-order modes.

Then Figs. 5.4(g-1) display the corresponding abundance maps for the stacked WS,
nanotriangles, finding also qualitative agreement between data and electrodynamical
simulations. Recall from Fig. 5.2 that the NMF components 2, 3, and 4 are found in this
specimen to be associated to the 2nd, 1st, and 3rd order plasmonic resonances. The
influence of the thickness on the resonance modes is evident in both experimental and
simulation results. In Fig. 5.4(i), the abundance map also indicates an increased EELS
emission in the centre of the structure, a feature absent the simulated maps. Revisiting
the thickness map in Fig. 5.1(c), this is likely due to the non-uniform thickness of the
smaller triangle. Indeed, the slight decrease in the thickness there indicates a hole at
the centre of the small triangle may contribute to a shift in the EELS response between
1.7 and 2.0 eV, which as a consequence is grouped together with the 1.75 eV resonance
in component 4 (Fig. 5.2(d)).

For completeness, experimental and abundance maps obtained from single WS,
nanotriangles with different sizes are reported in the Supplementary Information. The
Supplementary Fig. D.13 displays the maps of the first- and second-order plasmon res-
onances of the 330 nm nanotriangle and in Fig. D.14 the first-, second- and third-order
of the 880 nm nanotriangle. Then, in the Supplementary Fig. D.15, we focus on sim-
ulating the small triangle with a side length of 680 nm, which is positioned on top of
the large triangle. This simulation demonstrates that the localised plasmon resonances
mode captured by NMF component 3, Figs. 5.2(c), corresponds with those hosted by the
small triangle. In Supplementary Fig. D.16, we extend this analysis to confirm that the
higher-order plasmon modes observed in the stacked WS; nanotriangles are indeed a
superposition of the fourth- and fifth-order plasmon resonances of the large triangle,
and the third- and fourth-order plasmon resonances of the small triangle, respectively.
These observations align well with the findings from Supplementary Fig. D.6.

Overall, the numerical simulations of the EELS response in WS, nanotriangles with
different morphologies are found to be fully consistent with the experimental data, in
particular displaying the presence of higher-order localised plasmonic resonances, there-
fore providing additional validation for our interpretation of the EELS measurements.

5.2.3. DISPERSION RELATION OF EDGE-LOCALISED PLASMONIC MODES

Further scrutinising the nature of the observed edge-localised plasmonic WS, modes
is possible through the determination of their dispersion relation, namely the value of
the energy E, associated to each the n-th mode as a function of the corresponding
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Figure 5.4: Simulated abundance maps in WSz nanotriangles. Comparison between the experimental and
simulated abundance maps in individual (a-f) and stacked (g-1) WS, nanotriangles. The experimental maps
are obtained from the NMF decomposition, while the simulated ones are constructed by filtering the predicted
EELS intensity in the energy-loss window associated to the corresponding endmember of the NMF compo-
nent. (a-f) For the experimental abundance maps of the 920 nm nanotriangle, we display the 1st, 2nd, and
3rd order plasmonic resonances whose associated endmembers peak at AE = 0.91 eV, 1.28 eV, and 1.89 eV re-
spectively, with the corresponding simulated maps filtered to the [0.7,0.9] eV, [1.1,1.3] eV, [1.65,1.85] eV energy
windows. (g-1) Same for the stacked nanotriangle, for which the NMF endmembers associated to the 1st, 2nd,
and 3rd order resonances peak at 0.75 eV, 1.22 eV, and 1.74 eV, with the corresponding simulated maps filtered
to the [0.7,0.9] eV, [1.1,1.3] eV and [1.65, 1.85] eV intervals. Scale bars correspond to 200 nm.



5.2. RESULTS AND DISCUSSION 87

§ —— Edge profile g
i ---- Edge profile fit E
C 0 200 ’ )(J(];lgv WM“O“UI::M ?5('10 1000
3.0 7
//
d
4
//
}ﬁ/&'
,/
2.5 1 e
/7
o /7
R ’
. - ’
> :. ,/
) R
Q B Vi
=3 2.0 1 S
e ’
e
1.5 e
S H4  Edge modes
ﬁ"f ---- Quadratic Model
..;',’ ------- Light in vacuum
1.0 w4 ; . ; ; : ; . ; .
6 8 10 12 14 16 18 20 22 24
K [pm) !

Figure 5.5: Dispersion relation for the plasmonic edge modes in triangular WS, nanostructures. (a,b) Sum-
mary of the fitting procedure adopted to extract the phase shift ¢ of the edge profile from the abundance
map and entering Eq. (5.1), illustrated in the case of the 3rd-order resonance mode of the large nanotriangle.
The dashed grey lines indicate the fitting ranges. (c) The measured values of dispersion relation of the edge-
localised plasmon resonances, with the corresponding uncertainties, are well described quadratic polynomial
fit, consistently with the expectation for the surface plasmon characteristics. For reference, we also display the
dispersion relation of light in vacuum.
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wavenumber k. The indexing for these edge-localised plasmonic modes is based on a
one-dimensional Fabry-Perot model [53]-[56] which has been applied to describe edge
modes in metallic triangular nanostructures [57].

In this model, the EELS intensity maps —specifically, the abundance maps of the lo-
calised plasmon resonances- arise due to the constructive interference within a one-
dimensional Fabry-Perot cavity. This interference occurs when half of the plasmon res-
onance wavelength A fits within the side length of the triangular nanostructure, and can
be described by the relation

knL=nmn—-¢, (5.1)

where k, is the wavenumber, 7 is the order of the plasmon resonance, L the length of
the cavity (nanotriangle side), and ¢ is the phase shift that occurs upon reflection at the
boundaries of the nanostructure. This phase shift ¢ can be obtained by fitting the edge
profile of the triangle using Supplementary Eq. (D.6), as illustrated in Fig. 5.5(a,b).

To illustrate the benefits of adopting NMF decomposition for this application, the
Supplementary Fig. D.18 compares the fourth-order resonance of the edge profile large
triangle edge profile obtained from the NMF abundance map to its counterpart obtained
by taking the integrated EELS intensity of the energy window of the resonance. The edge
profile obtained from NMF decomposition is much better defined, which is crucial to
pin down the underlying nature of the observed resonances.

Fig. 5.5(c) displays the experimentally measured values of E,,, the peak energy of the
n-th plasmonic resonance obtained from the NMF endmembers, as a function of the
associated wavenumbers k, computed from Eq. (5.1), together with the associated un-
certainties. The measured values for the dispersion relation E, = f(k,) are fitted to a
quadratic model of the form E,, = Ak? + Bk, + C, which is the expected behaviour given
the surface plasmon characteristics [55], [58]-[60], finding good agreement. This poly-
nomial fit is compared to a linear fit in Supplementary Fig. D.17, showing that the latter
is insufficient to describe the experimental values. For reference, Fig. 5.5(c) also displays
the dispersion relation associated to light propagating in vacuum.

The confirmation presented in Fig. 5.5(c) that the dispersion relations of the ob-
served edge-localised periodic modes in our WS, nanostructures is well described by
a quadratic model provides yet another piece of evidence demonstrating the plasmonic
nature of the observed resonances from the EELS data.

5.3. SUMMARY AND OUTLOOK

In this study we have fingerprinted edge-localised plasmonic resonances arising in sin-
gle and stacked WS, nanotriangles from a synergetic combination of spatially-resolved
EELS and non-negative matrix factorization techniques. Our approach successfully re-
solves edge-localised plasmonic modes up to the fourth-order resonance in single nano-
triangles and up to the fifth-order resonance in the stacked nanotriangles. In particular,
we are able to disentangle the main features of the localised plasmonic resonances ap-
pearing in the smaller triangle for the stacked configuration, which would have been
otherwise obscured by the bulk signal of the larger bottom triangle if one had relied on
more traditional methods.
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To validate the interpretation of our EELS-based analysis, we have compared the ex-
perimental results with dedicated electrodynamical simulations of the EELS edge pro-
files based on the PYGDM package, finding good agreement both in terms of the abun-
dance maps of the localised plasmonic resonances and on the values of the associated
energies for each resonance mode. Furthermore, the experimental determination of the
dispersion relation of the edge-localised plasmonic modes obtained from the endmem-
bers of the NMF decomposition is found to be well described by a quadratic model (but
not by a linear one), consistently with the expected behaviour for surface plasmon char-
acteristics.

Allin all, our findings highlight the potential of boosting spatially-resolved EELS with
sophisticated data processing algorithms, in this case non-negative matrix factorization
supplemented with machine learning for the model-independent subtraction of the ZLP.
This potential is most effective for analyses of nano-specimens with non-trivial mor-
phologies, such as the overlapping WS, nanotriangles considered in this work, where
conventional methods do not suffice to identify all the relevant features present in the
data. More towards the future, the methodology presented in this work opens new av-
enues in exploiting the capabilities of localising plasmonic resonances with well-defined
spectral characteristics to harness light-matter interactions in TMD materials, improv-
ing prospects for their applications to optoelectronic and nanophotonic devices, such
as photodetectors with high spatial resolution. Exploiting the edge-localized plasmonic
resonances for enhanced light absorption and local electric fields is another promising
avenue avenue [21], as well as their use as nanoscale light sources [61], and their appli-
cation to frequency conversion and ultrafast laser technologies in plasmon-enhanced
nonlinear optics [62].
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CONCLUSIONS AND OUTLOOK

You and I are just swinging doors.
This kind of understanding is necessary.

- Shunryu Suzuki
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This work has significantly advanced our understanding of nanoscale phenomena
through the innovative integration of advanced Electron Energy-Loss Spectroscopy (EELS)
and Scanning Transmission Electron Microscopy (STEM). By developing and applying
cutting-edge machine learning (ML) methodologies, we have addressed the escalating
challenges of interpreting complex and extensive datasets in van der Waals (vdW) nano-
materials research.

The key findings and contributions of this work include the development of a novel
framework for the automated processing and interpretation of spectral images in EELS.
This framework achieves robust subtraction of the Zero Loss Peak (ZLP) background, al-
lowing for precise spatial mapping in the low-loss region of EEL spectra. Furthermore, it
enables spatially-resolved determination of the bandgap energy and complex dielectric
function in vdW layered materials. This approach has also allowed us to correlate elec-
tronic properties with structural features, such as local specimen thickness, providing a
deeper understanding of these vdW materials.

These advancements provide a robust and adaptable framework for processing EELS
data, allowing for reliable and interpretable outputs that go beyond conventional data-
processing methods. Current techniques in transmission electron microscopy data anal-
ysis often rely on manual interpretation or simpler statistical methods, which may not
fully capture the complex relationships within high-dimensional datasets typical of nanoscale
materials studies. Our ML-based approaches offer an alternative by extracting nuanced
information with precision, allowing for a deeper understanding of complex vdW mate-
rials properties.

Building on this capability, Chapters 2 and 3 present a novel framework for the au-
tomated processing and interpretation of spectral images in EELS. Through ML algo-
rithms initially developed in particle physics [1]-[3], we achieved robust subtraction of
the Zero Loss Peak (ZLP) background, enabling precise spatial mapping in the low-loss
region of EEL spectra. This approach allowed for spatially-resolved determinations of
the bandgap energy and complex dielectric function in layered materials, such as InSe
and WS, revealing correlations between electronic properties and structural features,
such as local specimen thickness. Implemented within the open-source PYTHON frame-
work, EELSFITTER, this methodology is accessible and adaptable, with thorough docu-
mentation available online.

While initially focused on the interpretation of STEM-EELS spectral imaging (SI) for
layered materials, this generalizable approach requires no assumptions about the shape
of the ZLP, making it applicable to higher-dimensional datasets, including momentum-
resolved EELS and various nanostructured materials like topological insulators, complex
oxides, and heterostructures. Future extensions of this framework could include its ap-
plication to core-loss spectra background modelling, providing a robust alternative to
conventional methods, such as the linear combination of power laws [4]. This adapt-
ability positions our framework as a versatile tool for in-depth analysis across a diverse
range of material systems.

In Chapter 4, we extend this framework further, focusing on automated peak iden-
tification and characterization across entire specimens. Initially, we examine 1D-MoS;
nanostructures, where the automated procedure revealed unique excitonic transitions
localized at endpoints or lateral sides, differing from the uniform distribution observed



97

in 2D-MoS;. We found a modulated bandgap energy along 1D-MoS,,particularly re-
duced at the endpoints, which correlated with intrinsic strain. This tunability of elec-
tronic behaviour via strain suggests potential applications of 1D-MoS; in quantum op-
tics, particularly as single-photon emitters, although the challenge remains in achieving
reliable fabrication methods for these structures.

The latter part of Chapter 4 applies automated peak identification to the energy-gain
region of Bi,Tes, a topological insulator, where we identified a previously unobserved
narrow feature on the ZLP tail. This feature, particularly pronounced at regions of sharp
thickness variation, could potentially be related to edge- or surface-plasmons, though
dedicated simulations would be needed for confirmation. Our analysis verified the ro-
bustness of these findings against methodological uncertainties in ZLP subtraction, un-
derscoring the reliability of our approach.

In Chapter 5, we applied non-negative matrix factorization (NMF) to characterize
edge-localized plasmonic resonances in WS, nanotriangles, resolving up to fifth-order
edge-localized plasmonic modes. In stacked WS, nanotriangles, NMF allowed us to
separate resonances from smaller triangles atop larger ones—achievements unattain-
able through traditional methods. Comparison with electrodynamical simulations con-
firmed the accuracy of the NMF-derived components. This analysis exemplifies the
power of sophisticated data-processing techniques like NMF in specimens with non-
trivial morphologies, highlighting the potential of spatially resolved EELS supplemented
with advanced statistical methods. Looking forward, multivariate statistical techniques,
such as NME will likely play a crucial role in EELS-SI analysis as datasets grow in com-
plexity. Integration of methods like pan-sharpening [5] and predictive modelling can
enhance both spectral and spatial resolution while preserving sample integrity, estab-
lishing a foundation for automated, high-precision data analysis that advances the study
oflayered and nanostructured materials.

In summary, with this dissertation we set out to develop novel tools for the analysis
of EELS in the low loss region of layered materials Throughout this work we have high-
lighted how advanced data-processing methods can deepen our understanding of com-
plex materials at very small scales. By combining precise imaging techniques with new
ways of analysing data, we created tools that make it easier to study layered and nanos-
tructured materials. Key in the development of these tools was to automate and stream-
line the data processing, reducing labour intensive work, while providing a robust out-
put. Additionally, the methodology used is not limited to the type of data itself and could
be applied in different manners as well. Looking ahead, there are still plenty of ways for
further improvements to these tools. For instance, there is still room for more automa-
tion of the peak tracking approaches and the approach for background modelling could
be extended core-loss region of EELS. Improvements in these areas will allow scientists
to explore a wide range of materials with less intensive manual effort. For instance, more
in depth research on the application and improvement of NMF in low loss EELS could be
a potential fruitful endeavour, as most research on NMF in EELS and other approaches
mostly focus on the core loss [6]-[8]. This work sets a strong foundation for future re-
search, helping scientists better understand and develop new technologies in fields like
quantum materials and energy.
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SUPPLEMENTARY INFORMATION TO
CHAPTER 2

A.1. EELSFITTER CODE USAGE

EELSFITTER is implemented into a python module, which is open source and available
to download. In this section, a guide is provided for performing the basic steps of us-
ing EELSFITTER and performing effective data analysis. The package can first be installed
into the python environmentby pip install eelsfitter. Second, the packageisim-
ported as

import EELSFitter as ef

A.1.1. PRE-TRAINING PREPARATIONS

Loading a spectral image EELSFITTER is currently only capable of automatically pro-
cessing images produced in Gatan’s DigitalMicrograph: .dm3, .dm4 and . dm5. To be able
to process these files, EELSFITTER uses the ncempy.io.dm module. To load the spectral
image, run:

image = ef.Spectrallmage.load_dmfile(path_to_dm_file)

Alternatively, if the spectral image was in a different data format, simply load in the data
manually as:

image = ef.Spectrallmage(data)

Here data refers to the manually loaded data.

Clustering aspectralimage The cluster method is based on K-means clustering, EELS-
FITTER uses the SCIKIT-LEARN implementation. One can choose the amount of clusters,
and the value on which to cluster. For the latter, there are several options: ’sum’ (N¢o;),
’log_sum’ (In(N¢es)), > log_peak’ (ln(Npeak)), ’log_zlp’ (ln(Nzlp)) and ’log_bulk’
(In(Npyix)) To cluster using the module, run:
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image.cluster(n_clusters = K,
based_on = value_mode)

Additionally, to help better choose the amount of clusters, one can plot the spectral im-
age with the chosen value mode as a histogram by:

fig = image.find_optimal_amount_of_clusters(n_clusters = K,
bins = n_bins,
based_on = value_mode)
fig.show()

Here, bins refers to the amount of bins the data is plotted in. As this function produces
a figure, it is necessary to plot the figure afterwards. In this function a Gaussian mixture
model (GMM) is used to fit the data. The key here is to make the GMM fit the data as
close as possible with as little clusters as possible. If the GMM does not fit the data well
because of too little clusters, there will be too large of a spread in the ZLP models, reduc-
ing accuracy. On the opposite, too many clusters will lead to overfitting of the data as the
spectra pool per clusters reduces.

Noise reduction The spectra in a spectral image can be noisy due to a variety of limi-
tations, pooling the data can help reduce the noise while keeping the locality of features
as much as possible. To pool the data, run the code:

image.data_pool = image.pool_image(image.data,
area = n,
gaussian = True)

This will create a new variable image . data_pool that can be called in the Spectrallmage
class. area indicates the area size around the pixel to be used for pooling. gaussian =
True sets Gaussian weights to the surrounding pixels

A.1.2. TRAINING ZLP MODELS
Training the general models To train ZLP models for the spectral image, run the fol-
lowing code:

image.train_zlp_models(n_clusters = K,

based_on = value_mode,
n_replica = n_replica,

n_epochs = n_epochs,

shift_del = shift_dE1l,

shift_de2 = shift_dE2,
path_to_models = path_to_models,
signal_type = 'EELS')

Here, in case there is no parallel training taking place, n_replicais directly related to the
amount of models to be trained. n_epochs is the amount of epochs a replica is required
to go through shift_del and shift_de?2 are used to shift the hyperparameters d E; and
dEj;. 1deally, dEy is placed near or on the onset of the scattering distribution and dEj;
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is placed near or on the part where the contribution of the ZLP is negligible. How the
hyperparameters are determined is described in detail in the main script. If the data is
pooled, put *pooled’ in signal_type, then the models are trained on pooled data.

If there is the option to train models in parallel (not by multi-threading, but by sub-
mitting individual jobs in parallel as done on HPC’s), running the previous code is slightly
altered:

image.train_zlp_models(n_clusters = K,
based_on = value_mode,
n_batch_of_replica = n_batch_of_replica,
n_batches = n_batches,
n_replica = n_replica,
n_epochs = n_epochs,
shift_del = shift_dE1,
shift_de2 = shift_dE2,
path_to_models = path_to_models,
signal_type = 'EELS')

There are two additional parameters here: n_batches refers to the amount of batches
of replicas that need to be trained and n_batch_of_replica refers to the batch num-
ber of the replica batch that is currently trained, this is necessary for tracking of all
the output files and ensure nothing is overwritten. Here n_replica x n_batches =
total number of models

Generating general ZLP predictions from trained neural network To generate the
ZLP models from the trained NN, the run the code:

zlps = image.get_zlp_models(integrated_intensity)

the integrated_intensity should match the based_on values that the models where
trained on.

Matching general ZLP predictions to a specific spectrum To match the models to a
specific spectrum, run the code:

zlps_matched = image.get_pixel_matched_zlp_models(i, j,
signal_type = 'EELS')

i, j are they, x position of the pixels in the spectral image. Change signal_type to
’pooled’ to match on pooled data.

Loading in previously trained models After training models are automatically saved,
these can be loaded back in by running:

image.load_zlp_models(path_to_models)

path_to_models points towards the folder with all the necessary files.
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A.1.3. POST PROCESSING
Subtract ZLPs from spectrum Using a known ZLP, simply subtract this zlp from a spec-
trum by running the code:

signal_subtract = image.subtract_zlp(signal, zlp)

Deconvolute a spectrum Using a known ZLP, deconvolute a spectrum by Fourier Log
deconvolution to remove plural scattering by running the code:

signal_ssd = image.deconvolution(signal, zlp, correction=True)

correction is used to remove a decreasing linear slope that sometimes occurs after
deconvolution on the place of the ZLP. Set to False to disable.

Richardson-Lucy deconvolution Using a known ZLP, deconvolute a spectrum by Richardson-
Lucy deconvolution to enhance features by running the code:

signal_rl = image.rl_deconvolution(signal, zlp, iterations = n)

Note that you cannot perform move Fourier Log and Richardson-Lucy deconvolution at

the same time.

A.1.4. QUANTITATIVE ANALYSIS
To perform quantitative analysis on the spectral image, it is important to ensure the fol-
lowing acquisition parameters are set:

image.beam_energy
image.collection_angle
image.convergence_angle

Additionally, the refractive index and the mass density also need to be set. This can be
done either as a global value or per cluster in case of multiple materials in the spectral
image. One can run the following code for this:

image.set_refractive_index(n, n_background)
image.set_mass_density(rho, rho_background)

Remove the background variables in case they are not needed.
Thickness calculation With the previously set variables, it is now possible to calculate
the thickness of a spectrum. Run the following code:

n_zlp = sum(zlp)

# Using refractive index
t = image.calc_thickness(signal_ssd, n, n_zlp)

# Using mass density
t = image.calc_thickness(signal, rho, n_zlp)
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Complex dielectric function from KKA To calculate the complex dielectric function, A
run the code:

n_zlp = sum(zlp)

# Using refractive index
eps, t, signal_surface = image.kramers_kronig_analysis(signal_ssd,

n, n_zlp,
iterations = 5)
# Using thickness
eps, t, signal_surface = image.kramers_kronig_analysis(signal_ssd,
t, n_zlp,
iterations = 5)

The functions always has three outputs: the complex dielectric function eps, the thick-
ness and the surface scattering. In case of using the refractive index and setting iterations
= 1, the output for the thickness will be exactly the same as calc_thickness using the
refractive index, since both methods are then exactly the same. with 2 or more iterations
the output are updated every iteration. In case of using the thickness as input, it will not
be updated on each iteration as it is a fixed quantity in this case, thus t input is the
same ast output.

A.1.5. PLOTTING IN EELSFITTER
For consistency between EELSFITTER figures, a few plotting functions have been built in
to easily plot a figure that encompasses the necessary information.

Plotting hyperparameters After training models, plot the location of the hyperparam-
eters AE; and AEj; by running the following code:

fig = im.train_zlps.plot_hp_cluster(title="Position of dEl & dE2 per cluster",
xlabel="Energy loss [eV]",
ylabel="Intensity [a.u.]",
x1lim=[xmin, xmax],
ylim=[ymin, ymax],
yscale="log')

fig.show()

Here the figure is already given a title, axis labels, axis limits and a different yscale.

Plotting models To check the ZLP models per pixel, run the code:

fig = plot_zlp_per_pixel(im,
pixx=i, pixy=j,
signal_type='EELS',
zlp_gen=True, zlp_match=True,
subtract=False, deconv=True,
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hyper_par=True, random_zlp=None,
xlabel="Energy loss [eV]",
ylabel="Intensity [a.u.]",
x1lim=[xmin, xmax],
ylim=[ymin, ymax])

fig.show()

Depending on which aspect to plot, set either True or False. For random_z1p fill in a
random number and it will plot randomly selected zlp models. Here the plot is already
given axis labels and axis limits.

It is also possible to plot the zlp models per cluster, run the code:

fig = plot_zlp_per_cluster(im,
cluster=n,
signal_type='EELS',
zlp_gen=True, hyper_par=False,
xlabel="Energy loss [eV]",
ylabel="Intensity [a.u.]",
x1lim=[xmin, xmax],
ylim=[ymin, ymax])

fig.show()

Here it is only available to plot the general predictions and the hyperparameters on top
of the cluster spread.

Plotting heatmaps To easily plot a consistent looking heatmap, regardless of the shape
of the spectral image, there is a built in function for this purpose, run the code:

hmap = plot_heatmap(im,
data=im.cluster_labels,
cbarlabel='Cluster ID',
discrete_colormap=True,
cmap='coolwarm')
hmap . show()

This example plots the cluster labels after clustering the spectral image. If the heatmap
has discretized values, enable the discrete_colormap variable, otherwise set to False
or remove. For a different colourmap, simply fill in another value in cmap, check the
MATPLOTLIB documentation for options.
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B.1. METHODS

STEM-EELS measurements. The settings for the STEM-EELS measurements corre-
sponding to the WS, specimen were acquired with a JEOL 2100F microscope with a cold
field-emission gun equipped with aberration corrector operated at 60 kV. A Gatan GIF
Quantum was used for the EELS analyses. The convergence and collection semi-angles
were 30.0 mrad and 66.7 mrad respectively. The EELS data corresponding to the InSe
specimen were collected in a ARM200F Mono-JEOL microscope equipped with a GIF
continuum spectrometer and operated at 200 kV. For these measurements, a slit in the
monochromator of 1.3 um was used. A Gatan GIF Quantum was used for the EELS anal-
yses with convergence and collection semi-angles of 23.0 mrad and 21.3 mrad respec-
tively. The aperture of the spectrometer was set to 5 mm. For the STEM imaging and
EELS analyses, a probe size of 8C and a camera length of 12 cm were used.

Photoluminescence measurements. The optical spectra are acquired using a home-
built spectroscopy set-up. The sample is illuminated through an 0.85 NA Zeiss 100x ob-
jective. The excitation source is a continuous wave laser with a wavelength of 595 nm
and a power of 1.6 mW/mm? (Coherent OBIS LS 594-60). The excitation light is filtered
out using colour filters (Semrock NF03-594E-25 and FF01-593/LP-25). The sample emis-
sion is collected in reflection through the same objective as in excitation, and projected
onto a CCD camera (Princeton Instruments ProEM 1024BX3) and spectrometer (Prince-
ton Instruments SP2358) via a 4f lens system.

B.2. STRUCTURAL CHARACTERISATION OF THE INSE SPECIMEN

Here we provide details on the structural characterisation of the n-doped InSe speci-
mens. Each specimen is composed by a InSe nanosheet exhibiting a range of thick-
nesses. The electronic properties of InSe, such as the band gap value and type, are sen-
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sitive to both the layer stacking (8, y, or e-phase) as well as to the magnitude and type of
doping [1]-[4]. In particular, n-doped e-phase InSe has been reported to exhibit a direct
bandgap with value Epg = 1.25 €V [5].

These InSe specimens have been grown by means of the Bridgman-Stockbarger method.
Doping with Sn impurities is used to obtain n-type InSe. InSe flakes are obtained from
bulk material by the sonication procedure [6], whereby single InSe crystals are pulver-
ized and added to IPA with a ratio of 2:1 (mg:ml). This combination is then sonicated in
a sonic bath for 6 hours while keeping the temperature in the range between 25 °C and
35 °C. The ultra high frequencies lead to gas formation between the layers of the ma-
terial, building up pressure until adjacent layers split apart. The flakes in the resulting
suspension are then collected and dispersed on top of a TEM grid by pipetting.

Figure B.1: (a) Low-magnification HAADF-STEM image of one of the n-doped InSe specimens analysed in this
work. (b) Magnification of the region indicated with a red square in (a). (c) EELS-SI acquired on the region
indicated with a red rectangle in (b). Note that the grey-scale is different in each panel.

Figure B.la displays a low-magnification High-Angle Annular Dark Field (HAADF)
STEM image of one of the specimens obtained from this procedure. The flake is lying
on top of the holey carbon grid, and most of its volume is on top of the vacuum. Fig-
ure B.1b shows then a magnification of the region indicated with a red square in B.1a,
while in turn the red rectangle in B.1b marks the region where the corresponding EELS-
SI, provided in Figure B.1c, has been extracted. The spatial resolution in this EELS-SI is
around 8 nm. Note that the (artificial) grey-scale convention adopted is different in Fig-
ure B.1b and c. It can be observed that most of the flake turns out to be bulk, exhibiting
thicknesses of several monolayers at least, with some thinner regions at the edges.

In order to identify the crystalline phase of the specimen under consideration, Fig-



B.2. STRUCTURAL CHARACTERISATION OF THE INSE SPECIMEN 107

ure B.2a displays a low-magnification HAADF-STEM image of a different InSe flake. This
flake has been obtained from the same bulk material as that of Figure B.1a and hence
shares its crystalline structure. Notice how this InSe flake is standing on top of a hole
of the TEM grid. Figure B.2b then shows a high-resolution HAADF-STEM image corre-
sponding to the red square in B.2a, and whose inset highlights the atomic arrangement
in the region indicated with a red square. Figure B.2c provides the HAADF intensity line
profile taken along the blue rectangle in B.2b, where the three colours correspond to the
three-fold periodicity observed in the line profile. HAADF-STEM images are approxi-
mately proportional to Z'7, with Z being the atomic number. By comparing with the
expectations based on possible atomic models, these images provide useful information
to identify the underlying crystalline sequence. The line profile of Figure B.2c is con-
sistent with the atomic model of e-phase InSe shown in Figure B.2d, both for top-view
and for cross-view, and which uses the same choice of colours as in Figure B.2c. The
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Figure B.2: (a) Low-magnification HAADF-STEM image of another n-doped InSe flake standing on top of a hole
in the TEM grid. (b) High-resolution HAADF-STEM image acquired in the red square in (a), where the inset
highlights the atomic crystalline structure. (c) HAADF intensity line profile taken along the blue rectangle in
(b), where the three colors correspond to the three-fold periodicity observed in the line profile. (d) Atomic
model of e-phase InSe, with the same choice of colours labelling the atomic layers as in (c), displaying top-
view (upper) and cross-view (lower panel).

structural analysis presented in Figure B.2 indicates that the n-doped InSe specimens
considered in this work exhibit a crystalline structure characterised by a pure e-phase.
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In order to further elucidate the type of the band gap exhibited by this material, photo-

luminescence (PL) measurements are carried out. The results, displayed in Figure B.3,

exhibit a well-defined peak located around 1.26 eV. Hence, we conclude that this ma-
terial is characterised by a direct band gap with energy value Epg ~ 1.26 €V, consistent
with the findings of [5]. Note that PL measurements are characterised by a limited spa-
tial resolution as compared to the STEM-EELS results, and therefore this band gap value
corresponds to an average across the specimen. Hence, PL results are not sensitive to
spatially-resolved features in the band gap map such as those reported in Fig. 3.3b of the

main manuscript.
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Figure B.3: Photoluminescence spectrum acquired in the n-doped InSe specimen. A well-defined peak, is
observed indicating that this material is characterised by a direct bandgap with energy value Ej,g ~ 1.26 eV.

B.3. BAND GAP ANALYSIS OF 2ZH/3R WS, NANOFLOWERS

Here we apply our new approach to the band gap analysis of same WS, specimen con-

sidered in the original study [7], [8]. This specimen consisted on a horizontally-standing
WS, flake belonging to flower-like nanostructures characterised by a mixed 2H/3R poly-

typism. While [8] restricted its band gap analysis to a small subset of individual EELS
spectra, here we extend it to the whole specimen and as a by-product also we provide the
local thickness map. The goal is to demonstrate how our updated analysis is consistent
with the results presented in [8]. The corresponding results for the dielectric function
are presented in Section 3.4.2.

Figure B.4 displays the outcome of the thickness map determination obtained us-
ing the EELS-SI from Figure 5.1a of [8] as input. Figure B.4a shows the results of the
K-means clustering procedure for K = 5. The choice of K =5 clusters is found to be a
good compromise between minimising the variance within each cluster while ensuring
a sufficiently large number of members, as required by the applicability the Monte Carlo
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replica method. The WS, specimen itself turns out to be classified into three thickness
clusters, surrounded by vacuum (dark blue) at the top and by the Si3sN, substrate (red) in
the bottom-right region of the map. Then Figure B.4b displays the corresponding thick-
ness map evaluated by means of Equation (3.1). Note that the image has been masked by
retaining only the pixels associated to the WS; specimen, to ease visualisation. The qual-
itative agreement with the outcome of the K-means clustering confirms the reliability of
the total integrated intensity N, as a suitable proxy for the local specimen thickness
when modelling the ZLP parametrisation.

a) 0 WS, nanoflower — K = 5 clusters b) 0 WS, nanoflower — Thickness
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Figure B.4: Thickness analysis obtained from the EELS-SI presented in Fig. 5.1(a) of [8] as input. The specimen
under consideration is a horizontally-standing flake belonging to a 2H/3R polytypic WS, flower-like nanos-
tructure. (a) The outcome of the K-means clustering procedure for K = 5. (b) The resulting thickness map.
Only pixels associated to the WS, specimen are displayed.

Figure B.5 then presents the corresponding band gap analysis obtained from the
same EELS-SI used to evaluate Figure B.4, where again the maps have been filtered such
that only those pixels corresponding to the WS, specimen are retained. First of all, Fig-
ure B.5(a) displays the spatially-resolved map displaying the median value of the band
gap energy Eyg evaluated across the WS; specimen, where the spatial resolution achieved
is around 10 nm. These band gap energies have been obtained from the procedure de-
scribed in Section 3.3, specifically by fitting Equation (3.7) to the onset of the inelastic
spectra. A fixed value of the exponent b = 1.5, corresponding to the indirect band gap
reported for this material, is used to stabilise the model fit. Then Figure B.5(b) shows the
associated relative uncertainty 6 Epg on the extracted band gap energy. It is estimated
as half the magnitude of the 68% CL interval (corresponding to one standard deviation
for a Gaussian distribution) from the Monte Carlo replica sample for each pixel of the
SI. One finds that the typical uncertainties § Epg range between 15% and 25%. Finally,
Figure B.5(c) indicates the lower limit of the 68% CL interval for Ey,.

Reference [8] reported a value of the band gap of 2H/3R polytypic WS; of Epg =
(1.6 £0.3) eV with a exponent of b = 1.31’8% extracted from single EELS spectrum. From
the spatially-resolved band gap maps of Figure B.5, one observes how our updated re-
sults are in agreement with those from the previous study within uncertainties. Further-
more, this spatially-resolved determination of Ej, is in agreement within uncertainties
with first-principles calculations based on Density Functional Theory (DFT) of the band
structure of 2H/3R polytypic WS, [9]. These DFT calculations, which also account for
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Figure B.5: Band gap analysis of the same EELS-SI used to evaluate Figure B.4. (a) Spatially-resolved map
displaying the median value of the band gap energy Ej,, evaluated across the specimen. (b) Same as (a) for the
corresponding relative uncertainty 6 Ep,g, evaluated as half of the 68% CL interval from the Monte Carlo replica
sample. (c) Same as (a) indicating the lower limit of the 68% CL interval for Epg. In the three panels, the maps
have been filtered such that only those pixels corresponding to the WS, specimen are retained.

spin-orbit coupling effects, find values of Ep in the range between 1.40 eV and 1.48 eV
depending on the settings of the calculation. The DFT predictions are hence consistent
with the 68% CL interval for the Ejg for a wide region of the specimen, as indicated by
Figure B.5(c).

Furthermore, inspection of the thickness and band gap maps, Figures B.4b and B.5a
respectively, reveals an apparent dependence of the value of E},; on the local specimen
thickness. Specifically, the band gap energies tend to increase in the thinner region of
the specimen, with ¢ = 25 nm, and then to decrease as one moves towards the thicker
regions with ¢ = 50 nm. While this dependence with the thickness is suggestive of the
known property of WS, that Eyp, increases when going from bulk to monolayer form,
uncertainties remain too large to be able to assign significance to this effect.

B.4. VALIDATION OF KRAMER-KRONIG ANALYSIS AGAINST HY-
PERSPY

The calculations of the local specimen thickness, Equation (3.1), and of the complex di-
electric function, Equation (3.17) presented in this work have been benchmarked with
the corresponding implementation available within the HyrErSPY framework [10]. Pro-



REFERENCES 111

vided one inputs the same inelastic spectra and ZLP parametrisation, agreement be-
tween the two calculations is obtained. This benchmark is illustrated in Figure B.6,
which compares the EELSFITTER-based results with those available from HyYPERSPY sep-
arately for the real and imaginary components of the dielectric function. Both calcu-
lations use for the same input ZLP and inelastic spectra, associated to a representative
pixel of the WS, nanoflower specimen. Residual differences can be attributed to im-
plementation differences e.g. for the discrete Fourier transforms. This validation test
further confirms the robustness of the calculations presented in this work.
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Figure B.6: Comparison of the EELSFITTER-based results for the real (left) and imaginary (right panel) com-
ponents of the dielectric function with those available from HYPERSPY for the same input ZLP and inelastic
spectrum, associated to a representative pixel of the WS, nanoflower specimen.
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C.1. CASE STUDY: 1D-M0S, NANOSTRUCTURES

C.1.1. METHODS

Synthesis of the 1D-MoS; nanostructures The 1D-MoS; nanostructures were synthe-
sized using chemical vapour deposition (CVD) on a TEM grid. The TEM grid used in this
study consisted of nine viewing windows with a Si3N, thin film spanning across the en-
tire grid (EMS Catalog #76042). To initiate the synthesis, a small amount of MoO2 (99 %,
Sigma-Aldrich 234761) was drop-casted onto the TEM grid. This involved using a solu-
tion containing 2.6 mg of MoO, suspended in 6 ml of isopropanol. The grid, with the
MoO, precursor, was then positioned in an alumina crucible, approximately 2 cm away
from 7.5 mg of MoO, powder.

The experimental setup included a gradient tube furnace from Carbolite Gero, with
the alumina crucible placed in the middle of the furnace. Upstream from this crucible,
another alumina crucible contained 400 mg of sulfur (99.5 %, Alfa Aesar 10785). Through-
out the synthesis process, argon was used as a carrier gas at a flow rate of 100 sccm. The
middle zone of the furnace was heated to 780 °C, while the sulfur reached a maximum
temperature of 270 °C. It is noteworthy that a small fraction of the resulting nanostruc-
tures exhibited MoOj3 cores instead of MoS,. This indicates that the sulfurization pro-
cess was not fully completed for these particular nanostructures. Additionally, it was
observed that the MoO, powder used as a seed material during the synthesis underwent
a conversion to MoOs. The confirmation of this conversion from MoO, to MoO3 was
achieved trough the mapping of the bulk plasmon characteristic of MoOs. This analysis
is depicted in Figure C.3. This growth procedure results into 1D-MoS; nanostructures
exhibiting the 2H crystal phase.
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C.1.2. CHARACTERIZATION OF 1D-M0S, NANOSTRUCTURES

Figure C.1 provides a representative overview of high-angle annular dark-field (HAADF)
scanning transmission electron microscope (STEM) images of the 1D-MoS, nanostruc-
tures synthesised following the procedure described in the Methods section in the main
manuscript. Their lengths vary between 90 nm and 2450 nm with an average length of
960 nm, while their diameters range from 40 nm to 95 nm with an average value of 60
nm. A fraction of these 1D-MoS; nanostructures end up being connected by their end-
points generating to novel morphologies, as shown in Figure C.1e,f. Figure C.2 displays

Figure C.1: HAADF-STEM images of representative 1D-MoS; nanostructures. (a)-(d) Images of individual
nanostructures. (e)-(f) Same as (a)-(d) for nanostructures connected by one end. The size of the scale bar is
100 nm in panel (a), 500 nm in panels (b)-(c), and 200 nm in panels (d)-(f).

HAADF-STEM images of two other specimens with 1D-MoS; nanostructures connected
by one end. The top and bottom nanostructure in Figure C.2a have a length of 540 nm
and 336 nm respectively, while their diameters are 57 nm and 62 nm respectively. STEM-
EELS analysis of this specimen is presented in Figure 4.5 4 in the main manuscript. The
left and right nanostructure in Figure C.2b have a length of 349 nm and 278 nm respec-
tively, while their diameters are 64 nm and 44 nm respectively. The STEM-EELS analysis
corresponding to this specimen is presented in Figure C.4.

C.1.3. PARTIAL SULFURIZATION AND INTERMEDIATE M0O3 FORMATION

Figure C.3a displays the HAADF-STEM image of a nanostructure that, as a result of in-
complete sulfurization during the synthesis process, exhibits a MoOs core. This MoOj3
core is identified by tracking the location of the bulk plasmon peak across the specimen
specimen in Figure C.3b. It is observed that the bulk plasmon peak undergoes a shift as
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Figure C.2: HAADF-STEM images of 1D-MoS; nanostructures connected by one end. (a) The top (bottom)
nanostructure has a length of 540 nm (336 nm) and a width of 57 nm (62 nm). The MoS; region visible in the
top-left is a remnant of the synthesis procedure. (b) The left (right) nanostructure has a length of 349 nm (278
nm) and a width of 64 nm (44 nm). The size of the scale bar is 200 nm. The STEM-EELS analyses of a and b are
presented in Fig. 4 in the main manuscript and in Fig. C.4 respectively.

we move from the edge to the inner region. Initially, at the edge regions, the peak is at
22.5 eV, which corresponds to MoS; [1]-[5]. However, towards the inner region, the peak
shifts to approximately 25 eV, matching the expected location of the bulk plasmon of
MoOs [6]-[8]. This observation suggests that the MoO, powder used as a seed material
in the CVD synthesis process undergoes an intermediate conversion to MoO3 before it
can fully transform into MoS,. Ensuring complete sulfurization of the 1D-MoS; nanos-
tructures is therefore essential to avoid these MoO3 remnants.

C.1.4. EELS ANALYSIS OF AN INTERCONNECTED 1D-M0S> NANOSTRUC-
TURE

Here we present the spatially-resolved EELS analysis of another specimen composed
by two 1D-MoS; nanostructures connected by one end, for which the corresponding
HAADF-STEM image is displayed in Figure C.2b. Figure C.4a reveals characteristic peaks
at specific energies. We display spectra taken at various locations in the sample in Fig-
ure C.4b. Spectrum 1 (spl) exhibits a peak at approximately 1.9 eV, while sp2 displays
a distinct peak centred around 2.7 eV. Furthermore, sp3 showcases peaks at both 1.9 eV
and 3.0 eV, and sp4 exhibits peaks at both 3.0 eV and 8.3 eV.

Concerning the spatial distribution of these enhanced-intensity features, displayed
in Figure C.4c-f, in the [1.8,2.0] eV range the intensity is largest at the tips of nanostruc-
tures. For the interval [2.6,2.8] eV, there is an enhancement in intensity visible along the
edges in the middle regions of the nanostructures. In the [2.9,3.1] eV range, the signal
is largest along the edge in the middle region of the left nanostructure, as well as at its
tip. In the interval [8.2,8.4] eV, the intensity is strongest in the inner part of the nanos-
tructures. These results are consistent with those obtained from the interconnected 1D-
MoS; nanostructure analysed in Figure 4.3 of the main manuscript.

C.1.5. BAND GAP ENERGY MAP OF 1D-M0Sy NANOSTRUCTURES
For the specimen analysed in section C.1.4, we provide here the results of the corre-
sponding spatially-resolved band gap analysis, like is done in the main manuscript. The
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Figure C.3: Analysis of a 1D-MoS; nanostructure with incomplete sulfurisation. (a) HAADF-STEM image of
a nanostructure for which the sulfurization process was not fully complete. (b) The bulk plasmon peak energy
across the specimen, where the black line indicates its boundary.

spatially-resolved band gap map is presented in Fig. C.5. Additionally, the weighted av-
erage band gap energies Ep,g over the different regions in the nanostructure are sum-
marised in Table C.1. As in the case of the 1D-MoS; nanostructures analysed in the main
manuscript, we obtain that in the central region of the specimen the value of Eyg agrees
with the MoS; bulk band gap, and that this value is reduced in the endpoint regions due
to the presence of curvature-induced local strain. This analysis further indicates that our
findings of reduced Epg in strain-enhanced regions are robust and reproducible.

Table C.1: The weighted average for Epg (in eV) for the 1D-MoS; nanostructure analysed in Fig. C.5, separated
into three regions: the left-most endpoint (20% of the total length of the nanostructure), the central region
(60%), and right-most endpoint (20%). We also indicate the uncertainty obtained from the 90% CL interval for
the weighted average band gap energy.

Specimen Left-most endpoint Central region Right-most endpoint

Fig. C.4 left 1.0+0.2 1.2+0.2 1.0+0.1
Fig. C.4 right 1.1+0.2 1.4+0.2 1.1+0.2
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Figure C.4: EELS analysis of MoS, nanostructures connected by one end. Same as Figure 4.3 in the main
manuscript, now for two 1D-MoS; nanostructures, with a length of 349 nm and a diameter of 64 nm (left), and
alength of 278 nm and a diameter of 44 nm (right), connected by their ends. The corresponding HAADF-STEM
image is provided in Figure C.2b.
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Figure C.5: Spatially-resolved band gap energy in a 1D-MoS; nanostructure. The median value (second col-
umn) and 90% CL lower and upper bounds (first and third column, respectively) for the band gap energy Epg
determined across the entire 1D-MoS, nanostructures considered in Figure C.4.
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C.2. CASE STUDY: TOPOLOGICAL INSULATOR BI,TEj3

C.2.1. METHODS

Specimen preparation The specimen used in this study were Bi,Tesflakes that were
mechanically exfoliated from bulk crystals through sonication in isopropanol (IPA) at a
ratio of 2 mg of BiTezper 1 ml of IPA. The exfoliated flakes were then transferred onto
holey carbon grids for EELS investigations.

STEM-EELS settings The scanning transmission electron microscopy (STEM) images
and electron energy-loss/gain spectra were obtained using a JEOL200F monochromated
equipped with aberration corrector and a Gatan Imaging Filter (GIF) continuum spec-
trometer. The instrument was operated at 200 kV and the convergence semi-angle was
14 mrad. The collection semi-angle for EELS acquisition was 18.3 mrad obtained by in-
serting a 5 mm EELS entrance aperture. The EELS dispersion was 50 meV per channel.

C.2.2. ATOMIC STRUCTURE CHARACTERISATION OF BI»,TEg

Figure C.6 presents the STEM analysis of the BipTes specimen considered in the main
manuscript. Figure C.6a shows alow-magnification high-angle annular dark-field (HAADF)
STEM image taken on the same Bi,Tes crystal inspected by EELS. The corresponding
atomic-resolution HAADF-STEM image of the region indicated with a blue square in Fig-
ure C.6a is displayed in Figure C.6b. As well known, Bi,Tes is characterised by a hexag-
onal primitive cell. From the corresponding fast Fourier transform (FFT), Figure C.6c,

it is found that this BiyTes crystal is oriented along the [—1 1 1] direction. Figure C.6d
shows an atomic model of the Bi,Tes crystal viewed along the same [—1 1 1] direction,
displaying the characteristic hexagonal crystal structure of BiyTes.

C.2.3. ROBUSTNESS OF THE MODELS

The robustness of the results presented in this work upon variations of the model as-
sumed for the ZLP is demonstrated by repeating the analysis using other functional
forms for the ZLP model. Specifically, in addition to the Gaussian model Equation (4.1)
we consider a split Gaussian function, a Pearson VII function, and a Pseudo-Voigt func-
tion to parametrise the ZLP all other aspects of the fitting procedure unchanged. These
three models are described below and have been considered in the EELS literature in the
context of the ZLP subtraction.

Split Gaussian function. This model is the same as the Gaussian function of Equa-
tion (4.1) with the difference that the variance is different at the left side and at the right
side of the peak. An asymmetric model such a split Gaussian may be more adequate to
describe the ZLP in the presence of an intrinsic asymmetry in the energy loss AE.

Pearson VII function. This function is often used to describe peak shapes from X-ray
powder diffraction patterns [9] and is defined as

me

[w?+ (2V/m —1) (AE - AEy)?

I(AE) = Imax (C.1

"™
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Figure C.6: STEM analysis of the BixTeg crystal analysed. (a) Low-magnification HAADF-STEM image of the
Biz Te3 specimen considered in this work. (b) Atomic-resolution HAADF-STEM image of the region indicated
with a blue squared in (a). The BipTes crystal is oriented along the [-1 1 1] direction, as shown in the corre-
sponding Fast Fourier transform (FFT) in (c). (d) Atomic model of the Biy Tes crystal viewed along the [-1 1 1]
direction.
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with w defining the peak width. The model parameter m can be adjusted and here we
find that m = 4 provides the best description of the ZLP.

The pseudo-Voigt function. The Voigt function is defined as the convolution of two
broadening functions, one a Gaussian and the other a Lorentzian function. The pseudo-
Voigt function is also a popular choice in describing peak shapes in diffraction patterns [10]
and approximates the exact convolution by a linear combination of a Gaussian and a
Lorentzian. Their mixing can be adjusted by a model parameter 7 as follows,

I(AE) = Imax [nG (AE, %) + (1-1) L(AE, 0?)], (C.2)

where G (AE,0?) and L (AE, 0?) are normalised Gaussian and Lorentzian functions with
a common variance o respectively.

Stability upon choice of ZLP model. Figure C.7 displays, as done in Figure 4.13a, the
ZLP-subtracted EELS intensity integrated in the region [-1.1,-0.6] eV around the iden-
tified energy-gain peak. We compare the outcome of our baseline choice, a Gaussian
model for the ZLP, panel (a), with the corresponding results based on panel (b) split

Gaussian, panel (c) Pearson VII, and panel (d) pseudo-Voigt functions for the ZLP parametri-

sation. Each panel adopts its own intensity range, and similar colours in the different
panels in general do not correspond to similar intensity values. Irrespective of the choice
of ZLP model function, the highest integrated intensity is found in the edge region of the
specimen. We have verified that other relevant properties of the energy-gain peak at
AE = -1 eV, such as its mean and width, are also stable with respect to this choice. We
conclude that our energy-gain peak identification algorithm is robust with respect to the
modelling of the ZLP.

Figure 4.12 summarises the adopted strategy for the spatially-resolved identification
of energy-gain peaks. First, Figure 4.12a shows the EEL spectrum for the pixel indicated
with a star in Figure 4.11c together with the corresponding ZLP fit. Closing up on the
energy-gain region, Figure 4.12b displays the resulting subtracted spectrum, to which
a Lorentzian function is fitted to extract the position Eg and intensity of the dominant
energy-gain peak. The procedure is repeated for the complete EELS spectral image, mak-
ing it possible to construct the spatially-resolved map of Eg; shown in Figure 4.12c across
the inspected region of the Bi,Tes specimen. As in Figure 4.11c, the black line indicates
the boundary of the Bi,Tes sample. Figure 4.12c reveals the presence of an energy-gain
peak in the specimen with E, values between —1.1 eV and —0.85 eV. We demonstrate in
Section 4.3.3 that results for the ZLP removal and energy-gain peak identification are ro-
bust with respect to the choice of ZLP model function. Then Figure 4.12d displays the
Bi, Tes thickness map as obtained from the deconvolution of the single-scattering EELS
distribution [11]. The dark blue region beyond the specimen corresponds to either the
vacuum or the Bi; O3 regions. In the edge region there is a sharp increase in thickness,
while in the bulk region the thickness exhibits an approximately constant value of 70 nm.

C.2.4. PEAK LOCATION IN THE ENERGY-LOSS REGION
Figure 4.12¢ in the main manuscript displays a spatially-resolved map with the value of
Eg, the median of the Lorentzian peak fitted to the ZLP-subtracted energy-gain region.
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Figure C.7: Same as Figure 4.13a, displaying the ZLP-subtracted EELS intensity integrated in the region
[-1.1,-0.6] eV around the identified energy-gain peak. We compare the outcome of our baseline choice, a
Gaussian model for the ZLP (a), with the corresponding results based on (b) split Gaussian, (c) Pearson VII,
and (d) pseudo-Voigt functions for the ZLP parametrisation. Each panel adopts its own intensity range, and
similar colours in the different panels in general do not correspond to similar intensity values. Irrespective of
the choice of ZLP model function, the highest integrated intensities are found near the edge region indicated
by a black curve.

For completeness, we show in Figure C.8b the same map now for Ey, the median of the
Lorentzian peak fitted to the ZLP-subtracted energy-loss region. We emphasise that our
model for the energy-loss region is incomplete, given that the data contains additional
contributions beyond this dominant peak.

In the region of the specimen where the energy-gain peak exhibits the highest signif-
icance, namely close to the edge, the value of the fitted energy-loss peakis E, ~1 eV, cor-
responding to approximately the energy-mirrored value of its energy-gain counterpart.
However, the significance of this energy-loss feature is weaker, see Figure 4.13d, and only
with a complete model of the energy-loss region would it be possible to robustly disen-
tangle the different energy-loss features present in the considered specimen.

C.2.5. ENERGY-GAIN PEAKS IN DIFFERENT BI»TE3 SPECIMENS

While the results presented in the main manuscript consider the EELS analysis of a spe-
cific Bi, Tes specimen, we found that consistent results are obtained in other comparable
specimens. In the following, the microscope parameters that were used are the same as
the ones mentioned in the Methods section of the main manuscript.
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Figure C.8: (a) Same as Fig. 4.12¢. (b) Same as Fig. 4.12¢c now displaying the value of E,, the median of the
Lorentzian peak fitted to the ZLP-subtracted energy-loss region.

Figure C.9a shows an HAADF image of another Bi,Tes specimen, different from the
one in the main manuscript, and characterised by the presence of a channel, indicated
by the darker contrast. Figure C.9b focuses on the region above the channel which is
subsequently analysed with electron energy-gain spectroscopy. This region is composed
by a flat layer alongside some edges. The channel region is characterised by sharp varia-
tions of the specimen thickness, which motivate the inspection of the specimen for edge-
and surface-induced excitations.

Figure C.9: (a) HAADF image of another Bip Tez specimen, characterised by the presence of a channel (darker
contrast). (b) A zoomed-in image of the same specimen, focusing on the region above the channel which is
analysed by means of EELS.

Figures C.10 and C.11 present the same spatially-resolved electron energy-gain anal-
yses of Figures 4.12 and 4.13 in the main manuscript respectively, now corresponding
to the BiyTe3 specimen displayed in Figure C.9. The black line indicates the specimen
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boundary, and pixels in which the fitting procedure is numerically unstable are masked
out. An enhancement of the intensity in the AE gain region located around —0.7 eV is
observed in specific regions of the sample, as illustrated by the representative spectrum
in Figure C.10b corresponding to the location marked with a star in Figure C.10a. This
feature is most prominent in the region above the channel identified in Figure C.9 and
close to the specimen surface. No equivalent enhancement is observed in the loss re-
gion, where it could be confounded by other mechanisms contributing to energy-loss
inelastic scatterings.

—— Spectrum —— Spectrum
a ==+ ZLP Gaussian fit b === ZLP Gaussian fit
----- Subtracted spectrum

== Subtracted sp. Lorentzian fit

Intensity (a.u.)
Intensity (a.u.)
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Energy Loss AE (eV)

Thickness (nm)

Figure C.10: Same as Fig. 4.12 in the main manuscript for a different BioTez crystal. The star indicates the
location in the specimen in which the individual EEL spectrum of (a) and (b) is extracted.

Applying the same peak identification procedure used for the specimen in the main
manuscript and further detailed in Section 4.3.3, we find that in the region where the en-
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ergy gain peak is more marked the centre of the Lorentzian is located around AE = -0.7
eV, see Figure C.10d for the associated spatially-resolved map. Integrating in the en-
ergy gain region defined by the window [-1.1,—0.6] eV the intensity is highest in the
region just above the channel, Figure C.11a. The ratio of the area under the FWHM of
the Lorentzian peak over that under the ZLP, Figure C.11c, is also enhanced in the same
region, where it takes values between 2 and 3.5. In the region of the specimen with the
highest signal-to-noise significance, the position of the Lorentzian median is approxi-
mately constant and takes value E; ~ —0.7 eV. We verify, by means of the same proce-
dure adopted for Figure C.7, that our results are independent of the specific choice of
functional form model for the ZLP.
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Figure C.11: Same as Fig. 4.13 in the main manuscript for the same Bip Te3 crystal analysed in Fig. C.10.
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The analysis presented here, performed on a different BipTes specimen but with the
same crystal structure and comparable features as that of the main manuscript, confirms
the robustness of our characterisation of the energy gain region of Bi,Tes, establishing
the presence of a distinctive gain peak located in the region around AE = —0.7 eV. This
feature can be disentangled from the dominant ZLP emission with high significance and
is also found to be enhanced in the regions of the specimen displaying sharp thickness
variations with the associated exposed surfaces and edges.

C.2.6. HRTEM ANALYSIS OF THE B1,O3 REGION

Figure C.12 displays a HRTEM analysis of the edge region of the specimen showing the
Bi,Tes (lower part, darker contrast), Bi;O3 (intermediate part, lighter contrast), and vac-
uum (top part) areas. The inset contains the diffraction pattern taken in the intermedi-
ate part of the image, whose indexation further confirms the presence of Bi,O3, consis-
tently with the findings of the spatially-resolved EELS analysis of Figure C.6e in the main
manuscript.
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Figure C.12: HRTEM analysis of the edge region of the specimen, displaying the presence of Bio O3 as confirmed
by the corresponding indexed diffraction pattern (inset).
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METHODS

Fabrication of WS; nanotriangles. The twisted WS, specimens were grown directly on
a silicon TEM grid with nine windows, each spanned by a 5 nm thick Si3N4 membrane.
Tungsten trioxide (WO3) powder, which acts as a seeding material, was deposited on this
substrate by dispersing 50 mg of WO3 in 1 mL of isopropanol. A few drops of this solu-
tions where then deposited onto the substrate using a pipette. After the sample was left
to dry, the WO3 had been successfully spread over the substrate. Following this prepara-
tion, the WO3 coated substrate was placed in the central heating zone of a gradient tube
furnace from Carbolite Gero. A crucible containing sulfur powder was positioned in a
separate heating zone upstream. The central heating zone was heated to a temperature
of 750 °C, followed by heating the zone containing the sulfur powder to 220 °C. The sys-
tem was maintained at these temperatures for one hour under a consistent argon flow of
150 sccm. Before this process, the system was flushed using an argon flow of 500 sccm
for 30 min. Once the reaction time has passed, the furnace was cooled down naturally.

STEM-EELS analyses. The STEM-EELS measurements were performed on an ARM200F
Mono-JEOL microscope. The microscope was operated at 200 kV with the monochro-
mator ON and a slit of 1.3 um inserted for the stacked nanotriangles and a slit of 2.0 um
for the single nanotriangles. A Gatan GIF Quantum ERS system (model 966) was used
for the EELS acquisition. The convergence and collection semi-angles were 19.96 and
14.5 mrad respectively. EEL spectra of the stacked nanotriangles were acquired with an
entrance aperture diameter of 5 mm, energy dispersion of 0.015 eV/channel, and pixel
time of 0.5 s. resulting in a ZLP FWHM of 0.12 eV. For the single nanotriangles, the EEL
spectra were acquired with the same entrance aperture diameter of 5 mm, but with an
energy dispersion of 0.05 eV/channel, and a pixel time of 1.0 s, yielding a ZLP FWHM of
0.25 eV
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D.1. STRUCTURAL CHARACTERIZATION OF WS, NANOSTRUC-
TURES

Here we present the morphological and structural analysis of WS, nanotriangles with
different side lengths. This characterization, using scanning transmission electron microscopy-
high angle annular dark-field (STEM-HAADF) imaging and thickness mapping, provides
essential insights into how size and thickness variations impact the plasmonic properties

of the nanotriangles. This analyses also allow comparisons between single and stacked
triangular structures, revealing the potential for larger or thicker structures to support
higher-order plasmonic modes.

D.1.1. WS, NANOSTRUCTURE THICKNESS MAPPING

Fig. 5.1c in the main manuscript shows the thickness map of the specimen, calculated
using the log-ratio method and mass density of the material to determine the mean free
path of the electrons [1]. After subtracting the thickness of the Si3N; membrane, the
large triangle has an average thickness of approximately 30 nm, with side lengths mea-
suring around 980 nm. The small triangle has an average thickness of approximately
35 nm, after accounting for the thickness of the Si3sN; membrane and the large triangle.
However, it exhibits greater variation in thickness, ranging from about 30 nm to 50 nm,
with side lengths measuring around 680 nm. In both triangles, the corners are slightly
truncated, and the edges are slightly tapered.

D.1.2. MORPHOLOGY AND THICKNESS MAPPING OF ADDITIONAL WS, NANOS-
TRUCTURES

Figures S1 trough S3 display the morphology of WS, nanotriangles with side lengths of
330 nm, 880 nm, and 920 nm, using STEM-HAADF and corresponding thickness maps.
These morphological details provide a basis for comparing the influence of size and
thickness on plasmonic behaviour, specifically showing how larger or thicker nanotri-
angles may support higher-order plasmon modes.

The WS, nanotriangle presented in Fig. D.1 has side lengths of approximately 920 nm
and average thickness of about 70 nm, with the top right side being slightly thinner than
the bottom left. This thickness closely resembles that of the stacked WS, nanotriangles,
making it a suitable morphological comparison in the main text.

The next WS, nanotriangle, shown in Fig. D.2, has side lengths of approximately
330 nm and and average thickness of about 85 nm, with the top part being the thinnest
and the bottom part showing the greatest thickness. The final WS, nanotriangle pre-
sented in Fig. D.3, has side lengths of approximately 880 nm. Notable defects include
a more truncated tip on the left side and the gap on the right, with spikes near the gap
location. This nanotriangle is significantly thicker than the others, averaging around
225 nm, with the top thinner than the bottom. The gap and proximity of the beam to the
nanostructure lead to an increase in the overall spectral intensity, slightly distorting the
thickness measurement.
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nm)|

Figure D.1: Morphology of the WS, triangular nanotriangle with a side length of approximately 920 nm.
(a) STEM-HAADF image illustrating the structural features. (b) Thickness map with an average thickness of
around 70 nm, showing thickness variations from the top right to the bottom left. Scale bars are 200 nm.

[nm]

Figure D.2: Morphology of a WS, nanotriangle with a side length of approximately 330 nm. (a) STEM-HAADF
image showing the overall structure. (b) Thickness map with an average thickness of about 85 nm. Scale bars

represent 100 nm.
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Figure D.3: Morphology of a WSy nanotriangle with a side length of approximately 880 nm. (a) STEM-HAADF
image showing structural details, including notable defects. (b) Thickness map with and average thickness of
about 225 nm. Notable defects include a truncated tip on the left and a gap on the right side, causing intensity
distortions near the gap. Scale bars represent 200 nm.

D.2. SPATIALLY-RESOLVED EELS DATA PROCESSING

In this section, we outline the processing steps for electron energy loss spectroscopy
(EELS) data obtained from WS, nanotriangles. The methods include Zero Loss Peak
(ZLP) subtraction using a deep-learning approach (as outlined in chapter 2), followed by
decomposition of the EELS data using non-negative matrix factorization (NMF). These
steps are essential for isolating meaningful spectral features and improving the accuracy
of plasmonic and electronic property analysis across different energy windows.

D.2.1. DECOMPOSITION OF EELS DATA USING NMF

Non-negative matrix factorization (NMF) is a multivariate analysis (MVA) algorithm of-
ten referred to as blind-source separation (BSS). Another example of such family of tech-
niques is principal component analysis (PCA), which has already seen widespread use in
EELS applications.

The spectral image can be expressed as a three-dimensional matrix, D(x, y, AE), where
(x, y) denotes the two-dimensional probe position from which spectral data is collected,
and AE denotes the energy channels of the spectrometer. To facilitate analysis, the spec-
tral image can be reshape into a two-dimensional matrix X(nyy, n¢p), where nyy = nyxny
is the total number of probe positions (pixels), and n.j (= AE) is the number of energy
channels.

The information within an EEL spectrum is assumed to be a linear combination of
basis spectra linked to underlying features and excitations. If there are k basis spectra,
with k significantly smaller than the matrix dimensions nyy x ncp > nyy x k+ nep x k,
we can store the basis spectra in matrix W .y, x k and the concentration coefficients in
matrix H nyy, x k. The original matrix X can then be approximated as:

X~WHT (D.1)

where the superscript T denotes the transpose. In MVA terminology, H is called the load-
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Figure D.4: Data Processing of EELS Spectral Images. (a) Schematic of the EELS data processing steps. (b)
Deconvolution of the ZLP from a representative EEL spectrum, with the orange shaded area representing the
90% confidence level (CL) interval obtained from the trained ZLP models. (c) Scree plot from principal com-
ponent analysis (PCA) applied to the ZLP-subtracted EELS data within the 0.5 to 2.5 eV energy window. From
the variance ratio and the cumulative variance, we determine the first four components to be most statistically
significant (adding up to 98.5% of the total variance). These first four components are discussed in Fig. 5.2 in

the main text.
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ing matrix, with each column vector (or loading) representing an "endmember" in the
main text. Each endmember corresponds to a basis spectrum, ideally capturing a pure
signal of the feature it represents. W, known as the score matrix, contains scores in each
column vector, representing the weight of the endmember at each location, referred to
as the "abundance" in the main text.

As previously mentioned, PCA is the most widely known type of multivariate analy-
sis (MVA) algorithm, with a common application being noise reduction. One important
property of PCA is that its principal components are orthogonal and uncorrelated. This
means that the first component captures the greatest variance in the data, and each sub-
sequent component maximizes the remaining variance while maintaining orthogonality
to all previous components. This structure allows for the creation of a scree plot, as seen
in Fig. D.4c, which makes it possible to determine the number of statistically relevant
components.

EELS data consists of spectroscopic counts that are inherently positive, as negative
counts are unphysical. However, when PCA is applied to EELS data, the first compo-
nent typically represents an averaged base spectrum, but subsequent components, con-
strained by orthogonality, may contain negative values in their endmembers and abun-
dances. This characteristic often complicates the physical interpretation of the compo-
nents.

NMF differs from PCA by solving Eq. (D.1) with the constraint that X, W, and H
are all non-negative. The absence of negative values in NMF components provides a
more interpretable solution for spectroscopic data. However, a consequence of this non-
negativity constraint is that the components are no longer orthogonal. Matrix W and
matrix H are thus numerically approximated by minimizing the following loss function:

IX-WH” | (D.2)

Here F denotes as the Frobenius norm. Several approaches have been developed to use
this form as the basis for minimizing and obtaining solution for W and H. Although
NMF and PCA differ in their component-determination methods, they share the goal of
image decomposition, allowing us to use a PCA-derived scree plot as a rough guide for
the number of components needed for NME.

For EELS data, proper normalisation is essential before performing NMF or PCA. In
this case, normalisation involves dividing each pixel’s spectrum by its ZLP intensity. This
step is crucial because the probability of electron interactions is independent of material
thickness, but the counts reaching the detector may vary with thickness. For instance, a
plasmonic feature may yield higher counts along or near an edge compared to the bulk,
due to thickness effects.

D.2.2. NMF DECOMPOSITION OF ALL NANOTRIANGLES

In Fig. 5.2 of the main text, we examine energy windows between 0.5 to 2.5 eV to decom-
pose the spectral image. Narrowing the energy window can benefit the decomposition
process by enhancing feature separation. The exception to this rule is the energy window
of the smallest triangle (0.5 to 4.0 eV, as there are a lower amount of resonance modes to
be separated (see Fig. D.12(c,d).
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In Fig. D.5 we present the same as main text Fig. 5.2, but with an additional fifth
component. From the scree plot in Fig. D.4(c) this component is arguably on the side
of statistical insignificance, but as the endmember and abundance map do show a dis-
tinct feature (that being the second-order mode of the smaller nanotriangle on top), we
present it here. The EELS simulation in Fig. D.15 of the small triangle do indicate this
being a genuine feature otherwise not observed in the experimental data.

In Fig. D.6, data in the energy window between 2 and 4 eV is decomposed, with
three components best describing this range. Components 2 and 3 represent higher-
order plasmon modes in both the larger and smaller triangle. Component 2 displays the
fourth-order mode in the large triangle and the third-order mode in the small triangle, as
shown in the abundance map, the latter being less well defined here. Due to the overlap-
ping energy values of the plasmon modes of the small and large triangle, we do not ob-
serve a difference in the endmember, but do see both modes in the abundance map. The
higher order resonances modes are less well defined and spectrally more spread out. The
dominating 2.1 eV peak is associated with the fourth-order plasmon resonances of the
large triangle and a bump at 2.3 eV to the third-order plasmon mode in the small triangle,
consistent with the EELS-GDM simulations in Figures D.11 and D.12. Similarly, Compo-
nent 3 represents the fifth-order plasmon mode in the large triangle and the fourth-order
mode in the small triangle, both near 2.75 eV as indicated by the EELS-GDM simulations.
Component 4 is most likely related to the bulk WS; crystal, specifically the surface of the
large triangle. The rest of this section presents NMF decomposition of additional WS,
nanotriangles.

We used the NMF implementation in SCIKIT-LEARN version 1.5.2 for the results pre-
sented in this work. Most parameters in the NMF algorithm were kept at their default
values, with two exceptions. First, the solver parameter was set to 'multiplicative up-
date,” as it provided significantly better and faster results compared to the 'coordinate
descent’ option. Second, the maximum_iterations parameter was set to 10°, which we
confirmed is sufficiently large to ensure convergence for all cases relevant to our analy-
sis.

D.2.3. VALIDATION OF THE NMF ABUNDANCE MAPS FROM EELS POINT
SPECTRA

To further confirm the presence of the features identified by the endmembers of the NMF
decomposition and their abundance, we compare the NMF abundance maps to EELS
point spectra selected in areas of the specimen corresponding to high and low abun-
dance in the NMF maps. In Fig. D.10 we compare the abundance maps of components
2 to 4 as provided in the main text in Fig. 5.2, where the locations of the plasmon modes
associated to the relevant endmembers are indicated by the grey dotted vertical lines. In
all three cases considered, we clearly observe the presence of the expected features in
the EELS point spectra taken from areas of high abundance, as well as the absence or
significant reduction of the same features in the point spectra taken from areas of low
abundance.
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Figure D.5: NMF decomposition of the stacked WSy nanotriangles. (a-d) The abundance maps (left) and
endmembers (right panel) of the first four components of the NMF decomposition from the stacked WS, nan-
otriangles, same as Fig. 5.2 now with the results of Gaussian fits to the endmembers (right panel). The dashed
Gaussians in component 1 represent crystal-structure specific features such as excitons. The shaded Gaus-
sians in components 2-4 indicate the characteristics energies of the plasmonic resonance modes of different
order. (e) Same as (a-d) now for the fifth component of the NMF decomposition, which can be associated to
the 2nd-order resonance mode of the smaller triangle as shown in Fig. D.15. All vertical axes are uniformly
scaled. Scale bars represent 200 nm.
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Figure D.6: NMF components from energy window 2.0 to 4.0 eV. (a) Component 1 represents the bulk WS
spectrum. (b) Component 2 represents the 4th-order resonance mode of the large triangle and possibly the
3rd-order resonance mode of the small triangle. (c) Component 3 represents the 5th-order resonance mode
of the large triangle and possibly the the 4th-order resonance mode of the small triangle. Scale bars represent
200 nm
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Figure D.7: NMF components of WS nanotriangle with 920 nm side lengths, energy window 0.5 to 2.5 eV. (a)
Component 1 predominantly represents the bulk WS, spectrum. (b) Component 2 represents the 2nd-order
resonance mode. (c) Component 3 represents the 1st-order resonance mode. (d) Component 4 represents the
3rd-order resonance mode. Scale bars represent 200 nm
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Figure D.8: NMF components of WS nanotriangle with 330 nm side lengths, energy window 0.5 to 4.0 eV. (a)
Component 1 predominantly represents the bulk WS spectrum. (b) Component 2 represents the 1st-order
resonance mode. (c) Component 3 represents the 2nd-order resonance mode. Scale bars represent 100 nm
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Figure D.9: NMF components of WS nanotriangle with 8380 nm side lengths, energy window 0.5 to 2.5 eV. (a)
Component 1 predominantly represents the bulk WS, spectrum. (b) Component 2 represents the 2nd-order
resonance mode. (c) Component 3 represents the 1st-order resonance mode. (d) Component 4 represents the
3rd-order resonance mode. Scale bars represent 200 nm
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Figure D.10: Additional validation of the NMF abundances maps with EELS point spectra. The NMF abun-
dance maps of components #2, #3, and #4 extracted from Fig. 5.2 are compared to EELS point spectra taken at
the indicated locations in the specimen (with the same colour labelling the location and the spectrum), which
validate the presence of the specific feature associated to the endmember of the corresponding NMF compo-
nent. (a) The plasmon mode around 1.25 eV in component 2 is present in locations of high abundance (red
and blue markers) and absent in locations of low abundance (orange and cyan markers). (b) The plasmon
modes around around 0.75 eV and 1.0 eV in component 3 are present in locations of high abundance (red and
orange markers) and absent in locations of low abundance (cyan and blue markers). (c) The plasmon mode
around 1.75 eV in component 4 is present in locations of high abundance (cyan and blue markers) and absent
in locations of low abundance (red and orange markers). Scale bars represent 200 nm
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D.3. EELS-GDM ELECTRODYNAMICAL SIMULATIONS

Electrodynamical simulations of the EELS response of WS, nanotriangles for different
morphologies were performed using the PyGDM Python package [2], [3] based on the
Green Dyadic Method (GDM) to calculate the total electromagnetic field within a nanos-
tructure. The simulations used thickness and side lengths obtained from the structural
analysis summarised in Sect. D.1 to define the nanostructure volumes. A hexagonal com-
pact mesh was employed for optimal density, with the simulation environment consist-
ing of the nanostructure placed on a Si3N4 substrate in vacuum.

D.3.1. EDGE DISPERSIONS OF NANOTRIANGLES

The first simulation series involved an energy window of [0.5,2.5] eV focusing on plas-
monic edge dispersion along the edges of the nanotriangles, as shown in Fig. 5.3 of the
main text. Figs. D.11 and D.12 present a complete comparison of edges dispersions,
showing both experimental data and simulation for corresponding edges.

In Fig. D.11, the three edges of the stacked WS, nanotriangles are analysed. Due to
the small triangle’s proximity to the large triangle’s edges, thickness influences on plas-
monic resonances are observed. Figs. D.11a,b show the experimental edge dispersion
and simulation of the upper edge, with the latter mirroring Fig. 5.3b in the main text.
Overall, there is good agreement between the experimental dispersion and simulation,
with the exception of a 1 eV feature in the experimental data, which is not captured by
the simulation. As noted in the main text, this feature originates from the first-order
resonance of the small triangle, which "leaks" to the large triangle’s edge.

The bottom edge, shown in Figures D.11c¢,d exhibits the significant distortion due to
complete overlap between parts of the small triangle and the large triangle’s edge. The
edge on the right side of the stacked WS, nanotriangles, shown in Figures D.11e,f, has the
small triangle in close proximity to the edge of the large triangle, but without the overlap
as seen on the bottom edge.

Although the simulation captures some interesting distortions, many finer details are
obscured in the experimental data by the scattering continuum. The 1.25 eV resonance
in the edge of the right side of the stacked WS, nanotriangles appears diagonally dis-
torted due to thickness differences on each side of the edge. Comparing this with the
experimental data, we observe a similar distortion, although leaking of the first-order
plasmon mode from the small triangle to the edge of the large triangle may also con-
tribute to the appearance of the distortion, as observed on the other edges.

The edge dispersions of the other nanotriangles are presented in Fig. D.12. As the
morphologies of these triangles are symmetric, only a single edge was simulated and
compared with the experimental data. The experimental edge dispersions show good
agreement with the simulated results across all three samples.

D.3.2. EELS PROBABILITY MAPS

Similar to Fig. 5.4 in the main text, we compare the abundance maps of the additional

nanotriangles and their resonances modes with the simulated EELS probability maps.
In Fig. D.13d, the second-order resonance shows a high probability at the centre of

the triangle, though this feature is not captured in the decomposition-based abundance

map shown in Fig. D.13b.
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Figure D.11: EELS edge profiles of stacked WS2 nanotriangles. (a,b) Experimental and prediction of the upper
edge profile. The experimental data shows a 1 eV feature along the edge originating from the smaller triangle
on top, which is not captured in the simulation. The A-exciton at 1.9 eV is clearly visible in both experimental
and simulated data, though the detailed split present in the simulation in not observed in the experimental
data. (c,d) Bottom edge, illustrating thickness effects. The 1.75 eV feature becomes noticeably more intense,
as represented in both experimental and simulation data. (e,f) Rightmost edge, with parts of the small triangle
in close proximity to, but not overlapping with, the egde of the large triangle. This results in a distorted edge
profile similar to the upper edge in (a) and (b), with notable differences. The 1 eV resonances from the small
triangle appears with greater clarity here. All plots are normalised with their respective maximum values.
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Figure D.12: Edge dispersions of the other three triangles. (a,b) Experimental and prediction for the edge
profile of the 920 nm triangle. Due to the lower spectral resolution, the experimental data is less detailed than
in Fig. D.11. (c,d) Experimental and prediction for the edge profile of the 330 nm triangle. The two plasmonic
resonances observed near 1.75 eV and 2.7 eV in the experimental data correspond well with the simulation.
(e,f) Experimental and prediction for the edge profile of the 880 nm triangle. All colour bars are normalized to
their respective maximum values.
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In Fig. D.14f, the third-order resonance appears notably different from other third-
order resonances. Likely due to the increased thickness of the nanotriangle, the central
region exhibit a much higher probability. This higher probability is partially reflected in
the abundance map in Fig. D.14c, albeit at a lower intensity than seen in the simulation.
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Figure D.13: EELS probability maps of localised plasmon resonances in a 330 nm nanotriangle. (a,b) Abun-
dance maps of the 330 nm nanotriangle. The energy loss values for the modes derived from the endmembers
are: a1.78 eVandb 2.68 eV. (c,d) Corresponding simulated maps. The simulation intervals are: ¢ [1.65,1.85] eV
and d [2.6,2.8] eV. All scale bars are 100 nm.

D.3.3. POTENTIAL LIMITATIONS OF THE SIMULATION MODEL

Given that the WS, nanostructures considered in this work are CVD-grown, small imper-
fections such as asymmetries or structural defects are naturally present. In the Py"GDM
simulation model used here, these natural imperfections are not accounted for. This
choice is based on the rationale that residual crystal imperfections are not expected to
have a qualitative impact on the features being simulated.

While the rasterization and spectral bin sizes in the simulation were matched to the
EELS experiments for an accurate one-to-one comparison, microscope conditions such
as lens aberrations are not included in the numerical simulation. Specifically, the in-
coming fast electron is assumed to be perpendicular to the specimen, with an energy of
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Figure D.14: EELS probability maps of localised plasmon resonances in an 880 nm nanotriangle. (a-c) Abun-
dance maps of the 880 nm nanotriangle. The energy loss values for the modes obtained from the endmembers
are: a 0.87 eV, b 1.26 eV and c 1.69 eV. (c-e) Corresponding simulated maps. The simulation intervals are: d
[0.7,0.9] eV, e [1.1,1.3] eV and f [1.65,1.85] eV. All scale bars are 200 nm.

200 keV and no broadening function applied. Nevertheless, due to our data-driven ma-
chine learning approach to remove the zero-loss peak, these simplifications do not intro-
duce any practical issues for interpreting the numerical simulation outcomes in terms
of the underlying plasmonic dynamics.

Regarding the mathematical framework underlying the ryGDM simulations, as stated
in Wiecha et al. (2022) [3], additional losses described by the so-called bulk loss proba-
bility, proportional to the thickness of the traversed material and the imaginary part of
1/&(w), are not included. Given that our specimens are relatively thin and these effects
do not significantly influence the edge-localised plasmonic resonances, no qualitative
impact on the interpretation of the results is expected.
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Figure D.15: EELS probability maps of localised plasmon resonances in a 680 nm nanotriangle. (a,b) Abun-
dance maps of the 680 nm nanotriangle. The energy loss values for the modes obtained from the endmembers
are: a 1.02 eV and b 1.54 eV. (c,d) Corresponding simulated maps. The simulation intervals are: ¢ [0.9,1.1] eV
and d [1.4,1.6] eV. All scale bars are 200 nm.
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Figure D.16: EELS probability maps of higher order localised plasmon resonances in the 680 nm and 980 nm
nanotriangle. (a,d) Abundance maps of the stacked WS, nanotriangles, displaying high-order plasmon res-
onances. The energy loss values for the modes obtained from the endmembers are: a 2.09 eV and 2.65 eV.
(b,c,e,f) Corresponding simulated maps for the modes shown in (a) and (d). The simulation intervals are: b
[2.05,2.25] eV, ¢ [2.1,2.3] eV, e [2.5,2.7] eV and f [2.6,2.8] eV. The higher order resonance modes of the small
triangle, although present in the same energy range, are most likely mixed with the saturation seen in the sim-
ulation maps of the large triangle. As a result, although the abundance maps do show hints along the edges of
the resonance modes of the small triangle, the nodes are not distinct enough to extract the edge profiles. All
scale bars are 200 nm.
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D.4. EXTRACTING EDGE MODES IN WS, NANOTRIANGLES FROM
NMF

The values of the energy loss associated to each of the identified edge-localised plas-
monic modes are obtained by fitting the endmembers of the NMF components with
Gaussians functions, as shown for illustration in Fig. D.5.

In order to extract the phase shift and wavenumbers of the edge modes in the WS,
nanotriangles, we model the system as a linear Fabry-Perot cavity of length L [4], where
the incident plasmon wave reflects at the cavity boundary with a phase shift ¢. In this
model, the incident and reflected localised plasmonic resonances waves can be expressed
as plane waves:

E; = /M), (D.3)

E, =|r|ekCL=2 g0 (D.4)

Assuming a reflection coefficient |r| = 1, the total electric field Eiytq is the sum of the
incident and the reflected waves:

Etotal — eik(x—xo) + eik(zL—(x—xo))eiw . (D.5)

Rewriting Eoq1 in the terms of sine and cosine components, we get:

E? [cos(k(x—xo))+cos(2kL—k(x—Xo)+¢)] +[sin(k(x— xg)) +sin(2kL— k(x— xo) +¢)]?

total —

The wavenumber k;, is related to the phase shift ¢ by the following relation:
knL=nm—¢. (D.6)

By fitting Eq. (D.6) to the edge profiles obtained from the NMF abundance map, we can
obtain the phase shift ¢ and thereby calculate the wavenumbers k, of the associated
edge modes.

Fig. 5 in the main manuscript, it was shown how the experimental measurements
of the dispersion relations of the plasmonic modes are well described by a quadratic
model, as expected from surface plasmon characteristics. In Fig. D.17 we add to Fig. 5.5
also the results of a linear fit. It is clear from the data versus model comparison that the
linear fit is insufficient to describe the observed values of the dispersion relations for the
resonance modes, further validating its plasmonic interpretation.

The Fabry-Perot interpretation assumed here is thus consistent with the quadratic
dispersion that is expected for edge-localised plasmonic resonances [5], [6]. Together
with the excellent quantitative agreement between the observed abundance maps and
the associated PYGDM electrodynamical simulations, this dispersion relation analysis
provides corroborating evidence for the plasmonic nature of the observed modes. We
note that WS, in particular, and TMDs in general, are known to display metallic-like
behaviour along the edges due to exposed transition metal atoms [7]-[10]. The resulting
metallic-dielectric interface provides favourable conditions for the formation plasmonic
resonances, similar to noble metal structures.

Other standing wave phenomena such as Whispering Gallery Modes (WGM) have
been observed in both dielectric and metallic nanoparticles [11], [12]. However, WGM
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require high-rotational symmetry (e.g. circular or spheric) to appear, which is not present
in the nanotriangle geometry under consideration. Furthermore, WGM are not expected
to follow a quadratic dispersion relation. Likewise, while Mie resonances often associ-
ated to dielectric particles can support multipolar modes, their dispersion relation is not
inherently quadratic and also they are typically volumetric and lack strong edge locali-
sation.
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Figure D.17: Linear fit to the dispersion relation. Same as Fig. 5 in the main manuscript, now with the addition
of a linear model fit. The linear model (R? = 0.95) describes the experimental measurements of the dispersion
relations of the plasmonic modes markedly worse than the default quadratic model (R? = 0.98) .

D.4.1. ADVANTAGES OF NMF OVER CONVENTIONAL INTENSITY MAPPING
METHODS

In Fig. D.18 we compare the edge mode profile obtained from NMF-derived abundance
mapping to that from conventional integrated intensity mapping, using the fifth-order
resonance mode of the large triangle as an example. The abundance map from NMF
decomposition reveals the modes of the resonance mode much more clearly than the
integrated intensity method, which does not resolve the nodes as well and make it dif-
ficult to fit the profile accurately with Eq. (D.6). Using NMF decomposition provides
unambiguous energy loss values and a well-defined map profile, offering a clearer in-
terpretation of resonance modes and their spatial distribution compared to traditional
intensity mapping methods.
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Figure D.18: Comparison of NMF-based abundance mapping with integrated intensity mapping. a) Edge
profile of the fifth-order resonance mode of the large triangle as shown by the abundance map (inset) derived
from NMF decomposition. b) Edge profile of the same resonance mode obtained by integrating the EELS
intensity over the energy window from 2.3 to 2.6 eV where the fifth-order mode is present.
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