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to Predict Temporal Debris Flow Susceptibility

in an Alpine Environment
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D. Prenner’ (2, R. Kaitna'

YInstitute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna, Austria, *Water
Resources Section, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands

Abstract Debris flows are typically triggered by rainfall-related weather conditions—including
short-duration storms and long-lasting rainfall, in cold climates sometimes in connection with intensive
snowmelt. Given the considerable observational uncertainties of rainfall, we tested if other
hydrometeorological variables carry enough information content to compensate for these uncertainties and
if the combined information of hydrologic catchment state and rainfall can be used to predict the

regional temporal susceptibility for debris flow initiation. For this we carried out a probabilistic analysis of
variables derived from a conceptual hydrological model for the Montafon region, Austria, where debris flows
were recorded on 41 days between 1953 and 2013. Exclusively from hydrological characteristics and,
importantly, neglecting precipitation itself, we quantitatively determined different trigger types for historical
debris flows. Subsequently, we used four Naive Bayes classifier models, ranging from a simple rainfall-only
model to a multiparameter hydrometeorological model differentiating between trigger types, to predict
days susceptible for debris flow occurrence in the region. The results suggest that debris flows were triggered
by convective rainstorm events on 23 days, on 12 days due to gradual soil moisture buildup in the course of
long-lasting rainfall events and on six further days snowmelt played an important role. We find that the
differences between the trigger types are statistically significant and that a susceptibility prediction
differentiating between trigger types and including hydrological information can outperform simple
rainfall-only models. This study thereby contributes to an improved understanding of the
hydrometeorological impact on debris flow initiation in a mountain watershed.

1. Introduction

Debiris flows are geomorphologic processes that drive mountain landscape evolution over long time scales
(e.g., Stock & Dietrich, 2003) but may represent a hazard for people, settlements, and infrastructure at shorter
time scales (e.g., Ballesteros-Canovas et al., 2016). Besides earthquakes, volcanism, or dam break floods, pre-
cipitation is the most frequent trigger of debris flows. Triggering precipitation may origin from long-lasting
rainfall (LLR) or short-duration storm (SDS) events that are mostly associated with convective processes
(e.g., Berti et al., 1999; Church & Miles, 1987; Mostbauer et al., 2018; Stoffel et al., 2011). In addition, intense
snowmelt (SM) can play a considerable role for debris flow initiation in cool regions (Cardinali et al., 2000;
Church & Miles, 1987; Mostbauer et al., 2018; Stoffel et al., 2011). Notwithstanding considerable progress over
the past years, reliable regional predictions of debris flows remain problematic and need to be improved to
reduce human and economic losses (cf. Bogaard & Greco, 2016, 2018).

Similar to and sometimes in combination with shallow landslide initiation, many approaches to predict debris
flow occurrence are based on threshold-value-concepts, which attempt to identify typical precipitation char-
acteristics, such as total rainfall amount over a specific period, rainfall intensity, or rainfall duration, that lead
to initiation of debris flows (cf. Guzzetti et al., 2007, 2008, and references therein). As pointed out by
Leonarduzzi et al. (2017), a common problem of precipitation-threshold concepts is the objective definition
and meaningful validation of a threshold value without considering rainfall events that did not trigger an
event. Probabilistic thresholds represent an alternative approach and have been successfully applied for shal-
low landslides by Frattini et al. (2009), Brunetti et al. (2010), Berti et al. (2012), and Braun and Kaitna (2016).

By considering the hydrological history of a watershed, Crozier (1999) presented the Antecedent Water Status
(AWS) model to account for the hydrological susceptibility of a watershed for landslide occurrence. The term
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susceptibility here reflects the notion that the temporal varying hydrological catchment states may influence
the critical water input needed to trigger a landslide. The idea of the AWS model was that less rainfall input is
needed to trigger a landslide when antecedent soil moisture is high. The method conceptually and in a very
simplified manner mimics soil storage behavior under consideration of rainfall input, evaporative fluxes, and
drainage. The model considers both, antecedent water accumulation over 10 days and event-day water to
derive a critical soil-water-content threshold for debris flow occurrence. Ciavolella et al. (2016) further
extended this concept by applying a conceptual rainfall-runoff model to reproduce the water balance of a
catchment and derive a threshold curve based on event precipitation and some metric of catchment storage.
Prediction performance was slightly better compared to intensity-duration (I-D) threshold curves and charac-
terized by a higher number of correctly predicted debris flows (true positives) but also considerably more
incorrectly predicted debris flow events (false positives). Meyer et al. (2012) introduced a hydrometeorologi-
cal I-D curve by considering critical water supply from two sources (SM and rainfall), which improved the per-
formance especially for detecting debris flow initiation during spring time.

A general shortcoming of the concepts that rely on observed precipitation data is a result of the spatiotem-
poral heterogeneity of precipitation (Chaubey et al., 1999; Shah et al., 1996; Singh, 1997), which is commonly
not captured by even a dense network of meteorological stations (e.g., Hrachowitz & Weiler, 2011).
Nikolopoulos et al. (2014) investigated the propagation of rainfall measurement uncertainties into resulting
I-D thresholds curves and showed that uncertainties increase with decreasing rainfall duration.
Leonarduzzi et al. (2017) address this issue by deriving probabilistic rainfall thresholds for shallow landslide
initiation from a novel data set of gridded rainfall (2 x 2-km resolution) on a daily basis. Even remote preci-
pitation observation technologies like geostationary satellites, weather radar, or cellular communication net-
works sometimes face problems in detecting regional, short-duration, convective rainfall events (Devoli et al.,
2015; Leijnse et al., 2007; Llasat et al., 2005; Marra et al., 2014; Salio et al., 2015) and have been available for
merely a very limited time period, frequently including no or only a few debris flow events.

Although debris flow initiation itself is a highly local phenomenon, the hydrometeorological formation pro-
cesses that ensure sufficient water input into the system and lead to debris flows may be clearly identifiable
at larger scales. We expect that the formation processes exhibit distinct signatures that can serve as a proxy
for unrepresentative precipitation observations on a regional scale but without giving detailed spatial infor-
mation of the subcatchment(s) in which debris flow(s) may be initiated. For example, a LLR event is mostly
based on the frontal movement of air masses of different temperatures and may also develop thunderstorms
at the fronts (e.g., Ahrens, 2008; Houze, 2014; Haeckel, 2016). Effectively large-scale stratiform clouds and rela-
tively low mean daily temperatures prevail (e.g., Rulfova & Kysely, 2013). In contrast, SDSs origin from convec-
tive lifting of moist air (Ahrens, 2008). They occur much more localized at higher mean temperatures and
show strong updraft movement rates of air masses, which can lead to larger precipitation elements (i.e., rain-
drops) and even hailstones (e.g., Ahrens, 2008; Houze, 2014). Orographic lifting can enhance this effect
(Haeckel, 2016). For the formation of SDS, the soil moisture-atmosphere coupling plays an ambivalent role.
While transpiration from wet soils bundles latent heat, the warming over dry soils generates sensible heat,
which both provide the necessary energy to start a convective process (Ford et al., 2015). Combined, some
or ideally all of the above factors may hold sufficient information to infer, within some limits of uncertainty,
the probability of LLR or SDS occurring on a given day, even if rainfall was not explicitly recorded.

Characteristic signatures of these different meteorological processes can be found in the evolution of the
hydrological state of a catchment during the days preceding these processes. A steady increase of soil moist-
ure over several days can be expected to be a result of generally wet conditions, with prolonged periods of
relatively low intensity water input due to either LLR or SM. Similarly, decreasing soil moisture over some days
before a rainfall event may be interpreted as a signal for SDS. The driving force behind this soil moisture
reduction is evapotranspiration (Hargreaves & Samani, 1982) Thus, high potential evapotranspiration rates,
a consequence from the associated solar energy input, some days before the rainfall event, provide evidence
for the presence of sufficient energy supply to start a SDS event. In contrast, a continuous decrease of poten-
tial evapotranspiration can result from clouds blocking the energy input, which rather suggests an LLR event.
Eccel (2012) found that the daily minimum temperature is an adequate approximation for the dew point tem-
perature (i.e., the temperature at which clouds form) in humid Alpine climates. Hence, the difference between
maximum and minimum air temperature (temperature span) is much smaller when LLR prevails than at days
where a SDS begins to form (Haeckel, 2016). Likewise, an unambiguous sign for considerable influence of SM
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- event, without the need for actual precipitation observations and the asso-
Figure 1. Overview of the study region Montafon, Austria, including ciated uncertainties and that (3) the hydrometeorological signatures are
elevation distribution, location of observed debris flow deposition, robust enough to be used for a probabilistic regional prediction of a

measurement station locations (precipitation, temperature, and runoff), the  region’s temporal susceptibility to debris flows occurrence. We use a semi-

six precipitation zones (Thiessen-Polygon decomposition of precipitation
stations), and the hydropower-undisturbed catchment Litzbach which was
used for calibration (red boundary).

distributed, process-based hydrological rainfall-runoff model to obtain
estimates of daily catchment states and fluxes of the study region. With
a Bayesian analysis we identify different trigger regimes and establish cri-
teria to classify the catchment state into different trigger types LLR, SDS
and SM. A similar trigger-type definition has already been proposed by Merz and Bléschl (2003) for flood
events. Finally, we use a Naive Bayes model to perform a trigger-type separated prediction of temporal debris
flow susceptibility on the basis of multiple hydrometeorological variables.

2. Study Catchment

The Montafon region is located in the western part of Austria and is drained by the lll river (Figure 1). Bounded
by the discharge gauge in Vandans, the study catchment covers an area of 510 km? and an elevation range
from 631 to 3,312 m above sea level (a.s.l). It is influenced by an oceanic climate (Hammerl, 2001), bringing
moist air from the Atlantic Ocean, which results in a mean annual precipitation of 1,325 mm. The geology
consists mainly of metamorphic rock like amphibolite, gneis, and schiest. About 37% of the Montafon region
is covered by grassland, 31% by forest, and 25% by bare rock/sparsely vegetated areas at high elevations,
including 2% glacial areas in the south. The remaining 7% represent the riparian zone adjacent to the channel
system. A major part of the catchment is affected by water diversion and/or (pumped-)storage hydropower
plants. Only the subcatchment of the Litzbach (100 km? at gauge Schruns), characterized by a nival regime
(according to Mader et al., 1996) with highest discharges in June, July, and May, has undisturbed runoff con-
ditions and is subsequently used for calibration of the hydrological model in this study. In the region, local
authorities documented 78 damage-causing debris flow events since the year 1900 by known deposition
location and date.

3. Methodology

The experimental setup for this study involved four steps as displayed in the flow chart of Figure 2. At first a
semidistributed hydrological model was calibrated for the undisturbed Litzbach catchment and run for the
Montafon catchment to generate estimates of water storage in different compartments of the system (see
sections 3.2 and 4.1). We assume that the variety of hydrological state and flux variables (e.g., soil moisture,
SM, and evapotranspiration) together with meteorological information of precipitation and temperature dis-
plays a holistic representation of the catchment condition on a daily basis. In step two, a Bayesian analysis of
debris flow trigger probabilities conditional on the above hydrometeorological variables as well as their
change over time was used to detect characteristic signatures associated with the occurrence of debris flows
in the study region (see sections 3.3, 4.1, and 4.2). The derived pattern allowed a classification of the observed
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Figure 2. Flow chart of the introduced procedure and link to the relevant sections.

debris flows into the three trigger classes LLR, SDS, and intense SM, which was done in step three (see
sections 3.4, 4.2, and 4.3). In the final step four, the above classification was used to predict the
hydrometeorological susceptibility for debris flows occurrence on a specific day as a function of a range of
hydrometeorological variables (see sections 3.5 and 4.4).

3.1. Available Data

For the analysis, we use data on a daily basis of stations operated by the Austrian Central Institute for
Meteorology and Geodynamics (ZAMG), Hydrographic Service (HD), and hydropower plant company
lllwerke. The model period was from 1 January 1953 to 31 December 2013. Precipitation was recorded at
six stations (Figure 1), which are located in Schruns (660 m a.s.l), Gallenkirchen (860 m a.s.l), Silbertal
(880 m a.s.l), Partenen (1,028 m a.s.l), Vermunt (1,735 m a.s.l), and Obervermunt (2,045 m a.s.l). Note that
the stations are located on easily accessible places and some distance from the suspected initiation zones
of the observed debris flows. Precipitation sums were registered at 7 a.m. each day instead of ideally at mid-
night, which introduces some uncertainty in the analysis as stated by Peres et al. (2018). A Thiessen-Polygon
decomposition was used to delineate the areal extend of each precipitation zone, thereafter used as distrib-
uted moisture input into the model (e.g., Euser et al., 2015). Temperature measurements were available at
three stations. For the HD operated stations, mean daily air temperature had to be approximated from obser-
vations at 7 a.m., 14 p.m., and 21 p.m. using the Kaemtz method (Dall’Amico & Hornsteiner, 2006). Runoff data
for model calibration were available from 1 January 1976 to 31 December 2013 for the Litzbach, because this
gauge was not affected by hydropower diversion. All over the study region 78 debris flow events were
observed on 38 days between 1956 and 2013, without detailed information on the mechanism or the loca-
tion of initiation. In our analysis, we were able to cover 41 event days since events at the same date but in
different precipitation zones were counted separately. Following this division, Gallenkirchen had the most
event days (21), followed by Partenen (12), Schruns (4), Silbertal (3), and Vermunt (1). No debris flow event
was registered in zone Obervermunt. For defining the individual response units of the hydrological model
we used the CORINE Land Cover data set from 1990 (European Environment Agency, 2014), a 10 x 10-m digi-
tal elevation model (vogis.cnv.at), 10 X 10-m height-above-nearest drainage map (Renn¢ et al., 2008), and a
glacier distribution map of 1969 (Patzelt, 2015).

3.2. Hydrological Model

3.2.1. Model Structure

The hydrological catchment state was modeled on a daily basis with a process-based, semidistributed
rainfall-runoff model (e.g., Fovet et al., 2015; Nijzink et al., 2016) written in C and run on high-performance
computers of the Vienna Scientific Cluster. Figure 3 shows the model structure that includes several
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Figure 3. Structure, fluxes, and reservoirs of the hydrological rainfall-runoff model, which was applied to each precipitation zone. Ej,¢ = elevation resolved
interception evaporation; P,j, = elevation corrected liquid precipitation; Psnow = elevation and seasonal corrected snowfall; i« = elevation resolved interception
reservoir; Ssnow = elevation resolved snow reservoir; Sq = elevation resolved glacier reservoir; Pefr = effective precipitation; M = snow Mgy and glacier melt; E; = soil
evapotranspiration; S, = soil reservoir, qs, = flux into soil reservoir; gpref = preferential flow; gperc = percolation into groundwater reservoir Sg; goyer = €xcess
overland flow; S¢ = fast responding reservoir; gsq, = fast soil reservoir drainage; grjp = groundwater flux into riparian zone; gras; = fast runoff component;

Gbase = baseflow from groundwater; ggeep = deep groundwater loss; Q = channel runoff.

storage components, representing snow and glacier, interception, unsaturated soil, fast responding, and slow
responding system components individually for each precipitation zone. To ensure a balance between
necessary spatial detail of the model and available data to meaningfully constrain the model parameter
space (Hrachowitz & Clark, 2017), the model domain was discretized into six individual precipitation zones,
which corresponds to the highest resolution of available information on precipitation (as the main driver
for debris flow initiation). In addition, each precipitation zone was further subdivided into four hydrological
response units to distinguish between different response dynamics of forest, grassland, sparsely
vegetated/bare rock, which represents hillslope units on the one hand and riparian zones with shallow
groundwater tables (and thus little unsaturated storage capacities) on the other hand (cf. Savenije &
Hrachowitz, 2017). The classification into the hillslope and the riparian zones was based on the height-
above-nearest drainage concept (Gharari et al,, 2011), with a threshold of 3 m to distinguish between the
classes (Gao et al, 2014). Further, elevation was stratified into bands of 100 m to better account for
altitude dependent quantities like precipitation, temperature as well as thereof related processes like SM
(Gao et al, 2017; Rolland, 2003; Sevruk, 1997). In total, the model represents 23 individual, parallel
components. The modeled flux and state variables (e.g., SM and soil moisture) of the 23 components are
area weighted to obtain representative values for the individual precipitation zones as well as for the
entire catchment (e.g., modeled runoff, which is used for calibration). Calibration parameters were defined
for each hydrological response unit individually (e.g., Gao et al,, 2016; Gharari, Hrachowitz, et al., 2014),
except some globally valid parameters like the freezing point and temperature lapse rates (see supporting
information Table S1). All differential water balance equations are discretized using the implicit Euler
scheme to minimize the impact of numerical distortions on the results (Kavetski & Clark, 2010, 2011;
Kavetski et al., 2006). The equations are then solved by using the Newton-Raphson iteration approach
(Ypma, 1995). A complete description of the model including all relevant constitutive relations is provided
in supporting information Text S1.

3.2.2. Model Calibration

The calibration period ranged from 1 January 1978 to 31 December 2013 and 2-year warm up period preced-
ing the calibration period. The model uses 44 calibration parameters, 6 of which are required for the error
model. The uniformly distributed prior as well as the posterior distributions of all parameters can be found in
Table S1 of the supporting information. For calibration, we applied a differential evolution adaptive metropo-
lis sampler, which enabled an efficient sampling of the posterior distribution (Vrugt, 2016; Vrugt et al., 2008).

PRENNER ET AL.
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For our application, we specified 16 Markov chains for performing a random walk to detect the global optimal
parameter set. The likelihood function, stating the probability that the observed runoff could be reproduced
with a sampled parameter set, was determined by a standardized skew exponential power distribution com-
bined with a Box-Cox transformation. The residual errors of the objective function are hence quantified not
only by the mean and variance but also by the kurtosis and skewness of the distribution (Schoups & Vrugt,
2010). Heteroscedasticity in the input data was considered by a linear relationship between variance and
increasing runoff. Similar to Gharari, Shafiei, et al. (2014), we applied soft parameter constraints (e.g., intercep-
tion capacity is larger in forests than in grassland). The differential evolution adaptive metropolis sampler
algorithm was run for 35,000 generations using the Vienna Scientific Cluster. The hydrological simulation
of the complete Montafon region was subsequently carried out with the calibrated parameter set determined
for the Litzbach subcatchment. We considered the uncertainties of the hydrological modeling by simulating
the study region with 100 different model parameter sets, randomly sampled from the parameters
posterior distributions.

To ensure the robustness of the posterior parameter distributions, the model’s skill to simultaneously repro-
duce several performance criteria and catchment signatures (e.g., Euser et al., 2013; Hrachowitz et al., 2014)
was evaluated postcalibration by sampling 100 model parameter sets from the posterior distributions and
computing the Nash-Sutcliffe efficiency (NSE) of flows (Nash & Sutcliffe, 1970), the NSE of the logarithm of
flows NSElog, the volumetric efficiency (VE; Criss & Winston, 2008), and the NSE of the flow duration
curve (NSEFDCQ).

3.3. Hydrometeorological Trigger Probabilities

We applied Bayes’ theorem (Bayes & Price, 1763) to compute trigger probabilities for the time series of hydro-
logical model states and flux variables, meteorological input variables rainfall and temperature, and their
temporal derivatives, sums, and averages:

P(E)*P(x;|E)

PEN) ==

M

Analog to Berti et al. (2012), equation (1) can be simplified to yield equation (2), which expresses the ratio
between the number of occurrences of magnitude x;in connection to debris flow events Ny, ¢ and the total
number of occurrences N,:
Ny,
P(E|x;) = /\X/" 2)

Xi

The complete value range of a hydrometeorological variable over the simulation period was discretized into
percentile classes (bin size five) for each precipitation zone before they are evaluated according to equa-
tion (2). For a catchment wide comparison (all six zones analyzed at once), we aggregate the items of the
same percentile bins over all precipitation zones and consequently run equation (2) for each bin of the newly
generated data set. This approach allowed a better comparison of different parameter value ranges across
the precipitation zones (e.g., an extremely high temperature value measured at a mountain site likely displays
an inconspicuous value at a valley station) as well as eased the detection of high trigger probabilities, because
each class contains the same number of items N, (only Ny, ¢ controls the probabilities then). Note that the
latter mentioned feature is not necessarily true when we carry out the analysis for the temporal development
of hydrometeorological variable over multiple prior days, what represents a kind of a two-dimensional
analysis.

3.4. Identification of Debris Flow Trigger Type

It is hypothesized that characteristic signatures can be identified for different hydrometeorological condi-
tions with a combined analysis of multiple hydrometeorological variables, which, in turn, allow a robust clas-
sification of the distinct debris flow trigger mechanisms LLR, SDS, and SM in absence of spatially and
temporally high resolution precipitation information. To test this hypothesis, we explored a range of different
observed and modeled variables that may allow a simplified identification of these hydrometeorological con-
ditions. On the one hand, LLR events are typically associated with a gradual increase of soil moisture content

PRENNER ET AL.
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Table 1
Criteria for the Identification Whether Long-Lasting Precipitation (LLR), Short-Duration Storm (SDS), or Snowmelt (SM) Triggered a Debris Flow Event

Criteria Threshold percentile (threshold value) Trigger-type class

1 Positive 2-day soil moisture gradient > 20-80 (0.16-4.80%/day) LLR
(@) Negative 3-day potential evapotranspiration gradient > 20-50 (0.03-0.12 mm/day) LLR
c Event-day temperature span < 10-50 (2.20-8.40 °C) LLR
Cc4 Negative 2-day soil moisture gradient > 20-80 (0.16-2.16%/day) SDS
c5 3-day mean potential evapotranspiration > 85-95 (2.83-3.96 mm/day) SDS
c6 Event-day temperature span > value from C3 SDS
7 Event-day snowmelt > 93-97 (5.51-25.64 mm/day) SM

due to continuous rainfall. At the same time, it is likely that evapotranspiration rates drop as a consequence of
reduced solar energy input (persistent cloud cover), elevated partial vapor pressure, and maximum
temperatures close to the dew point (Ahrens, 2008; Eccel, 2012; Haeckel, 2016). On the other hand, SDS
events are convective phenomena perceptible by decreasing soil moisture in the time leading up to the
event, due to comparatively high energy input for evapotranspiration (Ahrens, 2008). Contrary to LLR
events, the maximum temperature typically lies far away from the dew point temperature, as a result of
the short formation time and duration of SDS events and the frequently associated shorter duration of
significant cloud cover. Finally, intensive SM is associated with above-freezing temperatures and the
presence of a snow cover.

Based on the above, we formulated three individual criteria for the respective classification of LLR and SDS
and one criterion to capture SM events. The selection of the variables used as criteria was based on an itera-
tive, exploratory approach, guided by the general, simplified pattern described above. Importantly, the actual
threshold values for these criteria were not arbitrarily defined a priori but sampled from a uniform distribu-
tion within a range of respective percentiles that were selected from an explorative-iterative modeling pro-
cess, guided by the outcomes of the probability analysis. An overview of the criteria C1-C7 including the
respective absolute values associated with the above percentile ranges are given in Table 1.

The classification itself was done according to the following procedure: if criterion C7 was met, the trigger-
type SM is assigned. Otherwise, the event was classified either as LLR or SDS, depending on which trigger
met more of the respective criteria. When a clear classification was not possible, we used the event-day
temperature span (C3 and C6) as key criteria. This procedure was repeated 1,000 times, each time sampled
from a uniform distribution of respective parameter ranges. The trigger mechanism assigned to each debris
flow event was the most frequent mechanism identified in the preceding analysis.

It is important to note that we did not use observed station precipitation for the above trigger-type identifi-
cation. Instead, we tested the trigger class assignment for plausibility by comparing it to the station precipi-
tation on the event days for the respective classes. To test whether the classified events emerge from
different populations as evidence for distinct trigger regimes, we applied the nonparametric Kruskal-Wallis
test (Kruskal & Wallis, 1952). Finally, we compared our classification with a qualitative description of circula-
tion pattern and general weather conditions in Austria provided by federal research institute ZAMG, which
is available back to the year 1999 (zamg.ac.at).

3.5. Determination of Temporal Debris Flow Susceptibility

We define temporal susceptibility for debris flow occurrence in a hydrometeorological and therefore tempo-
rally variable sense; that is, we assume that the hydrological history of the catchment affects the critical water
input needed to trigger a debris flow. Compared to earlier work (cf. Cardinali et al., 2000; Ciavolella et al., 2016;
Crozier, 1999) and building on the above classification into distinct trigger types, we go a step further and
differentiate between susceptibilities for different catchment states and potentially triggering rainfall. We
developed a probabilistic tool for predicting the susceptibility for each day of the study period and tested
whether this method improves the prediction of days susceptible to debris flow events compared to
rainfall-only models. The tool is based on the Naive Bayes classifier method, which calculates the relative
probability that a certain day during the study period belongs to a certain trigger class, based on different
predictor variables. The calculated probabilities cannot be interpreted as debris flow occurrence probabilities,
since for a certain trigger type the method does not include the days where this trigger type prevailed but did
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not lead to a debris flow. In other words, the Bayes classifier only identifies combined catchment states and
rainfall events that are similar to the catchment state and rainfall on days with observed debris flows. These
days have then a high hydrometeorological susceptibility for debris flow occurrence.

The Naive Bayes classifier is given by equation (3) (Heiser et al,, 2015; John & Langley, 1995; Pérez et al., 2009;

Tsangaratos & llia, 2016):

. P(Cj)*ﬂi,i1P(X,"Cj)
z;"{:1 P(q) TP (xilg)

P(cj|x1, ...xn)

3)

where P(c)| x3, ...xp) is the probability that a signature of the catchment state, described by N hydrometeor-
ological predictor variables x5, ...x,, corresponds to the trigger class ¢;. The prior probability P(c)) is the prob-
ability for a given trigger class ¢; to occur, regardless of the catchment state. P(x;| ¢,) describes the likelihood
that the magnitude of predictor variable x; was observed in connection with a debris flow event from that
trigger (or nontrigger, NT) class ¢;. The multiplication of single likelihood quantities relies on the naive
assumption that the predictor variables are conditionally independent from each other. The denominator
acts as a normalizing constant, which ensures that the determined probabilities for the K trigger classes inte-
grate to unity. The highest trigger (or NT) class probability conditional on a given catchment state P(cj| x;, ...
Xn) then provides an estimate whether the prevailing hydrometeorological conditions on a certain day are
similar to catchment states when debris flows occurred in the past.

In addition, to reduce the potentially high number of false positives, a probability threshold is introduced. In
other words, only when the probability of a specific trigger class P(cj| x4, ...x,) exceeds the chosen threshold,
the respective day is assigned to a certain trigger class. Otherwise, that day is classified as NT. In absence of
more detailed information, a range of different thresholds between 55% and 95% were used in this study to
explore and quantify the sensitivity of the results to the choice of thresholds.

Four Naive Bayes classifier models of different complexity were set up for the determination of the hydrome-
teorological susceptibility for debris flows. The simplest model we tested (MP") uses the observed event-day
precipitation as single predictor variable to discriminate between trigger classes debris flow and NT. Model
M™€ corresponds to MP"€ but additionally uses observed mean air temperature to account for the findings
of Stoffel et al. (2011) that debris flow occurrence is connected to air temperatures in the high percentile
range. In contrast, models M"™<® and M"™e differentiate between multiple trigger classes instead of a sin-
gle class debris flow by using additional hydrometeorological predictor variables. MP™e2 accounts for
trigger-type classes LLR, SDS, and NT. Model mhmets additionally accounts for trigger-type class SM. To
describe the characteristics for the trigger classes (which are a combination of catchment state and rainfall
input) as holistically as possible, we used the following set of predictor variables for both hydrometeorologi-
cal models M"™*2 and M"™'3: (1) effective precipitation (mm/day), (2) SM (mm/day), (3) soil moisture at the
beginning of the day (—), (4) mean temperature (°C), (5) temperature span (°C), (6) soil moisture gradient to
the previous day (day’1), (7) soil moisture gradient between the first and the second previous day (day"), (8)
soil moisture gradient between the second and the third previous day (day '), (9) mean potential evapotran-
spiration over three prior days (mm/day), and (10) mean evapotranspiration deficit over three prior
days (mm/day).

The selection of the above variables describing the catchment state was guided by an exploratory-iterative
approach and by the necessary condition for using a Naive Bayes classifier approach that allows only a weak
correlation between the chosen predictor variables as this may influence the classification performance (e.g.,
Chawla, 2009). Here the highest correlation between individual predictor variables was computed between
mean temperature and soil moisture gradient with an R* of 0.76, followed by a R? of 0.42 for mean potential
evapotranspiration and mean evapotranspiration deficit over three prior days, while all others did not exhibit
statistically significant correlations.

All four classifier models were trained and evaluated with independent data sets following a sequential split
sample procedure, similar to k-fold cross validation (Priddy & Keller, 2005). Ideally, for applying the Naive
Bayes classifier method, the members of each class should be equally represented. In our case this would
mean that we would have to use only 41 nonevent days, which may not represent the distribution of catch-
ment states over our study period. This is a general problem when using machine learning approaches and
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might influence the predictive performance (Chawla, 2009). As a compromise we increased the number of
members in the class nonevent days by a factor of five (5 times 41 = 205) to better represent the distribution
of catchment states.

For training, we used around half of each data set, that is, 22 catchment states of days with debris flow occur-
rence and 103 nonevent days. Additionally, we ensured that for model MP™eS each trigger class is repre-
sented by at least four elements to enable the fit of the likelihood probability function P(xj]c). As
validation data set we used the remaining 19 and 102 catchment states, respectively. All elements were ran-
domly sampled across all precipitation zones. We repeated this procedure 1,000 times to consider uncertain-
ties by varying the model training data sets. The training stage of the models includes on the one hand the
determination of the prior probability P(c) and on the other hand the likelihood P(x;| ¢).The latter expresses
the probability that a magnitude x; of predictor i is observed with class ¢; for which we fitted a normal distri-
bution to the sampled training data. However, for precipitation we applied a general extreme value distribu-
tion (McFadden, 1978) since it allowed a much better description of the data (e.g., Bayesian information
criterion 336.6 for general extreme value distribution vs. 377.5 for a normal distribution for event-day
station precipitation).

The remaining 19 debris flow event days and further 103 sampled nonevent days for each of the 1,000
model realizations were in the following used to evaluate the model’s predictive performance by compar-
ing the predicted debris flow trigger (and NT) classes with actually observed debris flows in a binary way,
that is, debris flow occurrence on a given day (yes/no). To quantify and summarize the model skill, receiver

operating characteristic (ROC) statistics of true positive rates (TPR = T,IF—PFN often termed sensitivity) and false

positive rates (FPR = 1 — TNR, where TNR = T,\,T—fﬁ, is the true negative rate and also known as specificity)
were used (Fawcett, 2006). TP is the number of days for which a debris flow was predicted and a debris
flow was actually observed (independent of the trigger class). FN expresses the number of false negative
predictions, that is, the days for which the model failed to predict a high temporal susceptibility even
though a debris flow was observed. Similarly, FP accounts for false positives; that is, a high debris flow
susceptibility was predicted but no event observed, while TN are the true negatives, that is, days for which
a debris flow was neither predicted nor observed. A perfect model yields unity for TPR and a value of 0 for
FPR, which corresponds to an area under curve (AUC) value of 1 when plotting these variables in the 2-D
parameter space. The advantage of the AUC value is that model performance can be expressed by a single
scalar (Fawcett, 2006).

To test whether our susceptibility models represent an improvement for the assessment of debris flow occur-
rence, we compare them with a classic I-D curve approach. To allow a fair comparison, we create specific I-D
curves for our study region from the elements of the training data set and test their performance on the vali-
dation data set, analogs to the procedure of evaluating the susceptibility models. These 1,000 realizations of I-
D curves were created by following a percentile regression approach of using the 10th percentile threshold
(see Guzzetti et al., 2007, 2008; Saito et al., 2010). For the validation we used only rainfall, what means that an
observed station precipitation below 0° air temperature was set to 0 and assumed to occur as snowfall. The
duration was determined by counting the number of consecutively days with a rainfall intensity higher
than 1 mm/day.

4. Results
4.1. Hydrometeorological Conditions and Signatures of Catchment States

The likelihood-based calibration approach for the hydrological model resulted, in postcalibration evaluation,
in comparatively robust performance metrics, with NSE = 0.78 of the best performing model (0.69/0.78;
5th/95th percentile), NSElog = 0.83 (0.77/0.85), VE = 0.76 (0.70/0.78), and NSEFDC = 0.92 (0.84/0.96), indicat-
ing a meaningful representation of the system-internal processes and thus a plausible model formulation and
parameter selection. Figure 4a exemplarily shows the model results for rainfall, snowfall, SM, soil moisture,
and runoff for the year 1999 (including three debris flow event days) at gauge Litzbach. Some deficits exist
in mapping the SM process, which can be even more distinct in other years than shown and which is likely
the consequence of the simple degree-day melt model for snow processes (Hock, 2003) and considerable
uncertainties in wintertime precipitation observations, which can make up to 30% in the study region
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Figure 4. Example of the observed and modeled hydrometeorological variables for the year 1999 of the Litzbach, including station precipitation, snowfall, snowmelt,
soil moisture, and modeled and observed runoff. The dashed lines account for the 5th and 95th percentile uncertainty bounds. The red vertical lines represent the
days on which debris flows occurred (a); precipitation, snowmelt, temperature (daily minimum, maximum, and mean), and soil moisture including uncertainty
bounds around the debris flow event on 4 July 1994, which may be interpreted as short-duration storm (b), on 6 July 1994, which suggests being a long-lasting
rainfall (c) and on 29 May 1999, which may be triggered by intense snowmelt (d).

(Parajka et al., 2005). Nevertheless, the overall good evaluation of the model strengthens our confidence in
the applicability for further analysis.

In Figures 4b-4d we document, in an illustrative example, different hydrometeorological conditions around
debris flow event days, which are shaded yellow. In the first example (Figure 4b) we show the catchment
state around the debris flow on 4 July 1994, where the observed precipitation reached only 19 mm on the
event day. On the days before, the air temperature as well as temperature span increased while modeled soil
moisture decreased due to evapotranspiration, pointing toward conditions typical for a SDS. A different
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Figure 5. Selected hydrometeorological variables for the 41 event days across all precipitation zones in the Montafon
region including the model uncertainties (blue shaded symbols). The red diagonal plots represent median exceedance
probabilities including uncertainty bounds (5th and 95th percentiles as dashed lines) of the respective normalized
parameter values at the event days.

system state emerged for the debris flow event on 6 July 1997, where a prior soil moisture increase due to
continuous precipitation was measured while air temperature and temperature span continuously
decreased, suggesting a LLR as trigger (Figure 4c). In the third example, the debris flow event on 29 May
1999, the role of SM is important, as continuous warm temperatures induced high SM rates and increasing
soil moisture. Note that no precipitation was observed, neither on the event day itself nor on the days before.

A comprehensive overview of the catchment states on the 41 event days is displayed in the scatter matrix in
Figure 5. The selected parameters include station precipitation and mean air temperature, as well as modeled
soil moisture, potential evapotranspiration, and SM. Since the calculations were carried out for each precipi-
tation zone individually, the values are plotted in the dimensionless percentile representation to allow a bet-
ter comparison. Following the diagonal plots in Figure 5, representing the cumulative frequency of the scaled
variables at the days of debris flow occurrence, we find that no precipitation was measured for about half of
the time in the study region including four debris flow event days. For the other events, precipitation on
event days spreads widely over the parameter space. For 13 event days precipitation below the 70th percen-
tile (~2.8 mm) was observed. For some debris flow events modeled SM was 0 (rather independent of preci-
pitation or soil moisture), and for some we find SM values above the 40th percentile. There is, similarly, a
clustering of debris flows at temperatures (and related actual evapotranspiration) above the 40th
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Figure 6. Trigger probabilities P(E| x;) to observe a debris flow event E conditional to magnitude x; across the parameter’s i percentile value range for selected
hydrometeorological parameters. The gray lines represent the comprehensive data set from all precipitation zones on the study region Montafon, and the blue lines
exemplarily display the precipitation zone Gallenkirchen, where the majority of the debris flow events occurred. The shaded areas represent the 5th and 95th
percentile uncertainty bounds of the hydrological model. Variables station precipitation, air temperature (mean, maximum, and minimum) and temperature span
(difference between maximum and minimum air temperature) were measured. All other variables were simulated. Effective precipitation represents elevation
corrected precipitation, which is not intercepted. The evapotranspiration deficit is the difference between the potential evapotranspiration and the actual
evapotranspiration. The numbers at the top of each plot designate the median number of events N,, ¢ in a bin and are only plotted when there is on median exactly
one event in a bin as well as when a bin contains on median the maximum number of events.

percentile. Soil moisture on event days widely spreads over all percentile ranges, which does not support the
notion that debris flows occur only at high antecedent moisture conditions. In summary we find for most
variables a wide scatter over the parameter space and no obvious grouping of data. We attribute this
spread to the presence of different meteorological conditions resulting in different hydrometeorological
signatures, which have to be separated before a clearer picture emerges.

4.2. Trigger Probabilities Conditional on Different Hydrometeorological Variables

Figure 6 shows the trigger probabilities P(E| x;) conditional on the magnitudes of different hydrometeorolo-
gical variables on the associated event days for the region Montafon, as well as exemplarily for the precipita-
tion zone Gallenkirchen, which experienced the highest number of debris flows. For a better interpretation of
the trigger probabilities, we plotted the median number of events Ny, | in a bin at the top of each plot when
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Figure 7. Mean trigger probability P(E| x;) to observe debris flow event E conditional to a gradient of variable x; over t days.
A positive gradient means that the parameter value increases over previous t days; a negative gradient means that the
parameter value decreases over previous t days. (The soil melt water fraction expresses the fraction of melt water to the
total water in the soil.)

there is on median exactly one event in a bin as well as when a bin contains on median the maximum number
of events. We find that probabilities mostly show an increasing trend with increasing variable values but do
not exclusively peak only at the maximum of the percentiles. For example, we observe two probability
maxima for recorded station precipitation and effective precipitation at the percentile range 60-70 and
above 95. SM and actual evapotranspiration also show two maxima around the percentiles 50 and again
above 95. The evapotranspiration deficit, calculated as the difference between potential and actual
evapotranspiration, shows a maximum in the lowest percentile range and peaks again at around the 70th
percentile. The minimum and maximum daily temperature exhibit similar trends and peak around the
50th and above the 95th percentiles. The mean air temperature shows even three distinct peaks around
percentiles 50, 70, and above 95. Alternating highs and lows are visible for the event-day temperature
span (difference between event-day maximum and minimum temperature), which may indicate a low-
pressure system at small differences and the disposition for convective rain at high differences. Debris flow
trigger probability with respect to soil moisture content generally increases with increasing moisture and
also show two elevated values in the low percentile range and around the 70th percentile, indicating a
low sensitivity to increased pore pressure in the hillslope. A steady increase of trigger probabilities is
observed with increasing runoff. These scattered pattern importantly show that there is no single typical
catchment state when debris flows are triggered. In the following we try to go a step further and look how
changes of hydrometeorological parameters prior to debris flow events may tell a more consistent story.

In Figure 7 we show trigger probabilities for debris flows conditional to gradients of potential evapotranspira-
tion, soil moisture, and soil melt water fraction up to 5 days prior to the event (always with respect to the
event day). For a better overview, we separated the analysis into the subsets of positive and negative abso-
lute gradients. At the first sight, we obtain a rather scattered pattern with locally high probabilities in the posi-
tive as well as the negative gradient domain. For potential evapotranspiration we find increased trigger
probabilities when positive and negative gradients 3 days before the event are in the high percentile range
(i.e., evapotranspiration [solar input] either dramatically increases or decreases). At the same time, trigger
probabilities increase when soil moisture gradients increase toward increasing positive and negative gradi-
ents. An extreme increase of soil moisture above 80th percentile 2 days before the event shows the most
compact high trigger probability block, ranging from 0.1% to 0.3%. Taken together, this indicates that at least
two types of catchment states start to develop around 3 days before the event occurs. Strongly decreasing
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Figure 8. Mean trigger probabilities P(E| x;) to observe a debris flow event E conditional to a magnitude x; of selected
hydrometeorological parameter i. Parameter i represent either a moving sum over t days, a moving average over t days
or just the parameter at previous day t.

evapotranspiration and increasing soil moisture point toward a LLR, while increasing evapotranspiration and
decrease of soil moisture point toward a SDS. The results for gradients of soil melt water fraction (i.e., the
fraction of melt water to total water in the soil) show generally higher probabilities when soil melt water
fraction decreases. We interpret this with the fact that most of the debris flow events occurred outside of
the SM season where the initially almost saturated soil due to melt water steadily gets drained as well as
mixed by rain water. Therefore, a decreasing fraction of melt water in the soil is observable during most of
the debris flow season.

In Figure 8 we show trigger probabilities P(E| x;) up to 5 days prior to the event for actual, cumulative, and
average values of selected parameters. As expected, we find increased probabilities at the high percentile
range of most variables. The highest mean trigger probability of almost 1% is obtained when the sum of sta-
tion precipitation at the event day and one day prior exceeds the 95th percentile; that is, rainfall is the most
important factor for triggering debris flows in our study region. However, also high percentile ranges of aver-
aged mean and maximum temperatures, actual and potential evapotranspiration increase the probability.
Regarding daily temperature span, we find increased probabilities in the high and in the low percentile range.
In our interpretation, rainfall is the most important but not the only factor for triggering debris flows. For
example, SM and soil moisture can also play a role. Interestingly, trigger probabilities for intensive SM (above
the 90th percentile) are higher at prior event days than on the event day itself. This may be a key for future
analysis to separate between rain-on-snow events and purely SM-triggered events, since the melt rate may
be smaller due to decreased air temperatures in attendance of rain than without.

In summary, these sometimes opposing trends of increased debris flows probabilities conditional to
different hydrometeorological conditions go in line with our hypothesis that different weather conditions
are connected with debris flows occurrence in our study region. In the following section we use the
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Figure 9. Distribution of event-day precipitation (which was not used as classification criteria), mean air temperature,
potential evapotranspiration, snowmelt and soil moisture at event days for each trigger class (LLR = long-lasting rain;
SDS = short-duration storm; SM = snowmelt). The median is marked by a minus symbol, boxes cover the 25th and 75th
percentile ranges, and outliers are marked as a cross symbol.

quantitative information to derive different trigger types using a simplified hydrometeorological
classification scheme.

4.3. Identification of Debris Flow Trigger Types

Based on the procedure described in section 3.4, data suggest that debris flows in the Montafon region were
triggered on twelve days by LLR, on 23 days by SDS and on 6 days by SM (see Table S2 of the supporting
information), consistent with the event days exemplarily shown in Figure 4. Note that using this technique
allows us to identify only the most likely trigger; however, we do not identify distinct threshold values for
the different criteria.

Our simplified classification based on the interpretation of the hydrometeorological parameters of all debris
flow event days that were observed in this period generally reflects well the description of the general
weather conditions federal research institute ZAMG (Table S2). Additionally, we used the observed event-
day station precipitation to check whether the observed triggering rainfall was significantly different for
our trigger classes, as we would expect that LLR events responsible for debris flow initiation to show a high
value of daily rainfall and are well captured by the station network. On the other side, local SDS events might
have lower daily rainfall sums (but higher intensities which we do not measure on a daily basis) and might not
be registered by the station network. Our analysis shows that the median daily precipitation for the LLR class
with 20.3 mm/day was significantly higher than for SDS with 12.0 mm/day (Figure 9). For the trigger class SM
only 0.6 mm/day were recorded by the station network, indicating that only a very low rainfall input is
needed for triggering debris flows when SM is high. We performed the Kruskal-Wallis test (Kruskal & Wallis,
1952) also for variance and skewness for each rainfall class find that the group members emerge from differ-
ent populations (p < 0.01), strongly supporting the notion that different trigger types can be found in our
study region. Three distinct regimes were also found for the mean air temperature, with the highest
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Figure 10. Daily predicted trigger classes marking a temporal debris flow susceptibility exemplarily for the precipitation
zone Gallenkirchen from 1963 to 2013 based on model M™%, A day is colored according to its trigger class ¢;

(NT = no trigger; LLR = long-lasting rain; SDS = short-duration storm; SM = snowmelt) limited to a probability P(cj| X1, --Xp)
of more than 90%. Filled red circles indicate observed debris flows that were correctly predicted (true positives), and
open red circles indicate observed debris flows that were not predicted (false negative).

median for the SDS trigger (17.5 °C), followed by SM (13.25 °C), and LLR (9.8 °C). Initial median soil moisture in
a precipitation zone was highest when SM triggered the event (0.72), slightly drier at LLR trigger (0.68), and its
lowest saturation came along with the SDS trigger (0.53).

4.4, Prediction of Temporal Hydrometeorological Susceptibility

The four Bayesian classifier models, MP™, M™%, MP™et2 and MP™e® were used to predict days with a high
temporal hydrometeorological susceptibility for debris flow occurrence for the complete study period.
Figure 10 exemplary visualizes the daily predicted susceptibility for the model MM for the subregion
Gallenkirchen (which showed the highest number of observed debris flow events) between 1963 and
2013. A day is colored when a susceptibility trigger class ¢; (LLR, SDS, and SM), conditional to the prevailing
hydrometeorological state x;, ...xpyields a probability P(c| x, ...x,) of more than 90%. The results show that
the predicted days of high susceptibility cluster well within the typical debris flow season between April
(about day of year 90) and October (about day of year 270), as reported by many authors (e.g., Badoux
et al., 2009; Stoffel et al,, 2011; Szymczak et al., 2010). During summer months, days with SDS as potential trig-
ger are dominating. Critical LLR occur more preferably offset the hot season. A high susceptibility for a SM
trigger is mostly until the end of May. The distribution parameters for the likelihood P(x/| ¢;), giving the prob-
ability that a magnitude of state variable x; is connected to trigger class ;, is found in Tables S3 (for MP"“ and
M™% and S4 (M2 and MP™e®) in the supporting information.

The performance of the four models was evaluated based on the ROC curve formed by true positive rate (TPR)
and false positive rate (FPR) computed by comparing the model predictions with the subsets of data not used
for model training. Curve vertices (each defined by a TPR and FPR couple) are obtained by stepwise decreas-
ing the probability threshold, which had to be exceeded that a predicted trigger class actually counts as final
predicted class for a state. If the actual probability for a trigger class is below this threshold, it is counted to be
member of the no-trigger class. The initial threshold starts at a value of 95% and ends at relative majority. A
perfect model would plot in the top left corner, which means that both, event days as well as nonevent days,
were recognized and predicted as such. As a measure for model performance we use the AUC number.

Figure 11 shows the ROC curves of the four classifier models. We find that the hydrometeorological models
MP™E2 and MMM perform better than models MP™C and M™®t, which only rely on meteorological data. In
addition, the uncertainty appears lower for the more complex models, which primarily comes from the sam-
pling of nonevent days for the models training and validation data set. The model M"™®3, which
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Table 2

ROC Statistic Model Performance Summary of Median (5th/95th Percentile)
TPR, FPR, and AUC Number for the Independent Validation Data Sets
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Figure 11. Prediction performance of the different classifier models MP"<¢, mmet Mhmem, MhmeB, and specifically estab-

lished intensity-duration curves I-D for the region visualized in the receiver operating characteristic space. True positives
rate refers to the proportion of correctly predicted susceptibility (debris flow event actually occurred in reality); false
positives rate refers to the proportion of falsely predicted susceptibility were no debris flows event observed (false alarm).
Thick solid lines represent the median values, and the dashed lines show the 5th/95th uncertainty bounds of the 1,000
Monte Carlo realizations. For I-D curves median (full circle), 5th and 95th percentiles (open circles) of the false positive
rate-true positive rate value couple are shown.

susceptibility assessment differentiates between triggers LLR and SDS, performs slightly better than the three
trigger class model MP™e® which additionally uses SM, although they use the same predictors (AUC 0.84 for
MP™e2 v 0.82 for M"™). In contrast, MP™S and M™S® perform less with AUC values of 0.65 and 0.77,
respectively. Also, in terms of TPR and FPR hydrometeorological models are advantageous. For a class
assignment based on the relative majority, the model MP™e2 achieves a median TPR of 0.78 while having
a FPR of 0.14. The slightly better performance of the three-class model MP™e2 compared to the four-class
model M"™e may be connected to a limited data availability for SM triggers the training data set. A
detailed summary of the performance statistics for each model is given in Table 2.

We find that AUC values for the I-D curves are in the same range as the susceptibility models MP™ and M™",
The median I-D curve performance shows a TPR rate in the range of M™¢", but this is at expense of a sufficient
FPR. Both hydrometeorological susceptibility models M"™¢2 and M"™e show higher AUC measures. We
conclude that use hydrometeorological assessment for debris flow occurrence has benefits.

Certainly, the shape of I-D curves has a major influence on the perfor-
mance for debris flow detection and is a known challenge in the commu-
nity. (e.g., Gariano et al,, 2015; Leonarduzzi et al., 2017). Usually an I-D

Model

TPR

FPR

AUC

MmPrec
met
hmet2

Mhmet3

I-D

0.48 (0.00/0.95)
0.67 (0.42/0.95)
0.78 (0.58/0.92)
0.73 (0.53/0.89)
0.68 (0.47/0.79)

0.25 (0.00/0.51)
0.17 (0.05/0.31)
0.14 (0.07/0.23)
0.14 (0.07/0.23)
0.20 (0.11/0.29)

0.65 (0.50/0.83)
0.77 (0.66/0.89)
0.84 (0.75/0.92)
0.82 (0.72/0.91)
0.73 (0.66/0.80)

Note. For TPR and FPR we use the relative majority as a threshold that a
predicted debris flow trigger class (DF, LLR, SDS, or SM) counts for a
prevailing temporal debris flow susceptibility. AUC value bases on curve
vertices stemming from a varying probability threshold for a predicted
trigger class that had to be exceeded to count as susceptibility beginning
from 95% to relative majority. Additionally, ROC statistic of specifically
(from the training data sets) generated rainfall intensity-duration curves
were used as threshold between trigger and nontrigger. ROC = receiver
operating characteristic; TPR = true positive rate; FPR = false positive rate;
AUC = area under curve; DF = debris flow; LLR = long-lasting rainfall;
SDS = short-duration storm; SM = snowmelt.

threshold curve becomes more stable when more events are available
for computation (Peruccacci et al., 2017). The I-D curves generated in this
study were based on 22 event rainfalls only, which is a comparably small
number and therefore large uncertainties remain. Nevertheless, for the
initiation of intensive bedload transport, Badoux et al. (2012) report of a
FPR around 40% when I-D curves were fitted in such a way, that TPR is
maximized. Leonarduzzi et al. (2017) note a lack of data consistency
because rain gauges are usually several kilometers away from the trigger-
ing location of debris flows. Further, they mentioned the necessity of
excluding debris flow events when the trigger is different to rainfall like
SM. In addition, it is common practice to exclude debris flow events from
the analysis when no precipitation was measured at all, although its trigger
is water related (e.g., Berti et al,, 2012). Hydrometeorological susceptibility
models may overcome these deficits by accessing diverse information
from the catchment including the hydrological history, which may
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explain their better performance. Moreover, variables like temperature, evapotranspiration, and SM, and to
some extent soil moisture, are more spatially stable compared to precipitation and may give a clearer picture
of the catchment state if it is prone to debris flows. Even if no station precipitation was measured (although
there was one at another part of the catchment, which triggered the debris flow), hydrometeorological sus-
ceptibility models are able to compensate for that, due to pertinent signals in catchment state variables.

5. Discussion

The triggering of debris flows in Alpine regions is the result of an interplay between meteorology-hydrology
and geomorphology (e.g., Borga et al.,, 2014; Gregoretti & Fontana, 2008; Jomelli et al., 2007; Stoffel et al.,
2011). Our study focuses on the connection between weather conditions and hydrological catchment state
at the time when debris flows occur. The 1-D Bayesian analysis indicates that different weather conditions
that lead to different hydrological catchment states are involved for triggering debris flows in the
Montafon region. It is important to emphasize that the models that we developed only predict debris flow
susceptibility in a temporal, hydrometeorological sense and for a large region. We do not focus on a spatially
resolved prediction of debris flow susceptibility on a hillslope or subbasin scale as demonstrated, for exam-
ple, by Berenguer et al. (2015). For our study we can assume that the general geomorphic disposition, like
relief gradient or shape of the subcatchments (e.g., Bertrand et al., 2013; Heiser et al.,, 2015) are constant over
the time scale of our study period. However, other factors like limiting sediment availability, landslide activity
on the hillslope, or weathering processes (e.g., Rickenmann & Zimmermann, 1993; Schraml et al., 2015) were
not considered and may partially explain that the hydrometeorological susceptibility predicted by our model
is high on many days that did not experience debris flows. We also have no information of the mechanism for
the initiation of the debris flows in the catchment, which may range from slope failure to intensive channel
erosion (Rickenmann & Zimmermann, 1993). In other words, we implicitly assume that exclusively hydrome-
teorological conditions control the triggering of debris flows in the study region, while in reality local geo-
morphic conditions are likely to be a limiting factor.

Another limitation, as in all debris flow-related studies, is the largely unobservable spatial heterogeneity of
the study region. Local high rainfall or melt intensities may occur close to channel or slopes and promote
debris flow initiation and are likely to remain frequently unobserved. As Beven, Almeida, et al. (2017) and
Beven, Aspinall, et al. (2017) pointed out, hazard assessment is naturally connected to epistemic uncertain-
ties, which stem from our lack of knowledge of reality. To the same extent these uncertainties can be treated
as aleatory probability distributions of factors influencing the process of interest, but we have to acknowl-
edge that we may underestimate the uncertainties associated with our analysis. For example, the uncertain-
ties connected with a probably incomplete inventory of debris flow events in the Montafon region during the
study period were not considered in our study, and might contribute to a nonoptimal performance of the
susceptibility model (Gariano et al., 2015).

As outlined in section 3, we quantified and included uncertainties in the hydrological modeling and subse-
quent statistical analysis to a large extent by rigorously following probabilistic approaches. In addition, we
tried to compensate for uncertainties stemming from the definition of the classification criteria by repeated
sampling from a wide range, instead of relying on a certain threshold. While the determination of SDS and
LLR is comparatively stable by relying on three criteria, the classification of SM triggered events is based
on only one criterion and may indicate only certain influence on of SM, without separating between a rain-
on-snow and SM-only trigger.

Both measurement deficits of precipitation, particularly of snow (Parajka et al., 2005), and the rather rudimen-
tary described melt process by a degree-day model (Hock, 2003) may result in errors of trigger interpretation.
Also the fact that the conceptual model was majorly calibrated to runoff instead of probably more relevant
variables for debris flow initiation like soil moisture may affect the representation of the hydrological system.
Since no soil moisture measurements were available, we solely relied on runoff measurements. Further uncer-
tainties result from data upscaling of point measurements to a regional quantity valid for the whole precipi-
tation zone (Beven, Almeida, et al,, 2017; Beven, Aspinall, et al.,, 2017). Nevertheless, recorded precipitation
intensity at the event days was significantly different compared among the trigger classes. This finding allows
manifold conclusions. On the one hand, it acknowledges current understanding that LLR, which is a more
large-scale phenomenon (and may include thunderstorms) than a locally forming SDS (Rulfova & Kysely,
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2013) and therefore enables a better capturing of the areal rainfall (Hrachowitz & Weiler, 2011). For SM
triggers, we observed both rain-on-snow events and precipitation absent cases. Based on limited data, we
cannot exclude that for the latter local rainfall events were just not detected. On the other hand, these
different triggering rainfall pattern open the question whether precipitation as the only quantity is
sufficient to predict debris flow hazard or not. This can be critical when establishing classical I-D
thresholds, which are based on precipitation only.

Here we show that the hydrometeorological parameter set offers plenty of signals, which were emitted by
LLR, SDS, and SM that lead to debris flows, without detailing on all possible circulation pattern. The hydrome-
teorological susceptibility models in Figure 11 will potentially serve as a basis for an engineering prediction
tool of regional temporal debris flow susceptibility. For that forecasts of precipitation and temperature (on
the time scale of one to a few days) would suffice as input for the calibrated hydrological model. However,
itis to consider that when maximizing the detection rate, susceptibility models show a, for practical purposes,
rather high FPR, mostly caused by predicted susceptibilities for nonevent triggering SDS. This can either
mean that debris flow occurrence is controlled to a large part by other factors not considered here.
Alternatively, we may have captured the characteristics for SDS trigger insufficiently, which implies the need
of additional variables or a higher temporal resolution since SDS typically last only a few hours, to get a more
precise representation of the catchment state.

6. Summary and Conclusions

In this study, we investigated the hydrometeorological conditions of an Alpine catchment when debris flows
occur and utilized this information to capture temporal, hydrometeorological susceptibility by taking account
different triggers types, namely, LLR, SDS, and SM. First, we set up a process-based, semidistributed rainfall-
runoff model for the region Montafon, Austria, on a daily basis between 1953 and 2013 to gain hydrological
parameters besides meteorological information of precipitation and temperature. Using these results, we
calculated Bayesian trigger probabilities for various hydrometeorological parameters. To determine different
hydrometeorological trigger types (LLR, SDS, or SM) for historically observed debris flow events, we formu-
lated a set of criteria based on rational arguments and the outcomes of the Bayesian analysis. After this
classification, we developed two hydrometeorological susceptibility models for debris flow occurrence using
a Naive Bayes classifier. Its performance was compared with two meteorological susceptibility models as well
as with simple I-D thresholds. The main finding can be summarized as follows:

1. We find that in our study region, debris flows were initiated at a wide range of meteorological and hydro-
logical conditions, and there is no single catchment state that is typical for debris flow occurrence. Rainfall
is the most important factor for triggering debris flows, but the temporal evolution of hydrometeorologi-
cal variables provides insight how critical trigger conditions develop.

2. Signals from different weather conditions guided the definition of criteria that allowed to identify differ-
ent trigger conditions to a given catchment state. We find that debris flows were triggered by LLR on
12 days, by SDS on 23 days, and on 6 days, SM played an important role between 1956 and 2005.

3. Observed station precipitation on the event day significantly differs depending on the prevailing trigger
type. This finding may partly explain the substantial uncertainties that typically come along with I-D
thresholds for debris flows triggering. Similarly, antecedent moisture conditions vary for different trigger
types and may therefore, if used alone, be an unreliable indicator for temporal debris flow susceptibility in
our study region.

4. Debris flow susceptibility models based on combined hydrometeorological information and a trigger-
type resolved prediction, performed better than meteorological models and conventional I-D thresholds.

5. The days of predicted high temporal debris flow susceptibility fit well to the typical debris flow season in an
eastern Alpine environment. The model predicts more days susceptible to debris flows, than actually
occurred. We attribute this partly to the shortcomings of our modeling efforts (e.g., limited temporal and
spatial resolution and catchment heterogeneity). This observation might also indicate that the local geo-
morphologic disposition (e.g., sediment availability) is of significant importance for debris flow initiation.

The results presented in this study provide a more in-depth view of the regional hydrometeorological condi-
tions that lead to debris flows in an Alpine environment but excludes local geomorphological disposition that
might change over time scales relevant for our analysis (e.g., sediment availability, landslide activity, or
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weathering processes). Our approach includes uncertainties, makes them transparent, and reduces the
dependence on precipitation as the only predictor variable for debris flow triggering. An extension of the
analysis to further meteorological or hydrological variables as well as an increase of spatial and temporal
resolution of the data may bring clearer pattern or more distinct signals for an upcoming debris flow initia-
tion. The combination of real-time modeling and inclusion of forecasted temperature and precipitation
may offer a tool for regional debris flow forecasting and warning.
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