
 
 

Delft University of Technology

Evaluation of multilevel sequentially semiseparable preconditioners on computational fluid
dynamics benchmark problems using Incompressible Flow and Iterative Solver Software

Qiu, Y; van Gijzen, MB; van Wingerden, JW; Verhaegen, MHG; Vuik, C

DOI
10.1002/mma.3416
Publication date
2018
Document Version
Final published version
Published in
Mathematical Methods in the Applied Sciences

Citation (APA)
Qiu, Y., van Gijzen, MB., van Wingerden, JW., Verhaegen, MHG., & Vuik, C. (2018). Evaluation of multilevel
sequentially semiseparable preconditioners on computational fluid dynamics benchmark problems using
Incompressible Flow and Iterative Solver Software. Mathematical Methods in the Applied Sciences, 41(3),
888-903. https://doi.org/10.1002/mma.3416
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1002/mma.3416
https://doi.org/10.1002/mma.3416


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Special Issue Paper

Received 31 January 2014 Published online 5 March 2015 in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/mma.3416
MOS subject classification: 65F08; 76Mxx; 65Y20

Evaluation of multilevel sequentially
semiseparable preconditioners on
computational fluid dynamics benchmark
problems using Incompressible Flow and
Iterative Solver Software

Yue Qiua, Martin B. van Gijzenb*†, Jan-Willem van Wingerdena,
Michel Verhaegena and Cornelis Vuikb

Communicated by T. Monovasilis

This paper studies a new preconditioning technique for sparse systems arising from discretized partial differential
equations in computational fluid dynamics problems. This preconditioning technique exploits the multilevel sequentially
semiseparable (MSSS) structure of the system matrix. MSSS matrix computations give a data-sparse way to approximate
the LU factorization of a sparse matrix from discretized partial differential equations in linear computational complexity
with respect to the problem size. In contrast to the standard block diagonal and block upper-triangular preconditioners,
we exploit the global MSSS structure of the 2�2 block system from the discretized Stokes equation and linearized Navier-
Stokes equation. This avoids approximating the Schur complement explicitly, which is a big advantage over standard
block preconditioners. Through numerical experiments on standard computational fluid dynamics benchmark problems
in Incompressible Flow and Iterative Solver Software, we show the performance of the MSSS preconditioners. They indi-
cate that the global MSSS preconditioner not only yields mesh size independent convergence but also gives viscosity
parameter and Reynolds number independent convergence. Compared with the algebraic multigrid (AMG) method and
the geometric multigrid (GMG) method for block preconditioners, the MSSS preconditioning technique is more robust
than both the AMG method and GMG method, and considerably faster than the AMG method. Copyright © 2015 John
Wiley & Sons, Ltd.

Keywords: partial differential equations; multilevel sequentially semiseparable matrices; preconditioners; computational fluid
dynamics; multigrid method

1. Introduction

The most time consuming part of a computational fluid dynamics (CFD) simulation is the solution of one or more linear systems of the
following type

Ax D b , (1)

where A D ŒAij� is an n � n matrix and b is a given right-hand-side vector of compatible size [1, 2]. Normally, the system matrix A is
large and sparse. Many efforts have been dedicated to finding efficient solution methods for such systems. There are two approaches
in general: direct solution methods and iterative solution methods.
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Direct solution methods factorize the coefficient matrix A into easily invertible matrices. The time and memory consumption of direct
solution methods are predictable, and they are more robust than iterative solution methods. Unfortunately, direct solution methods
can be prohibitively expensive both in terms of the memory consumption and computation time for many applications, especially
for large CFD problems. For these problems, iterative solution methods usually perform much better than direct solution methods.
The conjugate gradient (CG), minimal residual (MINRES), generalized minimal residual (GMRES), and induced dimension reduction
(IDR(s)) methods are some of the most popular iterative solution methods [4–6]. Efficiency and robustness of iterative methods can
be improved dramatically by combining the preconditioning techniques [7]. In this paper, we study a new class of preconditioners
based on the multilevel sequentially semiseparable (MSSS) matrix structure of the system for CFD problems and evaluate the perfor-
mance of MSSS preconditioners on standard CFD benchmark problems using the Incompressible Flow and Iterative Solver Software
(IFISS) [8]. IFISS is a computational laboratory for experimenting with state-of-the-art preconditioned iterative solvers for the discrete
linear equations that arise in incompressible flow modeling, which can be run under Matlab or Octave.

Sequentially semiseparable (SSS) matrices appear in many applications, such as circuits and systems [9], interconnected systems
[10]. The SSS structure can be exploited so that many computations can be performed in linear computational complexity. SSS
matrices make use of the property of the low rank off-diagonal blocks. Systems that arise from the discretization of 1D partial dif-
ferential equations typically have an SSS structure [11]. MSSS matrices generalize the sequentially semiseparable matrices to the
multi-dimensional case. Discretization of higher dimensional (2D or 3D) partial differential equations (PDEs) on structured grid yields
matrices with an MSSS structure [12, 13]. MSSS preconditioners have been previously studied in [3, 12, 13]. In [13], Dewilde et al. solved
a 3D Poisson equation using MSSS matrix computations, while Gondzio et al. studied this type of preconditioning technique for PDE-
constrained optimization problems in [12]. Gondzio et al. solved the Schur complement system with preconditioned conjugate method
by MSSS matrix computations. Both [12, 13] only consider the symmetric positive problems and did not deal with block systems aris-
ing from discretized coupled PDEs, which are quite common in CFD problems. Meanwhile, these papers do not give comparison of the
performance for the MSSS preconditioners with the other methods. In [3], MSSS preconditioners were applied to solve non-symmetric
convection–diffusion equations. MSSS matrix computations are also widely studied in the field of distributed control and identification
of spatially interconnected systems. The results on systems and control are summarized in [11, 14].

Several other related structured matrices have been proposed in literature. This includes hierarchical semiseparable (HSS) matri-
ces [15,16], hierarchical (H-) matrices [17–19], and H2-matrices [20,21]. HSS matrix computations are usually applied in the multifrontal
solver [22]. Some recent efforts devoted to preconditioning of symmetric positive definite systems by HSS matrix computations can
be found in [23, 24]. As introduced in [11], MSSS matrices originate from interconnected systems, while H-matrices and H2-matrices,
which are more general structured matrices, originate from the approximation of the kernel of integral functions. In [25, 26], Bebendorf
extended H-matrix computations to solving elliptic PDEs problems. Preconditioning techniques based on H-matrix computations for
CFD problems were studied in [18, 19]. In [18], an H � LU preconditioner was proposed to solve the convection–diffusion equation,
while in [19], the augmented Lagrangian preconditioner based on H-matrix computations was introduced to solve the discrete Oseen
problems. For unstructured grids, HSS/H-matrices are well suited. It was shown in [25, 27] that HSS matrices and H-matrices can be
used to represent the discretized PDEs on unstructured grids. For MSSS matrices, this is less natural. Although MSSS matrices do not
give a direct representation of discretized PDEs on unstructured grid, it was shown in [16] that the HSS matrices and 1-level MSSS matri-
ces can be transferred from one to the other, which makes it possible for MSSS matrices to infer unstructured grids. The advantage of
MSSS matrix computations is their simplicity and low cost, which is O.r3N/ with bounded small r, compared with O.N log˛2 N/ with
moderate ˛ for H-matrices. Using MSSS matrix computations to compute the preconditioner is motivated by the relation between
interconnected systems and MSSS matrices, which is introduced in [11]. Once the grid for the discretization of PDEs is known, the MSSS
matrix structure of the discretized system will automatically be known. This will naturally represent the sparse matrix as an MSSS matrix
by considering the grid points as interconnected systems. The permutation of MSSS blocks to a single MSSS matrix is also direct and
clear by checking the correspondence of interconnected systems with MSSS matrices, which is a big advantage of MSSS matrices over
H-matrices and HSS matrices. The permutation operation plays a key role for the preconditioning of the systems from discrete Stokes
equation and linearized Navier-Stokes equation, which will be introduced in the later section.

In this paper, we consider MSSS preconditioning techniques for CFD problems on structured grids. For the discretized convection–
diffusion equation, we exploit the MSSS structure of the global system matrix, whereas for the discretized Stokes and linearized
Navier-Stokes problem, we exploit the MSSS structure of the blocks of the system and permute the system matrix with MSSS blocks
into a single MSSS matrix. With this permutation, the discrete Stokes equation and discrete linearized Navier-Stokes equation can be
put in the MSSS matrix framework and the computation of the Schur complement can be avoided. While computing an approxima-
tion of the Schur complement is the key for standard preconditioning techniques and normally is extremely expensive and difficult.
This enables us to solve the CFD problems with Krylov subspace methods using MSSS preconditioners in linear computational com-
plexity. We evaluate the performance of the MSSS preconditioning technique on CFD benchmark problems in IFISS and compare with
the block preconditioning technique by the algebraic multigrid (AMG) method and the geometric multigrid (GMG) method. Numerical
experiments illustrate that the MSSS preconditioning technique yields mesh size independent convergence and eliminates the conver-
gence dependency on the viscosity parameter and the Reynolds number. This is a big advantage over the AMG and GMG methods. In
addition to robustness, it is shown that the MSSS preconditioning technique is considerably faster than the AMG method.

The outline of this paper is as follows. In Section 2, we briefly introduce the MSSS matrices and the mostly used computations.
Correspondence between MSSS matrices and discretized PDEs will also be stated in this section. The MSSS preconditioning technique
for discretized scalar PDEs and coupled PDEs will be addressed in Section 3. Numerical experiments that evaluate the performance of
the MSSS preconditioning technique for CFD benchmark problems are studied in Section 4. Performance comparison with the AMG
and GMG method for such preconditioning technique is also contained in this section. Conclusions and remarks will be drawn in the

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2018, 41 888–903

8
8

9



Y. QIU ET AL.

last section. A companion technical report [28] is also available that contains more numerical experiments on CFD benchmark problems
to show the performance of the MSSS preconditioners.

2. Multilevel sequentially semiseparable matrices

Semiseparable matrices are matrices whose sub-matrices taken from the lower-triangular or upper-triangular part are of rank 1. They
have been introduced in [29] and appear in several types of applications, such as integral equations [30], Gauss-Markov processes
[31], boundary value problems [32], and rational interpolation [33]. Quasiseparable matrices generalize the semiseparable matrices, are
matrices all sub-matrices extracted from the strictly lower-triangular or the strictly upper-triangular part, are of rank 1 [29]. If the sub-
matrices taken from the strictly lower-triangular part and the strictly upper-triangular part are of low rank, not limited to 1, then this
type of matrices is called sequentially semiseparable (SSS) [34]. The property of low-rank off-diagonal blocks for SSS matrices is also
investigated by Eidelman et al. in [35], where they still call this type of matrices quasiseparable matrices. The SSS structure is closed
under basic matrix–matrix operations such as addition, multiplication and inversion. Decompositions/factorizations such as the QR
[36, 37], LU/LDU [12, 35] can also be computed in a structure preserving way such that the factors have SSS structure. Moreover, all the
operations mentioned earlier on SSS matrices can be performed in linear computational complexity. Besides, the memory consumption
of SSS matrices also scales linearly with the problem size [12, 38].

To keep this paper self-contained, we review some definitions and concepts for SSS matrices [3, 39]. The matrices in this paper will
always be real, and their dimensions are compatible for the matrix–matrix operations and the matrix-vector operations when their sizes
are not mentioned. The generators representation for SSS matrices are defined by Definition 2.1.

Definition 2.1 ([34])
Let A be an N � N matrix with the SSS structure. Let m1, m2, � � � mn be positive integers with N D m1 Cm2 C � � � Cmn such that A can
be written in the following block-partitioned form:

Aij D

8<
:

UiWiC1 � � �Wj�1VT
j , i < j;

Di , i D j;
PiRi�1 � � � RjC1QT

j , i > j
(2)

where the superscript ’ T ’ denotes the transpose of the matrix. The previous representation of A is called the generators representation.
The sequences fUig

n�1
iD1 , fWig

n�1
iD2 , fVig

n
iD2, fDig

n
iD1, fPig

n
iD2, fRig

n�1
iD2 , fQig

n�1
iD1 are matrices whose sizes are listed in Table I, and they are

called generators of the SSS matrix A.

With the generators parametrization in Definition 2.1, the SSS matrix A can be denoted by the following generators representation

A D SSS.Ps, Rs, Qs, Ds, Us, Ws, Vs/. (3)

Take n D 4, for example, the SSS matrix A has the following representation,
2
664

D1 U1VT
2 U1W2VT

3 U1W2W3VT
4

P2QT
1 D2 U2VT

3 U2W3VT
4

P3R2QT
1 P3QT

2 D3 U3VT
4

P4R3R2QT
1 P4R3QT

2 P4QT
3 D4

3
775 . (4)

The structure of SSS matrices can be exploited so that fast computations in linear computational complexity are enabled, where
operations are performed on its generators. Table II lists references that discuss how a given operation can be performed using SSS
matrix arithmetic.

Multilevel sequentially semiseparable matrices extend the sequentially semiseparable matrices to multi-dimensional case. Similar
to Definition 2.1 for SSS matrices, the generators representation for MSSS matrices, specifically the k-level SSS matrices, is defined by
Definition 2.2.

Definition 2.2 ([39])
The matrix A is said to be a k-level SSS matrix if all its generators are .k � 1/-level SSS matrices. The 1-level SSS matrix is the SSS matrix
that satisfies Definition 2.1.

Table I. Generator size for the sequentially semiseparable matrix A in Definition 2.1.
Generators Ui Wi Vi Di Pi Ri Qi

Sizes mi � ki ki�1 � ki mi � ki�1 mi �mi mi � li li�1 � li mi � liC1

Table II. [39] Commonly used operations on sequentially semiseparable matrices.
Operations Ax A˙ B AB A�1 LU Model reduction Lx D b?

References [34, 35, 38] [34, 35, 38] [34, 35, 38] [9, 37, 40] [12, 29, 39] [38, 39] [38]
?L is a lower-triangular SSS matrix.

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2018, 41 888–903
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Within this multilevel framework, generators to represent an MSSS matrix of a higher hierarchy, are themselves MSSS matrices of a
lower hierarchy. The one-level SSS matrix is the one of the lowest hierarchy. Basic operations of MSSS matrices are still closed under this
structure. In Example 2.1, we use a simple example to show how the lower-level SSS matrices are related with high-level SSS matrices
and the correspondence between MSSS matrices and discretized PDEs.

Example 2.1
For the 2D Poisson equation with homogeneous Dirichlet boundary conditions, discretized using the Q1 finite element method, the
stiffness matrix is given by

K D

2
66666664

A B
B A B

B
. . .

. . .

. . .
. . . B
B A

3
77777775

, where A D

2
66666664

8
3 �

2
3

� 2
3

8
3 �

2
3

� 2
3

. . .
. . .

. . .
. . . � 2

3
� 2

3
8
3

3
77777775

, and B D

2
66666664

� 2
3 �

2
3

� 2
3 �

2
3 �

2
3

� 2
3

. . .
. . .

. . .
. . . � 2

3
� 2

3 �
2
3

3
77777775

.

The matrix K is an MSSS (two-level SSS) matrix and can be denoted as

K DMSSS.I, 0, B, A, I, 0, B/,

where I is an identity matrix and the matrices A and B are 1-level SSS matrices, which can be represented as

A D SSS
�

1, 0, �
2

3
,

8

3
, 1, 0, �

2

3

�
,

B D SSS
�

1, 0, �
2

3
, �

2

3
, 1, 0, �

2

3

�
.

Remark 2.1
It is not necessary for the main diagonal blocks, super-diagonal blocks, or the sub-diagonal blocks of SSS matrices or MSSS matrices to
be constant just like Example 2.1. The MSSS matrices can also represent matrices from discretized PDEs with variable coefficients. The
sizes of these generators can even be different from each other as long as conditions in Table I are satisfied for the Definition 2.1.

Operations listed in Table II for the SSS matrices can be extended to the MSSS matrices. These operations can be also performed in
linear computational complexity. The LU factorization can also be performed in a structure preserving way. Given the MSSS matrix K in
Example 2.1 for example, the Schur complements for the block LU factorization of the stiffness matrix K are computed via the following
recurrences,

S0 D A,

SiC1 D A � BS�1
i B.

(5)

It can be seen that after the first iteration, the Schur complements are not sparse anymore. This makes the standard block LU factoriza-
tion more expensive if it does not use any kind of fill-in minimization reordering. However, if we investigate the MSSS structure of K ,
we can make use of the SSS structure of its blocks A and B. It has been shown that A and B are SSS matrices; therefore, Si is also an SSS
matrix. If the off-diagonal blocks of Si have low numerical rank, then Si can be approximated accurately enough by an SSS matrix with
low semiseparable order in linear computational complexity. The semiseparable order will be introduced in the next section.

In [41], it was shown that the off-diagonal blocks of the Schur complements for discretized 2D PDEs with constant coefficients have
low numerical rank. And this rank is bounded by a small constant that is independent of the problem size. This makes it efficient to
approximate the Schur complements in (5) by SSS matrices with low semiseparable order. By using this approximation, this block factor-
ization can be performed in linear computational complexity. Because of the approximation of the Schur complements for performing
the block LU factorization, this factorization is an approximate factorization, which can be used as a preconditioner. The details for this
block LU factorization will be introduced in the next section.

3. Multilevel sequentially semiseparable preconditioners

As previously mentioned, an inexact LU factorization can be computed in linear computational complexity by MSSS matrix computa-
tions. The semiseparable order defined in Definition 3.1 plays an important role in the MSSS matrix computations. In this paper, we use
MATLAB style for matrices notations, i.e., for a matrix A, A.i : j, s : t/ selects rows of blocks from i to j and columns of blocks from s to t of
A.

Definition 3.1 ([42])
Let

rank A.kC 1 : n, 1 : k/ D lk , k D 1, 2, � � � , n � 1.

The numbers lk .k D 1, 2, � � � , n � 1/ are called the lower order numbers of the matrix A. Let

rank A.1 : k, kC 1 : n/ D uk , k D 1, 2, � � � , n � 1.

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2018, 41 888–903
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The numbers uk .k D 1, 2, � � � , n� 1/ are called the upper order numbers of the matrix A. Set rl D max
k

lk and ru D max
k

uk , where rl and

ru are called the lower quasiseparable order and the upper quasiseparable order of A, respectively.

Definition 3.2 ([11])
The SSS matrix A with lower and upper semiseparable order rl and ru is called block .rl , ru/ semiseparable.

Definitions 3.3 and 3.4 extend the definitions in Definitions 3.1 and 3.2 for SSS matrices to the MSSS matrices case.

Definition 3.3 ([39])
Let the matrix A be an N � N block k-level SSS matrix with its generators be M �M block .k � 1/-level SSS matrices. Let

rank A.sC 1 : N, 1 : s/ D ls, s D 1, 2, � � � , N � 1.

The numbers ls.s D 1, 2, � � � , N � 1/ are called the k-level lower order numbers of the matrix A. Let

rank A.1 : s, sC 1 : N/ D us, s D 1, 2, � � � , N � 1.

The numbers us.s D 1, 2, � � � , N � 1/ are called the k-level upper order numbers of the matrix A. Set rl D max
s

ls and ru D max
s

us,

where rl and ru are called the k-level lower semiseparable order and the k-level upper semiseparable order for the k-level SSS matrix A,
respectively.

Definition 3.4 ([39])
The k-level SSS matrix A with k-level lower and upper semiseparable order rl and ru is called k-level block .rl , ru/ semiseparable.

With the definitions defined earlier, we have the following algorithm to compute the LU factorization of a k-level SSS matrix.

Lemma 3.1 ([12, 29])
Let A be a strongly regular N�N block k-level sequentially semiseparable matrix of k-level block .rl , ru/ semiseparable and denoted by
its generators representation A DMSSS.Ps, Rs, Qs, Ds, Us, Ws, Vs/. Here, we say that a matrix is strongly regular by which we mean
that the leading principal minors are nonsingular. Let A D LU be its block LU factorization, then,

1. The block lower-triangular factor L is a k-level sequentially semiseparable matrix of k-level block .rL, 0/ semiseparable, and the
block upper-triangular factor U is a k-level sequentially semiseparable matrix of k-level block .0, rU/ semiseparable. Moreover,
rL D rl and rU D ru.

2. The factors L and U can be denoted by the generators representation

L DMSSS
�

Ps, Rs, OQs, DL
s , 0, 0, 0

�
,

U DMSSS
�

0, 0, 0, DU
s , OUs, Ws, Vs

�
.

where OQs, DL
s , DU

s and OUs are .k � 1/-level sequentially semiseparable matrices. They are computed by the following algorithm:

Algorithm 1 LU factorization of a k-level SSS matrix A

Input: fPsg
N
sD2, fRsg

N�1
sD2 , fQsg

N�1
sD1 , fDsg

N
sD1, fUsg

N�1
sD1 , fWsg

N�1
sD2 , fQsg

N
sD2

1: D1 D DL
1DU

1 (LU factorization of .k � 1/-level SSS matrix)
2: Let OU1 D .DL

1/
�1U1 and OQ1 D .DL

1/
�T Q1

3: for i D 2 : N � 1 do
4: if i DD 2 then
5: Mi D OQT

i�1
OUi�1

6: else
7: Mi D OQT

i�1
OUi�1 C Ri�1Mi�1Wi�1

8: end if
9:

�
Di � PiMiVT

i

�
D DL

i DU
i (LU factorization of .k � 1/-level SSS matrix)

10: Let OUi D .DL
i /
�1.Ui � PiMiWi/, OQi D .DU

i /
�T .Qi � ViMT

i RT
i /.

11: end for
12: MN D OQT

N�1
OUN�1 C RN�1MN�1WN�1

13:
�

DN � PNMNVT
N

�
D DL

NDU
N (LU factorization of .k � 1/-level SSS matrix)

Output:
˚

DL
s

�N

sD1
,
˚

DU
s

�N

sD1
,
n
OQs

oN�1

sD1
,
n
OUs

oN�1

sD1

For the proof of the lemma, we refer to [12, 29].

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2018, 41 888–903
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As explained in [39], to compute the LU factorization of a k-level SSS matrix using Algorithm 1, the matrix-matrix operations are
performed on its .k � 1/-level SSS generators. This leads to a growth of the semiseparable order of the .k � 1/-level SSS generators,
which induces an increase of the computational complexity. Model order reduction is therefore necessary to reduce the semiseparable
order or keep the semiseparable order under a threshold in the LU factorization. For details of the growth of the semiseparable order
and the model order reduction, please refer to [39].

With Algorithm 1, we can compute an approximate LU factorization in linear complexity with MSSS matrix computations for a wide
class of discretized scalar PDEs. For CFD problems, usually, we need to solve a set of coupled PDEs that after discretization gives the
2�2 block system of the following form 	

A BT

B 0


 	
u
p



D

	
f
g



, (6)

where A 2 Rn�n and B 2 Rm�n. It is not difficult to verify that the matrices A and B are MSSS matrices for the discrete Stokes and discrete
linearized Navier-Stokes equation. The 2�2 block system (6) itself is not an MSSS system but has MSSS blocks. Using Lemma 3.2, we can
permute a matrix with MSSS blocks into a single MSSS matrix. This enables us to efficiently compute an LU factorization of a permuted
saddle-point system with Algorithm 1 by MSSS matrix computations.

Lemma 3.2 ([39])
Let A, B, C, and D be SSS matrices with the following generators representations

A D SSS
�

Pa
s , Ra

s , Qa
s , Da

s , Ua
s , Wa

s , Va
s

�
,

B D SSS
�

Pb
s , Rb

s , Qb
s , Db

s , Ub
s , Wb

s , Vb
s

�
,

C D SSS
�

Pc
s , Rc

s , Qc
s , Dc

s , Uc
s , Wc

s , Vc
s

�
,

D D SSS
�

Pd
s , Rd

s , Qd
s , Dd

s , Ud
s , Wd

s , Vd
s

�
.

Then, there exists a permutation matrix‰ with‰‰T D ‰T‰ D I where I is an identity matrix with proper size such that

T D ‰
	

A B
C D



‰T

and the matrix T is an SSS matrix. Its generators representation are given by

T D SSS.Pt
s, Rt

s, Qt
s, Dt

s, Ut
s, Wt

s , Vt
s/,

where Pt
s D

	
Pa

s Pb
s 0 0

0 0 Pc
s Pd

s



, Qt

s D

	
Qa

s 0 Qc
s 0

0 Qb
s 0 Qd

s



, Dt

s D

	
Da

s Db
s

Dc
s Dd

s



, Ut

s D

	
Ua

s Ub
s 0 0

0 0 Uc
s Ud

s



, Vt

s D

	
Va

s 0 Vc
s 0

0 Vb
s 0 Vd

s



, Wt

s D2
664

Wa
s

Wb
s

Wc
s

Wd
s

3
775, Rt

s D

2
664

Ra
s

Rb
s

Rc
s

Rd
s

3
775.

For the proof of Lemma 3.2, we refer to [39].
In the following, we use an example to show in details how to do such permutation mentioned in Lemma 3.2. Take the 3 � 3 block

SSS matrices for example, where

A D

2
64

Da
1 Ua

1VaT
2 Ua

1Wa
2 VaT

3

Pa
2QaT

1 Da
2 Ua

2VaT
3

Pa
3Ra

2QaT
1 Pa

3QaT
2 Da

3

3
75 , B D

2
64

Db
1 Ub

1VbT
2 Ub

1Wb
2 VbT

3

Pb
2QbT

1 Db
2 Ub

2VbT
3

Pb
3Rb

2QbT
1 Pb

3QbT
2 Db

3

3
75

C D

2
64

Dc
1 Uc

1VcT
2 Uc

1Wc
2VcT

3

Pc
2QcT

1 Dc
2 Uc

2VcT
3

Pc
3Rc

2QcT
1 Pc

3QcT
2 Dc

3

3
75 , D D

2
64

Dd
1 Ud

1 VdT
2 Ud

1 Wd
2 VdT

3

Pd
2 QdT

1 Dd
2 Ud

2 VdT
3

Pd
3 Rd

2QdT
1 Pd

3 QdT
2 Dd

3

3
75 .

Then, there exists a permutation matrix‰ of the following form

‰ D

	 	
In

0



˝ I3,

	
0
In



˝ I3



,

where In 2 Rn�n is the identity matrix and˝ denotes the Kronecker product.
After the permutation, the permuted block matrix becomes

T D ‰
	

A B
C D



‰T D

2
64

Dt
1 Ut

1VtT
2 Ut

1Wt
2VtT

3

Pt
2QtT

1 Dt
2 Ut

2VtT
3

Pt
3Rt

2QtT
1 Pt

3QtT
2 Dt

3

3
75 ,
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(a) Before permutation
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(b) After permutation

Figure 1. Structure of the saddle-point system of Stokes equation before and after permutation for h D 2�2 by the Q1� P0 finite element discretization. [Colour
figure can be viewed at wileyonlinelibrary.com]

where the generators for SSS matrix T satisfy the following relations,

Pt
s D

	
Pa

s Pb
s 0 0

0 0 Pc
s Pd

s



, Rt

s D

2
664

Ra
s

Rb
s

Rc
s

Rd
s

3
775 , Qt

s D

	
Qa

s 0 Qc
s 0

0 Qb
s 0 Qd

s



, Ut

s D

	
Ua

s Ub
s 0 0

0 0 Uc
s Ud

s



,

Wt
s D

2
664

Wa
s

Wb
s

Wc
s

Wd
s

3
775 , Vt

s D

	
Va

s 0 Vc
s 0

0 Vb
s 0 Vd

s



, Dt

s D

	
Da

s Db
s

Dc
s Dd

s



,

and s D 1, 2 for Ut
s and Qt

s, s D 2 for Wt
s and Rt

s, s D 2, 3 for Vt
s and Pt

s, and s D 1, 2, 3 for Dt
s.

One can apply Lemma 3.2 to permute a matrix with SSS blocks into a single SSS matrix by using a permutation matrix‰. Moreover,
this permutation matrix is not explicitly multiplied on both sides of the matrix to be permuted. Generators of the permuted matrix is
just a re-grouping of the generators of its SSS blocks. Very few cost is consumed for such permutation.

Remark 3.1
Extending Lemma 3.2 to the k-level SSS matrix case is also possible. If A, B, C, and D are k-level SSS matrices, then their generators are
.k � 1/-level SSS matrices. For the permuted k-level SSS matrix T , its .k � 1/-level SSS matrix generators with .k � 1/-level SSS matrix
blocks are permuted into a single .k � 1/-level SSS matrix by applying Lemma 3.2 recursively from the lowest level to the top level.

By applying Lemma 3.2, the saddle-point system structure of the discretized Stokes equation using the Q1�P0 finite element method
discretization on a square domain before and after permutation is shown in Figure 1.

4. Numerical experiments

In this section, we test the performance of MSSS preconditioning techniques on CFD benchmark problems using IFISS. The convection–
diffusion, Stokes, and Navier-Stokes problems are considered. The AMG and GMG methods in IFISS are also used to compare their
performance with that of the MSSS preconditioners. The MSSS matrix computations are implemented under MATLAB. All the numerical
experiments are performed in MATLAB 2011b on a desktop of Intel Core i5 CPU of 3.10 GHz and 16 Gb memory with the Debian
GNU/Linux 7.2 system. The iterative solution methods are terminated if the 2-norm of the residual is reduced by a factor of 10�6 or the
maximum number of iterations, which is set to 100, is reached. The MSSS matrix computation toolbox,§ and the test code are available
at http://ta.twi.tudelft.nl/nw/users/yueqiu/software.html.

In the tables that give numerical results, the ‘preconditioning’ column reports the time to compute the approximate LU factorization
for MSSS preconditioners or the time to setup the multigrid for the AMG or GMG method. IDR(s) [6,43] is chosen as the iterative solution
method. The ‘IDR(4)’ column reports the time to solve the preconditioned system. The total time is the sum of the time to compute the
preconditioner and the time to solve the preconditioned system, which is reported in the ‘total’ column. All the columns concerning
time in this paper are measured in seconds.

§MSSS Matrix Computation Toolbox, version 0.7, 2013.
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4.1. Convection–diffusion problem

We first consider the convection–diffusion problem described in Example 4.1, which is given as the example 3.1.4 in [44]. The details
of the discretization of the convection–diffusion equation can also be found in [44]. To investigate the performance of the MSSS pre-
conditioning technique, we first consider the diffusion-dominated case that corresponds to the viscosity parameter � D 1

200 . Next, we
consider the convection-dominated case, which has a viscosity parameter � D 10�4. These experiments are also performed using the
AMG and GMG method for comparison.

Example 4.1 ([44])
Zero source term, recirculating wind, characteristic boundary layers.

��r2uC�!! � ru D f in�

u D uD on �D

@u

@n
D gN on �N

(7)

where� D f.x, y/j � 1 � x � 1,�1 � y � 1g,�!! D
�
2y.1 � x2/, �2x.1 � y2/

�
, f D 0. Dirichlet boundary are imposed everywhere and

there are discontinuities at the two corners of the wall, x D 1, y D ˙1.

We use the Q1 finite element method to discretize the convection–diffusion equation. First, we consider a moderate value for the
viscosity parameter � D 1

200 , the computational results by the MSSS preconditioner and the AMG and GMG method are listed in
Tables III–V. The maximum semiseparable order for the MSSS preconditioner is in the brackets that follow after the mesh size. The
smoother for the AMG and GMG method is chosen as the incomplete LU factorization (ilu(1)). The solution corresponds to the mesh
size h D 2�7 is shown in Figure 2.

Table III illustrates that the MSSS preconditioner gives mesh size independent convergence for the convection–diffusion problem
with � D 1

200 . Both the time to compute the approximate LU factorization by MSSS matrix computations and the time to solve the
preconditioned system scale linearly with the problem size. Compared with the computational results in Tables IV and V for the AMG
and GMG method, we can see that the time of the AMG method setup is much bigger than that of the MSSS preconditioner, while
the time for the GMG method is much smaller than for the MSSS preconditioner. Both the AMG and GMG methods give mesh size
independent convergence. Table IV illustrates that the computational complexity for setting up the AMG method grows with the

Table III. Multilevel sequentially semiseparable preconditioner for � D 1
200 .

Mesh size Problem size No. iter. Preconditioning (sec.) IDR(4) (sec.) Total (sec.)

2�4.4/ 1.09e+03 4 0.48 0.31 0.79
2�5.5/ 4.23e+03 4 1.22 0.74 1.96
2�6.5/ 1.66e+04 4 4.16 2.20 6.36
2�7.7/ 6.60e+04 4 16.11 8.09 24.20
2�8.7/ 2.63e+05 4 63.15 30.42 93.58

IDR, induced dimension reduction.

Table IV. Algebraic multigrid method for � D 1
200 .

Mesh size Problem size No. iter. Preconditioning (sec.) IDR(4) (sec.) Total (sec.)

2�4 1.09e+03 8 0.49 0.06 0.55
2�5 4.23e+03 4 2.38 0.05 2.43
2�6 1.66e+04 4 14.30 0.17 14.47
2�7 6.60e+04 4 127.71 0.28 127.99
2�8 2.63e+05 4 2513.11 1.53 2514.64

IDR, induced dimension reduction.

Table V. Geometric multigrid method for � D 1
200 .

Mesh size Problem size No. iter. Preconditioning (sec.) IDR(4) (sec.) Total (sec.)

2�4 1.09e+03 5 0.02 0.02 0.04
2�5 4.23e+03 4 0.05 0.03 0.08
2�6 1.66e+04 3 0.12 0.04 0.16
2�7 6.60e+04 3 0.46 0.08 0.54
2�8 2.63e+05 3 2.72 0.31 3.03

IDR, induced dimension reduction.
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Figure 2. Solution of test problem 4.1 for � D 1
200 and h D 2�7. [Colour figure can be viewed at wileyonlinelibrary.com]

Table VI. Multilevel sequentially semiseparable preconditioner with � D 10�4.
Mesh size Problem size No. iter. Preconditioning (sec.) IDR(4) (sec.) Total (sec.)

2�4.12/ 1.09e+03 14 0.46 0.84 1.30
2�5.24/ 4.23e+03 11 1.61 1.89 3.50
2�6.26/ 1.66e+04 12 6.68 6.80 13.48
2�7.26/ 6.60e+04 14 29.90 16.68 46.58
2�8.10/ 2.63e+05 5 66.63 38.22 104.85

IDR, induced dimension reduction.

Table VII. Algebraic multigrid method with � D 10�4.
Mesh size Problem size No. iter. Preconditioning (sec.) IDR(4) (sec.) Total (sec.)

2�4 1.09e+03 100 0.49 No convergence -
2�5 4.23e+03 100 2.41 No convergence -
2�6 1.66e+04 100 14.53 No convergence -
2�7 6.60e+04 100 131.27 No convergence -
2�8 2.63e+05 100 2498.11 No convergence -

IDR, induced dimension reduction.

Table VIII. Geometric multigrid method with � D 10�4.
Mesh size Problem size No. iter. Preconditioning (sec.) IDR(4) (sec.) Total (sec.)

2�4 1.09e+03 100 0.02 No convergence -
2�5 4.23e+03 100 0.04 No convergence -
2�6 1.66e+04 100 0.12 No convergence -
2�7 6.60e+04 100 0.48 No convergence -
2�8 2.63e+05 100 2.81 No convergence -

IDR, induced dimension reduction.

problem size and is bigger than linear. This is most probably due to the fact that the AMG method implemented in IFISS is not of linear
computational complexity.

Next, we test the convection-dominated case with the viscosity parameter � D 10�4 for the MSSS preconditioner, the AMG and GMG
method. The computational results are reported in Tables VI–VIII. The solution for the mesh size h D 2�7 is shown in Figure 3.

For the convection-dominated test case, the system is ill-conditioned. It is therefore more difficult to compute a good enough pre-
conditioner. A larger semiseparable order is needed to compute an accurate enough approximation compared with the case of � D 1

200 .
This is illustrated by comparing the semiseparable orders in Table III with the semiseparable orders in Table VI. Because of the bigger
semiseparable order, more computational effort is needed. Even the time to compute the preconditioner and to solve the precondi-
tioned system is bigger than the time for larger �, the computational time still scales linearly with the problem size. Because of the
ill-conditioning of the problem to solve, both the AMG and GMG methods fail.
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Figure 3. Solution of test problem 4.1 for � D 10�4 and h D 2�7. [Colour figure can be viewed at wileyonlinelibrary.com]

Remark 4.1
Compared with the AMG and GMG methods, the MSSS preconditioner is more robust. Moreover, the MSSS preconditioning technique
is considerably faster than the AMG method.

4.2. Stokes problem

Next, we evaluate the performance of the MSSS preconditioner for the lid-driven cavity problem of the Stokes equation described by
Example 4.2, which is given as Example 5.1.3 in [44]. Mixed finite elements are used for discretization.

Example 4.2 ([44])
Lid-driven cavity problem, enclosed flow boundary condition.

�r2uCrp D
�!
0

r � u D 0 in�
�!u D �!! on �D

@
�!u

@n
�
�!n p D �!s on �N

(8)

in a square domain f.x, y/j � 1 � x � 1,�1 � y � 1g, where the regularized cavity condition fy D 1;�1 � x � 1jux D 1 � x4g is
satisfied.

The discretized Stokes equation using Q1 � P0 finite element method has the following saddle-point system form

	
K BT

B �St


 	
u
p



D

	
f
g



, (9)

where K 2 R2nu�2nu is the vector Laplace matrix, B 2 Rnp�2nu is the divergence matrix, St 2 Rnp�np is the stabilization term to satisfy
the inf-sub condition for the Stokes problem, nu is the number of velocity grid points, and np is the number of pressure grid points.

Standard preconditioning techniques for the saddle point system (9) are the block diagonal preconditioner P1 or the block lower-
triangular preconditioner P2, they are described by

P1 D

	
K
�S



, P2 D

	
K
B S



,

where S D �St � BK�1BT is the Schur complement. When the block diagonal preconditioner P1 is applied, the preconditioned system
has three distinct eigenvalues, and the GMRES computes the exact solution in at most three steps. When the block lower-triangular
preconditioner P2 is applied, the preconditioned system has two distinct eigenvalues. In this case, GMRES computes the exact solution
in at most two steps. We refer to [45] for an extensive study for such block preconditioners.

In general, the Schur complement S is difficult to compute because of the high computational complexity. A standard way is to com-
pute an approximation that has an equivalent spectrum with the Schur complement. However, the Schur complement approximation
is problem dependent. It is still a big challenge to compute a good approximation of the Schur complement for some applications,
such as optimal in-domain control of the Stokes equation [46]. For the discrete Stokes equation, it is shown in [47] that the Schur
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complement has an equivalent spectrum with the pressure mass matrix Mp, i.e., the relation

�2 �
xT BK�1BT x

xT Mpx
� �2, 8x 2 Rnpnf0g (10)

holds, where � and � are constants that are independent of the mesh size h. Thus, the block preconditioners for the Stokes could be
chosen as

P1 D

	
K

Mp



, P2 D

	
K
B �Mp



. (11)

This type of preconditioners are called the Silvester–Wathen preconditioner and is widely studied for the Stokes problems in [44,47,48].
Because the diagonal blocks of the block preconditioners are MSSS matrices, a natural way is to apply the Silvester–Wathen precon-

ditioner to iteratively solve the discrete Stokes Eq. (9) by using MSSS matrix computations. In addition, the global system matrix of the
discrete Stokes Eq. (9) has MSSS blocks, we can also apply the global MSSS preconditioner to iteratively solve the global system (9).
Both MSSS block preconditioner and MSSS global preconditioner are studied in this part.

First, we test the block MSSS preconditioner case. Choose the block diagonal preconditioner as

P1 D

	
OK
OMp



(12)

where OK is the approximation of K and OMp is the lumped pressure mass matrix Mp. For comparison, the AMG and GMG methods,
together with the MSSS matrix computations, are performed to approximate K . Because of the symmetric definiteness of the block
diagonal preconditioner and the symmetry but indefiniteness of the saddle point system, minimal residual method [49] is chosen as
the iterative solver. The results for block MSSS preconditioner are listed in Table IX and for the AMG and GMG methods are given in
Tables X and XI. The smoother for the AMG and GMG method is chosen as the ‘point damped Jacobi’.

Results in Tables IX and XI illustrate that the block preconditioners by MSSS matrix computations, together with the AMG and GMG
methods, give mesh size independent convergence. The time to compute the block MSSS preconditioner and to solve the precondi-
tioned system scale linearly with the problem size. This can be verified by Table IX. The setup time for the AMG method is still bigger
than linear, while it is still not clear whether the AMG method implemented in IFISS has linear computational complexity or not.

Table IX. Silvester–Wathen preconditioner for the Stokes equation by multilevel sequentially
semiseparable matrix computations.
Mesh size Problem size No. iter. Preconditioning (sec.) MINRES (sec.) Total (sec.)

2�4.12/ 3.20e+03 33 0.36 3.82 4.18
2�5.12/ 1.25e+04 33 1.17 11.21 12.38
2�6.12/ 4.97e+04 33 3.97 37.15 41.12
2�7.12/ 1.98e+05 35 15.04 140.06 155.10
2�8.14/ 7.88e+05 33 62.55 558.64 621.19

MINRES, minimal residual.

Table X. Silvester–Wathen preconditioner for the Stokes equation by algebraic multigrid
method.
Mesh size Problem size No. iter. Preconditioning (sec.) MINRES (sec.) Total (sec.)

2�4 3.20e+03 36 0.18 0.19 0.37
2�5 1.25e+04 38 0.69 0.33 1.02
2�6 4.97e+04 40 6.76 0.83 7.59
2�7 1.98e+05 40 45.72 3.07 48.79
2�8 7.88e+05 37 875.73 9.68 885.41

MINRES, minimal residual.

Table XI. Silvester–Wathen preconditioner for the Stokes equation by geometric multigrid
method.
Mesh size Problem size No. iter. Preconditioning (sec.) MINRES (sec.) Total (sec.)

2�4 3.20e+03 34 0.09 0.09 0.18
2�5 1.25e+04 34 0.14 0.28 0.42
2�6 4.97e+04 32 0.61 0.58 1.19
2�7 1.98e+05 32 2.01 2.00 4.01
2�8 7.88e+05 30 3.26 7.38 10.64

MINRES, minimal residual.
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Table XII. Global preconditioner for the permuted Stokes equation.
Mesh size Problem size No. iter. Preconditioning(sec.) IDR(4)sec. Total(sec.)

2�4 (4) 3.20e+03 5 0.41 0.34 0.75
2�5 (6) 1.25e+04 5 1.29 0.94 2.23
2�6 (7) 4.97e+04 5 4.42 3.06 7.48
2�7 (9) 1.98e+05 4 16.47 9.01 25.48

2�8 (10) 7.88e+05 5 67.50 36.29 103.79

IDR, induced dimension reduction.

Figure 4. Solution of test example 4.2 for multilevel sequentially semiseparable preconditioners. [Colour figure can be viewed at wileyonlinelibrary.com]

For the block MSSS preconditioner, most time was spent in solving the preconditioned system. This is mainly due to the big overhead
of the Matlab implementation in each iteration to solve the preconditioned system. Less time is needed if the number of iterations is
reduced. Next, we focus on the global MSSS preconditioner for iteratively solving the Stokes system (9).

It is not difficult to verify that for the discrete Stokes system (9), all the matrix blocks K , B, and St are MSSS matrices. Thus, we can per-
mute the saddle-point system (9) with MSSS blocks into a single MSSS system. Then, we can compute an approximate LU factorization
for the global MSSS system. Because of the indefiniteness of the global preconditioner, IDR(s) is chosen as the iterative solver. The com-
putational results for the global preconditioner are listed in Table XII. The solution of the pressure field and the streamlines are shown
in Figure 4.

Computational results in Table XII show that the computational time scales linearly with the problem size for both computing the
preconditioner and solving the preconditioned system. Meanwhile, the global MSSS preconditioner also gives mesh size independent
convergence.

Compare the results for the block preconditioners shown in Tables IX–XI with the results for the global MSSS preconditioners in
Table XII, we can see that the number of iterations for the global MSSS preconditioner is much more reduced. Thus, the time to solve
the preconditioned system by the global MSSS preconditioner is also much less than the time for the block MSSS preconditioner.

Remark 4.2
The global MSSS preconditioner performs much better than the Silvester–Wathen preconditioner by the AMG method for the solution
of middle-size and large-size discrete Stokes equation. Even the number of iterations for the Silvester–Wathen preconditioner by the
GMG method is bigger than that for the global MSSS preconditioner, the total time is less. The Silvester–Wathen preconditioner by the
GMG method seems appealing for the discrete Stokes equation.

4.3. Navier-Stokes problem

The last example we consider is the lid-driven cavity problem of the Navier-Stokes equation that is given in Example 4.3. It is introduced
as Example 7.1.3 in [44].

Example 4.3 ([44])
Lid-driven cavity problem, enclosed flow boundary condition.

��r2�!u C�!u � r�!u Crp D
�!
f

r �
�!u D 0

(13)
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with the boundary conditioners

�!u D �!! on �D

�
@
�!u

@n
�
�!n p D

�!
0 on �N

in a square domain f.x, y/j � 1 � x � 1,�1 � y � 1g, where the regularized cavity condition fy D 1;�1 � x � 1jux D 1 � x4g

is satisfied.

Note that the Navier-Stokes equation is a nonlinear equation. To compute the solution numerically, the Navier-Stokes equation needs
to be linearized and discretized. Details about the linearization and finite element discretization are described in [44]. In this paper, we
use the Newton method to linearize and the Q1 � P0 finite element method to discretize. At each linearized step, we need to solve a
linear system of the following form

2
4 �Kx C NCWxx Wxy BT

x

Wyx �Ky C NCWyy BT
y

Bx By � 1
�

St

3
5
2
4�ux

�uy

�p

3
5 D

2
4 fx

fy

g

3
5 , (14)

where Kx , Ky are scalar Laplace matrices, N is the scalar convection matrix, Wxx , Wxy , Wyx , Wyy represent weak derivatives of the velocity
ux and uy in the x and y directions, Bx and By are the divergence matrices in the x and y directions, and St is a stabilization matrix of the
Q1�P0 type. Due to the difficulty to compute a good enough approximation of the Schur complement for system (14), preconditioning
of the Navier-Stokes equation is still a big challenge and a hot topic in research and engineering. Some efforts to compute efficient
approximation of the Schur complement for the Navier-Stokes equation can be found in [44, 50, 51].

The generic form of system (14) can be written as

	
F BT

B � 1
�

St


 	
u
p



D

	
f
g



(15)

where F, B in (15) satisfy some partition rules of the matrix in (14). One of the standard block preconditioners for the linearized Navier-
Stokes Eq. (15) is called the pressure convection–diffusion (PCD) preconditioner, which is discussed in [44, 50]. The PCD preconditioner
can be written as

P D
	

F BT

0 �S



(16)

where S is the equivalent Schur complement and is given by

S D LpA�1
p Mp. (17)

Here, Ap and Lp are the convection–diffusion operator and Laplace operator in the finite dimensional solution space of the pressure
with some prescribed boundary conditions, Mp denotes the pressure mass matrix.

We also note that all the matrix blocks in (14) have MSSS structure; thus, we can permute the block system (14) into a single MSSS
system and compute an approximate LU factorization of the global system. This gives us the global MSSS preconditioner as introduced
in Section 4.2. To test the performance of the global MSSS preconditioner, we solve the system (14) at the second Newton step. For
comparison, we also carry out numerical experiments to solve Example 4.3 at the second Newton step by the PCD preconditioner (16).
For the PCD preconditioner (16), F and S are approximated by the multigrid method.

Because the GMG method is not implemented in IFISS, only the results of the PCD preconditioner computed by the AMG method
are reported. Due to the quadratic convergence of the Newton method, it is not quite necessary to solve the system up to a very
high accuracy at each linearized step. Thus, the stop criteria is set as the 2-norm of the residual is reduced by a factor of 10�4 at each
linearized step.

First, we set the viscosity parameter � to be 10�1, the computational results for the global MSSS preconditioner and PCD
preconditioner by the AMG method are given in Tables XIII and XIV.

Table XIII. Global multilevel sequentially semiseparable preconditioner for the second
Newton step with � D 10�1.
Mesh size Problem size No. iter. Preconditioning (sec.) IDR(4) (sec.) Total (sec.)

2�4.6/ 3.20e+03 3 0.43 0.22 0.65
2�5.7/ 1.25e+04 3 1.33 0.59 1.92
2�6.7/ 4.97e+04 3 4.51 1.88 6.39
2�7.9/ 1.98e+05 3 19.47 6.75 26.22
2�8.11/ 7.88e+05 3 78.84 26.63 105.17

IDR, induced dimension reduction.
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Table XIV. Pressure convection–diffusion preconditioner by the algebraic multigrid
method for the second Newton step with � D 10�1.
Mesh size Problem size No. iter. Preconditioning (sec.) IDR(4) (sec.) Total (sec.)

2�4 3.20e+03 21 0.78 0.12 0.90
2�5 1.25e+04 24 4.30 0.25 4.55
2�6 4.97e+04 23 39.98 0.67 40.65
2�7 1.98e+05 24 631.75 2.72 634.47
2�8 7.88e+05 24 4740.51 9.48 4749.99

IDR, induced dimension reduction.

Table XV. Global multilevel sequentially semiseparable preconditioner for the second
Newton step with � D 10�2.
Mesh size Problem size No. iter. Preconditioning (sec.) IDR(4) (sec.) Total (sec.)

2�4.6/ 3.20e+03 3 0.39 0.14 0.53
2�5.6/ 1.25e+04 4 1.27 0.64 1.91
2�6.8/ 4.97e+04 3 4.41 1.83 6.24
2�7.10/ 1.98e+05 3 18.51 7.70 26.21
2�8.10/ 7.88e+05 3 75.31 31.58 106.89

IDR, induced dimension reduction.

Table XVI. Pressure convection–diffusion preconditioner by the algebraic multigrid
method for the second Newton step with � D 10�2.
Mesh size Problem size No. iter. Preconditioning (sec.) IDR(4) (sec.) Total (sec.)

2�4 3.20e+03 53 1.63 0.32 1.95
2�5 1.25e+04 49 6.29 0.65 6.94
2�6 4.97e+04 51 38.72 1.60 40.32
2�7 1.98e+05 50 440.82 6.31 447.13
2�8 7.88e+05 51 4561.32 26.14 4587.46

IDR, induced dimension reduction.

Numerical results in Tables XIII and XIV illustrate that both preconditioners give mesh size independent convergence. The number
of iterations is much more reduced by the global MSSS preconditioner. Moreover, the computational time for the global MSSS pre-
conditioner scales linearly with the problem size. However, this linear computational complexity property does not hold for the PCD
preconditioner by the AMG method. This is illustrated by the computational time in Table XIV. We can also find that the global MSSS
preconditioner is much faster than the PCD preconditioner by the AMG method.

To study the performance of both preconditioners for bigger Reynolds number, we decrease the viscosity parameter � to 10�2. The
computational results are reported in Tables XV and XVI.

For bigger Reynolds number, both the global MSSS preconditioner and PCD preconditioner by the AMG method gives mesh size
independent convergence. This is verified by the numerical results listed in Tables XV and XVI. In addition, the computational time for
the global preconditioner is linear with the problem size while the PCD preconditioner by the AMG method does not have such linear
computational complexity. Tables XV and XVI show that the global MSSS preconditioner is much faster than the PCD preconditioner
by the AMG method.

Remark 4.3
According to the computational results for different Reynolds number in Tables XIII–XVI, we can find that the global MSSS precondi-
tioner not only gives mesh size independent convergence but also gives Reynolds number independent convergence. However, the
PCD preconditioner does not have the Reynolds number independent convergence property. Meanwhile, the global MSSS precondi-
tioner behaves the linear computational complexity with the problem size while the PCD by the AMG method preconditioner does not
have such linear computational complexity. Moreover, the global MSSS preconditioner is much faster and more robust than the PCD
preconditioner by the AMG method.

5. Conclusions

In this paper, we have studied a new class of preconditioners for CFD problems. This type of preconditioners exploits the MSSS struc-
ture of the system matrix. By making use of the MSSS matrix computations, we can compute efficient preconditioners for CFD problems
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in linear computational complexity. Compared with the standard block preconditioners for the discrete Stokes equation and lin-
earized Navier-Stokes equation, we make use of the global MSSS structure of the system matrix. This avoids approximating the Schur
complement explicitly, which is a big advantage over standard block preconditioners.

We apply the AMG and GMG methods to the CFD benchmark problems in IFISS to evaluate the performance of the MSSS precon-
ditioners. Numerical experiments show that the global MSSS preconditioner gives not only mesh size independent but also viscosity
parameter and Reynolds number independent convergence, while the standard preconditioners in IFISS do not yield viscosity param-
eter and Reynolds number independent convergence. For the convection–diffusion equation, the MSSS preconditioner is much faster
and more robust than the AMG method. While the GMG method is faster for big viscosity parameter than the MSSS preconditioner.
However, the GMG method fails to solve the convection-dominated convection–diffusion problem. For the Stokes equation, the GMG
method is competitive among the AMG method and the MSSS preconditioning technique. For the Navier-Stokes equation, the global
MSSS preconditioner is much faster and more robust than the AMG method.

The mesh size and Reynolds number independent convergence of the global MSSS preconditioner is still an open problem and is
the ongoing research of the authors. Some recent efforts to analyze the preconditioner can be found in [52]. In this reference, Napov
explains that the accuracy of the incomplete Cholesky factorization by SSS matrix computations depends only on the approximation
accuracy of the off-diagonal blocks. The author also gives an analytical upper bound of the condition number of the preconditioned
system. It is shown that the eigenvalues of the preconditioned systems are clustered around 1 and the radius of the clustering depends
only on the accuracy of the approximation of the off-diagonal blocks, while this accuracy is directly related with the semiseparable
order. These results only apply to positive definite systems of one-level SSS type. Our results in this paper indicate that this also holds
for the indefinite and multilevel SSS systems.
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