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Abstract—Urban railway transit systems in big cities operate 

at high capacity and represent the main arteries of city 

transport networks. In current operations, infrastructure 

failures occur occasionally causing severe disruptions. In this 

research, we propose a novel integrated disruption management 

methodology for automatically rescheduling trains and 

controlling passenger flows for a given disruption. Our 

framework incorporates a train traffic management model 

together with a model for adjusting flows of passengers and 

aims to minimize the total delay of passengers, the number of 

denied passengers, adjustments to train services, and recover 

time. On the train side, we short-turn, cancel and reroute train 

services. On the passenger side, we reflow passengers according 

to a disrupted timetable and control station gates. We test our 

integrated disruption management approach on real-life cases 

and discover dependencies between delayed/denied passengers 

and traffic management. Our goal is developing practical 

solutions to this critical transportation problem that will lead to 

establishing advanced decision support systems to assist metro 

dispatchers. 

I. INTRODUCTION 

Urban rail transit systems take a significant share in public 
transportation systems, especially in large cities, where 
millions of passengers commute by trains and the passenger 
demand still increases. As such, they represent the main 
arteries of city transport networks. More and more urban rail 
transit lines are being operated with high frequencies at the 
maximal capacity. Under the current conditions, it is 
inevitable that infrastructure or vehicle failures occur 
occasionally such as a signal or train door malfunction. Even 
short disruptions of 10-15 minutes can cause significant 
deterioration of operations resulting in multiple trains being 
cancelled on one hand, and stations and trains being 
overcrowded on the other. In such cases, dispatchers have to 
react quickly to reschedule train services as promptly as 
possible as well as to inform and (re)direct passengers in the 
network. However, dispatchers can make decisions only 
locally, which may be of poor quality on the network level. As 
a result, passengers may spend drastically longer time in the 
metro system and many may have to be denied from the 
system due to extreme overcrowding in trains and stations 
which overall generates a great dissatisfaction among 
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passengers. To support dispatchers in real-time operations and 
particularly during disruptions, mathematical optimization 
models and algorithms can bring great benefit to resolve these 
challenging problems efficiently and more effectively.   

The goal of this paper is to develop a novel integrated 
methodology for train and passenger disruption management 
of busy metro systems. Our framework incorporates a train 
rescheduling model together with a model for adjusting and 
controlling passenger flows in the system. The aim is to 
minimize the total delay of passengers, the number of denied 
ones and the recovery to planned operations after the 
disruption is over. On the train side, we adjust arrival and 
departure times, change train routing, short-turn and, if 
necessary, cancel trains. In addition, we adjust rolling stock 
circulations during the disruption and insert extra services. On 
the passenger side, we adjust passenger routes through the 
system, and control station gates to limit the inflow of 
passengers entering stations. The framework considers 
important practical constraints like train and platform/station 
capacity which is extremely important when considering 
overcrowded metro systems such as in Beijing, Tokyo and 
New York. Combining train and passenger control brings 
multiple new dimensions in the integrated disruption 
management of metro systems. 

The remainder of the paper is as follows. Section II 
presents literature review. Section III defines the considered 
problem. Section IV describes the proposed integrated 
disruption management framework and modelling details. 
Section V demonstrates the applicability of the framework and 
Section VI gives concluding remarks. 

II. LITERATURE REVIEW 

Regarding disruption management of metro and railway 

systems, only limited research exists. Cacchiani et al. (2014) 

gives an extensive review of rescheduling and disruption 

management approaches in railway system, where most 

approaches consider only train traffic management. For 

instance, Xu et al. (2016) considered an incident in a subway 

line and formulated an optimization model to calculate the 

rescheduled timetables with the objective to minimize the 

total delay time of trains. However, passenger demand is not 

considered in this paper. Similarly, Ghaemi et al. (2017) 

proposed a microscopic train disruption management model 

deciding the optimal short-turning stations, platforms and 

routes based on the available capacity.  

Railway planning and traffic management problems have 

been tackled recently in integrated or iterative setups in order 

to incorporate more practical constraints and/or generate 

better quality solutions. For instance, performance criteria 

like timetable feasibility, stability and robustness of original 
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and rescheduled timetables were considered in Caimi (2009), 

Caimi et al. (2012), Bešinović et al. (2016), and Quaglietta et 

al. (2016).  Corman et al. (2017) addressed a problem of 

solving train and passenger rescheduling during minor 

disturbances. They proposed a MIP model where trains and 

passengers were rescheduled/rerouted using an alternative 

graph-based model formulation. To solve this MIP, they 

further developed an iterative approach. Gao et al. (2016) 

proposed an optimization model to reschedule a metro line 

with an over-crowded passenger flow during a short 

disruption, where a stop-skip strategy is formulated in the 

model and an iterative algorithm is used to solve the model. 

Caimi (2009) and Caimi et al. (2012) modelled train 

scheduling and rescheduling problems introducing different 

variants of the conflict graph modelling formulation and 

successfully solved some real-life instances of busy corridors 

of Swiss railway networks. They concluded that the models 

are capable of considering many alternative routing 

possibilities and departure timings and, in particular, are 

applicable to real-time applications.  

Detailed dynamic passenger assignment models (i.e. 

include timetable-dependent passenger behavior) are 

complex on its own (Zhu and Goverde, 2019). Until now, 

only a few train rescheduling models consider passenger 

demand in a dynamic way in case of disruptions. These 

models can represent passenger behavior more accurately, 

but this comes at the expense of higher computation time 

(Binder et al., 2017) that is usually not acceptable in practice. 

To efficiently address the challenging and complex railway 

problems that arise in practice simulation-based optimization 

approaches are needed (Bierlaire, 2015). In particular, these 

are useful for complex problems where issues are 

time-consuming and simulation is used. In our case, dynamic 

passenger assignment flow is reevaluated for each new 

optimized rescheduled timetable.  

Several gaps in the current literature were identified. First, 

approaches based on conflict graph formulations have not 

been used for train disruption management. Second, existing 

passenger routing models always assumed that station 

platforms have sufficient capacity. Third, integrated 

approaches for train and passenger disruption management 

including train cancelation and controlling passenger flows 

do not exist in the current literature. In this paper, we address 

these challenges within our integrated passenger-oriented 

disruption management approach to urban railway lines. 

III. PROBLEM DESCRIPTION 

In this paper, we tackle a complete open-track disruption 

between two stations. Some practical examples for such cases 

are power outage of a local power station or a fire in the 

tunnel. If a track between two stations is blocked then, trains 

need to short-turn and circulate on shorter distances. Busy 

metro networks typically suffer from passenger 

overcrowding even during regular peak hour operations. 

Passengers often encounter the inability to board the first few 

departing trains as they may be already full and need long 

waiting time to get on board (Gao et al., 2016). Even more, 

particularly during disruptions, when less train services are 

provided, stations experience overflow of passengers and 

thus train operators may decide to control the number of 

incoming passengers due to the station capacity and in the 

most extreme situations even completely close a station (Xu 

et al., 2014). We focus on train and stations operations of one 

metro line while consider passengers originating/ending and 

traveling to other train lines in the network as well.  

We consider a metro line as shown in Figure 1. Typically, 

one side of a station has a depot to park rolling stock during 

non-operating hours. During operating hours, this allows a 

train service to be cancelled and moved away to the depot. In 

addition, an additional reserve rolling stock unit may be 

stored in a depot to be potentially used due to a disruption (e.g. 

failed rolling stock). 

 
Figure 1. Layout of a metro line 

We define a train route as a set of consecutive resources 

associated with running and dwell times. A train service is a 

train operating in one direction between origin and 

destination stations with a corresponding train route, and 

planned departure and arrival times. Each train service 

exclusively reserves a train route preventing its resources to 

be used by other trains. 

Considered assumptions in the paper are: 1. If a train 

service is running when a disruption happens, it cannot be 

cancelled and will continue its running. 2. Running and dwell 

times are assumed fixed. 3. All platforms at all stations are 

island platforms. 4. All passengers that started their journey 

will end it, without leaving the system prematurely due to the 

disruption. 

IV. METHODOLOGY 

A. Integrated disruption management (IDM) framework 

We propose a new integrated disruption management 

(IDM) framework for optimizing railway timetables and 

passenger flows during disruptions. The aim is to minimize 

cancelled and delayed trains as well as denied and delayed 

passengers. Figure 1 shows a conceptual IDM framework. 

Given are an original timetable, disruptions on a line, 

train-related input like infrastructure including signaling and 

train protection system, train dynamics and line 

characteristics, and passenger-related input such as original 

OD demand and passenger rerouting alternatives. The IDM 

framework includes two models: 

1. a train traffic management (TTM) model based on a 

conflict graph formulation which reroutes, retimes, 

short-turns, and cancels train services, and 
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2. a passenger flow management (PFM) model based on the 

time-dependent OD passenger demand, where passengers 

could wait at platforms, board/alight trains, be on-board 

trains, or be denied by overcrowded stations (i.e. waiting 

outside due to station closure). 

 

Train traffic Management
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Iterative disruption 
management
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scenarios

Figure 2. IDM framework 

 

The framework starts by microscopically adjusting trains 

in the network (TTM). The original timetable should be 

adjusted by delaying, short-turning and cancelling train 

services. The objective of TTM is to find a new timetable 

such that train services are affected the least by a disruption. 

Output of TTM is a rescheduled timetable that satisfies the 

microscopic infrastructure capacity. 

The new rescheduled timetable is given as input to the 

model for passenger flow management (PFM). Based on the 

rescheduled timetable and the passenger demand, the PFM 

model decides the number of boarding/alighting passengers, 

the number of waiting passengers, the number of passengers 

that are denied at stations, the number of passengers left the 

system without arriving at their destinations, etc. The 

objective of PFM is to minimize the delayed passenger (or 

total passenger delays) and the number of denied passengers.  

Over the iterations, the TTM delivers the departure and 

arrival times of train services at stations to PFM. The other 

way around, PFM produces rerouted passenger flows for 

TTM and passengers waiting at stations which are considered 

as input weights in the latter. 

 

B. Train traffic management model (TTM)  

The microscopic train traffic management model (TTM) 

aims to generate feasible rescheduled timetables while 

minimizing passenger dissatisfaction. The TTM is based on 

extended conflict graph models introduced by Caimi (2009). 

In the TTM, we decide on scheduling optimal routes for train 

services. Each train service has a set of alternative train routes 

over the remaining available infrastructure that incorporates 

traffic management measures such as rerouting and retiming 

and if necessary, cancellation. Given that a complete 

blockage is considered, all train services are short-turned in 

stations closest to the disrupted tracks. Due to limited 

infrastructure, trains need to satisfy safety constraints. 

Typically, a bigger minimum headway is necessary in 

short-turning stations as opposed to regular (non-disrupted 

operations). From every pair, only one route can be chosen. In 

this way, conflicts are prevented while ensuring feasibility of 

a route plan. Rolling stock connections are also considered to 

satisfy vehicle circulations in the system.  

Rolling stock departs either from a depot or is cancelled 

and reinserted in service after a disruption ends. If a service 

from a terminal station is cancelled then a service in the 

opposite direction needs to be cancelled as well as a rolling 

stock is not available to run that service. Therefore, the 

number of services during a disruption in both directions 

should be equal to maintain a feasible rolling stock 

circulation.   

When train service is cancelled then its rolling stock is 

stored in the depot until a disruption finishes. Then, it has to 

be reinserted to serve a train service in order to return to the 

planned operations. During a disruption, in the worst case all 

services    could be cancelled. Therefore, at most    services 

may need to be reinserted after a disruption finishes. In 

addition, extra rolling stock can be available to operate 

additional train services if needed. 

Let us define a set of trains   and a single train    . Train 

services in outbound direction are in subset    and services in 

the inbound direction are in   . Subset    represents train 

services which are planned during disruption, and    

represents services which are planned after disruption. A set 

of routes is defined as   where a route    . Subset 

   includes all routes available to train service  . Subset    are 

available routes during disruption and   - routes after 

disruption. Dispatching measures for adjusting train services 

are rerouting, altering rolling stock circulation, cancelling and 

inserting new train services. We define a decision variable     

for each train     using a route    . If a service     is 

chosen, then      , otherwise equals 0. For cancelling a 

train service, a virtual route   is defined.  

The objective of TTM consists of the model aims at 

recovering as fast as possible to the original train services. In 

addition, weights are assigned representing passengers’ load 

for each alternative train route. We propose a mixed integer 

programming formulation for TTM as follows: 

 

          ∑       

    

 ∑       

        

 ∑       

        

 
(1) 

Such that 

∑    

        

                        (2) 

                             (   )    (3) 

∑    

    

 ∑    

    

               (4) 

∑    

    

 ∑(     )

    

                       (5) 

Objective function (1) minimizes the number of cancelled 

train services, timetable deviation and number of denied and 

waiting passengers. Equation (2) ensures that at most one 

train service is chosen or is cancelled if route   is selected, 

     . If a train service is cancelled it is assumed that it is 

moved to a depot. Equation (3) is an infrastructure constraint 
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allowing to choose only one service from a conflicting pair of 

routes   and  . Set   is a set of conflicting pairs of train 

services. Equation (4) determines that the number of 

cancelled services in outbound direction      is equalled 

the number of cancelled services in inbound direction     . 

Equation (5) defines that the number of cancelled train 

services during the disruption is considered for re-insertion in 

the recovery phase. 

Parameter     represents a cancellation penalty. Parameter 

    defines the importance of train service     (linear relation) 

to conform with the planned schedule and is computed as: 

          
       

     
    , where 

       

     
takes values from 

     ,     is the departure time of service   with route  ,     is 

the time deviation from the planned timetable,    is the start 

time of a considered period and    is the end time of a 

considered period. Parameter     represents the weighted 

passenger waiting time including: waiting onboard    
     , 

waiting in stations    
        and waiting out of stations 

   
        over a train service    . These waiting times are 

estimated by the PFM. The corresponding weights       , 

      and          are defined, where              
        . Passenger weight     is computed as     

         
              

                
       . The TTM is 

implemented in Matlab with Yalmip toolbox and solved by 

optimization solver Gurobi. 

 

C. Passenger flow management model (PFM) 

The passenger flow management (PFM) model aims to 

describe different choices that can be taken by passengers 

themselves or by the train operator. On the passengers’ side, 

the passengers may enter the station immediately when they 

arrived or may need to wait outside the station area if the 

station is too crowded. On the rail operators’ side, the rail 

operators could adopt incoming passenger control strategies 

to limit the passenger flow in the rail system below a certain 

level, or to increase passenger flow by opening additional 

gates, and suggest passengers to taking alternative routes in 

the rail system or choosing other transportation mode. The 

PFM model is based on the passenger flow model used by 

Wang et al. (2015) and Gao et al. (2016) and the queuing 

models introduced by Xu et al. (2014). The PFM model here 

incorporates practical constraints such as the capacity of 

trains, capacity of stations (including platforms, station hall, 

etc.), alternative routes in the rail system, the reachability of 

the destinations of passengers and the tolerance of passenger 

to waiting times. Note that the decisions of the PFM model 

are highly affected by the rescheduled timetables generated 

by the TTM model. Based on the passengers’ choices, the 

PFM model gives insights to the TTM model to re-adjust the 

train schedule to enhance the passenger satisfaction. 

     In this paper, the passenger arrival rate      ( )  is a 

piecewise constant function with respect to the time intervals, 

i.e., 

     ( )  {

                    

  
                           

. (6) 

The gate control rate   ( ) is also defined as a piecewise 

constant function similar to (6). In addition, the passenger 

control rate has the same effect for all the passengers that 

have different destinations. Therefore, the number of 

passengers waiting outside the ticket gates can be computed 

by 

       
    ∑ ∫ (    ( ))     ( ))  

 

      

 

    

  (7) 

where    ( )    since the passengers that have entered 

stations will not leave the system until they arrive at their 

destinations. In particular,      represents that a station is 

completely closed, and no passengers are allowed to enter, 

     represents that all the (newly) arrived passengers 

enter the station without interruption. If        then the 

passenger inflow is restricted, and      represents that 

additional gates need to be open in order to let excessive 

passenger flow (e.g. due to the passengers that wait outside 

and have arrived newly at stations) to enter the station 

(typically after a disruption ended). The waiting time of the 

passengers waiting outside the gates can be computed by 

  
   ( )  ∑ ∫ ∫ (    ( ))     ( ))       

  

      

 

      

 

    

  (8) 

The objective function of the PFM model is to minimize the 

total waiting time of the denied passengers that are waiting 

outside stations while satisfying the capacity constraints of 

trains and stations.  

We propose an event-driven model similar to the one in 

Wang et al. (2015) to describe the behaviors of passengers 

(such as entering, waiting, boarding, alighting and leaving) 

based on the reschedule results of the TTM model. To 

describe the operation of trains from a passenger perspective, 

the event-driven model consists of the following three types 

of events: departure events, representing the departure of a 

train at a station, arrival events, representing the arrival of a 

train at a station, and short-turning events, representing the 

short turning operation of a train in an intermediate station. 

The r-th event    occurring in the event-driven system is 

denoted as   (           )  where   is the event counter,    

is the time instant at which event    occurs,    is the event 

type, which has two possible values, i.e., ‘d’ and ‘a’ 

corresponding to a departure event and an arrival event,    is 

the train service index, and    is the station index. As 

mentioned before, all the events are known because the 

rescheduled timetable is provided by the TTM. When an 

event occurs, the state of the system, particularly the numbers 

of boarding, alighting and waiting passengers, should be 

updated. Specifically, during the boarding process of 

passengers, the number of passengers onboard trains is 

limited by the maximum capacity     
     , i.e., 

      

         (    
            

         
      (  ))  (9) 

where   
      (  ) is the number of passengers waiting at the 

platform and       

       is the number of passengers that are 

already onboard before the boarding process. In addition, the 

number of passengers inside the station should be less than 

the maximum capacity at any time. Since here we consider an 

event-driven system, we only need to check the capacity 
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constraints when an event occurs, especially when an arrival 

event occurs, i.e.,  

                         
      (  )        

      
    

         (10) 

where     
        is the capacity of station    and       

      
 is the 

number of passengers that alighted from the just arrived train.  

     The resulting passenger flow management problem is a 

nonlinear programming problem, which can be solved using 

e.g., sequential quadratic programming and interior-point 

method. In this paper, we use function fmincon in Matlab 

with the sqp algorithm. 

To use adjusted passenger flows into TTM, for each train 

service    , passenger waiting times (i.e. onboard, in station 

and denied/out-station) are summarized over all stations 

along that train service. 

V. EXPERIMENTS 

We demonstrate the IDM approach on real-life cases of 

Line 9 of Beijing Metro. We assume that the disruption 

occurs between QLZ and LLQ (see Figure 1) and lasts from 

8:03 to 8:13, the time period for rescheduling considered is 

then from 8:03 to 9:13. Parameters of the IDM framework 

and the corresponding models are the following: number of 

iterations is set to 10,                           
                 , the train capacity is set as 1440, and 

the station capacity is set as 2700. Moreover, the passenger 

arrival rates and the train schedule are constructed based on 

the data of Beijing Metro Line 9.  

In the experiments, we compare variants with different 

numbers of maximum extra services that can be added in 

operations. In particular: with no extra train services, 2, 4 and 

6 extra train services. The variant with 2 extra services 

corresponds to the TTM formulation (1)-(5). The variant with 

no extra services corresponds to the TTM formulation (1)-(4). 

The last two variants correspond to the TTM  formulation 

(1)-(4) and an additional constraint  
                 , where    is the maximum number 

of extra services. 

Table 1 reports the experimental results for 4 variants of 

the IDM: objective function value (OF), number of scheduled 

and cancelled train services, weighted train deviation 

(trainDev, computed as               ) and weighted 

passenger waiting times (paxDev, computed as 

              ). In all four cases, exactly 2 train services were 

cancelled during the disruption. These cancellations are 

mainly caused by a partial single-track operation from QLZ to 

GGZ which implied long headway and turnaround times and 

thus resulted in limited infrastructure capacity. When no extra 

services are used, the rescheduled solution reports a high OF 

being influenced by large passenger waiting times. Adding 2 

extra services significantly reduces the passenger waiting 

time and thus also the OF. Further, adding extra services (4 

and 6) brings smaller benefit to the performance of the system, 

i.e. paxDev reduces slightly. In fact, adding more extra train 

services means more adjustments to existing services, i.e. 

more services need retiming and rerouting (trainDev 

increases). On average, computation times per iteration over 

all scenarios were: 2 s for TTM and 240 s for PFM. The IDM 

framework typically converged to single solutions after 3 to 4 

iterations. 

Table 2 reports the number of waiting passengers in and 

out of the station (paxWaitIn and paxWaitOut) and the 

corresponding waiting times (timeWaitIn and timeWaitOut). 

It shows that paxWaitIn halves when adding 2 extra services, 

which also strongly reduces waiting time in stations 

timeWaitIn. However, increasing from 4 to 6 extra services, 

does not benefit the number of passengers waiting, but still 

reduces their waiting time to some extent. This is a 

consequence of most passengers accumulating at stations 

before the disrupted area, and with limited train capacity not 

all can board the first train after the disruption but need to 

wait for next ones.   
Table 1. Experimental results for solving IDM 

Max extra 

services 
OF 

Train 

services 

Cancelled 

services 
trainDev paxDev 

0 36208123 67 2 2162000 32207996 

2 33629687 69 2 2160000 29629559 
4 33101866 71 2 2166000 29101726 

6 32987627 73 2 2202000 28987438 

Table 2. Waiting passengers and waiting times 
Max extra 

services 
paxWaitIn paxWaitOut timeWaitIn timeWaitOut 

0 44439 709 10117948 45540 
2 22690 709 7969067 45540 

4 17964 709 7529202 45540 

6 17964 709 7432595 45540 

 
Figure 3. Adjusted timetable with 6 extra services 

Figure 3 visualizes the disrupted time-distance diagram 

with 6 extra services. It shows adjusted existing train services 

(blue line), added extra services (purple line), number of 

passengers onboard (line width), passenger waiting time at 

each station (red circles at stations), number of passengers 

waiting outside of each station (green squares) and disruption 

duration (red line). As expected, most crowded are trains right 

after the disruption, as they collect all regular demand plus 

additional ones that have been denied and waiting out of 

stations during disruption, e.g. at QLZ. A limited positive 

effect of the third extra service is visible in Figure 3, i.e., it 

reduces some passenger waiting time but transports less 

passengers, and also causes the following 2 original services 

to operate with reduced occupancy. 

Figure 4 shows gate control and passengers waiting, in and 

out of station QLZ for the scenario with 6 extra services. 

Before the disruption, gate control of value 1 represents that 

no passenger overcrowding is experienced, thus no measures 
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are taken, and the arriving passenger flow can enter the 

station freely. During disruption, certain gate control 

measures are applied to manage inflow of passengers to the 

station. In particular, when a disruption happens, gates are 

first being partially closed (values smaller than 1) to reduce 

inflow of passengers and later on, completely closed (values 

equal 0).  Accordingly, passengers accumulate in the station, 

as they arrive from other stations, and accumulate outside the 

station as they intend to start their journey. Once the 

disruption is resolved, all gates are re-opened, and 

furthermore, additional gates are open (values bigger than 1) 

to release an extra flow of passengers that accumulated out of 

the station.  

 
Figure 4. Station QLZ for scenario with 6 extra train services: 

gate control number of passengers waiting in and out of station 

Table 3 reports gate control measures: time under (partial) 

closure (reported in min), weighted gate closure time 

(weightClose, computed as closure rate multiplied by the 

duration of the measure), time under additional gates are open, 

and weighted gate opening time (weightOpen, computed as 

open rate multiplied by the duration of the measure). For all 

cases, the gate control strategies are the same. Mainly, 

passengers that arrive during disruption are being 

accumulated first inside the station and then denied and need 

to wait outside the station. In order to restrict passengers 

entering a crowded station gates are closed for a certain time. 

In our considered cases, gates were closed for 12 min. After a 

disruption ends, additional gates are opened for 6 min. 
Table 3. Gate control strategies 

Max extra 

services 
timeClose  weightClose timeOpen  weightOpen 

0 12 8,033 6 8,033 
2 12 8,033 6 8,033 

4 12 8,033 6 8,033 

6 12 8,033 6 8,033 

VI. CONCLUSIONS  

We proposed a novel integrated disruption management 

methodology for automatically rescheduling trains and 

controlling passenger flows for a given disruption. Our 

framework incorporates a train traffic management model 

together with an event-driven passenger flow model and aims 

to minimize the total delay of passengers, reduce the number 

of denied passengers, minimize adjustments to train services 

and recover as quickly as possible. On the train side, we 

short-turn, cancel and reroute train services. On the passenger 

side, we reflow passengers according to a disrupted timetable 

and control station gates. We tested our integrated disruption 

management approach on real-life cases and discover 

dependencies between delayed/denied passengers and traffic 

management. The current model could support dispatchers in 

determining optimal train and station control measures as 

well as determine the necessary number of additional services 

to be inserted in order to minimize passenger waiting times 

and denied passengers.  

As future work, we envisage new developments toward 

including train services with variable maximum speeds 

and/or more flexible short-turning possibilities. In addition, 

new simulation-based optimization approaches to solve 

efficiently the given integrated problem will be considered.  
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