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Bounds on the Maximum Cardinality of Indel
and Substitution Correcting Codes

Ward J. P. Spee , Student Member, IEEE, and Jos H. Weber , Senior Member, IEEE

Abstract—Recent advances in DNA data storage have attracted
renewed attention towards deletion, insertion and substitution
correcting codes. Compared to codes aimed at correcting either
substitution errors or deletion and insertion (indel) errors, the
understanding of codes that correct combinations of substitution
and indel errors lags behind. In this paper, we focus on the
maximal size of q-ary t-indel s-substitution correcting codes.Our
main contributions include two Gilbert-Varshamov inspired
lower bounds on this size. On the upper bound side, we prove a
Singleton-like bound, a family of sphere-packing upper bounds
and an integer linear programming bound. Several of these
bounds are shown to improve upon existing results. Moreover,
we use these bounds to derive a lower bound and an upper
bound on the asymptotic redundancy of maximally sized t-indel
s-substitution correcting codes.

Index Terms—DNA data storage, error correcting codes, indels,
deletions, insertions, substitutions, Gilbert-Varshamov bound,
Singleton bound, sphere-packing bound, ILP bound.

I. INTRODUCTION

ADVANCES in practical research on DNA data storage
in the last decade have shown that it could become a

viable alternative for traditional archival storage methods in
the future [1], [2], [3], [4], [5]. DNA molecules consisting of
strings of nucleotides Adenine (A), Cytosine (C), Guanine (G)
and Thymine (T) are suited for this purpose because of their
high-information density and longevity properties [6]. Error
analysis of current DNA storage systems has revealed that the
strings incur deletion, insertion and substitution errors during
synthesis (writing), storage and sequencing (reading) [7].
Therefore, coding techniques that reduce error rates and
correct combinations of these errors are essential for reliable
use of DNA data storage systems.

Error rate reduction and error correction can be achieved
by imposing restrictions on the set of quaternary strings
that is used to convey information. For example, strings
should not contain long homopolymer runs or a strongly
unbalanced number of C/G nucleotides in comparison to A/
T nucleotides, since these properties significantly increase
error rates [7]. Although these restrictions are beneficial
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to reduce error rates, adherence does not eliminate the
need for error correction. Error correction capabilities can
be enforced by carefully selecting a subset of quaternary
strings, i.e., a code that satisfies certain distance requirements.
Henceforth, we will consider codes as a subset of q-ary
strings for some alphabet consisting of q ≥ 2 symbols,
and treat coding for DNA data storage as a special case,
i.e., q = 4.

For optimizing the efficiency of codes, it is interesting to
study the maximum size of a code that can correct combina-
tions of deletion, insertion and substitution errors. Classical
error correcting codes aimed only at correcting substitution
errors have been well-studied for over 75 years [8]. This has
led to numerous non-asymptotic bounds on the maximum size
of substitution correcting codes (see, e.g., [9], [10], [11], [12],
[13]). The study of deletion and insertion (indel) correcting
codes was initiated by Levenshtein [14]. He showed that a
code that is able to correct t deletions (or insertions) is able to
correct any t ′ deletions and t ′′ insertions, whenever t ′+t ′′ ≤ t .
In other words, a t-deletion (insertion) correcting code is also
a t-indel correcting code. This property shows the equivalence
between correcting deletions and insertions, which warrants
the terminology of t-indel correcting codes. Non-asymptotic
bounds on the maximum size of t-indel correcting codes have
been provided in e.g., [14], [15], [16], [17], [18].

In comparison with either substitution correcting codes or
indel correcting codes, non-asymptotic bounds on the maximal
cardinality of t-indel s-substitution correcting codes have been
studied to a lesser degree in literature. Smagloy et al. [19]
derived two upper bounds on this size for specific values
of t and s. Several t-indel s-substitution correcting codes
have been constructed, e.g., in [20], [21], which naturally
imply non-asymptotic lower bounds. Moreover, note that
each (t + 2s)-indel correcting codes is also a t-indel s-
substitution correcting code, because a substitution can be
seen as a deletion followed by an insertion. Hence, lower
bounds on the maximum size of (t + 2s)-indel correcting codes
imply lower bounds for t-indel s-substitution correcting codes
as well.

The last observation that any (t + 2s)-indel correcting code
is also a t-indel s-substitution correcting code might raise the
preliminary question whether it is superfluous to consider the
correction of substitutions separately. However, there are two
arguments in favor of separating indel correction from substi-
tution correction. First, it was recognized by Song et al. [20]
that (t + 2s)-indel correcting codes are not necessarily optimal
within the set of t-indel s-substitution correcting codes in
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terms of redundancy.1 Secondly, the error rates of indels
and substitutions in DNA data storage are not necessarily
equal [22]. Therefore, it is sensible to bound the number indels
and substitutions by different parameters.

In this paper, we are interested in the maximum size of
q-ary codes that correct combinations of indels and substitu-
tions. The main contributions of this paper are several explicit
and non-asymptotic bounds on this size that hold for a general
number of indels and substitutions. More specifically, we
present two lower bounds which are both inspired by the well-
known Gilbert-Varshamov bound. Furthermore, we construct a
Singleton-like upper bound, sphere-packing upper bounds and
integer linear programming bounds.

The organisation of this paper is as follows. In Section II,
notation, terminology and several prior results are discussed.
Next, the aforementioned lower and upper bounds are derived
in Sections III and IV, respectively. Lastly, two bounds are
used in Section V in order to derive a lower and upper bound
on the asymptotic redundancy of a maximally sized t-indel
s-substitution correcting code.

II. DEFINITIONS AND PRELIMINARIES

For a finite set S, denote the cardinality of S by |S |. By
convention, we set

(a
0

)
= 1 for all a ∈ Z, and

(a
b

)
= 0 if

either a < 0 and b > 0, or b > a > 0.
For convenience, we will view the four types of nucleotides

as numerals using the following bijection,

A ↔ 0, C ↔ 1, T ↔ 2, G ↔ 3.

Hence, a single string of DNA of length n is represented by
a word in the set {0, 1, 2, 3}n . More generally, we consider
the alphabet with q ≥ 2 symbols given by Bq := {0, 1, . . . ,
q − 1}. The set of q-ary words (i.e., vectors) of length n with
symbols from Bq is denoted by Bq (n) := {0, 1, . . . , q − 1}n .
Let n1,n2 ≥ 1 be integers, then we denote the concatenation
of two words u ∈ Bq (n1) and v ∈ Bq (n2) by (u|v) ∈ Bq (n1+
n2). A run in a word x ∈ Bq (n) is a sequence of consecutive
and identical symbols in x that is not contained within a longer
such sequence. The number of runs in x is denoted by r(x).
For instance, let y = 11000322 ∈ B4(8), then y contains the
runs 11, 000, 3 and 22, and hence r(y) = 4. The number of
words in Bq (n) with exactly r runs is given by [15],

|{x ∈ Bq (n) : r(x) = r}| = q

(
n − 1

r − 1

)
(q − 1)r−1. (1)

For integers 0 ≤ t ≤ n and 0 ≤ s ≤ n , a code C ⊆
Bq (n) is said to be a t-indel s-substitution correcting code if
any q-ary word (not necessarily of length n) can be obtained
from no more than one codeword by exactly t ′ deletions, t ′′
insertions and s or fewer substitutions, whenever t ′+ t ′′ ≤ t .
A 0-indel s-substitution correcting code is simply called an
s-substitution correcting code and analogously a t-indel 0-
substitution correcting code is called a t-indel correcting code.
In order to maximize the amount of information that can be

1For instance, the single-substitution correcting binary Hamming code with
words of length 7 has size 16 [11]. In contrast, in [17, Th. 1] it was shown
that a binary two-indel correcting code has a maximal size of at most 11.

transmitted using a code, we are interested in the maximal
size of a q-ary t-indel s-substitution correcting code with
codewords of length n, which we denote by Mq (n, t , s). The
redundancy of a code C is defined by n − logq (|C|).

Denote by Vt ′,t ′′,s(x) the set of words that can be reached
from x ∈ Bq (n) by means of exactly t ′ deletions, t ′′ insertions
and at most s substitutions. Clearly, the q-ary words in the
set Vt ′,t ′′,s(x) have length n − t ′ + t ′′. Moreover, we define
Dt (x) = Vt ,0,0(x), It (x) = V0,t ,0(x) and Ss(x) = V0,0,s (x).
These sets often arise in the study of t-indel s-substitution
correcting codes, because they allow for equivalent character-
izations of these codes in terms of the set Vt ′,t ′′,s(x). The
following lemma collects various equivalent characterizations
from e.g., [20, Sec. II], [23, Lem. 2] and [19, Lem. 2].

Lemma 1: Let n ≥ 1, q ≥ 2, 0 ≤ t ≤ n and 0 ≤ s ≤ n be
integers, and let C ⊆ Bq (n) be a code. Then, the following
five statements are equivalent:

1) C is a t-indel s-substitution correcting code.
2) Vt ′,t ′′,s(c1)∩Vt ′,t ′′,s(c2) = ∅ for all distinct codewords

c1, c2 ∈ C, and for all integers t ′, t ′′ ≥ 0 such that
t ′ + t ′′ ≤ t .

3) Vt ,0,s(c1) ∩ Vt ,0,s(c2) = ∅ for all distinct codewords
c1, c2 ∈ C.

4) V0,t ,s(c1) ∩ V0,t ,s(c2) = ∅ for all distinct codewords
c1, c2 ∈ C.

5) c2 /∈ Vt ,t ,2s(c1) for all distinct c1, c2 ∈ C.
For general parameters t ′, t ′′ and s, and words x ∈ Bq (n)

determining the cardinality of Vt ′,t ′′,s(x) is a non-trivial
task [24]. In the specific case that t ′ = t ′′ = 0 it holds that [8]

|Ss(x)| =
s∑

i=0

(
n

i

)
(q − 1)i , (2)

for each x ∈ Bq (n). The quantity S s
n,q :=

∑s
i=0

(n
i

)
(q − 1)i

will be referred to as the size of the q-ary Hamming sphere
of radius s. Moreover, it has been established [25] that

|It (x)| = S t
n+t ,q =

t∑

i=0

(
n + t

i

)
(q − 1)i . (3)

Interestingly, the cardinalities of Ss(x) and It (x) depend on x
only via the parameters n and q. In contrast, |Dt (x)| depends
on the structure of the word x as well as the parameters n and
q. To the best of authors’ knowledge, an analytic formula of
|Dt (x)| is not known for general t and therefore we have to
rely on bounds. In [14], Levenshtein showed that

(
r(x)− t + 1

t

)
≤ |Dt (x)| ≤

(
r(x) + t − 1

t

)
(4)

for all x ∈ Bq (n). The lower bound was later improved by
Hirschberg and Regnier [26] to

t∑

i=0

(
r(x)− t

i

)
≤ |Dt (x)|. (5)

An even stronger lower bound was found in [27], but it holds
only for binary words. For t ≤ 5, an analytic formula of
|Dt (x)| has been provided in [28], but these expressions are
rather involved for t ≥ 2. Lastly, by using the observation that
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x ∈ It (y) if and only if y ∈ Dt (x), it was shown in [15] that
the average cardinality of Dt (x) is given by

1

qn

∑

x∈Bq (n)

|Dt (x)| = 1

qn

∑

y∈Bq (n−t)

|It (y)| (3)= 1

qt

t∑

i=0

(n
i

)
(q − 1)i .

(6)

In the setting of combinations of indels and substitutions, we
define the following quantity

V avg
t ,t ,2s := q−n

∑

x∈Bq (n)

∣
∣Vt ,t ,2s(x)

∣
∣. (7)

Next, we establish the following simple lower bound on the
cardinality of Vt ,0,s (x).

Lemma 2: Let n ≥ 1, 0 ≤ t ≤ n
2 and 0 ≤ s ≤ n

2 be
integers. Let x ∈ Bq (n) be a word with r = r(x), then it
holds that

s∑

i=0

(	n2 

i

)
(q − 1)i ·

t∑

j=0

(	 r2
 − t

j

)
≤ ∣∣Vt ,0,s (x)

∣
∣.

An analogous bound holds for the cardinality of V0,t ,s(x).
Lemma 3: Let n ≥ 1, 0 ≤ t ≤ n

2 and 0 ≤ s ≤ n
2 be

integers. Let x ∈ Bq (n), then it holds that

s∑

i=0

(	n2 

i

)
(q − 1)i ·

t∑

i=0

(�n2 �+ t

i

)
(q − 1)i ≤ ∣∣V0,t ,s (x)

∣
∣.

We relegated the proofs of these lemmas to Appendices A
& B. For t = s = 1, it is not necessary to use these bounds,
since exact expressions are known. Namely, for integers n ≥ 1
and q ≥ 2, and any word x ∈ Bq (n), it was stated in [19] that

∣
∣V1,0,1(x)

∣
∣ =

⎧
⎪⎨

⎪⎩

(n − 1)(q − 1) + 1 if r(x) = 1,

r(x) (n − 2)(q − 1)

−r(x) + q + 2
if r(x) ≥ 2.

(8)

Exact expressions for the cardinalities of V0,1,1(x) and
V1,1,0(x) were provided in [29] and [30], respectively. From
previous expressions, it is apparent that the cardinality of
Vt ′,t ′′,s(x) and r(x) are strongly related. Hence, we provide
a result that will be used repeatedly throughout this paper.

Lemma 4: Let n ≥ 1, q ≥ 2, t ′ ≥ 0, t ′′ ≥ 0 and s ≥ 0
be integers such that n − t ′ + t ′′ ≥ 1. Let x ∈ Bq (n) and
y ∈ Vt ′,t ′′,s(x), then the following holds,

r(x)− 2
(
t ′ + s

) ≤ r(y) ≤ r(x) + 2
(
t ′′ + s

)
.

For a proof of this statement we refer to Appendix C.
Before proceeding to the main results of this paper,

we make a remark about the way in which they will be
presented. Unsurprisingly, several of the subsequent bounds on
Mq (n, t , s) are based on expressions or bounds on cardinality
of Vt ′,t ′′,s(x). Since this cardinality is not known for all sets
of parameters, to the best of the authors’ knowledge, we first
present implicit bounds that show the general dependency
on |Vt ′,t ′′,s(x)|. Next, these bounds are made explicit using
existing results on |Vt ′,t ′′,s(x)|. This two-part presentation has
the advantage that the explicit bounds can be easily improved
with the potential availability of new results on |Vt ′,t ′′,s(x)|
in the future.

III. GILBERT-VARSHAMOV INSPIRED LOWER BOUNDS

The well-known Gilbert-Varshamov lower bound for s-
substitution correcting codes [9], [10] is given by

Mq (n, 0, s) ≥ qn
∑2s

i=0

(n
i

)
(q − 1)i

. (9)

This bound is commonly proven using a sphere-covering
argument where the spheres are given by S2s(c) centered
around the codewords c ∈ C (see, e.g., [8, Th. 4.3]). In the
case of substitutions, this proof is facilitated by the fact that
these spheres are of equal size.

Tolhuizen [31] recognized that the Gilbert-Varshamov
bound is also implied by Turán’s theorem [32] from extremal
graph theory. A particular consequence of the latter approach
is that it easily generalizes to the case in which the spheres
are not of equal size. For instance, this is the case for t-
indel correcting codes when dealing with the spheres Vt ,t ,0(c).
The approach from Tolhuizen was used by Levenshtein [15]
to bound the maximal size of a t-indel correcting code from
below. In particular, it was shown that

Mq (n, t , 0) ≥ qn+t

(∑t
i=0

(n
i

)
(q − 1)i

)2 . (10)

For completeness, we mention that other Gilbert-Varshamov
related lower bounds on Mq (n, t , 0) are given in [33], [34].
In a different setting, multiple generalized Gilbert-Varshamov
bounds are derived in [35] that resemble the following lemmas.

Next, it is a natural step to generalize the argument from
Tolhuizen to t-indel s-substitution correcting codes.

Lemma 5: Let n ≥ 1, q ≥ 2, 0 ≤ t ≤ n and 0 ≤ s ≤ n be
integers. The following gives a lower bound on Mq (n, t , s),

Mq (n, t , s) ≥ qn

V avg
t ,t ,2s

. (11)

Proof: The idea of this proof is to translate the problem of
finding a large code to the problem of finding a large clique.2

This allows us to apply the argument from [31, Sec. II] to
derive the desired lower bound on Mq (n, t , s).

Define the undirected graph G = (V ,E ) without loops or
double edges as follows. Let V = Bq (n) be the set of nodes
of G. Two distinct nodes x and y from V are joined by an edge
in E if x /∈ Vt ,t ,2s (y). This is well-defined because it holds
that x /∈ Vt ,t ,2s (y) if and only if y /∈ Vt ,t ,2s (x). Intuitively,
the pairs of nodes that are connected by an edge can both
be codewords in a t-indel s-substitution correcting code. The
number of nodes equals |V | = qn and the number of edges
is given by

|E | = 1

2

∑

x∈V

(|V | − |Vt ,t ,2s (x)|
)

=
1

2
q2n − 1

2

∑

x∈Bq (n)

|Vt ,t ,2s (x)| = 1

2
qn
(
qn − V avg

t ,t ,2s

)
,

where the first equality follows from the fact that each x ∈
V has |V | − |Vt ,t ,2s (x)| incident edges. Therefore, summing

2A clique of a graph G is an induced subgraph that is complete, i.e., all
pairs of nodes are connected by an edge.
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|V | − |Vt ,t ,2s (x)| over all nodes in x ∈ V equals 2|E | since
each edge is counted twice. Observe that from the definition
of the edges in G and Lemma 1 it follows that a clique of size
k in G corresponds to a t-indel s-substitution correcting code
C of size k.

Using the cardinalities of V and E it follows from the
argument in [31, Sec. II] that there exists a clique in G of size
� qn

V avg
t,t,2s

�. For brevity, we do not repeat this argument here.

In turn, this implies that there exists an equally large t-indel
s-substitution correcting code, which concludes the proof.

In essence, the strength of the lower bound on Mq (n, t , s)
from Lemma 5 is determined by the size of a clique that is
implied by Turán’s theorem. This observation allows us to
improve Lemma 5 by using the stronger result of Caro [36]
and Wei [37] on the size of the largest clique in a graph.

Lemma 6: Let n ≥ 1, q ≥ 2, 0 ≤ t ≤ n and 0 ≤ s ≤ n be
integers. The following gives a lower bound on Mq (n, t , s),

Mq (n, t , s) ≥
∑

x∈Bq (n)

1∣
∣Vt ,t ,2s (x)

∣
∣ . (12)

Proof: Let G = (V, E) be the graph as defined in the proof
of Lemma 5. The degree of a node x ∈ V = Bq (n) is
given by

deg(x) =
∣
∣Bq (n) \ Vt ,t ,2s (x)

∣
∣ = qn − ∣∣Vt ,t ,2s(x)

∣
∣.

In this setting, the main results3 of Caro [36] and Wei [37]
imply that G contains a clique of size at least

∑

x∈Bq (n)

1

|Bq (n)| − deg(x)
=

∑

x∈Bq (n)

1

|Vt ,t ,2s (x)| . (13)

Recall from Lemma 5 that a clique of size k in G cor-
responds to a t-indel s-substitution correcting code of size
k in Bq (n). Therefore, we conclude that there exists a
t-indel s-substitution correcting code with a size as given
by (13). Naturally, the size of this code forms a lower bound
on Mq (n, t , s).

Given that Turán’s theorem is implied by the result of
Khogan [38], it is not surprising that Lemma 6 improves on
Lemma 5. Indeed, using the convexity of x → 1

x on (0,∞) it
follows directly that

q−n
∑

x∈Bq (n)

1

|Vt ,t ,2s (x)| ≥
1

q−n
∑

x∈Bq (n)
|Vt ,t ,2s (x)| . (14)

In order to evaluate the lower bounds in Lemmas 5 & 6
the sizes of V

avg
t ,t ,2s and Vt ,t ,2s (x) for all x ∈ Bq (n) need

to be determined, respectively. To the best of the authors’
knowledge, analytic formulae for these expressions are not
known for general parameters n, q , t and s. For this rea-
son, we employ upper bounds on V avg

t ,t ,2s and |Vt ,t ,2s (x)|
to obtain explicit and non-asymptotic results for both
lemmas.

3To be precise, we translated the result from Caro and Wei on the existence
of an independent set to the existence of a clique of the same size in the
complement graph.

Theorem 1: For integers n ≥ 1, q ≥ 2, 0 ≤ t ≤
n and 0 ≤ s ≤ n, the following gives a lower bound
on Mq (n, t , s),

Mq (n, t , s) ≥ qn+t

(∑t
i=0

(n
i

)
(q − 1)i

)2∑2s
i=0

(n−t
i

)
(q − 1)i

.

(15)

Proof: We claim that V avg
t ,t ,2s can be upper bounded by

1

q t

(
t∑

i=0

(
n

i

)
(q − 1)i

)2 2s∑

i=0

(
n − t

i

)
(q − 1)i . (16)

In this case, the result of the theorem follows immediately
from applying the upper bound to Lemma 5. Therefore,
this proof is limited to proving the claim. In what fol-
lows, a superscript − will be used to denote a word in
Bq (n − t), whereas an omission thereof is meant for words
in Bq (n).

To this end, observe that each element in Vt ,t ,2s(x) can
be reached from x ∈ Bq (n) by first deleting precisely
t symbols, followed by substituting at most 2s symbols
and lastly inserting exactly t symbols. Hence, it follows
that

|Vt ,t ,2s (x)| ≤
∑

y−∈Dt (x)

∑

z−∈S2s(y−)

|It
(
z−
)|. (17)

In order to evaluate the right-hand side of this expression,
recall from (2) and (3) that the cardinalities of the sets It (x−)
and S2s(x−) do not depend on the choice of x− ∈ Bq (n −
t). Moreover, the cardinality of Dt (x) averaged over all x ∈
Bq (n) was given in (6). By combining these results and
carefully taking into account the lengths of the words, it
follows that

V avg
t ,t ,2s = q−n

∑

x∈Bq (n)

|Vt ,t ,2s (x)|

(17)
≤ q−n

∑

x∈Bq (n)

∑

y−∈Dt (x)

∑

z−∈S2s(y−)

|It
(
z−
)|

(3)
= q−n

∑

x∈Bq (n)

∑

y−∈Dt (x)

∑

z−∈S2s(y−)

S t
n,q

(2)
= q−n

∑

x∈Bq (n)

∑

y−∈Dt (x)

S2s
n−t ,q · S t

n,q

= q−n · S t
n,q · S2s

n−t ,q ·
∑

x∈Bq (n)

|Dt (x)|

(6)
= q−t · (S t

n,q

)2 · S2s
n−t ,q .

Note that the last expression is equivalent to (16), which proves
the claim.

Observe that (9) and (10) are special cases of the latter
theorem, since they are recovered by setting t = 0 and
s = 0, respectively. Next, we derive an explicit lower bound
on Mq (n, t , s) using Lemma 6 and an upper bound on
|Vt ,t ,2s (x)|.
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TABLE I
COMPARISON OF LOWER BOUNDS

Theorem 2: For integers n ≥ 1, q ≥ 2, 0 ≤ t ≤ n and 0 ≤
s ≤ n, the following gives a lower bound on Mq (n, t , s),

Mq (n, t , s) ≥
n∑

r=1

q
(n−1
r−1

)
(q − 1)r−1

(r+t−1
t

) ·∑t
i=0

(n
i

)
(q − 1)i ·∑2s

j=0

(n−t
j

)
(q − 1)j

.

Proof: Using similar reasoning as in the proof Theorem 1
it follows that

|Vt ,t ,2s (x)| ≤
∑

y−∈Dt (x)

∑

z−∈S2s(y−)

|It
(
z−
)|

≤
(
r(x) + t − 1

t

)
· S t

n,q · S2s
n−t ,q ,

where we used (4), (2) and (3) for the cardinalities of Dt (x),
S2s(y−) and It (z−), respectively. Next, we apply these results
to Lemma 6 and obtain the desired result,

Mq (n, t , s) ≥
∑

x∈Bq (n)

1

|Vt ,t ,2s (x)|

≥
∑

x∈Bq (n)

1
(r(x)+t−1

t

) · S t
n,q · S2s

n−t ,q

=

n∑

r=1

q
(n−1
r−1

)
(q − 1)r−1

(r+t−1
t

) · S t
n,q · S2s

n−t ,q

,

where the last equality follows from (1). This chain of
(in)equalities concludes the proof.

Considering the implication of (14), it might be expected
that Theorem 1 is also implied by Theorem 2. However, this is
not the case in general because different bounds for V avg

t ,t ,2s and
|Vt ,t ,2s (x)| were used in both theorems, respectively. Table I
provides both instances in which Theorem 1 outperforms
Theorem 2 and vice versa. Obviously, the bounds from
Theorems 1 & 2 can be improved with the availability of exact
expressions, or tighter bounds on V

avg
t ,t ,2s and |Vt ,t ,2s (x)|.

IV. THREE TYPES OF NON-ASYMPTOTIC UPPER BOUNDS

A. Singleton-Like Upper Bound

The well-known Singleton upper bound for s-substitution
correcting codes [39] is given by Mq (n, 0, s) ≤ qn−2s .
Recently, Liu and Xing [18] proved a similar bound for t-indel
correcting codes, Mq (n, t , 0) ≤ qn−t . The following result
combines these two bounds into an upper bound for t-indel
s-substitution correcting codes.

Theorem 3: Let n ≥ 1, q ≥ 2, 0 ≤ t ≤ n and 0 ≤ s ≤ n
be integers such that n − t − 2s ≥ 0. Then, the following
holds,

Mq (n, t , s) ≤ qn−t−2s . (18)

Proof: Let C ⊆ Bq (n) be a t-indel s-substitution correcting
code of maximal size. Consider the shortened code C− ⊆
Bq (n − t − 2s) that is obtained from C by deleting the first t
+ 2s symbols from all codewords in C.

We claim that two distinct codewords c1, c2 ∈ C yield two
distinct codewords c−1 , c

−
2 ∈ C−. For contradiction, suppose

that there exist two codewords c1, c2 ∈ C that agree on the
last n − t − 2s symbols. First, delete the first t symbols from
both c1 and c2, to obtain z1 and z2, respectively. Notice that
z1 and z2 agree on the last n − 2s symbols. Hence, they
differ in at most 2s places. This means that there exists some
z ∈ Bq (n− t) that can be obtained from both z1 and z2 by at
most s substitutions. It follows that z ∈ Ss(c1)∩Ss(c2) and in
turn that z ∈ Vt ,0,s (c1)∩Vt ,0,s (c2). This forms a contradiction
with c1 and c2 being codewords of C, because this intersection
is empty according to Lemma 1. Therefore, the claim holds.

The claim implies that C and C− have the same number
of elements. It follows that Mq (n, t , s) = |C| = |C−| ≤
qn−t−2s , since C was chosen to be maximal in the set
of t-indel s-substitution correcting codes. The last chain of
(in)equalities concludes the proof.

B. Sphere-Packing Bounds

For s-substitution correcting codes the sphere-packing
Hamming bound [11],

Mq (n, 0, s) ≤ qn
∑s

i=0

(n
i

)
(q − 1)i

,

is based on the idea that any such code C induces a disjoint set
of spheres Ss(c) with c ∈ C. Naturally, the combined size of
these disjoint spheres cannot exceed the size of Bq (n) which
leads to the aforementioned bound.

For t-indel correcting codes, the same reasoning was used
in [17] to show that

Mq (n, t , 0) ≤ qn+t

∑t
i=0

(n+t
i

)
(q − 1)i

,

by viewing these codes from the perspective of correcting
solely insertions. From the perspective of correcting deletions
only, an inattentive application of the sphere-packing argument
leads to the Singleton bound. Namely, it holds that

Mq (n, t , 0) ≤ |Bq (n − t)|
minx∈Bq (n) |Dt (x)| = qn−t , (19)

where we used that the all-zero word 0 ∈ Bq (n) satisfies
|Dt (0)| = 1. This bound can be improved by excluding the
words for which |Dt (x)| is ‘small’ in the denominator of (19).
Levenshtein [15] realized that these words are characterized
by the words with few runs. For this reason, he partitioned the
words in Bq (n) into two clusters based on their number of
runs. Consequently, by applying the sphere-packing argument
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only to words with many runs, i.e., for which |Dt (x)| is ‘large’,
Levenshtein established for each max{1, t − 1} ≤ r ≤ n that

Mq (n, t , 0) ≤ qn−t

∑t
i=0

(r+1−t
i

) + q

r∑

i=1

(
n − 1

i − 1

)
(q − 1)i−1.

In the context of t-indel s-substitution correcting codes,
we will show that the sphere-packing argument can be used
to obtain upper bounds for Mq (n, t , s). Given that the sets
Vt ′,t ′′,s(x) are also not of equal size for all x ∈ Bq (n), the
partitioning argument from Levenshtein based on the number
of runs can be used in this setting as well. Obviously, this
argument is not restricted to the use of only two clusters.
The following lemma provides our sphere-packing bound in
its most general form. Subsequently, this result will be made
more concrete.

Lemma 7: Let n ≥ 1, q ≥ 2, 0 ≤ t ≤ n, 0 ≤ s ≤ n and 1 ≤ k
≤ n be integers. For each sequence of integers 0 = r0 < r1 <
· · · < rk = n , and for each pair of integers 0 ≤ t ′, t ′′ ≤ n
such that t ′ + t ′′ = t , the following gives an upper bound on
Mq (n, t , s),

Mq (n, t , s) ≤
k∑

j=1

∑bj
r=aj q

(n−t ′+t ′′−1
r−1

)
(q − 1)r−1

min
x∈Aj

|Vt ′,t ′′,s(x)|
,

where for 1 ≤ j ≤ k , aj := max{1, rj−1 + 1 − 2(t ′ + s)},
bj := min{n − t ′ + t ′′, rj + 2(t ′′ + s)} and Aj := {x ∈
Bq (n) : rj−1 + 1 ≤ r(x) ≤ rj }.

Proof: Let C ⊆ Bq (n) be a t-indel s-substitution correcting
code of maximum size. The idea of this proof is to partition
Bq (n) into k clusters based on the number of runs of the words
in Bq (n). These clusters are given by Aj for 1 ≤ j ≤ k. Since
C is maximal and these clusters form a partition of Bq (n) it
follows that Mq (n, t , s) =

∑k
j=1 |C ∩ Aj |. Then, we bound

each |C ∩ Aj | from above to arrive at the desired result.
Note that the clusters Aj indeed form a partition of Bq (n),

because the sequence 0 = r0 < r1 < · · · < rk = n is strictly
increasing. Let 1 ≤ j ≤ k and consider only the cluster Aj .
Let c ∈ C∩Aj and consider a word y ∈ Vt ′,t ′′,s(c). We claim
that aj ≤ r(y) ≤ bj with aj and bj as given in the statement
of this lemma. It holds that y has length n − t ′ + t ′′ and thus
1 ≤ r(y) ≤ n − t ′ + t ′′. Moreover, by Lemma 4 it follows
that r(c) − 2(t ′ + s) ≤ r(y) ≤ r(c) + 2(t ′′ + s), since y ∈
Vt ′,t ′′,s(c). Together with rj−1+1 ≤ r(c) ≤ rj which follows
from the definition of Aj , we find that rj−1+1−2(t ′+s) ≤
r(y) ≤ rj + 2(t ′′ + s). Hence, we have proven the claim and
continue with a sphere-packing argument.

The sets Vt ′,t ′′,s(c) with c ∈ C∩Aj are disjoint according to
Lemma 1, because C is a t-indel s-substitution correcting code.
For this reason, the combined size of these spheres satisfies

∑

c∈C∩Aj

|Vt′,t′′,s(c)| =

∣∣∣∣∣∣

⋃

c∈C∩Aj

Vt′,t′′,s(c)

∣∣∣∣∣∣

≤ ∣∣{y ∈ Bq

(
n − t ′ + t ′′

)
: aj ≤ r(y) ≤ bj }

∣∣

(1)
=

bj∑

r=aj

q
(n − t ′ + t ′′ − 1

r − 1

)
(q − 1)r−1,

where we used the aforementioned claim to upper bound the
size of the union. On the other hand, it also holds that

∑

c∈C∩Aj

|Vt ′,t ′′,s(c)| ≥ |C ∩ Aj | · min
c∈C∩Aj

|Vt ′,t ′′,s(c)|

≥ |C ∩ Aj | · min
x∈Aj

|Vt ′,t ′′,s(x)|,

where we used that C ∩ Aj ⊆ Aj in the last inequality. By
combining the last two steps, it follows that

|C ∩ Aj | ≤
∑bj

r=aj q
(n−t ′+t ′′−1

r−1

)
(q − 1)r−1

min
x∈Aj

|Vt ′,t ′′,s(x)|
,

which concludes the proof.
Intuitively, the parameters k and rj for 1 ≤ j ≤ k in the

previous lemma determine how Bq (n) is partitioned into k
clusters based on the number of runs. Given the freedom of
choice in these parameters, this lemma provides a family of
upper bounds instead of a single bound. Note that [aj , bj ] for
1 ≤ j ≤ k are not pairwise disjoint, which affects the tightness
of the bound. This results from the use of multiple clusters,
which were introduced to benefit the tightness. In their current
form, these bounds are implicit and can be made explicit by,
e.g., (8) for t = s = 1.

Theorem 4: Let n ≥ 1, q ≥ 2 and 1 ≤ k ≤ n be integers.
For each sequence of integers 0 = r0 < r1 < · · · < rk = n ,
the following gives an upper bound on Mq (n, 1, 1),

Mq (n, 1, 1) ≤
∑b1

r=a1
q
(n−2
r−1

)
(q − 1)r−1

(n − 1)(q − 1) + 1

+

k∑

j=2

∑bj
r=aj q

(n−2
r−1

)
(q − 1)r−1

(
rj−1 + 1

)
((n − 2)(q − 1)− 1) + q + 2

,

with aj := max{1, rj−1 − 3}, bj := min{n − 1, rj + 2} for
1 ≤ j ≤ k .

Proof: Let t ′ = 1, t ′′ = 0 and s = 1. In this case, (8) yields

min
x∈A1

|V1,0,1(x)| = (n − 1)(q − 1) + 1,

and

min
x∈Aj

|V1,0,1(x)| =
(
rj−1 + 1

)
((n − 2)(q − 1)− 1) + q + 2,

for 2 ≤ j ≤ k which follows because (8) is non-decreasing as
function in r. Consequently, a direct application of Lemma 7
gives the desired result.

For a general number of indels and substitutions, we apply
the lower bound in Lemma 2 in order to make the family of
bounds from Lemma 7 concrete.

Theorem 5: Let n ≥ 1, q ≥ 2, 0 ≤ t ≤ n
2 , 0 ≤ s ≤ n

2
and 1 ≤ k ≤ n be integers. For each sequence of integers
0 = r0 < r1 < · · · < rk = n , the following gives an upper
bound on Mq (n, t , s),

Mq(n, t , s) ≤
k∑

j=1

∑bj
r=aj

q
(n−t−1

r−1

)
(q − 1)r−1

∑s
i=0

(� n
2 �
i

)
(q − 1)i ·∑t

l=0

(� rj−1+1

2 �−t
l

) ,

with aj := max{1, rj−1 + 1− 2(t + s)}, and bj := min{n −
t , rj + 2s} for 1 ≤ j ≤ k .
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Proof: Let t ′ = t and t ′′ = 0. In this case, Lemma 2 gives

min
x∈Aj

|Vt ,0,s (x)| ≥
s∑

i=0

(	n2 

i

)
(q − 1)i ·

t∑

l=0

(	 rj−1+1
2 
 − t

l

)

for 1 ≤ j ≤ k . Here we used that the lower bound from
Lemma 2 is non-decreasing as function in r. As a result, a
direct application of Lemma 7 concludes this proof.

C. Integer Linear Programming Bounds

At last, we employ an integer linear programming strategy
to obtain non-asymptotic upper bounds on the maximum
size of a code. This strategy that was initially described
in [16] and used to derive various bounds on Mq (n, t , 0). The
same strategy was used in [19] to derive upper bounds on
Mq (n, 1, 1) and M2(n, 1, s). Here, we reconsider this strategy
and derive several general upper bounds on Mq (n, t , s) for q
≥ 2 and t, s ≥ 0, and argue that the bound for Mq (n, 1, 1)
from [19] can be improved.

In short, this strategy involves describing Mq (n, t , s) as the
optimal value of an integer linear program. An upper bound
is then obtained by finding a feasible solution to the dual of a
linear programming relaxation of this integer linear program.
More specifically, this dual solution is given by any real-
valued vector w = (w(y))y∈Bq (n−t ′+t ′′) which satisfies the
conditions: 1) w ≥ 0 and 2)

∑
y∈Vt′,t′′,s(x)

w(y) ≥ 1 for all

x ∈ Bq (n). In turn, the upper bound is given by

Mq (n, t , s) ≤
∑

y∈Bq (n−t ′+t ′′)

w(y). (20)

A detailed description of this strategy can be found in [16]
and is thus omitted here. All that remains to derive an explicit
upper bound on Mq (n, t , s) is to construct an appropriate
vector w. In a general and implicit form, this is accomplished
by the next lemma.

Lemma 8: Let n ≥ 1, q ≥ 2, 0 ≤ t ≤ n and 0 ≤ s ≤ n be
integers. For each pair of integers t ′, t ′′ ≥ 0 such that t ′+t ′′ =
t , and for each non-decreasing function L : {1, . . . ,n} → R≥1

that satisfies L(r(x)) ≤ |Vt ′,t ′′,s(x)| for all x ∈ Bq (n), the
following gives an upper bound on Mq (n, t , s),

Mq (n, t , s) ≤
n−t ′+t ′′∑

r=1

q
(n−t ′+t ′′−1

r−1

)
(q − 1)r−1

L(c(r))
,

where c(r) = max{1, r − 2(t ′′ + s)}.
Proof: The aim of this proof is to construct a vector w

that satisfies the aforementioned two conditions and then
apply (20). To this end, define the vector w∗ as follows

w∗(y) = 1

L(c(r(y)))
=

⎧
⎨

⎩

1
L(1)

if r(y) ≤ 2
(
t ′′ + s

)
,

1
L(r(y)−2(t′′+s))

if r(y) ≥ 2
(
t ′′ + s

)
,

for all y ∈ Bq (n − t ′ + t ′′). We first show that w∗ is well-
defined and that w∗ satisfies the two conditions.

The vector w∗ is well-defined if c(r(y)) ∈ {1, . . . ,n} for
each y ∈ B(n − t ′ + t ′′), because in that case c(r(y)) is an
element of the domain of L. Let y ∈ B(n − t ′ + t ′′), then

c(r(y)) is integer-valued and clearly satisfies c(r(y)) ≥ 1.
Furthermore, it holds that

c(r(y)) = max{1, r(y)− 2
(
t ′′ + s

)}
≤ max{1,n − t ′ + t ′′ − 2

(
t ′′ + s

)} ≤ n.

Hence, w∗ is well-defined. The first condition w∗ ≥ 0 is
satisfied, because L is a strictly positive function. For the
second condition, let x ∈ Bq (n) and y ∈ Vt ′,t ′′,s(x). Lemma 4
states that r(y)− 2(t ′′ + s) ≤ r(x), which gives

c(r(y)) = max{1, r(y)− 2
(
t ′′ + s

)} ≤ r(x).

This implies that L(c(r(y))) ≤ L(r(x)), since L is a non-
decreasing function, by definition. All in all, we obtain the
second condition for w∗,

∑

y∈Vt′,t′′,s(x)

w∗(y) =
∑

y∈Vt′,t′′,s(x)

1

L(c(r(y)))

≥
∑

y∈Vt′,t′′,s(x)

1

L(r(x))

(∗)
=

|Vt ′,t ′′,s(x)|
L(r(x))

(∗∗)
≥ 1,

where we used in (∗) that the summands do not depend on y,
and in (∗∗) that L(r(x)) bounds |Vt ′,t ′′,s(x)| from below. To
conclude, w∗ satisfies the two aforementioned conditions and
an application of (20) yields the desired result,

Mq (n, t , s) ≤
∑

y∈Bq (n−t ′+t ′)

w∗(y)

=
n−t ′+t ′′∑

r=1

∑

y∈Bq (n−t ′+t ′)
r(y)=r

1

L(c(r))

(1)
=

n−t ′+t ′′∑

r=1

q
(n−t ′+t ′′−1

r−1

)
(q − 1)r−1

L(c(r))
.

The last chain of (in)equalities concludes the proof.
The general formulation of Lemma 8 enables us to derive

several explicit upper bounds on Mq (n, t , s) using existing
expressions and lower bounds on the size of Vt ′,t ′′,s(x).

For t = s = 1, let L(r) = |V1,0,1(x)| for any r ∈ {1, . . . ,n}
and any x ∈ Bq (n) with r runs. According to (8) the function
L is well-defined and satisfies the conditions of Lemma 8.
Therefore, the following upper bound is obtained,

Mq (n, 1, 1) ≤
3∑

r=1

q
(n−2
r−1

)
(q − 1)r−1

(n − 1)(q − 1) + 1

+
n−1∑

r=4

q
(n−2
r−1

)
(q − 1)r−1

(r − 2)((n − 2)(q − 1)− 1) + q + 2
.

(21)

This bound was also obtained as an intermediate step in the
proof of [19, Th. 4], but was further simplified to arrive at
a cleaner expression, yet weaker bound. For this reason, (21)
provides a stronger bound than [19, Th. 4].
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TABLE II
COMPARISON OF UPPER BOUNDS ON M4(n, 1, 1)

For general t, s and q ≥ 2, we employ the lower bound on
|Vt ,0,s (x)| from Lemma 2 and derive the following explicit
upper bound.

Theorem 6: For integers n ≥ 1, q ≥ 2, 0 ≤ t ≤ n
2 and 0 ≤

s ≤ n
2 , the following gives an upper bound on Mq (n, t , s),

Mq (n, t , s) ≤
n−t∑

r=1

q
(n−t−1

r−1

)
(q − 1)r−1

∑s
i=0

(� n
2
	

i

)
(q − 1)i ·∑t

j=0

(� r−2s
2

	−t
j

) .

Proof: In the context of Lemma 8, let t ′ = t , t ′′ = 0 and
let the lower bound L be given by Lemma 2. Observe that this
lower bound is non-decreasing in r, and therefore it satisfies
the conditions Lemma 8. As a result, Lemma 8 yields,

Mq (n, t , s) ≤
n−t∑

r=1

q
(n−t−1

r−1

)
(q − 1)r−1

∑s
i=0

(� n
2
	

i

)
(q − 1)i ·∑t

j=0

(� r−2s
2

	−t
j

) ,

which concludes the proof.
Analogously, we also employ the lower bound on |V0,t ,s (x)|

from Lemma 3 to derive a different bound.
Theorem 7: For integers n ≥ 1, q ≥ 2, 0 ≤ t ≤ n

2 and 0 ≤
s ≤ n

2 , the following gives an upper bound on Mq (n, t , s),

Mq (n, t , s) ≤ qn+t

∑s
i=0

(� n
2 �
i

)
(q − 1)i ·∑t

j=0

(� n
2 �+t
j

)
(q − 1)j

.

(22)

Proof: In the context of Lemma 8, let t ′ = 0, t ′′ = t and let
the lower bound L be given by Lemma 3. Observe that L does
not depend on r(x), and thus trivially satisfies the conditions
of the lower bound on |V0,t ,s (x)| in the statement of Lemma 8.
As a result, Lemma 8 yields,

Mq (n, t , s) ≤
n+t∑

r=1

q
(n+t−1

r−1

)
(q − 1)r−1

∑s
i=0

(� n
2 �
i

)
(q − 1)i ·∑t

j=0

(� n
2 �+t
j

)
(q − 1)j

=
qn+t

∑s
i=0

(� n
2 �
i

)
(q − 1)i ·∑t

j=0

(� n
2 �+t
j

)
(q − 1)j

,

where we used (1) in the last line.

D. Comparison of Various Upper Bounds

Next, we numerically compare several of our upper bounds
on M4(n, 1, 1) to an existing result in literature using Table II.
Table III offers a similar comparison of the upper bounds on
M4(n, 2, 2) in this paper. Note that the respective bounds have
been rounded down to the nearest integer. The best bounds per
row are indicated in bold. The columns for Theorem 4 & 5

TABLE III
COMPARISON OF UPPER BOUNDS ON M4(n, 2, 2)

display the best bound that is obtained after optimizing over
all sequences 0 = r0 < r1 < · · · < rk = n with k ≤ 5.

A key observation is that the best results in both tables are
not given by a single bound. This shows that it has been worth
deriving multiple bounds using different strategies. Despite its
simplicity Theorem 3 is still relevant for yielding good results
for small n. Table II also shows that the results in this paper
provide improvements over the bound in [19, Th. 4]. The
authors remark that numerical improvements can be made to
the results of Table III by computing the cardinality of the set
Vt ′,t ′′,s(x) numerically, and using these exact results instead
of bounds on the size of this set. However, the purpose of this
paper has been to derive several non-asymptotic bounds that
hold for general q, t and s, and to a lesser extent to compute
strong numerical bounds.

V. ASYMPTOTIC REDUNDANCY

In this section, we consider the setting in which the
parameters q, t and s are fixed, and n tends to infinity. In
this setting, Levenshtein [14] showed two asymptotic bounds
on M2(n, t , s) which imply that the asymptotic redundancy
of a binary t-indel s-substitution correcting code of maximal
size lies between (t + s) log2(n) and (2t + 2s) log2(n) +
o(log2(n)). Here, we provide alternative proofs for these
asymptotic bounds and extend the results from binary to q-ary
codes.

In what follows, we first derive the upper bound on the
asymptotic redundancy by using Theorem 1.

Lemma 9: Let q ≥ 2 be an integer. For non-negative
integers s and t such that s + t ≥ 1, the following holds

lim sup
n→∞

n − logq
(
Mq (n, t , s)

)

(2t + 2s) logq (n)
≤ 1.

Proof: Theorem 1 states that

Mq (n, t , s) ≥ qn+t

(
S t
n,q

)2 · S2s
n−t ,q

.

This implies that the redundancy of an optimal t-indel
s-substitution correcting code is bounded by

n − logq(Mq(n, t , s)) ≤ −t + 2 logq
(
S t
n,q

)
+ logq

(
S 2s
n−t,q

)
.

Note that for a fixed integer k ≥ 1 it holds that
(n
k

)
= 1

k !n
k +

o(nk ). In turn, it follows that S s
n,q =

(q−1)s

s! ns + o(ns), and
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logq (S
s
n,q ) = s logq (n) + o(logq (n)). By combining these

observations we obtain

lim sup
n→∞

n − logq
(
Mq (n, t , s)

)

(2t + 2s) logq (n)
≤

lim sup
n→∞

−t + 2 logq
(
S t
n,q

)
+ logq

(
S2s
n−t ,q

)

(2t + 2s) logq (n)
= 1,

as desired.
Next, we use Theorem 7 to derive the lower bound on the

asymptotic redundancy.
Lemma 10: Let q ≥ 2 be an integer. For non-negative

integers s and t such that s + t ≥ 1, the following holds

lim inf
n→∞

n − logq
(
Mq (n, t , s)

)

(t + s) logq (n)
≥ 1.

Proof: For sufficiently large n, Theorem 7 states that

Mq (n, t , s) ≤ qn+t

S s
� n
2
	,q · S t

� n
2
+t ,q

.

This implies that the redundancy of an optimal t-indel s-
substitution correcting code is bounded by

n − logq (Mq (n, t , s)) ≥ −t + logq

(
S s
� n

2 �,q
)
+ logq

(
S t
� n

2 �+t,q

)
.

By similar reasoning as in the proof of Lemma 9 we obtain

lim inf
n→∞

n − logq (Mq (n, t , s))

(t + s) logq (n)

≥ lim inf
n→∞

−t + logq

(
S s
� n
2 �,q

)
+ logq

(
S t
� n
2 �+t,q

)

(t + s) logq (n)
= 1,

as desired.
The following result is immediate from the last two lemmas.
Corollary 1: A maximal size t-indel s-substitution correct-

ing code has an asymptotic redundancy that falls between (t+
s) logq (n)+ o(logq (n)) and (2t +2s) logq (n)+ o(logq (n)).

VI. CONCLUDING REMARKS

In this paper, we have presented several non-asymptotic
bounds on the maximal cardinality of t-indel s-substitution cor-
recting codes. In order to improve these bounds, an interesting
research challenge is to find an expression or tighter bounds
for the cardinality of the set Vt ′,t ′′,s(x) for x ∈ Bq (n).

In the context of DNA data storage, constrained coding
techniques often include error-rate reduction measures, such as
excluding long homopolymer runs, and requiring approximate
GC/AT-balance. These measures naturally increase redun-
dancy, but it is a priori unclear whether the reduction in
error-rates outweighs the increase in redundancy. The results
of this paper might act as a comparison whether including
error-rate reduction measures is beneficial.

APPENDIX A
PROOF OF LEMMA 2

Let x1 and x2 be the words which consist of the first 	n2 

symbols of x, and the last �n2 � symbols of x, respectively. In
other words, x = (x1|x2). Without loss of generality, we can
assume that x2 contains at least 	 r2
 runs. Otherwise, the order

of the symbols in x can be reversed which does not affect the
cardinality of Vt ,0,s (x).

By concatenating two words u ∈ Ss(x1) and v ∈ Dt (x
2),

we obtain the word (u|v) ∈ Vt ,0,s (x). Each such distinct pair
of words u, v yields a distinct word in Vt ,0,s (x) and thus there
exist at least |Ss(x1)|·|Dt (x

2)| words in Vt ,0,s(x). As a result,

|Vt ,0,s (x)| ≥
s∑

i=0

(	n2 

i

)
(q − 1)i ·

t∑

j=0

(	 r2
 − t

j

)
,

where we used (2) for the cardinality of Ss(x1) and (5) as a
lower bound on |Dt (x

2)|.

APPENDIX B
PROOF OF LEMMA 3

Let x1 and x2 be the words which consist of the first 	n2 
,
and last �n2 � symbols of x, respectively. Using analogous
reasoning as in the proof of Lemma 2, it follows that

|V0,t ,s (x)| ≥ |Ss
(
x1
)
| · |It

(
x2
)
|

=

s∑

i=0

(�n2 �
i

)
(q − 1)i ·

t∑

i=0

(	n2 
+ t

i

)
(q − 1)i ,

where we used (2) and (3) for the cardinality of Ss(x1) and
It (x2), respectively.

APPENDIX C
PROOF OF LEMMA 4

Consider an arbitrary word x ∈ Bq (n) with r = r(x) runs,
then we argue how a single deletion, insertion or substitution
in x can affect the number of runs of x. Let lj denote the
length of the j-th run in x.

After a single deletion in the i-th run of x, we claim that
the number of runs in x decreases by at most two, but does
not increase. We consider four cases. First, in case li > 1,
then the number of runs is unchanged because the i-th run
is shortened by one, and no runs are deleted or created. In
case li = 1 and the i-th run is the first or last run in x, then
removing this run does not affect the other runs and reduces
the number of runs by one. In case, li = 1 and the (i − 1)-th
and (i + 1)-th run contain the same symbol values, then the
number of runs decreases by two. Lastly, in case li = 1, and
the (i − 1)-th and (i + 1)-th run contain different symbols,
then the number of runs decreases by one, because only the
i-th run is removed. The four cases jointly prove the claim.

As a result of a single insertion into x, the number of runs
in x cannot decrease and can increase by at most two. This
follows from the previous claim combined with the fact that
any insertion can be reversed by a deletion, and vice versa.

For a single substitution we claim that the number of runs
in x can both be increased and decreased by at most two.
We consider three cases. First, suppose that a substitution is
carried out in a unit run. Then it can either remain a unit run
in which case the number of runs is unaffected, or it joins
with one or two neighboring runs in which case the number of
runs decreases by one or two, respectively. Secondly, assume
the substitution is performed in the first or last element of a
run of length at least two, then either a unit run is formed in
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the position of the substitution or the symbol is changed such
that it matches the symbols in the neighboring run. Hence, the
number of runs increases by one or does not change. Lastly,
suppose that the substitution is carried out in a run of length
at least three and neither in the first nor last element of this
run. In this case, a unit run is created at the position of the
substitution as well as two runs on either side of it. Therefore,
the number of runs increases by precisely two. Combining the
results from these three cases yields the claim.

By repeatedly applying single edits, the previous reasoning
shows that after t ′ deletions, t ′′ insertions and s substitutions
the number of runs in x decreases by at most 2(t ′ + s) and
increases by at most 2(t ′′ + s).
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