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Abstract

The Unified State Model (USM) is a method for expressing orbits using a set of seven elements.
The elements consist of a quaternion and three parameters based on the velocity hodograph.
This elegant theory was proposed by Dr. Samuel Altman in 1971. Unfortunately, there have only
been two other works in literature that use this theory with The set of equations for the USM in
the more recent works being different to the original set. Thus, the theory was available with a
literature pool of three works with two conflicting sets of equations.

Before the USM could be implemented, a choice had to be made regarding the set of equations to
be used. Instead of finding the correct set in a trial and error way by implementing both sets, the
complete set of equations for the USM was derived. The derivation provides concrete evidence
that it is the more recent set of equations that is correct and not the original set. There is no
complete step-by-step derivation of the USM available in literature and therefore, the derivation
carried out in this thesis can be helpful to anybody interested in implementing the USM. In
addition to the original USM, an alternative that uses Modified Rodrigues Parameters (MRP)
instead of a quaternion has been proposed. This modified USM using MRP has only six state
elements (USM6) instead of the seven state elements of the classical USM (USM7). The full
equation set for the USM6 has been presented in addition to that of the USM7.

Numerical simulations using Runge Kutta (RK) integrators for orbit propagation comparing
the USM6 and the USM7 with the traditional Cartesian coordinates have been carried out.
The USM6 and USM7 outperform the Cartesian coordinates for all cases in terms of accuracy
and computational speed, except for highly eccentric perturbed orbits. The performances of
the USM6 and USM7 are exceptionally better for the case of orbits with continuous low-thrust
propulsion with CPU simulation time being an order of magnitude lower than for the simulation
using Cartesian coordinates. The performance difference between the USM6 and the USM7 is
minimal. Apart from orbit propagation, some numerical simulations have been carried out for
atmospheric re-entry. For this case, the performances of both USM6 and USM7 were inferior to
Cartesian coordinates.

For a realistic space mission, the ability to navigate the satellite is crucial. Some simulations of
ground-station tracking of a satellite in orbit, to determine the accuracy of its position estimate,
have been made. An essential part of navigation is filtering and therefore, four different non
linear filters were implemented, i.e., the Extended Kalman Filter (EKF), the Unscented Kalman
Filter (UKF), the Divided Difference Filter 1st order (DD1), and the Divided Difference Filter 2nd

order (DD2). A Particle Swarm Optimizer (PSO) was used to tune these filters in an automated
manner for the various models and testing scenarios. The PSO was able to successfully tune the
various filters and it was found that the most accurate estimate occurs when the UKF with the
USM7 is used. However, the differences in estimation accuracy between the different models with
the UKF was minimal.

The final part of the thesis is Taylor Series Integration (TSI). This is another method for the
numerical integration of functions. TSI uses recursive relations between the variables to com-
pute the coefficients of a Taylor series that can approximate the function. The order of this
approximation can be set to very high values and thus, large step-sizes can be taken whilst still
producing very accurate results. There are some software packages available that can automati-
cally generate the coefficients. However, no external software packages were used in this thesis.
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The TSI is more challenging than the RK integration methods to implement. However, TSI can
produce very accurate integration results with very little CPU time. Some scenarios for orbits
using low-thrust propulsion were implemented with TSI for both Cartesian coordinates and the
USM7. The performance of both models was similar, but the Cartesian coordinates are faster
than the USM7 for very high orders because there are fewer computations involved. However,
both Cartesian coordinates and the USM7 with TSI are an order of magnitude faster than the
USM7 RK, which is an order of magnitude faster than Cartesian coordinates RK for orbits using
low-thrust propulsion.
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ci,k Element (i,k) of rotation matrix [ - ]
CD Drag coefficient [ - ]

xxi



LIST OF TABLES

CL Lift coefficient [ - ]
Cl Roll moment coefficient [ - ]
Cm Pitch moment coefficient [ - ]
Cn Yaw moment coefficient [ - ]
Cn,m Geopotential coefficient [ - ]
CR Solar radiation pressure coefficient [ - ]
cref Reference length for pitch [ m ]
CS Side force coefficient [ - ]
D Diagonal matrix
D Drag [ N ]
d Drift [ rad s−1]
E Elevation [ rad ]
E Orbital energy per unit mass [ J kg−1]
e Eccentricity [ - ]
e Eccentricity vector [ - ]
e Eigenvector [ - ]
e a posteriori error
e− a priori error
F Force [ N ]
f Ellipsoid flatness [ - ]
f Frequency of signal [ Hz ]
G Universal gravity constant 6.67428× 10−11 [ N m2 kg−2]
g Acceleration due to gravity [ m s−2]
h Angular momentum [ m2 s−1]
h Height [ m ]
h Interval length
H0 Density scale height [ m ]
I Identity matrix [ - ]
i Inclination [ rad ]
i Complex number [ - ]
In (n×n) identity matrix [ - ]
J Inertia tensor [ kg m2]
j Complex number [ - ]
j Jerk [ m s−3]
Jn Jeffreys constant [ - ]
k Complex number [ - ]
K Gain [ - ]
L Dimension of system [ - ]
L Lower triangle matrix
L Lift [ N ]
L Roll moment [ N m ]
LQ Weight for adaptive filtering [ - ]
M Torque [ N m ]
M Pitch moment [ N m ]
m Mass [ kg ]
m Misalignment
N Prime vertical [ m ]
N Yaw moment [ N m ]
∆N Integer difference [ - ]
p Magnitude of the Modified Rodrigues Parameters vector [ - ]
p Semi-latus rectum [ m ]
P Solar radiation pressure [ N m−2]
p Parameter used in the dynamics of the Unified State Model [ - ]
P a posteriori error covariance
P− a priori error covariance
Pn,m Associate Legendre polynomial of degree n and order m [ - ]

xxii



Pn Legendre polynomial of degree n [ - ]
Q Process noise covariance
Q Householder matrix
Q∗ Process covariance residual
Q̂ Process covariance estimate
qdyn Dynamic pressure [ N m−2]
r Distance [ m ]
R Constant hodographic velocity [ m s−1]
R Universal gas constant 8.314472 [ J K−1 mol−1]
R Measurement noise covariance
ra Apocenter radius [ m ]
rp Pericenter radius [ m ]
S Lower triangle square root matrix
S Side force [ N ]
si Scale factors [ - ]
Sn,m Geopotential coefficient [ - ]
Sref Aerodynamic reference area [ m2]
T Orbital period [ s ]
T Absolute temperature [ K ]
t Time [ s ]
Tp Time between 2 consecutive crossings of the semi-latus rectum [ s ]
U Potential [ N m kg−1]
u Argument of latitude [ rad ]
u Input vector
U Upper triangular matrix
v Velocity [ m s−1]
v Measurement noise
vc Circular velocity [ m s−1]
vesc Escape velocity [ m s−1]
VG Groundspeed [ m s−1]
v∞ Velocity at infinity [ m s−1]
w System noise
x State vector
x̂ a posteriori state estimate
x̂− a priori state estimate
z Measurement vector
Z Estimated measurement sigma point
ẑ predicted measurement

Greek Symbols

In case the units are not specified, it means that the units can vary depending on the implemen-
tation.

α Angular acceleration [ rad / s2 ]
α Scaling parameter [ - ]
α Angle of attack [ rad ]
β Angle of sideslip [ rad ]
β Electrical line bias [ - ]
γ Angle between 2 Euler axes [ rad ]
γ Parameter used in the dynamics of the Unified State Model [ - ]
γ Flight path angle [ rad ]
ε Vector part of Euler parameters [ - ]
ε Reflectivity coefficient [ - ]
η Scalar part of Euler parameters [ - ]

xxiii



LIST OF TABLES

θ Pitch angle [ rad ]
λ Eigenvalue [ - ]
λ Longitude [ rad ]
λ Sum of the right ascension of ascending node

and the argument of latitude [ - ]
λ Scaling parameter [ - ]
κ Scaling parameter [ - ]
µ Gravitational parameter [ N m2 kg−1]
ν True anomaly [ rad ]
∆Φ Phase difference [ - ]
ρ Density [ kg m−3]
ρ Range [ m ]
ρ0 Reference height density [ kg m−3]
σ Trace of rotation matrix [ - ]
σ Bank angle [ rad ]
σ Modified Rodrigues Parameters vector [ - ]
σS Shadow Modified Rodrigues Parameters vector [ - ]
Φ Euler angle [ rad ]
Φ Solar radiation flux [ W m−2]
φ Roll angle [ rad ]
φgc Geocentric latitude [ rad ]
φgd Geodetic latitude [ rad ]
χ Sigma point
χ Heading angle [ rad ]
ψ Yaw angle [ rad ]
ω Angular velocity [ rad / s ]
Ω Right ascension of ascending node [ rad ]
ω Argument of pericenter [ rad ]

Acronyms and Abbreviations

ARTEMIS Autonomous Rendezvous
and rapid Turnaround Experiment Maneuverable Inspection Satellite

AB Adams-Bashforth
ABM Adams-Bashforth-Moulton
AM Adams-Moulton
COESA Committee on Extension to the Standard Atmosphere
DD1 First Order Divided Difference Filter
DD2 Second Order Divided Difference Filter
DDF Divided Difference Filter
DOF Degrees Of Freedom
DOP Dilution of Precision
DOP Dormand & Prince
DTM Drag Temperature Models
ECEF Earth Centered Earth Fixed
ECI Earth Centered Inertial
EKF Extended Kalman Filter
EnKF Ensemble Kalman Filter
ESA European Space Agency
ESRO European Space Research Organisation
FILG Filipi and Gräf
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Chapter 1

Introduction

The space industry has now become a major economic player. Almost every form of communi-
cation in the modern world utilizes satellites in one form or another. Thus, space flight has gone
from just a simple orbiting radio beacon to complex instruments in very precise orbits. Space is
not just the domain of economically developed nations anymore. Even economically developing
countries such as India and China are taking part in space flight. Good examples of this are the
spacewalk mission by China in September 2008 and the Chandrayaan-1 Moon mapping mission
launched by India in October 2008. Not only are an increasing number of countries taking part
in space flight, but the missions are getting increasingly complex. Space flight is now also in the
reach of academic institutions. An example of a university built satellite is the Delfi-C3, which
was designed and constructed by students of Delft University of Technology, and was launched
in 20071. This satellite was built using a CubeSat Kit that facilitates the ease of constructing
satellites. An increasing number of satellite missions combined with an increased complexity
of the average mission put stringent demands on precise orbit simulation and determination of
satellites. Thus, any method theory that could provide an increase in computation speed, should
be investigated further.

Cartesian coordinates and classic Keplerian elements are well-established for the propagation
and visualization of orbits. However, there are many other ways in which satellite orbits can be
described. One of these methods is a novel concept known as the Unified State Model (USM).
The USM, first proposed by Samuel P. Altman [Altman, 1972], uses quaternions and velocity
hodograph parameters to express orbits. The 4 quaternion elements express the orientation of a
reference frame fixed to the orbiting body, with respect to an inertial frame fixed to the central
body. The velocity hodograph parameters give information about the size and shape of the orbit.
During an unperturbed orbit, the velocity hodograph parameters remain constant and only the
quaternion varies with time. This is because the orbital shape remains unchanged for such an
orbit, and only the location of the orbiting body within the orbit changes with time. When
perturbations are present, the variation of the hodographic parameters will be small compared
to the variation of Cartesian coordinates. Thus, the USM is expected to have better numerical
stability than Cartesian coordinates as there are 4 rapidly varying and 3 slowly varying elements,
compared to the 6 rapidly varying elements. The classic Keplerian elements have only one rapidly
varying element, which is the true anomaly. However, singularities exist and the equations for
the influence of perturbations are rather complex.

There has not been much research carried out on the USM since its inception. If the theory has
been mentioned, it has always been in relation to navigation. Since the USM has not been used
for any real life applications, a small historic overview of this theory and its 2 main proponents is
provided here.2 Even though Altman is and should solely be credited as the inventor of the USM,
it is interesting to note that both the key ingredients, quaternions and Hodographs, were invented

1http://www.delfic3.nl
2The biographical information here is simply what could be found on the internet, and may contain some

discrepancies.
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2 Introduction

by Sir William Rowan Hamilton. This situation is perfectly summed up by the quotation by Sir
Isaac Newton

If I have seen further it is by standing on the shoulders of Giants.

The first proponent, and inventor, of the USM, Samuel P. Altman is now a senior member of
AIAA. The chronologically earliest information that can be found online about him is that he was
a Captain in the United States Air Force (USAF). In 1952 he wrote a memorandum report about
the Equations of Motion of the F-80 Aileron Boost [Altman, 1952]. In 1953, he received a patent3

for a servo loading stand. After his career at the Air Force, he went on to work in the Spacecraft
Department, which was a part of the Missile and Space Division, of General Electric. Here, he
started work on using Hodographs, found in Chapter 5, for orbits, which is one of the key pillars of
the Unified State Model. The work on Hodographs was carried out under NASA contracts. The
first publication on this topic by Altman was a book called Orbital Hodograph Analysis in 1965
[Altman, 1965]. From 1965 till 1968, Altman authored 3 technical reports under NASA contracts
about Hodographs, [Altman, 1967a], [Altman, 1967b], and [Altman and Pistiner, 1968]. During
this period, there seem to be many other NASA contracts given out for Hodographic analysis as
seen in [Sun, 1965] and [Eades, 1968]. The work on Hodographs, combined with quaternions,
led to the creation of the Unified State Model, which Altman published in 1972, [Altman, 1972].
After that point, there is no information available about Altman till 1975 when he wrote a paper
about observation models for satellite state estimation that can be used with the USM, [Altman,
1975].

In 1981, the second proponent of this theory, Dr. Paul W. Chodas comes into the picture. Dr.
Chodas is a research scientist at the Jet Propulsion Laboratories (JPL), has an asteroid named
after him, and is also a senior member of AIAA. In 1981, Chodas wrote a technical note at
the Institute for Aerospace Studies at the University of Toronto (UTIAS) about the usage of
the Unified State Model for orbit determination. He received funding from the Department of
Communications of Canada for this study. He still works on orbit determination, but this time
on near-Earth asteroids. His technical note about the Unified State Model, [Chodas, 1981] is
very clearly written and presents the USM in a manner, in which it can easily be implemented.
However, it is claimed in [Chodas, 1981] that there is mistake in original USM dynamics equations
from [Altman, 1975].

After the excellent technical note by Chodas, the USM has been mentioned only once more in a
paper by J. R. Raol, and N. K. Sinha in 1985, [Raol and Sinha, 1985]. Both the authors were
researchers at McMaster University, Canada. This is another interesting fact that all the work
involving the USM seems to have been carried out in Canada. At one point in their paper, it
is mentioned that the USM is widely used. If this was indeed the case, there do not seem to
be any other publications than the ones already mentioned above. Again, orbit determination
was carried out in [Raol and Sinha, 1985]. The set of equations for the USM found in [Raol and
Sinha, 1985] is consistent with the ones found in [Chodas, 1981].

The explanation of the USM in [Chodas, 1981] contains more detail on implementation than [Alt-
man, 1972]. It is, however, not easily available and it does not provide a rigorous derivation of the
given equations. Since there are two sets of equations provided in three papers, a comprehensive
derivation of the equations of the USM is shown, in order to discern the correct method. Thus,
the derivation of the USM is one of the major components of this thesis. The motivation for this
can perhaps best be summed up in the following quote about the USM by Hilderic Browne in
an article in the newsletter of the Ottawa Centre of the Royal Astronomical Society of Canada
(RASC)4

The USM parameter set was arcane to me then and is now a complete mystery. . .

Hilderic Browne worked with Chodas on the investigation of the USM. If this model is to be
used during the thesis, and by others in the future, it is imperative to demystify it and make it
accessible. Unfortunately, the original paper, [Altman, 1972], is not very easy to follow. [Chodas,

3United States Patent 2641925
4http://ottawa-rasc.ca/astronotes/1999/an9901p3.html
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1981] is easier to read through, and contains enough information to be able to successfully im-
plement the USM. It still does not, however, fully explain the mathematics behind this model,
which would be essential in carrying out further scientific research. Also, there is a discrepancy
between the USM found in [Altman, 1972] and the one found in [Chodas, 1981]. The only other
paper found in literature, [Raol and Sinha, 1985], uses the same model as [Chodas, 1981], but
without any justification. The change in the model proposed by [Chodas, 1981] appears to be
more correct as an incorrect assumption in [Altman, 1972] was pointed out, and the explanation
of the USM in [Chodas, 1981] contains more detail on implementation than [Altman, 1972].

An MSc thesis study cannot consist of only a derivation. Therefore, different applications have
been found for the USM. In this regard, this thesis study can be viewed as a conceptual design
document for the USM. There is no single physical problem fully solved, such as an optimization
of a trajectory to a certain planet or asteroid. However, all of the information presented here can
help in setting up a program that can solve such a problem.

Other than the derivation of the traditional USM, a new method that uses Modified Rodrigues
Parameters (MRP) instead of quaternions has been proposed. The numerical performance of
the traditional USM and the modified version of the USM has been compared to the Cartesian
coordinates. Other than traditional Runge Kutta (RK) forms of integration, Taylor Series Inte-
gration (TSI) has also been explained and implemented. Finally, the navigation performance of
the USMs has been compared with Cartesian coordinates.

The thesis has been divided into the following chapters:

The USM was a novel concept when it was first presented and it still has not been used to its
full potential. One of the reasons for this is a dearth of the mathematical background material
available on the USM. For this reason, the first part of this report deals with the theoretical
set up of the USM. The USM uses quaternions and hodographic parameters in order to express
the location of a spacecraft. Thus, kinematics, various attitude parameters, and hodographs are
treated. To understand orbits, it is essential to have an overview of astrodynamics and the space
environment with the various perturbations. With all this background material, it is possible to
easily follow the derivation and the applications of the USM.

2. Kinematics and Reference Frames, where the kinematics of classical mechanics is ad-
dressed, with an emphasis on rotational motion.

3. Attitude Parameters, where quaternions, Euler angles and the Modified Rodrigues Pa-
rameters are described.

4. Astrodynamics and Orbital Mechanics, where the dynamics and theory required for an
understanding of space flight is addressed.

5. Hodograph Theory, where hodographs in velocity, acceleration, and jerk spaces are de-
rived.

After addressing the theory required to understand the USM, it is finally derived in second part.

6. Unified State Model, where the traditional USM, and the new alternative proposed here
are extensively derived.

7. Guide for Applying the Unified State Model, where the conversions from the USM to
other oft-used parameter sets for spacecraft state expression, and vice-versa are presented.
A guide on how to implement the USM is also given.

Finally, all the theory that is presented is implemented in three different applications to compare
results with corresponding Cartesian implementations.

8. Orbit Propagation, where various orbital trajectories are simulated using the RK methods
with the USMs and Cartesian coordinates.
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9. Re-entry Dynamics, where an atmospheric re-entry is simulated using the RK methods
with the USMs and Cartesian coordinates.

10. Recursive Filtering Techniques, where the various estimation techniques are introduced
with the main focus being on Kalman and Divided Difference filters.

11. Ground Station Tracking, where the state of a spacecraft is estimated using measure-
ments from a ground station. Various filters are used with the USMs and Cartesian coor-
dinates. Also, a Particle Swarm Optimizer (PSO) is implemented to automate the tuning
of the various filters.

Since Taylor Series Integration is a whole topic all by itself, it is dealt with at the end. Theory
and applications of orbit propagation will be discussed. This is followed by the Conclusions of
this thesis study.

12. Taylor Series Integration, where the method of implementing TSI is shown along with
the specific equations for the USM7 and Cartesian coordinates, for various cases.

13. Application of the Taylor Series Integration, where all the TSI equations presented
in Chapter 12 are applied to get some results.

14. Conclusions and Future Work, the most important conclusions and recommendations
spread throughout the thesis study are presented in a compact manner here.



Chapter 2

Kinematics and Reference Frames

Mechanics is the branch of physics that deals with the study of motion. In Aerospace problems,
we are almost always dealing with systems that are constantly in motion. This is especially true
for spacecraft, which travel with velocities in the order of kilometers per second. Therefore, it
is very important to deal with fundamental mathematics such that the more complex theories
can be thoroughly understood. It is unfortunately not possible to do justice to all the intricacies
of the theory behind mechanics in one chapter. Thus, the reader is referred to the excellent
sources [Török, 2000; Hughes, 1986] for more information.

Mechanics can be split up into the following two categories

Kinematics Description of the motion without paying attention to any resultant forces or the
mass

Dynamics Motion under the influence of external forces, and their causes

The mechanics dealt with in this section are Newtonian mechanics, which are based on Newton’s
3 laws of motion for a point mass in an inertial frame. An inertial frame of reference is a reference
frame that undergoes no acceleration. Newton’s famous 3 laws are

First Law A particle will have a constant velocity, or remain at rest, as long as there is no
resultant force acting on it.

Second Law The resultant force acting on a particle is directly proportional to the time rate of
change of its linear momentum.

Third Law The forces that 2 particles exert on each other lie on the line joining the 2 particles.
These forces are equal in magnitude, but opposite in direction.

The kinematics required to be able to describe the orbital motion of the USM can be found in
this chapter. This includes inertial reference frames, ways to transform one reference frame to
another, and non-inertial reference frames.

2.1 Reference Frames

A reference frame is always required to describe a position, or a motion. For this three dimensional
world, a set of 3 noncoplanar vectors is necessary to form a reference frame, Fi. In this way, the
direction of any vector can be expressed as components of the 3 reference vectors.

Instead of using any 3 noncoplanar vectors, the standard method is to chose a dextral, orthonormal
triad as the reference vectors. This means that the set of vectors is right-handed and all the

5
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vectors are mutually perpendicular and of unit length. In this reference frame, a vector can be
expressed as the product of the magnitude of the vector with the direction cosines of this vector
with each of the reference vectors. Thus, the vector v in Fa is expressed as

v = v (c1â1 + c2â2 + c3â3) (2.1)

In Eq. (2.1), ci is the cosine of the angle between v and âi.

2.1.1 Rotation Matrices

It is not always possible to work in the same reference frame and thus, it is necessary to expresses
vectors given in one reference frame, in another with the same origin. This can be done with
the use of a rotation matrix, which is also known as a Direction Cosine Matrix (DCM). If there
are two reference frames Fb and Fa, the reference vectors of Fb can be related to the reference
vectors of Fa in the following manner

b̂1 = c1,1â1 + c1,2â2 + c1,3â3 (2.2a)

b̂2 = c2,1â1 + c2,2â2 + c2,3â3 (2.2b)

b̂3 = c3,1â1 + c3,2â2 + c3,3â3 (2.2c)

In Eq. (2.2), ci,j is the cosine of the angle between b̂i and âj .

A DCM Cb,a can now be constructed from all the direction cosines as

Cb,a =

 c1,1 c1,2 c1,3
c2,1 c2,2 c2,3
c3,1 c3,2 c3,3

 (2.3)

TheDCM is orthonormal, meaning that its columns are orthogonal unit vectors. According to
[Hughes, 1986], this gives it the following interesting and useful properties:

CCT = I (2.4a)

CTC = I (2.4b)

CT = C−1 (2.4c)
det C = 1 (2.4d)

(2.4e)

2.1.2 Euler’s Theorem

Euler’s theorem states that a rotation between any two frames can be expressed by a rotation
of the angle Φ about an axis through their common origin. The angle Φ is known as the Euler
angle. The axis has the direction of a unit vector â and is known as the Euler axis. This can be
seen in Fig. 2.1.

To find the Euler axis and angle, it is necessary to carry out an eigenvalue analysis on C. Let C
have the eigenvalue λ and the corresponding eigenvector e.

Ce = λe (2.5)

Both sides of Eq. (2.5) are left multiplied by their respective Hermitian conjugates. The Her-
mitian conjugate is found by taking the transpose of the matrix and then by using the complex
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Figure 2.1: Euler’s Theorem [Tewari, 2007]

conjugate of each element. To illustrate this, let there be a matrix A with complex components
defined as

A =
[
a+ bi c− di
e− fi g + hi

]
(2.6)

The Hermitian conjugate of A is

AH =
[
a− bi e+ fi
c+ di g − hi

]
(2.7)

This gives

(Ce)H (Ce) = λ̄λeHe

eHCTCe = λ̄λeHe

eHe = λ̄λeHe

resulting in(
λ̄λ− 1

)
eHe = 0 (2.8)

Since C is orthonormal, it will have 3 different eigenvalues and eigenvectors. Using this infor-
mation and the fact that det C = 1, it can be deduced that one of the eigenvalues in Eq. (2.8)
is 1, and the other two are complex conjugates of each other. This can be expressed according
to [Hughes, 1986] as

λ1 = 1 (2.9a)
λ2,3 = exp(±iΦ) (2.9b)

Using λ1 = 1, Eq. (2.5) reduces to

Ce1 = e1 (2.10)

This means that e1 remains invariant through the rotation expressed by C and thus, e1 is the
Euler axis, â.

For the other two eigenvalues

Ce2,3 = e±iΦe2,3 (2.11)
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This means that the vectors undergo a rotation of +Φ and −Φ about â. Since all the eigenvectors
are mutually orthogonal, Φ is the angle of rotation and thus, the Euler angle.

To be able to use Euler’s theorem, it is necessary to be able to extract the Euler axis and angle
from a given rotation matrix. Using the fact that the trace of a matrix is equal to the sum of its
eigenvalues, [Hughes, 1986] shows that the trace of a rotation matrix can be defined to be

σ = TrC = c1,1 + c2,2 + c3,3 = λ1 + λ2 + λ3 = 1 + eiΦ + e−iΦ = 1 + 2 cos Φ (2.12)

The cosine of the Euler angle can thus be found from the trace to be

cos Φ =
1
2

(σ − 1) (2.13)

There are two cases where special care has to be taken. These are

σ = −1 : this is the case when Φ = ±π,±3π, ...

σ = 3 : this is the case when Φ = 0,±2π,±4π, ...

When σ 6= 3,−1, the Euler axis is found to be

a =
1

2 sin Φ

 c2,3 − c3,2
c3,1 − c1,3
c1,2 − c2,1

 (2.14)

When σ = 3, either no rotation occurs or numerous complete rotations occur and so, the Euler
axis cannot be computed. However, if σ = −1, the Euler axis can be calculated in the following
way

a1 = ±
√

1 + c1,1
2

a2 = ±
√

1 + c2,2
2

a3 = ±
√

1 + c3,3
2

a1a2 =
c1,2
2

a2a3 =
c2,3
2

a3a1 =
c3,1
2

(2.15)

The last three equations in Eq. (2.15) allow for solving the disambiguation of the signs.

The DCM can be expressed in terms of the Euler axis and angle, and can be seen in Eq. (2.16),
where c and s stand for cos and sin, respectively.

C =

 cΦ + a2
1(1− cΦ) a1a2(1− cΦ) + a3sΦ a1a3(1− cΦ)− a2sΦ

a1a2(1− cΦ)− a3sΦ cΦ + a2
2(1− cΦ) a2a3(1− cΦ) + a1sΦ

a1a3(1− cΦ) + a2sΦ a2a3(1− cΦ)− a1sΦ cΦ + a2
3(1− cΦ)

 (2.16)

and in a more compact form as

C = I3 cos Φ + (1− cos Φ)aaT − [a×] sin Φ (2.17)

In Eq. (2.17), the term [a×] is the skewsymmetric form of the Euler axis and is defined as

[a×] =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 (2.18)
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2.1.3 Two Successive Rotations

A reference frame, Fa undergoes a rotation expressed by Cba to form the frame Fb and then
undergoes another rotation expressed by Ccb to form the frame Fc. Cba has the Euler axis a1

and the Euler angle Φ1. Ccb has the Euler axis a2 and the Euler angle Φ2. Using Eq. (2.17), the
rotation matrix from Fa to Fc can be expressed as

Cc,a =
[
I3 cos Φ1 + (1− cos Φ1)a1aT1 − [a1×] sin Φ1

]
×
[
I3 cos Φ2 + (1− cos Φ2)a2aT2 − [a2×] sin Φ2

]
(2.19)

It is also possible to extract the Euler axis and angle corresponding to Cca. For this, it is first
necessary to define the cosine of the angle between the two Euler axes. This is

cos γ = aT1 a2 (2.20)

Expanding Eq. (2.19) and then computing the trace gives

TrCc,a = cos Φ1 + cos Φ2 + cos Φ1 cos Φ2

+ (1− cos Φ1) (1− cos Φ2) cos2 γ − 2 sin Φ1 sin Φ2 cos γ (2.21)

After using Eq. (2.13), the value of Φ3 in terms of half-angles is

cos
Φ3

2
= cos

Φ1

2
cos

Φ2

2
− sin

Φ1

2
sin

Φ2

2
cos γ (2.22)

Ultimately, the final Euler axis can be found to be

2 sin Φ3a3 = [sin Φ1 (1 + cos Φ2)− sin Φ2 (1− cos Φ1) cos γ] a1

+ [sin Φ2 (1 + cos Φ1)− sin Φ1 (1− cos Φ2) cos γ] a2

+ [sin Φ1 sin Φ2 − (1− cos Φ1) (1− cos Φ2) cos γ] [a1×] a2 (2.23)

and in terms of half-angles as

a3 sin
Φ3

2
=
(

a1 sin
Φ1

2
cos

Φ2

2
+ a2 cos

Φ1

2
sin

Φ2

2
+ [a1×] a2 sin

Φ1

2
sin

Φ2

2

)
(2.24)

It should be noted that Eqs. (2.23) and (2.24) only hold for the case when sin Φ3 6= 0. The Euler
axis for the case when sin Φ3 = 0 and Φ3 is defined, so if Φ3 = ±π,±3π, ... is

sin2 γa3 =
(

cos2 Φ1

2
+ cos2 γ sin2 Φ1

2

)
(a2 − cos γa1)

+
(

cos2 Φ2

2
+ cos2 γ sin2 Φ2

2

)
(a1 − cos γa2)

+
(

1− cos2 Φ1

2
− cos2 Φ2

2

)
sin γ [a2×] a1 (2.25)

Eq. (2.25) is only useful when sin γ 6= 0. If sin γ = 0, a1 and a2 are either parallel or antiparallel,
which means that a3 = a1.

2.2 Non-Inertial Reference Frames

Not all reference frames are inertial. Sometimes it is very useful to have reference frames that
are fixed to a body or a point that is accelerating, and still be able to express the motion in
an inertial frame of reference. This section is included here because the motion expressed in a
non-inertial frame does not translate into the same motion in an inertial frame. There will always
be some extra terms that can be thought of as occurring due to the result of apparent forces.
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2.2.1 Time Rate of Change of a Vector

A reference frame is made up of unit vectors. Thus, it is necessary to find out the time rate of
change of a unit vector. Assume that there is a vector, v, that lies in the direction of the unit
vector ê, has a magnitude v, undergoes a rotation, and the magnitude is not constant.

v = vê (2.26)

The time rate of change of the magnitude only causes v to change, and the rotation causes the
orientation of v to change, expressed by a change in ê. Mathematically, the time rate of change
of v can be found by using the product rule to be

v̇ = v̇ê + v ˙̂e (2.27)

If the angular velocity vector, which is a measure of the rotation rate of the vector, is ω, the time
rate of change of the unit vector is

˙̂e = ω × ê (2.28)

Thus, the time rate of change of v becomes

v̇ = v̇ê + v(ω × ê) (2.29)

2.2.2 Motion Relative to a Non-Inertial Reference Frame

Let there be an inertial frame of reference defined by the unit vectors, Î, Ĵ, and K̂. Let there be
a non-inertial reference frame FO defined by the unit vectors, î, ĵ, and k̂. This situation can be
seen in Fig. 2.2. The absolute position of a point P, rP , is given by

rP = rO + rrel

= rO + x̂i + ŷj + zk̂ (2.30)

where rO is the position of the origin of FO expressed in the inertial reference frame and rrel is
the position of P expressed in FO.

The position is differentiated with respect to time to give the velocity.

vP = vO + ω × rrel + ẋ̂i + ẏ̂j + żk̂

= vO + ω × rrel + vrel (2.31)

The velocity is again differentiated with respect to time to give the acceleration.

aP = aO +α× rrel + ω × (ω × rrel) + 2ω × vrel + ẍ̂i + ÿ̂j + z̈k̂

= aO +α× rrel + ω × (ω × rrel) + 2ω × vrel + arel (2.32)

In the above equations, the parameters can be split into absolute and relative quantities. The
absolute quantities are

aO, the absolute acceleration of the moving origin.

vO, the absolute velocity of the moving origin.

α, the angular acceleration of the moving reference frame.

ω, the angular velocity of the moving reference frame.

The relative position, velocity, and acceleration are

rrel = x̂i + ŷj + zk̂

vrel = ẋ̂i + ẏ̂j + żk̂ (2.33)
arel = ẍ̂i + ÿ̂j + z̈k̂
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Figure 2.2: Motion in a non-inertial frame, with black vectors expressed in inertial frame, and blue
vectors in non-inertial frame

2.2.3 Angular Velocity

The way the motion can be described in a non-inertial reference frame has been discussed in
Section 2.2.2. It can be seen that the angular velocity plays a very important role in these
equations. In this subsection, the link between the angular velocity and the rotation matrix, Euler
axis, and Euler angle is presented. Only the equations are presented, because the derivation is
beyond the scope of this report. For the derivations, the reader is referred to [Hughes, 1986]. It is
again assumed that there are two reference frames, as found in Fig. 2.2. For ease of explanation,
the inertial frame is called FI and the non-inertial frame FB . The angular velocity ω is the
angular velocity of FB with respect to FI expressed in FB .

According to [Hughes, 1986], the relationship between the rotation matrix and the angular
velocity can be found, to be

ĊB,I + [ω×] CB,I = 0 (2.34)

[ω×] = −ĊB,ICT
B,I = CB,IĊT

B,I (2.35)

ω =

 ċ2,1c3,1 + ċ2,2c3,2 + ċ2,3c3,3
ċ3,1c1,1 + ċ3,2c1,2 + ċ3,3c1,3
ċ1,1c2,1 + ċ1,2c2,2 + ċ1,3c2,3

 (2.36)

To find the relation between the angular velocity and the Euler axis and angle, Eqs. (2.17) and
(2.35) have to be used. This gives the angular velocity to be

ω = Φ̇â− (1− cos Φ) [â×] ˙̂a + sin Φ ˙̂a (2.37)

At any instant in time, the rotation can be assumed to be about a fixed axis. Using this, the
time derivative of the Euler angle becomes

Φ̇ = âTω (2.38)

The time derivative of the Euler axis is

˙̂a =
1
2

[
[â×]− cot

Φ
2

[â×] [â×]
]
ω (2.39)
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2.2.4 Euler’s Equation

For a rigid body, the angular acceleration is related to the angular velocity, external torque
applied, and the inertia tensor by Euler’s equation. Strictly speaking, this is referred to as
attitude dynamics, but is still included in the kinematics chapter for the sake of completeness for
the angular velocity.

Jω̇ + ω × Jω = M (2.40)

Eq. (2.40) is expressed completely in a reference frame fixed to the rigid body itself. M is the
applied torque, and J is the inertia tensor

J =

 Jxx Jxy Jxz
Jxy Jyy Jyz
Jxz Jyz Jzz

 (2.41)

The diagonals of J are known as the moments of inertia, and the off-diagonal terms are known
as the products of inertia. The inertia tensor is a measure of the resistance of the rigid body to
changes in its angular velocity. It is also possible to pick the body-fixed reference frame in such
a way that the products of inertia become 0. The axes are then known as principal axes, and Eq.
(2.40) simplifies to

Jxxω̇x + ωyωz(Jzz − Jyy) = Mx (2.42a)
Jyyω̇y + ωxωz(Jxx − Jzz) = My (2.42b)
Jzzω̇z + ωxωy(Jyy − Jxx) = Mz (2.42c)

The next chapter presents the techniques to express the orientation of one reference frame with
respect to another. These techniques include quaternions, which are essential in understanding
the USM.



Chapter 3

Attitude Parameters

The previous chapter defined reference frames and showed that there can be many different kinds
of reference frames. Attitude is synonymous with orientation and in the aerospace world it almost
always means the orientation of a spacecraft or an aircraft. The attitude of a spacecraft relative
to a reference frame actually means the attitude of a reference frame fixed to the body of the
spacecraft with respect to another reference frame. Thus, attitude is technically the orientation
of one reference frame to another. Attitude parameters are just parameters that can describe the
orientation and these will be discussed in this chapter. Thus, the rotation matrix, Euler axis, and
Euler angle are all attitude parameters. However, they have been explained in Chapter 2, because
they are fundamental in understanding the concepts of reference frames and rotations. There are
4 fundamental truths, taken from [Schaub and Junkins, 2002], about attitude coordinates.

1. A minimum of three coordinates is required to describe the relative angular displacement
between two reference frames F1 and F2.

2. Any minimal set of three attitude coordinates will contain at least one geometrical orien-
tation where the coordinates are singular, namely at least two coordinates are undefined or
not unique.

3. At or near such a geometric singularity, the corresponding kinematic differential equations
are also singular.

4. The geometric singularities and associated numerical difficulties can be avoided altogether
through a regularization. Redundant sets of four or more coordinates exist which are uni-
versally determined and contain no geometric singularities.

The rotation matrix consists of nine elements, while the Euler axis and Euler angle together are
four elements. Thus, it can be concluded that all rotations can be described using the rotation
matrix or a combination of the Euler axis and Euler angle.

In this chapter, the following three important attitude parameters will be dealt with:

• Euler Angles

• Quaternions

• Modified Rodrigues Parameters (MRP)

Only an overview of the various attitude parameters is presented here so that the derivation of
the USM can be understood. All the information in this section is based on [Schaub and Junkins,
2002], and the reader is referred to it for more information.

13
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Figure 3.1: A (3-2-1) rotation sequence commonly used to describe the orientation of aerospace vehicles
[Schaub and Junkins, 2002]

3.1 Euler Angles

Euler angles are a set of three angles, (θ1, θ2, θ3), that can describe the rotation. It can be
concluded, however, that since there are only three elements that describe the rotation, there
are bound to be singularities in using this representation. Each of the euler angles represents a
rotation about a principal axis of the rotating reference frame. What this means is that when
a frame undergoes a rotation, there are actually three rotations. The first two rotations result
in intermediate reference frames and the final rotation results in the final reference frame. It is
important to label the sequence of the rotation, as different sequences will yield different results.
For example, let us assume that there are two reference frames, Fa and Fb, and the Euler angle
set, (θ1, θ2, θ3), describes the rotation from Fa to Fb. The sequence of rotation describes the
principal axis used for the rotation. In the example the sequence of rotation is (3-2-1), which
is a common rotation sequence to describe the attitude of aerospace vehicles. When the (3-2-1)
sequence is used, the Euler angles are called yaw, pitch, and roll, respectively. The Euler angles
are then written as (ψ, θ, φ) and the rotation can be seen in Fig. 3.1.

The rotation is as follows:

• Euler rotation with an Euler angle of ψ (θ1) and Euler axis â3 to yield F ′a

• Euler rotation with an Euler angle of θ (θ2) and Euler axis â′2 to yield F ′′a

• Euler rotation with an Euler angle of φ (θ3) and Euler axis â′′1 to yield Fb

For orbital mechanics, a (3-1-3) rotation sequence results in the Euler angles being some of the
Keplerian elements that describe an orbit. The Keplerian elements are described later in Chapter
4. The rotation and the Euler angles can be seen in Fig. 3.2. The Euler angles are then written
as (Ω, i, ω) and are the right ascension of ascending node Ω, inclination i, and the argument of
pericenter ω. The Euler angles of the (3-2-1) sequence, which are usually used to describe the
attitude of a body, are an asymmetric set because each rotation is about a separate axis. The
Euler angles of the (3-1-3) sequence, which are used to describe orbits, form a symmetric set
because 2 of the rotations are about the same axis.

There is a specific rotation matrix for a rotation about each axis. These rotation matrices are
known as the principal rotation matrices. Let Ci(θ) be an Euler rotation about axis i with angle
θ. This is also referred to as an unit-axis rotation.
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Figure 3.2: Euler Angles to Describe Orbits [Schaub and Junkins, 2002]

C1(θ) =

 1 0 0
0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)

 (3.1)

C2(θ) =

 cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 (3.2)

C3(θ) =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 (3.3)

The rotation matrix of a rotation sequence can then be derived by multiplying the principal
rotation matrices in the specified order. In the following equations, the angles are shown next
to the rotation matrix to give more insight into the rotations. This notation will not be used
afterwards. The (3-2-1) rotation sequence, shown in Fig. 3.1, would yield

C(ψ, θ, φ) = C1(φ)C2(θ)C3(ψ) (3.4)

and the (3-1-3) rotation sequence would yield

C(Ω, i, ω) = C3(ω)C1(i)C3(Ω) (3.5)

Eq. 3.5 can be expanded, according to [Schaub and Junkins, 2002], to give

C(Ω, i, ω) =

 cωcΩ− sωcisΩ cωsΩ + sωcicΩ sωsi
−sωcΩ− cωcisΩ −sωsΩ + cωcicΩ cωsi

sisΩ −sicΩ ci

 (3.6)

If the rotation matrix is given, the Euler angles of the (3-1-3) rotation sequence can be extracted
in the following manner

Ω = arctan
(
−c3,1
c3,2

)
(3.7)

i = arccos (c3,3) (3.8)
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ω = arctan
(
c1,3
c2,3

)
(3.9)

Since Euler angles use only three elements to express a rotation, there is always an inherent
singularity where 2 of the angles cannot be extracted uniquely from the rotation matrix. For the
Keplerian angles, this singularity occurs when i = 0◦, 180◦. This is the case for equatorial orbits
when c3,1 = c3,2 = c1,3 = c2,3 = 0. From astrodynamics, it is known that Ω is not defined for
equatorial orbits and thus, it can be set to 0. When this is done, ω can be found by

ω = arctan
(
−c2,1
c1,1

)
(3.10)

For true orbits, ω is undefined when the eccentricity of the orbit is 0. This is due to the dynamics
and not a singularity in the Euler angles and will therefore not be discussed further.

The kinematic relations for different sets of Euler angles will be different based on their rotation
sequence. The kinematic differential equations of the (3-1-3) Euler angles will be presented here.
The angular velocity of the rotating frame with respect to the original frame, according to [Schaub
and Junkins, 2002], is

ω =

 sinω sin i cosω 0
cosω sin i − sinω 0

cos i 0 1

 Ω̇
i̇
ω̇

 (3.11)

and the inverse relationship is found to be Ω̇
i̇
ω̇

 =
1

sin i

 sinω cosω 0
cosω sin i − sinω sin i 0
− sinω cos i − cosω cos i sin i

ω (3.12)

As mentioned previously, all sets of Euler angles have singularities. This singularity always occurs
at certain values of θ2. In the case of the (3-1-3) rotation, the singularity occurs at i = 0 and i
= 180 degrees. For the (3-2-1) rotation, the singularity occurs at θ = ±90◦. This singularity is
known as gimbal lock and occurs because two of the three axes line up. An example is given with
the x− y− z notation and the (3-2-1) sequence. The first rotation is carried out by an arbitrary
angle around the z-axis. The second rotation by ±90◦ around the intermediate y-axis will cause
the intermediate x-axis and z-axis to be parallel to each other. The third rotation around the
intermediate z-axis can now be recreated by a rotation around the intermediate x-axis, and so
there is a loss of a degree of freedom.

The Euler angles are faster to integrate than the full rotation matrix, but there are still a many
trigonometric functions involved, which are tedious for the computer. Also, the behavior close
to the singularities will be undesirable. Therefore in the next section, quaternions, which do not
possess these disadvantages, are presented.

3.2 Quaternions

A quaternion is a four dimensional hyper-complex number, which was discovered by Sir William
Rowan Hamilton. A quaternion consists of one real number and three imaginary numbers. The
imaginary numbers are different square roots of −1 and obey the following constraint

i2 = j2 = k2 = ijk = −1 (3.13)

Quaternions are a very vast topic, with their own special algebra and properties making an
exhaustive treatment beyond the scope of this report. Quaternions having unit magnitude can
be used to describe rotations and when considered in this way, instead of being pure mathematical
concepts, they are also called Euler Parameters.
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The quaternion can be defined in terms of the Euler axis, a and the Euler angle, Φ. The vector
part is defined as

ε =

 ε1
ε2
ε3

 = a sin
Φ
2

(3.14)

and the scalar part as

η = cos
Φ
2

(3.15)

The rotation specified by the quaternion is expressed as (ε, η). The 4 quaternion elements are
not mutually independent because they satisfy the following constraint.

εT ε+ η2 = ε21 + ε22 + ε23 + η2 = 1 (3.16)

This shows that the quaternion describes a unit 3-sphere, meaning a sphere in 4 dimensional
space. Any rotation is therefore a trajectory on the surface of the 3-sphere. Also, the orientation
specified by (ε, η) is the same as the orientation specified by (−ε,−η). This is because the second
quaternion describes the Euler rotation with Euler axis −a and Euler angle −Φ. This means
that if (ε, η) describes the shortest rotation then, (−ε,−η) describes the longest rotation. To
ensure that the shortest rotation is taken, a necessary condition is that η > 0. To visualize
this, quaternions can be viewed in another manner. The norm of the quaternion is 1, so the 4
quaternion elements represent the radial vector of a point on a 4-dimensional unit sphere. Since
it is very difficult to imagine a 4-dimensional sphere, we can consider the vector part ε to express
the radial vector of a point on a 3-dimensional sphere. The radius of this 3-dimensional sphere,
the norm of ε, can be found using the unit norm constraint of the quaternion in the following
manner:

|ε| =
√

1− η2 (3.17)

Thus, the sphere expressing ε changes with values of η. This will be a unit 3-dimensional sphere
if η = 0, and only a point if η = ±1. Since η is in the fourth dimension, the 3-dimensional spheres
of ε corresponding to η can be thought to be present at various times like an animation. This
can also be shown as a sphere with a linear offset from a point. Each offset corresponds to a
certain value of η and all the points on the surface of the sphere express the possible values of ε.
This can be seen in Fig. 3.3 along with a specific orientation.

3.2.1 Relationship with the Direction Cosine Matrix

The DCM C, in terms of the quaternion can be found by substituting Eqs.(3.14) and (3.15) into
Eq.(2.16).

C =

 1− 2
(
ε22 + ε23

)
2 (ε1ε2 + ε3η) 2 (ε1ε3 − ε2η)

2 (ε2ε1 − ε3η) 1− 2
(
ε23 + ε21

)
2 (ε2ε3 + ε1η)

2 (ε3ε1 + ε2η) 2 (ε3ε2 − ε1η) 1− 2
(
ε21 + ε22

)
 (3.18)

C =
(
η2 − εT ε

)
I3 + 2εεT − 2η [ε×] (3.19)

Inversely, there are two methods to extract a quaternion from a DCM. The first method is very
compact, but has a singularity at η = 0. In this method, the unit magnitude property of a
quaternion is used to find the η from the DCM found in Eq. (3.18).

η = ±1
2

√
TrC + 1 (3.20) ε1

ε2
ε3

 =
1
4η

 c2,3 − c3,2
c3,1 − c1,3
c1,2 − c2,1

 (3.21)
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(a) 3 dimensional spheres expressing the constraint for ε for
various values of η

(b) Expression of a specific orientation (ε,η)

Figure 3.3: Visualizing quaternions

However, is a long workaround for the case when η = 0. After substituting η = 0 into the DCM
in Eq. (3.18), the various matrix elements are then functions of only ε1, ε2, and ε3. This results
in nine equations for 3 unknowns and thus, the remaining elements of the quaternion can be
found.

In Eq. (3.20), the sign can be chosen arbitrarily. This is because the orientation expressed by
the quaternion (ε, η) is the same as the orientation expressed by (−ε,−η). As seen in Eq. (3.21),
the signs of the elements of ε change according to the sign of η. The appropriate sign should
be chosen from the quaternion history. If the present step is considered to be k, the quaternion
element with the largest magnitude in step k − 1 should have the same sign in step k. For there
to have been a smooth switch of sign for all the quaternion elements in one time step, the time
step has to be extremely large because of the unit-magnitude constraint. If 3 of the quaternion
elements pass through 0, one element still has to be approximately 1 or -1. Thus, for reasonably
sized time steps and smooth uni-directional motion, only a maximum of 3 quaternion elements
may change sign simultaneously.

The second method, without singularities, can be found in [Stanley, 1978]. In this method,
the squares of the vector and scalar parts of the quaternion should first be computed using the
following equations:

4ε2i = 1− TrC + 2ci,i (3.22a)

4η2 = 1− TrC + 2TrC (3.22b)

Starting from the quaternion element with the largest square in Eq. (3.22), the following relations
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can be used to compute the remaining quaternion elements:

4εiεj = ci,j + cj,i (3.23a)
4εiη = cj,k − ck,j (3.23b)

In Eqs. (3.22) and (3.23), the subscripts (i, j, k) are cyclic permutations of (1, 2, 3). By default,
the positive square root can be taken and then, the elements can get the appropriate sign based
on the quaternion history.

Euler angles and Quaternions Quaternions are normally used for calculating the attitude of
an aerospace vehicle. It is, however, easier to visualize the attitude using the (3-2-1) sequence of
Euler angles. According to [Schaub and Junkins, 2002], the conversion between the Euler angles
and quaternion is

ε1
ε2
ε3
η

 =


sin φ

2 cos θ2 cos ψ2 − cos φ2 sin θ
2 sin ψ

2

cos φ2 sin θ
2 cos ψ2 + sin φ

2 cos θ2 sin ψ
2

cos φ2 cos θ2 sin ψ
2 − sin φ

2 sin θ
2 cos ψ2

cos φ2 cos θ2 sin ψ
2 − sin φ

2 sin θ
2 cos ψ2

 (3.24)

According to [Schaub and Junkins, 2002], the conversion from the quaternion to Euler angles is φ
θ
ψ

 =


arctan 2(ε1η+ε2ε3)

1−2(ε21+ε22)
arcsin (2 (ε2η − ε1ε3))

arctan 2(ε3η+ε1ε2)

1−2(ε22+ε23)

 (3.25)

Even though quaternions are singularity free, the conversion to Euler angles in Eq. (3.25) cannot
be carried out if sin θ = ±1, which means that ε2η − ε3ε1 = ±0.5, because of the gimbal lock
situation. The would occur, for example, when (ε1, ε2, ε3, η) = (0,

√
2

2 , 0,
√

2
2 ). To still be able to

extract some value for the Euler angles, one of the other two Euler angles, φ and ψ, should be
set to 0. The remaining angle is computed using from arctan(ε1/η)1. If one checks the history,
the evolution of the quaternion elements will be smooth at this point, but the Euler angles will
have a discontinuity.

3.2.2 Successive Rotations

If there are 2 successive rotations, (ε′, η′) followed by (ε′′, η′′), the full rotation, (ε, η), can be
expressed as

ε = η′′ε′ + η′ε′′ + [ε′×] ε′′ (3.26)

η = η′η′′ − ε′T ε′′ (3.27)

This can be written as
ε1
ε2
ε3
η

 =


η′′ ε′′3 −ε′′2 ε′′1
−ε′′3 η′′ ε′′1 ε′′2
ε′′2 −ε′′1 η′′ ε′′3
−ε′′1 −ε′′2 −ε′′3 η′′



ε′1
ε′2
ε′3
η′

 (3.28)

or alternatively as
ε1
ε2
ε3
η

 =


η′ −ε′3 ε′2 ε′1
ε′3 η′ −ε′1 ε′2
−ε′2 ε′1 η′ ε′3
−ε′1 −ε′2 −ε′3 η′



ε′′1
ε′′2
ε′′3
η′′

 (3.29)

1http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/Quaternions.pdf
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3.2.3 Kinematic Differential Equation

To find the kinematic differential equation of the quaternion, it is necessary to first differentiate
the rotation matrix found in Eq. (3.18) with respect to time:

Ċ =

 −4(ε2ε̇2 + ε3ε̇3) 2(ε̇1ε2 + ε1ε̇2 + ε̇3η + ε3η̇)
2(ε̇2ε1 + ε2ε̇1 − ε̇3η − ε3η̇) −4(ε3ε̇3 + ε1ε̇1)
2(ε̇3ε1 + ε3ε̇1 + ε̇2η + ε2η̇) 2(ε̇3ε2 + ε3ε̇2 − ε̇1η − ε1η̇)

· · ·

· · ·
2(ε̇1ε3 + ε1ε̇3 − ε̇2η − ε2η̇)
2(ε̇2ε3 + ε2ε̇3 + ε̇1η + ε1η̇)

−4(ε1ε̇1 + ε2ε̇2)

 (3.30)

This leads to a relation between the angular velocity, the quaternion, and the time derivative of
the quaternion. To get this relation, elements of the DCM in terms of the quaternion elements
from Eq. (3.18), and the elements of the time derivative of the DCM in terms of quaternion
elements and their time derivatives from Eq. (3.30) have to be filled into Eq. (2.36). The
resultant relation for the angular velocity vector, after some simplification, is ω1

ω2

ω3

 = 2

 ε̇1η + ε̇2ε3 − ε̇3ε2 − η̇ε1
ε̇2η + ε̇3ε1 − ε̇1ε3 − η̇ε2
ε̇3η + ε̇1ε2 − ε̇2ε1 − η̇ε3

 (3.31)

There are 4 quaternion elements and so a fourth equation is necessary. This can be found by
differentiating the unit constraint of the quaternion, found in Eq. (3.17), with respect to time:

2(ε1ε̇1 + ε2ε̇2 + ε3ε̇3 + ηη̇) = 0 (3.32)

Using Eqs. (3.32) and (3.31) , the kinematic differential equation can now be written canonically
as 

ω1

ω2

ω3

0

 = 2


η ε3 −ε2 −ε1
−ε3 η ε1 −ε2
ε2 −ε1 η −ε3
ε1 ε2 ε3 η



ε̇1
ε̇2
ε̇3
η̇

 (3.33)

or, after rearranging, as
ε̇1
ε̇2
ε̇3
η̇

 =
1
2


0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0



ε1
ε2
ε3
η

 (3.34)

This can be written in a more compact form as[
ε̇
η̇

]
=

1
2
Ω
[
ε
η

]
(3.35)

with Ω being defined as

Ω =
[
− [ω×] ω
ωT 0

]
(3.36)

The kinematic differential equation for the quaternion is linear and has no transcendental func-
tions. Thus, the computational load is lower than the case with Euler angles.
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Figure 3.4: Stereographic Projection of a 2-Sphere [Howison, 2007]

3.3 Modified Rodrigues Parameters

Modified Rodrigues Parameters (MRPs) are a modification of the classical Rodrigues parameters,
as can be deduced from the name. A very extensive treatment of both Classical, and Modified
Rodrigues parameters can be found in [Schaub and Junkins, 2002]. Classical Rodrigues parame-
ters will not be dealt with in this section, as the MRP are an improvement and they will be used
in further chapters. An MRP, σ, vector is made up of three MRPs and can be defined in terms
of the Euler axis and angle as

σ = â tan(Φ/4) (3.37)

As an MRP vector is of dimension 3, there will be a singularity present. From Eq. (3.37) it can be
seen that this singularity occurs at Φ = ±360◦. There are ways to get around this singularity by
switching to the so-called Shadow Modified Rodrigues Parameters (SMRPs), which are explained
further on in this section.

3.3.1 Relationship between Modified Rodrigues Parameters and Quater-
nions

MRPs are very closely linked to quaternions. They are a stereographic projection of the quater-
nion unit 3-sphere. Stereographic projection is a way of describing the points of an n-sphere onto
a tangent n-dimensional surface using a mapping point. An example using a 2-sphere can be
seen in Fig. 3.4. If the sphere in Fig. 3.4 is considered to be the Earth, then the mapping point
in this case would be the north pole and the tangent plane would be tangent to the south pole.
The mapping is carried out as if there is a point light source at the mapping point emanating
rays. The projection of any point on the sphere would be the intersection of the ray, from the
mapping point to the point of interest, and the tangent plane. This means that any point on the
surface of the sphere, except the mapping point, can be projected onto the tangent plane. This
same concept can be applied to the unit 3-sphere of the quaternion.

MRP are very closely related to quaternions and are extracted from a DCM by first extracting
the quaternion and then converting the quaternion to MRP. For the MRP, the projection point
for the stereographic projection is

[
εT , η

]
=
[

0, 0, 0, −1
]
. The tangent hyperplane

is at η = 0 and normal to the η-axis. All the rotations can be expressed with a 3-dimensional
vector, except for a rotation with η = −1. This occurs, as stated previously, at Φ = ±360◦. Since
the four quaternion elements lie in 4 different dimensions, a cross section can be taken of any two
dimensions to view them in 2 dimensions as they are all orthogonal. To view the stereographic
projection of any one element of ε, εi, the εi − η plane can be viewed as seen in Fig. 3.5. In this
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Figure 3.5: Stereographic projection of an arbitrary εi

2-dimensional plane, the hyperplane at η = 0 is the εi-axis. The set of all possible εi is a line of
length equal to |ε| found in Eq. (3.17). The stereographic projection of εi, which is an element
of the quaternion (εa, ηa) can be seen in Fig. 3.5.

The MRP vector, σ, can be extracted from a quaternion with the following expression:

σ =
ε

1 + η
,∀η 6= −1 (3.38)

The magnitude of the MRP vector can be defined as

σ =
√
σTσ (3.39)

The MRP vector can then be converted back to a quaternion using

ε =
2

1 + σ2
σ (3.40a)

η =
1− σ2

1 + σ2
(3.40b)

MRP are always extracted from a quaternion, because of their close relation. Thus, to convert
to any other attitude parameters, the conversion to quaternion has to be carried out first.

3.3.2 Shadow Modified Rodrigues Parameters

To avoid the singularity (η = −1 Φ = ±360◦), an alternative set of parameters known as the
Shadow Modified Rodrigues Parameters (SMRP), σS , is defined. The property of quaternions
that the orientation expressed by (ε, η) is the same as the orientation expressed by (−ε,−η) is
used. Thus, the SMRP vector is a stereographic projection of (−ε,−η), which can be seen in
Fig. 3.5. These SMRP can be extracted from Euler parameters using

σS =
−ε

1− η
,∀η 6= 1 (3.41)

The MRP can be converted to SMRP by

σS =
−σ
σ2

(3.42)
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Figure 3.6: Range of Euler parameters where MRP and SMRP are used

The SMRP can extracted from the Euler axis and angle by

σS = a tan
(

Φ− 2π
4

)
(3.43)

Since the SMRP uses (−ε,−η), there will be no singularity occurring at η = −1. The singularity
will instead occur at η = 1. Since it is possible to switch between MRP and SMRP using Eq.
(3.42), the singularity can always be avoided. An important property is that the kinematic
differential relations and other equations are the same for MRP and SMRP. Thus, it is only
necessary to keep track of which set of parameters is being used and not use different sets of
kinematic equations during computations.

The switching between MRP and SMRP can be carried out arbitrarily. However, it can be seen
from Fig. 3.4 that σ ≤ 1 when η ≥ 0 and that σS ≤ 1 when η ≤ 0. This means that it is best
to switch when η = 0, which also simplifies Eq. (3.42) to

σS = −σ (3.44)

It is not always possible to know exactly when η = 0. Thus, it is best to switch as soon as the
norm of the current MRP or SMRP is greater than 1. It should be noted, however, that the
MRP and SMRP do not have the unit magnitude constraint. This ensures that the numbers
are always finite and also that the singularity is always approximately 180◦ away in terms of the
Euler angle. The range where MRP and where SMRP are used can be seen in Fig. 3.6.

3.3.3 Properties

The DCM can be expressed in terms of MRP as

C = I3 −
4
(
1− σ2

)
(1 + σ2)2 [σ×] +

8
(1 + σ2)2 [σ×]2 (3.45)

The method of extracting the MRP directly from a DCM was not found in literature. It is
required to first extract the quaternion from the DCM and then convert the DCM to MRP or
SMRP as desired.
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If a rotation of σ′ is followed by a rotation of σ′′ The total rotation can be expressed in the
following way

σ = σ′′ ⊗ σ′ =

(
1− (σ′)2

)2
σ′′ +

(
1− (σ′′)2

)2
σ′ − 2 [σ′′×]σ′

1 + (σ′′)2(σ′)2 − 2σ′′Tσ′
(3.46)

The relation in Eq. (3.46), using the symbol ⊗, is defined as MRP multiplication. Some inter-
esting properties of MRP multiplication, deduced from [Schaub and Junkins, 2002], are

0 = −σ ⊗ σ (3.47a)
σ′ = (−σ′′)⊗ σ (3.47b)
σ′′ = σ ⊗ (−σ′) (3.47c)

The relations found in Eq. (3.47) can be used when an initial and a final orientation is given,
and the rotation between the two has to be found.

3.3.4 Kinematic Differential Equation

The kinematic differential equation for the MRP is

σ̇ =
1
4

 1− σ2 + 2σ2
1 2(σ1σ2 − σ3) 2(σ1σ3 + σ2)

2(σ2σ1 + σ3) 1− σ2 + 2σ2
2 2(σ2σ3 − σ1)

2(σ3σ1 − σ2) 2(σ3σ2 + σ1) 1− σ2 + 2σ2
3

 ω1

ω2

ω3

 (3.48)

This can rewritten as

σ̇ =
1
4
[(

1− σ2
)
I3 + 2 [σ×] + 2σσT

]
ω (3.49)

The inverse relation is

ω =
4

(1 + σ2)2

[(
1− σ2

)
I3 − 2 [σ×] + 2σσT

]
σ̇ (3.50)

The kinematic differential relations are the same for both MRP and SMRP. However, if the time
rate of change of MRP has to be converted to the time rate of change of SMRP, the following
relation can be used

σ̇S = − σ̇
σ2

+
1
2

(
1 + σ2

σ4

)
σσTω (3.51)

The MRP provide a good alternative to quaternions. They have a singularity, which can be
bypassed by switching parameters. The dimension is 1 less than that of Euler parameters. The
kinematic differential equation has no transcendental numbers, and only a quadratic non-linearity.

The various attitude parameters have been dealt with in the chapter. The most important for
this thesis study were the quaternions and the MRP as they will be used extensively for the USM.
The goal of the USM is to express spacecraft orbit. Therefore, the next chapter deals with why
and how bodies move in space.



Chapter 4

Astrodynamics and Orbital
Mechanics

In the previous chapter, the different methods used to express the orientation of a reference frame
with respect to another were shown. The theory and equations about quaternions and MRP are
especially important for the USM. In this chapter, the reason for the motion of bodies in space is
presented. As important as the reason for motion is the motion itself, and this is also presented
here.

Astrodynamics is a vast and very old topic with centuries of mathematicians and physicians
working on it. This chapter only provides a basic overview of the dynamics applicable to space
flight. The information presented here is based on [Wakker, 2007a] and [Wakker, 2007b].

4.1 Gravity

Gravity is the main driving force for motion in space. Therefore, it is essential to understand this
force. In this section, only the definition of gravity in classical mechanics is provided and used.
The Law of Gravitation was first stated by Sir Isaac Newton as

Two particles attract each other with a force directly proportional to their masses
and inversely proportional to the square of the distance between them.

The magnitude of this force, F, is

F = G
m1m2

r2
(4.1)

In Eq. 4.1 the various components are

• G is the Universal Gravity Constant with a value of 6.668× 10−11 Nm2kg-2.

• m1 is the mass of the first particle

• m2 is the mass of the second particle

• r is the distance between the two particles

The gravity force is an attracting force and acts along the line connecting the two bodies. The
force on particle 1 can be written in vectorial format as

F1 = −Gm1m2

r3
r2→1 (4.2)

25
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The acceleration experienced by particle 1, the force per unit mass, is

g1 = −Gm2

r3
r2→1 (4.3)

The acceleration due to gravity can also be thought of as the field strength, at the position of
m1, of the gravitational field generated by m2. The gravitational field can also be expressed in
the form of partial differentiation of a scalar function with respect to the position. This scalar
function is known as the potential, U . The field strength can be written in terms of the potential
as

g = ∇U (4.4)

and the potential being

U = −Gm2

r
(4.5)

The potential of a gravity field is negative everywhere and 0 at inifinity.

The equations shown above are for point masses. Point masses are particles that have a mass, but
no size. Spacecraft orbit celestial bodies that are obviously not point masses. This does not mean
that the analysis with point masses is wrong. It turns out that the analysis with point masses is
a good first order approximation to celestial bodies. For this approximation, the assumption that
the mass distribution of the celestial body is radially symmetric is made. With this assumption,
the celestial body behaves as if it is a point mass located at its center. This means that the
equations derived for point mass are valid for a first order approximation of reality.

4.2 Gravitational Influence of Many Bodies

So far, it has been assumed that there are only two bodies present. In reality, there is an infinite
number of bodies in the universe that all attract each other. The equations of motion of a
particular point, i, in a set of n bodies, relative to an inertial frame of reference at the center of
mass of the system, is

mir̈i = −G
n,j 6=i∑
j=1

mimj

r3
j→i

rj→i (4.6)

Thus, a summation is taken of the gravitational attraction of particle i with respect to all other
particles, except for itself. This summation has to be done for every single particle and then
integrated to describe the motion. This integration will have to be carried out numerically most
of the time.

The many body problem is insightful for understanding the dynamics, but is not always suitable
for realistic usage. This is because for space flight applications, it is only necessary to find the
motion of a certain body around another body. An example would be the motion of a satellite,
body i, in an orbit around the Earth, body k, with the Moon, Sun, and other planets also
influencing the motion. The motion needs to be expressed in a non-rotating inertial frame with
its origin at the location of k, which undergoes only translational accelerations. The motion
would be

r̈i = −Gmi +mk

r3
i

ri +G

n,j 6=i,k∑
j=1

mj

(
rj − ri
r3
i→j

− rj
r3
j

)
(4.7)

The significance of Eq. (4.7) is that the motion can be expressed as a simple two body problem
between body i and body k, with the rest of the bodies providing a perturbing acceleration. This
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perturbing acceleration is the difference between the acceleration, due to bodies other than k, on
i and the acceleration on k. The potential for this scenario is

U = −Gmk +mi

ri
−G

n,j 6=i,k∑
j=1

mj

(
1

ri→j
− rTi rj

r3
j

)
(4.8)

The left half of the right-hand side of Eq. (4.8) is known as the primary potential, and the right
half is known as the perturbing potential. Perturbations will be further explained in Appendix B.

4.3 Two-Body Problem

It was shown that for a satellite in orbit around the Earth, the influence of the other solar system
bodies can be considered to be perturbations. Thus, a first-order analysis can be carried out
considering only the satellite and the Earth. The mass of the Earth is much larger than the mass
of the satellite. This means that the effect of the satellite mass on the motion is negligible. Thus,
the motion of the satellite can be expressed, in a non-rotating frame fixed to the Earth, by

r̈i = −µk
r3
i

ri (4.9)

where µ is the gravitational parameter and is defined as

µ = Gmk (4.10)

For the case described above, there are certain parameters that are constant. These constants
can be derived by some manipulation and integration. The first constant is the energy per unit
mass of body i.

E =
1
2
v2 − µ

ri
(4.11)

Eq. (4.11) shows that the sum of the kinetic energy per unit mass and the potential energy per
unit mass is constant. Another constant is the angular momentum, or the Second Laplace Vector.

h = r× v (4.12)

Since the angular momentum is constant, the motion of i is on a plane perpendicular to h.

4.4 Orbits

This section continues the analysis of the 2-body problem. After further mathematical analysis,
three important laws about the motion of i about k can be found. These laws were first stated
by Johannes Kepler, who discovered them empirically. These laws are

1. The motion of i around k is a conic section with k at one of the foci and period, T ,
semi-major axis , a, and eccentricity, e.

2. A line joining i and k sweeps out a constant area per unit time.

3. The period, T , squared is directly proportional to the semi-major axis, a, cubed.

It is important to note that Kepler’s laws only hold for elliptical orbits.

The distance from k to i in the orbit can be described by the following relation

ri =
h2

µ (1 + e cos ν)
=

p

1 + e cos ν
(4.13)

In Eq. (4.13),
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p is the semi-latus rectum of the conical section

ν is the true anomaly and is measured from the pericenter, which is the closest point in the
orbit

Integrating Eq. (4.9) gives rise to a constant vector, the magnitude of which is the eccentricity.
This vector is

e =
1
µk

[(
vTi vi −

µ

ri

)
ri −

(
rTi vi

)
vi

]
(4.14)

Various values of e describe different types of orbits.

4.4.1 Elliptical Orbits

When 0 ≤ e < 0, the orbit of i around n forms a complete ellipse, and the orbital energy is
negative, E < 0. This means that i will be able to completely orbit k and return to the pericenter
repeatedly. There exists a special case when e = 0, where the orbit is circular. In a circular orbit,
the distance between i and n remains constant.

For elliptical orbits, the equation describing the orbit becomes

ri =
a(1− e2)
1 + e cos ν

(4.15)

The pericenter, i.e., the smallest separation , occurring at ν = 0◦ and the apocenter, i.e., the
largest separation, occurring at ν = 180◦, distances can be found via

rp = a(1− e) (4.16a)
ra = a(1 + e) (4.16b)

The inverse relations to get a and e are

a =
ra + rp

2
(4.17a)

e =
ra − rp
ra + rp

(4.17b)

The semi-major axis can be related to the orbital energy in the following way

a =
µ/2

µ
ri
− v2i

2

= − µ

2E
(4.18)

The velocity at any point in the orbit can be found using the Vis-Viva Integral, which is

v2
i = µk

(
2
ri
− 1
a

)
(4.19)

The vis-viva integral provides some useful insights on elliptical orbits. The square of the velocity
is inversely proportional to the distance to the central body. So, the velocity will be greatest at
the pericenter where the distance is the smallest. This can also be deduced from Kepler’s second
law. At the pericenter, the line joining i and k is the shortest. Thus, it has to move the fastest to
sweep the same area. The opposite occurs at the apocenter and the velocity is the lowest there.

The period of an elliptical orbit is

T = 2π

√
a3

µk
(4.20)
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A mean angular motion, n, can now be defined from the period as

n =
2π
T

=
√
µk
a3

(4.21)

In a circular orbit, the velocity of the orbiting body is in the orbital plane and is always perpen-
dicular to the radial vector. Since the radius is constant, it is equal to the semi-major axis:

ri = a (4.22)

It is important to note that a pure circular orbit will never occur in reality as it is impossible to
make sure that the eccentricity is exactly 0. The Circular velocity is an important factor that
will be used later on. Circular velocity is the magnitude of the velocity of i in a circular orbit at
distance ri.

vc =
√
µk
ri

(4.23)

4.4.2 Parabolic Orbits

When e = 1, a special kind of orbit called a parabolic orbit occurs. The orbital energy of a body
in a parabolic orbit is 0, E = 0. A parabolic orbit is a theoretical phenomenon because it is
impossible to have an eccentricity exactly equal to 1. A parabolic orbit is open, which means
that if i is in a parabolic orbit, it will pass through the pericenter only once. The apocenter
is at an infinite distance and thus, the semi-major axis is not defined. Since e = 1, the orbital
equation simplifies to

ri =
p

1 + cos ν
(4.24)

The pericenter distance of a parabolic orbit is

rp =
p

2
(4.25)

The concept of the circular velocity defined in Eq. (4.23) is very useful for parabolic orbits. This
is because the magnitude of the velocity at any point in the parabolic orbit is

vi =
√

2µ
ri

=
√

2vc (4.26)

It is clear that any body in a parabolic orbit will travel to an infinite distance away from the
central body and thus, escaping the gravity field. Thus, the velocity at any point of a parabolic
orbit is the escape velocity at that point. This is the lowest velocity required to escape the central
gravity field because the velocity at an infinite distance is 0. Thus, the orbiting body would be
able to just escape.

vesc =
√

2vc (4.27)

Since the parabolic orbit is open, it is impossible to define a period for it. However, a special
kind of period, which is the time between two consecutive crossings of the semi-latus rectum, is
defined as

Tp =
4
3

√
p3

µk
(4.28)
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4.4.3 Hyperbolic Orbits

An orbit with e > 1 is known as a hyperbolic orbit. The orbital energy for hyperbolic orbits is
greater than 0, E > 0. In a hyperbolic orbit, the path of i around n would become asymptotic after
a certain value of the true anomaly. After this value for the true anomaly, the orbit degenerates
into a rectilinear orbit. The limit of the true anomaly is

cos ν > −1
e

(4.29)

Unlike the parabolic orbit, the semi-major axis of a hyperbolic orbit is defined. It is, however,
negative and can be found using

a =
p

1− e2
(4.30)

With this, the rest of the orbital relations are the same as for elliptical orbits.

With hyperbolic orbits, body i would not only be able to escape the gravity field of body k,
it would still have a velocity at an infinite distance. This velocity can be derived by using the
vis-viva integral, Eq. (4.19), and taking the limit of ri to infinity. This gives a value of

v2
∞ = −µk

a
(4.31)

The velocity at any point in the hyperbolic orbit will be greater than the escape velocity at that
point. A mathematical relation for this velocity difference is

v2 − v2
esc = v2

∞ (4.32)

4.5 Reference Frames

Now that the characteristics and dynamics of orbits have been treated, the reference frames in
which the orbits are considered will be presented. There are many different reference frames
available and used for modern space flight. It is beyond the scope of this work to provide an
exhaustive overview. The reference frames treated here will be the ones based on the Earth.
Both, inertial and non-inertial reference frames will be treated. All the inertial reference frames
are actually pseudo-inertial. This is because a true inertial frame would be located at the center
of the universe and thus, is not known and would be impractical to use.

4.5.1 Earth Centered Inertial

The Earth Centered Inertial (ECI) reference frame, FECI , is a non-rotating reference frame with
its origin at the center of mass of the Earth. The x-axis lies on the equator and points towards
the vernal equinox. The vernal equinox is defined as the intersection of the Earth’s equatorial
plane and the ecliptic. The ecliptic is the plane in which the Earth orbits the Sun. The z-axis
is the axis of rotation of the Earth, and the y-axis completes the dextral triad. The orbits of
Earth satellites are expressed in this frame. A realization of this frame is the J2000 frame, which
freezes the directions of the x-axis and z-axis at the respective directions they had at 12:00 on
January 1 2000. This was necessary because the location of the vernal equinox and the rotation
changes with time.

4.5.2 Earth Centered Earth Fixed

The Earth Centered Earth Fixed (ECEF) reference frame, FECEF , is a rotating reference frame
with its origin at the center of mass of the Earth. The x-axis lies on the equator and points
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Figure 4.1: The J2000 Reference Frame [Rose, 1998]

towards a reference meridian. This reference meridian is the International Earth Rotation and
Reference Systems Service (IERS) reference meridian . The z-axis lies along the Earth’s axis
of rotation. The y-axis completes the dextral triad. For the rest of this report, it is assumed
that the direction of the rotation axis of the Earth remains constant. For this case, the rotation
matrix from ECI to ECEF is

CECEF,ECI = C3(θJ2000 + ωE ·∆t)

=

 cos (θJ2000 + ωE ·∆t) sin (θJ2000 + ωE ·∆t) 0
− sin (θJ2000 + ωE ·∆t) cos (θJ2000 + ωE ·∆t) 0

0 0 1

 (4.33)

In Eq. (4.33), θJ2000 ≈ 100◦ is the angular separation between the x-axes of ECI and ECEF at
12:00 on January 1 2000 and ∆t is the time since then till present.

In reality, the rotation axis of the Earth changes with time, which can be seen in Fig. 4.2.
There is a long-term change called Precession, and a short term change called Nutation. There
is also an additional motion known as Polar Motion, which is not shown in Fig. 4.2, that occurs
due to complicated dynamics and nutation errors that are not modeled. The precession occurs
because the hemisphere of Earth that points towards the Sun during aphelion points away from
the Sun during perihelion. This is the reason for seasons not coinciding in the northern and
southern hemispheres. Nutation is caused due to the gravitational effects of the Sun and the
Moon. Common ways of computing the nutation include the IERS 1996 Theory of Nutation, or
the 1980 International Astronomical Union (IAU) Theory of Nutation, of which the IERS theory
is more accurate. In this thesis study, however, the rotation axis of the Earth is assumed to be
fixed.

World Geodetic System 1984

A realization of the ECEF reference frame is the World Geodetic System 1984 (WGS 84). This
frame is the standard for Global Positioning System (GPS) and thus, is the frame that is most
frequently used. The WGS 84 models the Earth as a ellipsoid of revolution instead of a sphere,
has its own gravity model, and it defines its own set of fundamental constants. Some of the most
important constants can be found in Table 4.1.

The ellipsoid is known as the Geodetic ellipse and can be seen in Fig. 4.3. In Fig. 4.3, N is
the radius of curvature in the prime vertical, h is the height above the ellipse along the direction
of the prime vertical, and φgd is the geodetic latitude, and φgc is the geocentric latitude. The
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Figure 4.2: Motion of Earth’s spin axis [Hughes, 2009]

position given in by a GPS measurement unit is usually h, φgd, and the longitude λ. For the
remainder of the report, the latitude used is always the geodetic one. The geocentric latitude is
only used if the spherical planet assumption is explicitly stated.

To convert these spherical coordinates to Cartesian coordinates, the ellipsoid flatness, f , has to
be found first.

fE =
aE − bE
aE

= 3.3528107× 10−3 (4.34)

The eccentricity of the ellipse is then found using

eE =
√
fE (2− fE) = 8.1819191× 10−2 (4.35)

The ellipsoid flatness and the eccentricity are constants and thus, have to be calculated only
once. The radius of curvature in the prime vertical varies with the latitude and can be found in
the following way

N =
aE√

1− e2
E sin2 λ

(4.36)

Table 4.1: Some important parameters about the Earth defined in the World Geodetic System 1984
[Grewal et al., 2001]

Parameter Symbol Value
Semi-major axis of Earth aE 6378.1370000 km
Semi-minor axis of Earth bE 6356.7523142 km

Rotation rate of Earth ωE 7.2921151467× 10−5 rad/s
Gravitational parameter of Earth µE 3.986005× 105 km3 / s2
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Figure 4.3: Shape of the geodetic ellipse

Finally the cartesian coordinates are x
y
z


ECEF

=

 (h+N) cosφgd cosλ
(h+N) cosφgd sinλ(
h+

(
1− e2

E

)
N
)

sinφgd

 (4.37)

The inverse conversion to find h, φgd, and λ is more involved. This is especially true for φgd,
where iteration has to be used. The following conversion from Cartesian coordinates in FECEF
to h, φgd, and λ is taken from [Hughes, 2009]. The longitude can be calculated using

λ = atan2(y, x) (4.38)

For φgd, an initial guess is computed using

φgd0 = atan2(z,
√
x2 + y2) (4.39)

An iteration is now started till ∆φgd becomes smaller than a certain specified value. At each step

φgdk
= atan2

z +
aE · e2

E sin2 φgdk−1√
1− e2

E sinφgdk−1

,
√
x2 + y2

 (4.40)

∆φgd =
∣∣φgdk

− φgdk−1

∣∣ (4.41)

Finally, the altitude is

h =

√
x2 + y2

cosφgd
− aE√

1− e2
E sin2 φgd

(4.42)

The difference between the geodetic and geocentric latitude quite small. The maximum value of
the difference occurs when φgc ≈ 45◦ and is approximately 0.2◦, and the average difference is
approximately 0.1◦.
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Figure 4.4: Definition of the local tangent plane. Modified from [Grewal et al., 2001]

Local Tangent Plane

In the ECEF, a local tangent plane can be defined as being tangential to the plane at the specified
longitude and latitude. A reference frame can be defined on this tangential plane with the axes
pointing East, North, and Up. An example of this frame, FENU , is found in Fig. 4.4. The
first two axes lie on the tangential plane to the East and North respectively, and the third axis
points up along the radius of curvature in the prime vertical. The rotation matrix from FECEF
to FENU is

CENU,ECEF =

 0 1 0
0 0 1
1 0 0

C2(φgd)C3(λ)

=

 − sinλ cosλ 0
− cosλ sinφgd − sinφgd sinλ cosφgd
cosφgd cosλ cosφgd sinλ sinφgd

 (4.43)

Sometimes, an alternate version of the local tangent plane is used with the first two axes pointing
North and East respectively, and the third axis pointing down along the radius of curvature in
the prime vertical. The rotation matrix between FENU and FNED is

CNED,ENU =

 0 1 0
1 0 0
0 0 −1

 (4.44)

4.5.3 International Celestial Reference Frame

To describe interplanetary orbits, or orbits of other solar system bodies around the Sun, it is
impractical to have an inertial frame centered on the Earth. Thus, the International Celestial
Reference Frame, FICRF , is defined with its origin at the Solar System barycenter. The axes are
defined with respect to objects that are outside the Milky Way. The plane defined by the x-axis
and y-axis is the same as the J2000 ECI equatorial plane. Since the reference bodies for the axes
are very far away, this frame is as close as possible to a true inertial frame. This reference frame
is now used to express the orbits of the planets in the solar system.

A Heliocentric reference frame is also used to express interplanetary trajectories.
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4.6 Describing Orbits

Orbits can be expressed in the inertial coordinates using simple Cartesian coordinates. The
full state consists of three position and three velocity elements and they are normally used for
numerical computations. Spherical coordinates can also be used to describe orbits, but they will
not be treated here. The position and velocity, in Cartesian coordinates, in the inertial frame
would be

r =

 x
y
z

 (4.45a)

v =

 vx
vy
vzz

 (4.45b)

The one major drawback of this method is that it is almost impossible to be able to imagine
an orbit. There is a set of 6 elements known as the Keplerian elements that make imagining an
orbit easy. The Keplerian elements are described in the ECI frame, but can be used for any other
inertial frame. Three of the elements describe the orientation of the orbital plane in 3-dimensional
space. These 3 elements are Euler angles with the (3-1-3) sequence and can be seen in Figure
3.2. The Euler angles, (Ω, i, ω) mean

• Ω: Right ascension of ascending node is the angle, along the equatorial plane, between the
vernal equinox and the ascending node.

• i: The inclination is the angle between the orbital plane and the equatorial plane. The
inclination can range between 0 and 180 degrees. When i < 90 degrees the orbit is known
as prograde, so the orbit is in the same sense as the rotation of the Earth. When i > 90
degrees the orbit is retrograde, so the orbit is in the opposite sense as the rotation of the
Earth.

• ω: The argument of periapsis is the angle between the ascending node and the periapsis,
along the orbital plane.

Now that the orientation of the orbit is fixed, the shape of the orbit on the 2 dimensional plane
has to be determined. For this purpose, 2 elements are used. They are the semi-major axis, a,
and the eccentricity, e. Finally, the location of the satellite in the orbit has to be fixed. This is
described using the true anomaly, ν. It is necessary to be able to switch between the Keplerian
elements and Cartesian coordinates.

4.6.1 Cartesian Coordinates to Keplerian Elements

The conversion from Cartesian coordinates to Keplerian elements is now shown. The method
of [Curtis, 2005] is used. The conversion deals with closed orbits, so only elliptical and circular
orbits. The orbit can be split into two halves. One half is the trajectory from the periapsis to the
apoapsis, where the separation between the central body and the orbiting body is increasing. The
second half is the trajectory from the apoapsis to the periapsis, where the separation between
the central body and the orbiting body increases. The conversion procedure is now outlined.

The radial velocity should be computed. This result indicates the sector of the orbit the satellite
is in. If the the radial velocity is negative, the satellite is traveling from the apoapsis to the
periapsis. If the radial velocity is positive, the satellite is traveling from the periapsis to the
apoapsis.

vr =
rTv
r

(4.46)
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The semi-major axis is first computed

a =
µ/2

µ
r −

v2

2

(4.47)

The angular momentum can be calculated by taking the vector product of the position and
velocity:

h =
[
hx hy hz

]T = r× v (4.48)

with

h = |h| (4.49)

The eccentricity vector can be computed using

e =
1
µ

[(
vTv − µ

r

)
r−

(
rTv

)
v
]

(4.50)

The inclination can be calculated as

i = arccos
(
hz
h

)
(4.51)

An intermediate vector, N, is defined as

N =

 N1

N2

N3

 =

 0
0
1

× h (4.52)

Using N, the right ascension of ascending node can be computed. The tangent and cosine of Ω
are

cos Ω =
N1

N
(4.53a)

tan Ω =
N2

N1
(4.53b)

This depends on the value of N2. If N2 ≥ 0

Ω = arccos
(
N1

N

)
(4.54)

If N2 < 0

Ω = 2π − arccos
(
N1

N

)
(4.55)

The argument of perigee depends on the third element of the eccentricity vector. If e3 ≥ 0

ω = arccos
(

NTe
N · e

)
(4.56)

If e3 < 0

ω = 2π − arccos
(

NTe
N · e

)
(4.57)

Finally, the true anomaly can be computed and this depends on the sign of the radial velocity.
If vr ≥ 0

ν = arccos
(

eT r
e · r

)
(4.58)

If vr < 0

ν = 2π − arccos
(

eT r
e · r

)
(4.59)

Now that the conversion from Cartesian coordinates to Keplerian elements as found in [Curtis,
2005] has been shown, the inverse conversion needs to be shown.
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4.6.2 Keplerian Elements to Cartesian Coordinates

The inverse conversion is based on the method found in [Curtis, 2005; Wakker, 2007a] The orbital
plane is described by a set of (3-1-3) Euler angles, Ω, i, ω, with the rotation matrix

COP,ECI = C3(ω)C1(i)C3(Ω) =

 cωcΩ− sωcisΩ cωsΩ + sωcicΩ sωsi
−sωcΩ− cωcisΩ −sωsΩ + cωcicΩ cωsi

sisΩ −sicΩ ci

 (4.60)

The rotation matrix defines the transformation from the ECI frame to a frame in the orbital
plane, FOP . In this new frame the first axis points towards the periapsis, the third axis lies along
the angular momentum vector, and the second axis completes the dextral triad, which can be
seen in Fig. 3.2 on page 15. The position in this orbital plane frame is

rOP = r

 cos ν
sin ν

0

 (4.61)

The velocity in this frame is

vOP =

 ṙ cos ν − rν̇ sin ν
ṙ sin ν + rν̇ cos ν

0

 =
µ

h

 − sin ν
e+ cos ν

0

 (4.62)

The magnitude of the angular momentum can be computed using

h =
√
µa(1− e2) (4.63)

The position and velocity now need to be transformed from the orbital plane frame to the planet
centered inertial frame. For this, it is necessary to know the inverse of the DCM, which is simply
the transpose.

CECI,OP =

 cωcΩ− sωcisΩ −sωcΩ− cωcisΩ 0
cωsΩ + sωcicΩ −sωsΩ + cωcicΩ 0

sωsi cωsi 0

 (4.64)

The last column of the matrix in Eq. (4.64) is a zero vector because there are no out of plane
positions or velocities in an orbit. The position and velocity in the Cartesian coordinates of the
ECI are

rECI = CECI,OP rOP (4.65a)
vECI = CECI,OPvOP (4.65b)

The USM is based on orbital theory and thus, it is vital to present astrodynamics, the cause of
this orbital motion. Based on orbital theory, it is possible to derive hodographs, which are an
important part of the USM and will be presented in the following chapter.
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Chapter 5

Hodograph Theory

Based on the Astrodynamics presented the in the previous chapter, some special interesting
properties of orbital motion can be derived in the form of hodographs. Hodographs, greek for
path-writing, are also known as velocity diagrams. They were invented by Sir Hamilton, who
also invented the quaternions, a subset of which are the Euler parameters. The various orbits in
position space have been dealt with, and in this section orbits in velocity, acceleration, and jerk
spaces will be shown. The orbits in the velocity space show some very interesting characteristics,
which are essential for the Unified State Model. An excellent derivation of hodographs is shown
in [Altman, 1967a] and [Eades, 1968] and the reader is referred to it, if more information about
this topic is necessary. Only unperturbed orbits are considered in this chapter.

5.1 Velocity Hodograph

The method of [Eades, 1968] for deriving the equations of the velocity hodograph is shown here.
To derive the velocity hodograph, 3 different reference frames are used. They are

FI is an inertial reference frame like the ECI

FP is an inertial frame embedded in the orbital plane, which was used to convert Keplerian
elements to ECI.

FO is a rotating reference frame on the orbital plane

FP can be fixed with respect to FI using the (3-1-3) sequence of Euler angles (Ω, i, ω). FP consists
of the unit vectors êx, êy, and êz. The unit vector êz points along the angular momentum vector,
êx points to the pericenter, and êy completes the reference frame. FO consists of the unit vectors
êr, êν , and êz. The unit vector êr lies along the radial vector of the orbiting body, and êν
completes the reference frame. FO can be found by carrying out an Euler rotation of FP with
the Euler axis êz and the Euler angle ν, which is the true anomaly. These two reference frames
can be seen in Fig. 5.1.

To derive the equations for the velocity hodograph, the equations of motion due to the central
gravity field is right multiplied by the angular momentum, h.

r̈× h = − µ
r2

êr × h = − µ
r2

êr × (r× ṙ) (5.1)

This can be simplified to

r̈× h = µ ˙̂er (5.2)
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Figure 5.1: A 2-dimensional image of the two reference frames FP and FO, used for the derivation of
a hodograph and the hodographic velocities

According to [Wakker, 2007a], after integration, the result is

ṙ× h = µ(êr + e) (5.3)

In Eq. (5.3), e is the eccentricity vector. It is directed towards the periapsis, and so it can be
written in FP as

e = eêx (5.4)

Eq. (5.3) can be left multiplied by h to give

h× (ṙ× h) = h× (µ(êr + eêx)) (5.5)

This calculation is simplified due to the fact that vz = 0 and h = hêz. After carrying carrying
out the computation

ṙ =
µ

h
(êν + eêy) (5.6)

Eq. (5.6) can be written as

ṙ = Cêν +Rêy (5.7)

with C and R being

C =
µ

h
(5.8)

R =
µ

h
e = Ce (5.9)

This means that the orbital velocity is made up of the sum of C, normal to the radial vector
and in the orbital plane, and R, lying 90◦ ahead of periapsis in the orbital plane. The directions
of C and R can be seen in Fig. 5.1. C and R are constants when there are no perturbations.
The velocity along an axis at any time in the orbit now only varies with the true anomaly. The
components of velocity can be derived using simple trigonometry, notably

vx = −C sin ν (5.10a)
vy = C(cos ν + e) = R+ C cos ν (5.10b)
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vz = 0 (5.10c)

vr = Ce sin ν = R sin ν (5.11a)
vν = C(1 + e cos ν) = C +R cos ν (5.11b)
vz = 0 (5.11c)

The information presented here can now be used to define the velocity hodograph. There are two
types of hodographs

Classical Expressed in FP

Polar Expressed in FO

Equation 5.7 equated to the velocity in FP is

ṙ = Cêν +Rêy = vxêx + vyêy (5.12)

Combining similar terms gives

Cêν = vxêx + (vy −R)êy (5.13)

Taking the square of the magnitude of the vectorial equation gives

v2
x + (vy −R)2 = C2 (5.14)

Eq. (5.14) shows that the classical velocity hodograph is a circle with its center at (vx = 0, vy = R)
and a radius C. This classical velocity hodograph for various types of orbits with the same value
of C can be seen in Fig. 5.2. The effect of increasing the eccentricity is that R increases, and
thus the center of the hodograph circle goes up, along the vy axis.

Eq. (5.7) equated to the velocity in FO is

ṙ = Cêν +Rêy = vrêr + vν êν (5.15)

Combining similar terms gives

Rêy = vrêr + (vν − C)êν (5.16)

Taking the square of the magnitude of the vectorial equation gives

v2
r + (vν − C)2 = R2 (5.17)

Eq. (5.17) shows that the polar velocity hodograph is a circle with its center at (vr = 0, vν = R)
and a radius R. The polar velocity hodograph for various types of orbits with the same value
of C can be seen in Figure 5.3. The effect of increasing the eccentricity is that R increases, and
thus the radius of the hodograph circle increases. As a comparison, these orbits in position space
can be seen in Fig. 5.4.

5.2 Acceleration Hodograph

For acceleration, there is no polar hodograph as the acceleration only acts in the radial direction.
Using C, the trajectory of the conic section can be written as

r =
h2

µ(1 + e cos ν)
=

µ

C(C +R cos ν)
(5.18)
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Figure 5.2: Classical velocity hodograph for various types of orbits

The acceleration due to the central gravity field is

r̈ = − µ
r2

êr (5.19)

Plugging in r from Eq. (5.18) into Eq. (5.19) gives

r̈ = −C
2

µ
(C +R cos ν)2êr (5.20)

The acceleration hodograph in Cartesian coordinates can be derived by multiplying with sin ν
and cos ν respectively. The acceleration in the x direction is

ax =
C2

µ
(C +R cos ν)2 cos ν (5.21a)

ay =
C2

µ
(C +R cos ν)2 sin ν (5.21b)

The Cartesian acceleration hodograph can be seen in Fig. 5.5.

5.3 Jerk Hodograph

In theory, it is possible to continue getting the hodographs in higher order spaces. Out of scientific
curiosity, a hodograph in jerk space is made. Jerk is the time derivative of the acceleration and
thus, the third time derivative of the position. The acceleration can also be found by taking the
time derivative of the velocity expressed in FO. The time derivatives of the unit vectors in FO
are

˙̂er = u̇êu (5.22a)



5.3. JERK HODOGRAPH 43

Figure 5.3: Polar velocity hodograph for various types of orbits

˙̂eu = −u̇êr (5.22b)

The acceleration is

a = v̇rêr + vrėr + v̇ν êν + vν ˙̂eν (5.23)

After expanding, the value of acceleration becomes

a = (Ṙ sin ν − Cν̇)êr + (Ċ + Ṙ cos ν)êν (5.24)

Since there are no perturbations, Ṙ and Ċ are 0. Thus, Eq. (5.24) can be simplified to

a = −Cν̇êr (5.25)

By setting Eq. (5.25) to be equal to Eq. (5.20), the value of ν̇ can be found to be

ν̇ =
C

µ
(C +R cos ν)2 (5.26)

The time derivative of the scalar, r, is found to be

ṙ = CR sin ν (5.27)

Taking the derivative of the acceleration gives

ȧ =
2µṙ
r3

êr −
µν̇

r2
êν (5.28)

After filling in the corresponding variables, the jerk is

ȧ = 2
C3R

µ2
(C +R cos ν)3 sin νêr −

C3

µ2
(C +R cos ν)4êθ (5.29)
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Figure 5.4: Various orbits in position space

The jerk hodograph expressed in FO can be seen in Fig. 5.6. There is no polar jerk present for a
circular orbit because the acceleration is constant and only in the radial direction. The jerk can
be expressed in terms of the unit vectors of FP as

ȧ = (jr cos ν − jν sin ν)êx + (jr sin ν + jν cos ν)êy (5.30)

The symbol for jerk can be either ȧ, or j. The jerk hodograph expressed in FP can be seen in
Fig. 5.7.

All the theory necessary for the USM: quaternions, astrodynamics, and the hodograph theory
has now been presented. Therefore, the USM can finally be derived in the next chapter.
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Figure 5.5: The acceleration hodograph of various orbits

Figure 5.6: The polar jerk hodograph of various orbits
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Figure 5.7: The classical jerk hodograph of various orbits



Chapter 6

Unified State Model

All the background theory required for understanding the USM has been presented in the pre-
ceding chapters. In this chapter the Unified State Model (USM) proposed in [Altman, 1972] is
presented and derived. The USM describes an orbit using seven parameters and it does so in
a local frame of reference. Three of the seven parameters are related to the velocity hodograph
and the remaining four are the quaternion elements that represent the orientation of the local
orbital reference frame with respect to the inertial frame. The USM is a very interesting model
that treats orbital mechanics in a similar manner as rigid body mechanics. It was decided to
rigorously derive the USM to make this model more transparent to the author and any other
interested parties for future work with the model. This was a very important factor as the USM is
a very elegant and promising model, on which a very small amount of work has been carried out
so far. Also, this would ensure that any errors in the USM in either [Altman, 1972], or [Chodas,
1981] would be identified and corrected. Apart from the traditional USM, another version of the
USM using MRP has been proposed in this thesis study.

The velocity parameters that will be used are C and R. C is the radius of the velocity hodograph
of the orbit, found in Section 5.1 on page 39, and R is the displacement of the center from the
origin. These values can also be expressed as vectors. C has the magnitude C and lies along the
positive orbit normal. R has the magnitude R and lies 90◦ ahead of the perifocus, on the orbital
frame. These velocity parameters have been derived in Chapter 5 and their orientations can be
seen in Fig. 5.1.

It is assumed for the remainder of the chapter that the orbit is closed, so e < 1. This is because the
derivation starts with Keplerian elements that are only valid for closed orbits. This is, however,
only a limitation of the Keplerian elements and not of the USM.

6.1 Local Orbital Frame

The local orbital frame is called Fe. The three reference vectors of this frame are

• ê1 along the position vector

• ê2 along the direction of flight

• ê3 along the positive orbit normal

A series of 2 successive rotations has to be undergone to get from the inertial reference frame to
Fe. The inertial reference frame, Fg, is rotated about a line lying in the ĝ1-ĝ2 plane, from the
origin to the ascending node of the orbit. This rotation forms a new reference frame, Ff , with
reference vectors, f̂1, f̂2, and f̂3. f̂1 and f̂2 lie in the orbital plane, and f̂3 lies along the positive
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Figure 6.1: The relationship between various reference frames in the USM

orbit normal. The reference frame, Ff is then rotated along f̂3 by λ to give Fe. λ is the angle
between f̂1 and the position vector and can be expressed in Keplerian elements as

λ = Ω + u (6.1)

where u is the argument of latitude, which is the sum of the argument of perigee and the true
anomaly.

u = ω + ν (6.2)

All these rotations can be seen in Fig. 6.1, which gives an overview of the various reference
frames.

The rotation to get from Fg to Ff can be expressed as a rotation with the Euler axis, a1, and the
Euler angle Φ1. It should be noted that for equatorial orbits, Ω is not defined. The derivation of
the USM, and the equations remain the same in that case, but the value of Ω should be set to
0. This Euler axis and angle rotation can be seen in Fig. 6.2. The values of the Euler axis and
angle are

a1 =

 cos Ω
sin Ω

0

 (6.3)

Φ1 = i (6.4)

The rotation matrix of this rotation can be calculated by using Eq. (2.17) found on page 8.

Cf,g =

 cos i+ cos2 Ω(1− cos i) cos Ω sin Ω(1− cos i) − sin Ω sin i
cos Ω sin Ω(1− cos i) cos i+ sin2 Ω(1− cos i) cos Ω sin i

sin Ω sin i − cos Ω sin i cos i

 (6.5)

The Euler parameters for this rotation, (ε1, η1), are found by using Eqs. (3.14) and (3.15).

ε1 =

 cos Ω sin i
2

sin Ω sin i
2

0

 (6.6)
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Figure 6.2: The rotation from Fg (blue) to Ff (red), with an Euler axis (black) and angle (i) rotation

η1 = cos
i

2
(6.7)

The rotation to get from Ff to Fe can be expressed as a rotation with the Euler axis, a2, and
the Euler angle Φ2. In the case of circular orbits, ω is not defined, but the USM equations still
hold with ω being set to 0. If the orbit is circular and equatorial, both Ω and ω are not defined.
In that case, the equations of the USM should be used with both those values being set to 0. In
this case, the true anomaly will be counted from the vernal equinox. The Euler axis and angle
rotation for the transformation from Ff to Fe can be seen in Fig. 6.3. The values of the Euler
axis and angle are

a2 =

 0
0
1

 (6.8)

Φ2 = λ (6.9)

The Euler parameters for this rotation, (ε2, η2), are found by again using Eqs. (3.14) and (3.15).

Ce,f =

 cosλ sinλ 0
− sinλ cosλ 0

0 0 1

 (6.10)

ε2 =

 0
0

sin λ
2

 (6.11)

η2 = cos
λ

2
(6.12)

The goal now is to find the quaternion, (ε3, η3), that represents the rotation from Fg to Fe. For
this purpose, Eqs. (3.26) and (3.27) are used.

η3 = η1η2 − εT1 ε2

= cos
i

2
cos

λ

2
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Figure 6.3: The rotation from Ff (red) to Fe (green), with an Euler axis f̂3 and angle (λ) rotation

= cos
i

2
cos

Ω + u

2
(6.13)

ε3 = η2ε1 + η1ε2 + [ε1×] ε2

=

 cos Ω sin i
2 cos λ2

sin Ω sin i
2 cos λ2

0

+

 0
0

cos i
2 sin i

2

+

 sin Ω sin i
2 sin λ

2

− cos Ω sin i
2 sin λ

2
0


=

 sin i
2

(
cos Ω cos λ2 + sin Ω sin λ

2

)
sin i

2

(
sin Ω cos λ2 − cos Ω sin λ

2

)
cos i

2 sin λ
2

 (6.14)

The value found for ε3 in Eq. (6.14) can be simplified further to get to the form found in [Altman,
1972]. For simplification, the sum of angles trigonometric formulae found in Appendix A have to
be used. The following simplifications can be made

cos Ω cos
λ

2
+ sin Ω sin

λ

2
=
[
cos2 Ω

2
− sin2 Ω

2

] [
cos

Ω
2

cos
u

2
− sin

Ω
2

sin
u

2

]
+
[
2 sin

Ω
2

cos
Ω
2

] [
sin

Ω
2

cos
u

2
+ cos

Ω
2

sin
u

2

]
= cos

Ω
2

cos
u

2
+ sin

Ω
2

sin
u

2

= cos
(

Ω− u
2

)

sin Ω cos
λ

2
− cos Ω sin

λ

2
=
[
2 sin

Ω
2

cos
Ω
2

] [
cos

Ω
2

cos
u

2
− sin

Ω
2

sin
u

2

]
+
[
sin2 Ω

2
− cos2 Ω

2

] [
sin

Ω
2

cos
u

2
+ cos

Ω
2

sin
u

2

]
= sin

Ω
2

cos
u

2
− cos

Ω
2

sin
u

2

= sin
(

Ω− u
2

)
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The simplified form of Eq. 6.14 can now be written as

ε3 =

 sin i
2 cos

(
Ω−u

2

)
sin i

2 sin
(

Ω−u
2

)
cos i

2 sin
(

Ω+u
2

)
 (6.15)

These Euler parameters describe the orientation of the orbital frame with respect to the inertial
frame and are thus given the subscript, O.

[
εO
ηO

]
=


sin i

2 cos
(

Ω−u
2

)
sin i

2 sin
(

Ω−u
2

)
cos i

2 sin
(

Ω+u
2

)
cos i

2 cos
(

Ω+u
2

)
 (6.16)

6.2 Velocity Components

The four quaternion elements of the USM have already been derived in the previous section. It
was previously stated that the velocities, C and R, are also important parameters of the USM.
The vector C is in the direction of the positive orbital normal and can be expressed in terms of
the reference vectors of Fe as

C = Cê3 (6.17)

At any instant in time, the velocity of an orbiting body out of the osculating orbital plane is 0.
Thus, the total velocity of the orbiting body is only described by velocities in the orbital plane.
R is already defined in the orbital plane but C is defined to be out of plane. However, from
the definition of the hodograph, the velocity C contributes to the total velocity in the direction
perpendicular to the radial vector and in the orbital plane. This corresponds to the direction
of ê2. To ensure that the defined hodographic velocity vectors give the correct velocity value,
the following relations between the constituent unit vectors of a right-handed reference frame are
used:

êi = êj × êk (6.18)

where (i, j, k) is a cyclic permutation of (1, 2, 3). So, the contribution of C to the velocity is
C × e1. Therefore, the total velocity is related to the hodographic velocities and the reference
vectors of Fe in the following way

v = R + C× ê1 (6.19)

To find the acceleration, the derivative of both sides has to be taken. During the differentiation,
it should be noted that Fe is not an inertial reference frame.

v̇ = a = Ṙ + Ċ× ê1 + C× ˙̂e1

= Ṙ + Ċ× ê1 + Cê3 × ω × ê1

The following calculations can then be carried out

ê3 × (ω × ê1) = ê3 × (ω3ê2 − ω2ê3)
= ω3ê3 × ê2 − ω2ê3 × ê3

= −ω3ê1 (6.20)

Finally, the equation for the acceleration is

a = Ṙ + Ċ× ê1 − Cω3ê1 (6.21)

where
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a is the acceleration of the orbital body

ω3 is the angular velocity of Fe along e3

The angular velocity, ω3, was stated to be λ̇ in [Altman, 1972]. It was pointed out in [Chodas,
1981] that this was wrong and that the correct value of ω3 should be

ω3 = λ̇+ (cos i− 1) Ω̇ (6.22)

The value shown in [Chodas, 1981] is the correct one. The value derived in [Altman, 1972] occurs
when one considers only the rotation from Ff to Fe and not the complete rotation from Fg to
Ff to Fe. To derive Eq. (6.22), the complete rotation matrix from Ce,g = Ce,fCf,g has to be
calculated. ω can then be calculated from the components of the rotation matrix. This is Eq.
(2.36) found on page 11.

ω =

 ċ2,1c3,1 + ċ2,2c3,2 + ċ2,3c3,3
ċ3,1c1,1 + ċ3,2c1,2 + ċ3,3c1,3
ċ1,1c2,1 + ċ1,2c2,2 + ċ1,3c2,3


ω3 is then the third component, which is

ω3 = ċ1,1c2,1 + ċ1,2c2,2 + ċ1,3c2,3 (6.23)

This calculation was carried out by the author to check and confirm that Eq. (6.22) indeed is
correct. The method outlined above is a very lengthy process. Fortunately, there is a simpler
method to get an expression for ω3. The only angular quantity in the orbital plane, perpendicular
to ê3, is λ. Thus, it would be logical to assume that ω3 is equal to λ̇ and this was the result
found in [Altman, 1972]. However, it is important to note that even though Ω̇ acts along ĝ3,
it will have a projection and therefore an influence along ê3. The projection of one vector onto
another is its product with the cosine of the angle between the two vectors. The angle between
ĝ3 and ê3 is i, thus the angular velocity contribution of Ω̇ to ω3 is Ω̇ cos i.

The velocity components that the USM uses are C, Rf1, and Rf2. Rf1 and Rf2 are the compo-
nents of R along f̂1 and f̂2 respectively. R is defined to lie in the orbital plane and so Rf3 = 0.The
velocity of the orbiting body can now be written in Fe. It is clear from Eq. (6.19) that C only
contributes to the velocity component along ê2. Thus, only R contributes to ve1. Using simple
trigonometry, the velocity expressed in Fe is

ve1 = Rf1 cosλ+Rf2 sinλ (6.24)

ve2 = C −Rf1 sinλ+Rf2 cosλ (6.25)

ve3 = 0 (6.26)

ve3 is 0 because the orbiting body has no out of plane velocity. The velocity can be expressed in
canonical form as[

ve1
ve2

]
=
[

0
C

]
+
[

cosλ sinλ
− sinλ cosλ

] [
Rf1

Rf2

]
(6.27)

Eq. (6.27) can easily be inverted to solve for Rf1 and Rf2.[
Rf1

Rf2

]
=
[

cosλ
sinλ

]
ve1 +

[
− sinλ
cosλ

]
ve2 +

[
sinλ
− cosλ

]
C (6.28)

As can be seen in Eqs. (6.27) and (6.28), it is necessary to be able to calculate the value of sinλ
and cosλ. This can be extracted from the quaternion. A few of the quaternion elements in Eq.
(6.16) on page 51 can be rewritten as

εO3 = cos
i

2
sin

λ

2
(6.29)
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ηO = cos
i

2
cos

λ

2
(6.30)

This can be rearranged to give

sin
λ

2
=

εO3

cos i
2

cos
λ

2
=

ηO

cos i
2

Some basic trigonometric equations and the half-angle formulae found in Appendix A can be
used to get the following intermediate results

tan
λ

2
=

sin λ
2

cos λ2
=

εO3

cos i
2

cos i
2

ηO
=
εO3

ηO

tanλ =
2 tan λ

2

1− tan2 λ
2

=
2 εO3
ηO

1−
(
εO3
ηO

)2 =
2εO3ηO

(η2
O − ε2O4)

cos2 λ

2
=

1
2

(1 + cosλ) =

(
ηO

cos i
2

)2

sin2 λ

2
=

1
2

(1− cosλ) =

(
εO3

cos i
2

)2

tan2 λ

2
=

sin2 λ
2

cos2 λ
2

=
(
εO3

ηO

)2

=
1− cosλ
1 + cosλ

Solving for cosλ gives

cosλ =
η2
O − ε2O3

ε2O3 + η2
O

(6.31)

sinλ = tanλ cosλ =
2εO3ηO

(η2
O − ε2O4)

η2
O − ε2O3

ε2O3 + η2
O

sinλ =
2εO3ηO
ε2O3 + η2

O

(6.32)

The sine and cosine can together be expressed as[
sinλ
cosλ

]
=

1
ε2O3 + η2

O

[
2εO3ηO
η2
O − ε2O3

]
(6.33)

6.3 Kinematics and Dynamics

To be able to utilize the USM, the kinematics and dynamics have to be derived as well. The
dynamic equations are the time derivative of the USM parameters and can be split into two parts.
The first part of the dynamics equation deals with the time rate of change of the three velocity
parameters, C, Rf1, and Rf2. The second part of the dynamics equation deals with the time
rate of change of the Euler parameters.

It is useful to first find the vector from the center of the attracting body to the orbiting body.
This is the radius vector r, and according to the definition of Fe, it lies in the direction of ê1 .

r = rê1 (6.34)
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In Eq. (6.34), r is the magnitude of the radius vector. This parameter can also be derived from
the given information. The angular momentum, h, lies along ê3, and the orbiting body has no
velocity component along ê3. Using this information, the following derivation can be carried out
in Fe

hê3 = rê1 × (ve1ê1 + ve2ê2)
= rve2ê3 ⇐⇒

r = h/ve2 = µ/(Cve2)

Thus, r is

r = µ/(Cve2)ê1 (6.35)

The acceleration that the orbiting body experiences can be split up into the central gravitational
attraction, ag, and the perturbing acceleration, ae. This perturbing acceleration is expressed in
Fe. The acceleration due to uniform gravity is

ag = −µ/r3r = −µ/r2ê1 = −C2v2
e2/µê1 (6.36)

and ae is defined as

ae = ae1ê1 + ae2ê2 + ae3ê3 (6.37)

The total acceleration is

a =
(
ae1 − C2v2

e2/µ
)
ê1 + ae2ê2 + ae3ê3 (6.38)

For the kinematics and dynamics, expressions for the time derivative of the quaternion and the
hodograph velocities, respectively, have to be found. The quaternion time derivative is simply
the kinematic relation found in Eq. (3.34) with the only unknown quantities being the angular
velocities expressed in Fe. It is important to note that the velocity in the inertial frame Fg always
has components along ê1 and ê2. However, the frame Fe is a rotating frame. Thus, there will be
apparent forces that have to be taken into account when taking the time derivatives.

We begin the derivation by taking the time derivative of the velocity in Fe. Since ve3 = 0, the
velocity of the orbiting body is

v = ve1ê1 + ve2ê2 + 0ê3 (6.39)

The expression for the velocity found in Eq. (6.39) holds for every point in the orbit of the
satellite. Because the frame is non-inertial, the direction of ê1 and ê2 in the inertial reference
frame changes along with the value of the scalars ve1 and ve2. Therefore, the time derivative of
Eq. (6.39) should also take into account the time derivate of the unit vectors.

v̇ = (v̇e1 − ve2ω3) ê1 + (v̇e2 + ve1ω3) ê2 + (v̇e3 + ve2ω1 − ve1ω2) ê3 (6.40)

Knowing that the time derivative of the velocity in Eq. (6.40) has to equal the total acceleration
in Eq. (6.38), the scalar velocity time derivative components can be found to be

v̇e1 = ae1 − (C2v2
e2/µ) + ve2ω3 (6.41)

v̇e2 = ae2 − ve1ω3 (6.42)
v̇e3 = ae3 − ve2ω1 + ve1ω2 (6.43)

Similarly, the position vector from Eq. (6.35) can also be differentiated with respect to time.

ṙ =− µ
(
Ċ/
(
C2ve2

)
+ v̇e2/

(
Cv2

e2

))
ê1

+ µ
(
ω3/ (Cve2)

)
ê2 − µ

(
ω2/ (Cve2)

)
ê3

(6.44)
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The derivative of the position is the velocity and by using the fact that Eq. (6.44) is equal to Eq.
(6.39), the values of certain unknown parameters can be found.

ω2 = 0 (6.45)

ω3 = Cv2
e2/µ (6.46)

Ċ = −Cae2/(ve2) (6.47)

To have the same notation as [Altman, 1972], a new parameter p is defined:

p = C/ve2 (6.48)

This results in Ċ being

Ċ = −pae2 (6.49)

For ω1, the time derivative of the angular momentum, also known as the torque, is used. ω1 is
only found in the time derivative of the velocity, which occurs in the torque, but not in the angular
momentum itself. It is known that the angular momentum acts along ê3 and the magnitude can
be found from C.

h = (µ/C)ê3 (6.50)

One way to find the torque, ḣ, is by differentiating Eq. (6.50) with respect to time. The unit
vector ê3 remains fixed for unperturbed orbits because the orbital plane does not change its
orientation. However, the general case with perturbations should be considered here and thus
the time derivative of ê3 also has to be taken. The resulting expression for the torque is

ḣ = 0ê1 −
(
µω1/C

)
ê2 +

(
µae2/(Cve2)

)
ê3 (6.51)

Another way to express the torque is to differentiate the definition of the angular momentum:

ḣ =
d
dt

(r× v)

= 0ê1 −
(
µae3/(Cve2)

)
ê2 +

(
µae2/(Cve2)

)
ê3 (6.52)

The two different expressions found in Eq. (6.51) and Eq. (6.52) both represent the torque and
thus, they should be equivalent. Equating Eq. (6.51) and Eq. (6.52) gives then the value for ω1:

ω1 = ae3/ve2 (6.53)

All the angular velocities of Fe are now known, and thus the time derivative of the Euler param-
eters can be shown using Eq. (3.34) on page 20 to be

ε̇O1

ε̇O2

ε̇O3

η̇O

 =
1
2


0 ω3 0 ω1

−ω3 0 ω1 0
0 −ω1 0 ω3

−ω1 0 −ω3 0



εO1

εO2

εO3

ηO

 (6.54)

However, the dynamics of the two remaining USM elements has to still be derived, i.e., Ṙf1 and
Ṙf2. First, the time derivative of Eq. (6.28) has to be taken.

Ṙf1 = v̇e1 cosλ+
(
Ċ − v̇e2

)
sinλ− λ̇Rf2 (6.55)

Ṙf2 = v̇e1 sinλ+
(
v̇e2 − Ċ

)
cosλ+ λ̇Rf1 (6.56)
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In Eq. (6.55) and Eq. (6.56), all parameters except for λ̇ are known. The cosine and sine of λ are
known and are based on the quaternion elements. The time derivative of the quaternion is known
from Eq. (6.54) and so, the time derivatives of the cosine and sine of λ can be computed. It is only
necessary to compute the time derivative in terms of USM elements of one of the trigonometric
functions. For example, if the time derivative of sinλ is computed, λ̇ can be computed using the
reversed chain rule in the following way

λ̇ =
1

cosλ
d
dt

(sinλ) (6.57)

In Eq. (6.57), the time derivative of sinλ can be computed, using the fact that sinλ depends on
on εO3 and η, in the following manner:

d
dt

(sinλ) =
∂ sinλ
∂εO3

ε̇O3 +
∂ sinλ
∂ηO

η̇O (6.58)

The partials of sinλ with respect to εO3 and ηO can also be found in [Chodas, 1981], where they
are used to find the Jacobians for the EKF. According to [Chodas, 1981], they are

∂ sinλ
∂εO3

= 2ηO
(
η2
O − ε2O3

)
/
(
ε2O3 + η2

O

)2
(6.59a)

∂ sinλ
∂ηO

= −2εO3

(
η2
O − ε2O3

)
/
(
ε2O3 + η2

O

)2
(6.59b)

The time derivates of the two required quaternion elements are

ε̇O3 =
1
2

(−ω1εO2 + ω3ηO) = −1
2
ae3εO2

ve2
+

1
2
Cv2

e2ηO
µ

(6.60a)

η̇O =
1
2

(−ω1εO1 − ω3εO3) = −1
2
ae3εO1

ve2
− 1

2
Cv2

e2εO3

µ
(6.60b)

Filling in the partials from Eq. (6.59), the time derivatives of the individual quaternion elements
found in Eq. (6.60), and cosλ into Eq. (6.57) followed by some algebraic manipulation leads to

λ̇ =
εO1εO3 − εO2ηO

ε2O3 + η2
O

ae3
ve2

+ ω3 (6.61)

For ease of notation and to be consistent with the equations found in [Chodas, 1981], a new
parameter is introduced.

γ =
εO1εO3 − εO2ηO

ε2O3 + η2
O

(6.62)

Finally, after substitution of Eq. (6.61) and Eq. (6.62) into Eq. (6.55) and Eq. (6.56), the time
derivatives of Rf1 and Rf2 can be written as

Ṙf1 = ae1 cosλ− ae2(1 + p) sinλ− ae3 (γRf2/ve2) (6.63)

Ṙf2 = ae1 sinλ+ ae2 (1 + p) cosλ+ ae3 (γRf1/ve2) (6.64)

The dynamics of the velocity parameters of the USM can be expressed in a canonical form as

d

dt

 C
Rf1

Rf2

 =

 0 −p 0
cosλ −(1 + p) sinλ −γRf2/ve2
sinλ (1 + p) cosλ γRf1/ve2

 ae1
ae2
ae3

 (6.65)

The original model found in [Altman, 1972], as mentioned previously, wrongly assumes that
λ̇ = ω3. This erroneous assumption removes the dependency of the hodograph parameters on
the out-of-plane perturbations. This error was pointed out in [Chodas, 1981] and the correct
equations were also shown in [Raol and Sinha, 1985]. The dependance of λ̇ on ae3 follows from
the fact that λ̇ depends on ε̇O3 and η̇O, which both depend on ω1, which ultimately depends on
ae3. It was also seen in Eq. (6.22) that λ̇ depends on Ω̇. A changing Ω means that the orientation
of the orbital plane changes. It can be seen in any book on astrodynamics that an out-of-plane
force is required to change the out-of-plane Keplerian elements. Thus, it can be deduced that λ̇
has to depend on ae3, which is the only out-of-plane acceleration.
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6.4 Reflections on the Unified State Model

In this chapter, the Unified State Model has been derived. The USM has some attractive prop-
erties that make it suitable for numerical integration. The fact that the Euler parameters have a
unit norm makes for a convenient way to check for numerical errors during integration. During
numerical integration, it is suggested to normalize the quaternion according to the method found
in Appendix C.4. Three of the seven state elements vary only in the presence of perturbations,
which is similar to Encke’s method of integration. This also means that during any orbit, only 4
of the 7 state elements vary rapidly. Also, the 4 rapidly varying elements are bounded between -1
and 1. It is also possible to scale the velocity parameters by dividing by C0, which is the initial
value of C. This will ensure that these parameters also stay in the unit region. It is realistic for
most simulations that during the orbit C, Rf1, and Rf2 do not increase by an order of magnitude.
In case the attitude of the spacecraft is also simulated, the usage of Euler parameters for all 6
degrees of freedom may decrease the computation load.

Even though the Euler parameters are free from singularities, the USM is unfortunately not.
There are 2 types of orbits where the USM breaks down. This can be seen in the mathematics
whenever the denominator of a fraction is 0. There are 3 denominators, which are:

Case 1 ε2O3 + η2
O from Eq. (6.33)

Case 2 h from the definition of C

Case 3 ve2, present in many equations

Case 2, when h = 0, is a more generalized version of the case, ve2 = 0. They both signify
that the motion is rectilinear. This is not the case for normal trajectories in celestial mechanics.
This might be the case for hyperbolic orbits when the true anomaly limit is reached. At the
true anomaly limit the orbit degenerates into a rectilinear orbit. In the absence of perturbing
accelerations, this would cause both ω1 and ω2 to become 0. Thus, the Euler parameters and the
velocity parameters of the USM would remain constant and the state would be undeterminable,
but without a singularity. This is logical because at this point the spacecraft has escaped from
the central gravity field and the underlying assumption of the USM is motion in a central gravity
field, albeit perturbed. This will not be a problem for orbital work because, using the notion of
sphere of influence, the orbit should be out of the sphere of influence of the planet, and in orbit
around the Sun. Escapes from the Solar System are not cases that occur very often for artificial
spacecraft. The rectilinear limit might also cause a problem for re-entry vehicles. According to
[Altman, 1972], the USM should be able to handle these as well. This will also be investigated
further in the thesis study in Chapter 9.

The other singularity occurs when

ε2O3 + η2
O = 0 (6.66)

Using the condition found in Eq. 6.66 and the condition of unit norm for Euler parameters results
in

ε2O1 + ε2O2 = 1 (6.67)

It can be seen that this relation can be inserted directly in Eq. (7.54) for the inclination on page
69. This results in

i = arccos (−1) = 180◦ (6.68)

Another way of deducing this is to use the definition of the Euler parameters in terms of the
Keplerian elements.

ε2O3 + η2
O = cos2

(
i

2

)
= 0 (6.69)
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The half angle identity from Eq. A.8 can be used to find that i is 180◦. The reason for the
singularity can be found in the rotation matrix from Fg to Ff , Cf,g, found in Eq. 6.5 on page
48:

Cf,g =

 cos i+ cos2 Ω(1− cos i) cos Ω sin Ω(1− cos i) − sin Ω sin i
cos Ω sin Ω(1− cos i) cos i+ sin2 Ω(1− cos i) cos Ω sin i

sin Ω sin i − cos i sin i cos i


When the case of i = 180◦ is filled in, the resulting Cf,g is

Cf,g =

 2 cos2 Ω− 1 2 cos Ω sin Ω 0
2 cos Ω sin Ω 2 sin2 Ω− 1 0

0 0 −1

 (6.70)

As can be seen in Eq. 6.70, different values of Ω result in different orientations of Ff . This is
obviously not the case in reality and thus, the singularity. According to [Chodas, 1981], this
singularity can be removed by defining an alternate Ff , which is based on a rotation about the
descending node. This translates mathematically into a rotation from Fg to Ff using the Euler
axis and angle

a1 =

 cos (Ω + π)
sin (Ω + π)

0

 = −

 cos Ω
sin Ω

0

 (6.71a)

Φ1 = i (6.71b)

The singularity of the pure-retrograde orbit is also seen in Eq. (7.39) on page 65, which is
the method used in [Altman, 1972] and [Chodas, 1981] to extract the Euler parameters from
Cartesian coordinates. In Eq. (7.39), all the Euler parameters have h(h + hz) in their denomi-
nators. This means that there is a singularity if h = 0, corresponding to a rectilinear orbit, or
if h + hz = 0. When h + hz = 0, hz = −h, which means that the angular momentum is in the
direction of the −z-axis in Fg, corresponding to a pure-retrograde orbit.

This concludes the derivation of the USM, which is the main focus of this report. It has been
shown that there was indeed an erroneous assumption made in [Altman, 1972], which was
successfully corrected in [Chodas, 1981]. In the aforementioned works, only the final equations
of USM were given. In this chapter, each parameter was successfully defined and derived. Thus,
any reader with a limited knowledge of rotational dynamics and celestial mechanics can fully
comprehend the intricacies of this model. Hopefully, the model has been demystified, and one of
the goals of this thesis study satisfied.

6.5 Unified State Model using Modified Rodrigues Param-
eters

The USM has 7 elements, of which 4 are the elements of a quaternion. Since the quaternion
is used to describe the orientation of the orbital frame, any other set of attitude parameters
should also suffice. According to [Schaub and Junkins, 2002], any attitude parameter set that
has fewer than 4 elements will have a singularity. MRP, however, have the benefit of having
shadow parameters that allow bypassing this singularity. Thus, a method is proposed here of
using MRP to reduce the number of elements of the USM theory to 6. Since the classical USM
has 7 elements, it will be referred to as USM7 from here on, and the USM using MRP will be
referred to as USM6. The properties of MRP and their relationship with quaternions can be
found in Section 3.3.

The derivation is the same as in the case of quaternions. Since MRP are a direct mapping of the
quaternion, the equations of USM derived with quaternions will simply be converted to MRP
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and SMRP. The conversion from quaternion to MRP and SMRP and vice versa is done using
Eq. (3.37) and Eq. (3.42).

It is now possible to convert the quaternion of the Orbital frame to an MRP and SMRP vector.
In terms of MRP it would be

σO =
(

1 + cos
(
i

2

)
cos
(

Ω + u

2

))−1
 sin

(
i
2

)
cos
(

Ω−u
2

)
sin
(
i
2

)
sin
(

Ω−u
2

)
cos
(
i
2

)
sin
(

Ω+u
2

)
 (6.72)

The SMRP would then be

σSO =
(

cos
(
i

2

)
cos
(

Ω + u

2

)
− 1
)−1

 sin
(
i
2

)
cos
(

Ω−u
2

)
sin
(
i
2

)
sin
(

Ω−u
2

)
cos
(
i
2

)
sin
(

Ω+u
2

)
 (6.73)

The rest of the equations will be the same, because they represent the dynamics in the orbital
frame, which has the same orientation expressed in quaternions and MRP. The only differences
will be the components that are computed from the quaternions. These are: λ, γ, and the
kinematic differential equation. For the sine and cosine of λ, the quaternion elements in Eq.
(6.33) should be substituted with the MRP elements found in Eq. (3.40). For the kinematic
differential equation, Eq. (3.48) should be used. However, all the elements corresponding to ω2

can be removed because ω2 is known to be 0 for the USM. In terms of MRP, these equations
become[

sinλ
cosλ

]
=

1
4σ2

3 + (1− σ2)2

[
4σ3

(
1− σ2

)(
1− σ2

)2 − 4σ2
3

]
(6.74)

σ̇ =
1
4

 (1− σ2 + 2σ2
1

)
ω1 + 2(σ1σ3 + σ2)ω3

2(σ2σ1 + σ3)ω1 + 2(σ2σ3 − σ1)ω3

2(σ3σ1 − σ2)ω1 +
(
1− σ2 + 2σ2

3

)
ω3

 (6.75)

The kinematic differential equation can be written in a more compact form as found in Eq. (3.49)

The parameter γ is required for the dynamics of Rf1 and Rf2. In terms of MRP, the time
derivatives of Rf1 and Rf2 do not have the same simple form as found for the quaternion case.
Thus, it is not possible to simply substitute the quaternion elements with the MRP elements to
find γ. The time derivatives of Rf1 and Rf2 are derived from Eq. (6.55) and Eq. (6.56). The
terms Ċ, v̇e1, and v̇e2 can be calculated from Eq. (6.49), Eq. (6.41), and Eq. (6.42), respectively.
It is, however, still required to calculate the time derivative of λ. The procedure of computing λ̇
is the same as for USM7 and can be carried out in the following way:

λ̇ =
1

cosλ

(
∂ sinλ
∂σ1

σ̇1 +
∂ sinλ
∂σ2

σ̇2 +
∂ sinλ
∂σ3

σ̇3

)
(6.76)

Because the magnitude of the MRP or SMRP vector is required to find sinλ and cosλ, the
partials depend on all three elements of the MRP/SMRP vector. The partials required in Eq.
(6.76) can be found by differentiation of Eq. (6.74).

∂ sinλ
∂σ1

= − 8σ1σ3

4σ2
3 + (1− σ2)2 +

16σ1σ3

(
1− σ2

)2(
4σ2

3 + (1− σ2)2
)2 (6.77a)

∂ sinλ
∂σ2

= − 8σ2σ3

4σ2
3 + (1− σ2)2 +

16σ2σ3

(
1− σ2

)2(
4σ2

3 + (1− σ2)2
)2 (6.77b)

∂ sinλ
∂σ3

=
4
(
1− σ2

)
4σ2

3 + (1− σ2)2 −
8σ2

3

4σ2
3 + (1− σ2)2 −

4σ3

(
1− σ2

)2 (8σ3 − 4
(
1− σ2

)
σ3

)(
4σ2

3 + (1− σ2)2
)2

(6.77c)
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The resulting equation for λ̇ is very long and is therefore not presented. The equations presented
above for the MRP also hold for the SMRP, because both the time derivative equations and the
equations for the sine and cosine of λ are the same in terms of MRP and SMRP.

It is not enough to simply have the equations for the USM. The main goal of an engineer is to
be able to implement the model. The additional information required to fully use the USM like
the transformations to and from Cartesian coordinates, etc. are presented in the next chapter.



Chapter 7

Guide for Applying the Unified
State Model

In Chapter 6, the traditional USM, USM7, and the alternative using MRP, USM6 have been
derived. However, more information about the model is required to be able to fully utilize
it. The initial position and velocity of a satellite is most often expressed in classical Keplerian
elements or in Cartesian coordinates. Thus, the conversions between the USM and these other
models need to be known. The conversion between Keplerian elements and Cartesian coordinates
was presented in Section 4.6 and therefore, will not be presented here. In this chapter, only the
transformations to and from USM7 will be shown. For the conversions to USM6, it is simplest
to use the conversions to USM7 and then to extract the MRP vector from the quaternion. To
find the inverse relations, it also best to convert the MRP vector to a quaternion and then use
the USM7 conversions.

7.1 Conversion to the USM7 Elements

The conversion from both the Keplerian elements and the Cartesian coordinates to the USM
elements is shown here.

7.1.1 Conversion from Classic Keplerian Elements to USM7 Elements

The classic Keplerian elements that are used here are (Ω,i,ω,ν,a,e). The first step is to extract
the velocity parameters C and R. C can be found by using Eqs. (4.63) and (5.8).

C =
µ

h
=
√

µ

a (1− e2)
(7.1)

R can be found by using Eqs. (7.1) and (5.9).

R = eC = e

√
µ

a (1− e2)
(7.2)

The quaternion elements can be calculated using Eq. (6.16), which is repeated here for the sake
of completeness.

[
εO
ηO

]
=


sin i

2 cos
(

Ω−u
2

)
sin i

2 sin
(

Ω−u
2

)
cos i

2 sin
(

Ω+u
2

)
cos i

2 cos
(

Ω+u
2

)
 (7.3)
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R has to be expressed in the Ff to give Rf1 and Rf2. The vector R lies in the orbital plane and
is 90◦ ahead of the perifocus, this means that in Fe, R can be written as

Re|ν=90◦ =
[
R, 0, 0

]T (7.4)

At the location where R is expressed, ν = 90◦ and λ is

λ|ν=90◦ = Ω + ω + 90◦ (7.5)

The rotation matrix Cf,e is the inverse of Ce,f and is

Cf,e|ν=90◦ =

 cosλ − sinλ 0
sinλ cosλ 0

0 0 1

 (7.6)

R can be converted to Ff using the definitions of λ and u from Eqs. (6.1) and (6.2). Rf1

Rf2

0

 =

 cos ((Ω + ω) + 90◦) − sin ((Ω + ω) + 90◦) 0
sin ((Ω + ω) + 90◦) cos ((Ω + ω) + 90◦) 0

0 0 1

∣∣∣∣∣∣
ν=90◦

×

 R
0
0

∣∣∣∣∣∣
ν=90◦

=

 − sin (Ω + ω) − cos (Ω + ω) 0
cos (Ω + ω) − sin (Ω + ω) 0

0 0 1

∣∣∣∣∣∣
ν=90◦

×

 R
0
0

∣∣∣∣∣∣
ν=90◦

=

 −R sin (Ω + ω)
R cos (Ω + ω)

0


(7.7)

This concludes the conversion from classic Keplerian elements to the USM elements.

7.1.2 Conversion from Cartesian Coordinates to the USM7 Elements

There is a method for conversion from Cartesian coordinates to the USM7 provided in [Altman,
1972] and [Chodas, 1981], which are both similar. Another method that is presented here is
proposed by the author.

Original Method

The original method is the conversion provided by [Chodas, 1981]. The conversion found in [Alt-
man, 1972] is also correct, but the one from [Chodas, 1981] is easier to follow. The state in
Cartesian coordinates consists of the position given in (x,y,z), and the velocity (vx,vy,vz). The
position and velocity are written as vectors r and v, respectively. The first step is to calculate
the angular momentum, which is required for computing C.

h =

 hx
hy
hz

 =

 x
y
z

×
 vx
vy
vz

 =

 yvz − zvy
zvx − xvz
xvy − yvx

 (7.8)

C can be found from

C =
µ

h
(7.9)

where h is the magnitude of the angular momentum found in Eq. (7.8).

The velocity can be split up into ve1 and ve2 in the following way

ve1 =
rTv
r2

r =
xvx + yvy + zvz
x2 + y2 + z2

 x
y
z

 (7.10a)
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ve2 = v − ve1 (7.10b)

In Eq. (7.10), ve1 is simply the projection of v along the radial vector r. In Eq. (7.10), ve1 and
ve2 are still expressed Fg. They are simply computed in vectorial form to be able to extract the
scalar magnitudes ve1 and ve2. The angle λ is not explicitly required, but its cosine and sine are.
They can be found with the following expressions

cosλ =
1
r

(
x− hx

h+ hz
z

)
(7.11a)

sinλ =
1
r

(
y − hy

h+ hz
z

)
(7.11b)

The method to find the sine and cosine of λ is now outlined.

It is shown in [Chodas, 1981] that the axes of Fe are

ê1 =
1
r

 x
y
z

 (7.12)

ê3 =
1
h

 hx
hy
hz

 (7.13)

ê2 = ê3 × ê1 = − 1
rh

 zhy − yhz
xhz − zhx
yhx − xhy

 (7.14)

The equations above follow from the elementary facts that ê1 lies along the radial vector and ê3

lies along the angular momentum vector.

According to [Chodas, 1981], the axes of Ff are

f̂1 =
1
h

 hz + h2
y

h+hz

− hxhy

h+hz

−hx

 (7.15)

f̂2 =
1
h


−hxhy

h+hz

hz + h2
x

h+hz

−hy

 (7.16)

λ is the angle between f̂2 and ê2 and so the cosine and sine of λ are

cosλ = f̂T2 ê2 =
1
r

(
x− hx

h+ hz
z

)
(7.17)

sinλ = −f̂T1 ê2 =
1
r

(
y − hy

h+ hz
z

)
(7.18)

All the steps presented in [Chodas, 1981] are logical, but there is no explanation available on
how to find the axes of Ff . This will be presented here in the spirit of this study, which aims to
explain every single detail of the USM.

The method of deriving these axes is to transform the axes of Fg to Ff by using the DCM Cf,g

from Eq. (6.5) found on page 48.

Cf,g =

 cos i+ cos2 Ω(1− cos i) cos Ω sin Ω(1− cos i) − sin Ω sin i
cos Ω sin Ω(1− cos i) cos i+ sin2 Ω(1− cos i) cos Ω sin i

sin Ω sin i − cos Ω sin i cos i


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It can be seen that to calculate the elements of the rotation matrix, the trigonometric functions
of Ω and i are required. The cosine and sine of Ω can be found from Eq. (4.53) on page 36.

cos Ω = − hy√
h2
x + h2

y

(7.19)

sin Ω =
hx√
h2
x + h2

y

(7.20)

The cosine of i is known from Eq. (4.51) on page 36, which yields

i = arccos
(
hz
h

)
(7.21)

The inclination is the angle between the angular momentum vector and the z-axis. The sine of
this angle can then be found by using the components of the angular momentum lying in the x-y
plane. This trigonometric values is

sin i =

√
h2
x + h2

y

h
(7.22)

With this information, each element of the DCM Cf,g can be calculated using the following
simplification

h− hz
h2
x + h2

y

=
h− hz
h2 − h2

z

=
h− hz

(h+ hz) (h− hz)
=

1
h+ hz

The elements of Cf,g are

c1,1 = cos i+ cos2 Ω (1− cos i) =
1
h

(
hz +

h2
y (h− hz)
h2
x + h2

y

)

=
1
h

(
hz +

h2
y

h+ hz

) (7.23)

c1,2 = cos Ω sin Ω(1− cos i) = − 1
h

(
hxhy (h− hz)
h2
x + h2

y

)
= − hxhy

h (h+ hz)
(7.24)

c1,3 = − sin Ω sin i = −hx
h

(7.25)

(7.26)

c2,1 = cos Ω sin Ω(1− cos i) = c1,2 = − 1
h

(
hxhy (h− hz)
h2
x + h2

y

)
= − hxhy

h (h+ hz)

(7.27)

c2,2 = cos i+ sin2 Ω(1− cos i) =
1
h

(
hz +

h2
x (h− hz)
h2
x + h2

y

)
=

1
h

(
hz +

h2
x

h+ hz

) (7.28)

c2,3 = cos Ω sin i = −hy
h

(7.29)

c3,1 = sin Ω sin i = −c1,3 =
hx
h

(7.30)
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c3,2 = − cos Ω sin i = −c2,3 =
hy
h

(7.31)

c3,3 = cos i =
hz
h

(7.32)

Finally, the unit vectors of Ff can be calculated using the definition of the DCM from Eq. (2.2)
on page 6

f̂1 = c1,1

 1
0
0

+ c1,2

 0
1
0

+ c1,3

 0
0
1

 =
1
h

 hz + h2
y

h+hz

− hxhy

h+hz

−hx

 (7.33)

f̂2 = c2,1

 1
0
0

+ c2,2

 0
1
0

+ c2,3

 0
0
1

 =
1
h


−hxhy

h+hz

hz + h2
x

h+hz

−hy

 (7.34)

f̂3 = c3,1

 1
0
0

+ c3,2

 0
1
0

+ c3,3

 0
0
1

 =
1
h

 hx
hy
hz

 (7.35)

The 3 unit vectors making up Ff have now been derived successfully. The first two vectors f̂1
and f̂2 equal to the ones found in [Chodas, 1981]. The third vector f̂3 is equal to ê3 and lies
in the direction of the angular momentum as predicted. This is a good check to show that the
method and the equations used above have been correct.

If required, λ can be calculated using the atan2 command found in most computing languages.
It would be possible to use the atan function, but atan2 makes sure that there are no quadrant
ambiguities.

λ = atan2 (sinλ, cosλ) (7.36)

The velocities Rf1 and Rf2 can be found using

Rf1 = ve1 cosλ− (ve2 − C) sinλ (7.37a)
Rf2 = ve1 sinλ+ (ve2 − C) cosλ (7.37b)

To compute the quaternion elements, the half angle trigonometric functions of λ are required.
These can be computed from Eq. (7.11) by using the trigonometric identities found in Appendix
A. More specifically, Eqs. (A.8) and (A.9) are used.

sin
λ

2
=

√
1− cosλ

2
(7.38a)

cos
λ

2
=

√
1 + cosλ

2
(7.38b)

The quaternion elements are

εO1 =
1

2
√
h (h+ hz)

(
hx
√

2 sin
λ

2
− hy

√
2 cos

λ

2

)
(7.39a)

εO2 =
1

2
√
h (h+ hz)

(
hx
√

2 cos
λ

2
+ hy

√
2 sin

λ

2

)
(7.39b)

εO3 =
h+ hz

2
√
h (h+ hz)

(√
2 sin

λ

2

)
(7.39c)

ηO =
h+ hz

2
√
h (h+ hz)

(√
2 cos

λ

2

)
(7.39d)
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As can in be seen in Eq. (7.39), the half angle versions of λ are always found in a product with√
2. There are also sign ambiguities because of taking square roots in Eq. (7.39), which can be

resolved as in [Chodas, 1981]. When cosλ ≥ 0

√
2 cos

λ

2
=
√

1 + cosλ (7.40a)

√
2 sin

λ

2
=

sinλ√
2 cos λ2

(7.40b)

When cosλ < 0
√

2 cos
λ

2
=

sinλ√
2 sin λ

2

(7.41a)

√
2 sin

λ

2
= sign (sinλ)

√
1− cosλ (7.41b)

which saves the computation of a square root. It should be noted that the quaternion computed
in Eq. (7.39) may not always have the same sign as the quaternion found by propagating the
state in USM. This because the orientation expressed by (−εO,-ηO) is the same as the orienta-
tion expressed by (εO,ηO). Thus, to have a smooth ephemeris when converting from Cartesian
coordinates, it is necessary to have a logic that ensures that all the quaternion elements switch
signs when they approach 0.

Alternative Method

An alternative method proposed by the author is based on first creating the DCM from Fg to
Fe and subsequently extracting the quaternion. The three unit vectors that make Fg are

ĝ1 =

 1
0
0

 ĝ2 =

 0
1
0

 ĝ3 =

 0
0
1

 (7.42)

The three unit vectors that make Fe can be found from Eqs (7.12 - 7.14).

ê1 =
1
r

 x
y
z

 ê2 = − 1
rh

 zhy − yhz
xhz − zhx
yhx − xhy

 ê3 =
1
h

 hx
hy
hz


From the definition of a DCM found in Section 2.1.1, the elements of Ce,g, ci,j , can be found in
the following manner

ê1 = c1,1ĝ1 + c1,2ĝ2 + c1,3ĝ3 (7.43a)
ê2 = c2,1ĝ1 + c2,2ĝ2 + c2,3ĝ3 (7.43b)
ê3 = c3,1ĝ1 + c3,2ĝ2 + c3,3ĝ3 (7.43c)

Solving for all the elements of the rotation matrix results in

Ce,g =
1
rh

 xh yh zh
zhy − yhz xhz − zhx yhx − xhy

rhx rhy rhz

 (7.44)

The quaternion can then be extracted using Eqs. (3.22) and (3.23) on page 19. These equations
are presented again, but with the elements of the DCM filled in. The squares of the quaternion
elements are

ε2O1 =
1

4rh
(1 + xh− xhz + zhx − rhz) (7.45a)

ε2O2 =
1

4rh
(1− xh+ xhz − zhx − rhz) (7.45b)
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ε2O3 =
1

4rh
(1− xh− xhz + zhx + rhz) (7.45c)

η2
O =

1
4rh

(1 + xh+ xhz − zhx + rhz) (7.45d)

(7.45e)

After taking the square root of the largest square, the rest of the quaternion elements can be
found from the following relations

εO1εO2 =
1

4rh
(yh+ zhx − yhz) (7.46a)

εO1εO3 =
1

4rh
(rhx + zh) (7.46b)

εO1ηO =
1

4rh
(yhx − xhy − rhy) (7.46c)

εO2εO3 =
1

4rh
(yhx − xhy + rhy) (7.46d)

εO2ηO =
1

4rh
(rhx − zh) (7.46e)

εO3ηO =
1

4rh
(yh− zhy + yhz) (7.46f)

After extracting the quaternion, λ can be found using Eq. (6.33) and Rf1 and Rf2 can be found
using Eq. (7.37).

This concludes the conversion from Cartesian coordinates to the USM7 elements. The author’s
method provides more insight into the conversion process and thus, is easier to follow for someone
unfamiliar with the USM. Also, it is shown how to compute the DCM directly from the Cartesian
coordinates, and a standard quaternion extraction function can be consistently used throughout
the thesis. This function can also be used when it is required to extract a quaternion from
rotation matrices for other applications like the vehicle attitude.

7.2 Conversion from the USM7 Elements

The conversion from the USM7 elements to both the Keplerian elements and the Cartesian
coordinates is shown here.

7.2.1 Conversion to Cartesian Coordinates

The first conversion that is dealt with is the conversion to the Cartesian coordinates as this is
quite straight forward. The USM elements available are (Rf1,Rf2,C,εO1,εO2,εO3,ηO). Using the
quaternion, the sine and cosine of λ can be calculated by using Eq. (6.33).[

sinλ
cosλ

]
=

1
ε2O3 + η2

O

[
2εO3ηO
η2
O − ε2O3

]
Using the sine and cosine of λ, and the velocity components C, Rf1, and Rf2, the velocity in Fe
can be computed using Eq. (6.27).[

ve1
ve2

]
=
[

0
C

]
+
[

cosλ sinλ
− sinλ cosλ

] [
Rf1

Rf2

]
The position in Fe is found from Eq. (6.35).

r =
µ

Cve2
ê1
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The Cartesian coordinates are expressed in Fg. The DCM from Fg to Fe can be found from the
quaternion, from Eq. (3.18), to be

Ce,g =

 1− 2
(
ε2O2 + ε2O3

)
2 (εO1εO2 + εO3ηO) 2 (εO1εO3 − εO2ηO)

2 (εO2εO1 − εO3ηO) 1− 2
(
ε2O3 + ε2O1

)
2 (εO2εO3 + εO1ηO)

2 (εO3εO1 + εO2ηO) 2 (εO3εO2 − εO1ηO) 1− 2
(
ε2O1 + ε2O2

)
 (7.47)

If the USM6 is being used, Ce,g can be directly constructed using Eq. (3.45). The DCM from
Fe back to Fg, Cg,e, is simply the transpose of Ce,g. The position and velocity in the Cartesian
coordinates can be found by converting the position and velocities from Fe to Fg. x

y
z

 =
µ

Cve2
CT
e,g

 1
0
0

 (7.48)

 vx
vy
vz

 = CT
e,g

 ve1
ve2
0

 (7.49)

7.2.2 Conversion to Keplerian Elements

The conversion to Keplerian elements is not as straightforward as the conversion to Cartesian
coordinates. One way would be to first convert the USM elements to Cartesian coordinates, and
then use the method from Section 4.6 to convert the Cartesian coordinates to Keplerian elements.
Another way is to continue working with the USM elements, which requires derivation but will
ensure that all the conversions are independent and no unnecessary computations are carried out.
The technique used, however, is based on Section 4.6.

The eccentricity of the orbit, e, can then be found by taking the quotient of R and C. C is
already present in the USM state vector, and R can be found by taking the norm of Rf1 and
Rf2.

e = R/C (7.50)

Eq. (7.50) is singular when C = 0. This does not add any more singularities because the USM is
singular for rectilinear trajectories, which is the case when C = 0. The semi-major axis, a, can
be found from the vis-viva integral, which is

a =
µ

2
(
µ
r −

v2

2

) (7.51)

The total velocity, v, in Eq. (7.51) can be found by taking the norm of ve1 and ve2. The
magnitude of the radial vector, r, can be found from Eq. (6.35). Filling in all the appropriate
values in Eq. (7.51) gives the expression for the semi-major axis to be

a =
µ

2Cve2 − (v2
e1 + v2

e2)
(7.52)

To find h in Fg, the property that h in Fe is

he = (µ/C)ê3

is used. The inverse of Ce,g is used to express h in Fg. After conversion, h becomes

hg =(µ/C)
(

2 (εO1εO3 + εO2ηO) ĝ1 + 2 (εO2εO3 − εO1ηO) ĝ2

+
(

1− 2
(
ε2O1 + ε2O2

))
ĝ3

) (7.53)
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The inclination of the orbit is the angle between the angular momentum vector and ĝ3. The
cosine of this angle can be found by taking the inner product of the unit vector in the direction
of h from Eq. (7.53) and ĝ3, which is simply

[
0, 0, 1

]T . Thus, the inclination can be found
via the following relation:

i = arccos
(
1− 2

(
ε2O1 + ε2O2

))
(7.54)

To compute Ω, it is necessary to find the line of nodes, N. The line of nodes can be computed by
taking the cross product of ĝ3 and h from Eq. (7.53). This results in the line of nodes expressed
in Fg to be

Ng = 2(µ/C)
(

(εO1ηO − εO2εO3) ĝ1 + (εO1εO3 + εO2ηO) ĝ2

)
(7.55)

Ω is the angle between ĝ1 and N. Thus, the cosine of Ω is the inner product of the unit vector
in the direction of N and ĝ1, which is simply

[
1, 0, 0

]T . The cosine of Ω is

cos Ω =

(
εO1ηO − εO2εO3√

(ε2O1 + ε2O2) (η2
O + ε2O3)

)
(7.56)

The true anomaly is the angle between the eccentricity vector, e, and the position vector. The
eccentricity vector points towards the periapsis of the orbit and has a magnitude equal to e.
According to [Curtis, 2005], the eccentricity vector is found in the following way:

e = (v × h) /µ− (r/r) (7.57)

The eccentricity vector from Eq. (7.57) expressed in Fe after some algebraic manipulation yields:

ee =
(

(ve2 − C)ê1 − ve1ê2

)
/C (7.58)

Using the eccentricity vector from Eq. (7.58) and the position vector in Fe from Eq. (6.35), the
cosine of the true anomaly is the inner product and is

cos ν = (ve2 − C) /R (7.59)

The angle λ = Ω + ω + ν, of which the sine and cosine have already been calculated during the
conversion. With λ, Ω, and ν calculated, ω can be calculated in the following manner

ω = λ− Ω− ν (7.60)

The cosine of ω can also be found directly since it is the angle between the line of nodes to the
eccentricity vector along the orbital plane. However, the expression found in that way is longer
and we find the method of Eq. (7.60) to be simpler.

This concludes all the conversions regarding the USM elements. There is now enough information
to extract the USM elements from either the Cartesian coordinates or the classic Keplerian
elements. The USM elements can also be converted back to those two coordinate systems for
ease of comparison.

7.3 Implementation of the USM

All the equations and theory required for the USM have been treated in Chapter 6 and the
conversions in Sections 7.1 and 7.2. The implementation can be seen in Table 7.1. Only the
implementation of USM7 is shown, because the method for USM6 is identical.

The equations required for the implementation of USM7 are spread out over many pages in the
report. They are all shown here together for the sake of completeness. The reader is referred to
the page numbers given in Table 7.1 for information regarding the derivation. The conversions
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Table 7.1: The implementation procedure for the USM

Step Derived Where
Initialize the USM state Section 7.1, page 61

Find λ Section 6.2, page 53, Eq. (6.33)
Compute ve1, ve2 Section 6.2, page 52, Eq. (6.27)

Find perturbing accelerations Appendix B, page 191
Compute p Section 6.3, page 55, Eq. (6.48)
Compute γ Section 6.3, page 56, Eq. (6.62)
Compute ω1 Section 6.3, page 55, Eq. (6.53)
Compute ω3 Section 6.3, page 55, Eq. (6.46)

Propagate velocities, C, Rf1, and Rf3 Section 6.3, page 56, Eq. (6.65)
Propagate quaternion Section 6.3, page 55, Eq. (6.54)

Repeat process

are not shown here as they can be found in a relatively compact manner starting from page 61.
The propagations are carried out using numerical integration methods found in Section C.1.

[
sinλ
cosλ

]
=

1
ε2O3 + η2

O

[
2εO3ηO
η2
O − ε2O3

]
λ = atan2 (sinλ, cosλ)[
ve1
ve2

]
=
[

0
C

]
+
[

cosλ sinλ
− sinλ cosλ

] [
Rf1

Rf2

]
p =

C

ve2

γ =
εO1εO3 − εO2ηO

ε2O3 + η2
O

ω1 =
ae3
ve2

ω3 =
Cv2

e2

µ Ċ

Ṙf1

Ṙf2

 =

 0 −p 0
cosλ −(1 + p) sinλ −γRf2/ve2
sinλ (1 + p) cosλ γRf1/ve2

 ae1
ae2
ae3



ε̇O1

ε̇O2

ε̇O3

η̇O

 =
1
2


0 ω3 0 ω1

−ω3 0 ω1 0
0 −ω1 0 ω3

−ω1 0 −ω3 0



εO1

εO2

εO3

ηO



7.4 Visualizing Orbits using USM

Specialists in astronautics are accustomed to visualizing orbits using classic Keplerian elements.
An orbital trajectory is also easy to see when plotted in Cartesian coordinates. There are no
available visualizations, in existing literature, of orbits using the USM elements. Therefore, the
behavior of the USM elements for various orbits are shown here. Only unperturbed orbits will
be presented.
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Figure 7.1: The behavior of the USM elements over 2 orbits of the SARSAT with C ≈ 7434 m/s,
Rf1 ≈ −68 m/s, and Rf2 ≈ −30 m/s

7.4.1 Orbits expressed in USM7

Some of the orbits that will be used during the remainder of this thesis study are plotted. The
quaternion elements are bounded by 1, but C, Rf1, and Rf2 are many orders of magnitude
larger. To ensure that all the USM elements fit in one plot, the velocity parameters are scaled
by using the initial value of C. Two orbits are plotted instead of one to show the periodicity of
the quaternion elements.

The first plot to be shown is the orbit of the SARSAT, which is a Search and Rescue satellite
in an almost circular polar orbit, can be seen in Fig. 7.1. The orbital elements can be found in
Tab. 8.1 on pg. 78. SARSAT is on an almost polar, retrograde, and slightly eccentric orbit.

The second plot is the orbit of HEOS-2, which can be seen in Figure 7.2. The orbital elements
can be found in Tab. 8.1 on page 78. HEOS-2 is on a highly eccentric polar orbit.

The plots show that after a full orbit, all the quaternion elements have the same magnitude, but
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the opposite sign. This is accurate because when ν = 360◦, the rotation is the same as when
ν = 0◦, but the long way around. For the next orbit, the behavior is the same but with the
signs reversed. This is because the quaternion elements use the half angle of the Euler angle and
thus, are periodic over 720◦. To be very consistent, the sign of the quaternion elements should be
switched using some control logic once ν > 360◦. This would, however, not influence the results
and it would add an unnecessary discontinuity in the ephemeris.

7.4.2 Orbits expressed in USM6

The same orbits as found in Section 7.4.1 are shown here. However, the orientation of Fe is
expressed using MRP. Since C, Rf1, and Rf2 are the same for both USM7 and USM6, they are
not shown in the plots. The evolution of the MRP elements for the SARSAT orbit can be seen
in Fig. 7.3 and for the HEOS2 orbit in Fig. 7.4.

Technically, the MRP should be periodic over four orbits. However, the MRP is checked frequently
during the orbital integration to make sure that the norm of the vector does become more than
1. If the norm is indeed larger than 1, the MRP is converted to SMRP and vice versa.

This chapter shows all the information required to implement the USM. Thus, some tests using
numerical integration for orbit propagation are carried out in the next chapter. The goal is to
compare the performance of the USM with Cartesian coordinates.
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(a) Behavior of the quaternion elements with εO1 ≈ ηO
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Figure 7.2: The behavior of the USM elements over 2 orbits of the HEOS-2 with C ≈ 5495 m/s,
Rf1 = 0 m/s, and Rf2 ≈ 5207 m/s
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Figure 7.3: Behavior of the MRP elements over 2 orbits of SARSAT with MRP being used when the
Flag equals 1 and SMRP otherwise
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Figure 7.4: Behavior of the MRP elements over 2 orbits of HEOS2 with MRP being used when the
Flag equals 1 and SMRP otherwise



Chapter 8

Orbit Propagation

In the previous chapter, the equations required to fully implement the USM were shown. It is
important to apply all the theoretical equations to practice to see what the numerical performance
of the USM is. The simulations are carried out using USM7, USM6, and Cartesian coordinates,
with the model based on Cartesian coordinates being the benchmark. Simulations of unperturbed
Keplerian orbits are neither shown, nor compared as that is not a realistic scenario for missions.
Some simulations of unperturbed orbits were carried out to check and validate the USM and it
was found that the error is many orders of magnitude lower for the USM than for the Cartesian
coordinates. To be able to fully apply the USM, tests should be carried out with perturbed orbits.
Low thrust propulsion is the focus of much work these days, and there are analytical ways to
compute the trajectories with certain constraints on the thrust profile. Numerically integrating
these low-thrust orbits, however, takes a large amount of time as these trajectories have a very
long time of flight. Thus, any possibility of reducing the CPU time is desirable.

8.1 Numerical Integration Method

All the simulations carried out require a true orbit, which cannot be determined analytically for
perturbed orbits. Thus, a high-order RK8(7) integrator, as found in Appendix C.1.3 on pg. 201,
is used to first generate the so-called truth model. A lower-order RK5(4) integrator, as found
in Appendix C.1.2 on pg. 200, is then used to find the error with respect to the truth model.
Simulations are normally carried out using variable step-size integrators, but a fixed time-step
integrator can show the stability of the model.

It is possible to derive all the various perturbations in terms of the USM as shown in [Altman,
1972]. However, users have perturbations already available in the Cartesian form. To ensure that
the USM can be easily implemented without much overhead and because the time required to
convert between the USM and Cartesian coordinates is very small compared to the computation
time required to compute the perturbations, perturbation models expressed in Cartesian coor-
dinates have been used. The perturbations applied are: atmospheric drag, J2,0, J2,2, solar and
lunar 3rd body perturbation, and solar-radiation pressure. According to [Montenbruck and Gill,
2005], these perturbations are the major sources of perturbation for LEO satellites. Details of
the perturbations can be found in Appendix B. The time derivative for both USM7 and USM6
was carried out as shown in Fig. 8.1. This shows that if perturbations are to be used, the USM
state is first converted to Cartesian coordinates prior to computing the perturbations.

The integration procedure for USM7 and USM6 can be seen in Fig. 8.2. The USM function
evaluations block in Fig. 8.2 refers to the flowchart seen in Fig. 8.1. It is important to note that
the tolerances were checked during the USM integration by converting the propagated state to
Cartesian coordinates. This way, a consistent time step-size adjuster is used for integration with
USM and Cartesian coordinates. This was done because the traditional way of step-size control,
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Figure 8.1: The procedure for a finding the state time derivative when carrying out integration using
USM7 or USM6

which checks the tolerance on each individual state element does not function well with the USM.
This was later confirmed independently in [Mooij, 2010].

The variable step-size integrator requires two tolerance values εpos and εvel. After an integration
step, both the actual 5th-order y, and the embedded 4th-order solution yem are used. If the
integration is carried out using the USM7 or USM6, they are converted to Cartesian coordinates.
The difference between the two vectors in Cartesian coordinates ∆, is taken and then divided by
the present time step-size h:

∆ =
[

∆r
∆v

]
=

y − yem
h

(8.1)

In case |∆r| ≤ εpos and |∆v| ≤ εvel, the solution is accepted. Otherwise, the integration is
repeated using a new time step-size hnew. Even if the solution is accepted, hnew is computed for
the next integration step.

Two more values are defined to be

δr = 0.84
(
εpos
|∆r|

)1/4

(8.2a)

δv = 0.84
(
εvel
|∆v|

)1/4

(8.2b)

The difference δ to be used to find hnew is the smallest out of δr and δv. Finally, hnew is computed
using one of the following three ways: If δ ≤ 0.1

hnew = 0.1 · h (8.3)

if δ ≥ 5

hnew = 5 · h (8.4)

and for all other cases

hnew = δ · h (8.5)
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Figure 8.2: The integration procedure for USM7 and USM6
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Satellite a [ km ] e [ - ] i [ deg ] Ω [ deg ] ω [ deg ] ν [ deg ]
SARSAT 7213 0.01 98.9 269 205 174
HEOS-2 125853 0.95 90.2 0 0 0

Table 8.1: Keplerian elements of SARSAT and HEOS-2
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Figure 8.3: Error in position for 100 orbital revolutions of SARSAT with a fixed step-size integrator
and all perturbations

8.2 Perturbed Orbits without Thrust

The orbits of SARSAT and HEOS-2 are simulated. The SARSAT orbit has a low eccentricity,
and is an almost polar LEO, while HEOS-2 is on a highly elliptical orbit that has a perigee of
400 km and an apogee of almost 1/3 AU. The orbit of SARSAT was chosen, because it was used
in [Chodas, 1981] for orbit determination tests and HEOS-2 has an orbit that passes through all
of the various perturbing forces possible. The Keplerian elements of the two orbits can be seen
in Table 8.1.

Since SARSAT has a LEO with an altitude of approximately 800 km, the major perturbation is
due to the J2,0 effect. The next largest perturbations are due to drag and J2,2, but their effect is
many orders of magnitude smaller than J2,0. To investigate the effect of very minor perturbations
on the numerical stability of the quaternion, simulations were carried out using only J2,0 as one
case, and with J2,0, J2,2, and atmospheric drag as another case. The RMS of the position error
using all the perturbations for 100 orbital periods of SARSAT using a fixed step-size integrator
with various step sizes can be seen in Fig. 8.3, and the results using a variable step-size integrator
with various tolerances can be seen in Fig. 8.4. The results for using only the J2 perturbations
can be seen in Figs. 8.5 and 8.6.

For fixed time step integration in Fig. 8.3, the RMS position error for the USM6 and the USM7
is around 10−2 m for time step-sizes between 5 s and 40 s. For a time step-size of 40 s, the
RMS position error for the USM7 and the USM6 decreases to approximately 5 × 10−3 m, and
then continues increasing till the RMS position error is approximately 100 m for time step-sizes
of 300 s. As the time step-size increases, there is a sawtooth-like behavior in the RMS position
error curve. For the Cartesian coordinates, the RMS error is approximately 5×10−3 m when the
time step-size is 5 s, and then increases continuously and smoothly till the error is approximately
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Figure 8.4: Error in position for 100 orbital revolutions of SARSAT with a variable step-size integrator
and all perturbations
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Figure 8.5: Error in position for 100 orbital revolutions of SARSAT with a fixed step-size integrator
and perturbation due to J2,0 only
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Figure 8.6: Error in position for 100 orbital revolutions of SARSAT with a variable step-size integrator
and perturbation due to J2,0 only

5 × 106 m for time step-sizes of 300 s. This shows that at a time step-size of 5 s for Cartesian
coordinates and 35 s for the the USMs, the solution has reached the accuracy of the so-called
truth model. The behavior in Fig. 8.5 is almost the same as in Fig. 8.3. This time, however,
there is no sawtooth-like behavior. The USMs reach the accuracy of the so-called truth model
at a time step of 20 s instead of 35 s. The error for time step-sizes between 5 - 15 s is around
3 × 10−3 m for the USMs. The error for the Cartesian coordinates at a time step-size of 5 s is
approximately 9× 10−3 m.

For a low eccentricity orbit like the SARSAT orbit, the performance of the USM models is
clearly superior to the Cartesian model. When fixed-step integration is used, the position error
for Cartesian and USM models is almost the same for small step sizes. However, as the size of
the integration step increases, the position error of the USM models remains bounded and in
the order of 102 m. The position error of the Cartesian model increases unboundedly and even
reaches the order of 106 m. In Fig. 8.3, there is a minor saw-tooth behavior present in the
USM integration. This is not present in Fig. 8.5, because only the largest perturbation, J2, is
used. This saw-tooth behavior is due to the effect of very small perturbations on the quaternion
and MRP element values. The position is very sensitive to changes in the quaternion and MRP
elements. Thus, small changes caused by small perturbations act like a sort of noise to give the
saw-tooth behavior.

During the variable step-size integration, the results of the Cartesian model form a front in the
position error - CPU time space, as seen in Figs. 8.4 and 8.5, that is like the Pareto front used
for optimization. Any USM model results below or to the left of this front can be considered to
perform better than the Cartesian results. As can be seen in Figs. 8.4 and 8.6, all of the USM
results are better than the Cartesian results. For a given RMS position error, the CPU time for
the USM7 is approximately a fourth of the CPU time for Cartesian coordinates and the CPU
time for the USM6 is approximately a fifth. The performance of both USM models is similar
for fixed-step integration. However, the performance of USM6 is better than the performance of
USM7 for variable step-size integration. Like the Cartesian results, if the USM7 results are also
made to form a front, all of the USM6 results are superior.

Only two orbits of HEOS-2 are simulated for the fixed time step-size integration since the orbital
period is significantly larger than the orbital period of SARSAT. However, ten orbits are simulated
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Figure 8.7: Error in position for 2 orbital revolutions of HEOS-2 with a fixed step-size integrator and
all perturbations

for the variable step-size integration to emphasize the difference between the models. The results
of the fixed step-size integration can be seen in Fig. 8.7 and of the variable step-size integration
can be seen in Fig. 8.8.

For the extremely eccentric HEOS-2 orbit, the performance of the fixed step-size integration
using all the models is almost the same for time step-sizes smaller than 15 s at around 1 - 3 m.
For time step-sizes greater than 15 s, the position errors in the Cartesian model increase faster
than the position errors in the USM. By time step-sizes of 80 s, the error for both the USMs is
approximately 10 m and the error for Cartesian coordinates is approximately 700 m. For time
step-sizes greater than 80 s, the position errors for both USM are two orders of magnitude lower
than the Cartesian model. The position errors continuously increase for all the models. At a
time step-size of 300 s, the position error for Cartesian coordinates is approximately 7× 105 m,
the position error for the USM6 is approximately 1000 m, and the position error for the USM7
is approximately 2000 m. When compared to USM7, the errors in USM6 are lower for time
steps greater than 75 s. For the variable step-size simulations, it can be seen in Fig. 8.8 that
the Cartesian simulation provides better results than the USM. If a Pareto front is again formed
with the results of the Cartesian coordinates, all the USM results are to the right of it. For small
tolerances, larger time step-sizes are taken during the integration. For these cases the error in
the Cartesian model is very high, while the error in the USM remains in the order of 102 m.
However, each integration step takes less time in the Cartesian model than in the USM, and so
the Cartesian model performs better even for larger tolerances when the time step-sizes become
small. For this case, the performance of USM7 is superior to the performance of USM6. This is
because the same relationship exists between USM6 and USM7. Even though USM6 has fewer
elements than USM7 and is marginally more accurate for a given time step-size, each integration
takes longer for the USM6 than for the USM7, because the kinematic equation for a quaternion
is linear while the kinematic equation for MRP is quadratic.

An option for a new type of integration in this case would be to switch between the various
models during the variable step-size integration. Cartesian coordinates perform better for the
almost linear portions of the orbit, while the USM performs better for the highly dynamic portion
of the orbit near the perigee. Thus, one of the USM models can be used for the integration near
the perigee and Cartesian coordinates can be used in the remaining portion of the orbit.
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Figure 8.8: Error in position for 10 orbital revolutions of HEOS-2 with a variable step-size integrator
and all perturbations

8.3 Orbits with Thrust

Many orbital trajectories also utilize thrust to change orbital parameters. A very common exam-
ple of this would be a Geostationary Transfer Orbit (GTO) from a LEO to a GEO. If high-thrust,
i.e., chemical propulsion is used, two burns are required. One burn increases the orbital energy
and puts the satellite in the GTO, and the second burn at the GTO circularizes the orbit into a
circular GEO. Another important simulation case is a low-thrust propulsion satellite. There are
a few analytical solutions for low-thrust orbits such as exponential sinusoids [Petropoulos and
Longuski, 2004] and inverse polynomials [Wall and Conway, 2009]. These analytical solutions
suffice for a first-order approximation, but to get more accurate results, optimizers have to be
used that simulate the whole trajectory. However, low-thrust orbits take a long time to simulate.
Therefore, the USM could be readily applied if the CPU time for simulations would decrease. To
test the performance of the USM, the following three thrusting scenarios have been utilized:

Scenario 1 One circular parking LEO at an altitude of 185 km is simulated, followed by the first
burn, an elliptic GTO, a second burn, and finally one revolution at GEO. The spacecraft
is under the influence of all perturbations.

Scenario 2 A circular parking orbit at an altitude of 838 km is used as the initial orbit and
then simulated for 100 original orbit periods with a continuous tangential thrust of 0.0005
g (0.004905 m/s2). No perturbations are used.

Scenario 3 A circular parking orbit at an altitude of 1000 km is used as the initial orbit. A
continuous tangential thrust of 0.001 g (0.00981 m/s2) is then applied till the spacecraft
reaches GEO altitude. The spacecraft is under the influence of all perturbations.

The results for the fixed step-size integration for Scenario 1 can be seen in Fig. 8.9 and for
the variable step-size integration can be seen in Fig. 8.10. The behavior of the fixed step-size
integration is very similar to the HEOS-2 case. For small time step-sizes, the error is similar for all
three models. When a time step-size of 5 s is used, the error of all three models is approximately
0.1 m. For time step-sizes between 10 - 40 s, the error for all three models is almost the same
at around 10 m. However, for larger time step-sizes the error of the Cartesian model is again
approximately two orders of magnitude larger than for the USM. For the last simulation, when
a time step-size of 300 s is used, the error of the USMs is around 1000 m and the error for the
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Figure 8.9: Error in position for a fixed step-size integration for the trajectory using high-thrust and
all perturbations
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Figure 8.10: Error in position for a variable step-size integration for the trajectory using high-thrust
and all perturbations
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Figure 8.11: Error in position for tangential low-thrust orbit with a fixed step-size integrator

Cartesian coordinates is around 105. The error for the USM6 is again marginally lower than
the error for the USM7. The results for the variable step-size integration show that the error
is similar for USM7 and the Cartesian model, with the results of the USM7 being distributed
equally on both sides of the front. The front, and all the USM results are quite erratic because
of the guidance law enforced. This does not allow the variable step-size integrator to freely pick
the suitable step-sizes. Since each time step takes longer for USM6 when compared to USM7, the
points are shifted slightly to the right. Thus, most of the results can be considered to be inferior
to the USM7 and the Cartesian model.

For Scenario 2, no other perturbations were used so that the abilities of the USM to handle
low-thrust orbits could be showcased. For the low thrust case, no conversions have to be made
to the Cartesian model to find the perturbations as seen in Fig. 8.2. The results of the fixed step
integrator can be seen in Fig. 8.11 and of the variable step size integrator can be seen in Fig.
8.12.

For the case of low-thrust orbits with tangential thrusting, the position error using a fixed step-
size integrator is many orders of magnitude smaller for the USM than for the Cartesian model.
For time steps up to 55 s, the error for the USM7 integration is at a converged value of around
10−3. For the USM6, this is the case up till a time step of 40 s. For time steps larger than this,
the error for both the USMs increases. However, the error for the USM6 is higher than the error
for the USM7. At a time step-size of 300 s, the error for the USM6 is roughly 10 m and the error
for the USM7 is approximately 0.8 m. At a time step-size of 300 s, the error with the Cartesian
coordinates is roughly 2× 106.

For the variable step-size integrations, the position error for USM7 and USM6 converge after a
CPU time of approximately 4 s and 10 s respectively. For integration using the Cartesian model,
the error has not yet converged after a CPU time of approximately 100 s. To emphasize the
difference in performance between the Cartesian model and USM, the evolution of the specific
energy error of the Cartesian model for various time step-sizes divided by the average USM7
specific energy error for that particular time step-size is shown in Fig. 8.13. For these time
step-sizes, the USM7 energy is in the order of 10−2 J/kg. For time step-sizes of 5 s, 15 s, and
30 s, the error in the energy for integration using cartesian coordinates is 1, 3, and 5 orders of
magnitude higher than the average energy error in USM7, respectively. This shows that the USM
is more suited for simulating trajectories under the influence of continuous low-thrust. For the
variable step-size integration, if a front is formed by the USM7 results, it can be seen that the
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Figure 8.12: Error in position for tangential low-thrust orbit with a variable step-size integrator

USM6 results are to the right. For a given accuracy, the variable step-size integration using the
USM6 is roughly 3 time slower than the USM7. The integration using Cartesian coordinates is
1 - 2 orders of magnitude slower than the USM7.

In reality, low thrust orbits also have perturbations. Thus, a full test of the USM would be
to have a low-thrust orbit with perturbations as found in Scenario 3. The results of the fixed
step-size integration can be seen in Fig. 8.14 and of the variable step-size integration can be seen
in Fig. 8.15.

The results with low thrust and other perturbations are very similar to the results found for only
low-thrust propulsion. Again, the USMs perform better than the Cartesian model. For Cartesian
coordinates and the USM7, the behavior of both fixed-step and variable step-size integration is
the same as for the only low-thrust propulsion case. For the USM6, however, the performance for
the fixed step-size integration is much better than for the only low-thrust propulsion case. For
fixed step-size integration, the error is even smaller than for the USM7. At a time step-size of 300
s, the error for the USM6 is roughly 0.1 m compared to the 1 m for the USM7. For time step-sizes
up till 65 s, the error for both the USMs is at a converged value of roughly 10−3. When the
error is at this converged value, both the USMs exhibit a sawtooth-like behavior. Once the time
step-sizes increase, the error of the USM7 starts increasing more than the error of the USM6. It
should be noted that the USM6 exhibits sawtooth-like behavior for almost all the time step-sizes.

For the variable step-size integration, the accuracy of the USMs is again much higher than that of
Cartesian coordinates. For a given accuracy, the CPU time of the USMs is an order of magnitude
less than that of Cartesian coordinates. The performance of both the USMs is very similar, with
the USM6 being marginally more accurate.

8.4 Optimization of a Solar Sailing Mission

Optimization of the trajectory of a mission to the Solar poles using Solar sailing has been in
carried out [Mooij et al., 2006]. This work will be repeated using in USM7 in [Mooij et al.,
2010]. The setup is presented here along with a few tentative results. It should be noted that the
majority of the work, and all of the implementation for [Mooij et al., 2010] will not be carried
out by the author, but by [Mooij, 2010].
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Figure 8.13: The evolution of the energy error in integration using the Cartesian model scaled with
respect to the average USM7 energy error for time step-sizes of 5 s, 15 s, and 30 s
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Figure 8.14: Error in position for a low-thrust orbit raising maneuver with a fixed step-size integrator
and all perturbations
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Figure 8.15: Error in position for a low-thrust orbit raising maneuver with a variable step-size integrator
and all perturbations

Work Carried Out

[Mooij et al., 2006] uses Evolutionary Optimization (EO) instead of Genetic Algorithms (GA),
and uses a realistic model for the solar sail. It is shown that using a perfect solar sail model gives
solutions that are more optimistic, as can be seen in Fig .8.16.

EO is very similar to optimization using GA because they both follow the Darwinian philosophy of
”survival of the fittest”. There is, however, one major difference between the two. GA techniques
represent the positions in the search space in terms of binary code, while EO uses the actual
floating numbers. According to [Michalewicz, 1996], EO techniques are usually more efficient
and produce more realistic results when compared to GA. The objective for the optimizer to
minimize is the total mission cost, while still satisfying the constraint of arriving at a solar polar
orbit by 2020.

This mission has the spacecraft starting off in a GTO , followed by an spiraling orbit to escape
from the Earth in using solar propulsion. Finally, there is an heliocentric phase that cranks the
orbit and increases the inclination to achieve the desired polar orbit and makes the spacecraft
spiral inwards towards the sun.

There are many more specific factors that need to be taken into account to fully implement this
mission. They include perturbations, guidance of the sail, modeling of the sail, etc. The reader
is referred to [Mooij et al., 2006] for further information. The final result of the optimization
process is a vehicle of 218.05 kg with a sail area of 6424 m and a travel time of 9.46 years. The
launch date is January 2011 and the arrival date is July 2020. The geocentric and heliocentric
phases of the optimum trajectory can be seen in Fig. 8.17 and Fig. 8.18, respectively.

Work in Progress

As mentioned previously, [Mooij et al., 2006] finds an optimum trajectory with a flight time of
9.46 years which is approximately 3 × 108 s. Throughout this whole trajectory, the spacecraft
is using solar sailing as a method of low-thrust propulsion. As has been shown so far in this
chapter, integration of trajectories utilizing low-thrust propulsion is faster using the USM than
Cartesian coordinates. Thus, in [Mooij et al., 2010] the USM7 will be used to optimize the
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Figure 8.16: Differences in mission cost between a realistic and a perfect solar sail model [Mooij et al.,
2006]

Figure 8.17: Optimum trajectory in the Geocentric frame [Mooij et al., 2006]
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Figure 8.18: Optimum trajectory in the Heliocentric frame [Mooij et al., 2006]
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Figure 8.19: The CPU time for various simulations of a solar sailing mission

mission from [Mooij et al., 2006] and the results will be compared. Since the integration of the
trajectory can be carried out faster using USM7, the optimization can be carried out faster.

A so-called truth model was created of a trajectory using Cartesian coordinates and an RK7(8)
integrator. This integrator has a relative tolerance of 10−9 and a maximum time step-size of 1000
s. This gives a total Time of Flight (TOF) of approximately 3652.5 days, which is approximately
10 years. The same trajectory was integrated again using the same guidance laws, but this
time an RK5(6) integrator was used instead of the RK7(8). The integration was carried out with
Cartesian coordinates and with the USM7 for various tolerances. This integrator uses an absolute
and a relative tolerance. The maximum time step-size was 107 s. For Cartesian coordinates, the
velocity and position absolute tolerances are 0.1. For the the USM7, there were two cases used.
Both the cases had an absolute tolerance of 0.1 for the hodographic velocity components. The
first case of the USM7 had an absolute tolerance of 10−7 for the quaternion elements and the
second case of the USM7 has an absolute tolerance of 10−9. For the Cartesian and the two USM7
cases, the relative tolerance is changed from 10−9 to 10−4 and the integration is carried out. The
CPU Time for the various cases can be seen in Fig. 8.19. The TOF for the various cases can be
seen in Fig. 8.20 and the TOF mismatch when compared to the TOF of the truth model can be
seen in Fig. 8.21.
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Figure 8.20: The time of flight for various simulations of a solar sailing mission

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
−12

−10

−8

−6

−4

−2

0

Simulation #

T
im

e
 o

f 
F

lig
h

t 
E

rr
o

r 
[ 

d
a

y
s
 ]

 

 

Cartesian Coordinates

USM7 (10 
−7

 quaternion tolerance)

USM7 (10 
−9

 quaternion tolerance)

Less Stringent Tolerances

Figure 8.21: The time of flight mismatch for various simulations of a solar sailing mission
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In Fig. 8.19, it can be seen that making the tolerance more stringent increases the CPU time.
For a relative tolerance of 10−4, the CPU time of both the USM7 cases is approximately 1 s and
of the Cartesian case is approximately 1.3 s. As the tolerance becomes more stringent, the CPU
times for all cases increase, as expected. However, for a tolerance including 10−7 and lower, the
CPU time for the USM with an absolute tolerance of 10−7 for the quaternion elements tapers
off at around 2 s. For the USM with an absolute tolerance of 10−9 for the quaternion elements
requires increasing CPU times as the tolerances get more stringent and a final CPU time of 3.75
s for a relative tolerance of 10−9. The Cartesian coordinates case also requires increasing CPU
times as the tolerances get more stringent and a final CPU time of 5.3 s. From this graph, it can
be concluded that when a normal step-size controller is used for the USM7, the absolute tolerance
of the quaternion elements is very important. Making this tolerance more stringent forces the
integrator to take smaller time steps, especially when more stringent relative tolerances are also
used. When the relative tolerance is not very stringent, making the absolute tolerance more
stringent does not have any effect. With the most stringent relative tolerance, the Cartesian
coordinates case takes 2.65 times the CPU time of the USM7 case with an absolute quaternion
tolerance of 10−7. The Cartesian coordinates case takes 1.41 times the CPU time of the USM7
case with an absolute quaternion tolerance of 10−9.

The same information can be gotten out of Figs. 8.20 and 8.21. All the cases have a larger
TOF than the truth case. This, however, does not necessarily mean that there is an error. The
integration method checks if the present state has passed the stop criterion, e.g. 0.4 AU. If the
present state of the integrator has not passed the stop criterion, the next integration step is
made. The maximum time step-size is 107 s, which is approximately 116 days. This means that
the integration step can have a large time step-size and therefore, the TOF when the integration
stops can be much higher than that of the truth model. Once the integration step has been
made, it is of course possible to interpolate back to the correct stop criterion location in time.
This was not carried out due to time constraints. This overshooting is a bigger problem for less
stringent tolerances as the time step-sizes will be larger. Also, the overshooting is more for the
USM7 cases than for the Cartesian coordinates, which hints that larger time step-sizes are being
used.

To see how accurate the simulations are, the TOF should be kept constant and the position or
velocity errors should be checked against the truth model. As the work on solar sailing is ongoing,
this can be done in the future.

8.5 Conclusions and Recommendations

It was found that the USM7 and USM6 can be used for all the applications that the Cartesian
coordinates are used for, with very few adaptations. For unperturbed orbits, the behavior of
the USM is excellent because the orbital energy and the angular momentum are conserved. The
USM can also be used for parabolic and hyperbolic trajectories. Hyperbolic trajectories are
well represented within the sphere of influence of planets and thus, the patched conic method
can be used for the USM for interplanetary trajectories. Other than the singularity present for
pure retrograde orbits, there are no other theoretical scenarios where the USM cannot be used.
However, the true anomaly limit for hyperbolic orbits causes a practical limit due to the slow
change in the true anomaly near this limit.

For perturbed orbits, the USM performs better than Cartesian coordinates for both fixed-step
and variable-step integration. For very small time step sizes, the USM and Cartesian results are
very similar. However, the error of the USM is much lower when larger time steps are used. This
can also be seen in the results for the variable-step integration as the USM performs much better
than the Cartesian model with smaller simulation times. The exception to this is the highly
eccentric HEOS-2 orbit. In this case, the satellite spends much more time in an almost linear
trajectory. Integration in Cartesian coordinates is inherently better suited for this as each state
advancement is linear. For many commonly used orbits, however, the USM still performs better
than Cartesian coordinates. For example, a GTO, with an eccentricity of around 0.7, still has



92 Orbit Propagation

more accurate results when the USM is used.

The scenario where the USM truly shines is low-thrust propulsion. When the thrust is the only
perturbing force, the USM7 has position errors that are 5 - 6 orders of magnitude lower than the
Cartesian model, when using a variable step size integrator. When also other perturbations are
present, the performance of the USM6 is slightly superior to the performance of the USM7, and
both the USM have errors many orders of magnitude lower than the Cartesian model.

As the USM performs much better than Cartesian coordinates for low eccentricity and continuous
thrust orbits, its usage in optimizers is highly recommended. For an optimization problem many
different trajectories have to be simulated, which make the computation time very large. Thus,
using the USM would help in reducing this CPU load. In particular, low thrust trajectories with
electric propulsion or solar sailing would be the optimal target group of the USM. Because of
the stability, usage of the USM for long-term orbit simulation is also recommended. The fact
that the USM performs better for low eccentricity orbits should not be a deterrent as orbits of
most satellites and debris are circular. When perturbations that exert a very small and erratic
acceleration, there is a sawtooth-like behavior shown for the fixed step-size simulations using the
USM. However, the error of the USM models is still many orders of magnitude lower than the
Cartesian model. Thus, the sawtooth-like behavior should not pose much of a problem. Between
USM7 and USM6, it is recommend to use the original USM7 model for numerical integration
of orbits with only low-thrust propulsion, highly dynamic short term simulations like the high-
thrust orbit scenario, and for very highly eccentric orbits like the HEOS-2. For low-thrust orbits
with other perturbations and low eccentricity orbits with perturbations, the use of USM6 is
recommended.

When implementing the dynamics function for the USM6 and the USM7, it is important to
validate them with respect to an unperturbed analytical, and a perturbed orbit before they can
be used to generate trajectories. For Cartesian coordinates the dynamics function is quite simple
to implement and choosing an unperturbed, eccentric, and inclined orbit will sufficiently excite
all the time derivatives. For the USM6 and USM7 however, an unperturbed orbit only causes
a change in the MRP and quaternion, respectively. Unless a perturbed orbit is chosen, Ċ, Ṙf1,
Ṙf2, and ω1 will not be excited. Thus, any bug in the dynamics regarding those elements would
not be found.

In the future, investigation must be carried out to find out exactly why the traditional step-size
control method is not so effective for the USM. Also, if it is decided to fully switch to the USM7
or the USM6, the perturbation models should be converted to the USM. This would obviate the
need to switch to Cartesian coordinates.

This concludes the chapter about numerical simulations of orbital trajectories using the USM with
the RK method of integrating. However, to get a complete overview of the USM’s applicability
to numerical simulations, atmospheric re-entry should also be investigated. This is done in the
following chapter.



Chapter 9

Re-entry Dynamics

The USM was shown to have superior performance in numerical integration when compared to
Cartesian coordinates for most orbit propagation cases. In [Altman, 1972], there is an assertion
that the USM can also be used for the simulation of atmospheric re-entry. Therefore, a simu-
lation of an atmospheric reentry is carried out here to check if this is indeed possible, and also
to see whether the USM can outperform Cartesian coordinates. This chapter presents a brief
investigation carried out on applicability of the USM for re-entry.

The atmospheric re-entry is a highly complex and dynamic environment. This problem becomes
even more complex when a winged vehicle is utilized. Normally, a full 6 DOF simulator is used
along with guidance algorithms to get a meaningful trajectory that satisfies the requirements.
To circumvent the need to build this simulator and the guidance algorithms, a profile of the
aerodynamic angles and control surface deflections was taken from [Mooij, 1998] and [Mooij and
Chu, 2002]. The reference vehicle for the trajectory is the HORUS-2B, which can be seen in Fig.
9.1. The HORUS-2B is an unpowered winged re-entry vehicle.

The characteristics of the HORUS-2B can be found in [Grallert, 1988] and a few important ones
are presented in Table 9.1. The profile of all the aerodynamic angles and the control surface
deflections can be seen in Fig. 9.2, and the altitude vs. relative velocity plot can be seen in Fig.
9.3.

9.1 Re-entry Dynamics

In this work, only a 3 DOF simulator is considered. Thus, all the dynamics felt during the
trajectory because of the attitude of the vehicle are only introduced as perturbing accelerations
to the vehicle. The integration is carried out numerically using Cartesian coordinates in ECI, or
using the USMs. The procedure is as follows:

First, the position of the vehicle is converted from ECI to ECEF using the DCM CECEF,ECI

from Eq. (4.33) on page 31. This equation is repeated below for the sake of convenience of the
reader. In this chapter, FECEF will be referred to as FR since it is a rotating frame of reference.

CECEF,ECI =

 cos (θJ2000 + ωE ·∆t) sin (θJ2000 + ωE ·∆t) 0
− sin (θJ2000 + ωE ·∆t) cos (θJ2000 + ωE ·∆t) 0

0 0 1


Both in ECI and ECEF, it can be assumed that the Earth is rotating with the following angular
velocity vector

ωE =

 0
0
ωE

 (9.1)
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Figure 9.1: The Horus-2B [Grallert, 1988]
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Figure 9.2: The profile of the aerodynamic angles and control surfaces deflections provided by [Mooij,
1998]
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Figure 9.3: Altitude against relative velocity in the ECEF frame of the trajectory provided by [Mooij,
1998]

In Eq. (9.1), the value of ωE can be found in Table 4.1 on page 32. Because ECEF is not an
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Table 9.1: Characteristics of the HORUS-2B [Grallert, 1988]

Property Value
Vehicle Length 25 m

Fuselage Length 23 m
Maximum Fuselage Width 5.4 m

Height 4.5 m
Wingspan, bref 13 m

Wing chord, cref 23 m
Wing area, Sref 110 m2

Center-of-mass 13 m from the nose
Maximum payload mass 7, 000 kg

Re-entry mass 26, 029 kg
Ixx 119, 000 kg m2

Iyy 769, 000 kg m2

Izz 806, 000 kg m2

Ixy 0 kg m2

Ixz −20, 372 kg m2

Iyz 0 kg m2

inertial frame, the relative velocity in ECEF of the vehicle can be found in the following way

vR = CECEF,ECI × (vI − ωE × rI) (9.2)

In Eq. (9.2), rI and vI are the position and velocity vectors of the vehicle in ECI, respectively.
The vectors rR and vR are the position and the relative velocity ECEF, respectively.

The assumption of a spherical Earth is made for this simulation. The latitude and longitude can
now be found in the following way

φgc = sin

(
zR√

x2
R + y2

R + z2
R

)
(9.3a)

λgc = arctan(yR/xR) (9.3b)

The following step is to compute the DCM from FR to the local horizontal frame FV . The local
horizontal frame is analogous to FNED found in section 4.5.2 on page 34. The DCM CV,R can be
found from the product of CENU,ECEF and CNED,ENU found in Eqs. (4.43) and (4.44). Motion
in the local horizontal plane can be seen in Fig. 9.4.

CV,R =

 0 1 0
1 0 0
0 0 −1

×
 − sinλ cosλ 0
− cosλ sinφgd − sinφgd sinλ cosφgd
cosφgd cosλ cosφgd sinλ sinφgd

 (9.4)

The next step is to convert the relative velocity vR to FV to give vV . The three orthogonal
velocity components of vV are [vN , vE , vD]T . Using these velocities, the heading angle with
respect to the ground based trajectory, χG, and the flight path angle with respect to the ground
based trajectory, γG can be calculated. These angles can be seen in Fig. 9.4.

χG = arctan(vE/vN ) (9.5)

γG = − arcsin

 vD√
vTRvR

 (9.6)



96 Re-entry Dynamics

Figure 9.4: Motion in the local horizontal plane [Mooij, 1998]

A new reference frame called the ground based trajectory frame, FTG can be defined using χG
and γG. The DCM for this reference frame from FV is calculated using

CTG,V = C2(γG)C3(χG) (9.7)

During this work, it is assumed that there is no wind. Therefore, the following elementary
relations exists for the flight path angle with respect to the aerodynamic trajectory and the
heading angle with respect to the aerodynamic trajectory.

χA = χG

γA = γG

To compute the aerodynamic forces, it is essential to know the atmospheric density, ρ, and the
Mach number, M . The density can be found from a standard atmospheric model such as the U.S.
Standard Atmosphere 1976. M is the ratio between the current aerodynamic velocity, vA, and
the speed of sound va. Because it is assumed that there is no wind, vA is equal to the magnitude
of vR. The speed of sound can also be found from the U.S. Standard Atmosphere 1976 data.
The Mach number is then

M =
vA
va

(9.8)

The dynamic pressure has to also be calculated based on the density and the relative velocity.

qdyn =
1
2
ρv2
A (9.9)

Using the dynamic pressure and assuming that there is no sideslip, the perturbing accelerations
felt by the vehicle in the aerodynamic reference frame can be calculated using

aaero,A = −qdynSref
m

 CD
0
CL

 (9.10)

In Eq. (9.10), CD and CL are the drag and lift coefficients of the vehicle, respectively. For real
vehicles, they are not constant but depend on many parameters. They can be written as

CD = CD0(α,M) + CDδbf
(α, δbf ,M) + CDδe(α, δe,M) (9.11a)
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CL = CL0(α,M) + CLδbf
(α, δbf ,M) + CLδe

(α, δe,M) (9.11b)

The angles in Eq. (9.11) are:

α Angle of attack
δbf Body flap deflection
δe Elevon deflection
CD0 The drag coefficient of the vehicle in the default configuration
CL0 The lift coefficient of the vehicle in the default configuration
CDδbf The extra drag coefficient of the vehicle due to a deflection of the body flap
CLδbf The extra lift coefficient of the vehicle due to a deflection of the body flap
CDδe The extra drag coefficient of the vehicle due to a deflection of the elevon
CLδe The extra lift coefficient of the vehicle due to a deflection of the elevon

The CD0 and CL0 only depend on the angle of attack and the Mach number. The CDδbf and
CLδbf depend on the body flap deflection angle as well as the angle of attack and Mach number.
The CDδe and CLδe depend on the elevon deflection angle as well as the angle of attack and
Mach number. The total lift and drag coefficients are the sum of the lift and drag coefficients
due to the default vehicle configuration, the body flap deflection, and the elevon deflection. The
angle of attack, body flap deflection, and the elevon deflection are interpolated from the reference
trajectory, based on the time since start of simulation. The lift and drag coefficients from Eq.
(9.11) are then found using data tables taken from [Mooij, 1998].

The accelerations computed in Eq. (9.10) need to be converted from FA to FI to be used in the
integrators. According to [Mooij, 1997], the DCM to convert from FA to FV is

CV,A = C3(−χA)C2(−γA)C1(σ) (9.12)

In Eq. (9.12), Ci(θ) means an principal axis rotation with axis i being the Euler axis and angle
θ being the Euler angle. The acceleration can be converted to FI in the following way

aaero,I = CI,RCR,V CV,Aaaero,A (9.13)

9.2 Simulations

For the simulations, the same procedure was used as in Chapter 8. The perturbations imple-
mented were J2 and the atmospheric drag as explained in section 9.1. To calculate the re-entry
dynamics, a function was made that takes the present state in Cartesian coordinates as the in-
put, and outputs the acceleration due to the aerodynamic forces in the inertial frame. Thus, this
function could be used in the same manner as all the other orbital perturbations. Tests were then
carried out using the fifth order variable step-size and fixed step-size integrators using Cartesian
coordinates and the USMs.

The results of the fixed step simulation can be seen in Fig. 9.5. The time step-sizes were varied
from 1 s to 11 s. When a time step-size of 1 s is used, the RMS position error for all three models
is approximately 0.3 m. The reference trajectory and angles were all also given in 1 s intervals.
Once the time step-size increased to 2 s, the RMS error jumps to 100 m for all the models. As
the time step-size keeps increasing, the position error for all models also increases. At the largest
time step-size of 11 s, the RMS position error is approximately 104 m for all models. At all time
step-sizes the error for all the models is roughly the same. For time step-sizes larger than 6 s,
there is a difference between the models but there is no pattern. For some time step-sizes, the
Cartesian coordinates are more accurate than the USMs and vice-versa.

The results of the variable time step-size simulations can be seen in Figs. 9.6 and 9.7. If a front
is formed by the Cartesian coordinate results in Fig. 9.6, the results of both the USMs are to
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Figure 9.5: RMS of position error again time step-size for an atmospheric re-entry simulation using a
fixed step integrator
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Figure 9.6: RMS of position error against CPU time for an atmospheric re-entry simulation using a
variable step-size integrator

the right. This means that the USMs are take more CPU time than the Cartesian coordinates to
achieve the same accuracy. On average, the USMs take twice as much CPU time as the Cartesian
coordinates. Fig. 9.7 shows the average time step-sizes taken by the variable step-size integrators.
The ellipses show where the results for the different models are roughly located. The maximum
average step-size taken by the USMs is around 7.5 s, while the Cartesian coordinates can have an
average time step-size of up to 9.5 s. It is already known that one integration step using Cartesian
coordinates is faster than one integration step using any of the USMs. If the variable step-size
integrator using Cartesian coordinates have larger average time step-sizes, it means that they are
making fewer integration steps. Thus, integration with the Cartesian coordinates is faster for
re-entry than with the USMs.
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Figure 9.7: RMS of position error against average time step-size for an atmospheric re-entry simulation
using a variable step-size integrator. The results of the Cartesian coordinates, USM7, and USM6 are
approximately bounded by the red, blue, and magenta outlines, respectively

9.3 Conclusions

It is stated in [Altman, 1972] that the USM can be used for orbit propagation and atmospheric
re-entry. The conjecture in [Altman, 1972] has been shown to be true in this chapter. Indeed, it
is possible to use both the USM7 and the USM6 to carry out simulations of a vehicle re-entering
the atmosphere as can be seen in Figs. 9.5 and 9.6. For simulations using a fixed time step-size
integrator, the RMS of the position error is approximately the same for Cartesian coordinates,
USM7, and USM6. However, it can be seen in Fig. 9.6 that the CPU time for USM7 and USM6
is higher than for Cartesian coordinates when a variable time step-size integrator is used. This
would also be the case for the fixed time step-size integration because each integration step takes
longer for the USM than for Cartesian coordinates.

Furthermore, it can be seen in Fig. 9.7 that the integrator using Cartesian coordinates is capable
of using larger step-sizes than the integrator using any of the USMs. Fig. 9.7 plots the RMS
position error against the average time-step, which is the mean of the step-sizes during a variable
step-size integration run, for various tolerances. This is the case because atmospheric re-entry is
a highly dynamic environment for the vehicle to experience. This highly dynamic environment
makes the trajectory of the vehicle very un-orbitlike. Due to this, the same reasons that make the
USM highly effective for orbital trajectory simulation, make the USM uncompetitive for re-entry.
Cartesian coordinates are a very generic form for expressing position and velocity. Given an
origin, any position and velocity can be expressed relative to it. The USM, however, is based on
fundamental assumption of a body in orbit. Three of the state elements are from the velocity
hodograph for orbital motion, and the other 4 elements express the orientation of the orbital
frame. During an actual orbit, these elements have a physical meaning and vary relatively slowly.
During re-entry however, the vehicle is no longer in an orbit. Thus, the USM elements may
behave in a more chaotic manner as can be seen in Figs. 9.8 and 9.9. These factors combined
make the USM less suitable than Cartesian coordinates for integration of re-entry trajectories.
It is perfectly possible to continue using the USM for a spacecraft going from the orbital phase
to the re-entry phase. However, using Cartesian coordinates would decrease CPU time.

This re-entry problem also uses guidance history that is provided at a certain output. If this
history is smaller than the default time step-sizes taken by the integrator, the integrator is either
forced to take small time step-sizes or some of the commands get missed. If the integrator is
forced to take smaller time step-sizes, the USMs will lose their advantage over the Cartesian
coordinates. If some guidance commands get missed, then the error in the simulation will be
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(a) Evolution of C during the re-entry trajectory
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(b) Evolution of Rf1 during the re-entry trajectory
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(c) Evolution of Rf2 during the re-entry trajectory

Figure 9.8: Evolution of the hodographic velocities during the re-entry trajectory
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(a) Evolution of εO1 during the re-entry trajectory
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(b) Evolution of εO2 during the re-entry trajectory
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(c) Evolution of εO3 during the re-entry trajectory
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(d) Evolution of ηO during the re-entry trajectory

Figure 9.9: Evolution of the quaternion elements during the re-entry trajectory

large for all models, which is also not desirable.

Between the USM7 and the USM6, it is recommended to use USM6. For variable step-size
integrations, it is capable of utilizing larger time step-sizes and still achieving the same accuracy
as the USM7. Each integration step using the USM6 takes more CPU time than an integration
step using the USM7. However, the benefit of the USM6 is that the MRP use only three elements
to describe an orientation, instead of four like the quaternion. This means that all the MRP
parameters are independent of each other and thus, the effect of numerical inaccuracies is smaller
when compared to quaternions, which have the problem of deviating from unit norm.
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This chapter has shown the performance of the USM for the numerical integration of an atmo-
spheric re-entry trajectory. With this, the topic of numerical integration using conventional RK
integrators is concluded. The next part of this thesis study focuses on filtering and navigation,
so that aspects of the USM, other than numerical integration performance, can be investigated.
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Chapter 10

Recursive Filtering Techniques

The previous chapter on atmospheric re-entry was the last chapter to use RK methods for inte-
gration. It was concluded that the performance of the USM is inferior to Cartesian coordinates
for re-entry dynamics. The focus of the thesis study for this chapter and the next is on filtering
and estimation.

Theoretical equations always give exact answers. In real life, however, not everything is so
straight forward. When a system is modeled, there are always some discrepancies compared to
real life. It is not possible to predict everything exactly. The goal of navigation is to be able
to accurately estimate the state of a spacecraft. The word, estimate, is very important here,
because it is also not possible to measure the state exactly. Through all their efforts, engineers
are only able to estimate, albeit with a very high accuracy, the state of the spacecraft. Since
Navigation is extremely important for satellites, the properties of the USM for Navigation should
be investigated. Filtering techniques play a pivotal part in Navigation and they are therefore
presented here.

If the estimation does not have to be carried out in real time, a method such as least squares
can be used. There are plenty of cases where it is necessary to get estimated parameters in real
time. For this purpose, it is much more efficient to use recursive filtering techniques. Thus, only
recursive filtering techniques will be dealt with in this section. The main reason why estimation
is such an important process is because of noise. Noise is the randomness that occurs in the real
world, which does not provide exact measurements. This is also the cause for the uncertainty in
the modeling of systems. The most famous filters for real-time estimation are the Kalman Filter
(KF) and its derivatives. In recent years there has been development on a new type of filter
known as the Divided Difference Filter (DDF). In this chapter, these two types of filters will be
dealt with. It is assumed that the reader is familiar with some basic probability theory, as this
is essential for the understanding of these filters.

10.1 Kalman Filter

The Kalman filter was the brainchild of Rudolf Emil Kalman. It has since then become the most
widely used estimation technique, especially in the aerospace field. The original Kalman filter
is the Linear Kalman Filter (LKF), which, as the name suggests, can only be applied to linear
systems. Most systems are, however, quite non-linear. Thus, there have been additions to the KF
that extended the domain of validity to nonlinear systems. One of the additions is the Extended
Kalman Filter (EKF), which is the de facto estimator in the aerospace field. Another more recent
addition is the Unscented Kalman Filter (UKF), which is gaining popularity in recent times. For
an excellent introduction to Kalman filtering, the reader is referred to [Welch and Bishop, 2001].
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10.1.1 Linear Kalman Filter

As the LKF is the original Kalman filter, it will be derived in this section. This derivation is
based on the one found in [Welch and Bishop, 2001], but with added detail. The goal of a Kalman
filter is to estimate a linear system

xk+1 = Akxk + Bkuk+1 + wk (10.1)

with measurements in the form of

zk = Hkxk + vk (10.2)

In Eqs. (10.1) and (10.2), wk and vk represent the system and measurement noise respectively.
They are Gaussian noises, so they have a normal distribution with zero mean. The variables x,
u, and z are the state, control input, and measurement respectively. A is the state transition
matrix, and it defines how the state at the next step is related to the current state. B describes
the relation between the input and the state at the next stop. H is the measurement matrix and
shows how the measurement can be computed from the state.

Both noises are assumed to be uncorrelated to each other. Their probability distributions are

p(vk) ∼ N(0,Rk) (10.3)
p(wk) ∼ N(0,Qk) (10.4)

R is the noise present in the measurement device and Q is the uncertainty present in the modeling
of the system. R is usually available from the manufacturer of the measurement device. Q, on
the other hand, can only be derived by testing, or from the intuition of the engineer.

The estimation process can be split into two steps. The first step is to get an a priori estimate,
and the second step is to get an a posteriori estimate. The a priori estimate only takes into
account the system noise, this means that the next state is estimated using only the model. For
navigation purposes, the time derivative of the state elements can sometimes be measured and
then it also occurs in the state transition. This occurs, for example, when an IMU, or velocity
measurements are used. In this case the measurement noise is incorporated into the system noise.
The a posteriori estimate then updates and refines the a priori estimate using the measurement.
The a priori and a posteriori estimates are expressed as x̂−k and x̂k respectively. The a priori
and a posteriori errors can be defined as

e−k ≡ xk − x̂−k (10.5)
ek ≡ xk − x̂k (10.6)

The error between the true state and the estimated state can be expressed as an uncertainty in
terms of a covariance matrix. These error covariance matrices are

P−k = E
[
e−k e−Tk

]
(10.7)

Pk = E
[
ekeTk

]
(10.8)

Since the a priori estimate of the state is not perfect and there is noise present in the mea-
surements, it is not possible to predict the measurements with full accuracy. To predict the
measurement, noise is not taken into account as the expected value of noise is 0. The predicted
measurement is

ẑk = Hkx̂−k (10.9)

The difference between the actual measurement and the predicted measurement is known as the
measurement innovation, δz−k .

δz−k = zk − ẑk = zk −Hkx̂−k (10.10)
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Given an initial, or an a posteriori estimate, the a priori state estimate of the next state is found
via

x̂−k+1 = Akx̂k + Bkuk (10.11)

The a priori covariance can be found using the proper linear covariance propagation law.

P−k+1 = AkPkAT
k + Qk (10.12)

The aim of the Kalman filter is to improve the state estimation by optimally incorporating the
information found in the measurement. The update can be expressed in terms of the sum of the
a priori state and the product of a gain with the measurement innovation.

x̂k = x̂−k + Kkδz−k = x̂−k + Kk

(
zk −Hkx̂−k

)
(10.13)

As can be seen, it is important to find the value of the gain, K, which shall now be derived.

The a posteriori error can be expanded as

ek = xk − x̂k
= xk − x̂−k −Kk

(
zk −Hkx̂−k

)
= − (I−KkHk) x̂−k −Kkzk + xk
= − (I−KkHk) x̂−k −Kk (Hkxk + vk) + xk
= −x̂−k −KkHkx̂−k −KkHkxk −Kkvk + xk
=
(
xk − x̂−k

)
+ KkHk

(
x̂−k − xk

)
−Kkvk

= (I−KkHk)
(
xk − x̂−k

)
−Kkvk

Using the definition of the a priori error from Eq. (10.6), the a posteriori error can be written
as

ek = [I−KkHk] e−k −Kkvk (10.14)

The a posteriori covariance matrix can be written as

Pk = E
[
ekeTk

]
= (Ik −KkHk) P−k (I−KkHk)T + KkRkKT

k (10.15)

In the covariance matrix, the diagonal terms express the variance of the state elements. The
off-diagonal terms express the covariance between the state elements. To make sure that the
estimation is optimal, the variance has to be brought to a minimum value. A measure of the
variance of all the state elements is the trace of the covariance matrix. Thus, the trace has to
be brought to a minimum value. To get the trace, the relation for the covariance found in Eq.
(10.15) has to be expanded.

Pk = E
[
ekeTk

]
= (Ik −KkHk) P−k (I−KkHk)T + KkRkKT

k

= (I−KkHk) P−k
(
I−HT

kKT
k

)
+ KkRkKT

k

=
(
P−k −KkHkP−k

) (
I−HT

kKT
k

)
+ KkRkKT

k

= P−k −KkHkP−k −P−k HT
kKT

k + KkHkP−k HT
kKT

k + KkRkKT
k

The trace is

Tr (Pk) = Tr
(
P−k
)
− 2 ·Tr

(
KkHkP−k

)
+Tr

(
Kk

(
HkP−k HT

k

)
KT
k

)
+Tr

(
KkRkKT

k

)
(10.16)

To find the gain that minimizes the trace of the covariance matrix, the derivative has to be 0.

∂ (Tr (Pk))
∂Kk

= 0 (10.17)
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Figure 10.1: Implementation of a Kalman Filter [Welch and Bishop, 2001]

To compute the derivative, the following 2 trace calculation rules are used

∂Tr
(
M1M2MT

1

)
∂M1

= 2M1M2 Only applicable for symmetric M2 (10.18)

∂Tr (M1M2)
∂M1

= MT
2 (10.19)

This results in the following condition for the gain

∂ (Tr (Pk))
∂Kk

= −2
(
HkP−k

)T
+ 2Kk

(
HkP−k HT

k

)
+ 2KkRk = 0 (10.20)

Eq. (10.20) can then be rearranged to give the optimal gain.

− 2
(
HkP−k

)T
+ 2Kk

(
HkP−k HT

k

)
+ 2KkRk = 0

K−1
k

(
HkP−k

)T
=
(
HkP−k HT

k

)
+ Rk

K−1
k =

(
HkP−k HT

k + Rk

) (
P−k HT

k

)−1

Taking the inverse, finally gives the value of the optimal gain

Kk = P−k HT
k

(
HkP−k HT

k + Rk

)
(10.21)

The optimal gain found in Eq. (10.21) provides a more compact version of the a posteriori
covariance matrix.

Pk = (I−KkHk) P−k (10.22)

This concludes the derivation for the optimal recursive filter for linear systems, the Kalman filter.
The way the filter works and the equations can be seen in Fig. 10.1.

10.1.2 Extended Kalman Filter

The Linear Kalman Filter, as its name implies, is only useful for linear systems. Most systems
that are modeled are nonlinear, thus rendering the LKF useless. The EKF is one way to adapt
the Kalman filtering techniques to nonlinear systems. The EKF works by using a first order
Taylor series approximation of the nonlinear system around the current estimate.
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This derivation of the EKF is based on the one in [Welch and Bishop, 2001]. The nonlinear
system is expressed by the following nonlinear equation

xk+1 = f (xk,uk,wk) (10.23)

with the measurement

zk = h (xk,vk) (10.24)

The noise parameters are the same as in Eqs. (10.3) and (10.4).

p(vk) ∼ N(0,Rk)
p(wk) ∼ N(0,Qk)

The a priori estimate can be derived from the previous a posteriori estimate using

x̂−k+1 = f (x̂k,uk+1,0) (10.25)

The measurement can be estimated using

ẑk = h
(
x̂−k ,0

)
(10.26)

The state and the measurement can be approximated by the linear equations

xk+1 ≈ x̂−k+1 + Ak (xk − x̂k) + Wkwk (10.27)

zk ≈ ẑk + Hk

(
xk − x̂−k

)
+ Vkvk (10.28)

In Eqs. 10.27 and 10.28, the terms A, H, V, and W are Jacobians that are used to linearize the
system.

Ak =
∂f
∂x

∣∣∣∣
(x̂k,uk,0)

(10.29)

Hk =
∂h
∂x

∣∣∣∣
(x̂−k ,0)

(10.30)

Vk =
∂h
∂v

∣∣∣∣
(x̂−k ,0)

(10.31)

Wk =
∂f
∂w

∣∣∣∣
(x̂k,uk+1,0)

(10.32)

The Jacobians have to be derived analytically beforehand and then the values have to be com-
puted at each step. There is a way to also compute them numerically by using numerical dif-
ferentiation techniques such as complex-step differentiation [Martins et al., 2000]. Numerical
differentiation obviates the need to derive the Jacobians, but is more computationally intensive
and possibly less accurate and stable for application.

A prediction error, which is equivalent to the a priori estimation error of the linear Kalman filter,
is defined as

ê−xk ≡ xk − x̂−k ≈ Ak−1 (xk−1 − x̂k−1) + εk (10.33)

The measurement residual, which is equivalent to the measurement innovation of the linear
Kalman filter, is defined as

ê−zk ≡ zk − ẑk ≈ Hk

(
ê−xk
)

+ ηk (10.34)

The variables ε and η are the linear approximations of the w and v respectively. Using the linear
variance propagation laws, the distribution of these two noise parameters is

p(εk) ∼ N
(
0,Wk−1Qk−1WT

k−1

)
(10.35)
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Figure 10.2: Implementation of an Extended Kalman Filter [Welch and Bishop, 2001]

p(ηk) ∼ N
(
0,VkRkVT

k

)
(10.36)

The prediction error estimate is defined as the difference between the a posteriori and the a priori
errors.

êk ≡ x̂k − x̂−k (10.37)

This prediction error estimate should be equivalent to the state update. Using a Kalman gain,
this becomes

êk = Kk

(
ê−zk
)

= Kk

(
zk − ẑ−k

)
(10.38)

The a posteriori state estimate can now be written as

x̂k = x̂−k + Kk

(
zk − ẑ−k

)
(10.39)

This results in the same kind of equations as the linear Kalman filter with an important difference.
The difference being that the noise parameters are replaced by their linearized counterparts. The
equation for the covariance propagation is

P−k+1 = AkPkAT
k + WkQkWT

k (10.40)

The gain can then be found by

Kk = P−k HT
k

(
HkP−k HT

k + VkRkVT
k

)−1
(10.41)

The method used to implement an EKF can be seen in Fig. 10.2.

10.1.3 Unscented Kalman Filter

As stated previously, the EKF is the de-facto filter in the aerospace field, but this does not
imply that it is the best. The EKF is only a first degree approximation and it requires that
the Jacobians are derived beforehand. It should be noted that it is also possible to compute the
Jacobians numerically, but as stated earlier, this tends to lower the performance and possibly
accuracy and stability. There is a new kind of filter known as the Unscented Kalman Filter
(UKF), which is based on the Unscented Transform (UT). The UKF was first presented in [Julier
and Uhlmann, 1997] and excellent information can also be found in [Wan and Van der Merwe,
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Figure 10.3: Differences in covariance transformation through a non linear function for the actual,
linearized, and Unscented cases [Wan and Van der Merwe, 2000]

2000]. According to [Crassidis and Junkins, 2004], The Unscented filter works on the premise
that with a fixed number of parameters it should be easier to approximate a Gaussian distribution
than to approximate an arbitrary nonlinear function. The UT estimates the covariance of a
nonlinear function up to the third order. It does this by applying the function to a set of
carefully chosen points, called sigma points. The difference between the actual, linearized, and
unscented covariance propagations can be seen in Fig. 10.3.

For the UKF, the same kind of nonlinear system and measurement equations are used as with
the EKF. They are

xk+1 = f (xk,uk,wk)

zk = h (xk,vk)

p(vk) ∼ N(0,Rk)
p(wk) ∼ N(0,Qk)

It is assumed that the state is estimated with x̂k and covariance Pk. The state is augmented by
adding the expected value of the process and the measurement noises. It is important to note
that the expected noise is always 0 because normal Gaussian noise is being considered.

x̂ak =

 x̂k
ŵk

v̂k

 =

 x̂k
0
0

 (10.42)

This augmented state has its own covariance matrix, which is

Pa
k =

 Pk 0 0
0 Qk 0
0 0 Rk

 (10.43)
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The noise sources are considered to be independent of each other, so there is no correlation
between them. The length of the augmented state vector is L, which is the sum of the the
lengths of the state and the noise vectors. The next step is to calculate the sigma points, which
are the most essential points. Each sigma point, X i,k, is a vector with dimension L. In total,
2L+ 1 sigma points need to be calculated in the following way

X 0,k = x̂ak (10.44a)

X i,k = x̂ak +
(√

(L+ λ) Pa
k

)
i

i = 1, . . . , L (10.44b)

X i,k = x̂ak −
(√

(L+ λ) Pa
k

)
i−L

i = L+ 1, . . . , 2L (10.44c)

In the equation above, the i on the right hand side refers to the i th column, λ is a scaling
parameter and is defined as

λ = α2 (L+ κ)− L (10.45)

In Eq. (10.45), α is used to distribute the sigma points around x̂a. κ is also a scaling parameter,
but it is secondary to λ. According to [Wan and Van der Merwe, 2000], α is normally a small
positive number like 0.003 and κ is 0.

Each sigma point can now be propagated using

X x−
i,k+1 = f

(
X x
i,k,uk+1,Xw

i,k

)
(10.46)

In Eq. (10.46), the superscripts refer to the part of the sigma vector referring to the state or
noises. The a priori state estimate can be found from the expected value of the propagated sigma
points.

x̂−k+1 =
2L∑
i=0

W
(m)
i X x−

i,k+1 (10.47)

In Eq. (10.47), W (m)
i is a weight factor and is found in the following way

W
(m)
0 =

λ

L+ λ
(10.48a)

W
(m)
i =

1
2(L+ λ)

i = 1, . . . , 2L (10.48b)

The a priori covariance can be found in the following way

P−k+1 =
2L∑
i=0

W
(c)
i

(
X a−
i,k+1 − x̂−k+1

)(
X a−
i,k+1 − x̂−k+1

)T
(10.49)

In Eq. (10.49), W (c)
i is a weight and can be found via

W
(c)
0 =

λ

L+ λ
+ (1− α2 + β) (10.50a)

W
(c)
i =

1
2(L+ λ)

i = 1, . . . , 2L (10.50b)

with β providing information about the probability distribution function of the state. According
to [Wan and Van der Merwe, 2000], the value of β for Gaussian distributions is 2.

For the a posteriori update at k, the measurement function has to be applied to the sigma points.
This will create a set of estimated measurement sigma points, Zi,k, found by

Zi,k = h
(
X x−
i,k ,X

v
i,k−1

)
(10.51)
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The estimated measurement can then be found by taking the expected value of the estimated
measurement sigma points.

ẑk =
2L∑
i=0

W
(m)
i Zi,k (10.52)

The covariance for the estimated measurement is

Pzzk
=

2L∑
i=0

W
(c)
i (Zi,k − ẑk) (Zi,k − ẑk)T (10.53)

The covariance between the state and the estimated measurement is

Pxzk
=

2L∑
i=0

W
(c)
i

(
X x−
i,k − x̂−k

)
(Zi,k − ẑk)T (10.54)

The Kalman gain can be found in the following way

Kk = Pxzk
P−1

zzk
(10.55)

The a posteriori state estimate can be found from the a priori state estimate using the standard
Kalman filter update equation.

x̂k = x̂−k + Kk (zk − ẑk) (10.56)

The state covariance can finally be updated in the following manner

Pk = P−k −KkPzzk
KT
k (10.57)

10.2 Divided Difference Filter

The Divided Difference Filter (DDF) was first proposed in [Nøgaard et al., 2004]. This method
uses Stirling’s interpolation formula instead of Taylor’s approximation. The definition of Stirling’s
interpolation method is beyond the scope of this paper and so the reader is referred to [Nøgaard
et al., 2004] for more information on this subject. Stirling’s interpolation is a very large topic by
itself, but it is not important to know the method to be able to use the filter. The important
difference between Stirling’s and Taylor’s method is that Stirling’s method uses differences while
Taylor’s method used derivatives. The result is that Taylor’s approximation is very accurate close
to the point of linearization, but Sterling’s method describes the overall function better. This
difference can be seen in Fig. 10.4.

Stirling’s 2nd order approximation of a function f(x) around x = x̄ is

y ≈ f(x̄) + D̃∆xf +
1
2!

D̃2
∆xf (10.58)

In Eq. (10.58), D̃∆xf and D̃2
∆xf are the divided difference operators.

D̃∆xf =
1
h

(
n∑
i=1

∆xiµiδi

)
f(x̄) (10.59)

D̃2
∆xf =

1
h2

 n∑
i=1

(∆xi)
2
δ2
i +

n∑
i=1

n∑
j=1,j 6=i

∆xi∆xj (µiδi)
(
µjδj

) f(x̄) (10.60)

In the divided difference operators, êi refers to the ith unit vector. The partial difference operator,
δi, and the average operator, µi, are

δi = f
(

x̄ +
h

2
êi

)
− f

(
x̄ +

h

2
êi

)
(10.61)
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Figure 10.4: Difference between Stirling’s and Taylor’s approximation methods (Modified from
[Nøgaard et al., 2004])

µi =
1
2

(
f
(

x̄ +
h

2
êi

)
+ f

(
x̄ +

h

2
êi

))
(10.62)

Finally, h is the interval length. For the first order interpolation, only the first two components
of the right hand side of Eq. (10.58) need to be used.

[Nøgaard et al., 2004] have applied this interpolation method to stochastic systems to develop
filters. They have developed the following two versions of the DDF

DD1 Using 1st order Stirling’s interpolation

DD2 Using 2nd order Stirling’s interpolation

Both DD1 and DD2 will be explained in this section. Since both filters are for nonlinear systems,
the same system description as for the UKF and EKF is used.

xk+1 = f (xk,uk,wk)

zk = h (xk,vk)

p(vk) ∼ N(0,Rk)
p(wk) ∼ N(0,Qk)

The concept of the DDFs is similar to that of the UKF in the sense that certain points are used
to find the covariance after a nonlinear transformation. The step size, h, has an optimal value of√

3 according to [Nøgaard et al., 2004]. This value can, however, also be thought of as a tuning
parameter. These filtering methods use square roots of the various covariance matrices, which
is good for the numerical stability of the matrices. The square root matrix is a lower triangle
matrix and is best computed using Cholesky decomposition, found in Section C.2. The square
roots of the four important covariance matrices are

Pk = SxkSTxk (10.63a)

P−k = S−xk
(
S−xk

)T
(10.63b)

Rk = SvkSTvk (10.63c)

Qk = SwkSTwk (10.63d)
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10.2.1 Divided Difference Filter 1

The DDF1, which uses the first-order Stirling’s interpolation method, is presented first. There
are four more matrices that are found by applying divided differences. The first is the matrix
corresponding to the propagation of the state.

S(1)
xx̂k(i) =

1
2h

(f (x̂k + hSxk(i),uk, ŵk)− f (x̂k − hSxk(i),uk, ŵk)) (10.64)

In Eq. (10.64), i refers to the ith column of the matrix. This is also true for the rest of the
matrices. The matrix for the propagation of the process noise is

S(1)
xwk(i) =

1
2h

(f (x̂k,uk, ŵk + hSwk(i))− f (x̂k,uk, ŵk − hSwk(i))) (10.65)

The matrix corresponding to measurement estimation with respect to the estimated state is

S(1)

zx̂−k
(i) =

1
2h
(
g
(
x̂−k + hS−xk(i), v̂k

)
− g

(
x̂−k − hS−xk(i), v̂k

))
(10.66)

The matrix corresponding to measurement estimation with respect to the measurement noise is

S(1)
zvk(i) =

1
2h
(
g
(
x̂−k , v̂k + hSvk(i)

)
− g

(
x̂−k , v̂k − hSvk(i)

))
(10.67)

With the matrices defined in Eqs. (10.64 - 10.67) it is possible to carry out the full state estimation
process. For the a priori update, the state will be propagated using the normal system equation.

x̂−k+1 = f (x̂k,uk, ŵk) (10.68)

The a priori covariance of the state can be found using

P−k+1 = S(1)
xx̂k

(
S(1)

xx̂k

)T
+ S(1)

xwk

(
S(1)

xwk

)T
(10.69)

This gives the covariance matrix of which the square root can again be found by Cholesky
decomposition. The square root can also be found immediately from the following matrix

S−x(k+1) =
[

S(1)
xx̂k S(1)

xwk

]
(10.70)

The matrix in Eq. (10.70) is a rectangular matrix, and must be transformed into a square
matrix by using Householder triangularization. Details about the implementation of Householder
triangularization can be found in Section C.3 in page 202.

For the a posteriori estimate, the measurement can be predicted by using the non linear mea-
surement equation.

ẑk = g
(
x̂−k , v̂k

)
(10.71)

The square root of the output estimation error can be found by the Householder triangularization
of

Szk =
[

S(1)
zx̂−k S(1)

zvk

]
(10.72)

The cross-covariance of measurement and state can be found by

Pxzk = S−xk
(
S(1)

zx̂−k

)T
(10.73)

The gain can be computed in the following way

Kk = Pxzk

(
SzkSTzk

)−1
(10.74)



114 Recursive Filtering Techniques

The state is updated in the following manner

x̂k = x̂−k + Kk (zk − ẑk) (10.75)

Finally, the a posteriori state covariance can be found by using the gain as

Pk =
(
S−xk −KkS

(1)
zxk

)(
S−xk −KkS

(1)
zxk

)T
+ KkS

(1)
zvk

(
KkS

(1)
zvk

)T
(10.76)

The square root of the a posteriori covariance, Sxk, can either be found from the Cholesky
decomposition of Eq. (10.76) or the Householder triangularization of

Sxk =
[

S−xk −KkS
(1)
zxk KkS

(1)
zvk

]
(10.77)

Since the DD1 is also first order, it performs like the EKF. The DD1 filter, however, does not
require the computation of the Jacobians.

10.2.2 Divided Difference Filter 2

The second order Divided Difference Filter, DD2, works on almost the same principle as DD1.
Similar matrices as the ones found in Eqs. (10.64 - 10.67) are computed using second order
divided differences. It should be noted that Eqs. (10.64 - 10.67) are required for DD2 in addition
to the second order divided differences. The matrices are

S(2)
xx̂k(i) =

√
h2 − 1
2h2

×

(f (x̂k + hSxk(i),uk, ŵk) + f (x̂k − hSxk(i),uk, ŵk)− 2f (x̂k,uk, ŵk))
(10.78)

S(2)
xwk(i) =

√
h2 − 1
2h2

×

(f (x̂k,uk, ŵk + hSwk(i)) + f (x̂k,uk, ŵk − hSwk(i))− 2f (x̂k,uk, ŵk))
(10.79)

S(2)

zx̂−k
(i) =

√
h2 − 1
2h2

×(
g
(
x̂−k + hS−xk(i), v̂k

)
+ g

(
x̂−k − hS−xk(i), v̂k

)
− 2g

(
x̂−k , v̂k

)) (10.80)

S(2)
zvk(i) =

√
h2 − 1
2h2

×(
g
(
x̂−k , v̂k + hSvk(i)

)
+ g

(
x̂−k , v̂k − hSvk(i)

)
− 2g

(
x̂−k , v̂k

)) (10.81)

The a priori state estimate can be found in the following way

x̂k+1 =
h2 − nx − nw

h2
f (x̂k,uk, ŵk)

+
1

2h2

nx∑
i=1

f (x̂k + hSxk(i),uk, ŵk) + f (x̂k − hSxk(i),uk, ŵk)

+
1

2h2

nw∑
i=1

f (x̂k,uk, ŵk + hSwk(i)) + f (x̂k,uk, ŵk − hSwk(i))

(10.82)

In Eq. (10.82), nx is the size of the state vector, and nw is the size of the process noise vector. The
a priori state estimate of the DD2 is the same as the one for the UKF. The a priori covariance
estimate is, however, not equal to the one found in the UKF. The covariance can be found by
applying Householder triangularization to the following rectangular matrix

S−x(k+1) =
[

S(1)
xx̂k S(1)

xwk S(2)
xx̂k S(2)

xwk

]
(10.83)
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For the a posteriori estimate, the measurement has to first be predicted in the following manner

ẑk =
h2 − nx − nw

h2
g
(
x̂−k , ŵk

)
+

1
2h2

nx∑
i=1

g
(
x̂−k + hS−xk(i), v̂k

)
+ g

(
x̂−k − hS−xk(i), v̂k

)
+

1
2h2

nv∑
i=1

g
(
x̂−k , v̂k + hSvk(i)

)
+ g

(
x̂−k , v̂k − hSvk(i)

)
(10.84)

In Eq. (10.84), nv is the size of the measurement noise vector. The square root of the covariance
can be found by the Householder triangularization of

Szk =
[

S(1)
zx̂−k S(1)

zvk S(2)
zx̂−k S(2)

zvk

]
(10.85)

The cross-covariance of measurement and state is the same as for the DD1.

Pxzk = S−xk
(
S(1)

zx̂−k

)T
(10.86)

The gain is

Kk = Pxzk

(
SzkSTzk

)−1
(10.87)

The state is updated in the following manner

x̂k = x̂−k + Kk (zk − ẑk) (10.88)

Finally, the a posteriori state covariance can be found by using the gain as

Pk =
(
S−xk −KkS

(1)
zxk

)(
S−xk −KkS

(1)
zxk

)T
+ KkS

(1)
zvk

(
KkS

(1)
zvk

)T
+ KkS

(2)
zxk

(
KkS

(2)
zxk

)T
+ KkS

(2)
zvk

(
KkS

(2)
zvk

)T (10.89)

The square root of the a posteriori covariance, Sxk, can either be found from the Cholesky
decomposition of Eq. (10.89) or the Householder triangularization of

Sxk =
[

S−xk −KkS
(1)
zxk KkS

(1)
zvk KkS

(2)
zxk KkS

(2)
zvk

]
(10.90)

10.3 Summary

The performance of the various nonlinear filters is discussed here. The linear filter is not dealt
with here, because the systems that the filters will be used upon will not be linear. The various
nonlinear filters are first summarized and then compared with each other.

The EKF uses a 1st-order Taylor approximation to linearize the nonlinear functions. It is the
fastest of the filters, however, it can be the hardest to implement. The Jacobians have to be
derived beforehand, which saves computation time. The problem is that some functions can be
incredibly complex and thus, the derivation process can be very difficult. It is possible to obviate
the need to derive the Jacobians analytically by using numerical differentiation, but this causes
more inaccuracies. Also, the approximation assumes that the errors are small. If this is not the
case, then the filter can diverge.

The UKF is very easy to implement but this results in a high computationol load. The accuracy
is, however, higher than the EKF. There are a few scaling parameters, which can result in more
tuning work.
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Figure 10.5: Comparison of EKF and the DDFs [Nøgaard et al., 2004]

Both DD1, and DD2 have very good numerical stability because of their implementation of
matrix square roots. The DD1 has an accuracy comparable to the EKF, but with a greater
computational load. It is, however, much easier to implement and less prone to diverging. The
DD2 is comparable to the UKF, but is also easier to implement. This is because both the DDFs
have only one tuning parameter. DD2 even has the same a priori state estimate as the UKF.
The UKF, DD1, and DD2 are collectively referred to as sigma point filters.

[Nøgaard et al., 2004] have carried out a test comparing DD1 and DD2 with the EKF. The result
of which, can be seen in Fig. 10.5. It is concluded in [Nøgaard et al., 2004] that the state estimate
using the DD2 is better than the state estimates using the EKF or the DD1. The state estimates
of the DD1 and the EKF have a similar accuracy, with the EKF being marginally more accurate.
From the literature, the various characteristics of the nonlinear filters dealt with in this section
can be summarized as seen Table 10.1.

The EKF and DD1 score the same on the accuracy because they are both 1st-order filters.
UKF and DD2 are both 2nd-order filters and thus, are more accurate. The EKF, has a very
low computational load because the Jacobians are pre-computed. In case the Jacobians are

Table 10.1: A comparison of the various nonlinear filters
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computed by numerical differentiation, the computational load would increase. The DD1 uses
half the number of sigma points compared to DD2 and UKF and thus, has a lower computational
load. The computational load is, however, still larger than that of the EKF. UKF and DD2 have
almost the same computational load, which is higher than that of DD1 and the EKF. UKF and
DD2, being 2nd-order filters, have a higher stability than the first order filters and comparable to
each other. DD1 scores better than EKF because DD1 is supposed to be less prone to divergence
than the EKF according to [Nøgaard et al., 2004]. The ease of implementation factor includes the
overhead required in the implementation. Jacobians have to be derived beforehand to implement
the EKF in the traditional manner. This makes it the hardest filter to implement. If, however, the
Jacobians are computed using numerical differentiation, the EKF would be as easy to implement
as DD1, DD2, and UKF. The UKF, DD1, and DD2 have the same ease of implementation because
they can be adapted to any state transition and measurement equations.

For this thesis study, all four nonlinear filters presented in this chapter are used and therefore, no
tradeoff is made in Table 10.1. They all have their pros and cons, and the best way to compare
the performance is to actually implement them. Thus, the following chapter implements all four
filters to estimate the state of spacecraft using measurements from a ground station.
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Chapter 11

Ground Station Tracking

It was shown in Chapter 8 that the performance of the USM in numerical integration is superior
to that of Cartesian coordinates for most cases. For real astronautics missions, however, it is
not enough to simply be able to integrate various spacecraft trajectories. It is also necessary
to estimate the position and velocity of a spacecraft. The goal of this chapter is to simulate a
scenario where a ground station tracks a satellite in orbit. The initial state at the start of the
tracking process is simply an estimate with some error in it. Moreover, a measurement from
a ground station has some noise in it and therefore, filtering techniques from Chapter 10 have
to be used to successfully estimate the state. Comparison of navigation using ground station
tracking has been carried out in [Chodas, 1981] where it was concluded that better estimates of
the spacecraft state can be made using Cartesian coordinates than with the USM. The goal of
this chapter is to recreate the tests and validate the results.

The filtering techniques are very sensitive to the tuning parameters. Tuning the various filters is
a very time consuming and tedious process for the engineer. Therefore, an optimizer is used to
tune the various filters for the various models. It is important to note that it is not the optimizer,
but the filtering itself that is of importance here. The optimizer takes many computer hours, but
in these modern times, computer hours are orders of magnitude cheaper than man hours. To
start the tuning process, the tuning parameters for the various filters have to be identified.

11.1 Ground Station Measurement

Ground stations can not only be used for communicating with satellites, but also to help in the
navigation of the satellite. There is a variety of ways in which satellites can be tracked using
ground stations. In this section, only 2-way measurements using one clock are treated. This is
because most satellites do not possess a clock that is accurate enough. A ground station works
by sending an electromagnetic pulse that is reflected by the satellite. Since the speed of light is
known, the time of flight is a measure of the distance to the satellite from the ground station.
An example of ground based tracking is the Satellite Laser Ranging (SLR) method. It should
be noted, however, that the time of flight has to be measured very accurately. Clock errors
can give huge position errors, and this is why a minimum of four GPS satellites are required to
estimate the state of a user. Using four satellites, the three position variables and the time can
be successfully estimated.

The ground based tracking measurements take place in the local horizontal coordinate system of
the ground station. Thus, the ground station measures the vector from it to the satellite. This
vector is not provided in Cartesian coordinates, but in spherical coordinates, with the angles
Azimuth and Elevation. It is assumed that the position and velocity of the satellite are expressed
in the ECI frame. These angles can be seen in Fig. 11.2. Let the range from the ground station
to the satellite be ρ. To find ρ, the position of both the ground station and the satellite have

119



120 Ground Station Tracking

Figure 11.1: Various ways of ground based satellite tracking [Hujsak et al., 2007]

to be known in the same reference frame. The location of a ground station is usually given in
the form of a height, and geodetic latitude and longitude. Moreover, the Azimuth and Elevation
need to be computed in the local horizontal frame. Therefore, it is best to convert the position of
the satellite to the ECEF frame from the ECI frame. The DCM CECEF,ECI can be found using
Eq. (4.33) found on page 31. The ECEF position of the ground station can be found using Eq.
(4.37) found on page 33. The range, ρ, is simply the magnitude of the vector from the ground
station to the spacecraft. This vector is the difference between the radial vector of the spacecraft
and the radial vector of the ground station. The radial vector needs to be converted to the local
tangent plane reference frame using the DCM found in Eq. (4.43) on page 34.

The conversions between the cartesian and spherical coordinates according to [Montenbruck and
Gill, 2005; Chodas, 1981] are ρE

ρN
ρU

 = ρ

 sinA cosE
cosA cosE

sinE

 (11.1)

A = arctan
(
ρE
ρN

)
(11.2a)

E = arctan

(
ρU√

ρ2
E + ρ2

N

)
(11.2b)

The measurement from a ground station is in the form (ρ,A,E). These measurements are not
perfect because of some sources of error. The reader is referred to [Montenbruck and Gill, 2005] for
more information about these errors. The first error is light time, which is caused by the velocity
of light. If it takes δt seconds for the laser to travel back from the satellite to the ground station,
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Figure 11.2: Definition of azimuth and elevation [Montenbruck and Gill, 2005]

the satellite must have a certain translation in this time. This is corrected by iteration by the
ground station. According to [Montenbruck and Gill, 2005], this time is 0.01 s for LEO satellites,
which corresponds to an angular correction of 7′′. Another error is light aberration, which is
caused by relativistic effects. This is because the light path is slightly different in the rotating
ground station fixed reference frame when compared to an inertial frame. This aberration also
requires an angular correction, which is 0.3′′ for GEO satellites and 0.6′′ for LEO satellites.

If instead of an SLR, Ground-based Bistatic ranging from Fig. 11.1 is used, there is also a
transponder delay, which is the time delay between the retransmitting of a signal by the satellite.
According to [Montenbruck and Gill, 2005], this is 3000 ns for typical applications and a few
nanoseconds for high precision hardware. There are also delays due to the different alignment of
the transmitting and receiving antennae of the ground station, the internal electronics, and the
weather conditions.

Ground based tracking can also be used to find the range rate. There are two possibilities to
find this range rate. One way is to use two-way range rates, which takes the average of two
ranges and uses signals transmitted from the ground station, and signals transmitted back from
the satellite. This average range is divided by the counting time to find the range rate. There
is also a one-way range rate measurement technique, which only uses the signals transmitted
from the ground station. The two-way range rate technique can be seen in Fig. 11.3 , where the
subscript u stands for signals going up from the ground station to the satellite and the subscript
d stands for signals going down from the satellite to the ground station. For the one-way range
rate technique, the signals with the subscript d are discarded.

For implementation in this study, the only difference between one-way and two-way range rates
is that there will be more noise for one-way range rates. The measurement equation to find the
range rate, from [Chodas, 1981] is

ρ̇ = (1/ρ) [ρx (vx + ωEy) + ρy (vy − ωEx) + ρzvz] (11.3)

In Eq. (11.3), the quantities are

• ρx,y,z are the components of ρ in ECI

• x, y, z are the ECI components of the spacecraft radial vector

• vx,y,x are the ECI components of the spacecraft velocity vector

• ωE is the rotation rate of the Earth found in Tab. 4.1 on pg. 32
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Figure 11.3: Motion of the ground station and the satellite during a 2 way range rate measurement
[Montenbruck and Gill, 2005]

11.2 Implementation

Using the measurement equations, a simple ground station tracking test is set up similar to the
one found in [Chodas, 1981]. For this test, the orbit of SARSAT, with the Kepler elements found
in Table 8.1, is tracked for a 12 hour period. For the time-frame in [Chodas, 1981], the two ground
stations that were used for tracking can be found in Table 11.1 (CLA and OTT). However, the
time frame used for the simulation now differs from that of [Chodas, 1981] and it is therefore not
possible to use the same ground stations. Based on the ground track of the satellite, more ground
stations have been added to the pool to make a better selection. The ground track of SARSAT
and the positions of the various ground station from Table 11.1 can be seen in Fig. 11.4.

11.2.1 Estimation Setup

[Chodas, 1981] assumes that all the process and measurement noises are simply additive. He also
uses only two ground stations. To be consistent, the same is carried out in this study. However,
the ground stations to be used differ from the original Ottawa (OTT) and Cold Lake (CLA).
[Chodas, 1981] assumes a fully modeled system and the perturbations used are fourth order
zonal and tesseral geopotential harmonics. In this study, however, all the perturbations found
in Appendix B are used to generate the reference trajectory. Also, [Chodas, 1981] only utilizes
an EKF with analytical Jacobians. In this study, the EKF is implemented with numerically
computed Jacobians using the theory found in section C.5 on page 205. Along with the EKF,

Table 11.1: Location of the ground stations used for orbital tracking

Location Code Latitude Longitude
Ottawa, Canada OTT 45◦ N −75◦ E

Cold Lake, Canada CLA 55◦ N −110◦ E
Alaska, USA ASF 65◦ N −147◦ E

Malindi, Kenya MAL −3◦ N 40◦ E
Hawaii, USA UHM 30◦ N −158◦ E
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Figure 11.4: Ground track of SARSAT and the locations of various ground stations

Table 11.2: True and estimated initial states for the orbit tracking simulations

a [ km ] e [ - ] i [ deg ] Ω [ deg ] ω [ deg ] ν [ deg ]
Initial True State 7213 0.01 98.9 269 205 174

Initial Estimated State 7359.18 0.0078 99.01 268.21 338.07 40.95

the other nonlinear filters from Chapter 10 are also implemented (i.e., UKF, DD1, and DD2).
According to [Chodas, 1981], for a first-order trajectory simulation, the perturbations can be
ignored. Since the EKF is a first-order filter, this translates into the fact that the perturbations
do not have to be taken into account during the propagation of the state. Since DD1 is also
a first-order filtering technique, the same philosophy can be applied here. The ground station
tracking is carried out with Cartesian coordinates, USM7, and USM6. The true initial state and
the estimated initial state for all models and all filters are kept the same as in [Chodas, 1981]
and can be seen in Table 11.2. All measurements presented in section 11.1 are used.

The standard deviations for the measurement errors used for all ground stations can be found in
Table 11.3.

The setup used by [Chodas, 1981] is quite simple and straightforward. However, it is not the
best possible modeling method. An additive error is used, which is fine for Cartesian coordinates

Table 11.3: Standard deviations used in [Chodas, 1981] for the various measurements available from
the ground stations

Measurement type Standard deviation
Range 2 m

Azimuth 0.02◦

Elevation 0.02◦

Range rate 1 m/s
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where the time derivative of the velocities are the perturbing accelerations themselves. For the
USM however, a perturbing acceleration is not simply added to the time derivative, but is more
integrated inside the dynamics. Thus, the method of implementing the process noise during the
state propagation has to be changed to model the system more realistically. An initial estimate
of the state for Cartesian coordinates with a diagonal covariance matrix has a physical meaning.
However, this is not the case for the USM because the state elements are all interdependent. Thus,
it is better to use a nonlinear covariance transformation method like the unscented transform to
convert an initial estimate in Cartesian coordinates to an initial estimate in one of the USMs.

The logical way to come up with an initial guess for the covariance is to estimate how much
the USM parameters would differ from the USM parameters of the actual state. This is also the
method used in [Chodas, 1981]. If an estimate with this covariance is converted back to Cartesian
coordinates, we do not get a point with a sphere of uncertainty like we would get if we had a
Cartesian state with a diagonal covariance matrix. The result would actually be an ellipsoid and
the Cartesian coordinates of the position and the velocity would be highly correlated. A more
intuitive method of getting the initial USM state estimate and the covariance would be to take
the initial estimate of the state and covariance in Cartesian coordinates and the use the UT to
get a state estimate in terms of the USM.

To show the effect of using a diagonal covariance matrix for the USM, the initial covariance of the
state in Cartesian coordinates found in [Chodas, 1981] is compared to the UT converted initial
covariance of the state in USM7 found in [Chodas, 1981]. The error ellipses for the position and
velocity in Cartesian coordinate space can be seen in Fig. 11.5. The covariance in Cartesian
coordinates is very skewed in all cases with much correlation. Also, there is correlation present
between the position variables and the velocity variables. Using an UT to get the state covariance
for the USM would eliminate all of this and provide a consistent initial estimate of position and
velocity for all the different parameter sets.

11.2.2 Implementation

The equations for filtering found in Chapter 10 are quite abstract and can use for any generic
filtering problem. The state x and the state estimate x̂ in this particular problem refer to a vector
containing the position and velocity for the Cartesian coordinates, the hodographic velocities and
the quaternion for the USM7, and the hodographic velocities and the MRP vector for the USM6.
In Chapter 10, the nonlinear system equation is shown as

xk+1 = f(xk,uk,wk) (11.4)

For the implementation here, the nonlinear equation takes care of the propagation of the space-
craft state in time. It should be noted, however, that this is not the dynamic equation. Instead,
it is the complete RK4 step that propagates the state from one time step to the next. There is
no control applied to the spacecraft and so u can be disregarded. The uncertainty present in the
perturbing accelerations is represented by wk. Inside the dynamic equation, the noise is added
on to the accelerations. For the Cartesian coordinates, the acceleration is

aCartesian =

 ax + ηax
ay + ηay
az + ηaz

 (11.5)

and w is

wCartesian =

 ηax
ηay
ηaz

 (11.6)

For the USM7 and USM6, acceleration with the noise is

aUSM =

 ae1 + ηae1
ae2 + ηae2
ae3 + ηae3

 (11.7)
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Figure 11.5: The UT of a diagonal covariance matrix for a USM7 state to Cartesian coordinates

and w is

wUSM =

 ηae1
ηae2
ηae3

 (11.8)

For the USMs and Cartesian coordinates, all the ηa are normally distributed with zero mean.
Qk is the covariance matrix of these ηa.
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The measurement equation in Chapter 10 is shown as

zk = h(xk,vk) (11.9)

The measurement is the output of the measurement made by a ground-station and could be any
combination of range, azimuth, elevation, and range-rate. The function h is the function that
takes the spacecraft state expressed in either Cartesian coordinates, the USM7, or the USM6
and outputs the desired measurement. The noise present in the ground state measurement is
represented by v.

The navigation simulation can be split into a real-world part and a onboard part. The real-
world part knows the true state of the spacecraft at all times. This part is in charge of taking
the true state and then creating measurements from the ground-station. Since measurements
are not perfect in reality, this measurement creator also adds a randomly generated quantity to
the perfect measurement. This randomly generated number is created from a distribution that
has zero mean and a standard deviation found in Table 11.3. The onboard part is in charge of
carrying out the filtering with the various estimators. It is independent from the real-world part
and the only communication between the two is the input of the imperfect measurement from
the real-world part to the onboard part at the appropriate times.

Some additional aspects noticed or used during implementation are presented below:

The estimation process for USM7 using the first-order filtering techniques EKF and DD1 is very
unstable. It results in unsuccessful estimates if the two ground stations used are ASF and UHM.
Thus, the two ground stations chosen for the simulation are ASF and MAL.

Also, the Number of Diagonalizations of Pk (NDPK) technique is used for the first-order filters.
The NDPK was utilized in [Chodas, 1981] and it reduces the state covariance matrix to its
diagonal form after the first measurement update. It was shown in [Chodas, 1981] that this
technique increased the accuracy of the state estimation. Unlike [Chodas, 1981], where it was
found that NDPK is only beneficial for Cartesian coordinates, it was found in this thesis study
that NDPK is beneficial for both Cartesian coordinates and USM7.

For the UKF, the state is not augmented. This reduces the computation load and according
to [Sun et al., 2009], it does not necessarily negatively influence the results. The augmented
state is shown in Eq. 10.42 on page 109. If the state is augmented, it means that the expected
values of the process and the measurement noises have to be added to the state. In case all 4
measurements are used, this would increase the dimension of the state by 7. This would increase
the complexity of the estimation process and the computation time.

For the USM6, switching is required between MRP and SMRP. For this purpose, UT is used for
the EKF and the UKF and second-order divided differences are used for the DD1 and DD2. This
ensures that there are no extra uncertainties added due to the switching of the parameters.

11.3 Optimization

Since the optimizer itself is not the goal of this thesis study, only a rudimentary overview is
provided here. Since the tuning problem is nonlinear and there is no analytical function, a
numerical optimizer has to be chosen. Due to wealth of experience and knowledge in optimization
using Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) at the Astrodynamics
and Space Missions research chair, these two were the main contenders. According to [Jones,
2005], the PSO has a relatively low computation load and is easy to implement. Also according
to [Jones, 2005], the PSO has difficulty in local optimization, but can quickly converge to the
general area of the global optimum. This is sufficient for the problem at hand, because the same
tuning parameter of a filtering process will not provide the exact same results twice due to the
stochastic nature of the problem. As for the actual performance difference, some find that the
PSO has better results, while others find that the GA has better results. The PSO was ultimately
chosen as the optimizer to use for this tuning process since the ease of implementation was a
major requirement for this thesis study.
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11.3.1 Particle Swarm Optimizer

The PSO was first proposed in [Kennedy and Eberhart, 1995] and follows a simplified model of
the behavior of a flock of birds. The basic philosophy is that a swarm is created out of a specified
number of particles. Each particle i has a certain velocity vid with which it flies through the
search space, along with a memory. In the memory, each particle stores the most optimum of
the locations that has been explored by it. There is also a sort of communication between the
particles so that each particle also has a knowledge of the global best location. Based on these
criteria, the velocity of a particle for the next generation can be determined. For the original
PSO, there are only two tuning parameters for the update of the velocity. The first parameter c1,
is a weight based on the optimum location found by the particle, and the second parameter c2,
is a weight based on the most optimum location out of all the locations visited by the particles.
Another parameter known as the inertia weight for the updating of the velocity is proposed in
[Shi and Eberhart, 1998] that balances between the global and local search, and they suggest
that it is best to decrease this parameter during the optimization run. When w is higher, the
particles have a higher velocity and are more explorative. When w is lower, the particles have
a lover velocity and thus, try to search for the local optimum. According to [Shi and Eberhart,
1998], the velocity of a particle can be found in the following way

vid = w × vid + c1 × rand()× (pid − xid) + c2 × rand()× (pgd − xid) (11.10)

The location in the search space of the particle in the next flight is

xid = xid + vid (11.11)

In Eqs. (11.10) and (11.11), xid is the present position of particle i in the search space, pid is the
best location that particle i has visited, and pgd is the best location out of the locations that all
the particles have visited.

11.3.2 Setup and Tuning Parameters

First the objective function has to be identified. The goal of the optimization process is to
minimize the output of this function. For the case investigated here, the objective function is
a result from the filtering process. To simplify the problem, it was decided to minimize only
one parameter, which is the Mean Absolute Error (MAE) of the position estimate from the
time of first measurement onwards. At each time-step, the present state estimate is converted to
Cartesian coordinates. The position error vector is defined as the vector between the true position
and estimated position of the spacecraft. The error is defined as the norm of this position error
vector. At the end of the estimation process, the mean of the norms is taken from the time of first
measurement. Since the norm is always positive, this is automatically the MAE. In case some
other parameter was used as the error, which could be both positive and negative, the mean of
the absolute value of this parameter should be taken.

Due to the stochastic nature of the problem, the filtering process is carried out for a specified
number of times and the output is the mean of the MAEs.

Tuning Parameters for the Filters

The tuning parameters of the various filters form the search space and these are identified to be:
For the EKF, the tuning parameters are:

• Qk the 3 × 3 process noise. This is because of the accelerations in 3 dimensions and is a
measure of the uncertainty in the modeling of the system. It can be predicted that if fewer
perturbations are modeled, the values of Qk are larger.

For the UKF, the tuning parameters are:
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Table 11.4: Ranges for the tuning parameters for the various filters

Parameter Minimum Value Maximum Value
Qmag 10−16 10−2

αUKF 10−5 1
hDDF 1

√
5

• Qk the process noise

• αUKF a scaling parameter

In reality, βUKF and κUKF are also parameters that can be tuned. However, according to [All-
goewer et al., 2009], for most cases βUKF = 2 and κUKF = 0. They also recommend to constrain
αUKF between [10−5 , 1].

For DD1 and DD2, the tuning parameters are:

• Qk the process noise

• hDDF the interval length

For the tuning parameters other than Qk, a possibility might be to have different values for the
propagation and the estimation phase. This would, however, increase the number of variables to
be optimized and there is no guarantee that the estimation quality would be improved. For most
engineering cases, the measurement noise is known from the manufacturers and therefore, it is
not considered to be a tuning parameter here. Qk is modeled in the following way:

Qk = Qmag

 1 0 0
0 1 0
0 0 1

 (11.12)

Thus, only the parameter Qmag has to be tuned. Ultimately, the range for the tuning parameters
of the filters, which form the search space for the optimizer can be found in Table 11.4.

As can be seen in Table 11.4, most of the parameters that have to be tuned vary with orders
of magnitude. Therefore, it is not advisable to simply provide a search space from the lowest
value to the highest value. This would result in the majority of the guesses elements used by the
optimizer being in the order of magnitude of the highest value. This can be seen in Fig. 11.6,
where 10,000 randomly distributed numbers were created by MATLAB between 10−14 and 10−2.
Most of the numbers are between 10−3 and 10−2, and none of the numbers are smaller than 10−6.
Thus, it is better to give the power of 10 for the optimizer to vary. This will result in all particles
being spread equally in the search space over all the orders of magnitude.

Tuning Parameters for the Optimizer

The tuning parameters of the PSO consist of the weights for the velocities of the particles, the
number of particles, and the total number of flights. In addition to all the tuning parameters
mentioned, a stopping condition has to be provided to also be provided. This stopping condition
could be a given minimum value of the objective function, a time limit for the whole optimization
process, or the maximum number of flights carried out without a change in the global best value
found. Out of the aforementioned three extra conditions, the last one, also known as the Stall
Flight Limit is implemented. As mentioned previously, the inertia weight is also implemented
with a linear decrease from one flight to the next. The values of these tuning parameters can be
seen in Table 11.5. To optimally use an optimizer, the tuning parameter of the optimizer have to
also be tuned. The optimal values of these parameters are very problem specific. However, the
standard starting values from literature are presented in Table 11.5 and used in this thesis study.
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Figure 11.6: Uniformly distributed random numbers created by MATLAB between 10−14 and 10−2

11.3.3 Implementation Issues

Figure 11.7: The sub-matrices of a 4× 4 matrix

An estimation run using the filtering techniques does not always converge. For these cases, the
singularity that occurs most often is that the covariance matrix becomes singular. Thus, there is
a clause in each filter run that the present estimation procedure stops if the estimation error goes
above a certain prescribed value. This automatically fills the remainder of the position errors
with a high error value and thus, the optimizer will ignore these solutions. Another problem for
the UKF is that the covariance matrix might loose its positive definiteness. This would again
crash the simulation because the UKF involves finding square-roots of the matrix. This problem
is solved by checking if the matrix is positive definite after each state propagation step and
measurement update. For a matrix to be positive definite, each sub-matrix along the diagonal
has to have a positive determinant. As an example, for a 4× 4 matrix to be positive definite, all

Table 11.5: Ranges for the tuning parameters for the PSO

Parameter Value
c1 2
c2 2
w [1.4 , 0.5]

Particles 15
Flights 10

Stall Flight Limit 5
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Figure 11.8: MAE of the position for the various models and filters for Case 1 scaled with respect to
result of EKF with Cartesian coordinates (14.1 m)

Table 11.6: Filtering using Cartesian coordinates for Case 1

Filter Qmag [ m2 / s4 ] αUKF [ - ] hDDF [ - ] MAE Position [ m ]
EKF 1× 10−16 - - 14.1
DD1 4.4957× 10−16 - 1.3275 37.1
UKF 6.2517× 10−14 0.1393 - 9.3
DD2 1× 10−16 -

√
5 10.2

the sub-matrices A, B, C, and D found in Fig. 11.7 have to have a positive determinant.

11.4 Case 1

This case has the following characteristics:

• Fully modeled system, meaning that all perturbations used to create the reference trajectory
are all used during the estimation.

• ASF and MAL used

• Range, Azimuth, and Elevation measured

• Simulation frequency of 0.1 Hz

The results of optimal estimation can be seen in a graphical manner in Fig. 11.8. The actual
values for the MAE and the tuning parameters can be found in Tables 11.6 till 11.8. The
estimation using DD1 for USM7 and USM6 is much worse than all the filtering techniques.
Therefore, it is not included in the bar-plot in Fig. 11.8. This is the same for all the other cases
and hence, results of estimation using DD1 are omitted from all the bar-plots. Also, DD1 results
will not be included in the analysis.

All the 3 filters (excluding DD1) are able to perform the estimation of the spacecraft state
successfully. It is also seen that the second order filters perform a more accurate state estimation
than the EKF. This difference is marginal for Cartesian coordinates, but quite substantial for the
USM. The best estimate of the state occurs when the UKF is used with Cartesian coordinates and
the worst estimation occurs when the EKF is used with USM7. The estimation using EKF with
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Table 11.7: Filtering using USM7 for Case 1

Filter Qmag [ m2 / s4 ] αUKF [ - ] hDDF [ - ] MAE Position [ m ]
EKF 1× 10−16 - - 536.4
DD1 1.6205× 10−11 - 1.8204 3.6095× 104

UKF 3.9246× 10−14 0.1953 - 21.1
DD2 1.4028× 10−11 - 2.1860 21.0

Table 11.8: Filtering using USM6 for Case 1

Filter Qmag [ m2 / s4 ] αUKF [ - ] hDDF [ - ] MAE Position [ m ]
EKF 1.1625× 10−13 - - 91.0
DD1 1.6880× 10−4 - 2.1319 2.8961× 103

UKF 1× 10−16 1 - 12.1
DD2 1× 10−16 -

√
5 11.8

USM7 and USM6 is approximately 37 times and 6 times worse, respectively. This is because, the
range, azimuth, and elevation together specify a point in 3 dimensional space that is very easy
to express using Cartesian coordinates compared with the USMs. Also, the state propagation
of Cartesian coordinates is simple, i.e. the time derivatives of the position elements are the
velocity elements, and the time derivatives of the velocity elements are the accelerations. Thus,
the measurement equation and state propagation are quite linear. This makes the Cartesian
coordinate set more suitable for the EKF. The estimates using DD2 and UKF are quite similar
and very accurate for both Cartesian coordinates and the USM6 with the MAE of the position
ranging from 9.3 m to 12.1 m. Differences this small for a stochastic procedure like this does not
really mean that one set of these is a clear winner. The state propagation using the USM is much
more accurate for the SARSAT-like orbit for numerical integration. However, the time step-sizes
used during this navigation scenario are very small. Thus, the bottleneck is the accuracy of the
measurement update and not the error in the state propagation.

Between the USM7 and the USM6, the USM6 performs better with all three filters. The EKF
error is approximately one fifth of the EKF error of the USM7, and the errors of the UKF and
DD2 are approximately a half of the error of the UKF and DD2 using the USM7. This difference
is caused because of the fact that the quaternion elements are not independent of each other.
Therefore, this has an adverse effect on the covariance matrix.

The CPU time required for the various filters can be seen in Fig. 11.9. The fastest filter is
the EKF using Cartesian coordinates, and the slowest filter is the DD2 using the USM6. For
each coordinate set, the EKF is the fastest and the UKF and DD2 take approximately the same
amount of CPU time. This is all to be expected as the EKF is the least complex filter, and the
UKF and DD2 are of similar computational complexity. On average, the filters are the fastest
for Cartesian coordinates and the slowest for the USM6. This is again to be expected as the
dynamics of the USM6 and USM7 are much more complex than of the Cartesian coordinates.
Even though the USM7 has one more state element than the USM6, the dynamic and kinematic
equations for the USM6 are more complex. The CPU times are only shown for Case 1, and not
for the other cases. For the other cases, the absolute times will differ from this case, but the
ratios for the CPU time between the different filters and models will remain approximately the
same.
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Figure 11.9: CPU time for the various filters used with Cartesian coordinates and the USMs for Case
1
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Figure 11.10: MAE of the position for the various models and filters for Case 2 scaled with respect to
result of EKF with Cartesian coordinates (1120.8 m)

11.5 Case 2

For this case, it is assumed that the system is not fully modeled anymore. This simulation
case would showcase the performance for the models in case the engineer does not have perfect
knowledge of the process, which is often the case. This case has the following characteristics:

• Only J2 and atmospheric drag modeled in the estimator

• ASF and MAL used

• Range, Azimuth, and Elevation measured

• Simulation frequency of 0.1 Hz

The results can be seen in a graphical manner in Fig. 11.10.

For this case, the best estimation is by using the UKF with the USM7 and the worst estimation
is when the EKF is used with Cartesian coordinates. For this case, the estimates are the best
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Table 11.9: Filtering using Cartesian coordinates for Case 2

Filter Qmag [ m2 / s4 ] αUKF [ - ] hDDF [ - ] MAE Position [ m ]
EKF 2.2060× 10−10 - - 1120.8
DD1 2.7040× 10−5 -

√
5 1, 032.7

UKF 5.8939× 10−11 2.3972× 10−4 - 673.9
DD2 3.5027× 10−7 - 2.1588 902.0

Table 11.10: Filtering using USM7 for Case 2

Filter Qmag [ m2 / s4 ] αUKF [ - ] hDDF [ - ] MAE Position [ m ]
EKF 1.6025× 10−9 - - 888.6
DD1 8.0612× 10−12 -

√
5 3.701× 104

UKF 1× 10−16 2.0314× 10−4 - 628.2
DD2 4.9136× 10−10 - 1.8703 927.3

when the USM7 is used, followed by the USM6. Unlike the previous scenario, all the information
about the environment is not available to the estimator. As was shown in the derivation of the
USM, the USM contains the assumptions of orbital motion in its dynamics. Therefore, with less
information about the environment, the USMs are able to approximate the orbital motion better
than Cartesian coordinates.

For Cartesian coordinates, the EKF has the worst performance and the UKF has the best per-
formance. The MAE of the position of the EKF is approximately 66% more than that of the
UKF. The MAE of the position of the DD2 is approximately 34% more than that of the UKF.
The percentages are with respect to the UKF MAE in position.

For the USM7, the DD2 has the worst performance and the UKF has the best performance. The
MAE of the position of the EKF is approximately 41% more than that of the UKF. The MAE
of the position of the DD2 is approximately 48% more than that of the UKF. The percentages
are with respect to the UKF MAE in position. The difference between the EKF and the DD2 is
marginal and therefore, their accuracy can be considered to be equal.

For the USM6, the EKF has the worst performance and the UKF has the best performance. The
MAE of the position of the EKF is approximately 17% more than that of the UKF. The MAE
of the position of the DD2 is approximately 10% more than that of the UKF. The percentages
are with respect to the UKF MAE in position. The difference between the EKF and the DD2 is
marginal and therefore, their accuracy can be considered to be equal.

As mentioned previously, the UKF used with the USM7 gives the best accuracy. However, the
difference between the UKF runs with the different models is marginal. The UKF with Cartesian
coordinates is approximately 7% less accurate than the UKF with the USM7. The UKF with
the USM6 is approximately 12% less accurate than the UKF with the USM7. The percentages

Table 11.11: Filtering using USM6 for Case 2

Filter Qmag [ m2 / s4 ] αUKF [ - ] hDDF [ - ] MAE Position [ m ]
EKF 1.5346× 10−9 - - 818.1
DD1 1.2241× 10−4 - 1.9419 2, 439.8
UKF 3.1857× 10−14 1.5332× 10−4 - 701.9
DD2 2.0212× 10−9 - 1.2252 772.1
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Figure 11.11: MAE of the position for the various models and filters for Case 3 scaled with respect to
result of EKF with Cartesian coordinates (1120.9 m)

Table 11.12: Filtering using Cartesian coordinates for Case 3

Filter Qmag [ m2 / s4 ] αUKF [ - ] hDDF [ - ] MAE Position [ m ]
EKF 2.2060× 10−10 - - 1120.9
DD1 2.7040× 10−5 -

√
5 1067.5

UKF 4.9628× 10−9 2.6363× 10−4 - 712.7
DD2 3.5027× 10−7 - 2.1588 901.4

are with respect to the UKF MAE in position using the USM7. Since the difference is so small,
it can be safely concluded that the UKF performs consistently and equally well for the various
models.

11.6 Case 3

For this case, it is still assumed that the system is not fully modeled. However, the additional
measurement of the range rate is also used in order to increase accuracy. This case has the
following characteristics:

• Only J2 and atmospheric drag modeled in the estimator

• ASF and MAL used

• Range, Azimuth, Elevation, and Range-rate used

• Simulation frequency of 0.1 Hz

The results can be seen in a graphical manner in Fig. 11.11 on page 134.

For this case, the best estimation is by using the UKF with the USM7 and the worst estimation
is when the EKF is used with Cartesian coordinates. For this case, the estimates are the best
when the USM7 is used, followed by the USM6. The reason for this is that the same information
about the environment, as in Case 2 is given to the estimator. The only change in this scenario
is the addition of range-rate as a measurement.
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Table 11.13: Filtering using USM7 for Case 3

Filter Qmag [ m2 / s4 ] αUKF [ - ] hDDF [ - ] MAE Position [ m ]
EKF 1.6025× 10−9 - - 859.2
DD1 1.4983× 10−14 - 1.3165 5, 512.7
UKF 5.0119× 10−16 1.4727× 10−4 - 615.5
DD2 2.2060× 10−10 - 2.0496 993.7

Table 11.14: Filtering using USM6 for Case 3

Filter Qmag [ m2 / s4 ] αUKF [ - ] hDDF [ - ] MAE Position [ m ]
EKF 5.3040× 10−9 - - 637.0
DD1 3.3037× 10−5 - 2.2361 1, 951.4
UKF 1× 10−16 1.5765× 10−4 - 715.9
DD2 5.5539× 10−10 - 1.5220 1070.2

For Cartesian coordinates, the EKF has the worst performance and the UKF has the best per-
formance. The MAE of the position of the EKF is approximately 57% more than that of the
UKF. The MAE of the position of the DD2 is approximately 26% more than that of the UKF.
The percentages are with respect to the UKF MAE in position. The results for Cartesian coor-
dinates are quite similar to those of Case 2. Therefore, it can be concluded that the addition of
range-rate as a measurement does not affect the accuracy of the state estimation using Cartesian
coordinates.

For the USM7, the DD2 has the worst performance and the UKF has the best performance. The
MAE of the position of the EKF is approximately 40% more than that of the UKF. The MAE of
the position of the DD2 is approximately 61% more than that of the UKF. The percentages are
with respect to the UKF MAE in position. The MAE of the position using all the filters with
the USM7 again remains roughly the same as for Case 2. The accuracies of the EKF and of the
UKF increase and the accuracy of the DD2 increases by a very small amount. These changes are
so small that, the change can disregarded.

For the USM6, the DD2 has the worst performance and the EKF has the best performance. The
MAE of the position of the UKF is approximately 12% more than that of the EKF. The MAE
of the position of the DD2 is approximately 68% more than that of the EKF. The percentages
are with respect to the EKF MAE in position. The difference between the EKF and the UKF is
marginal and therefore, their accuracy can be considered to be equal. The addition of the range-
rate as a measurement has increased the accuracy of the EKF and decreased the accuracies of
the UKF and the DD2. The change in the accuracy of the UKF is very minimal and can be
disregarded. However, the differences in the EKF and the DD2 are 22% and 34%, respectively.
This change in the accuracy is quite substantial. Perhaps the USM6 is more sensitive to range-
rante measurements, or the PSO might not have converged to the optimum solution.

As mentioned previously, the UKF used with the USM7 gives the best accuracy. However, the
difference between the UKF runs with the different models is marginal. The UKF with Cartesian
coordinates is approximately 16% less accurate than the EKF with the USM7. The UKF with the
USM6 is also approximately 16% less accurate than the UKF with the USM7. The percentages
are with respect to the UKF MAE in position using the USM7. Since the difference is so small,
it can be safely concluded that the UKF performs consistently and equally well for the various
models.
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Figure 11.12: MAE of the position for the various models and filters for Case 4 scaled with respect to
result of EKF with Cartesian coordinates (736.2 m)

Table 11.15: Filtering using Cartesian coordinates for Case 4

Filter Qk [ m2 / s4 ] αUKF [ - ] hDDF [ - ] MAE Position [ m ]
EKF 8.8471× 10−7 - - 736.2111
DD1 4.0851× 10−8 - 1.3165 718.0730
UKF 1.2618× 10−6 0.6628 - 589.5825
DD2 1.9751× 10−8 - 2.2361 1, 209.5

11.7 Case 4

For this case, it is still assumed that the system is not fully modeled. However, a third ground
station is also used. This case has the following characteristics:

• Only J2 and atmospheric drag modeled in the estimator

• ASF, MAL, and UHM used

• Range, Azimuth, Elevation, and Range-rate used

• Simulation frequency of 0.1 Hz

The results can be seen in a graphical manner in Fig. 11.12.

For this case, the best estimation is by using the UKF with the USM7 and the worst estimation
is when the EKF is used with the USM6. For this case, the estimates are the best when the

Table 11.16: Filtering using USM7 for Case 4

Filter Qk [ m2 / s4 ] αUKF [ - ] hDDF [ - ] MAE Position [ m ]
EKF 5.3432× 10−13 - - 932.7923
DD1 3.955× 10−16 - 2.1545 1.3724× 104

UKF 1.3836× 10−6 0.6628 - 543.3478
DD2 1× 10−16 - 1.7759 1, 306.8
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Table 11.17: Filtering using USM6 for Case 4

Filter Qk [ m2 / s4 ] αUKF [ - ] hDDF [ - ] MAE Position [ m ]
EKF 1× 10−16 - - 1, 336.8
DD1 4.8596× 10−5 - 2.2224 1, 815.7
UKF 1× 10−16 4.8350× 10−5 - 672.9
DD2 1.2618× 10−6 - 1.0441 679.3821

USM7 is used, followed by Cartesian coordinates. This scenario is almost the same as Case 3,
but there is an additional ground-station used.

For Cartesian coordinates, the DD2 has the worst performance and the UKF has the best per-
formance. The MAE of the position of the EKF is approximately 25% more than that of the
UKF. The MAE of the position of the DD2 is approximately 105% more than that of the UKF.
The percentages are with respect to the UKF MAE in position. Adding an extra ground station
changes the results of the Cartesian coordinates quite drastically. The accuracies of the EKF and
the UKF increase by approximately 34% and 17%, respectively. The accuracy of the DD2 de-
creases by approximately 25%. The effect of adding an additional ground station should increase
the accuracy of the estimation. This effect is the largest for the EKF, however, the DD2 behaves
in a more erratic manner with a decrease in the accuracy. This might be because of the violation
of the unbiasedness assumption of the filter, or due to the convergence of the optimizer.

For the USM7, the DD2 has the worst performance and the UKF has the best performance. The
MAE of the position of the EKF is approximately 42% more than that of the UKF. The MAE
of the position of the DD2 is approximately 141% more than that of the UKF. The percentages
are with respect to the UKF MAE in position. Due to the addition of an extra ground-station,
the accuracies of the EKF and the DD2 decrease by approximately 34% and 32%, respectively.
The accuracy of the UKF increases by approximately 12%. The effect of adding an additional
ground station should increase the accuracy of the estimation. This effect is only seen for the
UKF, however, the DD2 and the EKF behave in a more erratic manner with a decrease in the
accuracy. This might be because of the violation of the unbiasedness assumption of the filter, or
due to the convergence of the optimizer, or simply the stochastic nature of the problem.

For the USM6, the EKF has the worst performance and the UKF has the best performance. The
MAE of the position of the EKF is approximately 99% more than that of the UKF. The MAE
of the position of the DD2 is approximately 1% more than that of the UKF. The percentages
are with respect to the UKF MAE in position. The difference between the DD2 and the UKF is
marginal and therefore, their accuracy can be considered to be equal. The addition of an extra
ground-station has increased the accuracies of the UKF and the DD2 by 6% and 37%, respectively
and decreased the accuracy of the EKF by approximately 110%. The decrease in the accuracy
of the EKF is probably caused by the non-convergence of the optimizer, or the stochastic nature
of the problem.

As mentioned previously, the UKF used with the USM7 gives the best accuracy. However, the
difference between the UKF runs with the different models is small. The UKF with Cartesian
coordinates is approximately 9% less accurate than the UKF with the USM7. The UKF with the
USM6 is approximately 24% less accurate than the UKF with the USM7. The percentages are
with respect to the UKF MAE in position using the USM7. It can be concluded that the UKF
performs consistently and equally well for the various models. However, the UKF accuracies of
using Cartesian coordinates and the USM7 are almost equal, while the runs using the USM6 have
a worse accuracy.
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Figure 11.13: The position estimate error against time using all filters for Case 1

11.7.1 Convergence Plot

After the optimization process was complete, it was decided that the MAE of the position might
not have been the best objective function for the PSO [Mooij, 2010]. Thus, the evolution of the
position error of the state estimate against time for the various filters with the various models
was plotted for Case 1 in Fig. 11.13.

It can be seen that for all cases, the position error reaches a converged value after approximately
6500 s. This happens when the satellite has had two batches of measurements from ASF and one
batch of measurements from MAL. After the last ASF measurements, at approximately 6500 s,
the satellite has this converged value of the error for almost 40,000 s. As with the MAE position
bar-plots seen in Fig. 11.8 the best estimation is with the UKF with Cartesian coordinates, and
the worst estimation is with the EKF with the USM7. The MAE information shows that the
error with the EKF and Cartesian coordinates is almost the same as the error with the UKF
and Cartesian coordinates. With the convergence plot, however, it can clearly be seen that the
converged error with the Cartesian coordinates and EKF is 1-2 orders of magnitude higher than
the converged error with the UKF. The MAE also shows that the Cartesian EKF is more accurate
than the USM7 UKF, DD2 , and the USM6 UKF and DD2. This can clearly be seen to not be
the case in Fig. 11.13. The converged errors can be found in 3, almost distinct strata. The UKF
is the most accurate, followed by the DD2, and the least accurate is the EKF. For each filter, the
most accurate are the Cartesian coordinates, followed by the USM6 and the least accurate is the
USM7.

The difference between the MAE results and the convergence plot can be explained by the fact
that the initial error is very high when compared to the low converged values. Thus, these errors
influence the MAE much more than the converged error. An example can be given with the
Cartesian coordinates. After the first set of ASF measurements, the UKF error increases to
around 500 m before the MAL measurements start. On the contrary, the EKF error remains at
around 40 m. During the time with no measurements after the MAL measurements and before
the second ASF measurements, both errors behave the same way. It is only after the second ASF
measurements that the UKF error converges to around 1 m. The EKF error steadily increases
from around 4 m to around 40 m till the second MAL measurements occur. It can therefore be
concluded here that a better way objective function would be the MAE of the position in the
time between the second ASF measurements and the second MAL measurements.
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11.8 Conclusions and Recommendations

The discussion of the results does not include the DD1 because of its abysmal performance for
the USM6 and the USM7. There are two possible explanations for this. One is that there is
a bug in the programming. This is, however, unlikely because the program was built to be as
modular as possible. Thus, standard functions were made that find the required matrices for the
filters. These functions take as an input, the dynamic function and the measurement function.
It can be asserted that all the three functions function properly. The matrix building function
performs well, because the state estimation using DD1 and Cartesian coordinates is successful.
The dynamics functions for the USM6 and the USM7 perform well because numerical integration
of orbital trajectories using them was successful. The measurement function also performs well
because state estimation using all other filtering techniques was successful for both USM6 and
USM7. Therefore, a bug in the programming can be ruled out. For a simple radar tracking test
case shown in [Nøgaard et al., 2004], the DD1 already performs worse than the EKF. According
to them it was because some of the assumptions the DD1 is built on were voided, and more
specifically the assumption that the state estimate is unbiased is far from satisfied here. Since
the scenario used here is similar to the radar tracking, it can be contested that the violation of
the unbiasedness also occurs. The implementation in this thesis is a more complex version of
the one in [Chodas, 1981], because the process noise is on the acceleration and is not simply a
matrix added to the covariance matrix. In case of Cartesian coordinates, this is indeed still the
case. However, the role of the acceleration inside the state dynamics for the USM is much more
convoluted than is the case for Cartesian coordinates. This is suspected to cause the violation
of the assumption of unbiasedness. When preliminary tests were carried out by simply adding
the process noise to test the filtering, the DD1 was able to successful estimate the state for the
USMs. However, this is still not the way that the dynamics of the USM works and therefore is
not carried out here.

The 4 cases used here can be summarized as follows:

Case 1 Fully modeled system, 2 ground stations, no velocity measurement

Case 2 Partially modeled system, 2 ground stations, no velocity measurement

Case 3 Partially modeled system, 2 ground stations, all measurements

Case 4 Partially modeled system, 3 ground stations, all measurements

It was concluded in [Chodas, 1981] that the state estimation using ground-station tracking with
Cartesian coordinates is better than with USM7. It has been shown in this thesis study that this
is indeed true for the case when the system is fully modeled, which was the only case investigated
in [Chodas, 1981]. However, it is found here that the EKF with both USM6 and USM7 outperform
the EKF with Cartesian coordinates for Case 2 and Case 3. Case 1 and Case 4 provide more
information about the environment in terms of environment modeling and measurements than
Case 2 and Case 3. Thus it can be concluded that the EKF with the USMs performs better than
with Cartesian coordinates when less information is available about the system and state. Out of
all the Cases, the best estimation is with the UKF and USM7 as this creates the most accurate
estimate for Cases 2, 3, and 4.

Among the filters, the UKF is constantly the best filtering technique. It is expected that it
outperforms the EKF as the UKF is a higher order filter than the EKF. Only for Case 3 with
USM6 was the MAE of the position estimate using the UKF higher than that of the EKF. This
difference in the MAE was very minimal and so, it cannot be concluded that the performance
of the UKF was worse. The DD2 is supposed to be similar in performance to the UKF, but
this is not the case here as it is outperformed by the UKF in all cases except for one. The DD2
is built on the same assumptions as the DD1. Thus, it might be possible that the clause of
unbiased estimate is being violated here. Another possible reason is that the augmented state
was not used for the UKF, but the DD2 automatically augments the state for each propagation



140 Ground Station Tracking

and measurement update step. As it was stated in [Sun et al., 2009] that it is better for some
cases to have not augment the state, automatic augmentation of the state by the DD2 might
have decreased its performance.

The final conclusion here is that the EKF, UKF, and DD2 can all successfully estimate the state of
the spacecraft for all three models. In case the system is fully modeled, it is best to use Cartesian
coordinates. If it is desired to still use the USM for this case, the USM6 is recommended over
the USM7. In case there is not much information available about the environment, the USM7 is
recommended. However, if the EKF has to be used, the USM6 is recommended over the USM7.
As for the filter type, the UKF should be the filter of choice for the most accurate results. Once
the scenario set up is given, i.e. the measurement to be used, which ground stations to use, and
how to model the system, the PSO is able to successfully tune all filters for all models. This is
very convenient as it takes away the trial and error required to tune the filters and thus, saves
much time and frustration for a filtering novice. It is probably of not much use to someone who
is very experienced with filtering techniques, as they have an intimate knowledge of the problem
and can therefore tune effortlessly. However, with the tuning carried out via optimization, as
long as the PSO is converged, there is a guarantee that the filter will be optimally tuned for the
specified problem.

This navigation work carried out here simply scratches the surface of what all can be investigated.
Only the EKF, UKF, DD1, and DD2 were implemented in this study. There are, however, many
different types of filters available that can be used to carry out the navigation. A few interesting
ones that could be implemented in the future are the square root versions of the EKF and the
UKF. Also, the augmented state version of the UKF can be investigated to check if the state
estimation is improved. A modification of the UKF that could improve its speed, is the Spherical
Simplex UKF [Julier, 2003], which requires fewer sigma points for the computation. Finally, the
effect of using adaptive filter should also be checked.

Apart from the filtering techniques, another implementation present in this chapter is the use
of a PSO for tuning the filters. Even though this is a relatively simple idea, it has not been
done much in the past. Due to time constraints, not much focus has been given to the optimizer
here. It was only implemented to automate the filter tuning procedure. In the future, it can be
investigated if other optimizers such as Genetic Algorithms or Evolutionary optimizers can be
used to see if they can tune the filters better. Only one objective, the MAE of the spacecraft
position, has been minimized during the optimization process. In the future, a multi-objective
optimizer should be used to minimize various aspects of the navigation. Other objectives could
be the MAE of the velocity, the maximum error in position or velocity, the rate of convergence
of the error, the converged error value etc. After seeing the position error in the estimate in Fig.
11.13, it is recommended to first run an optimization process with the MAE. This will produce
some results that would be comparable to the true optimum. After seeing the behavior of the
estimation process, another objective can be chosen to be minimized, such as the converged error.
Not all the tuning parameters available to a filter have been optimized here. Also, the tuning
parameters for the UKF, DD1, and DD2 were kept the same for the state propagation and the
state estimation. These could be varied, along with the measurement noise that was assumed to
be known. Adding more tuning parameters might increase the accuracy of the DD1 and DD2,
which behaved in a very erratic manner. All these extra tuning parameters would make the
problem larger, and the CPU time required for the optimization would increase. However, there
might be a payoff in the accuracy of the estimation. The optimal parameters for filters using
one set of coordinates should be tested out on the other set of coordinates to see the effect. An
example would be to use the tuning parameters of the Cartesian UKF with the USM7 UKF. This
might provide an insight on how the estimation process of the various models differs. All these
additions could be easily implemented using the guidelines given in this chapter and would only
require more implementation time.

Finally, other scenarios should be used in which navigation is carried out. These include among
many others interplanetary flight, full 6 degrees of freedom state estimation of a spacecraft, low
thrust orbit raising, formation flying etc. The state propagation frequency and the measurement
frequency were kept constant for all the navigation cases in this chapter. These should be varied
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to see the effect on the state estimation using Cartesian coordinates and the USMs. The mea-
surement models for ground station tracking shown here are the conventional. In [Altman, 1975],
measurement models based on velocity space are presented. These measurement models could
be implemented in the future to see if there is any improvement of the navigation performance.

The next chapter focuses on Taylor Series Integration. This method, as the name implies, is a
method of integration. However, there is again a dearth of information on the application of this
method. Thus, the next chapter looks into this technique, and the equations required to fully use
the TSI for orbit propagation using both Cartesian coordinates and the USM7 are presented.
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Chapter 12

Taylor Series Integration

The previous chapter compares the navigation performance of the USMs and Cartesian coordi-
nates. Four nonlinear filters were implemented and an optimizer was used to tune the filters.
This chapter changes the area of investigation and is an exploratory look into Taylor Series In-
tegration (TSI) and its applicability to the USM. The material is based on [Scott and Martini,
2008], which implement TSI for Cartesian coordinates. Moreover, no use of any automatic dif-
ferentiation packages has been made. Therefore, this methodology can also be implemented in
this work. TSI will be implemented for Cartesian coordinates and for the USM7. First, the two
body problem is tested with both Cartesian coordinates and the USM7. Finally, the two body
problem using low thrust is applied.

12.1 Theory

The same notation as found in [Scott and Martini, 2008] will be used here. The theory of Taylor
Series (TS) states that a function can be described by an infinite series evaluated at a desired
point. Let there be a state vector x, with an initial condition x0. The state x consists of the
state elements xn(t). The Taylor series expansion of xn(t) at t = t0 can be written as

xn(t) =
∞∑
k=0

(
x

(k)
n (t0)
k!

(t− t0)k
)

= xn(t0) +
∞∑
k=1

(
x

(k)
n (t0)
k!

(t− t0)k
)

(12.1)

In Eq. (12.1),

xkn =
dkxn
dtk

(12.2)

To be able to use Taylor series efficiently for integration purposes, a method for finding the
coefficients for the Taylor series expansion of each variable has to be used. For this purpose, it is
important to define a normalized derivative of a function in the following manner

x[k](t) =
x(k)(t)
k!

(12.3)

Using the normalized derivative, Eq. (12.1) can be rewritten as

xn(t) =
∞∑
k=0

(
x[k]
n (t0)(t− t0)k

)
(12.4)

Using Eq. (12.3), it is clear that

x[0]
n (t0) = xn(t0) (12.5)
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For the application in this study, the state variables have to be integrated with respected to time.
Thus, we define

x
′

n = un =
dxn
dt

(12.6)

Using Eq. (12.2), the following relations can be shown according to [Scott and Martini, 2008]

x(k)
n = u(k−1)

n , k ≥ 1 (12.7a)

x
(k)
n

(k − 1)!
=

u
(k−1)
n

(k − 1)!
, k ≥ 1 (12.7b)

Let us define two vectors of normalized derivatives, Xn and Un, where

Xn(k) = x[k]
n (12.8a)

Un(k) = u[k]
n (12.8b)

Even though Xn and Un are vectors, they are not expressed in bold. This is done in order to be
consistent with the notation of [Scott and Martini, 2008]. Xn and Un have a dimension K × 1,
where K is the maximum order of the TS. Finally, the following recursive relation can be shown
between the elements of Xn and Un

Xn(k) =
Un(k − 1)

k
, k ≥ 1 (12.9)

According to [Scott and Martini, 2008], the Taylor series solution of the original system variable
xn(t) is

xn(t) =
K∑
k=0

(
X(k)(t− t0)k

)
+ Tn,K (12.10)

In Eq. (12.10), Tn,K is the truncation error and K is the number of terms used in the expansion.

The state variables are always part of functions. The functions will undergo basic operations such
as addition, division, multiplication, etc. There exist expressions that can find the normalized
derivatives in a recursive manner and these normalized derivatives can be solved for using the
theory found in [Jorba and Zou, 2004]. The functions are functions of time and the normalized
derivatives are differentiated with respect to time. For addition and subtraction of two functions
such as c(t) = a(t)± b(t), we may rite

c[k](t) = a[k](t)± b[k](t) (12.11)

For multiplication of two functions such as c(t) = a(t)b(t):

c[k](t) =
k∑
j=0

(
a[j](t)b[k−j](t)

)
(12.12)

For division of two function such as c(t) = a(t)/b(t):

c[k](t) =
1

b[0](t)

a[k](t)−
k∑
j=1

(
b[j](t)c[k−j](t)

) (12.13)

For an exponent of a function such as c(t) = a(t)α:

c[k](t) =
1

ka[0](t)

k−1∑
j=0

(
(α(k − j)− j) a[k−j](t)c[j](t)

)
(12.14)
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Let two functions be defined as the sine and cosine of another function. Thus, c(t) = cos(a(t))
and b(t) = sin(a(t)). The normalized derivative for the cosine is

c[k](t) = −1
k

k∑
j=1

(
jb[k−j](t)a[j](t)

)
(12.15)

and for the sine

b[k](t) =
1
k

k∑
j=1

(
jc[k−j](t)a[j](t)

)
(12.16)

12.2 Two-Body Problem

This setup is very similar to the one found in [Scott and Martini, 2008]. Here, however, no
perturbing forces are used.

12.2.1 Cartesian Coordinates

Let the spacecraft state x consist of the three position and the three velocity coordinates in
inertial Cartesian coordinates, and the spacecraft mass. The procedure shown here and the
equations for this case are the same as shown in [Scott and Martini, 2008].

x =



x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)
x7(t)


=



x(t)
y(t)
z(t)
vx(t)
vy(t)
vz(t)
m(t)


(12.17)

From here on, (t) is removed for ease of notation. The first time derivative of the state elements
for the two body problem are

x
′

= vx

y
′

= vy

z
′

= vz

v
′

x = −µ x

(x2 + y2 + z2)3/2

v
′

y = −µ y

(x2 + y2 + z2)3/2

v
′

z = −µ z

(x2 + y2 + z2)3/2

m
′

= 0

(12.18)

This can be rewritten in terms of the state elements in the form of xn as

x
′

1 = x4 (12.19)

x
′

2 = x5 (12.20)

x
′

3 = x6 (12.21)

x
′

4 = −µ x1

(x2
1 + x2

2 + x2
3)3/2

(12.22)
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x
′

5 = −µ x2

(x2
1 + x2

2 + x2
3)3/2

(12.23)

x
′

6 = −µ x3

(x2
1 + x2

2 + x2
3)3/2

(12.24)

x
′

7 = 0 (12.25)

According to [Scott and Martini, 2008], two more elements should be added to the state.

x8 = x2
1 + x2

2 + x2
3x9 = x

3/2
8 (12.26)

By adding x8 and x9, r2 and r3/2 are computed by the integrator at all times. These quantities
are required to compute the acceleration due to gravity. Using the definition of x8 and x9, the
time derivatives of all the state elements are

x
′

1 = x4 (12.27)

x
′

2 = x5 (12.28)

x
′

3 = x6 (12.29)

x
′

4 = −µx1

x9
(12.30)

x
′

5 = −µx2

x9
(12.31)

x
′

6 = −µx3

x9
(12.32)

x
′

7 = 0 (12.33)

x
′

8 = 2x1x4 + 2x2x5 + 2x3x6 (12.34)

x
′

9 =
3
2
x9x

′

8

x8
(12.35)

Using the fact that the time derivative of xn can be expressed as un from Eq. (12.6), the time
derivatives of the state elements can be rewritten to be

u1 = x4 (12.36)
u2 = x5 (12.37)
u3 = x6 (12.38)

u4 = −µx1

x9
(12.39)

u5 = −µx2

x9
(12.40)

u6 = −µx3

x9
(12.41)

u7 = 0 (12.42)
u8 = 2x1x4 + 2x2x5 + 2x3x6 (12.43)

u9 =
3
2
x9u8

x8
(12.44)

For the time derivatives, only simple operations on variables like addition, subtraction, multi-
plication and division exist. According to [Scott and Martini, 2008], these operations can be
replaced by auxiliary variables on which, the recursive relations for the normalized derivative
from Eqs. (12.11) till (12.16) can be applied. The auxiliary variables are

w4 =
x1

x9
(12.45)

w5 =
x2

x9
(12.46)



12.2. TWO-BODY PROBLEM 147

w6 =
x3

x9
(12.47)

w8,1 = x1x4 (12.48)
w8,2 = x2x5 (12.49)
w8,3 = x3x6 (12.50)

w9 =
x9u8

x8
(12.51)

From the time derivative relations, the normalized time derivatives for k ≥ 1 are

U1(k) = X4(k) =
U4(k − 1)

k
(12.52)

U2(k) = X5(k) =
U5(k − 1)

k
(12.53)

U3(k) = X6(k) =
U6(k − 1)

k
(12.54)

U4(k) = −µW4(k) (12.55)
U5(k) = −µW5(k) (12.56)
U6(k) = −µW6(k) (12.57)
U7(k) = 0 (12.58)
U8(k) = 2W8,1(k) + 2W8,2(k) + 2W8,3(k) (12.59)

U9(k) =
3
2
W9(k) (12.60)

There are three generalized cases where the recursive relations have to be used. They are wt =
xmxn, wu = xm/xn, and wv = xnum/xm. The recursive relation for the generalized derivative
vectors for the multiplication case is

Wt(k) = xm
Un(k − 1)

k
+ xn

Um(k − 1)
k

+
k−1∑
j=1

(
Um(j − 1)

j

Un(k − j − 1)
k − j

)
(12.61)

Eq. (12.61) can be derived by using Eq. (12.12) and Eq. (12.9). When deriving Eq. (12.61),
the evaluations at j = 0 and j = 1 have to be carried out separately to avoid singularities. The
steps in this derivation are shown here, then can be repeated for the other cases. Substituting
the variables xm and xn in Eq. (12.12) gives

Wt(k) =
k∑
j=0

(Xm(j)Xn(k − j)) (12.62)

For the recursive relations, the goal is to not require the knowledge of any Xn(k) or Xm(k). If
they are required, the order of evaluating the various Xi(k) would have to be fixed. This would
introduce too many constraints. Thus, the goal is to use the relation in Eq. (12.9), which states
that all Xn(k) are equal to Un(k − 1)/k. However, this relation is only valid for k ≥ 1. In Eq.
(12.62), Xm(0) is required when j = 0. Thus, the product inside the sum for when j = 0 can be
written as

Xm(0)Xn(k) = xm
Un(k − 1)

k
(12.63)

In Eq. (12.62), Xn(0) is required when j = k. Thus, the product inside the sum for when j = k
can be written as

Xm(k)Xn(0) = xn
Um(k − 1)

k
(12.64)
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The remaining products inside the sum, for when j = 1, 2, . . . , k − 1 can be written as

Xm(k)Xn(k) =
Um(j − 1)

j

Un(k − j − 1)
k − j

(12.65)

Using Eqs. (12.63 - 12.65) with Eq. (12.62) results in Eq. (12.61). A similar method has to be
used to derive the remaining recursive relations.

The recursive relation for the generalized derivative vectors for the division case is

Wu(k) =
1
xn

Um(k − 1)
k

−
k∑
j=1

(
Un(j − 1)

j
Wu(k − j)

) (12.66)

The recursive relation for the generalized derivative vectors for the multiplication followed by
division case, which cannot be found in [Scott and Martini, 2008], is

Wv(k) =
1
xm

xnUm(k) +
k∑
j=1

(
Un(j − 1)

j
Um(k − j)

)
−

k∑
j=1

(
Um(j − 1)

j
Wv(k − j)

) (12.67)

For the case of Eq. (12.67), it is important to note that Um(k) has to be computed before Wv(k).

12.2.2 Two Body problem with USM7

The same procedure as for the case of Cartesian coordinates is used. Again, there are no per-
turbing forces, so ae1 = ae2 = ae3 = 0. This fact is used heavily during the derivation of the TS
functions.

Let the spacecraft state x consist of the seven USM7 elements and the spacecraft mass.

x =



x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)
x7(t)
x8(t)


=



C(t)
Rf1(t)
Rf2(t)
εO1(t)
εO2(t)
εO3(t)
ηO(t)
m(t)


(12.68)

The time derivative of the state elements for the unperturbed case is

C
′

= 0

R
′

f1 = 0

R
′

f2 = 0

ε
′

O1 =
1
2
ω3εO2

ε
′

O2 = −1
2
ω3εO1

ε
′

O3 =
1
2
ω3ηO

η
′

O = −1
2
ω3εO3

(12.69)

The derivatives of the quaternion elements contains ω3, which requires three additional parame-
ters to be added.

ω3 = Cv2
e2/µ

ve1 = Rf1 cosλ+Rf2 sinλ
ve2 = C −Rf1 sinλ+Rf2 cosλ

(12.70)
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For the derivatives of the new parameters, some algebraic manipulation of the original equations
has to be carried out. This is so that the derivatives are simple expressions of the state elements.

ω
′

3 = 2
ω3v

′

e2

ve2

v
′

e1 = ve2ω3 − Cω3

v
′

e2 = −ve1ω3

(12.71)

The additional elements are inserted in the following order to the state

x9 = ve1 (12.72)
x10 = ve2 (12.73)
x11 = ω3 (12.74)

The time derivatives in the form of un and xn are

u1 = 0 (12.75)
u2 = 0 (12.76)
u3 = 0 (12.77)

u4 =
1
2
x5x11 (12.78)

u5 = −1
2
x4x11 (12.79)

u6 =
1
2
x7x11 (12.80)

u7 = −1
2
x6x11 (12.81)

u8 = 0 (12.82)
u9 = x10x11 − x1x11 (12.83)
u10 = −x9x11 (12.84)

u11 = 2
x11u10

x10
(12.85)

Some auxiliary functions need to again be defined

w4 = x5x11 (12.86)
w5 = x4x11 (12.87)
w6 = x7x11 (12.88)
w7 = x6x11 (12.89)
w9,1 = x10x11 (12.90)
w9,2 = x1x11 (12.91)
w10 = x9x11 (12.92)

w11 =
x11u10

x10
(12.93)

Finally, the normalized derivatives can be written as

U1(k) = 0 (12.94)
U2(k) = 0 (12.95)
U3(k) = 0 (12.96)

U4(k) =
1
2
W4(k) (12.97)

U5(k) = −1
2
W5(k) (12.98)
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U6(k) =
1
2
W6(k) (12.99)

U7(k) = −1
2
W7(k) (12.100)

U8(k) = 0 (12.101)
U9(k) = W9,1(k)−W9,2(k) (12.102)
U10(k) = −W10(k) (12.103)
U11(k) = 2W11(k) (12.104)

12.3 Tangential Thrust

Since it was identified previously that trajectories undergoing continuous low-thrust propulsion
are most suited for the USM, they will be tested for Taylor series integration. The thrust is
assumed to be tangential for this scenario.

A few new recursive relations have to be derived for the normalized derivatives. For the case
when w = xnum, the relation is

W (k) = xnUm(k) +
k∑
j=1

(
Un(j − 1)

j
Um(k − j)

)
(12.105)

The equation above can again be derived by starting with the generalized recursive relation for
multiplication. 12.63

W (k) =
k∑
j=0

(Xn(j)Um(k − j)) (12.106)

It is desirable to convert all the Xn(j) to Un(j − 1)/j. There is a problem when j = 0, in which
case the product inside the sum can be written as

xnUm(k) (12.107)

The product for the remaining j = 1, 2, . . . , k is

Un(j − 1)
j

Um(k − j) (12.108)

Another case is when w = um/xn, the recursive relations for which, can be derived following the
same methodology as for w = xnum. The recursive relation for this case is

W (k) =
1
xn

Um(k)−
k∑
j=1

(
Un(j − 1)

j
W (k − j)

) (12.109)

12.3.1 Tangential Thrust for Cartesian Coordinates

The variables to be used for the integration are

x1 = x (12.110)
x2 = y (12.111)
x3 = z (12.112)
x4 = vx (12.113)
x5 = vy (12.114)
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x6 = vz (12.115)
x7 = m (12.116)

x8 = r2 = x2
1 + x2

2 + x2
3 (12.117)

x9 = r3 = x
3/2
8 (12.118)

x10 = v2 = x2
4 + x2

5 + x2
6 (12.119)

x11 = v =
√
x10 (12.120)

x12 = mv = x7x11 (12.121)
(12.122)

The time derivatives of the variables then are

u1 = x4 (12.123)
u2 = x5 (12.124)
u3 = x6 (12.125)

u4 = −µx1

x9
+ T

x4

x7x11
(12.126)

u5 = −µx2

x9
+ T

x5

x7x11
(12.127)

u6 = −µx1

x9
+ T

x6

x7x11
(12.128)

u7 = − T

g0Isp
(12.129)

u8 = 2x1x4 + 2x2x5 + 2x3x6 (12.130)

u9 =
3
2
x9u8

x8
(12.131)

u10 = 2x4u4 + 2x5u5 + 2x6u6 (12.132)

u11 =
1
2
u10

x11
(12.133)

u12 = x11u7 + u11x7 (12.134)

The auxiliary variables that need to be introduced are

w4,1 =
x1

x9
(12.135)

w4,2 =
x4

x12
(12.136)

w5,1 =
x2

x9
(12.137)

w5,2 =
x5

x12
(12.138)

w6,1 =
x3

x9
(12.139)

w6,2 =
x6

x12
(12.140)

w8,1 = x1x4 (12.141)
w8,2 = x2x5 (12.142)
w8,3 = x3x6 (12.143)

w9 =
x9u8

x8
(12.144)

w10,1 = x4u4 (12.145)
w10,2 = x5u5 (12.146)
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w10,3 = x6u6 (12.147)

w11 =
u10

x11
(12.148)

w12,1 = x11u7 (12.149)
w12,2 = x7u11 (12.150)

Finally, the recursive relations for finding the normalized derivatives of the time derivatives are

U1(k) = X4(k) =
U4(k − 1)

k
(12.151)

U2(k) = X5(k) =
U5(k − 1)

k
(12.152)

U3(k) = X6(k) =
U6(k − 1)

k
(12.153)

U4(k) = −muW4,1(k) + TW4,2(k) (12.154)
U5(k) = −muW5,1(k) + TW5,2(k) (12.155)
U6(k) = −muW6,1(k) + TW6,2(k) (12.156)

(12.157)
U7(k) = 0 (12.158)
U8(k) = 2W8,1(k) + 2W8,2(k) + 2W8,3(k) (12.159)

U9(k) =
3
2
W9(k) (12.160)

U10(k) = 2W10,1(k) + 2W10,2(k) + 2W10,3(k) (12.161)

U11(k) =
1
2
W11(k) (12.162)

U12(k) = W12,1(k) +W12,2(k) (12.163)

It should be noted that only U7(0) = −T/(g0Isp) and the remaining elements of U7 are all 0.
This is because the time derivative of the mass is a constant. Thus, the higher order derivatives
should all be 0. This is also the case for any variable that varies linearly with time.

12.3.2 Tangential Thrust for USM7 Coordinates

For the case when there are no other perturbations than a continuous tangential low thrust, the
variables of integration for the USM7 are

x1 = C (12.164)
x2 = Rf1 (12.165)
x3 = Rf2 (12.166)
x4 = εO1 (12.167)
x5 = εO2 (12.168)
x6 = εO3 (12.169)
x7 = ηO (12.170)
x8 = m (12.171)
x9 = ve1 (12.172)
x10 = ve2 (12.173)
x11 = ω3 (12.174)

x12 = v2 (12.175)
x13 = v (12.176)
x14 = mv (12.177)
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Due to the complexity of the dynamics of the USM7, a new set of auxiliary variables, vn, are
defined. These variables behave like the wn set of variables. The normalized derivatives of
only their present state have to be computed, and not the normalized derivatives of their time
derivative. This method is not used in [Scott and Martini, 2008] and is introduced here. This
raises the important question of when an extra variable to the state, i.e., as xn, and when the
extra variable should be added as an auxiliary variable, i.e. vn. There is no steadfast rule that can
answer this question. A few guidelines are as follows: It is recommended to put the accelerations
in the auxiliary set, otherwise, their time derivatives have to be implemented as well. This would
unnecessarily add an extra order of complexity to the problem. Another important guideline is
to check the complexity of the time derivatives compared to the actual variables. If it required
fewer computations to find Un(k) than to find Xn(k), it is best to add it to the list of variables,
xn, instead of vn. Since this study only focuses a small part on TSI, a full investigation has not
been carried out to optimize the calculation by moving variables from xn to vn and vice versa.
This can be topic to be studied further in the future.

The auxiliary vn variables are

v1 = ε2O3 + η2
O = x6x6 + x7x7 (12.178)

v2 = εO3ηO = x6x7 (12.179)

v3 = η2
O − ε2O3 = x7x7 − x6x6 (12.180)

v4 = sinλ = 2v2/v1 (12.181)
v5 = cosλ = v3/v1 (12.182)
v6 = p = x1/x10 (12.183)
v7 = ae1 = Tx9/x14 (12.184)
v8 = ae2 = Tx10/x14 (12.185)
v9 = ae2(1 + p) = v8 + v8v6 (12.186)

When the vn are used, their time derivatives are not computed. Thus, Eqs. (12.11 -12.16) can
be immediately used for computations of their normalized derivatives. The time derivatives of
the extended state elements are

u1 = −pae2 = −v6v8 (12.187)
u2 = ae1 cosλ− ae2(1 + p) sinλ = v7v5 − v9v4 (12.188)
u3 = ae1 sinλ+ ae2(1 + p) cosλ = v7v4 + v9v5 (12.189)

u4 =
1
2
ω3εO2 =

1
2
x11x5 (12.190)

u5 = −1
2
ω3εO1 = −1

2
x11x4 (12.191)

u6 =
1
2
ω3ηO =

1
2
x11x7 (12.192)

u7 = −1
2
ω3εO3 = −1

2
x11x6 (12.193)

u8 = −T/(g0Isp) (12.194)
u9 = ae1 − Cω3 + ve2ω3 = v7 − x1x11 + x10x11 (12.195)
u10 = ae2 − ve1ω3 = v8 − x9x11 (12.196)

u11 =
x11u1

x1
+ 2

x11u10

x10
(12.197)

u12 = 2x9u9 + 2x10u10 (12.198)

u13 =
1
2
u12

x13
(12.199)

u14 = x8u13 + x13u8 (12.200)

For all vn and un, more auxiliary variables have to be created that simplify the computations
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into single operations.These auxiliary variables are

v1,1 = x6x6 (12.201)
v1,2 = x7x7 (12.202)
v4,1 = v2/v1 (12.203)
v7,1 = x9/x14 (12.204)
v8,1 = x10/x14 (12.205)
v9,1 = v8v6 (12.206)

w1 = v6v8 (12.207)
w2,1 = v7v5 (12.208)
w2,2 = v9v4 (12.209)
w3,1 = v7v4 (12.210)
w3,2 = v9v5 (12.211)
w4 = x11x5 (12.212)
w5 = x11x4 (12.213)
w6 = x11x7 (12.214)
w7 = x11x6 (12.215)
w9,1 = x1x11 (12.216)
w9,2 = x10x11 (12.217)
w10 = x9x11 (12.218)

w11,1 =
x11u1

x1
(12.219)

w11,2 =
x11u10

x10
(12.220)

w12,1 = x9u9 (12.221)
w12,2 = x10u10 (12.222)

w13 =
u12

x13
(12.223)

w14,1 = x8u13 (12.224)
w14,2 = x13u8 (12.225)

The normalized derivatives of vi have to first be calculated, followed by the normalized derivatives
of ui. These normalized derivatives can be computed in the following way

V1(k) = V1,1(k) + V1,2(k) (12.226)
V2(k) = V2(k) (12.227)
V3(k) = V1,2(k)− V1,1(k) (12.228)
V4(k) = 2V4,1(k) (12.229)

v6 = p = x1/x10 (12.230)
V5(k) = V3(k)/V1(k) (12.231)
V6(k) = X1(k)/X10(k) (12.232)
V7(k) = TV7,1(k) (12.233)
V8(k) = TV8,1(k) (12.234)
V9(k) = V8(k) + V9,1(k) (12.235)

U1(k) = −W1(k) (12.236)
U2(k) = W2,1(k)−W2,2(k) (12.237)
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Figure 12.1: The thrusting profile

U3(k) = W3,1(k) +W3,2(k) (12.238)

U4(k) =
1
2
W4(k) (12.239)

U5(k) =
1
2
W5(k) (12.240)

U6(k) =
1
2
W6(k) (12.241)

U7(k) =
1
2
W7(k) (12.242)

U8(k) = 0 (12.243)
U9(k) = V7(k)−W9,1(k) +W9,2(k) (12.244)
U10(k) = V8(k)−W10(k) (12.245)
U11(k) = W11,1(k) + 2W11,2(k) (12.246)
U12(k) = 2W12,1(k) + 2W12,2(k) (12.247)

U13(k) =
1
2
W13(k) (12.248)

U14(k) = W14,1(k) +W14,2(k) (12.249)

It should be noted that U8(0) = −T/(g0Isp) and the remaining U8 elements are all 0.

12.4 Varying Tangential Thrust Magnitude

In the previous section, the derived equations assumed a constant acceleration because the mass
was not assumed to be varying. It is also important to check the performance when there is a
certain control law. This is done by assuming that the magnitude of the thrust has a sine-like
behavior over the period of initial orbit of the spacecraft, P0. The equation for the thrust is then

Tmag = T0 × (sin(t/P0) + 1) (12.250)

12.4.1 Cartesian Coordinates

For the varying tangential thrust magnitude, almost the same equations as found in section 12.3.1
have to be used. However, there are few additional variables that have to be added to take into
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account the variation of the thrust. The additional state variables are

x13 = t (12.251)
x14 = sin(t/P0) = sin(x13/P0) (12.252)
x15 = cos(t/P0) = cos(x13/P0) (12.253)
x16 = T0 sin(t/P0) + T0 = T0x14 + T0 (12.254)

The time derivatives of the additional state variables are

u13 = 1 (12.255)
u14 = x15u13/P0 (12.256)
u15 = −x14u13/P0 (12.257)
u16 = T0u14 (12.258)

Due to the non-constant nature of the thrust, some of the time derivatives of the original set
of variables also change. More specifically, it is the time derivatives of the velocities that would
change. They now become

u4 = −µx1

x9
+
x16x4

x12

u5 = −µx2

x9
+
x16x5

x12

u6 = −µx3

x9
+
x16x6

x12

(12.259)

Since the computation, x16/x12, occurs thrice, it is best to introduce a vi variable here. Thus,

v1 =
x16

x12
(12.260)

This changes some of the auxiliary wi variables to

w4,2 = v1x4 (12.261)
w5,2 = v1x5 (12.262)
w6,2 = v1x6 (12.263)

Finally,

U4(k) = −µW4,1(k) +W4,2(k) (12.264)
U5(k) = −µW5,1(k) +W5,2(k) (12.265)
U6(k) = −µW6,1(k) +W6,2(k) (12.266)

(12.267)

12.4.2 USM7

For the varying tangential thrust magnitude, almost the same equations as found in section 12.3.2
have to be used. However, there are few additional variables that have to be added to take into
account the varying of the thrust. The additional state variables are

x15 = t (12.268)
x16 = sin(t/P0) = sin(x15/P0) (12.269)
x17 = cos(t/P0) = cos(x15/P0) (12.270)
x18 = T0 sin(t/P0) + T0 = T0x16 + T0 (12.271)
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The time derivatives of the additional state variables are

u15 = 1 (12.272)
u16 = x17u15/P0 (12.273)
u17 = −x16u15/P0 (12.274)
u18 = T0u16 (12.275)

The computation of the auxiliary perturbing acceleration values, v7 = ae1 and v8 = ae2 will
change. A new auxiliary variable v7,1 is added

v7,1 =
x18

x14
(12.276)

The accelerations then become

v7 = v7,1x9 (12.277)
v8 = v7,1x10 (12.278)

The remaining equations are the same as the case with the constant tangential thrust. Thus, this
modification is very simple for the USM7 case.

12.5 Thrust in all directions

Thrusting is not always tangential to the velocity, and also not always in the same plane. Thus,
the problem has to be modified to ensure that these thrust scenarios can also be taken into
account. This could happen for example when the orbital plane has to be changed using low-
thrust propulsion, or if solar sailing is used. For this method, the unit vectors in the direction
of the angular momentum, and in a direction laying in the orbital plane but perpendicular to
the velocity has to be used. These unit vectors can be easily derived for the USM7 without
adding many auxiliary variables. For the case of Cartesian coordinates, however, many auxiliary
variables have to be added to compute these directions.

The arbitrarily applied thrust can be seen relative to Fe in Fig. 12.2. An angle β is defined to
be the angle between the thrust vector and the orbit normal. The angle α is defined to be the
angle between the projection of the thrust on the orbital plane and the velocity vector.

12.5.1 Equations for the USM7

For this case, the acceleration along the orbit normal, ae3 would be equal to

ae3 =
T

m
cosβ (12.279)

The component of the thrust laying in the orbital plane is T sinβ. This thrust has a component
laying along the velocity vector of the spacecraft T sinβ cosα, and a component perpendicular
to the velocity vector but in the orbital plane T sinβ sinα. To make the computations simpler,
a new reference frame Fe′ is defined as seen in Fig. 12.2. This reference frame consists of the
following axes: ê

′

3 laying along ê3, ê
′

2 laying along v, and ê
′

1 completing the frame. Expressed in
Fe, ê

′

2 and ê
′

1 are

ê
′

1 =
1
v

 ve2
−ve1

0


ê
′

2 =
1
v

 ve1
ve2
0

 (12.280)
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Figure 12.2: Orientation of the thrust vector

Using the fact that the thrust projected along ê
′

1 is T sinβ sinα and the along ê
′

2 is T sinβ cosα,
the remaining two accelerations can be found to be

ae1 =
T

mv
(sinβ cosαve1 + sinβ sinαve2)

ae2 =
T

mv
(sinβ cosαve2 − sinβ sinαve1)

(12.281)

To make the problem more dynamically complex, the orientation of the thrust is made to vary
with time. The orientation of the thrust in the orbital plane and normal to the plane is changed,
i.e. α and β are varied with time. An initial circular equatorial LEO is considered, and the thrust
applied continuously. The steering angle, α has a mean value of 0◦, however, it has a sinusoidal
behavior. The other steering angle, β starts at a certain angle and then decreases quadratically
with time. The magnitude of the thrust remains constant, but the actual acceleration increases
with time due to the decreasing mass. The equations to be used for this steering are

T (t) = T0 (12.282)

α(t) = sin(t/P0) (12.283)

β(t) =
1
4

cos(t/P0) + β0 (12.284)

Equations for the USM7 with Generic Perturbing Accelerations

To implement this scenario, it is necessary to first set up the Taylor series equations for the USM
that can handle any scenario. First, the extended state vector for the USM7 is presented.

x1 = C (12.285)
x2 = Rf1 (12.286)
x3 = Rf2 (12.287)
x4 = εO1 (12.288)
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x5 = εO2 (12.289)
x6 = εO3 (12.290)
x7 = ηO (12.291)
x8 = m (12.292)
x9 = ve1 (12.293)
x10 = ve2 (12.294)
x11 = w3 (12.295)

The following vi auxiliary variables should be used

v1 = ε2O3 + η2
O = x2

6 + x2
7 (12.296)

v2 = εO3ηO = x6x7 (12.297)

v3 = η2
O − ε2O3 = x2

7 − x2
6 (12.298)

v4 = εO1εO3 − εO2ηO = x4x6 − x5x7 (12.299)
v5 = sinλ = 2v2/v1 (12.300)
v6 = cosλ = v3/v1 (12.301)
v7 = γ = v4/v1 (12.302)
v8 = p = x1/x10 (12.303)
v9 = γ/ve2 = v7/x10 (12.304)
v10 = Rf1γ/ve2 = x2v9 (12.305)
v11 = Rf2γ/ve2 = x3v9 (12.306)

(12.307)

The above auxiliary variables are the ones based on the state that are required for simulation
of perturbed orbits. Any additional auxiliary variables that are required for the perturbing
accelerations can be computed after these and before the following variables.

v12 = ae1 (12.308)
v13 = ae2 (12.309)
v14 = ae3 (12.310)
v15 = ω1 = v14/x10 (12.311)
v16 = ae2(1 + p) = v13 + v13v8 (12.312)
v17 = ae3γRf1/ve2 = v14v10 (12.313)
v18 = ae3γRf2/ve2 = v14v11 (12.314)

Finally, the time derivatives can be written as

u1 = −v8v13 (12.315)
u2 = v12v6 − v16v5 − v18 (12.316)
u3 = v12v5 + v16v6 + v17 (12.317)

u4 =
1
2
x11x5 +

1
2
v15x7 (12.318)

u5 = −1
2
x11x4 +

1
2
v15x6 (12.319)

u6 =
1
2
x11x7 −

1
2
v15x5 (12.320)

u7 = −1
2
x11x6 −

1
2
v15x4 (12.321)

u8 = −T/(g0Isp) (12.322)
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u9 = v12 − x1x11 + x10x11 (12.323)
u10 = v13 − x9x11 (12.324)

u11 =
x11u1

x1
+ 2

x11u10

x10
(12.325)

Equations for the USM7 for Varying Thrust Orientation

Now the equations for the USM7 for the thrusting case of this section is presented. The extended
state for this thrusting scenario is

x1 = C (12.326)
x2 = Rf1 (12.327)
x3 = Rf2 (12.328)
x4 = εO1 (12.329)
x5 = εO2 (12.330)
x6 = εO3 (12.331)
x7 = ηO (12.332)
x8 = m (12.333)
x9 = ve1 (12.334)
x10 = ve2 (12.335)
x11 = w3 (12.336)

x12 = v2 (12.337)
x13 = v (12.338)
x14 = mv (12.339)
x15 = t (12.340)
x16 = α = sin(t/P0) (12.341)
x17 = cos(t/P0) (12.342)

x18 = β =
1
4

cos(t/P0) + β0 (12.343)

x19 = sinα (12.344)
x20 = cosα (12.345)
x21 = sinβ (12.346)
x22 = cosβ (12.347)

The necessary auxiliary vn variables for generic pertubed cases are

v1 = ε2O3 + η2
O = x2

6 + x2
7 (12.348)

v2 = εO3ηO = x6x7 (12.349)

v3 = η2
O − ε2O3 = x2

7 − x2
6 (12.350)

v4 = εO1εO3 − εO2ηO = x4x6 − x5x7 (12.351)
v5 = sinλ = 2v2/v1 (12.352)
v6 = cosλ = v3/v1 (12.353)
v7 = γ = v4/v1 (12.354)
v8 = p = x1/x10 (12.355)
v9 = γ/ve2 = v7/x10 (12.356)
v10 = Rf1γ/ve2 = x2v9 (12.357)
v11 = Rf2γ/ve2 = x3v9 (12.358)
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(12.359)

The new vn variables that are required to express the varying orientation of the thrust are

v12 = sinβ cosα = x21x20 (12.360)
v13 = sinβ sinα = x21x19 (12.361)

v14 =
sinβ cosα

mv
=
v12

x14
(12.362)

v15 =
sinβ sinα

mv
=
v13

x14
(12.363)

The accelerations can then be computed in the following manner

v16 = Tv14x9 + Tv15x10 (12.364)
v17 = Tv14x10 − Tv15x9 (12.365)

v18 = T
x22

x8
(12.366)

Finally, the remaining vn variables that are based on the perturbing accelerations are

v19 = ω1 =
v18

x10
(12.367)

v20 = ae2(1 + p) = v17 + v17v8 (12.368)
v21 = v18v10 (12.369)
v22 = v18v11 (12.370)

The time derivatives of the state variables are

u1 = −v8v17 (12.371)
u2 = v16v6 − v20v5 − v22 (12.372)
u3 = v16v5 + v20v6 + v21 (12.373)

u4 =
1
2
x11x5 +

1
2
v19x7 (12.374)

u5 = −1
2
x11x4 +

1
2
v19x6 (12.375)

u6 =
1
2
x11x7 −

1
2
v19x5 (12.376)

u7 = −1
2
x11x6 −

1
2
v19x4 (12.377)

u8 = −T/(g0Isp) (12.378)
u9 = v16 − x1x11 + x10x11 (12.379)
u10 = v17 − x9x11 (12.380)

u11 =
x11u1

x1
+ 2

x11u10

x10
(12.381)

u12 = 2x9u9 + 2x10u10 (12.382)

u13 =
1
2
u12

x13
(12.383)

u14 = x8u13 + x13u8 (12.384)
u15 = 1 (12.385)
u16 = x17u15/P0 (12.386)
u17 = −x16u15/P0 (12.387)
u18 = u17/4 (12.388)
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u19 = x20u16 (12.389)
u20 = −x19u16 (12.390)
u21 = x22u18 (12.391)
u22 = −x21u18 (12.392)

12.5.2 Equations for Cartesian Coordinates

In this subsection, the equations for Cartesian coordinates and TSI are presented. These equa-
tions have not be implemented and validates, unlike all the previous sets of equations, and it is
therefore recommended that the reader re-derive them in case implementation is the goal. Since
the thrusting for this scenario is best expressed in terms of the orbital reference frame Fe, and the
velocity based reference frame Fe′ , the first step is to find the unit vectors of these two reference
frames in terms of Cartesian coordinates. The unit vectors of Fe are

ê1 =
1
r

 x
y
z

 (12.393a)

ê2 =− 1
rh

 hyz − hzy
hzx− hxz
hxy − hyx

 (12.393b)

ê3 =
1
h

 hx
hy
hz

 (12.393c)

The unit vectors of Fe′ then become

ê
′

1 =
1
hv

 hzvy − hyvz
hxvz − hzvx
hyvx − hxvy

 (12.394a)

ê
′

2 =− 1
v

 vx
vy
vz

 (12.394b)

ê
′

3 =
1
h

 hx
hy
hz

 (12.394c)

The accelerations due to thrust expressed in Cartesian coordinates in the inertial reference frame
are

aTx =
T

m

[
sinβ

(
cosα

vx
v

+ sinα
hzvy − hyvz

hv

)
+ cosβ

hx
h

]
(12.395a)

aTy =
T

m

[
sinβ

(
cosα

vy
v

+ sinα
hxvz − hzvx

hv

)
+ cosβ

hy
h

]
(12.395b)

aTz =
T

m

[
sinβ

(
cosα

vz
v

+ sinα
hyvx − hxvy

hv

)
+ cosβ

hz
h

]
(12.395c)

The extended state for this thrusting scenario for Cartesian coordinates is

x1 = x (12.396)
x2 = y (12.397)
x3 = z (12.398)
x4 = vx (12.399)
x5 = vy (12.400)
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x6 = vz (12.401)
x7 = m (12.402)

x8 = r2 = x2
1 + x2

2 + x2
3 (12.403)

x9 = r3 = x
3/2
8 (12.404)

x10 = v2 = x2
4 + x2

5 + x2
6 (12.405)

x11 = v = x
1/2
10 (12.406)

x12 = t (12.407)

x13 = r = x
1/2
8 (12.408)

x14 = hx = x2x6 − x3x5 (12.409)
x15 = hy = x3x4 − x1x6 (12.410)
x16 = hz = x1x5 − x2x4 (12.411)

x17 = h2 = x2
14 + x2

15 + x2
16 (12.412)

x18 = h = x
1/2
17 (12.413)

x19 = α = sin(t/P0) (12.414)
x20 = cos(t/P0) (12.415)

x21 = β =
1
4

cos(t/P0) + β0 (12.416)

x22 = sinα (12.417)
x23 = cosα (12.418)
x24 = sinβ (12.419)
x25 = cosβ (12.420)

(12.421)

The auxiliary vn variables are

v1 = agx = −µx1

x9
(12.422)

v2 = agy = −µx2

x9
(12.423)

v3 = agz = −µx3

x9
(12.424)

v4 =
vx
v

=
x4

x11
(12.425)

v5 =
vy
v

=
x5

x11
(12.426)

v6 =
vz
v

=
x6

x11
(12.427)

v7 =
hx
h

=
x14

x18
(12.428)

v8 =
hy
h

=
x15

x18
(12.429)

v9 =
hz
h

=
x16

x18
(12.430)

v10 = sinβ cosα = x24x23 (12.431)
v11 = sinβ sinα = x24x22 (12.432)

v12 =
hzvy
hv

= v9v5 (12.433)

v13 =
hyvz
hv

= v8v6 (12.434)
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v14 =
hzvy − hyvz

hv
= v12 − v13 (12.435)

v15 =
hxvz
hv

= v7v6 (12.436)

v16 =
hzvx
hv

= v9v4 (12.437)

v17 =
hxvz − hzvx

hv
= v15 − v16 (12.438)

v18 =
hyvx
hv

= v8v4 (12.439)

v19 =
hxvy
hv

= v7v5 (12.440)

v20 =
hyvx − hxvy

hv
= v18 − v19 (12.441)

v21 = sinβ cosα
vx
v

= v10v4 (12.442)

v22 = sinβ sinα
hzvy − hyvz

hv
= v11v14 (12.443)

v23 = cosβ
hx
h

= x25v7 (12.444)

v24 = sinβ cosα
vy
v

= v10v5 (12.445)

v25 = sinβ sinα
hxvz − hzvx

hv
= v11v17 (12.446)

v26 = cosβ
hy
h

= x25v8 (12.447)

v27 = sinβ cosα
vz
v

= v10v6 (12.448)

v28 = sinβ sinα
hyvx − hxvy

hv
= v11v20 (12.449)

v29 = cosβ
hz
h

= x25v9 (12.450)

v30 = Tx = T (v21 + v22 + v23) (12.451)
v31 = aTx = v30/x7 (12.452)
v32 = Ty = T (v24 + v25 + v26) (12.453)
v33 = aTy = v32/x7 (12.454)
v34 = Tz = T (v27 + v28 + v29) (12.455)
v35 = aTz = v34/x7 (12.456)

Finally, the time derivatives of the extended state variables can be computed in the following
way

u1 = vx = x4 (12.457)
u2 = vy = x5 (12.458)
u3 = vz = x6 (12.459)
u4 = ax = v1 + v31 (12.460)
u5 = ay = v2 + v33 (12.461)
u6 = az = v3 + v35 (12.462)
u7 = ṁ = −T/(g0Isp) (12.463)
u8 = 2(x1x4 + x2x5 + x3x6) (12.464)

u9 =
3
2
x9u8

x8
(12.465)

u10 = 2(x4u4 + x5u5x6u6) (12.466)
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u11 =
1
2
u10

x11
(12.467)

u12 = ṫ = 1 (12.468)

u13 =
1
2
u8

x13
(12.469)

u14 = ḣx = u2x6 + x2u6 − u3x5 − x3u5 (12.470)

u15 = ḣy = u3x4 + x3u4 − u1x6 − x1u6 (12.471)

u16 = ḣz = u1x5 + x1u5 − u2x4 − x2u4 (12.472)
u17 = 2(x14u14 + x15u15 + x16u16) (12.473)

u18 = ḣ =
1
2
u17

x18
(12.474)

u19 = x20u12 (12.475)
u20 = −x19u12 (12.476)
u21 = u20/4 (12.477)
u22 = x23u19 (12.478)
u23 = −x22u19 (12.479)
u24 = x25u21 (12.480)
u25 = −x24u21 (12.481)

All the equations and theory necessary for the implementation of the TSI method has been
presented here. In the next chapter, the TSI is implemented to be able to get quantitative
results.
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Chapter 13

Application of the Taylor Series
Integration

The theoretical background for Taylor series integration was presented in Section 12.1 and the
equation setup was shown for various cases for both Cartesian coordinates and USM7. In this
chapter, these equations are implemented and results compared with the traditional Runge-Kutta
integration methods. The equations available in Chapter 12 are only capable of propagating the
state by one time-step. To be able to fully implement the Taylor series integration method, it is
essential to create an integrator, especially a variable step-size one. All results presented in this
chapter are for the cases presented in Chapter 12. Therefore, the cases are repeated here.

Case 1 The 2-body problem presented in Section 12.2

Case 2 Tangential low-thrust with constant acceleration, presented in Section 12.3

Case 3 Tangential low-thrust with a varying acceleration, presented in Section 12.4

Case 4 Low-thrust with constant thrust and varying orientation, presented in Section 12.5

13.1 Integrator

A variable step-size integrator has been created with the error control method found in [Scott
and Martini, 2008]. This step-size controller guarantees that the specified absolute tolerance is
satisfied. For an order of integration, K, the absolute tolerance requirement, τ , can be expressed
in the following relation

|Xn(K − 1)|hK−1 + |Xn(K)|hK ≤ τ (13.1)

The suitable next time step-size, hi+1, based on the current time step-size, hi, is

hi+1 = η exp
(

1
K − 1

ln
τ

|Xn(K − 1)|+ hi |Xn(K)|

)
(13.2)

In Eq. (13.2), η is a safety factor and is chosen to be 0.9. A step-size is computed for each state
variable, xn, and the lowest time step-size is chosen.

As can be seen in the equations in Chapter 12, some extra variables have been added to the
state for all the cases. For trajectory integration purposes, the user only requires a tolerance on
the original state parameters, i.e. the position and velocity for Cartesian coordinates, and the
quaternion and Hodographic velocities for the USM7. Thus, the integrator built during this thesis
study takes as a parameter the length of the original state. Therefore, the specified tolerances
are only applied to the essential, or desired parameters of the Taylor series integration state.
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Figure 13.1: Difference between the default points used outputted by the integrator and the interpolated
points

The main motivation for using Taylor series integration is that it has been shown to be very ac-
curate and fast. Due to the possibility of using high order expansions during the integration, the
time step-sizes can become very large when compared to normal Runge Kutta integration meth-
ods. Sometimes, it is necessary to have a denser output than the one created by the time step-sizes
chosen by the integrator. This is especially true for trajectory visualization, or ephemeris cre-
ation. Artificially decreasing the step-size is not the most efficient way of creating the denser
output. With RK type integrators, it is possible to use interpolating functions to create this.
This involves additional programming and the interpolation is not the same level of accuracy
as the discrete values computed by the integrator. The benefit of Taylor series integration is
that the normalized derivative vectors, Xn, provide information on the trajectory in between the
computed discrete points. This information is of the same order of accuracy as the computed
point.

To take advantage of the approximation technique of the Taylor series, a refinement parameter
can also be provided as an input to the integration. The refinement factor specifies how many
points are required between each integration step. The integrator then selects the appropriate
(t − t0) for each intermediate step and creates a time vector for it. The time vector, tK , has as
its elements

t(k) = (t− t0)k (13.3)

Having the time vector also makes enables the computations to be carried out in vectorial form
for the benefit of MATLAB. The state variable can be computed from its normalized derivative
vector and the time vector in the following manner

xn = XT
n t (13.4)

An integration was carried out using Taylor series of an equatorial elliptical orbit with 0.8 eccen-
tricity. The difference between the points output by the default integration and the output using
interpolation using a refinement factor of 10 can be seen in Fig. 13.1.

The theory in Chapter 12 only shows the necessary computations required for the TSI to work.
The procedure to implement these equations is not yet given. The first step is to define a vector
with the initial conditions for the state. This has to be done for the whole extended state, and
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not only for the 6 variables of the Cartesian state or the 7 variables of the USM7 state. This is
then fed to the desired dynamics function to integrate. The dynamics function then initializes the
various vectors of normalized derivatives. This is obviously a required step for all programming
languages except for MATLAB, which can do dynamic allocation and reallocation. However, it is
carried out also in MATLAB because this reduces the computation time. The vectors that need
to be initialized are Xn, Un, Wn,i, and Vn. After initialization, the first elements of all the Xn

vectors are the respective state values from the input vector. All the vn variables are only based
on the state variables and not their time derivatives. Thus, the next step is to compute the vn
values from xn. These values become the first elements of their respective Vn vectors. The wn,i
auxiliary variables are used in the process of computing un and may require a previous un−j .
Thus, for each nth variable, the wn,i are computed, followed by the un before moving on to the
(n+ 1)th variable. These are then put as first elements of their respective Wn,i and Un,i vectors.
Following this is a loop that computes all the normalized derivatives in a recursive manner to
fill up the vectors. The procedure is the same as for initialization, but the computations like
multiplication and division are replaced by the recursive relations.

13.2 Simulations

The integrator has to be tested to see how the Taylor series integration methods using Cartesian
coordinates and USM7 compare. Like all integration methods, the order of the integrator also
plays a role for Taylor series integration. The order of the integrator is fixed for normal RK
methods, however, the order can be varied for each Taylor series integration run as it simply
a parameter that the integrator accepts. The step-size controller used for integration using the
RK methods varies from the step-size controller from [Scott and Martini, 2008] that has been
implemented here for the Taylor series integration. The step-size controller used thus far for RK
methods controls the step-size based on the absolute position and velocity error. This was to
ensure that numerical simulations using both Cartesian coordinates and the USM would use a
similar control strategy. Also, it was found that checking for a tolerance on each individual state
element of the USM resulted in an integrator with a performance lower than ours. The reason is
that the hodographic velocity parameters are usually many orders of magnitude larger than the
quaternion elements. This means that a small change in the value of a quaternion results in a
relatively large change in position and velocity. Thus, it is very difficult to come up with a precise
tolerance value that can result in efficient integration. Since the method for TSI from [Scott and
Martini, 2008] checks the tolerance for each individual state element, this method has to be made
compatible with USM7. The method chosen here uses one tolerance value for all the hodographic
velocities, and one tolerance value for the quaternion elements. The tolerance for the quaternion
elements is three order of magnitude smaller than that of the hodographic velocities.

For the first 3 cases, a comparison will be made only between the TSI using Cartesian Coordinates
and USM7. This is because initial tests show that TSI is more than an order of magnitude faster
than integration using the RK5(4) method. Thus, the tests using the RK5(4) method are shown
in separate plots. For Case 4, however, a comparison will be made of the number of converged
digits as a test. The results for the unperturbed orbits of Case 1 will not be presented as an
unperturbed orbit is not something that would be simulated using integration methods. The
unperturbed orbits were used simply as a way to test the functions that compute the recursive
relations for the normalized derivatives. These tests were considered to be very basic and are
therefore not included in the thesis study.

13.2.1 Case 2

This is the case where low-thrust propulsion is utilized. It is assumed that the thrust is constant,
laying along the direction of the velocity. Also, the change of the mass is not simulated, thus the
acceleration is effectively constant. This test case is the same as the unperturbed low-thrust case
used for the RK integrators. The results of the simulations are shown for orders of integration of
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Figure 13.2: Integration using RK5(4) for Case 2

20 and 30. The ephemeris has been created using an order 40 TSI with Cartesian coordinates.
Order 20 is chosen because it has been used on [Scott and Martini, 2008] and order 30 to see
the effect of increasing order. The effect of using even lower or higher orders is something that
can be investigated in the future. Figure 13.2 shows the results from using an RK5(4) integrator
with Cartesian coordinates and the USM7. For the simulations carried out, the error RMS of
the position error using the USM7 is always lower than that of the Cartesian coordinates. Also,
the CPU time is lower for the USM7 for all the integrations. For both cases, the RMS position
error decreases and the CPU time increases as the tolerances become more stringent. The RMS
position error using the USM7 peaks at around 0.5 m, while that of the Cartesian coordinates
is around 106 m. To have an RMS position error of approximately 0.5 m, the CPU time for the
USM7 is between 2 - 3 s and for the Cartesian coordinates is around 65 s.The RMS position error
of the USM7 converges to around 10−4 m after a CPU time of 15 s, while the RMS position error
of the Cartesian coordinates is still around 10−2 m after a CPU time of 250 s and still does not
converge.

Figures 13.3 and 13.4 show the result of using TSI with K = 30 and K = 20, respectively, with
Cartesian coordinates and the USM7. Finally, Fig. 13.5 shows the results of the TSI for both
K = 20 and K = 30 on the same plot. For Cartesian coordinates, the tolerance on the position
coordinates was varied from 10−5 to 10−15 and the on the velocity coordinates from 10−6 to
10−16. For the USM7, the tolerance on the hodographic velocities was varied from 10−5 to 10−15

and on the quaternion elements from 10−8 to 10−18.

One striking aspect of the results is that very accurate results can be achieved with very little
CPU time. When an RK5(4) integrator is used, the Cartesian coordinates do not achieve an
RMS position error of 10−4 m after 250 s. The integration with USM7 takes approximately 15 s
to achieve this accuracy. When TSI is used with K = 20, both Cartesian coordinates and USM7
achieve this accuracy after a CPU time of approximately only 0.6 s. For Cartesian coordinates,
this is an improvement of more than 3 orders of magnitude in CPU time. For the USM7, this is
an improvement of 2 orders of magnitude in CPU time. When TSI is carried out with K = 30,
the time required for the Cartesian coordinates to achieve an accuracy of 10−4 m reduces to
approximately 0.38 s, and for the USM7 to approximately 0.5 s. With K = 20, the USM7 results
converge to an accuracy of 10−5 m after a CPU time of 0.65 s, while the Cartesian results seem
like they only converge after approximately 1.6 s. When K = 30, the USM7 results converge to
an accuracy of 10−5 m after a CPU time of approximately 0.55 s, while the Cartesian results seem
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Figure 13.3: TSI of Case 2 with K = 30
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Figure 13.4: TSI of Case 2 with K = 20
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Figure 13.5: TSI of Case 2 with K = 30 and K = 20

like they only converge after approximately 0.75 s. Figure 13.5 shows that all four cases reach an
accuracy of 10−4 after a CPU time between 0.37 s and 0.6 s. For both K = 20 and K = 30, there
is some erratic behavior when the curves converge at RMS position errors of around 10−5 m. At
this point, the solution is so accurate that the errors are caused due to numerical inaccuracies.

Increasing the K from 20 to 30 decreases the CPU time required to achieve this result for both
USM7 and Cartesian coordinates. The behavior for both K = 20 and K = 30 is almost the
same for the USM7. However, when K is increased from 20 to 30, the performance of Cartesian
coordinates increases. The RMS position error vs. CPU time curve has the same shape and
converges to the same value, but is moved to the left. It moves even to the left of the USM7 curve.
This means that increasing the order really helps the integration using Cartesian coordinates. At
such high orders of integration as K = 30, there is no real difference between the accuracy of the
USM7 and Cartesian coordinates at equal time step-sizes. However, there are fewer equations
for the TSI of Cartesian coordinates and therefore, the integration step takes less CPU time.

13.2.2 Case 3

This is the case where the magnitude of the thrust varies like a sine function. Even though the
thrust is not constant, it still lies along the direction of the velocity. Also, the change of the mass
is not simulated. The results of the simulations are shown for orders of integration of 20 and 30.
The ephemeris has been created using an order 40 TSI with Cartesian coordinates. Figure 13.6
shows the results from using an RK5(4) integrator with Cartesian coordinates and the USM7.
Figures 13.7 and 13.8 show the result of using TSI with K = 30 and K = 20, respectively, with
Cartesian coordinates and the USM7. Finally, Fig. 13.9 shows the results of the TSI for both
K = 20 and K = 30 on the same plot. For Cartesian coordinates, the tolerance on the position
coordinates was varied from 10−5 to 10−15 and the on the velocity coordinates from 10−6 to
10−16. For the USM7, the tolerance on the hodographic velocities was varied from 10−5 to 10−15

and on the quaternion elements from 10−8 to 10−18.

For the simulations carried out, the error RMS of the position error using the USM7 is always
lower than that of the Cartesian coordinates. Also, the CPU time is lower for the USM7 for all
the integrations. For both cases, the RMS position error decreases and the CPU time increases as
the tolerances become more stringent. The RMS position error using the USM7 peaks at around
0.7 m, while that of the Cartesian coordinates is around 106 m. To have an RMS position error of
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Figure 13.6: Integration using RK5(4) for Case 3
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Figure 13.7: TSI of Case 3 with K = 30
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Figure 13.8: TSI of Case 3 with K = 20
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approximately 0.7 m, the CPU time for the USM7 is around 3 s and for the Cartesian coordinates
is around 60 s.The RMS position error of the USM7 converges to around 10−4 m after a CPU
time of 16 s, while the RMS position error of the Cartesian coordinates is still around 10−2 m
after a CPU time of 250 s and still does not converge.

When TSI is used with K = 20, Cartesian coordinates achieve this accuracy after a CPU time of
approximately only 0.6 s and the USM7 achieves this accuracy after approximately 0.58 s. For
Cartesian coordinates, this is an improvement of more than 3 orders of magnitude in CPU time.
For the USM7, this is an improvement of 2 orders of magnitude in CPU time. When TSI is
carried out with K = 30, the time required for the Cartesian coordinates to achieve an accuracy
of 10−4 m reduces to approximately 0.45 s, and for the USM7 it remains the same. Figure 13.9
shows that all four cases reach an accuracy of 10−4 after a CPU time between 0.45 s and 0.6
s. Increasing the K from 20 to 30 decreases the CPU time required to achieve this result for
Cartesian coordinates, but has almost no effect on the USM7. This is again like for Case 2, where
the curve of Cartesian coordinates shift to the left. The solution of the USM7 has converged with
respect to the order of integration K. However, since the Cartesian TSI equations have fewer
variables, it is possible to decrease the CPU time by taking larger time-steps.

13.2.3 Case 4

Low-thrust propulsion is still used in this case, but the thrust is not along the velocity vector
anymore. Also, the mass is assumed to not be constant anymore. For this case, the goal of
the simulations is not to check the difference between the integrations using Cartesian TLI and
USM7 TLI. Instead, this integration test is similar to the one carried out by [Scott and Martini,
2008] who state that it should be noted that convergence itself does not necessarily imply accuracy.
However, it does indicate that a necessary condition for accuracy is satisfied. The simulation will
be carried out using TLI and RK8(7) with USM7. A run is carried out first using the RK8(7)
integrator and a very stringent tolerance. The tolerance for the position εpos = 10−11 and the
tolerance for the velocity εvel = 10−12. The trajectory is again simulated using TLI with K = 30
and also a very stringent tolerance. A tolerance of 10−15 was used on the hodographic velocities,
and a tolerance of 10−18 was used on the quaternion elements.These two trajectories are used as
the baseline. The end state of both the baseline trajectories is stored and used to check the quality
of the other simulations. The simulation is then repeated using TLI with K = 10, K = 20, and
K = 30 of varying tolerances. The tolerance on the hodographic velocities is varied from 10−4

to 10−14 and the tolerance on the quaternion elements is varied from 10−7 to 10−17. The end
state is stored in USM7 form and converted and stored in Cartesian coordinates. The end states
are compared with the end states of the baseline trajectories and the number of converged digits
is the check. Instead of displaying the number of converged digits for each USM7 and Cartesian
element separately, the sum of the converged digits of all the state elements is presented.

The trajectory of the spacecraft due to the varying thrust can be seen in Fig. 13.10. There is a
varying thrust component both in and out of the orbital plane. The final state of the reference
trajectory created by TSI and RK8(7), expressed in USM7 elements, can be seen in Table 13.1.
It should be noted that the RK8(7) integration took approximately 3000 seconds of CPU time,
while the TSI took 2 seconds of CPU time. Using the simulation duration and the assumption
that the magnitude of the thrust is constant, the true final mass can be computed. The difference
between the true final mass and the final mass using TSI is 0, which the difference between for the
RK8(7) ≈ 1.92 × 10−8. Also, the absolute value of the difference between the quaternion norm
and one for the TSI is approximately 1× 10−15, and for the RK8(7) is approximately 7× 10−14.
This in itself shows how the numerical inaccuracies creep in more, but yet very small, for the RK
methods than for TSI.

The end values converted to Cartesian coordinates can be seen in Table 13.2.

The sum of the number of converged digits at the end of the simulation is plotted for each
simulation with a different tolerance. The final state is checked with the baseline final state from
both the TSI and the RK8(7). All the final states are also converted to Cartesian coordinates to
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Figure 13.10: Trajectory of the spacecraft due to the varying thrust (Note that the z scale differs from
the x and y scales)

Table 13.1: The end values of the USM7 elements using RK8(7) and TSI

Parameter Value using TSI Values using RK8(7) Converged digits
C 7.424822031065767× 103 7.424822031065606× 103 13
Rf1 −0.501720582427736 −0.501720582433396 10
Rf2 74.206115285428879 74.206115285432148 12
εO1 1.753351673616902× 10−5 1.753351673667076× 10−5 11
εO2 1.935462505092579× 10−5 1.935462505112064× 10−5 10
εO3 0.921910940000300 0.921910939999448 7
ηO 0.387401881804590 0.387401881806788 11

Table 13.2: The end values of the Cartesian coordinates using RK8(7) and TSI

Parameter Value using TSI Values using RK8(7) Converged digits
x −5.095554341339908× 106 −5.095554341316119× 106 11
y 5.200841730884816× 106 5.200841730909565× 106 10
z 1.261995483562007× 102 1.261995483610015× 102 10
vx −5.304052582593376× 103 −5.304052582618455× 103 10
vy −5.121978091786204× 103 −5.121978091761771× 103 11
vz 0.364215918098659 0.364215918104544 9
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check the convergence as the output of an integration is usually required in terms of Cartesian
coordinates. The convergence of the TSI with K = 30, K = 20, and K = 10, can be seen in Figs
13.11(a), 13.11(b), and 13.11(c), respectively on page 178.

It can be deduced that the TSI baseline is more accurate than the RK8(7) baseline integration.
This is because, the TSI using all three orders has the number of digits that converge increase
as the tolerances become more stringent. All three orders converge at roughly the same number
of digits when compared to the RK8(7) baseline values. However, if the tolerance is made more
stringent, they further converge with the TSI baseline values.

When the integration results of different orders are compared to each other, some further conclu-
sions can be drawn. It should first be noted that each simulation number corresponds to the same
tolerance value in all three integration cases. The tolerance is the least stringent for Simulation
1, and most stringent for Simulation 10. For the least stringent tolerance, the highest number of
converged digits is actually for the simulation with K = 10 with 49 converged digits, followed by
the simulation with K = 20 with 39 converged digits, and the least amount of converged digits
is 38 for K = 30. By Simulation 5, the case with K = 10 is still the most converged with 79
converged digits, while the cases with K = 20 and K = 30 have only 74 converged digits.

All the cases converge to roughly 89 to 94 converged digits. This boundary is first passed at
Simulation 6 by the case with K = 20. It is then passed by the case with K = 10 at Simulation
7, and finally at Simulation 8 by the case with K = 30. It can be concluded that for lower
tolerances, the lower order TSI solutions have more converged digits. However, for more stringent
tolerance, K = 20 converges more quickly than K = 10. The case with K = 30 keeps converging
at the slowest rate, but steadily. It is not certain about what happens once the solutions converge.
The baseline was created with K = 30, so as the tolerance is made more stringent, this case will
continue to converge till all the digits are converged (7 × 15 = 105). Once the solution with
K = 20 and K = 10 converge, it might be the case that their solution becomes more accurate
than the baseline because of the smaller time step-sizes. However, larger orders might also have
more inaccuracies because of the increased number of computations in the recursive relations for
the normalized derivatives. These are aspects that could be investigated further in the future.

13.3 Conclusions and Recommendations

As can be seen from the results in this chapter, TSI is a very effective technique to accurately
integrate dynamic equations with very little CPU time. The required CPU time is at least 1 to
even 3 orders of magnitude less than traditional integration with RK methods. There is a price
attached to this increase in simulation speed. This price is the complexity of implementation.
First the engineer or researcher has to get familiar with the theory behind TSI. Afterwards,
the various recursive relations have to be derived, programmed, and tested. The testing can be
carried out by using small vectors of integers. This way, the answers can be manually computed
and thus, the results of the programming can be checked.

Following this, the equations of motion or any dynamic equation should be rearranged and split
up so that it can be put in the correct format for the TSI. It is recommended to first start
with simple problems and then slowly build up to more complex ones. For this thesis study, the
author first started with the simple two body problem and Cartesian coordinates. The next case
was the two body problem with USM7. The next case was the constant magnitude tangential
low-thrust for Cartesian and then USM7 coordinates. The case after that was varying magnitude
tangential low-thrust for Cartesian and USM7 coordinates. Due to time constraints, the next
case of low-thrust with varying orientation was only carried out for USM7. The cases prior to
this for the USM7 had either no perturbations, or only perturbation in the orbital plane, i.e. ae1
and ae2. When there is also out of plane perturbation, the dynamics of the USM7 become even
more complex. Thus, a generic set of equations for the TSI were made that could take a constant
perturbing acceleration in any direction. Finally, the case with time varying thrust orientation
and mass was derived and implemented. It is necessary to take small steps towards more complex
cases and check every new case with an RK integration.
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(a) Convergence of the digits using TSI with K = 30
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(b) Convergence of the digits using TSI with K = 20
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Figure 13.11: Convergence of the digits using TSI with K = 30 (a), K = 20 (b), and K = 10 (c)
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Since there are many variables and many relations between them present for the TSI, it is very
easy to make a mistake. Once there is an error, it could be in one of 3 places. Either one
of the recursive relations is not programmed properly, there is mistake in the derivation of the
equations, or there is a mistake in the programming. If the recursive relations are extensively
tested in the beginning, this can be ruled out. This testing is carried out by trying to integrate
functions of which the analytical solution is already know. The function must be multivariate,
with few variables. Most of the times, it is only possible to catch a mistake in the other two
categories when the integration is checked with an RK integration. Once it is known that a
mistake is present, it is only possible to identify it by perusing the equations and the program
script. Unfortunately, they can take hours to days to spot.

Ultimately, the TSI is a very challenging method to implement. Something that can be imple-
mented in a few minutes or hours using RK methods can take hours or even days to implement
for TSI. However, once everything is set up properly, it is incredibly efficient in integration. It
can then be used to generate accurate ephemeris very quickly, or also to optimize trajectories.
In the opinion of the author, the payoff is proportional to the extra work. One important thing
to note for future users of TSI is that if a perturbing acceleration is not constant, its actual
function with respect to other state variables must be included in the dynamics function. This
way, the TSI can approximate the perturbation as it approximates the other state variables. It
is not correct to compute the perturbation externally and simply give the value. This makes the
TSI assume that the value remains constant over the integration period and thus, the integrated
model would not be modeling reality. This is not only true for perturbing accelerations, but also
for parameters like solar sailing aiming angle that might have to be computed iteratively. This
can be done, however, if it can be assumed that this angle or acceleration can be assumed to be
constant even over large durations of time because the TSI usually take very large time steps
compared to conventional RK integration methods.

For the cases tested here, the performance of the USM7 and Cartesian coordinates are very similar
when TSI is used. For RK methods, the USM7 vastly outperforms Cartesian coordinates for low
eccentricity orbits and orbits using low-thrust propulsion. However, for large orders of TSI, such
as K = 30, the USM7 loses its advantage over Cartesian coordinates. For both the low-thrust
cases tested here the USM7 performs marginally better than Cartesian coordinates for TSI with
K = 20. When K = 30 is used, both USM7 and Cartesian coordinates converge to the same
accuracy. At such high order of integration, the difference in accuracy between a Cartesian and
USM7 step is marginal. However, the simulation time for Cartesian coordinates is smaller due
to the smaller number of state and auxiliary variables that are required to propagate the state.
Thus, the simulations using Cartesian coordinates converge for a smaller CPU time. This means
that for lower tolerances, it takes approximately 0.1 s less of CPU time for Cartesian coordinates
to have the same accuracy before convergence. This translates to a 20% faster simulation for
Cartesian coordinates. Thus, if K = 20 is to be used, the USM7 is recommend and Cartesian
coordinates are recommended if K = 30 is to be used. It should be noted, however, that due
to the numerical inaccuracy involved in computing the recursive relations of such high order in
different programming languages, it might be a better option to remain with K = 20 and the
USM7. For example, [Scott and Martini, 2008] also used K = 20.

Even though much work has been carried out on TSI in this thesis study, there are many more
things to be done in the future. The step-size controller proposed in [Scott and Martini, 2008]
was implemented here, but the effect of using the traditional step-size controller should also
be investigated. These step-size controlling methods only vary the time step-size, but TSI also
possesses another parameter, the integration order K, that can be varied. Using a higher order
requires a smaller time step-size, but can have a higher numerical error due to the higher number
of recursive calculations. Using a lower order requires a smaller time step-size and so a higher
numerical error due to additional function evaluations. Thus, it might be possible to find a new
step-size controlling method that balance these two errors to find the optimal order and time
step-size for each integration step.

Only unperturbed orbits and perturbations in the form of thrust have been used. Other per-
turbations should also be implemented such as J2, atmospheric drag, third body perturbations
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etc. This should not be too difficult in the future as a detailed implementation method for TSI
has been shown here with many examples. To add more perturbations simply involves adding
more variables to the already existing framework. Also, TSI should be implemented in an opti-
mizer for low-thrust trajectories to reap them benefits of their fast integration times. It is stated
in [Scott and Martini, 2008] that they added 3rd body perturbations by simulating the trajectory
of each additional perturbing body along with the spacecraft. It is possible to get accurate JPL
ephemeris of other bodies in terms of the Chebyshev polynomials. Thus, an investigation should
be made to check if the Chebyshev polynomials could be converted to Taylor series that could
be used within the TSI. The USM6 should also be implemented in TSI form.

Finally, a check should be made to see if the present implementations of the various cases for TSI
are as efficient as possible. There are many variables required for the computation that could be
either added as additional xn variables, or as vn variables. A comparison should always be made
to see if it requires fewer computations in one case or the other. One of the variables that was
added as an xn variable for many of the TSI cases is the product of mass and velocity, mv. The
time derivative of this variable, un, is then ṁv +mv̇. This requires two recursive multiplication
function calls. Since m and v are already xn variable, it would have been more efficient to add mv
as vn variable because this would have required only one recursive multiplication function call.
Another improvement that would increase programming efficiency and not the CPU efficiency
is the naming of the vn variables. For the USM7 case with all generic perturbations, there are
certain vn variables that are always necessary like ae1, ae2 etc. Depending on the scenario, they
are computed from different vn variables. In this thesis study, all the vn variables are numbered
serially. Thus, when the variation of the thrust orientation had to be computed, it had to
be computed before the accelerations. Thus, the variable name for the acceleration had to be
changed and thus all other computations that depend on this variable also had to be checked and
modified. If the accelerations had been been given uniques vn names such as va,n, it would have
been easier to add this variation in the simulation environment.

This concludes the work on TSI and all other investigations carried out in this thesis study. The
following chapter will give an overview of the important conclusions made in this study and the
related topics that can be investigated in the future.



Chapter 14

Conclusions and Future Work

The work carried out during this thesis study is only the tip of the iceberg. Many conclusions
and recommendations are spread throughout the report, but the major ones will be summarized
here. There are many aspects that can still be investigated further. One of the major ones can
be found in [Mooij et al., 2010], which is a work in progress.

14.1 Conclusions

During this thesis study, the following tasks have been carried out:

• Provide a complete derivation of the traditional USM

• Propose a modification of the USM that uses Modified Rodrigues Parameters instead of a
quaternion

• Compare the numerical integration performances of the USMs and Cartesian coordinates
for orbital and re-entry trajectories

• Compare the navigation performances of the USMs and Cartesian coordinates using the
four different filters

• Implement the following four nonlinear filters: Extended Kalman Filter, Unscented Kalman
Filter, Divided Difference Filter 1 and 2

• Implement a Particle Swarm Optimizer than can automate the tuning of filters

• Successfully implement various scenarios for the USM7 and Cartesian coordinates using
Taylor Series Integration

The main conclusion of this thesis study is that the USM is an elegant theory for expressing
orbital trajectories, that unfortunately did not get the recognition that it deserved.

The USM is heavily based on characteristics of an orbit. The first three parameters give informa-
tion about the hodograph for both the USM6 and the USM7. The remaining element describe the
orientation of the orbital frame and the angular location of the spacecraft within it, with respect
to an inertial reference frame. The last 4 elements of the USM7 are elements of a quaternion and
the last 3 elements of the USM6 are elements of a Modified Rodrigues Parameters vector. The
USM is not capable of handling linear trajectories and pure retrograde trajectories, i.e. i = 180◦.

For numerical integration of orbital trajectories using the RK methods:

181
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• The USM is better than Cartesian coordinates for orbits with low eccentricities and or-
bits under the influence of low thrust propulsion. Especially for orbits with low thrust
propulsion, the USM is an order of magnitude faster than Cartesian coordinates.

• Cartesian coordinates are more suitable for highly eccentric orbits. The USM is based on
the assumption of rotational motion and for highly eccentric orbits, i.e.,e > 0.9, much of
the orbit is spent in an almost linear motion.

• Cartesian coordinates are more suitable for re-entry. This is because the motion of a vehicle
is very un-orbit-like. Since, the USM specifically designed on the assumptions of and for
orbital motion, it is logical that the USM does not perform as well as Cartesian coordinates.

• Between the USM7 and USM6, it was found that the USM6 had better performance for
most of the cases. The only scenario where the USM7 outperforms USM6 is for trajectories
with constant tangential low-thrust and no other perturbations.

For more information, the reader is referred to Chapters 6 to 9.

For navigation, four nonlinear filers were implemented for the two USMs and for Cartesian coor-
dinates. The two first-order filters were the EKF and the DD1, and the two second-order filters
were the UKF and the DD2. To obviate the tedious tasks of manually tuning the various filters
for the various model for the various testing scenarios, a PSO was built that could automati-
cally tune the filters. Even though, this is computationally intensive, it can save many engineer
man-hours. The main conclusions from the navigation part of the thesis study were:

• The performance of the DD1 was abysmal compared to the other filters for the USM7 and
the USM6. It is suspected that this is because the assumption of unbiased state estimate
was violated.

• The UKF was implemented without augmenting this state and this turned out to be the
best filter. Augmenting the state means that the spacecraft state is extended by adding the
parameters of the measurement and process noise. Thus, the filter tries to estimate these
along with the original state elements.

• For three of the four cases investigated, the best state estimate occurred when the UKF
was used with the USM7. For the other case, the UKF with Cartesian coordinates gave
the best result.

• When the system is fully modeled, which is an unrealistic case, the Cartesian coordinates
give the best navigation performance. For all the other cases, however, it is the USM7.

• The USM6 performs better than the USM7 when the system is fully modeled, but worse
for the other cases.

• The reasons that the DD2 did not perform as well as the Cartesian coordinates are suspected
to be the violation of the unbiased state estimation assumption and the augmentation of
the various covariance matrices.

• All the above conclusion have been drawn using the MAE of the position estimate as the
objective to be minimized. A better objective would have been to the converged MAE of
the position estimate.

For a more detailed conclusion, the reader is referred to Section 11.8 on page 139.

The final part of the thesis study was to investigate Taylor Series Integration. This turned out to
be quite challenging since there is not much literature available on how to implement this method
of integration. However, this problem was slowly tackled and the TSI equations were derived for
both the USM7 and Cartesian coordinates for the simple two body problem and some low-thrust
propulsion scenarios. The main conclusions regarding TSI are:
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• Taylor series was found to be much harder than the RK methods to implement. However,
the CPU time for the simulations is at least an order of magnitude lower than for RK
methods. Thus, it was found to be worth the extra effort.

• Only the USM7 and Cartesian coordinates were implemented, and not the USM6. The
dynamics of the USM6 are more complex than the dynamics of the USM7, which are more
complex than the dynamics of Cartesian coordinates. Thus it would have taken longer to
implement the equations of motion for the USM6.

• Between the USM7 and Cartesian coordinates, it was found that integration using USM7 is
still faster up till an integration order of 20. When the integration order is increased to 30,
the accuracy of an integration step using Cartesian coordinates and the USM7 is similar.
However, for the scenarios tested in this thesis study, many more variables are required
during each integration step. Thus, the TSI using Cartesian coordinates requires less CPU
time.

For a more detailed conclusion, the reader is referred to Section 13.3 on page 177.

14.2 Future work

One never notices what has been done; one can only see what remains to be done.

- Marie Curie

After investigating all the various topics present in this thesis study, many questions have been
answered. However, there are also many questions that have been raised. Some of these aspects
could be investigated in the future through other theses. Each individual topic that has been
treated has its own set of specific subtopics that should be investigated further. For a detailed
list, the reader is referred to Section 8.5 on page 91 for future tasks regarding integration using
the RK methods. The reader is referred to Section 11.8 on page 139 for future tasks regarding
navigation. Finally, the reader is referred to Section 13.3 on page 177 for future tasks regarding
TSI. A few of the important tasks are repeated here.

For the integration of the USMs using the RK methods:

• If it is decided to fully implement the USM6 or the USM7, the perturbation models specific
to these models should be derived and used.

• The step-size controlling should be investigated and a method that obviates the need to
switch to Cartesian coordinates should be found.

• Some application oriented work, such as finding an optimal trajectory to a planet or an
asteroid should be carried out. This is already being done now in the form of a solar sailing
mission for [Mooij et al., 2010].

There are many areas that can be investigated further regarding navigation.

• The measurement techniques in velocity space from [Altman, 1975] could be implemented.

• Navigation in other scenarios should be carried out e.g. deep space orbits, low-thrust orbit
raising, orbit around other celestial bodies etc.

• Different filters than the ones chosen in this study could be implemented. Also, adaptive
filtering techniques could be used.

• Different optimization techniques could be used to compare the result of the tuning process.
Especially, it might be important to use a multi-objective optimizer.
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• The filter tuning problem was simplified to use as few variables in the search space for
the PSO, as possible. This decreases the number of filter tuning parameters. However,
the optimization should be repeated so that many more filter tuning parameters could be
optimized. This would give even more adaptability to the filters.

• Standard values from literature were used for the PSO tuning parameters. These should
be tuned to allow the optimizer to work more efficiently.

• The objective of the optimizer was the MAE of the position estimate from the time of first
measurement. It was already found that the MAE of the converged position estimate is a
better objective to minimize. Thus, various objectives should be tried for the PSO to be
able to pick the most desirable one.

• The effect of using different measurement types and measurement frequencies should be
investigated.

For the TSI part:

• The next step would be to implement the TSI inside an optimizer to find out if such a large
CPU time gain is still present for a complete mission design problem.

• This work has been carried out in MATLAB, so it should be converted to C++ or Fortran.

• The TSI equations for the USM6 should be derived and implemented to see what its per-
formance is.

• In this study, only the thrust is included as a perturbation. In this regard, the next step
would be to use the same methodology to find the equations for other perturbations.

• Investigation should also be carried out regarding the best type of step-size controller to
use. Also, some method of step-size control that can predict step-size and also the order of
integration could be very useful.

• Apply the TSI to an atmospheric re-entry problem.
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Appendix A

Trigonometric Identities

A few important trigonometric identities will be shown here.

A.1 Angle Sums

If there are two angles, A and B, the sine of the sum of the angles can be expressed as

sin (A+B) = sinA cosB + cosA sinB (A.1)
sin (A−B) = sinA cosB − cosA sinB (A.2)

The cosine of the sum of the angles can be expressed as

cos (A+B) = cosA cosB − sinA sinB (A.3)
cos (A−B) = cosA cosB + sinA sinB (A.4)

A.2 Half-Angle

The equations presented here follow from the equations above.

cosA = cos2 A

2
− sin2 A

2
= 2 cos2 A

2
− 1 = 1− 2 sin2 A

2
(A.5)

sinA = 2 sin
A

2
cos

A

2
(A.6)

tanA =
2 tan A

2

1− tan2 A
2

(A.7)

cos2 A

2
=

1
2

(1 + cosA) (A.8)

sin2 A

2
=

1
2

(1− cosA) (A.9)
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Appendix B

Space Environment and
Perturbations

An orbiting body assumed to a be perfect point mass, moving in a pure central gravity field is a
good first-order approximation of orbital motion. However, there are many perturbing forces that
cause the motion of the satellite to differ from the pure Keplerian motion. Only Earth orbiting
satellites are considered in this chapter.

Figure B.1: The various perturbations and their magnitudes for Earth orbiting satellites [Wakker,
2007b]

As can be seen in Fig. B.1, the Earth’s central gravity field is always at least three orders of
magnitude larger than the perturbing accelerations. These perturbations are still very important
to account for, since space applications these days require the knowledge of the satellite’s state
to a very high accuracy. It is possible to split the perturbations into four distinct categories that
are used during the thesis study. They are

- Aerodynamic forces

- Third-body attraction
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- Deviation of Earth from point mass

- Solar radiation pressure

There are other perturbing forces, such as the Earth’s electromagnetic field, but the magnitudes
of these forces are even smaller than the ones listed above.

B.1 Earth Gravity Model

The Earth is not a perfect sphere with radially symmetric mass distribution and thus, is not a
point mass. A different, more complex gravity model for the Earth needs to be used for accurate
simulation.

The gravity potential for the Earth, or any celestial body, can be written in terms of spherical
harmonics according to [Montenbruck and Gill, 2005] as

U =
µ

r

∞∑
n=0

n∑
m=0

(
RE
r

)n
Pn,m(sinφgc) (Cnm cos(mλ) + Sn,m sin(mλ)) (B.1)

In Eq. (B.1)

Pn,m(sinφgc) are the associate Legendre polynomials of degree n and order m

φgc is the geocentric latitude in ECEF

λ is the geocentric longitude in ECEF

Cn,m and Sn,m are geopotential coefficients

The acceleration can then be found by differentiating the potential.

r̈ = ∇µ
r

∞∑
n=0

n∑
m=0

(
RE
r

)n
Pn,m(sinφgc) (Cnm cos(mλ) + Sn,m sin(mλ)) (B.2)

The geopotential coefficients are published and can be looked up in tables. To define the associ-
ated Legendre polynomials, it is necessary to first define Legendre polynomials of degree n. The
Legendre polynomial of a function x can be written as

Pn(x) =
1

(−2)nn!
dn

dxn
(1− x2)n (B.3)

The associated Legendre polynomial is a function of the Legendre polynomial and is written as

Pn,m(x) = (1− x2)
m
2
dmPn(x)
dxm

(B.4)

All the coefficients can be grouped into the following 3 categories

m = 0 Zonal Coefficients

m < n Tesseral Coefficients

m = n Sectorial Coefficients

For zonal coefficients, Sn,m = 0, and it is possible to define Jeffrey’s constants, Jn, as

Jn = −Cn,0 (B.5)

Jeffrey’s constants describe the mass distribution, which is axially symmetric around the spin
axis. The effect of this on a spherical body can be seen in Fig. B.2.

As can be seen in Fig. B.1, the major perturbing influences are due to (n,m) = (2, 0), known as
the J2 effect, and (n,m) = (2, 2), known as the J2,2 effect. The associated Legendre polynomials
and the geopotential coefficients for these two cases, according to [Montenbruck and Gill, 2005],
can be seen in Table B.1.



B.2. THIRD BODY ATTRACTION 193

Figure B.2: The effect of zonal coefficients, modified from [Tewari, 2007]

B.2 Third Body Attraction

There are many celestial bodies in the solar system, and all of them affect each other and also
any satellite that is orbiting the Earth. These perturbations are all very small, but the two main
ones are due to the Moon and the Sun. The equation of motion for the orbiting body in a many
body can be seen in Eq. (4.7). For the case of an Earth-orbiting satellite, the equation of motion
can be simplified. It is assumed that an ECI frame is used and that the mass of the satellite is
much smaller than the mass of the Earth. The equation of motion with the Sun as the perturbing
force is

r̈Sat = −µEarth
r3
Sat

rSat + µSun

(
rSun − rSat
r3
Sun→Sat

− rSun
r3
Sun

)
(B.6)

The equation of motion with the Moon as the perturbing force is

r̈Sat = −µEarth
r3
Sat

rSat + µMoon

(
rMoon − rSat
r3
Moon→Sat

− rMoon

r3
Moon

)
(B.7)

It can be seen that the equation of motion consists of the central gravity field and an additional
acceleration caused by the perturbing third body. This perturbing acceleration is the difference
between the acceleration felt by the orbiting body and the acceleration felt by the central body.
The perturbations can just be added to each other if the effect of both is required. The equation
of motion now becomes

r̈Sat = −µEarth
r3
Sat

rSat+µSun

(
rSun − rSat
r3
Sun→Sat

− rSun
r3
Sun

)
+µMoon

(
rMoon − rSat
r3
Moon→Sat

− rMoon

r3
Moon

)
(B.8)

Table B.1: Legendre polynomials and geopotential coefficients for largest perturbations [Montenbruck
and Gill, 2005]

n m Pn,m(sinφgc) Cn,m Sn,m
2 0 1

2 (3 sin2 φgc − 1) −1.08× 10−3 0
2 2 3 cos2 φgc 1.57× 10−6 −9.03× 10−7
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This theory can be expanded to include as many perturbing bodies as necessary. Also, the central
body can be any celestial body and not just the Earth.

The notion of a sphere of influence is very important in the case of perturbing bodies. If a satellite
is orbiting the Earth and the Sun in considered to a perturbing body, there should be a certain
distance from the Earth where the Earth becomes the perturbing body. This distance is known
as the sphere of influence, rSOI , and can be calculated, according to [Wakker, 2007a] in the
following manner

rSOI = aPlanet

(
mPlanet

mSun

) 2
5

(B.9)

The sphere of influence depends on the semi-major axis of the orbit of the planet, and the ratio
of the masses of the planet and the Sun. This analogy can also be extended to a planet and its
Moon. The sphere of influence is useful for perturbations and also interplanetary trajectories,
where a method called patched-conic can be used. In this method, each planet has a sphere of
influence where the satellite considers that planet as the primary attracting body. The Sun is
considered to be the primary attracting body when the satellite is not inside any other sphere of
influence.

To be able to compute the influence of the Sun and Moon on the orbit, the position of these
two bodies needs to be computed. One method is to assume that the celestial bodies are in
orbit and then use their mean orbital elements to compute the position. The implementation
of this method along with the orbital elements of the celestial bodies can be found in [Schlyter,
1979]. The orbital elements are provided with respect to the J2000 frame. Even though the
Earth orbits the Sun, it is assumed that the Sun is orbiting the Earth. This makes things simple
for the case when the satellite is Earth-orbiting and only the Sun and Moon are considered to
be perturbations. If other planets are considered, the position of the Sun has to be computed
because this actually represents the position of the Earth. This is not a problem as usually the
perturbation of Sun will be taken into account before the perturbation of any other planets. The
orbital elements of the Sun and the Moon are presented in Table B.2. The orbital elements for
the rest of the planets can be found in [Schlyter, 1979]. In Table B.2, d is the day from January
2000 0:00 UT. It can be computed in the following manner

d = 365× year − 7
4

(
year +

month+ 9
12

)
+

275
9
month+ day − 730530 +

UT

24
(B.10)

In Eq. B.10, UT is the Universal Time expressed in hours. Once the day is calculated, the mean
orbital elements from Table B.2 can be used to calculate the position of the Sun and the Moon.
In case very accurate value for the position of the Moon, other terms that express the effect of
other celestial bodies on the Moon have to be calculated. This position obtained from the mean
orbital elements is expressed in the ecliptic, and not the equatorial plane. The ecliptic plane
has an inclination, iEC , with respect to the equatorial plane that is constantly changing. This

Table B.2: Mean orbital elements of the Sun and the Moon [Schlyter, 1979]

Sun Moon
Ω [deg] 0 125.1228− 0.0529538083× d
i [deg] 0 5.1454
ω [deg] 282.9404 + 4.70935× 10−5 × d 318.0634 + 0.1643573223× d
a [km] 149.60× 106 383958.509
e [ - ] 0.016709− 1.151E − 9× d 0.054900
M [deg] 356.0470 + 0.9856002585× d 115.3654 + 13.0649929509× d
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inclination, in degrees, can be calculated in the following manner

iEC = 23.4393− 3.563× 10−7 × d (B.11)

The rotation matrix to convert from the ecliptic to the equatorial frames is

CEQ,EC =

 1 0 0
0 cos iEC − sin iEC
0 sinEC cos iEC

 (B.12)

B.2.1 Atmospheric Forces

The perturbation due to atmospheric forces is very important, especially for LEO satellites. The
atmosphere causes drag, which acts in a opposite sense to the velocity. The acceleration caused
by drag, according to [Montenbruck and Gill, 2005], is

r̈ = −1
2
CD

A

m
ρv2
r êvr (B.13)

In Eq. B.13

CD is the coefficient of drag
A is the cross-sectional area coming into contact with the atmosphere
vr is relative velocity of the spacecraft with respect to the atmosphere
êvr is the unit vector in the direction of the relative velocity
m is the mass of the satellite

The coefficient of drag varies from 2 to 3 according to [Wakker, 2007b], and between 2 to 2.3
according to [Montenbruck and Gill, 2005]. It is assumed that the atmosphere rotates along
with the Earth and thus, the angular velocity of the atmosphere is the same as the Earth,
ωE = 0.7292× 10−4 rad/s. A satellite in an orbit has no out of plane velocity, but there will still
be an out of plane drag component due to the atmospheric rotation.

Normally on Earth, the atmosphere is considered to be a continuum. In space the density is
so low that free molecular flow regime is encountered. This means that the mean distance that
atmospheric constituent molecules travel without collisions is greater than the dimensions of the
satellite. Only when the satellite is flying very low, does it encounter other regimes such as the
transition and continuum flow. Those cases are more applicable for re-entry and therefore, will
not be dealt with in this chapter. Thus, only the atmospheric models for the upper atmosphere
are presented in this section. Since the accuracy of the perturbation models is not the main focus
of this thesis study, the mean atmospheric density values at various altitudes was used.

To calculate the acceleration due to drag from Eq. (B.13), it is required to calculate the density.
The atmospheric scale height and the mean density for various altitudes is found in Table B.3.
Between the altitudes found in the table, the atmosphere is assumed to be exponential. According
to [Montenbruck and Gill, 2005] the density can then be approximated by

ρ = ρ0e−h/H0 (B.14)

In Eq. (B.14)

h is the altitude

ρ0 is the reference density corresponding to the largest height entry lower than h in Table B.3

H0 is the atmospheric scale height corresponding to the largest height entry lower than h in
Table B.3
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B.3 Solar Radiation Pressure

The final perturbation that is treated in this chapter is the solar radiation pressure. The per-
turbation from solar radiation pressure is caused due to the exchange of momentum between the
incoming photons from the Sun and the satellite. The solar radiation pressure depends on the
solar radiation flux, Φ, and the speed of light, c. The pressure is directly proportional to the flux,
which has a value of approximately 1367 Wm−2. The solar radiation pressure can be written as

P =
Φ
c

(B.15)

The constant, PE ≈ 4.56× 10−6 Nm−2, is defined as the value of the solar radiation pressure at
the Earth. The actual perturbing force that the satellite experiences depends on 3 main factors

• The orientation with respect to the Sun

• The area, A, in contact with the photons

• The reflectivity of the surface, expressed by the reflectivity coefficient ε

The reflectivity coefficient, ε, is a measure of the amount of the percentage of incoming photons
reflected by the surface. If ε = 0, the solar radiation perturbation acceleration will be directed
radially away from the Sun. If ε = 1, the solar radiation perturbation acceleration will be directed
in an opposite direction to the surface normal. If êS is the unit vector pointing from the spacecraft
to the Sun and n is the surface normal unit vector, the perturbing acceleration can be expressed,
according to [Montenbruck and Gill, 2005], as

r̈ = −P CRA

mr2
Sun

êS (B.16)

Table B.3: Atmospheric table with densities and scale heights for various altitudes [Wertz and Larson,
2003]

Altitude [ km ] Atmospheric Scale Height [ km ] Mean Atmospheric Density [ kg/m3 ]
0 8.4 1.2

100 5.9 4.79× 10−7

150 25.5 1.81× 10−9

200 37.5 2.53× 10−10

250 44.8 6.24× 10−11

300 50.3 1.95× 10−11

350 54.8 6.98× 10−12

400 58.2 2.72× 10−12

450 61.3 1.13× 10−12

500 64.5 4.89× 10−13

550 68.7 2.21× 10−13

600 74.8 1.04× 10−13

650 84.4 5.15× 10−14

700 99.3 2.72× 10−14

750 121 1.55× 10−14

800 151 9.63× 10−15

850 188 6.47× 10−15

900 226 4.66× 10−15

950 263 3.54× 10−15

1, 000 296 2.79× 10−15

1, 250 408 1.11× 10−15

1, 500 516 5.21× 10−16
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In Eq. B.16, CR is the solar radiation pressure coefficient, and is defined as

CR = 1 + ε (B.17)
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Appendix C

Numerical Methods

There are many computations carried out in during the thesis work. This chapter will also in-
clude any numerical methods that are necessary in implementing the theory. They are: Numerical
Integrators, Euler parameters normalization, matrix Cholesky decomposition, Householder tri-
angularization, and Numerical Differentiation.

C.1 Numerical Integration

Numerical integration is used to calculate the trajectory of a satellite by integrating the second
order differential equation of the central gravity field along with any perturbations. An excellent
overview of many of the numerical integration methods can be found in [Montenbruck and Gill,
2005]. There are many different numerical integrators available that are all suitable for various
purposes. Thus, only a qualitative description of the various integrators is presented in this
section. To see the actual algorithms, the reader is referred to [Montenbruck and Gill, 2005] and
[Press et al., 1994].

The basic theory behind all the numerical integration methods is the Euler step. The Euler step
is a first order taylor approximation of the time derivative multiplied by the time step. The
approximation that the time derivative is constant during the time step is made. This is a fair
approximation when the time step is very small, but will cause the integrated solution to diverge
from the true solution sooner if the time step is large. In the long run, the solution will always
diverge. The downside of having a small time step is that more calculations are necessary to
cover the same range and thus, the numerical inaccuracies and roundoff errors will have a higher
impact. It should be noted that the numerical integration is normally carried out on first order
differential equations. Thus, the second order differential equation for orbital motion has to be
split into first order differential equations.

To be able to use larger time steps, higher order integrators have to be used. The higher order
integrators, such as the famous Runge-Kutta 4 (RK4), approximate the function better during
the time step interval. These integrators are designed in a such a way that the function does not
have to be analytically manipulated, so that all the calculations can be carried out numerically.
This is done by using various pre-computed coefficients, the derivations of which are beyond
the scope of this work. The higher the order of the integrator, the larger the time step can be
to achieve the desired accuracy. The time to carry out one integration step by a higher order
integrator is higher than that of a lower order one, but the lower order integrator requires smaller
time steps and thus, more integrations. Thus, the integrator to be used, along with the time step
is dependent on the application. The main characteristic of the single step method is that the
integration is only dependent on information of the present result. The most important single
step integrators of various orders are: Dormand & Prince (DOP), Runge-Kutta-Fehlberg (RKF),
and Runge-Kutta-Nyström (RKN). Of the aforementioned integrators, the RKN is more suited
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for integration of second order and so the orbital motion can be directly integrated according to
[Montenbruck and Gill, 2005].

The time step can be arbitrarily chosen and remain constant through out the integration pro-
cedure. It is, however, possible to let the time step vary and adapt to the integration process.
The solution to the integration process is not always equally dynamic. The goal of having a
variable step size is that the error due to integration over any given interval should be the same
as error over any other interval, while trying to reduce computation time. Over a very dynamic
interval, it is required to use a relatively small time step. If the same small time step is used
over a less dynamic interval, then the accumulated roundoff error might be more than the error
accumulated by using a larger time step. This can be analogized with orbital motion because
the velocity of the satellite is higher near the pericenter than the apocenter. Thus, it would be a
wiser use of resources to use a smaller time step near the pericenter. The local truncation error is
the difference between the solution from an integrator of a specified order and the solution of an
integrator that is one order lower. A tolerance value can be specified, which serves as the upper
limit for the local truncation error. If the local truncation error is greater than the tolerance, the
time step is decreased, otherwise the time step is increased.

C.1.1 Runge-Kutta Fourth-Order

For first approximations, the work horse in engineering applications is the Runge-Kutta 4th order
(RK4) integrator. For the RK4, a function y is taken whose derivative is a function of y and
time, t.

ẏ = f (t,y) (C.1)

If the time step is chosen to be h, the value of y after h units of time is

yk+1 = yk +
h

6
(fk1 + 2fk2 + 2fk3 + fk4) (C.2)

with

fk1 = f (tk,yk) (C.3a)

fk2 = f
(
tk +

h

2
,yk + fk1

h

2

)
(C.3b)

fk3 = f
(
tk +

h

2
,yk + fk2

h

2

)
(C.3c)

fk4 = f (tk + h,yk + fk3h) (C.3d)

If only the Euler step is used, the value of y after h units of time is

yk+1 = yk + hf (tk,yk) (C.4)

The conceptual locations of the intermediate points of the RK4 integrator can be seen in Fig.
C.1.

C.1.2 Runge-Kutta Fifth-Order using Cash-Karp Coefficients

The other numerical integrator used during the thesis study is the embedded RK5(4) with Cash-
Karp coefficients. This is a fifth-order method that uses the embedded fourth-order formula as a
way to check the truncation error. The coefficients for this integrator can be found in Table C.1.
Using the coefficients in Table C.1, the fifth-order Runge-Kutta formula is

yk+1 = yk + c1k1 + c2k2 + c3k3 + c4k4 + c5k5 + c6k6 (C.5)
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Figure C.1: All the points calculated during a fourth order Runge-Kutta integration step [Press et al.,
1994]

The fourth-order formula is

y∗k+1 = yk + c∗1k1 + c∗2k2 + c∗3k3 + c∗4k4 + c∗5k5 + c∗6k6 (C.6)

In Eqs. (C.5) and (C.6), the various ki can be found using the following formula

ki = h ∗ f

tk + aih,yk +
i−1∑
j=1

bijkj

 (C.7)

The error estimated is the difference between the fifth-order formula and the embedded fourth-
order formula.

∆ ≡ yk+1 − y∗k+1 (C.8)

C.1.3 Runge-Kutta Eighth-Order

To generate the ephemeris, a very high-order numerical integrator is used. This the eighth-order
Runge-Kutta integrator with a seventh-order error check RK8(7). The coefficients for this method

Table C.1: The coefficients used for numerical integration with Cash-Karp coefficients [Press et al.,
1994]
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were derived by Prince & Dormand and can be found in Table C.2.

The eighth-order Runge-Kutta formula is

yk+1 = yk +
13∑
i=1

b̂iki (C.9)

The embedded seventh-order Runge-Kutta formula is

yk+1 = yk +
12∑
i=1

biki (C.10)

ki = h ∗ f

tk + cih,yk + h

i−1∑
j=1

aijkj

 (C.11)

C.2 Cholesky Decomposition

Cholesky decomposition is useful in finding the square root matrix required for the DD1 and DD2
filtering methods. Cholesky decomposition works only on positive definite symmetric matrices,
such as covariance matrices. This decomposition is used to find an upper triangular matrix, U,
or a lower triangular matrix, L, from matrix, A, that satisfies the following relation

A = LLT = UTU (C.12a)

U = LT (C.12b)

In MATLAB, U can be found simply by using chol(A) and L can be found by using chol(A,’lower’).
To show how this calculation is carried out, assume that aij , lij , and uij are the components of
the ith row and jth column of A, L, and U respectively. Since U = LT , the diagonal entries of
both these matrices are equal and can be calculated using

uii = lii =

√√√√aii −
i−1∑
k=1

u2
ki =

√√√√aii −
i−1∑
k=1

l2ik (C.13)

The off-diagonal terms of U can be calculated using

uij =
aij −

∑i−1
k=1 ukiukj
uii

j = i+ 1, . . . , n (C.14)

The off-diagonal terms of L can be calculated using

lji =
aij −

∑i−1
k=1 likljk
lii

j = i+ 1, . . . , n (C.15)

For UKF, DD1, and DD2, the lower diagonal Cholesky decomposition, L, is required.

C.3 Householder Triangularization

Householder triangularization is a way of creating upper triangular matrices. The lower triangular
matrices that are necessary for DD1 and DD2 can then be found from the transpose of the upper
triangular matrix. The upper diagonal matrix U is created from A by

Qn . . .Q2Q1A = U (C.16)
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Table C.2: The coefficients used for numerical integration with RK8(7) [Montenbruck and Gill, 2005]
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Figure C.2: Methodology of the Householder triangularization [Trefethen and Bau III, 1997]

where the products of the Q matrices is

QT = Qn . . .Q2Q1 (C.17)

Finding the matrix Q, which is unitary, is not essential for the filters and thus, will not be dealt
with in this section. Also, the aim here is not to present a theoretical overview, but simply the
application process. A more theoretical approach can be found in [Trefethen and Bau III, 1997].

The goal of each successive Qi is to change the ith column of a modified A so that there are only
zeroes beneath the diagonal which, can be seen in Figure C.2. In Fig. C.2, the blank elements
are zeros and the bold elements are the ones that are modified during each operation. The total
number of Qi matrices necessary, n, is either equal to smallest of the number of rows or columns
of A. U is found in an iterative manner starting from i = 1 till i = n. For example, after Q1 is
used there is a new transformed A(1). Q2 is then used on the 2nd column of A(1) to give A(2).
The structure of Qi is as follows

Qi =
[

Ii−1 0
0 F

]
(C.18)

In Eq. C.18, F is a unitary square matrix of dimension (n− i+ 1) and can be found using

F = I− 2
vvT

vTv
(C.19)

with v being

v = −sign(x1) |x| e + x (C.20)

In Eq. C.20, x is the ith column of A. Note that the superscript of A has been dropped, but the
suitable modified A has to be used and not the original one. x1 is the first entry of x and e is a
vector of the same length as x. The ith element of e is 1, and the rest of the elements are zeros.
Finally, the desired lower diagonal matrix, L, is found by taking the transpose of U.

C.4 Quaternion Normalization

Quaternions, as mentioned previously, should be of unit magnitude. Numerical integration, as
shown previously, do not have an accuracy of 100%. When Euler parameters are integrated, their
magnitude will tend to diverge from 1 due to these numerical inaccuracies. The fact that the
unit magnitude property is also used for rotation matrices makes it essential that this property
is maintained. The norm of the Euler parameters can also deviate from 1 whenever an update
using one of the filters is used. The way to renormalize the the parameters is to divide by the
magnitude.

εnormalized =
ε√

ε21 + ε22 + ε23 + η2
(C.21a)
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ηnormalized =
η√

ε21 + ε22 + ε23 + η2
(C.21b)

Another way is to only consider the vectorial part of the Euler parameters and then consider the
fourth parameter, η, as dependent term. This is not good practice because it takes away one of
the possibilities to check the accuracy of the integration or estimation.

C.5 Numerical Differentiation

Jacobians are necessary for the implementation of the EKF and are time consuming to derive
analytically. Thus, it is more convenient to be able to numerically differentiate a function. Only
the first derivative is discussed here. A first-order approximation of the derivative of a function,
f(x), can be found using the forward-difference formula with h being the step size.

f ′(x) ≈ f(x+ h)− f(x)
h

(C.22)

The central-difference formula gives the derivative accurate to the second-order.

f ′(x) ≈ f(x+ h)− f(x− h)
2h

(C.23)

Increasing the order or decreasing the step-size both increase the accuracy of the derivative.
There are other methods such as complex-step differentiation [Martins et al., 2000] that can also
provide accurate derivatives. However, they can cause problems when the norms of vectors are
used. Thus, a new form of derivative has been used here [Shiraishi et al., 2007].

The differentiation for a univariate case is shown here, but can easily be extended to multiple
variables. It is assumed that the goal is to find the derivative df(x)/dx at x = x0. To find this
first derivative, various orders can be used from Table C.3. The order corresponds to the number
of central differences to be computed. This central difference is written as

yn = f (x0 + n∆x)− f (x0 − n∆x) (n = 1, . . . , N) (C.24)

The derivative can then be estimated as

df(x)
dx

∣∣∣∣
x=x0

≈
∑N
n=1Anyn
2∆x

(C.25)

In Eqs. (C.24) and (C.25), it is most desirable to provide ∆x in the form of

∆x = εx0 (C.26)

Table C.3: Coefficients for numerical differentiation [Shiraishi et al., 2007]

N A1 A2 A3 A4 A5 A6 A7

1 1
2 4/3 -1/6
3 3/2 -3/10 1/30
4 8/5 -2/5 8/105 -1/140
5 5/3 -10/21 5/42 -5/252 1/630
6 12/7 -15/28 10/63 -1/28 2/385 -1/2772
7 7/4 -7/12 7/36 -7/132 7/660 -7/5148 1/12010


