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Abstract: This paper compares and assesses several numerical methods that solve the steady-state
power flow problem on integrated transmission-distribution networks. The integrated network
model consists of a balanced transmission and an unbalanced distribution network. It is important to
analyze these integrated electrical power systems due to the changes related to the energy transition.
We classified the existing integration methods as unified and splitting methods. These methods
can be applied to homogeneous (complete three-phase) and hybrid (single-phase/three-phase)
network models, which results in four approaches in total. These approaches were compared on their
accuracy and numerical performance—CPU time and number of iterations—to demonstrate their
applicability on large-scale electricity networks. Furthermore, their sensitivity towards the amount
of distributed generation and the addition of multiple distribution feeders was investigated. The
methods were assessed by running power flow simulations using the Newton–Raphson method
on several integrated power systems up to 25,000 unknowns. The assessment showed that unified
methods applied to hybrid networks performed the best on these test cases. The splitting methods are
advantageous when complete network data sharing between system operators is not allowed. The
use of high-performance techniques for larger test cases containing multiple distribution networks
will make the difference in speed less significant.

Keywords: load flow; steady-state; transmission; distribution; power systems; unbalanced;
Newton–Raphson; integrated networks

1. Introduction

The study of steady-state power flow solvers for integrated electricity networks is
gaining more attention due to challenges that arise from the energy transition. Integrated
electricity networks are networks that consist of a transmission and a distribution network.
Due to the energy transition, more renewable energy is entering the grid at the distribution
level, and demand-side participation as a mechanism to balance frequency is increasing,
even as the electricity consumption increases due to the rise of, amongst others, electric
vehicles [1,2]. Integrated network models are key to study the interaction that these
networks have with each other in this changing environment. On top of that, these
challenges increase the size of the network and the frequency of network state analysis.
Therefore, load flow solvers should not only be capable of solving the integrated power
flow problem, but also run these computations fast and efficiently.

Steady-state load flow analysis is an important tool used for grid operation and
planning. Much attention has been paid so far to efficient solvers for the load flow analysis
of separate networks [3,4]. In these separate network models, transmission networks
include the total load of the distribution network as a balanced load bus, while distribution
networks include the transmission network as the slack bus. Although developments of
these separate network solvers continue, the focus in this work is on methods that can
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solve the power flow problem on integrated transmission-distribution network models
efficiently. The research fields that are investigating these integrated power systems can
be divided into two categories: stand-alone methods [5,6] and cosimulation methods [7,8].
Although cosimulation is an important field and valuable for system operators—because
many operators use their own software tools for operation and planning—the focus of this
work is on stand-alone methods. The eventual goal of this study is to obtain fast load flow
solvers, and more numerical efficiency is expected from stand-alone methods.

Although legislation sometimes prohibits the use of stand-alone methods [6], enough
potential use cases for these methods exist, to name a few: Some countries run their
electricity network by one system authority being responsible for both transmission and
distribution network operation, such as in Brazil [9]. Next to that, cooperation at the
international level between system operators is increasing, such as in the European Union
by ENTSO-E [10], which allows the use of a stand-alone tool for complete operation and
planning. On top of that, one may argue that the innovations that arise from stand-alone
methods may not only be valuable for the integrated system field, but also for merely
balanced systems where imbalance arises on only a few lines [9].

Integrating transmission and distribution network models are a challenging task,
firstly because the transmission network is a balanced network and therefore modeled
using a single phase only, while the distribution network is in general not balanced and
thus modeled using three phases [11]. Furthermore, also transmission and distribution
solvers have been developed separately because of the distinct properties of the networks.
Transmission systems are often solved using the power mismatch formulation of Newton–
Raphson or with fast decoupled load flow methods [3]. The solvers that have proven to be
better for distribution systems are, to list a few, the Newton–Raphson method applied to
the current mismatch formulation [12], forward backward sweep methods [13], or modified
Zbus methods [14]. Nevertheless, power flow solvers for integrated network models are
being developed, and the field that studies these methods is emerging [15].

A literature review showed that multiple stand-alone approaches exist that integrate
transmission and distribution network models. We categorized them into unified [5] and
master–slave splitting [6] methods. These approaches can be applied to homogeneous
(complete three-phase) or hybrid (single-phase/three-phase) networks [5,16]. Unified
methods, also called the MonoTri formulation by the authors [5], make a new integrated
network of the two separate networks and solve them in one go. The master–slave-splitting-
based distributed global power flow method—which will be called the master–slave
splitting method during the rest of this work—adds an additional iterative scheme between
the methods such that the networks can be solved separately. The complete system reaches
convergence as soon as both the separate systems and the splitting method have converged.

Over the years, improvements of these methods have been made either in the field
of dynamic analysis or to handle more physical details of the network itself. The au-
thors of the MonoTri formulation introduced this concept in 2008 and recently published
new work in which the MonoTri formulation was used for transient stability analysis [9].
The authors of the splitting formulation introduced this concept in 2005 [17] and have
been working on improvements since then [6,18,19], in which the latest work gave a clear
description of the master–slave splitting methods including an extensive convergence
analysis and improvements that have been made when loops and distributed generation
are considered [6].

Additional improvements have been made. In [16], the splitting methods were applied
and compared to steady-state unbalanced test cases. In [20], they were tested for dynamic
analysis of unbalanced test cases. The work of [21] improved the speed of the MSS methods
when radial distribution networks are heavily loaded. They did so by using Thevenin
equivalents as the input for the distribution network, instead of taking the voltage of the
connecting bus of the transmission network as the input. As defined in [21], the Thevenin
equivalent is a type of single-port equivalent, which replaces an entire network by an
equivalent circuit consisting of a single voltage in series with an impedance. This means
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that the impact of the transmission network on the distribution network can be studied by
only considering the Thevenin equivalents. In order to calculate the equivalents, a phasor
measurement unit (PMU) needs to be installed along the network in order to determine
the (voltage, current) pairs at the interface of the two subsystems.

So far, the stand-alone integration methods have been developed, improved, and vali-
dated, but what lacks is a thorough and independent comparison study of both methods
under the same circumstances. This work consists of a review of the existing stand-alone
methods and an assessment of these methods by implementing them on the same set of
integrated test cases. The same category of solvers, which are different versions of the
Newton–Raphson solver with a direct LU-factorization, is adopted to diminish external
influences in order to obtain an objective comparison.

The review in this work included a generic description of both methods and a list of
the advantages and disadvantages related to their numerical performance, physical details,
and usability. The numerical assessment included an assessment of the steady-state load
flow performance of the methods and their sensitivity towards the physical conditions
of the network such as the addition of multiple distribution feeders and the amount of
distributed generation. The conditions on which the methods were assessed are: the
convergence rate, CPU time, and robustness. To do so, integrated networks were created
from standard IEEE transmission and distribution test networks. The largest integrated
network contained around 25,000 unknowns. The end of the paper contains a discussion
about which of the methods can be scaled efficiently to large and realistic networks, in order
to fulfill the requirements of the prospected transforming electricity grids.

This paper is organized as follows. Section 2 contains a generic representation of
separate electricity transmission and distribution networks, their distinct characteristics,
and the (adapted) Newton–Raphson method as a fast and robust solver. Section 3 includes
a uniform description of the different integration methods and integrated network models
and an extensive review of the methods including a list of the advantages and disadvan-
tages. Section 4 consists of the objective assessment of the numerical performance of the
methods by applying them on the same set test cases. Section 5 gives insight into their ap-
plicability to realistic and large networks including the main distinctions and comparisons
between the methods that arise. Section 6 contains concluding remarks and suggestions
for future work.

2. The Power Flow Problem in Single-Phase and Three-Phase Representation

An electricity network model is represented as a graph consisting of buses i = 1, ..., N,
representing generators, loads, and shunts and branches representing transformers and
cables. The steady-state power flow problem of a network determines the voltages Vi of
each bus given the power supply and demand Si of each bus and the admittance Yij of
each branch [3]. The transmission network, which is a balanced network, is modeled as a
single-phase network, where a represents the phase (Appendix A):

Sa
i = Va

i Ia
i = Va

i (YV)a
i = Va

i

N

∑
j=1

Ya
ijV

a
j (1)

Complex power consists of an active (real) and reactive (imaginary) part: S = P + ιQ.
The power flow problem is solved using the Newton–Raphson solver applied to the power
mismatch formulation (NR-P) to compute the unknown quantities at each bus i. The power
mismatch formulation is written as: ∆Si = Ss,i − Vi ∑N

j=1 YijV j ≈ 0 [3]. Assembling this
equation for every bus in the network in an active and reactive component yields the
following power mismatch vector:

F(x) =
[

∆P
∆Q

]
=

[
Ps − P(x)
Qs −Q(x)

]
= 0, (2)
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where x represents the state variables xi =
[
δi |Vi|

]T , which form the voltage in the phasor
notation Vi = |V| exp (ιδ)i.

Distribution systems are unbalanced; therefore, the distribution network is modeled
using all three phases a, b, and c [22]. The power flow Equation (1) in three phases is
described by:

Sp
i = Vp

i Ip
i = Vp

i

N

∑
j=1

∑
q=a,b,c

Ypq
ij Vq

j , p ∈ {a, b, c}. (3)

The Newton–Raphson three-phase current injection method (TCIM) [12] is used
to solve the distribution networks. Instead of applying the standard Newton–Raphson
method to power mismatches, Ohm’s law is directly used, resulting in the following current
mismatch vector:

F(x) =
[

∆IRe,abc(x)
∆IIm,abc(x)

]
=

[
IRe,abc

s − IRe,abc(x)
IIm,abc

s − IIm,abc(x)

]
. (4)

Loads, shunt, transformers, and regulators can be modeled in several configurations.
Details can be found in the full version of this work [23].

3. Integration Methods

The transmission and distribution networks are connected to each other via a substa-
tion. The substation is a series of tap-changing transformers that transform high-voltage
to low-voltage power. This substation can be modeled as a π-element that connects the
transmission network from the left and the distribution network from the right, as seen in
Figure 1. The single-phase/three-phase connection results in a dimension mismatch at this
substation. Table 1 shows the single-phase and three-phase representation of S, V, and Y
in the network models.

k msingle-phase

transmission

network

V
a

k Vm

abc

three-phase

distribution

network
y

abc

b b

Figure 1. The substation transformer in an integrated network connecting a single-phase transmission
bus k and a three-phase distribution bus m.

Table 1. Representation of the parameters in transmission and distribution network models.

Parameter Transmission Distribution

Si [Sa]i

[
Sa Sb Sc

]T

i

Vi [Va]i

[
Va Vb Vc

]T

i

Yij

Ya
11

1×1

Ya
12

1×1

Ya
21

1×1

Ya
22

1×1


ij

Yabc
11

3×3

Yabc
12

3×3

Yabc
21

3×3

Yabc
22

3×3


ij

We classified the approaches to run stand-alone computations on integrated networks
as unified and splitting methods and the two ways of modeling integrated networks as
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homogeneous and as hybrid networks. The unified method solves the integrated system as
a whole [5]: The transmission network, substation, and distribution network are connected
as one integrated network and then solved. The splitting method iterates between the
two networks, and at each iteration, it solves the networks separately [6]. In the splitting
method, the substation is part of the distribution network model. This method is similar to
the cosimulation approach where the separate domains are solved on its own and coupled
using an iterative scheme [7].

Homogeneous networks are networks where both the transmission and distribution
network are modeled in three phases. It requires a transformation of the transmission
network. Hybrid networks keep the transmission network as a single-phase model, but re-
quire a transformation of the substation model. We call the unified approach applied
to homogeneous networks the (F3P) method and that applied to hybrid networks the
interconnected (IC) method. We call all splitting methods master–slave splitting (MSS)
methods. We define the MSS methods based on the network model they are applied to,
e.g.,: the splitting approach applied to hybrid networks is called the MSS-hybrid method.
Table 2 gives an overview of the methods.

Table 2. Classification of numerical methods to solve integrated systems.

Integrated Approach

Network Model Unified Splitting

Hybrid

Interconnected (IC)

Transform substation

Solve as a whole

MSS-hybrid

Transform substation

Extra iterative scheme

Homogeneous

Full three-phase (F3P)

Transform Transmission

Solve as a whole

MSS-homo

Transform Transmission

Extra iterative scheme

3.1. Unified Methods

Unified methods solve the integrated system using one iterative scheme applied to
the entire integrated network. The substation is modeled as a transformer that connects
the two networks. It connects a load bus of the transmission network and the original slack
bus of the distribution network, which then changes to a load bus. The entire system is
solved using one algorithm.

3.1.1. The Full Three-Phase Method

The full three-phase method (F3P) is the unified method applied to homogeneous
networks. Unbalanced distribution networks are modeled in three phases; the transmission
networks requires a transformation. This transformation is based on the assumption that
the transmission system is balanced: the phases b and c can be deducted from the first
phase a, and the voltage Va, the complex power Sa, and the admittance Ya of all the trans-
mission buses i = 1, ..., N are transformed to their three-phase equivalents. The following
transformer matrices are used:

T1 =
[
1 a2 a

]T and T2 =
[
1 1 1

]T , a = e
2
3 πι,

and identity matrix I3×3. This results in the following:

T1[Va]i =

[
Va Vb Vc

]T

i
, (5)
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T2
[
Sa]

i =
[
Sa Sb Sc]T

i , (6)

[
Ya

11 ⊗ I3×3 Ya
12 ⊗ I3×3

Ya
21 ⊗ I3×3 Ya

22 ⊗ I3×3

]
ij
=

[ 3 3

3 Yabc
11 Yabc

12
3 Yabc

21 Yabc
22

]
ij

. (7)

3.1.2. The Interconnected Method

The interconnected method (IC) is the unified method applied to hybrid networks.
The substation couples the single-phase quantities of bus k at the transmission side to the
three-phase quantities at bus m at the distribution side. Therefore, it needs a transformation
of its nodal admittance matrix Ykm [5]. The π-element model of the connecting substation
is depicted in Figure 1. The following four transformer matrices are used:

T1, T3 =
1
3
[1 a a2], T4 =

1
3
[1 1 1], T5 =

1
3

[
1 a2 a

]
,

where a = e
2
3 πι, to establish the connection of bus k and m via the admittance matrix

Ykm. This transformation is based on the assumption that the connecting bus k is per-
fectly balanced. This means that the single-phase and three-phase quantities are related
as follows: [

Va Vb Vc]T
k = T1

[
Va]

k, (8)[
Ia]

k = T3
[
Ia Ib Ic]T

k , (9)[
Sa]

k = T4
[
Sa Sb Sc]T

k . (10)

The change of the transformer substation depends on whether the unified system is
solved using NR-Power or NR-TCIM.

Using Current Injections

The NR-TCIM method uses Ohm’s law directly. The relation between node k and m is
expressed as follows [5]:

I = YV ⇔
[

Ik
Im

]
=

[
Y11 Y12
Y21 Y22

][
Vk
Vm

]
(11)

If node k and m are both modeled in three phases, the following holds:

Iabc
k = Yabc

11 Vabc
k + Yabc

12 Vabc
m , (12)

Iabc
m = Yabc

21 Vabc
k + Yabc

22 Vabc
m . (13)

Equation (12) is multiplied by T3 to obtain Ia
k :

Ia
k = T3Iabc

k = T3Yabc
11 Vabc

k + T3Yabc
12 Vabc

m . (14)

Accordingly, Vabc
k is substituted into Equations (13) and (14) by T1Va

k (Equation (8)):

Ia
k = T3Iabc

k = T3Yabc
11 T1Va

k + T3Yabc
12 Vabc

m , (15)

Iabc
m = Yabc

21 T1Va
k + Yabc

22 Vabc
m . (16)

Equations (15) and (16) result in this new admittance matrix:

Ykm =

[ 1 3

1 T3[Yabc
11 ]T1 T3[Yabc

12 ]
3 [Yabc

21 ]T1 Yabc
22

]
km

(17)
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Using Power Injections

The deduction of the transformed admittance matrix Ykm starting from the power
equations, Si = Vi(YV)i, is performed in a similar way [5]. The extended version of this
work [23] contains a detailed description. The new nodal admittance matrix, deducted
from power equations, is the following:

Ykm =

[ 1 3

1 T5[Yabc
kk ]T1 T5[Yabc

km ]
3 [Yabc

mk ]T1 Yabc
mm

]
km

. (18)

3.2. Master–Slave Splitting Methods

The splitting approach appoints the transmission network as the master and the
distribution network as the slave [6]. In the splitting methods, the substation is part of the
distribution network model. The methods can also be applied to homogeneous (MSS-homo)
and hybrid (MSS-hybrid) networks. In contrast to the unified methods, the MSS methods

keeps the master and the slave as two separate domains and introduces an extra iterative
scheme between the domains, the MSS scheme. The two domains have one overlapping
bus, and this bus is called the boundary bus [6]. The boundary bus is the bus connected to
the left side of the substation model and acts as the slack bus for the slave. It can be any
load bus of the transmission system.

3.2.1. Algorithmic Approach

The algorithmic approach of the MSS scheme goes as follows: (1) initialize the voltage
Vb of the boundary bus; (2) start with the slave by initializing the rest of the voltages, and
then, solve this system; we obtain the complex power of the boundary bus, SB, required as
the initial input for the load bus of the master; (3) inject SB into the master; (4) initialize the
rest of the master, and obtain an updated voltage of the boundary bus VB; (5) compare VB
with the voltage from the previous MSS iteration. If it is lower than the tolerance value
εMSS = 10−5, the MSS system has converged. These steps are summarized in Algorithm 1 .

Algorithm 1 The Master-Slave Splitting Iterative Scheme.

1: Set iteration counter ν = 0. Initialize the voltage V0
B of the distribution system.

2: Solve the distribution system. Output: Sν+1
B .

3: Inject Sν+1
B into the transmission system.

4: Solve the transmission system. Output: Vν+1
B .

5: Is |Vν+1
B −Vν

B |1 > εMSS? Repeat Steps 2 to 5.

As the MSS method solves the transmission and distribution systems separately, it
allows for using different algorithms per domain. In this way, the distribution system
is solved using the advantageous NR-TCIM method and the transmission system using
the NR-power method. Furthermore, the MSS method can be applied to homogeneous
networks and to hybrid networks [16], the first one requiring a transformation of the entire
master domain, the latter requiring a transformation of the boundary bus only.

3.2.2. The MSS Homogeneous Method

The MSS method applied to homogeneous networks requires a transformation of
the single-phase transmission system. The balanced transmission system is transformed
in the same way as in the F3P method. The voltage, power, and admittance of all buses
i = 1, . . . , N are transformed to three-phase equivalents. This idea is summarized in
Equations (5)–(7) of Section 3.1.1.
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3.2.3. The MSS-Hybrid Method

The MSS method applied to hybrid systems keeps the transmission system in a single
phase. The original designers of the splitting method [6] transformed the complex power
and the voltage of the boundary bus after one run of the slave and the master, respectively.
First, the three-phase complex power SB is transformed into a single-phase quantity. Once
the master system is solved, the voltage VBB is transformed to a three-phase quantity.
Here, again, the transformation is based on the assumption that the boundary bus is
completely balanced. Balanced three-phase power in pu is related to single-phase power in
(10) according to the following relation:

[Sa] = T4
[
Sa Sb Sc]T , (19)

where T4 = 1
3 [1 1 1], and a = e

2
3 πι. The voltage of the boundary bus has the same relation

as in (8): [
Va Vb Vc]T

B = T1
[
Va]

B, (20)

where T1 = [1 a2 a]T , and a = e
2
3 πι.

Algorithm 1 requires two extra lines: Transformation (19) is added after Step 2 and (20)
after Step 4 of Algorithm 1. These steps are similar to transforming the nodal admittance
matrix of the substation, which is connected to the slave, directly, in the same manner
as explained in Section 3.1.2. In this way, the splitting approach no longer requires the
addition of the two extra lines after Steps 2 and 4. Furthermore, it makes the description of
the methods applied to hybrid networks generic.

The MSS methods reach convergence if both the separated systems and the MSS
scheme have reached convergence, based on a defined tolerance value for the slave, εS,
for the master, εM, and the MSS algorithm, εMSS, being met. A summary of the solution ap-
proach of the unified and splitting methods applied to homogeneous and hybrid networks
is described in the flowchart of Figure 2.

3.3. Advantages and Disadvantages

Based on the theoretical study of the unified and splitting methods and hybrid and
homogeneous networks, we list the advantages of one method over another based on
numerical performance, physical details, and applicability.

In terms of numerical performance, we firstly expected that the methods applied to
hybrid networks perform better in terms of CPU time. Homogeneous networks represent
the transmission network in three phases, thus having to process a larger Jacobian matrix:
the three-phase Jacobian matrix of a transmission system with N buses will have size
6N × 6N compared to a single-phase Jacobian matrix of size 2N × 2N. This is an advantage
for the hybrid networks. Secondly, it is possible that we may observe a higher number
of iterations for the methods applied to hybrid networks. The reasoning behind this
expectation was that the substation was modeled as a balanced bus, while it might be
unbalanced, as it is directly connected to the unbalanced distribution network. Thirdly, we
expected to see an advantage in speed for the unified methods, as they solve the integrated
system at once.

An advantage for the splitting methods is that the developments in the improvement
of solvers for separate systems continue. As the MSS method is an iterative scheme that
is put on top of the separate system solvers, these separate improvements can easily be
integrated. The unified methods require new insight into solvers that are capable of solving
an integrated system in one go. It is possible that the current unified solvers are not as
efficient as separate solvers, as this is a relatively new research field.

In terms of the physical details, the homogeneous networks are a better representation
of what is physically occurring as power is generated and transported in three phases over
the entire electricity grid. Due to new load types and intermittent renewable generation at
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the distribution level, imbalance can arise at the transmission level, which would not be
captured by hybrid network models.

Input Data:
Transmission Network,

Substation,
Distribution Network

Network Data Preparation
Hybrid: Transform Substation

Homogeneous: Transform Transmission

Connect:
System =

Trans-Sub-Distr

Unified

Initialization:
Set ν = 0;

flat V0
i , i = 1, .., N

Solve system
using NR-TCIM

Tolerance
|F|∞ < ε?No

Results

Yes

Connect:
Master = Trans

Slave = Sub-Distr

Splitting

Initialization:
Set νMSS = 0;

flat VνMSS
B

Run Slave

Run Master

Tolerance
|Vν −Vν−1|1 < ε?

Results

Yes

No

Initialization

Solve system

Tolerance?

Results

Inject SνMSS
B

Initialization

Solve system

Tolerance?

Results

Inject VνMSS
B

Figure 2. Algorithmic process of the unified and splitting methods.

Lastly, we considered the usability for system operators. Although it seems that
unified methods have a clear advantage in terms of numerical performance, one should be
aware of the fact that in many countries, it is currently not allowed to exchange complete
network information between different system operators. Therefore, the splitting methods
are advantageous as only a minimum amount of data sharing is necessary to perform
load flow computations. Furthermore, in the unified methods, improvements have been
made by the use of domain-decomposition methods [10], which allow different system
operators to have a minimum amount of data sharing as well. Despite these improvements,
there is still a clear distinction between these two, because computations in the unified
methods need to be made on the same computer, while in the case of the master–slave
splitting methods, system operators can be in geographically distinct locations and each
can run their own computations. A disadvantage that arises then is that it takes more
communication time to distribute the data among different computer systems.

The findings are summarized in Table 3.
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Table 3. Advantages and disadvantages of the network models and integration methods.

Advantages Disadvantages

Hybrid
Smaller Jacobian

In line with current
separated models

Balanced substation bus

Homogeneous
Intuitive physical approach

Suitable for unbalanced
transmission conditions

Larger system

Unified One outer iteration Same solver (NR) must be
used for complete system

Splitting

Limited data sharing
between system operators
Allows for continuation

of separate developments

Extra iterative scheme

4. Numerical Experiments

In this section, the numerical experiments that were performed on several test cases
are discussed. The problem was implemented using the MATPOWER (MATPOWER is a
package of free, open-source MATLAB-language M-files for solving steady-state power
system simulation and optimization problems [24].) library. A single core machine with an
Intel Core i7-7600 processor, 2.80 GHz CPU, and 8.00 GB memory was used.

4.1. Test Case Description

Integrated test cases were created from the existing transmission and distribution
test cases from the MATPOWER library and resources page of IEEE Power & Energy
Society [25]. The 9-bus, 118-bus, and 3120-bus networks from MATPOWER were used as
balanced network test cases. All these test cases were transmission networks. The IEEE
13-bus, 123-bus, and 8500-bus data from IEEE P&ES were used as unbalanced distribution
test cases. The loads of the IEEE test networks were connected according their given
configuration, Wye or Delta, and load model, Z, I, or P. The loads in the balanced test
networks were originally single-phase loads. In the homogeneous networks, they were
modeled as Wye-P loads. The transformers in these networks were modeled in a Wye-Wye
configuration. The following integrated test cases were created by integrating a balanced
network to an unbalanced network:

1: Test case T9-D13
2: Test case T118-D123
3: Test case T3120-D8500

Connection Bus

The following load buses of the transmission networks were selected as the connection
bus in the integrated networks: bus 7 in the 9-bus network, bus 108 in the 118-bus network,
and bus 2700 in the 3120-bus network. The original reference bus of the distribution
network becomes the connection bus at the distribution side of the integrated network.
In the unified methods, this former reference bus must be changed to a load bus. In the
splitting method, the distribution reference bus remains a reference bus, initialized by the
output it receives from the transmission network.

4.2. Numerical Performance

The start of the numerical assessment consisted of simulating the power flow on the
integrated test cases and comparing the numerical performance of the methods. The unified
methods, the boundary voltage of the MSS method, VB, and the master and slave were
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initialized with a flat start. The tolerance value of the unified methods, the master, the slave,
and the MSS method are defined as εU = εM = εS = εMSS = 10−5.

In order to compare the numerical performance, the number of iterations and CPU
time are listed in Table 4. Figures 3 and 4 show the relative norms per iteration.

Table 4. Comparison on number of iterations (for the MSS method: IMSS of the MSS scheme and
IM and ID, the average number of iterations per sub domain) and CPU time of the integration
methods, of three test cases. The top table displays methods applied to hybrid and the bottom one on
homogeneous networks. The slowest CPU times are printed in bold.

IC MSS-Hybrid

IU CPU IMSS IM IS CPU

Test Case # s # # # s

T9-D13 3 0.016 3 4 4 0.901
T118-D123 4 0.025 3 7 5 0.807

T3120-D8500 4 0.367 3 6 5 2.569

F3P MSS-Homo

IU CPU IMSS IM IS CPU

Test Case # s # # # s

T9-D13 3 0.015 3 4 4 1.071
T118-D123 4 0.039 3 4 5 1.173

T3120-D8500 4 0.612 3 6 5 3.697

1 2 3 4 5 6 7

Iteration number

10
-8

10
-6

10
-4

10
-2

10
0

10
2

N
o

rm

IC T9-D13
IC T118-D123

IC T3120-D8500

F3P T9-D13
F3P T118-D123

F3P T3120-D8500

Tolerance

Quadratic convergence 

Figure 3. Representation of the relative norms of |F|∞, per iteration, of the interconnected and full
three-phase methods for three test cases. It is shown that quadratic convergence is preserved (after
the first iteration for some of the test cases). The horizontal black dotted line is the tolerance value.
Note that the results of the IC methods are not clearly visible because the graphs are below the
F3P results.

The results of the unified and splitting methods were firstly analyzed. Table 4 shows
that the unified methods were faster overall. The splitting methods required, on average,
three MSS iterations, and during one iteration, two systems were solved. The expected
difference in CPU time was also visible in the results: the splitting methods were around
six-times slower than the unified methods. The difference between the hybrid and homo-
geneous network models was visible, but less significant; the small test cases were even
comparable in speed. Overall, the the MSS-homo methods performed the worst and the IC
methods performed the best, in line with the expectations.
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1 2 3 4 5 6 7

Iteration number

10-10

10-8

10-6

10-4

10-2

100

N
o

rm

Hybrid T9-D13
Hybrid T118-D123

Hybrid T3120-D8500

Homo T9-D13

Homo T118-D123

Homo T3120-D8500

Tolerance

Linear convergence

Figure 4. Representation of the relative norms of |Vν+1
B −Vν

B |1, per iteration, of the splitting meth-
ods for three different test cases. It is shown that the iterative scheme has linear convergence.
The horizontal black dotted line is the tolerance value.

4.3. Accuracy

To assess how closely the solutions from the approaches matched one another, the per-
unit voltage magnitudes of the connecting buses of the four methods were compared.

Table 5 shows the per-unit values of the connecting bus voltage and the differences,
from which it can be observed that the solutions closely matched. The comparison of the
full voltage profiles, shown in Figures 5 and 6, showed that phases a, b, and c were similar
in the T9-D13 case.

Table 5. Per-unit voltage profiles of the connection bus in different networks and the differences
between hybrid and homogeneous network models.

Unified Splitting
IC F3P Hybrid Homo

Test Case Phase |V | |V | |V |IC − |V |F3P |V | |V | |V |Hy− |V |Ho

T9-D13 A 1.0075 1.0076 1.00× 10−4 1.0074 1.0073 −1.00× 10−4

B 1.0075 1.0076 1.00× 10−4 1.0074 1.0073 −1.00× 10−4

C 1.0075 1.0074 −1.00× 10−4 1.0074 1.0075 1.00× 10−4

T118-D123 A 0.9651 0.9651 0.00× 100 0.9662 0.9662 0.00× 100

B 0.9651 0.9652 1.00× 10−4 0.9662 0.9661 −1.00× 10−4

C 0.9651 0.9651 0.00× 100 0.9662 0.9661 −1.00× 10−4

T3120-D8500 A 1.0716 1.0716 0.00× 100 1.0722 1.0722 0.00× 100

B 1.0716 1.0715 −1.00× 10−4 1.0722 1.0722 0.00× 100

C 1.0716 1.0716 0.00× 100 1.0722 1.0722 0.00× 100
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Figure 5. Per-unit voltage profile of the three phases of the Interconnected and full three-phase
method. The represented network is the T9-D13 network.
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Figure 6. Per-unit voltage profile of the three phases of the master–slave hybrid and homo splitting
methods. The represented network is the T9-D13 network.

4.4. Voltage Unbalance

Besides the numerical performance comparison of the four methods, it was interesting
to investigate whether there existed a relationship between the degree of unbalance and the
number of iterations used. Unequal mutual coupling between phases on the lines, different
voltage drops of the three phases, and unbalanced loads can lead to unbalance. The degree
of unbalance is described by the National Electrical Manufactures Association (NEMA) ,
who use the following definition [11]:

Vunb =
MaxDev f romAv

Vaverage
× 100% (21)

The recommended standard under normal steady-state conditions is that the voltage
unbalance of distribution systems will not exceed 3%. The amount of voltage unbalance
of the distribution feeder was calculated to see whether this influenced the number of
iterations of the integrated systems. This is shown in Table 6.
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Table 6. The amount of maximum and average voltage unbalance of the distribution feeder for the
three different test cases and the number of iterations of the three different methods.

Unified Splitting
Imbalance IC F3P Hybrid Homo

Max Avg IU IU IMSS IMSS

Test Case % % # # # #

T9-D13 4.24 2.02 3 3 3 3
T118-D123 1.96 1.00 4 4 3 3

T3120-D8500 5.87 3.23 4 4 3 3

It seems that there was no direct correlation between the amount of unbalance on the
distribution feeder and the number of iterations.

4.5. Multiple Distribution Networks

Lastly, it was important to know whether the methods would perform on realistic
networks. Therefore, the numerical performance assessment was continued on integrating
networks containing multiple distribution feeders and on integrating networks with an
increased amount of distributed generation. For the numerical assessment of multiple
distribution feeders connected to one transmission feeder, the same basis test cases were
used, but 3, 5, and 10 distribution networks were added to the transmission network,
respectively. They were connected to the same connection bus plus an additional amount
of consecutive buses. Table 7 shows the number of iterations and CPU time.

Table 7. Comparison on number of iterations and CPU time of the integration methods, applied
to the test cases having multiple distribution feeders connected. The change in iteration number,
compared to the original networks, are bold.

IC MFS-Hybrid

IU CPU IMSS IM IS CPU

Test Case # s # # # s

T9-3D13 (7–9) 3 0.020 3 4 5 1.494
D33-2D37 (30–31) 10 0.048 13 5 6 4.974

T118-5D123 (108–112) 4 0.060 3 7 4 1.691
T3120-10D8500 (2700–2709) 5 3.015 3 6 4 12.51

F3P MFS-Homo

IU CPU IMSS IM IS CPU

Test Case # s # # # s

T9-3D13 (7–9) 3 0.017 3 4 5 1.791
D33-2D37 (30–31) 12 0.065 13 5 6 6.833

T118-5D123 (108–112) 4 0.073 3 4 4 1.973
T3120-10D8500 (2700–2709) 4 3.675 3 6 4 14.53

A comparison of Tables 4 with 7 does not show an increase of iterations when multiple
distribution networks were connected. Therefore, it can be concluded that, in general, none
of the methods were sensitive to the amount of distribution networks, which makes them
applicable for realistic electricity networks. There was almost a one-to-one correlation
between the CPU time of the network and the amount of distribution networks.

4.6. Distributed Generation

The second part of the realistic assessment was the sensitivity towards the increase of
distributed generation. In order to do so, the amount of PV buses in the distribution feeder
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was increased. In the original networks, only the D37 network contained a PV bus. We
added 4 or 5 PV buses to the original distribution feeders and compared the number of
iterations with the original test cases. The original three-phase load buses were changed to
PV buses. These results are shown in Table 8.

Table 8. Influence of PV buses on the number of iterations. The changes in iteration number compared
to the original network are bold.

Original Distr. Generation

PV IC MSS-Hybrid PV IC MSS-Hybrid

Test Case Buses IU IMSS IM IS Buses IU IMSS IM IS

T9-D13 0 3 3 4 4 4 3 5 4 5
T118-D123 0 4 3 7 5 5 4 6 7 5

T3120-D8500 0 4 3 6 5 5 4 3 6 4

Original Distr. Generation

PV F3P MSS-Homo PV F3P MSS-Homo

Test Case Buses IU IMSS IM IS Buses IU IMSS IM IS

T9-D13 0 3 3 4 4 4 3 6 4 5
T118-D123 0 4 3 4 5 5 4 6 4 5

T3120-D8500 0 4 3 6 5 5 4 3 6 4

It is clear that the unified methods were not sensitive to the amount of extra PV
buses. The separate master and slave were hardly sensitive to the increase of distributed
generation, but this was reflected in the MSS-iterative scheme, where a slight increase in
iteration number was visible.

4.7. Speeding Up the Master–Slave Iterative Scheme

It is not efficient to re-initialize the master at every MSS iteration to a flat voltage
profile. The suggestion of how to speed up the MSS-splitting method [26] was therefore
implemented to see whether it resulted in additional speedup. The idea is as follows: The
convergence of the master can be improved by making use of information of the previous
MSS iteration (Note that this only works for the master, as the voltage of the slave is relative
to the voltage of the boundary bus, as this is the slack bus.)In the current suggested scheme,
at every MSS iteration, all the buses—except the boundary bus—were initialized with
V = 1.0 pu. In the new speedup scheme, the voltages were initialized with its last obtained
solution in the previous MSS iteration, i.e.: Vν+1

0,T = Vν
I,T . This idea was implemented, after

which the same numerical performance check was executed. The results are described in
Table 9.

It is visible in Table 9 that the idea works: the number of master iterations decreased
as the MSS iterations increased. However, what is interesting is that this hardly influenced
the total elapsed CPU time. In general, the elapsed time of the distribution network
was dominant.
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Table 9. hlThe number of master iterations per MSS iteration and the CPU time of the three different
test cases when the idea of speeding up the splitting methods is applied.

MSS-Hybrid

IMSS I1
M I2

M I3
M I4

M IS CPU

Test Case # # # # # # s

T9-D13 3 4 2 1 4 5 0.785
T118-D123 3 7 1 1 - 5 0.831

T3120-D8500 3 6 2 1 - 5 2.227

MSS-Hybrid

IMSS I1
M I2

M I3
M I4

M IS CPU

Test Case # # # # # # s

T9-D13 3 4 2 1 4 5 1.028
T118-D123 3 4 2 1 - 5 1.118

T3120-D8500 3 6 2 1 - 5 3.651

5. Large Integrated Electricity Systems: Relative Time and Speedup Comparison

Two types of existing stand-alone methods were compared, and their numerical perfor-
mance was assessed on small-sized test networks. Real, physical networks are much bigger
in size (around millions of buses); distribution networks are much larger than transmission
networks (around ten times as big); in many countries, multiple distribution networks (in the
order of two to ten) are connected to a single transmission network. The computational time to
solve such a system is thus much larger, but also, the total time to solve an integrated system
is merely determined by the distribution network, not the transmission network. Taking a
closer look at the methods showed that the difference between solving integrated systems as a
homogeneous or as a hybrid network is then less significant.

All these problems were so far solved by using the Newton–Raphson solver with either
power or current mismatches and a direct LU factorization. When moving to large networks,
iterative instead of direct methods such as Newton–Krylov solvers [27] should be considered.
Another important factor that should be considered when looking at networks of this size is that
sequential solvers often do not suffice, and the use of high-performance computing techniques
such as multicore CPUs or GPUs are necessary to solve these systems in a reasonable amount of
time. Looking at standard multicore parallel techniques, it is expected that the splitting methods
would be well suitable for this, as these methods are a kind of domain decomposition method,
where every separated system can be solved on a separate core or even on a completely separate
machine. In more detail, every distribution network can be solved in parallel and then send the
result of the connecting bus to a master computer, which collects the results and on which the
transmission network is solved [6]. The total elapsed time is then equal to the time it takes to
solve the slowest distribution network plus the time it takes to solve the transmission network
and the communication time to share the results between the independent entities.

Although the splitting methods are a domain decomposition method by design, the uni-
fied methods can also be solved using domain decomposition techniques. The authors of [10]
introduced the Newton–Krylov–Schwarz method to solve the the unified integrated system
in parallel. Next to the advantage of solving this system in parallel, it adds another advantage
for the unified methods as only a limited amount of data have to be shared between system
operators, just as the splitting methods. Furthermore, here, the obvious choice for the over-
lapping buses is the bus that connects the two systems. A difference between parallel unified
Newton–Krylov–Schwarz methods and parallel splitting methods is that the former need an
independent main computer that distributes and collects the necessary data, while the latter
can use completely separate entities, even in geographically distinct locations. However, this
requires a longer communication time.
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6. Conclusions

In this paper, we compared and assessed two types of stand-alone integration methods
to solve the power flow problem. We classified them as unified and splitting methods
and applied them to hybrid and homogeneous networks. This resulted in four different
methods as the starting point of our comparison study and numerical assessment. We
analyzed their accuracy and numerical performance—CPU time and number of iterations—
using a Newton–Raphson solver together with an LU factorization.

The numerical assessment showed that the unified methods are most favorable, which
is in line with the expectations, stated in Section 3.3. As soon as the test cases become
larger, the difference becomes more significant. Furthermore, it can be concluded that
the methods applied to homogeneous networks take more CPU time than the methods
applied to hybrid networks (1.5-times as much). The analysis of the addition of distributed
generation and multiple distribution feeder showed that all the methods are relevant for
real application.

Overall, it can be concluded that the interconnected method is the most favorable
method at this moment, with the emphasis on this moment, because realistically sized
networks have often multiple and larger distribution networks. The results between
hybrid and homogeneous networks become then less significant. On top of that, these
large networks require high-performance computing techniques such as Newton–Krylov
methods and domain-decomposition techniques in a parallel or GPU environment. This
makes the MSS methods more advantageous, although the developments for unified
methods also continue in this field.

The current legislation determines the potential use case of the integration methods.
In most countries, the usability of the unified methods is limited as complete network
information is not allowed. The use of Newton–Krylov–Schwarz methods by the unified
methods can help to share only the information of overlapping connecting buses between
system operators, similar to the splitting methods. When system operators operate in
geographically distinct locations, only the use of splitting methods is possible. The idea of
the unified methods is still interesting for the analysis of separated networks where some
imbalance occurs on certain lines of a merely balanced network.

As the developments in electricity network operation pushed by the energy transition
are rapidly increasing the size and complexity of integrated power flow computations, we
suggest focusing future work on efficient solvers such that the necessary computations
can be performed in a reasonable amount of time. We list some concrete suggestions for
future work. Firstly, regarding the unified methods, we recommend investigating in more
detail which (combination of the) existing solvers are most efficient to solve integrated
power systems and why, because the solvers that are currently used are built for separate
load flow analysis. Secondly, we recommend to continue the study into iterative and
parallel Newton–Krylov techniques for both the unified and splitting methods. As not
much attention has been paid yet to these techniques, enough work can be performed on
the adaptation of these techniques to integrated power flow computations. Finally, we
suggest performing a similar numerical assessment of these techniques, but with more
focus on the usability and applicability of these methods, as we expect that the numerical
performance of these improved methods will become similar.
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Appendix A. List of Mathematical Symbols, Subscripts, and Superscripts

Tables A1 and A2 contain a list of mathematical symbols and a list of subscripts and
superscripts, respectively.

Table A1. List of mathematical symbols including their meaning.

Symbol Description Symbol Description

a Rotation variable, a = e
2
3 πι P Active power, real part of S

b Line susceptance,
imaginary part of y Q Reactive power,

imaginary part of S
δ Voltage angle S Complex power, S = P + ιQ
ε Tolerance value T Transformation matrix

F(x) Mismatch vector in
the Newton–Raphson method V Voltage, with angle δ

and magnitude |V|
I Current |V| Voltage magnitude
I Amount of iterations x Vector of variables
ι Imaginary unit y Line admittance
N Amount of buses in a network Y Admittance
π Exact number Z Impedance

Table A2. List of subscripts and superscripts used in this work, including their description.

Subscript Name Superscript Name

B Boundary bus a First phase
i Bus index b Second phase
j (Different) bus index c Third phase
k Bus index at transmission side ν Iteration counter
m Bus index at distribution side T Transpose
M Master
MSS Master–slave splitting
p Phase index
q (Different) phase index
s Specified
S Slave
U Unified
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