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Summary
Maasstad Hospital is a member of the Santeon hospital group. The ambition of Santeon is to improve
healthcare for patients. The project in this internship also aims to improve patients’ health, specifically
patients in the Intensive Care Unit (ICU).
The treatment of respiratory insufficient patients in the ICU consists of High Flow Nasal Oxygen or Can-
nula (HFNO or HFNC), among others. There is a substantial uncertainty about the optimal duration of
this HFNO therapy and the chance of failure of this therapy. Failure of HFNO therapy will often lead to
the progression to mechanical ventilation with intubation. This thesis project researched parameters
and predictive models to choose the appropriate treatment, meaning continuing HFNO therapy or es-
calation to mechanical ventilation by intubating the patient.
In this thesis project, the goal was to develop aMachine Learning (ML) model that can predict intubation
at a certain point in time and thereby show that HFNO therapy will not be sufficient. With this eventual
model, it would be possible to determine if intubation is necessary on the first day of ICU admission.
The proposed model could lead to more elective or early intubation.
The intended ML model was achieved with a two-sided method. Firstly, an aggregated data set was
used to compute three different models. These were two tree-based models, a Random Forest (RF)
and a Gradient Boosting Model (GBM), and a Logistic Regression Model (LRM). The other parallel
method made use of a data set with repeated measurements of vital parameters, such as heart rate.
This method resulted in a so-called joint model, which is a combination of Linear Mixed Effects Models
and in the second step also an RF, GBM, and LRM.
A nested cross-validation was implemented to test the above-described models, three feature selection
methods, and three scaling methods. From the nested cross-validation, the best-performing model was
found and tested in the evaluation.
For the evaluation of the models an extra data set was used. This external data set was retrieved
via a data request to the Santeon ’Beheercommissie’ or data management committee. This data set
did contain repeated measurements, but not enough to validate the joint model. Therefore, only the
models developed with the aggregated data set could be externally validated.
The two-sided method resulted in an RF with no feature selection and no scaling having the best per-
formance using the aggregated data set, namely an AUC of 0.694 (standard deviation 0.05). The joint
model resulted in an RF with no feature selection and Power Transformer scaling with the best perfor-
mance. It had a performance value of 0.681 (standard deviation 0.07). The external validation of the
aggregated data model resulted in an AUC of 0.559. The internal validation of the joint model gave an
AUC of 0.699. The precision, recall and f1-score showed that all the models performed better for class
0: the non-intubated patients.
The best-performing aggregated data model shows potential and proves that it is possible to predict
intubation using AI, but in its current state is far from implementation. It is therefore advised to train the
model with a larger training data set that contains multiple hospitals and perform an external validation
with a validation data set that meets the requirements.
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1
Introduction

In this chapter, the introduction of this thesis will be stated. First, the daily practice will be explained,
whereafter the aim of this thesis project will be explained. Moreover, the outline of this thesis report
will be stated. In Figure 1.1 a graphical overview of what is stated in the introduction of this thesis is
shown.

Figure 1.1: Graphical overview of the introduction of this thesis

1
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1.1. Daily practice
The ICU of Maasstad Hospital has 3 units with each 8 beds available for ICU care for patients. During
the COVID pandemic, the Maasstad Hospital played a great role in the care of COVID-19 patients. In
COVID-19 patients the ventilatory tract was often diseased and therefore needed treatment. The use
of High Flow Nasal Oxygen (HFNO) therapy was rising during the pandemic as it could lead to the
postponement of invasive ventilation, which was scarce during the pandemic. Even more important for
the patient, HFNO therapy is less invasive than mechanical ventilation and is therefore preferred when
possible. During the COVID pandemic and also in the current daily practice, it is difficult to determine
the duration and efficacy of HFNO therapy.
Specifically, in patients that are showing respiratory deterioration whilst on HFNO therapy it is difficult to
determine when the therapy needs to be stopped and mechanical ventilation should be started. HFNO
therapy is more commonly known under its brand name Optiflow®. When giving HFNO therapy, two
parameters can be altered by the physician, namely the flow in L/min and the fraction of oxygen given
through the device (FiO2). The oxygenated air is heated and humidified when given to the patient via
a nasal cannula.[1]
The ROX index can be used to predict when an escalation from HFNO therapy to intubation should be
considered. The ROX index uses 3 variables to calculate the prediction, namely, peripheral saturation
(SpO2), the fraction of admitted oxygen (FiO2), and respiratory rate (RR). The following formula is used
to calculate the prediction score.

ROXscore =
(SpO2/FiO2)

RR
∗ 100 [2]

The ROX score can be interpreted as follows. A score of ≥ 4.88 measured at 2, 6 or 12 hours after
HFNO therapy is associated with a lower risk for intubation. A ROX index score of < 3.85 indicates that
the risk of HFNO therapy failure is high. Therefore, intubation should be discussed. Lastly, if the ROX
index score is between 3.85 and 4.88, the scoring could be repeated one or two hours later for further
evaluation.[3]
The Area Under the Curve (AUC) value of the ROX index lies around 0.64. [4] As this performance is
not sufficient enough to make it trustworthy for physicians, this ROX tool is not applied in the Maasstad
Hospital. The performed literature study before this thesis project showed that the AUC value of Ma-
chine Learning (ML) models that predict intubation lies around 0.81, which is significantly higher than
the AUC value of the ROX index.[5] This higher performance level is probably caused by the larger
variation of variables (also called features) that are used in ML models. The literature review in which
the AUC value of 0.81 was found is presented in Appendix B.
In an effort to improve the prediction of necessary intubation in patients treated with HFNO therapy,
an ML model is developed in this thesis which can be used as a more reliable indicator than the ROX
index.

1.2. Project aim
This thesis project will aim to deliver an ML model. The following question will be answered in this
project:
Is it possible to predict intubation at a certain point in time and thereby show that HFNO therapy will
not be sufficient?
Specifically, it is proposed to develop an ML model that can predict intubation after eight hours in which
a patient has received HFNO therapy. This model will be developed with retrospective data that has
been collected in Maasstad Hospital before, during, and after COVID-19 and data from the Santeon
hospitals during COVID-19. This timeline of data collection is preferred because, in this specific time-
line, the use of HFNO therapy was more present in the Maasstad Hospital and other Santeon hospitals.
HFNO therapy is a relatively new technique and was not used frequently before COVID-19. This project
will use a two-sided method in the development of ML models. Two different data sets will be used: an
aggregated data set and a data set that contains repeated measurements.
The eventual models will be compared using the obtained AUC values for the training and test set. The
different models with different hyper-parameters can be compared based on their AUC values. The
already performed literature review developed a general idea of the performance value for ML models
that predict intubation indication.
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The literature review gives a clear overview of recent predictive models. Therefore, it is attainable to
require a predictive model at the end of the thesis project. A general idea of what model type is pre-
ferred and which features are predictive has been formed. The data availability could however create
a problem for the attainability. During the project, it took longer than expected to receive permission to
use the Santeon data. As a backup plan, data from the Maasstad Hospital was retrieved to start the
modelling. This is also beneficial because this will result in a larger database.
The relevance of this study lies in the need to improve patient care. It is of course preferred to give
the right treatment at the right time to the patient. ML models can aid medical personnel in the difficult
treatment choice between longer HFNO treatment or invasive ventilation which requires intubation.

1.3. Thesis outline
The next chapter of this thesis will be Chapter 2, in which background information is given on the
different ways to oxygenate ICU patients and machine learning models. In the next Chapter 3, the
methods of this thesis project will be explained. The data extraction method, model development and
evaluation process will be stated. Hereafter, Chapter 4 will describe the results of this graduation
project. The used data will be described and the different models will be compared on their AUC
values. In Chapter 5, the conclusion of this report will be stated. The meaning of the results will be
explained in a brief manner. Lastly, in Chapter 6 the relevance of the results, limitations of this research
and future recommendations will be stated.



2
Background information

In this chapter, background information will be given on the therapy options for giving oxygen to ICU pa-
tients. Additionally, different Machine Learning (ML) models and their characteristics will be explained.

2.1. Oxygenating ICU patients
The different treatment choices that can be made for oxygenating ICU patients are explained in this
section. In Figure 2.1 an infographic is shown which shows the different oxygenation treatments and
the possible switching between them. The oxygenation treatments are first divided into non-invasive
and invasive ventilation. Hereafter, non-invasive ventilation is divided into ”Nasal cannula, oxygen cap”
and ”High Flow Nasal Oxygen”. The Invasive ventilation branch is divided into ”Mechanical ventilation
with intubation via endotracheal tube” and ”Mechanical ventilation with intubation via tracheostomy”.
The treatment choice or path of interest in this specific thesis project is highlighted with a green arrow,
namely switching from HFNO therapy to mechanical ventilation with intubation via endotracheal tube.
The other smaller black arrows indicate the possible switching between the treatments.

Figure 2.1: Infographic illustrating the different oxygenation treatment options

For patients it is beneficial to prevent the escalation from non-invasive ventilation to invasive ventilation
if possible. This is because HFNO therapy does not require intubation, which has a higher risk of
complications and simply is more harmful. Complications of intubation include laryngeal injury, infection
(ventilator associated pneumonia (VAP)), tearing or puncturing of tissue in the chest cavity that can
lead to lung collapse, injury to throat or trachea, damage to dental work or injury to teeth, fluid buildup,

4



2.2. Different Machine Learning models 5

aspiration, and ventilator-induced lung injury (VILI).[6, 7, 8] Furthermore, HFNO therapy gives more
patient comfort, giving the patient the ability to talk and even eat while receiving HFNO therapy. In
contrast, intubated patients are often sedated and will not have the ability to talk because of the tube
passing through the vocal cords.
However, in certain situations non-invasive ventilation will not be enough treatment for the patient. In
this scenario, the patient will benefit from an escalation to invasive ventilation. Reasons why the HFNO
therapy fails could be the severity of the illness of the patient, leading to the need for more sedation and
with that the need to take over the ventilation. As stated before, it is difficult to determine this course of
the illness in patients. The question is if they will deteriorate and benefit from intubation or if they will
improve and have sufficient treatment with HFNO therapy.
The ML model developed in this thesis will give a better understanding of which patients benefit from
the escalation to invasive ventilation. In the future, the model can aid in choosing the oxygenation
option earlier and therefore create a window in which the intubation can be planned. This is another
advantage of knowing to which group the patient will belong. This created window can make sure an
emergency intubation can be prevented.

2.2. Different Machine Learning models
For comprehensibility, ML models are explained in two different categories. The categories are based
on the data type that is used in the model. The first possibility is to give a tabular-like data set to a model,
in which each row contains a different patient. Every column is a feature and one of the columns has
the desired outcome or dependent variable (e.g. yes or no for intubation). This type of data set is also
called an aggregated data set. Examples of models that work with this kind of data sets are Logistic
Regression models and tree-based models, such as a Random Forest and Gradient Boosting model.
The other possibility is to give a more raw data set to the model. For example, the variable heart rate
often contains more values than a certain laboratory blood value. In these other types of models, it
is possible to use a time series of a certain variable in the model. Models that work with this kind of
data sets are deep learning models, such as Neural Networks, or supervised machine learning models,
such as a joint model.
In the following subsections, these different models are further explained. The book of Hastie T et al.
called The Elements of Statistical Learning [9] was used to write the background information of the dif-
ferent machine learning models. When other sources were used, they were cited in the corresponding
sections. Different models that make use of the two categories of data sets will be implemented in this
thesis project.

Logistic Regression Model
Other than in a linear regression model, a Logistic Regression Model (LRM) gives a true or false out-
come. An S-shaped curve classifies which samples are true and which are false. The cut-off is usually
made at 50%. In a model that predicts intubation, the outcome true would mean the patient is predicted
to be intubated and the outcome false would mean the patient is predicted to not be intubated. Both
continuous and discrete data can be entered to classify samples. How the S-shaped curve is fit through
the samples is determined with maximum likelihood of the curve, since the Least Square Method will
not work in a logistic regression. Maximum likelihood is a function that calculates the probability of
observing the outcome given the input data and the model. This function is optimized to find the set of
parameters that result in the largest sum likelihood over the training dataset. The LRM assumes that
the relationship between the predictor variable and the predicted outcome is linear. In Figure 2.2 an
infographic of the LRM is shown.

Random Forest
A Random Forest (RF) is an ML model that consists of a ”forest” of decision trees. Decision trees
alone are often trained too well on the existing data, which makes them inflexible to use on other data
sets. Because an RF includes multiple decision trees it is more flexible and accurate on a different
data set. When modelling an RF, the first step that is performed is to make a bootstrapped data set.
This means that from the existing data set patients are selected randomly. This process will lead to
patients randomly not being selected. These out-of-bag samples will become the validation set. With
the bootstrapped data set random decision trees are formed. Together, the decision trees become
the RF. The accuracy of the RF is then tested using the validation set. A new RF is then built with
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different variables/features per step. The RF model with the best accuracy and a determined number
of variables per step is chosen. In Figure 2.2 an infographic of the RF is shown.

Gradient Boosting Model
A Gradient Boosting Model (GBM) is an ML model that also consists of multiple decision trees. It builds
fixed-sized trees based on the previous tree’s errors. It starts with a leaf in which the log(odds) is
imputed. In this case, the log(odds) would be log(intubated/non-intubated), in which the intubated/non-
intubated distribution is extracted from the data. To estimate how well or bad the first prediction of the
model is, residuals (the difference between observed and predicted values) are calculated. The calcu-
lated residuals are then used to build a new tree. This new tree then predicts the new residuals. With
each tree, the residuals become smaller, making the predictions more accurate. New trees are made
until the maximum specified number of trees is reached or when adding a tree does not significantly
reduce the size of residuals.[10] In Figure 2.2 an infographic of the GBM is shown.

Figure 2.2: Infographic of the different explained ML models that work with an aggregated data set. From left to right: the
Logistic Regression Model, Random Forest and Gradient Boosting Model.

Neural Network
A Neural Network (NN) allows multiple inputs and outputs. Between the input and outputs are hidden
layers that contain nodes that connect all the layers with the input and next layer or output. The hidden
layers contain activation functions that alter the input to form a graph. This graph is eventually used to
classify or make a prediction. It is difficult to understand what happens in the hidden layers. In Figure
2.3 an infographic of the NN is shown.

Joint Model
As stated, a Joint Model is also capable of interpreting repeated measurements. A Joint Model is a
combination of two models in which the first model calculates the time components of the variable
with repeated measures. This first model is often a Linear Mixed Effects Model (LMEM) with a cubic
spline through a certain amount of knots based on the data points of the variable. From this first model,
different features are collected. These features contain information on the estimated spline graph drawn
through the data points. For instance, the intercept of the cubic spline could be a variable. Moreover,
the slopes between the intercept and every node are often used as features. These features are then
used in an ML model that predicts the event of intubation in this case. The features extracted from the
LMEMs are the new data set for the second step of the joint model. This newly formed data set is an
aggregated data set. Therefore, it is possible to again apply an LRM, RF, or GBM. In Figure 2.3 an
infographic of the Joint Model can be found. In this infographic, an LRM is shown as the second step
model but this could be any type of ML model that can handle aggregated data.
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Figure 2.3: Infographic of the different explained ML models that work with a raw data set containing repeated measurements.
On the left showing a Neural Network and on the right a Joint Model



3
Methods

In this chapter, the methods of the project will be stated. The method used for data extraction will first
be explained. Hereafter, the data processing will be explained for the two different data types, namely
the aggregated data set and the repeated measurements data set. The model development phase will
also be separately clarified between the two different data sets and models. Lastly, the model validation
and evaluation will be defined. In Figure 3.1 a graphical overview of the methods used in this thesis is
shown.

Figure 3.1: Graphical overview of the methods of this thesis, with the section numbers in rectangles corresponding to the
sections in which the steps are explained. Abbreviations can be found in the Nomenclature.

8
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3.1. Data extraction
The data extraction process has partly been executed by the Business Intelligence (BI) department of
the Maasstad Hospital. Moreover, a data set was used that was distributed by Santeon, a cooperation
of 7 hospitals, of which Maasstad Hospital is one. In Appendix A.1 Figure A.1 shows where the data
was retrieved and which organizations were involved in this process. Because of the lengthy process
of getting permission to use the Santeon data set, the model development was done using the data
set provided by the BI department and therefore only contained Maasstad data of the period before,
during and after COVID-19. The Santeon data set is used as an external validation data set. In Figure
A.1 it can be seen that not all Santeon centres were used in the external validation set. This was due
to the timing of receiving the data and the data availability. The Santeon data set consisted purely of
COVID-19 data. Because of the different hospitals in the Santeon group, it is beneficial to use this
data set as an external validation set. This is due to the fact that it contains patients from a variety of
hospitals, making it the ideal data set to test generalizability.

3.1.1. Data extraction by BI
The BI department of the Maasstad Hospital extracted data from electronic patient files. The queries
that were used for the data extraction process will not be shared in this thesis project, as they contain
sensitive patient data and they are not important for understanding the method of extraction. It will,
however, be explained how the data was extracted.
The query used to extract data from the Maasstad Hospital was written to extract data from Metavision,
which is the source of the electronic patient files of ICU patients of the Maasstad Hospital. Metavision
produces a data set with different tables in Excel format or comma-separated value (CSV), depending
on the scale of the data set. The various tables describe the general patient data (age, gender, weight,
etc.), measurement of vital functions (heart rate, FiO2 levels, etc.), and lab measurements (bloodwork,
electrolytes, etc.). In each of the tables, different columns contain the variable name, value, and times-
tamp. On every row, a new measurement is given. One of the columns contains the newly generated
patient ID.
Within the data set different parameter IDs are given to all the variables. For instance, the variable
Heart Rate could be represented by parameter ID 43. The parameter IDs that corresponded to the
variables implemented in the data set were retrieved from the parameter ID table.
Combining the corresponding parameter IDs for the desired features and the desired patient popula-
tion, the data were extracted. In Appendix A.2 a figure can be found that provides an overview with
examples of the different tables that were used in the data extraction.
The patients included in the data set were required to have at least 8 hours of HFNO therapy. Only
these 8 hours of HFNO therapy were considered in the data development. The data therefore only
contained measurements of all the features that were measured in these 8 hours of HFNO therapy. In
the data extraction process, the following ventilation methods were used to determine when a possi-
ble intubation started. When a patient received the following ventilation method it was concluded that
the patient was not (yet) intubated: Continuous Positive Airway Pressure (CPAP), Biphasic Positive
Airway Pressure (BiPAP), Non-invasive (Niv), manual/spontaneous, and Nasal CPAP. In the case of
the remainder following ventilation methods it was concluded that the patient was intubated: Neurally
Adjusted Ventilatory Assist (NAVA), Pressure Controlled (PC), Pressure Regulated Volume Control
(PRVC), Pressure Support (PS), Volume Controlled (VC), and Volume Support (VS). For the patients
that had a ventilation method that indicated intubation, the starting time of the data entry ’ventilation
method’ was interpreted as the starting time of intubation.

3.2. Data processing for the aggregated data set
In the following subsections, the processing for the aggregated data set is explained. The aggregation
of the data, decoding of categorical variables, imputation of missing data, and scaling of the data
resulted in the aggregated data set ready to be used in the model development phase. The eventual
data set is a table with on every row a new patient and in every column a different variable. Furthermore,
one column is the target feature, in this case intubated ’yes’ or ’no’. An example of this data set is
inserted in Appendix A.3.
The aggregated data set was loaded into Spyder©. This was done on a virtual machine to use Python
code to develop models.
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3.2.1. Aggregation of the data
In the data set that was aggregated, duplicate patient IDs were removed. These double IDs referred to
patients that had multiple admissions during the period from which the data was retrieved. They had
to be removed because the joint model could not work with multiple admissions from one patient. To
make the resulting models (from the aggregated data set and the repeated measurements data set)
more comparable, the double IDs were dropped in both of the data sets.
The aggregated data was aggregated in consultation with the Medical Supervisor (Intensivist, Cardiol-
ogist in Maasstad Hospital) of this thesis. His clinical reasoning was used to choose how some of the
data needed to be aggregated. For example, for the variable blood pressure and other vital function
parameters, the mean, standard deviation and last entered values were kept in the aggregation pro-
cess. These three different aggregation types were taken into account to retain as much information
as possible.
Another example of aggregation is shown in the Fraction of inspired Oxygen (FiO2) variable. The FiO2
value is commonly started at 100% and dialled down when the patient needs less oxygen and is often
thus improving. It was therefore chosen to also implement a delta value for the FiO2 value, as this
would show how much the oxygen supply has been dialled down. In Appendix A.4 the course of FiO2
values of two different patients are shown with both different deltas.
For the lab measurements there was often only one measurement in the 8 hours of HFNO therapy. In
these variables, only the last entered value was taken into account.
The last step of the aggregation was to give a label to the data. Patients were given the label ’intubated’
if they had a number higher than zero in the column ’intubation duration’. Furthermore, patients that
died during their admission were given the intubation label. This was done because for these patients
HFNO therapy was not successful, which means they could have benefited from intubation.

3.2.2. Categorical data decoding
Once the aggregated data set was formed, the categorical data could be decoded to make it workable
for ML models. A global search was done to find a decoding strategy. Potdar K et al. 2017 published
good results using OneHotEncoder to decode nominal variables.[11] It was therefore chosen to use
OneHotEncoder to decode categorical nominal variables, such as gender and origin (the place where
the patient was coming from before their ICU admission). OneHotEncoder converts each category
value into a new column and assigns a 1 or 0 value to the columns.[11] Gender was decoded with 0 for
males and 1 for females. The origin feature contained information from where the patient was admitted
to the ICU. It was divided into 4 variables called origin_1 till origin_4. origin_1 means a patient was
coming from their home. origin_2 means a patient was admitted from their hospital. origin_3 means
a patient was admitted from a different hospital. Lastly, origin_4 means a patient was admitted from
the Emergency Room (ER). Next to this, an extra variable was made in which it was determined if a
patient was admitted during the day or night. The cut-off was made between 18:00 and 07:00 for night
admissions and the other hours would be a day admission. This variable was encoded with 0 for day
admissions and 1 for night admission. After the encoding step, the data set only contained numbers in
the variables.

3.2.3. Missing data strategy
In the literature review, missing data strategies were researched. Propagate forward was mostly ap-
plied when numerical data was missing. For the categorical missing data, an extra variable indicating
the missing factor was often implemented.[5] The categorical features did not have missing data in the
used data set.
In this specific project it is proposed to implement cross-validation to determine which model with which
hyper-parameters show the best performance. When using cross-validation, the missing data can be
imputed within the cross-validation or outside of the cross-validation loop. When the missing data is
imputed outside the cross-validation loop, it will be imputed before the loop. Literature was searched
to find an answer to which option of the two should be chosen. In the article of Jaeger BC et al, 2020,
it has been suggested that unsupervised variable selection steps (i.e., steps that ignore the outcome
variable) can be applied before conducting cross-validation without incurring bias. As imputing miss-
ing data before the cross-validation leads to a reduction of the computational burden, this method is
preferred.[12] In a meeting with a statistician from Maasstad Hospital, the option to implement missing
data using multiple imputation was opted. This technique imputes a range of multiple values for every
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missing data point. It therefore also results in a range of different outcome values. The different out-
come values can be compared via their corresponding AUC value.
To get a feeling for the performance of the different ML models, the numerical missing data was first
implemented with a mean of the existing data. With this, a data set was formed that can be used in ML
models. Moreover, a threshold for a maximum percentage of missing data was set at 60%, meaning
that variables that contained more than 60% missing data were dropped out of the data set. After this
practice period, missing data was imputed with multiple imputation in the final training data set. The
multiple imputation was done before the cross-validation loop. The variable drop threshold remained
60% after the practice period.

3.2.4. Scaling of the data
After the imputation of the missing data, the option to scale the data was researched. This was needed
since most machine learning algorithms show greater proficiency using scaled data. To find the best
scaling method, the data was first tested on whether it is normally distributed using the Shapiro-Wilk
test. The Shapiro-Wilk test is a statistical test used to test the null hypothesis that the data is normally
distributed. If the p-value of the test is lower than 0.05, the null hypothesis is rejected and the data is
not normally distributed.[13] The data used in the aggregated model was not normally distributed, as all
p-values were lower than 0.05. The robust scaling method could therefore be applied. Robust scaling
scales the data using centring (subtracting median) and division by the interquartile range (IQR). As
the name suggests, robust scaling is robust to the presence of outliers in the data.[14, 15]
To check if Log scaling could be implemented, the data was searched for zeros and negative values,
since these can lead to undefined values and errors. Both were present in the data set, which means
that Log scaling is not an option. Power Transformation was therefore applied. Power Transforms (PT)
are a technique for transforming variables into a uniform distribution, or in other words, stabilising the
variance of the distribution.[16] Lastly, before applying these scaling methods, it was checked if the
desired ML model types were compatible with this type of scaling.[15, 14]
The article of Ahsan et al. 2021 showed that these scaling methods can be applied in a Logistic Re-
gression Model, Random Forest and Gradient Boosting Model.[15] Decision tree-based models are not
sensitive to the scaling of the features. However, scaling can also still be beneficial here because of the
reduction of the impact of differences in feature scales. Moreover, it was important to make sure that
the data could be descaled after the nested cross-validation pipeline. This step is important to improve
the clinical applicability of the model, as medical personnel will understand the model better if the real
data is shown.
Both of the found scaling options, Robust Scaling and Power Transformer, and also ’no scaling’ were
tested in the cross-validation.

3.2.5. Resampling of the data
Resampling of the data was not necessary as the data was quite balanced with 168 of the 348 patients
being intubated. This means that in the used data set 48% of the patients were intubated. To give the
ML model a balanced data set, this percentage needs to be close to 50%, which applies here. If the
data would be imbalanced, many ML models would tend to favour the majority class and ignore the
minority class.[17]

3.2.6. Feature selection strategy
Feature selection is a method of reducing the number of input variables in a model by selecting only
relevant features and excluding useless features. For the feature selection strategy, the following 4
options were implemented in the ML models: LASSO, PCA, SelectKBest, or no feature selection.
LASSO stands for Least Absolute Shrinkage and Selection Operator and is also called L1 regulariza-
tion. It gives each variable a certain weight by using a regression analysis. Variables that seem useless
will get a high enough weight to shrink the variable to zero and thus cancel it out.[18]
PCA stands for Principal Component Analysis and is a data reduction technique. It uses linear algebra
to transform the dataset into a compressed form. With PCA, new features are formed that are a com-
bination of the old features, which thereby reduces the number of features.[19]
SelectKbest is a method that selects features according to the k highest scores. For example, if k=10
the 10 best features will be selected based on their scores. These scores are often determined with a
statistical function, such as an ANOVA F-value or chi-squared test.[14, 20] In this project the ANOVA
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F-value test was used, since this is the default test and it performed well. ANOVA F-value stands for
Analysis of Variance F-value and calculates the variation between sample means divided by the vari-
ation within the samples.[21] With the test, features can be found that are independent of the target
variable and can thus be removed from the dataset. For the value of k different options were tested,
namely k=10 and k=50. Eventually, k=50 gave the best results in the practice period. Therefore, the
value of k was set at 50, which means that the 50 best features are selected based on their ANOVA
F-value.
Lastly, implementing no feature selection was tested. This was done because all the applied models
already have an intrinsic way of selecting features. The tree-based models intrinsically select which
features are most predictive for the best outcome. Not all features are used in the trees and therefore a
feature selection has taken place. In LRM, an intrinsic hyperparameter that can be defined contains a
feature selection method, namely the penalty hyperparameter. This parameter can be set to implement
a LASSO selection or Ridge (L2 regularization). In contrary to LASSO, Ridge does not cancel useless
features out but gives them a high weight to shrink them close to zero.[18]

3.3. Data processing for the repeated measurements data set
Next to the aggregated data set, a repeated measurements data set was made. In this data set all the
repeated measurements that were measured in the 8 hours of HFNO therapy were preserved. This
data set has a new measurement on every row, with the patient ID in one of the columns. An example
of this repeated measurements data set is inserted in Appendix A.5.
This data set was loaded into RStudio to use R code to develop the first step of the joint model. In the
following subsections, the processing of the repeated measurements data set to make it applicable for
the first step of the joint model is explained.

3.3.1. Data density decisions
In the first step of the joint model, the longitudinal course of the variables that contained repeated
measurements was found using Linear Mixed Effects Models (LMEM). To ensure that the LMEM would
make the best estimate of the longitudinal course, as many measurements as possible were taken into
account. For many of the variables with repeated measurements, this meant having a value at every
minute for every variable (that had repeated measurements) for 8 hours. In the Maasstad Hospital,
medical personnel validates the measurements of the patients every hour. The measurements in this
data set are therefore not validated. This could mean that the data contains outliers. However, because
of the density of the data points, the longitudinal trend of the variables can still be obtained. For all the
repeated measurements, the following data was produced with the LMEMs: the value of the variable at
every hour or intercept point, the variance around the estimated longitudinal course, and the coefficient
or slope of the estimated line between every knot in the longitudinal course.

3.3.2. Processing for timestamp longitudinal course
In the repeated measurements data set, the processing was mainly concerned with making sure that
the timestamp of the data was entered in such a way that the joint model could find the longitudinal
course of a certain variable. This meant that the timestamp of the optiflowstart was used as a starting
time for all the repeatedmeasurements. Using this timestampmade sure that all the 8 hours of repeated
measurements were started at 0.00 hours for every patient.

3.3.3. Missing data strategy
As mentioned before, in the first step of the joint model an LMEM was used to find the variables that
describe the longitudinal course of the repeated measurements. When there were not enough data
points at a certain point in the 8 hours of measurements, the LMEM could give a missing data point.
The missing data could be in the intercepts, variance, or coefficients. In the Rstudio environment,
the missing data were not imputed as the model type that was used to make the LMEM corrected
for missing values. This means that the estimation of the longitudinal course was still executed when
values are missing. The LMEM then used values and estimation patterns of other patients to predict the
course. In the Python environment, the missing data of the LMEM features were imputed using multiple
imputations, which was the same strategy that was applied to the aggregated data set. Moreover, the
same threshold for missing data was retained, which means that a variable was dropped if it missed
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more than 60% of its values.

3.3.4. Addition of aggregated variables
Once the values, variance, and coefficients were found for all the variables, the data set with the results
of the first step of the joint model was generated. For the second step of the joint model, the variables
that did not have repeated measurements were extracted from the aggregated data set and joined
together with the data from the LMEMs. Examples of these variables are age, length, weight, origin,
and all of the lab measurements. If applicable, the said variables remained encoded and imputed.
Combining the two data sets (also called data frames) was done in Python usingmerge. In this function
of Python, a parameter can be set to merge the data frames on a specific label. Here, the data frames
were merged on ’patientnr’, which is the newly generated patient ID. Next to the extraction of the
aggregated variables, the labels of the patients were also extracted. Due to the fact that the same
distribution of intubated patients remained, resampling also was not necessary here.[17]

3.4. Model development
The two different data sets were used in the development of two different predictive models. With the
aggregated data set, an LRM, RF, and GBM were developed. With the repeated measurements data
set, a joint model was developed that eventually also resulted in an LRM, RF and GBM. The Python
codes that were used in the development of the aggregated and joint models can be found via the
following link to the GitHub repository in which they are stored.
https://github.com/manonhendriks/Thesis_Intubation_prediction.git
For both the aggregated data models and joint models, a graphical overview of the nested cross-
validation (also known as cross-validation pipeline) can be found in Appendix A.6 and A.7.

3.4.1. Aggregated data set models
The three models that were developed with the aggregated data set were written in Python using Spy-
der©, which is a code editor.[22] In the different subsections below, the specific methods for the models
are explained.
Before the nested cross-validation could be entered, the data needed to be divided into a training and
test set. Because of the availability of an external validation set, the whole data set was used in the
nested cross-validation.
Using a nested cross-validation, the three model types were fine-tuned and compared on their per-
forming value. Moreover, the feature selection methods and scaling methods were implemented in
the nested cross-validation. As researched, the missing data imputation strategy could be executed
before the cross-validation since the training and test data are identically distributed. After this data
imputation process, the data were split into k-fold sets, with the k chosen based on literature. The hy-
perparameters of the three models were tuned in the cross-validation. For this inner cross-validation, a
fitting k was also chosen. In this thesis project, both the inner and outer cross-validation were a 5-fold
cross-validation. The splitting of the data into the outer and inner cross-validation folds was done using
the function StratifiedKFold of sci-kit learn. This function makes sure that the distribution of classes
remains the same over all the folds.[14]
The nested cross-validation resulted in the AUC performance value of the three models with different
hyperparameters. Moreover, three scaling options were considered: Robustscaling, Power Transfor-
mation, or no scaling. Lastly, three feature selection methods were implemented: PCA, SelectKbest,
or no feature selection method. For the feature selection methods, LASSO was not implemented in
the nested cross-validation as it was already used as a hyperparameter in the LRM. Therefore, the
nested cross-validation now resulted in an average AUC value (5 test AUC values for every outer fold)
for every model, scaling and selection option. In total, 27 average AUC values were obtained. Using
these results, the optimal model with the optimal hyperparameters, (optional) scaling, and (optional)
feature selection method can be chosen, which can then be validated using the external validation set.

3.4.2. Hyperparameter tuning in the aggregated data models
In the following subsections, the tuning process of the hyperparameters of the three models will be
explained. For every model type, the entered hyperparameters were optimized using the function Grid-
SearchCV of sci-kit learn. Before the nested cross-validation was implemented, a general idea was

https://github.com/manonhendriks/Thesis_Intubation_prediction.git
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found for the optimal values of the hyperparameters. This suspected optimal value of the hyperpa-
rameter was often the middle value of the grid search. For the other two values, entries were chosen
that were close to the suspected optimal. In the GridSearchCV function, the AUC value was used to
determine the best-performing hyperparameters.[14]

Logistic Regression Model
The Logistic Regression Model (LRM) has one hyperparameter that is often tuned, namely the slack
parameter (commonly referred to as the C parameter).[14] This hyperparameter is responsible for min-
imizing over-fitting of the model and determines how much you can ’slack’ around objects to improve
the classification and prediction of the model. To determine which value for C is preferred, a grid of
the following values was tested in the inner cross-validation: 0.1, 1 and 10. Next to the C parame-
ter, the penalty parameter was tested with the entries ’l1’ and ’l2’. The penalty parameter describes
the methods of regularization. As explained before, L1 regularization is also called LASSO and can
cancel out features. L2 regularization is also called Ridge and can shrink features to become close
to zero. L1 regularization is useful when useless features need to be excluded and L2 regularization
is preferred when most variables are useful.[18] Lastly, the solver parameter that determines which
regression is applied to shrink the features was set to ’liblinear’ as this solver can handle both the l1
and l2 penalty.[14]

Random Forest
The Random Forest has many hyperparameters that can be tuned. In this project, it was chosen to tune
the following hyperparameters: ’n_estimators’, ’max_depth’ and ’min_samples_split’. For keeping the
model computationally efficient, only these three commonly used parameters were tuned in the inner
cross-validation.
The ’n_estimators’ parameter determines the number of trees in the random forest. The grid search
values were 100, 200 and 500. The ’max_depth’ parameter determines the maximum depth of an
individual tree. If this parameter would be None, the nodes of the tree would be expanded until all
leaves are pure (contain one sample). Here, the ’max_depth’ parameter grid search values were 3, 5
and 10. Another way to make sure that the leaves do not end up containing one sample is with the
parameter ’min_samples_split’. This parameter gives the minimum number of samples required to split
a node. The grid search values for this parameter were 5, 10 and 20.
These three hyperparameters are tuned to minimize the over-fitting of the model.[14] If, for instance,
the depth of the tree is not specified, the tree can grow into a very specific tree for a selection of the
patients, making it not generalizable and too specified. The ’min_samples_split’ parameter is therefore
also specified at a higher number than the default, which is 2. This makes sure that single samples
cannot end up in their own leaf.

Gradient Boosting Model
Many hyperparameters can be tuned in Gradient Boosting Models. In consultation with a data sci-
entist from Pacmed, the following parameters were looked into: n_estimators, learning_rate, gamma,
max_depth, min_child_weight, subsample, colsample_bytree, reg_lambda, objective. Eventually, the
following three hyperparameters were tuned in the inner cross-validation, again to keep the model com-
putationally efficient. Similar to the Random Forest, the ’n_estimators’ and ’max_depth’ were tuned.
The third hyperparameter was the ’learning_rate. The values for the grid search of the ’n_estimators’
and ’max_depth’ were the same as in the Random Forest, namely 100, 200, and 500 and 3, 5, and
10. The ’learning_rate hyperparameter shrinks the contribution of each tree by the value of the entered
parameter. It determines how fast or slow the model moves towards the optimal weights, with a smaller
value indicating a slower learning rate.[14] The following values were entered in the grid search: 0.01,
0.1, and 1.

3.4.3. Repeated measurements data set model
The repeated measurements data set was used in the development of a joint model. In the joint model,
a two-stage approach was developed to first determine the longitudinal course of the variables using
LMEMs. The newly generated features created with the LMEMs were then used in the second step of
the joint model. This second step was again a nested cross-validation with an LRM, RF and GBM. The
method of the joint model is explained in the subsections below.
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First step of the joint model
As stated before, a joint model uses the information from the longitudinal course of variables, typically
variables with repeated measurements. The information of this longitudinal course is extracted from the
data using LMEMs. The development of the LMEMs was the first step of the joint model. The models
were coded in Rstudio. An existing function lmer was used to fit the LMEMs.[23] Cubic splines were
used to make an estimation graph of the longitudinal course of the different variables.[24] In these cubic
splines, the number of knots could be defined. Between two knots the LMEM fits a cubic spline, which
is a summary or prediction of the longitudinal course of the specific variable. In this project, seven knots
seemed to fit best as this means every hour had a knot. However, for every repeated measurement
the ideal number of knots was individually researched.
From these generated LMEMs different variables were obtained. These variables form the features for
the variables that contained repeated measurements in the nested cross-validation of the joint model.
These variables contained the slopes (also known as coefficients) between the knots in the graph, the
intercept points (values of the parameter at every knot), and the Root Mean Squared Error (RMSE)
around the estimated graph. The following formula was used to calculate the RMSE.

RMSE =

√∑N
i=1(Predictedi −Actuali)

2

N

In Appendix A.8 an example of an LMEM graph is given for the Systolic Blood Pressure (SBP). In the
graph, the three different variables that were obtained for every repeated measurement variable using
the LMEM are shown.

Nested cross-validation with repeated measurements data
The second step of the joint model was the development of a predictive model. To make the even-
tual models comparable, the same three model types, feature selection methods, and scaling methods
were again evaluated in a nested cross-validation. Thus, this resulted in the same 27 model options
as in the aggregated data model.
Before the model development, the data set was split into a train and test set. 80% of the data was used
as a training data set and 20% was used as a test data set. The function train_test_split() in Python
was used to split the data and the parameter stratify was used on the label of the data set (intubated:
yes/no). Using this function and parameter, the distribution of intubated patients remained close to the
original distribution in the train and test data set.[14]
Moreover, the same grid search values as in the aggregated data model were entered for the hyperpa-
rameter tuning.
As stated in the processing section 3.3.4 of the repeatedmeasurement data set, the features that did not
contain repeated measurements and therefore were not estimated with an LMEM needed to be added
to the joint model data set. Once this data set merge was completed, the nested cross-validation could
be executed.

3.5. Model validation and evaluation
The validation of all the models was done by obtaining the AUC values of the models on the test data.
The LRM, RF and GBMwere validated in a nested cross-validation that included the tuning of the hyper-
parameters and results of the best-performing model. As stated before, the nested cross-validation of
both the aggregated data models and the joint models resulted in 27 average test AUC values, as
three models, three scaling methods, and three feature selection methods are tested in a 5-fold outer
cross-validation loop. The best-performing model was found by comparing AUC values. In this thesis
project an AUC value of 0.7 to 0.8 was considered acceptable, conform the study of Mandrekar et al.
2010.[25]
For the best-performing aggregated data model the Santeon data was used as external validation. This
means that for the 27 average test AUC values, the best-performing combination of model type (with
tuned hyperparameters), scaling method, and feature selection method was exported to apply an ex-
ternal validation with the Santeon data.
In this external validation, the Maasstad data was not used in the data set as this Maasstad data was
already used in the training and internal validation of the model. The number of repeated measure-
ments in the validation set determined its applicability to be used as an external validation set for the
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joint model. In case of insufficient repeated measurements to externally validate the best-performing
joint model, an internal validation set should be generated. In this case, this would contain the 20%
test set that was separated from the data before entering the nested cross-validation.
Once the best-performing models for the aggregated data models and joint models were found, these
two models with the corresponding hyperparameters that were tuned optimally were trained on all
available training data. After this fitting process, the two models predicted new unseen data. This was
the external validation data in the case of the best-performing aggregated data model. For the best-
performing joint model, this was the external validation data or the separated 20% internal validation
data in case of insufficiency.
Of these two models the learning curves were formed when the models were fitted on all available
training data. These learning curves show the generalizability of the two models.
Moreover, a classification report was calculated at every outer fold and also in the last validation step.
In this classification report the precision, recall, and f1-score were taken into account. After the last
validation step, the validation scores were compared to the training scores. Precision is a metric that
measures the ratio of true positives to the sum of true positives and false positives. Precision is also
called positive predictive value (PPV). Recall is a metric that measures the ratio of true positives to
the sum of true positives and false negatives. Recall is also called sensitivity. The f1-score is a met-
ric that combines both precision and recall into a single score, in which higher values indicate better
performance.[26] All these three metrics give calculations that are separated based on the class, in
which class 0 means non-intubated patients and class 1 means intubated patients. In Appendix A.9
the formulas corresponding to precision, recall, and f1-score are given.[26]
In the validation step of the best-performing models, a Receiver Operating Curve (ROC) was made.
This was done when the best-performing model type was trained on all available data. It was not fea-
sible to obtain a ROC in the nested cross-validation, due to computational problems. Therefore, these
ROCs had a different distribution of the 5 folds than the 5 folds that were used in the nested cross-
validation. However, the same data was used so the results were expected to be in the same range of
the test AUC values. In a ROC, the True Positive Rate (recall) is displayed on the y-axis. The False
Positive Rate is presented on the x-axis. It thus shows the trade-off between sensitivity (y-axis) and
specificity (x-axis). Classifiers that give a curve closer to the top left corner (1.0 sensitivity) indicate
better performance. The AUC value is the area under the ROC. Thus, a curve closer to the top left will
often lead to a higher AUC value.[27] In Appendix A.9 the formulas corresponding to metrics used in
the ROC are stated.



4
Results

In this chapter, the results of this thesis project will be stated. The characteristics of the different data
sets and patients will first be explained. Hereafter, the performance of the implemented models will
be stated and compared on their used data type. Lastly, the best-performing models are externally or
internally evaluated with a validation set.

Figure 4.1: Graphical overview of the results of this thesis
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4.1. Description of the data
In this section, a description of the used data sets will be stated, including the aggregated data set, re-
peated measurements data set, and validation data set. Furthermore, the patient characteristics will be
provided. The extraction of the training and test data for both the aggregated data set and the repeated
measurements data set, executed by BI, resulted in two data sets with patient admissions to the ICU
from January 2018 to February 2022. The validation set obtained through the ’Beheercommissie’ of
Santeon resulted in a data set with patient admissions to the ICU from March 2020 to February 2021.

4.1.1. Aggregated data set
The aggregated data set contained 350 patient admissions. After removing the duplicate patient IDs,
348 patients remained. Of these 348 patients, 168 patients were given the intubation label. All 348
patients contained at least one missing data point in the features. Of the 116 features, 95 features
contained missing data. 75 features remained after excluding features with more than 60% missing
values, dropping features that contained useless information, and encoding categorical data. A list of
these 75 features with a short description can be found in Appendix A.10.
Some of the vital function parameters did include the mean and last value of the variable but not the
standard deviation. For example, the standard deviation of the temperature was not included in the
features because of the large number of missing values. The temperature was often measured only
once, making it impossible to give a standard deviation.
Multiple imputation was not possible to implement as the missing data strategy because of the compu-
tational power needed to apply multiple imputations. The number of iterations for the estimator used
to apply multiple imputation needed to be enlarged to get the desired result. The default value is 10.
However, from 500 iterations the estimator was able to implement multiple imputation. This, however,
gave a memory error. This memory error resulted in the maximum iterations value being set at 150. At
this value, the code did result in multiple imputations. Nevertheless, over all of the imputed data frames,
the imputed values were the same. For example, patient 2 was missing a lab value, namely CRP. In
all the imputed data frames, the value was imputed with 18. Different estimators were tested for the
multiple imputation. Eventually, it was chosen to apply a KNearestNeighbour (KNN) multiple imputation
with k=3 and the number of imputations also 3. Because the three imputed data frames were identical,
only the first was taken into account for the nested cross-validation. The KNN imputation algorithm
uses the (in this case) three nearest neighbours to determine the value of the missing data point.[28]

4.1.2. Repeated measurements data set
The number of patients and intubated patients in the repeated measurements data set was equal to
the aggregated data set, since the two data sets were linked on the patient IDs. The repeated mea-
surements data set contained 289 features, of which 190 features had missing data. Again, logically,
all the patients had at least one missing data point. 235 features remained after excluding useless fea-
tures and features with more than 60% missing values. A list of the vital function parameters that were
different from the aggregated data set is given in Appendix A.11. All the other features corresponded
to the aggregated data set.
Once more, in this data set the standard deviation of the temperature was not included because of the
large number of missing values. Here too the missing data imputation with KNN k=3 did not result in
different imputed values. Therefore, again, only the first imputed data frame was taken into account.

4.1.3. Patient characteristics of the training data
As both the aggregated data set and the repeated measurements data set contained the same patients
(with different variables), the patient characteristics will be explained in this subsection for both data
sets. The mean age of the patients in the non-intubated group was 61.4 years (±14.3), while in the
intubated group it was 62.1 years (±12.3). The non-intubated group consisted of 114 males and 66
females and the intubated group had 117 males and 51 females. The length and weight of the non-
intubated group were close to the intubated group being 172 cm (±20) versus 172 cm (±21) and 87.9
kg (±22.7) versus 85 kg (±19.6).
The origin of the non-intubated group was distributed as follows: 164 patients came from their homes,
4 from their hospital, 8 from another hospital and 4 via the ER. For the intubated group, the origin
was distributed likewise: 149 patients came from their homes, 7 from their hospital, 9 from another
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hospital and 3 via the ER. In the non-intubated group, 97 patients had a day admission to the ICU and
83 patients had a night admission. In the intubated group, 105 patients had a day admission and 63
patients had a night admission.
The number of deceased patients was 29 in the non-intubated group and 66 in the intubated group.
Patients that died during their admission and were not intubated yet were also given the intubation
label. The number of deceased patients was retrieved in the data extraction process. Patients who
died after the data extraction have not been considered. This means that the patients who had a date
of death in the data either died during their ICU admission or after the admission but within the data
extraction period. The seemingly large difference in this characteristic can be attributed to the fact that
patients who died during their admission were added to the intubation group. In table 4.1 an overview
of the patient characteristics can be found.

Table 4.1: Overview of the patient characteristics of the training data set separated into the non-intubated group and intubated
group

Non-intubated group (n=180) Intubated group (n=168)
Age (y) 61.4 (± 14.3) 62.1 (± 12.3)
Gender 63% M (n=114) 70% M (n=117)
Length (cm) 172 (± 20) 172 (± 21)
Weight (kg) 87.9 (± 22.7) 85 (± 19.6)

Origin

- Home = 164
- Own hospital = 4
- Other hospital = 8
- Emergency Room = 4

- Home = 149
- Own hospital = 7
- Other hospital = 9
- Emergency Room = 3

Day or night
admission

- Day admission = 97
- Night admission = 83

- Day admission = 105
- Night admission = 63

Number of
deceased patients 29 66

To get a full picture of the course of the patient admission, the two variables Optiflowstart and Intuba-
tionstart were used to determine the number of hours between HFNO therapy and intubation. Logically,
only the patients who were intubated had a value in this calculation. The average time of intubation
after the start of HFNO therapy was 49 hours, with a standard deviation of 70 hours. Because of the
wide range of values, the minimum and maximum values are also shared. In all of these values, the
minimal 8 hours of HFNO therapy was also counted. The minimum time of intubation after the start of
HFNO therapy was 8.87 hours and the maximum time was 536.48 hours.

4.1.4. Validation data set
The validation data set contained 163 patient admissions. After removing one duplicate patient ID, 162
patients remained. Of these 162 patients, 94 were given the intubation label. The validation data set
contained 116 features, of which 101 features had missing values. Again, all the patients had at least
1 missing value.
Unfortunately, the validation set did not contain enough repeated measurements to validate the joint
model data set. In Appendix A.12 the number of repeatedmeasurements in both data sets can be found.
For example, the parameter Heart Frequency (HF) had 166494 measurements for all the patients in
the training data set and only 4889 for all the patients in the validation set. This would mean that there
are around 478 measurements per patient in the training set and around 30 in the validation data set.
Because of the large difference in the number of repeated measurements, the LMEMs with 7 knots for
each hour on HFNO therapy would not be feasible. With more than half of the LMEMs of the training
data containing 7 knots, this would result in a great number of missing values in the validation set.
For the encoding of categorical data, the strategy applied to the training data was again implemented.
This resulted in gender being encoded as zeros for males and ones for females. The origin parameter
again had four options that belonged to similar categories, namely patient admissions from their home,
other hospitals, own hospital, or ER.
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4.1.5. Patient characteristics of the validation data
The mean age of the patients in the non-intubated group was 60.2 years (±13). In the intubated group
it was 66.1 years (±10.3). The non-intubated group consisted of 47 males and 21 females, while the
intubated group had 74 males and 20 females. The length and weight of the non-intubated group were
close to the intubated group, being 175 cm (±10) versus 176 (±8) and 91.1 kg (±18.8) versus 91.4 kg
(±16.5).
The origin of the non-intubated group was distributed as follows: 39 patients came from their homes, 5
from their hospital, 10 from another hospital and 14 via the ER. For the intubated group, the origin was
distributed in the following manner: 62 patients came from their homes, 6 from their hospital, 3 from
another hospital and 23 via the ER. In the non-intubated group, 36 patients had a day admission to the
ICU and 32 patients had a night admission. In the intubated group, 61 patients had a day admission
and 33 patients had a night admission.
The number of deceased patients was 3 in the non-intubated group and 38 in the intubated group.
Patients that died during their admission and were not intubated yet were again given the intubation
label. Once more, deaths after the data extraction have not been considered. The large difference in
the number of deceased patients can again be due to the addition of patients that died in their admission
to the intubation group. In table 4.2 an overview of the patient characteristics can be found.

Table 4.2: Overview of the patient characteristics of the validation data set separated into the non-intubated group and
intubated group

Non-intubated group (n=68) Intubated group (n= 94)
Age (y) 60.2 (± 13) 66.1 (± 10.3)
Gender 69% M (n=47) 79% M (n=74)
Length (cm) 175 (± 10) 176 (± 8)
Weight (kg) 92.1 (± 18.8) 91.4 (± 16.5)

Origin

- Home = 39
- Own hospital = 5
- Other hospital = 10
- Emergency room = 14

- Home = 62
- Own hospital = 6
- Other hospital = 3
- Emergency room = 23

Day or night
admission

- Day admission = 36
- Night admission = 32

- Day admission = 61
- Night admission = 33

Number of
deceased patients 3 38

Also in the validation data the variables Optiflowstart and Intubationstart were used to determine the
time between the start of HFNO therapy and (possible) intubation. The average time of intubation after
the start of HFNO therapy was 59 hours, with a standard deviation of 69 hours. The minimum time
of intubation after the start of HFNO therapy was 8.78 hours and the maximum time was 401.2 hours.
Once more, the minimal 8 hours of HFNO therapy were counted in the calculations.

4.2. Performance of the implemented aggregated data set models
In the following subsections, the performance of the implemented aggregated data set models will be
stated. This is done by first showing the performance during training and testing of the models and
later showing the performance when using an external validation data set.

4.2.1. Training performance of the aggregated data set models
The performance of the aggregated data set models will be shown by first discussing the training and
testing performance and hereafter examining the performance of the external validation set.

Training and testing performance of the aggregated data set models
The training AUC values were retrieved from the nested cross-validation. This means that for every
inner fold, an AUC score was found. This process was repeated five times for the number of outer folds.
This resulted in 25 AUC values for each combination of model, feature selection, and scaling type (27
options). Asmentioned before, themodel types were LRM, RF, andGBM, the feature selectionmethods
were PCA, SelectKbest, and no feature selection, and the scaling methods were PowerTransformer,
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Robust Scaling, and no scaling. The inner fold of the nested cross-validation resulted in a best-tuned
model. In every outer fold, this best-tuned model was given a test set from which an AUC score
resulted. Since there were 5 outer folds, every combination of model, feature selection, and scaling
option resulted in 5 test AUC scores. For both the 25 training AUC scores and the 5 test AUC scores,
the mean and standard deviation were calculated. The resulting means and standard deviations can
be found in Table 4.4. In this table, the green square highlights the model that scored best on the test
AUC value.
Thus, with this aggregated data set, it means that the Random Forest with no feature selection and
no scaling scores best, with an average test AUC value of 0.694 and a standard deviation of 0.05.
In the five test AUC values of this specific model type, the last fold resulted in the highest test AUC
value of 0.764. With every training AUC value, a classification report with the corresponding precision,
recall, and f1-score was also calculated. In table 4.3 the average precision, recall and f1-score with the
calculated standard deviation are shown. Here, it can be seen that the best-performing model performs
better for class 0 (the non-intubated patients), because of a higher recall and f1-score. However, for
precision, the model performs better in class 1 (the intubated patients).

Table 4.3: Average and standard deviations of the precision, recall, and f1-score of the best-performing aggregated data
model: a Random Forest with no feature selection and no scaling.

Average (standard deviation)
Precision class 0 0.683 (0.05)
Precision class 1 0.76 (0.04)
Recall class 0 0.833 (0.03)
Recall class 1 0.583 (0.09)
f1-score class 0 0.747 (0.04)
f1-score class 1 0.657 (0.07)

The model type that scored second best is also an RF. However, in this combination SelectKbest was
used as a feature selection method and Power Transformer as a scaling method. This combination
resulted in an average test AUC value of 0.684 and a standard deviation of 0.02. In the five test AUC
values of this model option, fold 5 again resulted in the highest test AUC value of 0.72. The third-best
scoring model is an RF with no feature selection and Robust Scaling, which resulted in an average
test AUC of 0.678 and a standard deviation of 0.03. Fold 5 resulted once more in the highest test AUC
value of 0.72.
To understand more of what the models use in their prediction, the top 10 predictive features were
retrieved at every outer fold in which the test AUC was also obtained. The corresponding tuned hyper-
parameters are given for the three best-scoring models. The top 10 predictive features and the tuned
hyperparameters correspond to the outer fold that resulted in the highest test AUC value, which was
fold 5 in these models. These features and hyperparameters can be found below in section 4.2.2. For
more information on the different features, a list with a description of the used features can be found in
Appendix A.10.
Moreover, the learning curves corresponding to these three model options can be found in Appendix
A.13. In these learning curves, it can be seen that for all three model types the training score starts
high and grows towards the cross-validation score when the number of training samples is enlarged.
This indicates that when using a few samples, the model will be overfitting, giving a high training score,
and with more training samples, the training and cross-validation scores become more similar and less
overfitted.
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Table 4.4: Training and test Area Under the Curve (AUC) values of the different model types made with the aggregated data set with different feature selection and scaling methods. The train
AUC values were obtained by the average of the nested cross-validation resulting in 5 x 5 folds of train AUC values and a standard deviation in brackets. The test AUC values were obtained by
the average of the 5-fold outer cross-validation, with the standard deviation in brackets. The model type, feature selection method, and scaling method that resulted in the best test AUC score

is highlighted in green.
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4.2.2. Additional information on the best-performing aggregated data models
Below, the optimally tuned hyperparameters and the top 10 predictive features for the three best-
performing aggregated data models are stated. These are retrieved from fold 5, which resulted in
the highest test AUC for all the three best-performing models.

Hyperparameters and top 10 predictive features of an RF - No feature selection - No scaling

Hyperparameter Optimized input
’max_depth’ 3
’min_samples_split’ 20
’n_estimators’ 500

1. FiO2 last value
2. SpO2 std dev
3. Spo2 mean
4. Fio2 mean
5. LDH
6. SaO2 mean
7. DBP mean
8. pO2 mean
9. pO2 last value
10. SaO2 last value

Hyperparameters and top 10 predictive features of an RF - SelectKbest - Power Transformer

Hyperparameter Optimized input
’max_depth’ 10
’min_samples_split’ 5
’n_estimators’ 100

1. FiO2 delta
2. FiO2 mean
3. RR std dev
4. Length
5. Age
6. FiO2 last value
7. PCO2 mean
8. SaO2 mean
9. pH last value
10. PO2 std dev

Hyperparameters and top 10 predictive features of an RF - No feature selection - Robust scaling

Hyperparameter Optimized input
’max_depth’ 3
’min_samples_split’ 20
’n_estimators’ 200

1. FiO2 last value
2. SpO2 std dev
3. SaO2 mean
4. FiO2 mean
5. SpO2 mean
6. LDH
7. PO2 last value
8. PO2 mean
9. SaO2 last value
10. DBP mean
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4.2.3. Validation of the best model made with the aggregated data set
For the validation, the best model found in the training and testing phase was used to examine its
performance with the external validation data. The external validation data set was reduced in its
number of features using the list of features that were used by the aggregated model, which can also
be found in Appendix A.10. After this, the missing data was checked per column. The medication
features (Antibiotics and Steroids) all had no data. Because of the lengthy process of extracting this
information from the Santeon data, it was chosen to impute the missing data in these features with zero.
Moreover, other features contained a lot of missing data, especially features from the laboratory values.
For example, Serum albumin had zero data points and was therefore also imputed with zero. Overall,
there were few data points of the laboratory values. However, KNN could be used as an imputation
method. Again, k=3 was chosen.
To compare the fraction of missing data in the validation data versus the training data, a histogram
was made showing the fraction of data present in the aggregated data set next to the fraction of data
present in the validation data set. This histogram can be found in Appendix A.14.
After the encoding of categorical data and imputation of missing data, the extracted best model could
be fitted with all the training data. Hereafter, a prediction could be made with the validation data. The
fitting/training of the best-performing model was done with the tuned hyperparameters as stated above
(max_depth=3, min_samples_split=20, and n_estimators=500). When the best model (an RF with no
feature selection and no scaling) was fitted on all the training data, a learning curve and the top 10
features were again obtained. The learning curve can be found in Appendix A.15. Also in this learning
curve, the training and validation score grow towards each other when the training set size is enlarged.
The top 10 predictive features that came from training the best model with all the training data are listed
below.
In this validation step, the ROC curve was also obtained. Because of the computational burden of
extracting all the ROC curves in the nested cross-validation, only the ROC curve of the best-performing
model was made. In Figure 4.2 the ROC curve of the RF with no feature selection and no scaling can
be found.

Top 10 predictive features of an RF - no feature selection - no scaling
1. SaO2 std dev
2. SaO2 last value
3. LDH
4. PO2 last value
5. PO2 mean
6. SpO2 mean
7. SaO2 mean
8. FiO2 mean
9. SpO2 std dev
10. FiO2 last value
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Figure 4.2: ROC curve of the best-performing aggregated model: an RF with no feature selection and no scaling.

The prediction of the fitted best model on the validation data set resulted in an AUC value of 0.559.
The precision, recall, and f1-score were also calculated. The precision was higher in class 1 with 0.67
in comparison to 0.46 in class 0. The recall was higher in class 0, being 0.74 in comparison to 0.38 in
class 1. The f1-score was also higher in class 0, namely 0.57 compared to 0.49 in class 1. The results
can be found in table 4.5 below. Overall, the results are comparable to the previous results since the
models seem to perform better on class 0.

Table 4.5: Classification report of the validation of the best-performing aggregated data model.

Classification report Value
Precision class 0 0.46
Precision class 1 0.67
Recall class 0 0.74
Recall class 1 0.38
f1-score class 0 0.57
f1-score class 1 0.49
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4.3. Performance of the implemented joint models
In the following subsections, the Linear Mixed Effects Models results will be discussed, which were
generated in the first step of the joint model. Furthermore, the performance of the second step of
the joint model will be shown for the different generated models. This is done by first showing the
performance during training and testing of the models and later showing the performance when using
an internal validation set.

4.3.1. Linear Mixed Effects Models
After the LMEMswere generated, it was checked if there were any notable strange curves. Patients who
contained a lot of variation in their measurements were often estimated relatively well. In Appendix A.16
an example is shown of a peripheral oxygen saturation (SpO2) curve in which the possible variation of
the measurements is shown. The LMEM still managed to estimate the course of the variable sufficiently.
Some notable curves could not be explained by the supervisors in this project. These curves were
therefore discussed with a specialised nurse of the ICU who has experience with validating medical
data. This was done using the keys to the actual patients in the hospital database, provided by BI. The
notable curves could be explained by looking into the patient data and reading what events took place.
Eventually, all the LMEMs were determined to be sufficient to continue the model development process.
In Appendix A.17 some of the notable curves are shown with an explanation of these courses of the
measurements in these patients.

4.3.2. Performance of the second step joint models
The performance of the joint models is shown by discussing the training and testing performance in the
following sections.

Training and testing performance of joint models
Comparable to the performance section of the models made with the aggregated data set, the perfor-
mance of the joint models was also evaluated through the training and test AUC values. The same
number of inner and outer folds was applied in the nested cross-validation. This, therefore, also re-
sulted in 25 train AUC values for every combination of model, feature selection, and scaling method.
Moreover, 5 test AUC values were obtained for every combination. The mean and standard deviation
of the train AUC values and test AUC values can be found in Table 4.7. In this table, the green square
again highlights the model that scored best on the test AUC value.
Thus, implementing repeated measurements in this joint model resulted in a Random Forest with no
feature selection and Power Transformer scaling with the best performance, with an average test AUC
of 0.681 and a standard deviation of 0.07. In the 5 test AUC values of this model type, the third fold
scored best with a test AUC of 0.801. With every training AUC value, a classification report with the
calculated precision, recall, and f1-score was made. In table 4.6 the average precision, recall, and f1-
score with the calculated standard deviation is shown for the best-performing model. The results are
similar to the best-performing aggregated model. It can be seen that the model again performs better
for class 0, which is the non-intubated group, as seen by a higher recall and f1-score for this class. The
precision is slightly better for class 1, which is the intubated group.

Table 4.6: Average and standard deviations of the precision, recall, and f1-score of the best-performing joint model: a Random
Forest with no feature selection and Power Transformer scaling.

Average (standard deviation)
Precision class 0 0.676 (0.07)
Precision class 1 0.698 (0.09)
Recall class 0 0.758 (0.09)
Recall class 1 0.604 (0.12)
f1-score class 0 0.714 (0.07)
f1-score class 1 0.642 (0.09)

The model type that scored second best is an RF with no feature selection and Robust Scaling. For
this model, the average test AUC was 0.659 and the standard deviation 0.07. Here, the third fold also
had the best test AUC value of 0.713. The third-best scoring model is a Gradient Boost Model with
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SelectKbest feature selection and Robust Scaling. This model resulted in an average test AUC of 0.657
and a standard deviation of 0.05. Again, the third fold resulted in the best AUC value of 0.713.
The top 10 predictive features that were used in these three model types to get the highest test AUCs
are provided in section 4.3.3, along with the corresponding tuned hyperparameters. For more informa-
tion about the features, a list with descriptions of all different features used in the joint model compared
to the aggregated data model is inserted in Appendix A.11.
Moreover, the learning curves corresponding to these three model options can be found in Appendix
A.18. Similar to the learning curves of the best-performing aggregated data models, the training and
cross-validation scores grow towards each other when the number of training samples is enlarged.
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Table 4.7: Training and test Area Under the Curve (AUC) values of the different model types made with the repeated measurements data set with different feature selection and scaling
methods. The train AUC values were obtained by the average of the nested cross-validation resulting in 5 x 5 folds of train AUC values and a standard deviation in brackets. The test AUC

values were obtained by the average of the 5-fold outer cross-validation, with the standard deviation in brackets. The model type, feature selection method, and scaling method that resulted in
the best test AUC score is highlighted in green.
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4.3.3. Additional information on the best-performing joint models
Below, the optimally tuned hyperparameters and the top 10 predictive features for the three best-
performing joint models are stated. These are retrieved from fold 3, which resulted in the highest
test AUC for all the three best-performing models.

Hyperparameters and top 10 predictive features of an RF - No feature selection - Power Trans-
former

Hyperparameter Optimized input
’max_depth’ 10
’min_samples_split’ 5
’n_estimators’ 200

1. FiO2_int7
2. FiO2_int6
3. FiO2_int5
4. FiO2_int2
5. FiO2_int3
6. FiO2_int0
7. SpO2_int7
8. FiO2_int4
9. FiO2_slope6
10. FiO2_int1

Hyperparameters and top 10 predictive features of an RF - No feature selection - Robust Scaling

Hyperparameter Optimized input
’max_depth’ 3
’min_samples_split’ 5
’n_estimators’ 200

1. FiO2_int7
2. FiO2_int5
3. FiO2_int6
4. FiO2_int1
5. FiO2_int4
6. FiO2_int2
7. FiO2_int3
8. PO2_int4
9. SaO2_int4
10. FiO2_slope6

Hyperparameters and top 10 predictive features of a GBM - SelectKbest feature selection - Ro-
bust Scaling

Hyperparameter Optimized input
’max_depth’ 5
’learning_rate’ 1
’n_estimators’ 200

1. CK
2. Ureum
3. Origin_3
4. Chloride
5. DBP_slope0
6. DBP_int1
7. Admission during day or night
8. MCV
9. Hemoglobin
10. DBP_int7
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4.3.4. Validation of the best joint model
As stated before, the external validation set distributed by Santeon did not contain enough repeated
measurements to validate the best joint model. It was therefore chosen to split the data into a train and
test set before the nested cross-validation. For the validation, the 20% test data was used. The ex-
tracted best-performing model was trained on all the training data (the 80% of other data) using the best-
tuned hyperparameters (max_depth=10,min_samples_split=5, and n_estimators=200). Hereafter, the
fitted model was used to predict the remaining 20% test data. Once the best model (an RF with no
feature selection and Power Transformer) was fitted on the whole training data set, a learning curve
and the top 10 predictive features could be obtained. This learning curve can be found in Appendix
A.19. In this learning curve, the training and validation score do not grow towards each other, which
could be a sign of overfitting. The top 10 features from training the best model with the whole training
data set are listed below.
In this validation step of training the best-performing model on all available data, the ROC curve was
obtained. In Figure 4.3 the ROC curve of the RF with no feature selection and Power Transformer
scaling can be seen.

Top 10 predictive features of the best-performing joint model trained on all available data (RF -
no feature selection - Power Transformer)
1. SpO2_rmse1
2. SpO2_int5
3. DBP_slope0
4. PO2_int0
5. FiO2_int2
6. LDH
7. SpO2_int4
8. FiO2_int5
9. FiO2_int4
10. FiO2_int6

Figure 4.3: ROC curve of the best-performing joint model: an RF with no feature selection and Power Transformer scaling.
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The prediction of the fitted best model on the 20% test set resulted in an AUC value of 0.699. The
precision, recall, and f1-score were also calculated. The precision was equal in class 0 (non-intubated)
and class 1 (intubated), namely 0.70. The recall was higher in class 0, namely 0.72 compared to 0.68
in class 1. The f1-score was also higher in class 0, being 0.71 in comparison to 0.69 in class 1. The
results can be found in table 4.8 below. These results are comparable to the training results because
the model performs better on class 0.

Table 4.8: Classification report of the validation of the best-performing joint model.

Classification report Value
Precision class 0 0.70
Precision class 1 0.70
Recall class 0 0.72
Recall class 1 0.68
f1-score class 0 0.71
f1-score class 1 0.69



5
Conclusion

In this thesis project, two different data types were used to develop ML models. Aggregated data
and repeated measurements data were used to develop a Logistic Regression Model (LRM), Random
Forest (RF) and Gradient Boosting Model (GBM). A nested cross-validation was implemented to test 27
combinations of these three models, three feature selection methods, and three scaling methods. The
aggregated data models outperformed the joint models (repeated measurements data). The addition
of repeated measurements to the training data does, therefore, not seem to be of added value.
The best-performing aggregated data model was an RF with no feature selection and no scaling, which
had a performance value of 0.694 (standard deviation 0.05). The external validation of this model with
Santeon data resulted in an AUC of 0.559. The precision, recall and f1-score showed that the model
had a better performance on predicting class 0: the non-intubated patients.
With the test AUCs close to the required 0.7 in the aggregated models, it can be concluded that it is
possible to predict intubation with data of patients that received HFNO therapy for at least 8 hours.[25]
However, with thesemodels, the performance is not sufficient enough to conclude that intubation should
be implemented and HFNO therapy will not be sufficient. The precision, recall and f1-score are too poor
to rely on the model’s prediction to intubate a patient or not. Specifically, the recall of class 1 is 0.583,
meaning 41.7% would wrongfully not be intubated. Moreover, the precision of class 1 is 0.76, which
means 24% would wrongfully be intubated. Both recall and precision need to be improved to limit the
number of false negatives and false positives.
To conclude, the best-performing aggregated data model shows potential and proves that it is possible
to predict intubation using AI, but in its current state is far from implementation.
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6
Discussion

In this chapter, the results of this thesis project will be discussed. First, the results will be interpreted.
Hereafter, the relevance of the results will be stated. Moreover, the limitations of the results will be
discussed. Lastly, future recommendations will be given.

6.1. Interpretation of the results
The two-sided method of this thesis project resulted in two models that predicted intubation using dif-
ferent data. The best-performing aggregated data model had a test AUC performance value of 0.694
(standard deviation 0.05) and was a Random Forest with no feature selection and no scaling. The
external validation with Santeon data showed a decline in the AUC value, from 0.694 to 0.559. The
learning curves from the training fold and the final fitting of the best-performing model on all available
training data were showing a similar pattern. The precision, recall, and f1-score were also comparable,
with the model having a better performance on class 0 (non-intubated patients).
The decline in AUC value when applying the external validation data can be explained by several
reasons. Firstly, the validation data contained a large amount of missing data. In Appendix A.14 a
histogram is shown in which the amount of present data in the training data set is compared to the
validation data set. The variables that were present in the top 10 predictive features would ideally be
significantly present in the validation data set. The arterial saturation measurements (SaO2 mean/std
dev/last value) were often present in the top 10 predictive features but had almost no data in the val-
idation data set. This also applied to the laboratory features. LDH frequently appeared in the most
predictive features. Nevertheless, this feature did not have many values in the validation data.
Secondly, an explanation for the decline is the different distribution of the target variable in the external
validation data. The percentage of intubated patients was 58% in the external validation data com-
pared to 48% in the training data. This could be an explanation for the decline in AUC since the model
showed a better performance for recall and f1-score on class 0, which is the non-intubated class. It
therefore could be the case that the model is better trained on detecting patients that are not intubated
and therefore scores worse on a data set in which the majority of patients were intubated.[17]
Thirdly, the size of the data set could explain the lower AUC. The external validation set was smaller
than the training data set, with 162 patients in comparison to 348 patients. This could lead to a decline
in the model’s performance as the data set does not capture the full range of variation in the patient
population. Preferably, the external validation set would have the same amount of patients or more.[29]
Fourthly, sampling bias could have played a role. Sampling bias can occur when the patient population
in the training data set may not be representative of the patient population in the external validation
data set. The external validation data set was sampled from a different population, namely different
hospitals. This could lead to a sample being produced that performs well on training data but does not
generalize well to new data, in this case the external validation set.[21]
Lastly, overfitting could be a reason for a decline in AUC. Overfitting occurs when the model is too
complex relative to the size and variability of the training data set.[30] This can result in a model that is
highly tuned to the training data but does not generalize well to new data. The learning curves do not
directly show overfitting. However, this reason cannot be excluded.
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The average AUC found in the literature review was 0.810 and thus significantly higher than the AUC
value reached in this model, namely 0.694.[5] This difference in AUC value can be explained by the
same reasons that were described above to explain the decline in AUC when the external validation
set was applied. The developed model did outperform the ROX index, which had an AUC of 0.64.[4]
As described in the introduction, there are three parameters used to calculate the ROX index, namely
SpO2, FiO2 and RR. Both SpO2 and FiO2 were variables that were often present in the top 10 fea-
tures. The respiratory rate did not come up in the top 10 features. An explanation for the enhanced
performance compared to the ROX index could be the implementation of more significant features.
Going further on the top 10 features that were most predictive, as mentioned, FiO2 and SpO2 were
widely represented in the top 10 features. Remarkably, LDH was also often present in the top 10.
LDH stands for lactate dehydrogenase and is an enzyme that appears in all body cells. It is extracted
to diagnose cell and tissue damage in patients. LDH can diagnose liver illness, myocardial infarcts,
haemolysis, muscle damage, and lung function.[31] The predictive value of LDH can thus be due to
its wide variety of describing the patient’s status. Moreover, the DBP mean and PO2 were often rep-
resented in the top 10. Diastolic blood pressure (DBP) is a measure of the patient’s circulation. PO2
stands for the partial pressure of oxygen and is a measure of blood oxygenation. It is understandable
that the model uses these two variables in the prediction as they provide insight into both circulation
and the amount of oxygen in the blood.

The best-performing joint model had a test AUC performance value of 0.681 (standard deviation 0.07)
and was a Random Forest with no feature selection and Power Transformer scaling. The internal vali-
dation with a 20% separated test set resulted in an enlarged AUC value of 0.699. The learning curves
of the training fold and the final fitting of the best-performing model on all available training data showed
different patterns. The last learning curve had a flat line at 1 for the training score, which is an indica-
tion of overfitting. It means that the model is perfectly fitting the training data set.[21] The precision,
recall, and f1-score showed that overall the model performs best on class 0: the patients that were not
intubated.
The increased AUC when performing the internal validation with the 20% left out data set can be ex-
plained by the possible overfitting of themodel, which is also indicated by the last learning curve. Similar
to the aggregated model, it is expected that an external validation data set would lead to a (small) de-
crease in performance. The overfitting could mean that the model has memorized the training data set,
rather than learning the underlying patterns that are present in the data.
The following article by Ying et al. 2019 describes a technique to minimize overfitting in Random Forest
models. First of all, it is important to monitor the validation score during training and to stop training
when the validation score stops improving or starts to decline. In this case, the algorithm stops improv-
ing because it is learning the noise of the data, e.g. outliers of the data.[30] In the best-performing
joint model, the second-best, and third-best model, the highest AUC values were all reached in cross-
validation fold 3 of the 5 folds in total. It is possible that the overfitting occurred when the model con-
tinued training on the 4th and 5th fold. In Random Forest models, early stopping can be implemented
by setting a threshold for the number of trees. With the hyperparameter n_estimators the number of
trees is defined. In this model, a grid search was performed to find the optimal number of trees with
the following entries: 100, 200 and 500. The optimally tuned hyperparameters resulted in the number
of trees being 200 in the joint model. It could have been that the optimal number of trees lies between
100 and 200. This is a disadvantage of using grid search to tune hyperparameters. It is also an option
to tune hyperparameters using a randomized search. With a randomized search, it is more likely to
find an optimal value of a parameter, since there is a smaller chance of the optimal value being just
between two points. In Appendix A.20 an image is shown in which the difference between grid search
and randomized search for tuning hyperparameters is explained.[32] Next to setting this n_estimators
parameter, an actual early stop argument can also be coded. This argument analyzes the validation
scores and automatically stops when the scores are not improving or are declining.
Secondly, it is known that training the model with more data could also lead to a reduction in overfit-
ting because the model then sees more different patients and cannot train perfectly for a subset of
patients.[21]
The top 10 predictive features of the best-performing joint model only contains FiO2 variables and one
SpO2 value. This list is thus quite different from the best-performing aggregated data model. The pres-
ence of 9 different FiO2 values (mainly intercept values, and one slope) shows that information on the
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FiO2 value for every hour has a predictive value. Nevertheless, having a smaller variance of different
features can mean that the model gives a less reliable prediction.

When the results for both of the model types are taken into account, it can be concluded that the
addition of repeated measurements does not seem to have a benefit for the performance of the model
in predicting intubation. However, ideally, the joint model should be externally validated to make it a
fair comparison to the aggregated model. Moreover, a larger external validation set that contains more
data on the important features and is balanced likewise to the training data is desired to improve the
external validation.
With the test AUCs close to the required 0.7 in the aggregated models it can be concluded that it is
possible to predict intubation with data of patients that received HFNO therapy for at least 8 hours.[25]
However, with thesemodels, the performance is not sufficient enough to conclude that intubation should
be implemented and HFNO therapy will not be sufficient. To predict intubation with this performance
value poses an unacceptable risk, especially considering the average recall of this model for class 1
is 0.583. This means that 58.3% of the patients were correctly classified as class 1 and thus as being
intubated. The other 41.7% of patients were thus misclassified as non-intubated patients.[26] These
patients who would most likely benefit from intubation should not be missed. It is therefore preferred
to get a higher recall.
On the other hand, precision should not be ignored. It is important to consider both precision and recall
to balance the trade-off between false positives and false negatives. A precision of 0.76 in class 1
means that 76% of the patients were correctly classified as class 1, and thus 24% were misclassified
as intubated patients.[26] To make sure that patients do not get intubated if it is not necessary, high
precision is desired. As mentioned, a balance between precision and recall is relevant.
To visualize the trade-off between sensitivity and specificity, the ROC is obtained. In Figure 4.2 the ROC
of the best-performing aggregated model is shown. In the ROC, it can be seen that fold 2 and fold 3
(of fold 0 to fold 4) result in the best AUC value, namely 0.78. These two ROCs indicated in red and
green are also plotted closer to the top left corner, which indicates higher performance. Furthermore,
it can be seen that the model results in a higher sensitivity at the beginning with fewer false positives.
Eventually, the curve flattens and the sensitivity becomes more equal to the false positive rate. Overall,
these findings suggest that the model performed well in discriminating between positive and negative
cases, particularly in fold 2 and fold 3.

6.2. Relevance of the results
The model developed in this thesis was developed to aid medical personnel in the treatment option
from HFNO therapy to mechanical ventilation and thus intubation. The ROX index with an AUC of
0.64 is not trustworthy enough to determine if escalation from HFNO therapy to intubation should be
done.[4] The results of the developed model in this thesis project did not reach the AUC performance
of the studies that were found in the literature research.[5] However, the best-performing models with
both datatypes did outperform the ROX index and thus show potential.
Ideally, the developed model would aid medical personnel in the treatment choice of HFNO therapy or
intubation. Intubation is in certain patients the best treatment option. However, it also comes with risks
and complications and thus should not be applied unnecessarily. HFNO therapy is sufficient in certain
patients and has benefits for patient comfort compared to intubation. Nevertheless, for more severely
ill patients it will not give enough treatment.
Next to the relevance of aiding medical personnel in this difficult treatment choice, it is also relevant to
embrace innovations, such as ML models, as a hospital and see opportunities in these new techniques.
With this thesis project that was executed in the Maasstad Hospital, the model was developed inside
the hospital, which makes the knowledge obtained with the research valuable for the hospital. This is
an advantage compared to a situation in which an outside company is hired to develop a model, due
to the fact that with this project the medical personnel influenced the development and knowledge was
shared with them directly.

6.3. Limitations of the research
There were several limitations to the research performed in this thesis project. Firstly, the complete-
ness of the used data was a limitation. The data that was used to train and validate the model was a
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limited amount of all data available from ICU patients. For the development of the models as much data
as possible was extracted. In the aggregation of the data, certain choices were made that limited the
amount of data, such as the features that were taken into account for medication. In the used data set,
it was captured whether a patient got antibiotics or steroids during their admission. It was not captured
which kind of antibiotics or steroids were given, in which dose, and how many times. Also in the aggre-
gation of vital functions, it was chosen to limit the number of features by only taking into account the
mean, standard deviation and last value. Moreover, in the features that described the HFNO therapy,
only the amount of inspired oxygen was taken into account, not the flow rate of the HFNO therapy.
It is inevitable that certain data will not be taken into account in the development of the model. This
incompleteness of data could, however, mean that the population characteristics are not well defined
in the data used to train the model. Nevertheless, with this strategy of aggregating the data with clinical
reasoning, the features that are meaningful for physicians in their daily practice are preserved. The
possibility of the model finding an irrelevant pattern is hereby reduced. Moreover, the top 10 predictive
features over all the models are quite similar, which suggests these features were enough information
for the model to make a prediction. However, it is not possible to know if the addition of other data
would have resulted in a different performance.
Secondly, the data that was used in the development of the model in this thesis project mainly consisted
of COVID-19 patients. Especially in this patient population, medical personnel were experiencing dif-
ficult situations in which patients deteriorated fast and the moment of intubation or continuing HFNO
therapy was difficult to determine. It is therefore questionable if this developed model is applicable in
the current medical setting in which almost no patients get admitted to the ICU because of COVID-19.
Brinkman et al. 2022 researched the differences between COVID-19 patients and patients with viral
pneumonia in the ICU.[33] They found that mechanical ventilation at ICU admission was more preva-
lent in the viral pneumonia group and mechanical ventilation in the first 24 hours of ICU admission was
distributed comparably among the COVID-19 and viral pneumonia groups. The developed model may
therefore apply to viral pneumonia patients that are admitted to the ICU.
Thirdly, a limitation of the used data is that it was retrospective. Thus, the decision to intubate a patient
was made by the physician and it is not known if this was the best treatment option. For instance, it
could be the case that a patient was intubated while this was not the best option and HFNO therapy
would have been sufficient. The ML model then interpreted this patient as rightfully being intubated.
This makes it more difficult to find the right treatment option based on this data.
Lastly, a limitation of the developed model is that it was only trained with the Maasstad Hospital data
and could therefore be difficult to implement in other hospitals. As seen with the implementation of the
external validation data, the AUC declined. As described above, this could be due to the validation
data containing significantly different patients. Afterwards, it would have been better to fit the model
on the Santeon data set that contained different hospitals. Then, the Maasstad data could be used to
externally validate the model. However, because of the lengthy process of receiving the Santeon data,
this method could not be implemented.

6.4. Future recommendations
In this thesis project, the implementation of the developed model in daily practice for ICU personnel
has not been taken into account, due to the premature state of the developed model. However, for
future versions of the model, the implementation should be taken into account. In the following section,
different aspects of the implementation of the model are discussed.
First of all, before the design of a model, it should be carefully considered which model type is preferred.
The article by Sidney-Gibson et al. 2019 describes the trade-off between complexity and interpretabil-
ity in machine learning models.[34] On the one hand, a more complex model works better for complex
data, but is hardly interpretable due to it being a black box. On the other hand, ’auditable algorithms’
cannot handle complex data, but are better interpretable.
In this thesis project it was chosen to develop a Logistic Regression Model, Random Forest and Gradi-
ent Boosting Model. These model types are all closer to being ’auditable algorithms’ than black boxes.
However, it is still difficult to visualize how the model makes its predictions. For example, a classic
’auditable algorithm’ is a decision tree in which it is seen which features are used for the prediction
and even which values of these features are taken as a classification point. In this thesis project, the
best-performing model was a Random Forest that consisted of 200 decision trees. It is imaginable that



6.4. Future recommendations 37

it is difficult to visualize how classifications are formed in the forest of all these trees.
Moreover, it is important to involve all the stakeholders in the development phases of the model. In this
thesis project, the medical supervisor was involved in the development of the model. With his reason-
ing, the aggregation of the data was performed. In the implementation trajectory, more stakeholders
should be involved, as the medical personnel will eventually need to use the model and trust its pre-
dictions. It is advised to involve medical personnel from all layers in the development process: from
physicians to nurses.
During the medical activities in the ICU department of Maasstad Hospital, it was researched what kind
of questions arise from the medical personnel when talking about implementing an ML model that pre-
dicts intubation. Interesting subjects and questions were brought up by the medical personnel. For
instance: ”Who is responsible for the well-being of a patient?” If it occurs that a patient dies because
the model advised to stay on HFNO therapy but intubation was necessary, who is responsible? Or the
other way around: the model advises intubation but the medical personnel thinks this is not necessary.
Later, it turns out that intubation should have been performed. Did the medical personnel do wrong by
not listening to the model? In these cases, it is important to consider that the model would not replace
the medical personnel. Instead, it would be an addition to the team. Eventually, the physician will al-
ways have the final decision and with that the responsibility. It is however interesting how this dynamic
between humans and machines may change in the future.
This possible shift in dynamic comes with worries. For instance, the nurses were worried that their clin-
ical view of the patient would be replaced by the model. Moreover, it is difficult to know who is correct
because, as of now, there is no golden standard to which the model can measure its performance. The
model was trained on retrospective data in which medical personnel decided to intubate the patient or
not. There was no information on this treatment choice being the best choice with the best outcome
for the patient. However, as this is the current situation and the aim is to implement the model in the
current situation, it was not wrong to take the decision made by the physician as the golden standard.
All of the implementation factors mentioned above should be taken into account when implementing
the developed model.
For a second future recommendation, certain parameters to monitor the patient outcome could be taken
into account. For instance, mortality, the rate of comorbidities, and quality of life for the patients that
survived their ICU admission could be additional parameters. When these parameters are collected, it
is also possible to perform a clinical performance of the model. For instance, does the implementation
of the model lower mortality in the ICU because patients that need to be intubated are discovered ear-
lier in their admission? Furthermore, are these patients that are at risk for intubation found more often?
This clinical performance can be found when the model has been implemented for a certain period, so
it would be an a posteriori impact measurement.
Thirdly, it is recommended to train and develop a model without COVID-19 data to capture the char-
acteristics of the current population in the ICU. With this recommendation, it can be researched if the
developed model can be applied to patients with viral pneumonia admitted to the ICU. Moreover, it is
advised to implement data from multiple hospitals in this new data set to capture the characteristics of
the current ICU population.
Fourthly, a recommendation would be to research if measurements that are not standardly measured
in the ICU could have a beneficial effect on the performance of the model. During the clinical activi-
ties in the thesis project, it became clear that many techniques are used in the Maasstad Hospital to
determine the status of (ventilated) patients in the ICU. For instance, Electro Impedance Tomography
(EIT) can be used to determine the distribution of ventilation and perfusion in the lungs.[35] This non-
invasive technique could be applied to get more data on the ventilation and perfusion status of patients
on HFNO therapy. Moreover, lung ultrasounds could be implemented to get more information on the
status of the lungs and possible fluid or infectious areas in the lungs.[36, 37] It would be very interesting
to take these kinds of measurements into account in the data used to develop the ML model.
A last recommendation is to advocate for a universally applicable and available database for all hos-
pitals. During this thesis project, it became clear that it was almost impossible to request data from
an existing database of ICU data of the Santeon hospitals. Moreover, when the data was obtained,
another difficulty was the different structure of the data between the different Santeon hospitals. The
cooperation between Santeon hospitals is a unique opportunity to generate a database that contains
enough patients to develop and validate ML models. In a future with more AI applications, data is very
valuable and should thus be safely shared to get as much out of it as possible.
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A
Supplementary figures and tables

A.1. Data extraction overview

Figure A.1: Infographic of the data extraction process for all the data, including the Santeon data set and data from the
Maasstad Hospital. From the Santeon hospitals, the data of the hospitals that are marked green were used in the external

validation data.
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A.2. Data extraction by BI

Figure A.2: This figure shows which tables were used in the data extraction process to generate the data set. In this figure,
fake data is used to give an insight into using the different tables.

A.3. Aggregated data example data set
Table A.1: Example of the aggregated data set with fictional patient data. For an explanation of the different features, see

Appendix A.10 for the list of features that were used.

# row Age Length
...

FiO2
mean

FiO2
std dev

FiO2
last value ...

CRP ALAT AF Intubated

0 64 180 68.3 2.83 60 18 20 100 0
1 70 175 83 1.75 60 24 30 95 1
...
349 78 165 ... 45 4.56 80 ... 3 14 80 1
350 59 178 75 3.23 40 23 10 110 0
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A.4. FiO2 example patients

Figure A.3: Two example patients and their course of FiO2 values showing different deltas.

A.5. Repeated measurements example data set
Table A.2: Example of the repeated measurements data set, filled with fictional data. Appendix A.10 and A.11 can be

consulted for an explanation of the used features.

Patient ID Parameter ID Parameter name Value Calender time Tijd
1 4 HR 109 2021-09-08 14:50:00 0.000
1 4 HR 112 2021-09-08 14:51:00 0.01666667
1 4 HR 110 2021-09-08 14:52:00 0.03333333
1 8 FiO2 40 2021-09-08 14:50:00 0.000
... ... ... ... ... ...
2 10 SBP Mean 100 2020-10-10 22:06:00 0.000
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A.6. Graphical overview of the nested cross-validation for the ag-
gregated models

Figure A.4: Graphical overview of the nested cross-validation for the aggregated models with k=5 for the outer cross-validation
and k=5 for the inner cross-validation.
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A.7. Graphical overview of the nested cross-validation for the joint
models

Figure A.5: Graphical overview of the nested cross-validation for the joint models with k=5 for the outer cross-validation and
k=5 for the inner cross-validation.
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A.8. Example LMEM showing 3 variables

Figure A.6: Example of an LMEM of a Systolic Blood Pressure course for the three variables: slopes, intercepts, and RMSE.

A.9. Precision, recall, f1-score, and related formulas
In this section, the formulas of precision, recall, and f1-score are given.[26, 27]

Precision, PPV =
TP

TP + FP

Recall, Sensitivity, TPR =
TP

TP + FN

Specificity, TNR =
TN

TN + FP

f1− score =
2 ∗ precision ∗ recall
precision+ recall

FNR, 1− Sensitivity =
FN

TP + FN

FPR, 1− Specificity =
FP

TN + FP

NPV =
TN

TN + FN

For these formulas, TP means true positive, TN means true negative, FP means false positive, and
FN means false negative. TPRmeans true positive rate, TNRmeans true negative rate, FNRmeans
false negative rate, FPR means false positive rate, PPV means positive predicted value, and NPV
means negative predicted value.

A.10. Feature list used in aggregated data model
A.10.1. General patient information
10 features contain general patient information. Some of these features contained categorical data and
were therefore encoded. What the newly generate codes mean is explained per feature.
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• Age: Age of the patient as entered in the electronic patient file, given in years.
• Length: Length of the patient as entered in the electronic patient file, given in centimetres.
• Weight: Weight of the patient as entered in the electronic patient file, given in kilograms.
• Origin_1 - Origin_4: The location from where the patient was admitted to the ICU, from 1 to 4
meaning admission from their home, their hospital, a different hospital and the emergency room
(ER).

• Gender: Gender of the patient encoded to males stated with a 0 and females with a 1.
• Admission during day or night: Patients with night admissions (between 18:00 and 07:00) were
given a 1 and day admissions were encoded with a 0.

• Intubation: The target label of the models. Patients who had an intubation duration that was
higher than zero were given the intubation label (1). Moreover, patients who died during their
admission and were not intubated were given the label.

A.10.2. Vital function parameters
21 features contain vital function parameters. Below is explained what the features measure.[38]

• FiO2 mean: Fraction of inspired oxygen. This feature represents the average of the FiO2 for 8
hours of HFNO therapy.

• FiO2 std dev: Fraction of inspired oxygen, which is the standard deviation of the average.
• FiO2 last value: Fraction of inspired oxygen, which is the last entered value.
• FiO2 delta: Fraction of inspired oxygen. The delta is the difference between the first and the last
entered value.

• SpO2 mean: Saturation of arterial blood with oxygen as measured by pulse oximetry and there-
fore called peripheral oxygen saturation. This feature represents the average saturation.

• SpO2 std dev: Saturation, which is the standard deviation of the average.
• SpO2 last value: Saturation, which is the last entered value.
• RR mean: Respiratory rate is the frequency of breathing, recorded in the number of breaths per
minute. This feature represents the average respiratory rate.

• RR std dev: Respiratory rate, which is the standard deviation of the average.
• RR last value: Respiratory rate, which is the last entered value.
• SBP mean: Systolic blood pressure. Blood pressure during contraction of the ventricles is mea-
sured in mmHg. This feature represents the average systolic blood pressure.

• SBP std dev: Systolic blood pressure, which is the standard deviation of the average.
• SBP last value Systolic blood pressure, which is the last entered value.
• DBP mean: Diastolic blood pressure. Blood pressure during relaxation of the ventricles is mea-
sured in mmHg. This feature represents the average diastolic blood pressure.

• DBP std dev: Diastolic blood pressure, which is the standard deviation of the average.
• DBP last value: Diastolic blood pressure, which is the last entered value.
• HR mean: Heart rate. The number of contractions of the heart is measured in beats per minute.
This feature represents the average heart rate.

• HR std dev: Heart rate, which is the standard deviation of the average.
• HR last value: Heart rate, which is the last entered value.
• Temperature mean: Temperature measured axillary (in the armpit) given in Fahrenheit.
• Temperature last value: Temperature measured axillary, which is the last entered value.

A.10.3. Blood gas analysis
In the blood gas analysis, 16 features are measured. The different features are explained below.[38]

• SaO2 mean: Saturation of arterial blood with oxygen measured with Co-oximeter and therefore
called arterial oxygen saturation. This feature represents the average arterial saturation.

• SaO2 std dev: Arterial saturation, which is the standard deviation of the average.
• SaO2 last value: Arterial saturation, which is the last entered value.
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• HCO3- mean: Bicarbonate. An important parameter of the acid-base balance that is measured
in blood gas analysis. This feature represents the average bicarbonate.

• HCO3- std devL Bicarbonate, which is the standard deviation of the average.
• HCO3- last value: Bicarbonate, which is the last entered value
• PCO2 mean: Partial pressure of carbon dioxide. This feature represents the average partial
pressure of carbon dioxide.

• PCO2 std dev: Partial pressure of carbon dioxide, which is the standard deviation of the average.
• PCO2 last value: Partial pressure of carbon dioxide, which is the last entered value.
• PO2 mean: Partial pressure of oxygen. This feature represents the average partial pressure of
oxygen.

• PO2 std dev: Partial pressure of oxygen, which is the standard deviation of the average.
• PO2 last value: Partial pressure of oxygen, which is the last entered value.
• pH mean: Measure of acidity of the patient. This feature represents the average pH.
• pH std dev: pH, which is the standard deviation of the average.
• pH last value: pH, which is the last entered value.
• Haemoglobin blood gas: Protein in red blood cells that transports oxygen. This feature repre-
sents the haemoglobin in a blood gas analysis.

A.10.4. Laboratory parameters
Within the laboratory parameters, 24 features are measured. Below is explained what the features
mean and what is measured.[38]

• CRP: C-reactive protein, which is a marker for inflammation, infection, or after injury.
• ALAT: Alanine aminotransferase, which is a liver enzyme.
• ASAT: Aspartate aminotransferase, which is a liver enzyme.
• GGT: Gamma glutamyltranspeptidase, which is a liver enzyme.
• AF: Alkaline phosphatase, which is a liver enzyme.
• Bilirubin: Bilirubin is waste material that is released when breaking down red blood cells. It is
used as a marker for liver function.

• LDH: Lactacte dehydrogenase, which is an enzyme that appears in all body cells but is especially
abundant in kidney, skeletal muscle, liver, and myocardium.

• K: Potassium, which is one of the important electrolytes. Among others, it is responsible for
normal heart rhythm, fluid balance, and conduction of nerve impulses.

• Cl: Chloride, which is also an electrolyte responsible for fluid balance.
• Plasma albumin: Albumin is a protein in the blood that is made in the liver. This feature repre-
sents the albumin in blood plasma.

• Mg: Magnesium, which is a mineral important for skeletal muscles and formation of bones.
• P: Phosphate, which is a mineral important for bone mineralisation, energy storing, and cellular
processes.

• Creatinin: Creatinin is a waste product of breaking downmuscle cells. It is an indication of kidney
function.

• CK: Creatine Kinase is an enzyme that appears in skeletal muscles, heart, and brain. It is a
marker of muscle damage.

• Urea: Urea occurs in urine and other body fluids and is a product of protein metabolism.
• Blood glucose: Blood glucose is the level of glucose in the blood.
• Lactate: Lactate acid is a substance made by muscle tissue and red blood cells and may be an
indication of a lack of oxygen.

• Serum albumin: Albumin is a protein in the blood that is made in the liver. This feature represents
the albumin in blood serum.

• Haemoglobin: Haemoglobin is a protein in red blood cells that transports oxygen.
• MCV: Mean corpuscular volume is a blood test that measures the average size of the red blood
cells.
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• Thrombocytes: Platelets are disk-shaped structures in the blood that promote clotting.
• APTT: Activated partial thromboplastin time is a test in which the clotting of blood is timed.
• Leukocytes: White blood cells. The number of leukocytes gives information on inflammation or
infection.

• CK-MB Creatine kinase cytosol isoenzym. Likewise to CK, it is a marker of muscle damage.

A.10.5. Medication parameters
There were two features taken into account that considered medication parameters. The two features
are listed below.

• Antibiotics: Patients who received antibiotic treatment during the 8 hours of HFNO treatment
were encoded with a 1 in this feature

• Steroids: Patients who received a steroid during the 8 hours of HFNO treatment were encoded
with a 1 in this feature.

A.10.6. Cannula parameters
There were two features taken into account that considered cannula parameters. The two features are
listed below.

• Urine catheter: Patients who had a urine catheter during the 8 hours of HFNO treatment were
encoded with a 1 in this feature.

• Gastric cannula: Patients who had a gastric cannula during the 8 hours of HFNO treatment were
encoded with a 1 in this feature.

A.11. Feature list used in joint data model
A.11.1. Vital functions parameters
The following vital functions parameters were used in the development of the joint model. These pa-
rameters replaced the vital functions and blood gas analysis parameters of the aggregated data. In
total, 196 parameters were added from the LMEM.

• DBP_int0 - DBP_int7: Diastolic blood pressure (DBP) value at every intercept. There are 7 knots
and the 8th intercept is the endpoint.

• DBP_slope0 - DBP_slope7: Slope of the DBP between every knot, from the starting point to the
first knot, and the last knot to the endpoint.

• DBP_rmse0 - DBP_rmse7: RMSE of the DBP, which is the variation of data points around every
slope.

• FiO2_int0 - FiO2_int7: Fraction of inspired Oxygen (FiO2) value at every intercept. There are 7
knots and the 8th intercept is the endpoint.

• FiO2_slope0 - FiO2_slope7: Slope of the FiO2 between every knot, from the starting point to
the first knot, and the last knot to the endpoint.

• FiO2_rmse0 - FiO2_rmse7: RMSE of the FiO2, which is the variation of data points around every
slope.

• HCO3art_int0 & HCO3art_int4: Bicarbonate value at the intercept and endpoint. There is one
knot at hour 4.

• HCO3art_slope0 & HCO3art_slope4: Slope of the HCO3- before the knot and after the knot.
• HCO3art_rmse0 & HCO3art_rmse4: RMSE of the HCO3-, which is the variation of data points
around every slope.

• HF_int0 - HF_int7: Hart frequency (HF) value at every intercept. There are 7 knots and the 8th
intercept is the endpoint.

• HF_slope0 - HF_slope7: Slope of the HF between every knot, from the starting point to the first
knot, and the last knot to the endpoint.

• HF_rmse0 - HF_rmse7: RMSE of the HF, which is the variation of data points around every
slope.
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• SaO2_int0 & SaO2_int4: Arterial saturation value at the intercept and endpoint. There is one
knot at hour 4.

• SaO2_slope0 & SaO2_slope4: Slope of the SaO2 before the knot and after the knot.
• SaO2_rmse0 & SaO2_rmse4: RMSE of the SaO2, which is the variation of data points around
every slope.

• PCO2_int0 & PCO2_int4: Partial pressure of carbon dioxide value at the intercept and endpoint.
There is one knot at hour 4.

• PCO2_slope0 & PCO2_slope4: Slope of the PCO2 before the knot and after the knot.
• PCO2_rmse0 & PCO2_rmse4: RMSE of the PCO2, which is the variation of data points around
every slope.

• pH_int0 & pH_int4: pH (a measure of acidity) value at the intercept and endpoint. There is one
knot at hour 4.

• pH_slope0 & pH_slope4: Slope of the pH before the knot and after the knot.
• pH_rmse0 & pH_rmse4: RMSE of the pH, which is the variation of data points around every
slope.

• PO2_int0 & PO2_int4: Partial pressure of oxygen value at the intercept and endpoint. There is
one knot at hour 4.

• PO2_slope0 & PO2_slope4: Slope of the PO2 before the knot and after the knot.
• PO2_rmse0 & PO2_rmse4: RMSE of the PO2, which is the variation of data points around every
slope.

• SpO2_int0 - SpO2_int7: Peripheral saturation (SpO2) value at every intercept. There are 7
knots and the 8th intercept is the endpoint.

• SpO2_slope0 - SpO2_slope7: Slope of the SpO2 between every knot, from the starting point to
the first knot, and the last knot to the endpoint.

• SpO2_rmse0- SpO2_rmse7: RMSE of the SpO2, which is the variation of data points around
every slope.

• RR_int0 - RR_int7: Respiratory rate (RR) value at every intercept. There are 7 knots and the
8th intercept is the endpoint.

• RR_slope0 - RR_slope7: Slope of the RR between every knot, from the starting point to the first
knot, and the last knot to the endpoint.

• RR_rmse0 - RR_rmse7: RMSE of the RR, which is the variation of data points around every
slope.

• SBP_int0 - SBP_int7: Systolic blood pressure (SBP) value at every intercept. There are 7 knots
and the 8th intercept is the endpoint.

• SBP_slope0 - SBP_slope7: Slope of the SBP between every knot, from the starting point to the
first knot, and the last knot to the endpoint.

• SBP_rmse0 - SBP_rmse7: RMSE of the SBP, which is the variation of data points around every
slope.

• Temperature_int0 - Temperature_int7: Temperature value at every intercept. There are 7 knots
and the 8th intercept is the endpoint.

• Temperature_slope0 - Temperature_slope7: Slope of the temperature between every knot,
from the starting point to the first knot, and the last knot to the endpoint.

• Urine production_int0 & Urine production_int4: Urine production value at the intercept and
endpoint. There is one knot at hour 4.

• Urine production_slope0 & Urine production_slope4: Slope of the urine production before
the knot and after the knot.

• Urine production_rmse0 & Urine production_rmse4: RMSE of the urine production, which is
the variation of data points around every slope.
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A.12. Number of repeated measurements training set versus vali-
dation set

Figure A.7: List of repeated measurements in the training data set and validation data set

A.13. Learning curves of the best-performing aggregated data set
models

Figure A.8: Learning curves of the best-performing aggregated data set models. Graph A is the learning curve of a Random
Forest (RF) with no feature selection and no scaling. Graph B is the second best-performing model, which is an RF with

SelectKbest feature selection and Power Transformer scaling. Graph C is the learning curve of the third best-performing model,
namely an RF with no feature selection and Robust Scaling.
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A.14. Histogram of data distribution of aggregated data set vs. validation data set

Figure A.9: Histogram showing the fraction of present aggregated data vs. the fraction of present validation data
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A.15. Learning curve of training the best-performing aggregated
data model on the whole available data set

Figure A.10: Learning curve obtained when training the best-performing aggregated data model (combination of RF, no
feature selection, and no scaling) on all available training data.

A.16. Example of LMEM in which variation of measurements can
be seen

Figure A.11: Example LMEM curve of the peripheral oxygen saturation (SpO2) in which variation around the estimated curve
is seen. It can be observed that the curve is minimally influenced by the variance.
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A.17. Notable LMEMcurveswith an explanation for the shown course
of the variable

In Figure A.12 a Heart Frequency (HF) signal is shown. The notable thing about this specific LMEM of
the HF is the significant variation in the first 4 hours of the graph, contrary to the last 4 hours, which
show almost no variation. The patient files explained this phenomenon. In this case, the starting time
of HFNO therapy was 20:00 and around 24:00 this patient was given Zopiclon, which is a strong sleep
medication. It can be assumed that the patient was in deep sleep after 4 hours of HFNO therapy, which
made the HF steadier.

Figure A.12: Heart Frequency of a patient, with the first 4 hours significant variation and the last 4 hours almost no variation.

In Figure A.13 four different blood pressure curves are shown for two patients. Both the Systolic Blood
Pressure (SBP) and Diastolic Blood Pressure (DBP) are given. In the first patient shown in graphs A
and C, the first 2 hours of HFNO therapy do not have measurements for both SBP and DBP. It turned
out that this patient immediately started with HFNO therapy after being admitted to the ICU, which left
a gap of 2 hours before the arterial line (that measures the blood pressure) could be punctured.
For the second patient shown in graphs B and D, the last 6 hours of HFNO therapy do not have
measurements for both SBP and DBP. Here, the reason was that the arterial line was broken and not
repunctured. The blood pressure was measured non-invasively during these hours.

Figure A.13: Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) of two different patients, within both graphs a
period without measurements. A SBP of a patient that has no values in the first 2 hours of HFNO therapy, B SBP of a patient
that has no values in the last 6 hours of HNFO therapy, C DBP of the same patient as A and D DBP of the same patient as B.
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A.18. Learning curves of best-performing joint models

Figure A.14: Learning curves of the best-performing joint models. Graph A is the learning curve of a Random Forest with no
feature selection and Power Transformer scaling. Graph B is the learning curve of the second best-performing model, which is
an RF with no feature selection and Robust Scaling. Graph C shows the learning curve of the third best-performing model,

namely a Gradient Boosting Model with SelectKbest feature selection and Robust Scaling.

A.19. Learning curve of training the best-performing joint model
on the whole available data set

Figure A.15: Learning curve obtained when training the best-performing joint model (combination of RF, no feature selection,
and Power Transformer scaling) on all available training data.
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A.20. Grid search versus randomized search for hyperparameter
tuning

Figure A.16: Image showing the difference in a grid search and b randomized search for hyperparameter tuning. It is shown
that in grid search, the peak of the important parameter is not found, while in randomized search it is found.[32]



B
Literature review

In this Appendix B the literature review that has been conducted before this thesis project has been in-
serted. The literature review is a comprehensive overview of the currently usedmodels to predict intuba-
tion in ICU patients. The literature review resulted in themodel type choice of this thesis project.
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Abstract

Introduction In this systematic review recent literature on predictive models in ICU
patients that predict intubation is reviewed. The possibility to predict intubation will
be of great value to medical personnel in their treatment choice, as it could lead to fewer
unnecessary and fewer emergency intubations.
Methods Pubmed was used to retrieve recent literature concerning machine learn-
ing models that predict intubation. Using a search string Pubmed was systematically
searched for the concerning articles. Numerous in- and exclusion criteria were used to
make a selection of the articles.
Results The Pubmed search resulted in 111 articles, 16 articles were included in the
systematic review. An adjusted Newcastle-Ottawa Quality Assessment Score (NOS) was
used to test the quality of the articles. A forest plot of the Area Under the Curve (AUC)
values of the different articles is given in the result section. The meta-analysis of the
AUCs of the included articles gave a Mean AUC value of 0.810 with a 95% Confidence In-
terval (CI) of (0.687, 0.933). The best scoring models were respectively two feed-forward
Neural Networks, a Random Forest and a Gradient Boosting Model.
Conclusion This systematic review gives a comprehensive overview of the current mod-
els that have been developed to predict intubation among ICU patients. Several options
for a considered model choice can be taken from this review.

Keywords Artificial Intelligence, Prediction, Endotracheal intubation.

1 Introduction

The decision to intubate a patient in the ICU that suf-
fers from a form of respiratory failure continues to be
challenging for hospital personnel. It is thought that
earlier intubation results in shorter hospital stays and
less deterioration of patients, however on the other
hand several articles (citation) are unable to prove
these advantages.[1, 2] Moreover, intubation can be
dangerous for patients and lead to additional dam-
age such as ventilator-induced lung injury (VILI) or
ventilator-associated pneumonia (VAP).[3]

A prediction model based on Machine Learning (ML)
could be useful to predict which patients should be
intubated and which not, based on their clinical pa-
rameters. The most recent literature is reviewed in
this article to give a summary of the existing predic-
tive models and their performance value.
The goal of this review is on the one hand to find out
what kind of models already exist that can predict intu-
bation to use as background information for the even-
tual thesis project and to get an idea of features that
are used in these models. On the other hand, this re-
view is used to get a feeling of the performing value
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of these different ML models, and thereby a feeling for
the range of performing value the model of the the-
sis project should have. The selection criteria of the
articles in this review will depend on these two goals.
For the first goal, it does not matter that much what
kind of patient population is used in the articles, as
the model will probably not differ that much. Except
for the articles in which neonate patients are included,
neonate ventilation medicine differs a lot from adult
ventilation medicine. For the performance value the
patient population does however matter, as it can in-
fluence this value greatly. For instance a patient pop-
ulation with mainly young patients will probably have
a lower rate of intubation and thus a different predic-
tion for intubation compared to a patient population
of mainly elderly.

2 Methods

2.1 Search methods

Pubmed was searched to find articles concerning ma-
chine learning models that predict intubation. The
following search string was entered in Pubmed on the
13th of May 2022.
((((((”Decision Support Systems, Clinical”[Mesh])
OR (”decision-making”[TIAB])) OR (”predic-
tion”[TIAB])) OR (”predict”[TIAB])) OR (”pre-
dicting”[TIAB])) AND (((”Intubation, Intratra-
cheal”[Mesh]) OR (”Intubation”[TIAB])) OR
(”Mechanical ventilator”[TIAB]) OR (”extu-
bation”[TIAB]))) AND (((((”Artificial Intelli-
gence”[Mesh]) OR (”Artificial Intelligence”[TIAB]))
OR (”Artificial Intelligent”[TIAB])) OR (”machine
learning”[MESH])) OR (”machine learning”[TIAB]))

2.2 Study selection

Titles and abstracts were screened to filter out the ar-
ticles that needed screening for full text. Moreover, via
cross-reference additional articles could be included,
that were not found with the Pubmed search string.
The following in- and exclusion criteria were taken into
account while screening the titles and abstracts. The
first criterion was that the article should be about a
predictive model that predicts intubation in at least
one of the outcomes. Secondly, it was required that
the article contained humans only in their population.
Articles with neonates were excluded, and articles with
children and adults were included. Articles that were
about a predictive model that predicts extubation or
intubation failure were excluded, High Flow Nasal Can-
nula (HFNC) or High Flow Nasal Oxygen (HFNO) fail-
ure articles were included as a failure of these treat-
ments often leads to intubation. Moreover, articles
that developed a predictive model to predict favourable
intubation locations such as the ideal depth and pre-
dictions of endotracheal tube locations on X-ray im-

ages were excluded. Articles that build their predictive
model solely on imaging data were also excluded.

2.2.1 Quality Assessment

After title and abstract screening, a selection of the
articles were assessed for their quality. This Qual-
ity Assessment (QA) was performed based on a well-
known QA scale, namely the Newcastle Ottawa Scale
(NOS).[4] There are two versions of the NOS, in this
review the NOS for cohort studies was used. The NOS
was adjusted to fit better with the articles included in
the study. Specifically, the fourth question of the NOS
was removed, namely the question: ”Demonstration
that outcome of interest was not present at the start of
study”. This question would have been answered with
”No” for every included article as all the articles had
an outcome of interest at the beginning of the study.
Next to the removal of this question, two additional
questions were added. These two questions were about
Machine Learning specific topics. Namely, it was ques-
tioned whether the train and test set during training
and validation of the model were kept completely sep-
arate and also which kind of performance measure was
used to interpret results. The adjusted NOS can be
found in Appendix A. In the adjusted NOS a total
of 10 points can be scored, in this review articles that
score below 6 points will be excluded.

2.3 Statistical analysis

For the statistical analysis, the AUC values or AUROC
were compared between all the included articles. The
program OpenMeta[analyst][5] was used to perform a
meta-analysis with all the AUC values. This specific
program uses the size of the population group, AUC
value and standard deviation of the AUC value. Not all
the included articles provided the standard deviation
of the AUC value. The following formula was there-
fore applied to calculate the standard deviation of the
AUC values. This formula could only be implemented
for articles of which the 95% Confidence Intervals (CI)
were known.[6]

SD =
√
N ∗ (UpperCI − LowerCI)/(talpha,df ∗ 2)

In which SD is the standard deviation, N is the num-
ber of subjects, UpperCI is the upper bound of the
CI, LowerCI is the lower bound of the CI and talpha,df
the factor that considers the probability and degrees
of freedom. In this article 0.05 was used as alpha and
N−1 for df .[6] The T.INV.2T function is used in excel
to calculate the talpha,df factor.
The heterogeneity value of the meta-analysis was not
given a specific cut-off value, when a very large het-
erogeneity (e.g more than 90%) occurred a second
meta-analysis would be performed. In this extra meta-
analysis, the most heterogeneous study should be ex-
cluded. Which is the study that lies furthest below the
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mean AUC value.
The weights that will be given to each study in the
meta-analysis will be compared, as a higher weight
means a higher precision it will be analyzed which
study receives the highest weight.

3 Results

3.1 Included literature

After title abstract analysis three additional articles
were found via cross-reference inclusion. Of the 114
articles, 94 were excluded based on their title and
abstract. Reasons for exclusion were different article
types such as reviews, letters to the editor and sym-
posium abstracts. Other reasons for exclusion were,
that the article was not about intubation, the article
was about extubation, the subject of the article was
intubation location, the article’s model was based on
imaging or histological data, the study was in animals
or neonates and no full text was available. For articles
that seemed useful in the title/abstract screening all
full text was retrieved or bought.
20 articles were included to be read full text. Hereafter,
2 articles were excluded. One article did not predict in-
tubation and the other article included neonates as pa-
tients. 18 articles were included in the Quality Assess-
ment Scale, namely the previously mentioned adapted
NOS. After the NOS assessment, two additional arti-
cles were excluded based on a lower score than 6 on the
adjusted NOS. Namely the articles Varzaneh ZA et al.
2022 and Lundon DJ et al 2020.[7, 8] Eventually the
study selection resulted in 16 articles that were taken
into account in this systematic review. In Figure 2 a
flowchart that demonstrates the study selection pro-
cess can be found. In Appendix B the results of the
adjusted NOS are shown, and the answers to every
question from the adjusted NOS are listed per article
that was included in the Quality Assessment.

3.2 Study Characteristics of included
articles

During the full-text assessment of the included arti-
cles, different information parameters were collected.
The study type, population size, best performing algo-
rithm type, top 5 predictive features, applied missing
data strategy, follow-up time, patient/population & in-
tervention & comparison & outcomes (PICO), country
of origin of data, population age, gender and quality
assessment score of every article is listed in a snapshot
of the study characteristics table in Figure 4.

3.2.1 Population characteristics

Almost every article was a cohort study, most of them
a retrospective cohort study. Except for Veermani A
et al. 2022 who performed a retrospective case-control

study [9] and Burdick H et al. 2020 that performed
a multicenter clinical trial validation study [10]. In
all the included studies the intervention group, the
intubated patients, was always smaller than the con-
trol group. Often the intubation population would be
about a third of the control group population. It seems
that is comparable to the true patient population in the
ICU as all the articles from many different countries
have the same distribution. The age of the population
in the included articles is often around 60 years, except
for the articles of Pappy G et al. 2022 [11] and Im D et
al. 2022[12]. These articles included children in their
study. In these articles the ages were around 3 and 9
years.

3.2.2 Machine Learning characteristics

There are roughly two kind of Machine Learning mod-
els. The difference between the two kind lies in the
type of data that is used in the model. It is a pos-
sibility to give a tabular-like data set to a model, in
which each row contains a different patient, every col-
umn is a feature and one of the columns contains the
desired outcome (e.g. yes or no for intubation). Models
that work with this kind of data sets are Logistic Re-
gression model and tree-based models such as Random
Forest and Gradient Boosting models. In Appendix C
more background information about these model types
is given.
In this review the following articles made use of this
kind of model; Veermani A et al 2022 [9], Aljouie AF
et al. 2021 [13], Bolourani S et al. 2021 [14], Camp-
bell TW et al. 2021 [15], Mauer E et al. 2021 [16],
Arvind V et al. 2020 [17], Burdick H et al. 2020 [10],
Siu BMK et al. 2020 [18] and Ren O et al. 2018 [19].
The other possibility is to give a more raw data set to
the model, for example a data set of a heart rate often
contains more values than a data set of a certain labo-
ratory blood value. In these other models, it is possible
to use time series in the model. Models that work with
this kind of data sets are deep learning models such
as Neural Networks. Again in Appendix C more back-
ground information is given for these model types. The
following articles use this kind of model; Boussen S et
al. 2022 [20], Im D et al. 2022 [12], Pappy G et al.
2022 [11], Shashikumar SP et al. 2021 [21], Wanyan
T et al. 2021 [22], Catling FJR et al. 2020 [23] and
Suresh H et al. 2017 [24].
As stated the included articles in this review contain
both of the mentioned model types. Namely, 9 included
articles used tabular-like data in their model and the
other 7 included articles made use of raw data.

3.2.2.1 Applied missing data strategy
The included articles used different strategies to handle
missing data. In some studies, the missing drug or in-
tervention measurements were imputed with zero and
the physiological or lab measurements were propagated
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forward.[12, 11, 22, 17] Other studies did not apply a
missing data strategy or excluded patients with missing
data.[20, 15, 19] Another commonly used technique was
to implement an extra indicator for missing values that
resulted in a column or feature.[16, 10, 23, 24]. More-
over, a K Nearest Neighbour Algorithm was used to
impute missing data by some studies.[9, 14] Aljouie AF
et al. 2021 used random undersampling and random
downsampling to impute missing data [13], Shashiku-
mar SP et al. 2021 used mean imputation [21] and Siu
BMK et al. 2020 used autoencoder [18].

3.2.2.2 Most predictive features
From the top 5 predictive features listed for every study
in the study characteristics table the most common
predictive features were retrieved. This resulted in the
following top 5 predictive features with the most oc-
curred predicted feature at the top.

1. Respiratory Rate (8 times)

2. Oxygen Saturation (SpO2) (5 times)

3. Temperature (4 times)

4. Fraction of inspired Oxygen (FiO2) (3 times)

5. Heart Rate (3 times)

3.3 Meta-analysis

More than half of the included studies did not report
a standard deviation or 95% CI to support their found
AUC. For this reason these studies could not be ana-
lyzed using OpenMeta[analyst][5] the AUC values are
therefore listed in Table 1 below. Veermani A et al.
2022 did report a brier score of 0.05 which says that the
provided AUC is a reliable estimation as a brier score
of 0 means a perfect prediction.[9] Moreover, Aljouie
AF 2021 reported a balanced accuracy of 0.79.[13] P
Campbell TW et al. 2021 did not report an AUC at
all, they gave the precision, recall and F1 scores for 4
different risk groups.[15] In Appendix D the scores are
shown for the intubation sub-research. Suresh H et al.
2017 mentioned that the AUCs had a difference of 0.12
but this was between the developed models and not a
difference or variance of the AUC value itself.[24]

Table 1: Overview of AUC values of the studies that
were not included in the Forest Plot

Study name AUC
Boussen S et al. 2022 [20] 0.94
Pappy G et al. 2022 [11] 0.78
Veermani A et al. 2022 [9] 0.737
Aljouie AF et al. 2021 [13] 0.82
Campbell TW et al. 2021 [15] No AUC
Mauer E et al. 2021 [16] 0.891-0.934
Arvind V et al. 2021 [17] 0.84
Burdick H et al. 2020 [10] 0.866
Suresh H et al. 2017 [24] 0.75

In the following Table 2, the weights that are given to

each study in the meta-analysis are shown per study.
The weights are evenly divided which means that the
studies are evenly divided precision-wise, moreover
larger population size often leads to a heavier weight.
However, in this meta-analysis the relatively small
population size of Im D et al. 2022 [12] is cancelled
out by the good precision of this study.

Table 2: Overview of weights within Forest Plot for
every included article

Study name Weight
Im D et al. 2022 [12] 14.288%
Bolourani S et al. 2021 [14] 14.301%
Shashikumar SP et al. 2021 [21] 14.289%
Wanyan T et al. 2021 [22] 14.302%
Catling FJR et al. 2020 [23] 14.284%
Siu BMK et al. 2020 [18] 14.288%
Ren O et al. 2018 [19] 14.248%

An image of the Forest Plot (FP) is shown in Fig-
ure 3. In this FP it can be seen that the mean AUC
value for all the included studies in the meta-analysis
is an AUC of 0.810 with a 95% CI of (0.687, 0.933).
Also shown is that the studies Shashikumar SP et al.
2021 [21], Catling FJR et al. 2020 [23], Siu BMK et
al. 2020 [18] and Ren O et al. 2018 [19] have a higher
AUC value than the mean AUC value. Moreover, their
95% CI bands do not cross the mean AUC value line
which means that their AUC values are significantly
higher than the mean AUC value. Im D et al. 2022
have their square exactly on the mean AUC value as
their AUC value is also 0.810.[12] Bolourani S et al.
2021 [14] and Wanyan T et al. 2021 [22] score signifi-
cantly lower than the mean AUC value.
The significant high heterogeneity of this FP
I2=99.97% means that the pooled effect estimate is
not shown as the studies are too heterogeneous.[25, 26]
The exclusion of the two significantly lower scoring
studies Bolourani S et al. and Wanyan T et al. re-
sulted in a heterogeneity of I2=97.62% which is still
very high. Which is actually expected as predictive
studies usually differ in design and execution, therefore
variation between their results is unlikely to occur only
by chance. The chosen model to perform the meta-
analysis was therefore a Continuous Random-Effects
Model.[27]

4 Discussion

This systematic review has resulted in a comprehensive
overview of the current articles about models that have
been developed to predict intubation in ICU patients.
Specifically, the meta-analysis has shown that the fol-
lowing 4 articles developed the models with the best
AUC values. Namely, Shashikumar SP et al. who de-
veloped a feed-forward Neural Network with an AUC
of 0.886 (0.876-0.896) [21], Catling FJR et al. also de-
veloped a feed-forward Neural Network with an AUC
value of 0.896 (0.885-0.907) [23], Siu BMK et al. de-
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veloped a Random Forest model with an AUC value of
0.860 (0.850-0.870) [18] and Ren O et al. developed a
Gradient Boosting Model with an AUC value of 0.890
(0.870-0.910) [19].
From this analysis it seems that Neural Network mod-
els perform best in predicting intubation, these are
the models that make use of raw data to give a pre-
diction. In the following thesis project, these types of
models are not preferred because the clinical reason-
ing and explainability toward medical personnel are
difficult with Neural Networks.[28] The models such
as Random Forest and Gradient Boosting Model are
more easily understood and therefore more likely to be
used by medical personnel. Moreover, the AUC values
of the studies that use Random Forest and Gradient
Boosting Model do not differ that much.
It is therefore decided that in the thesis project the
type of models that use a tabular-like data set with an
outcome column will be developed first.

The results of this systematic review matter because
it gives an overview of the currently available models
and the corresponding performance value. This will be
of great value in the development of the model in the
thesis project. Eventually, it will be very valuable for
the Maasstad Hospital to implement a model that can
predict whether a patient needs to be intubated or not.
With a predicted score the medical personnel can make
an advised decision, which will result in fewer unnec-
essary intubations and fewer unexpected/unplanned
intubations. This will result in improved patient care.

Limitations

Some of the included studies did not develop a model
to predict intubation but developed a model that pre-
dicts HFNC or HFNO therapy failure. As the failure
of this therapy often ultimately leads to intubation (or
death) these studies were still considered in the review.
Specifically, Im D et al. predicted Bilevel Positive Air-
way Pressure (BIPAP) failure and Pappy G et al. pre-
dicted HFNC failure. As Im D et al. was included in
the meta-analysis this could have introduced a form of
bias as the outcomes were not completely the same.
However, there was still data available on how many of
these study participants were intubated.
Many studies did not report a CI or standard devia-
tion and therefore could not be included in the meta-
analysis, some of the AUC values of these studies were
quite high when compared to the studies that were in-
cluded in the meta-analysis. As 5 of the 9 studies that
were not included in the meta-analysis scored above
the obtained mean AUC value the inclusion of these

articles could have given a different mean AUC value.
Moreover, more included studies and data would have
resulted in a more variant database and therefore a
more reliable result.
This systematic review and its meta-analysis were per-
formed by one author, this may have resulted in bias
as only one author performed the inclusion process and
Quality Assessment of the included studies.

Future research

For future research, it would be interesting to perform
a systematic review in which the method for defining
when intubation has taken place is compared. The
studies included in this study give different methods for
determining when a patient is intubated. Some studies
do not describe how they determined this. A technique
that is commonly used is to use the FiO2 values. A sud-
den elevation in FiO2 could indicate that a patient has
been intubated. Other studies make use of the Posi-
tive End Expiratory Pressure (PEEP) value that can
be entered into a mechanical ventilator. In this future
research, it could be investigated which method should
be used to determine how long a patient stays intu-
bated and if the patient is extubated in the meantime.

5 Conclusion

This systematic review gives a comprehensive overview
of the current models that have been developed to pre-
dict intubation among ICU patients. Several options
for different model types are researched and their per-
formance value can easily be compared. To make sure
that an eventual model is explainable and clinically
valuable it should be considered to use a tabular-like
database and a model that uses this kind of data such
as a Logistic Regression, Random Forest or other tree-
based models such as Gradient Boosting Models.
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Figure 1: Overview of the study characteristics shown per study. List of abbreviations in alphabetical order: ACDF= Anterior Cervical Discectomy and Fusion,
ADYSYN= Adaptive Synthetic, BFM= Mean value of Breathing Frequency, BIPAP= Bilevel Positive Airway Pressure, BUN= Blood Urea Nitrogen, CRP=
C-reactive protein, CXR= chest X-ray, ESI= Emergency Severity Index, FiO2= Fraction of inspired Oxygen, GCS= Glasgow Coma Scale, GU= Genito-Urinary,
HCO3-= Bicarbonate, LDH= Lactate dehydrogenase, MV= Mechanical Ventilation, NOS= New Ottawa Scale, PaCO2= Partial pressure of Carbon Dioxide,
PaO2= Partial pressure of Oxygen, PCR= Polymerase Chain Reaction, SMOTE= Synthetic Minority Over-Sampling Technique, SpO2-90= Percentage of time
under 90% of oxygen saturation, SpO2M= Mean value of oxygen saturation, SpO2min= Minimum value of oxygen saturation, WBC= White Blood Cell
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Figure 2: Flowchart demonstrating the study selection process.
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Figure 3: Forest plot showing the AUCs of all the included articles that reported an AUC and also a supporting
standard deviation or 95% CI
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Appendices

A Adjusted NOS

On the following page the adjusted NOS[4] is given.
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NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE 

COHORT STUDIES – ADJUSTED VERSION 
 
Note: A study can be awarded a maximum of one star for each numbered item within the 

Selection, Outcome and Machine learning specific categories. A maximum of two stars can 
be given for Comparability 

 

Selection 
1) Representativeness of the exposed cohort 

a) truly representative of the average patients in the ICU community * 

b) somewhat representative of the average patients in the ICU community * 

c) selected group of users eg nurses, volunteers 

d) no description of the derivation of the cohort 

 
2) Selection of the non exposed cohort 

a) drawn from the same community as the exposed cohort * 

b) drawn from a different source 

c) no description of the derivation of the non exposed cohort 
 

3) Ascertainment of exposure 

a) secure record (eg surgical records) * 

b) structured interview * 

c) written self report 

d) no description 
 

Comparability 
1) Comparability of cohorts on the basis of the design or analysis 

a) study controls for age and gender * 

b) study controls for any additional factor * (This criteria could be modified to indicate 
specific control for a second important factor.) e.g. comorbidities 

 

Outcome 

1) Assessment of outcome 

a) independent blind assessment * 

b) record linkage * 

c) self report 

d) no description 
 

2) Was follow-up long enough for outcomes to occur 

a) yes (select an adequate follow up period for outcome of interest) * 

b) no 
 

3) Adequacy of follow up of cohorts 

a) complete follow up - all subjects accounted for * 

b) subjects lost to follow up unlikely to introduce bias - number lost <= 20 % , or description 

suggested no different from those followed *  

c) follow up rate less than 80% and no description of those lost 

d) no statement 



 

Machine Learning specific 
1) Seperation of train and test set in training and validation of the model 

a) yes * 
b) no 
c) not stated 

 
2) Performance measurement scale or statistical measure used to interpret results 

a) AUC or AUROC * 

b) Accuracy, predictive positive value or any other  
 

 
The maximum score of this adjusted NOS is 10 stars. 
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B Results adjusted NOS

Figure 4: Results of the adjusted NOS for the included studies, the adjusted NOS has a maximum score of 10.
1Study is in children no control for gender and comorbities
2Not stated how long follow-up was
3MV and NIV added together as MV group but also separately documented
4Used 1 hospital as test set in every fold, but kept test and training separate within fold
5Used PPV, sensitivity and F1 score instead
6Groups were not compared, no comorbidities
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C Background information on Machine Learning Model types

In this section more background information is given for the different model types.[29] In the first category of
models data is given to the model in a table with on every row a different patient or measurement point, every
column a different measurement type and one column that contains the desired outcome.

• Logistic Regression models
Other than in a linear regression model, a Logistic Regression Model (LRM) gives a true or false as
an outcome. An S-shaped curve classifies which samples are true and which are false. The cut-off is
usually made at 50%. In a model that predicts intubation true would be intubated and false would be
not-intubated. Both continuous and discrete data can be entered to classify samples. How the S-shaped
curve is fit through the samples is determined with maximum likelyhood. The LRM assumes that the
relationship between the predictor variable and the predicted outcome is linear. In case of repeated
measures, which is the case in most medical data sets a mixed effects logistic regression model should be
implemented. In Figure 5 an info-graphic of the LRM is shown.

Figure 5: Info-graphic of the Logistic Regression Model

• Random Forest
A Random Forest (RF) is a ML model that consists out of a ”forest” of decision trees. Decision trees
alone are often trained to good on the existing data, which makes them inflexible to use on other data
sets. Because an RF includes multiple decision trees it is more flexible and accurate on a different data
set. When modeling an RF, the first step that is taken is to make a bootstrapped data set. This means
that from the existing data set patients are selected randomly, this process will lead to patients randomly
not being selected. These out-of-bag samples will become the validation set. With the bootstrapped data
set random decision trees are formed, together the decision trees become the RF. The accuracy of the RF
is then tested using the validation set. A new RF is then build with different variables/features used per
step. The RF model with the best accuracy and a determined number of variables per step is chosen. In
Figure 6 an info-graphic of the RF is shown.

Figure 6: Info-graphic of the Random Forest
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• Gradient Boosting Model
A Gradient Boosting model (GBM) is a ML model that also consist out of multiple decision trees. It builds
fixed sized trees based on the previous tree’s errors. It is started with a leaf in which the log(odds) is
imputed, in this case the log(odds) would be log(intubated/not intubated). Residuals (difference between
observed and predicted values) are then used to build a new tree. This new tree than predicts the new
residuals. With each tree the residuals become larger or smaller making the predictions more accurate.
New trees are made till the maximum specified number of trees is reached or if adding a tree does not
significantly reduce the size of residuals.[30] In Figure 7 an info-graphic of the GBM is shown.

Figure 7: Info-graphic of the Gradient Boosting Model

The second category contains models that work with a more raw data set, in which it is possible to feed time
series to the model. These models are also called deep learning models.

• Neural Networks
A Neural Network (NN) allows multiple inputs and outputs. Between the input and outputs are hidden
layers that contain nodes that connect all the layers with the input and next layer or output. The hidden
layers contain activation functions that alter the input to form a graph. It is difficult to understand what
happens in the hidden layers. In Figure 8 an info-graphic of the NN is shown.

Figure 8: Caption
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D Result section of Campbell TW et al. 2021 [15]

Figure 9: Snapshot from the article of Campbell TW et al. 2021 including the results for the intubation sub-
research.[15]
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