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Recent research has seen several forecasting methods being applied for heat load forecasting of district
heating networks. This paper presents two methods that gain significant improvements compared to the
previous works. First, an automated way of handling non-linear dependencies in linear models is pre-
sented. In this context, the paper implements a new method for feature selection based on [1], resulting
in computationally efficient models with higher accuracies. The three main models used here are linear,

ridge, and lasso regression. In the second approach, a deep learning method is presented. Although
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computationally more intensive, the deep learning model provides higher accuracy than the linear
models with automated feature selection. Finally, we compare and contrast the proposed methods with
earlier work for day-ahead forecasting of heat load in two different district heating networks.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The digitization effort in modern district heating systems facil-
itates the collection of large amounts of online data. This data can
be used to implement a range of refined analysis methods in gen-
eral and model generation techniques in specific. Such models can,
for example, be used for forecasting thermal demand in a district
heating system. The ability to forecast demand is a vital component
of most optimization approaches for the operation of the network,
and this especially applies to the more data-driven and automated
approaches used in modern 4th generation networks. The primary
difference between 3rd and 4th generation networks are lower
system temperatures, but there is also a trend in transforming more
clearly from reactive control to proactive control. Being proactive
means planning ahead, and to plan ahead successfully a forecast of
the system in question is vital. Another aspect of this is that 4th
generation networks, at least in part, tend to decrease the
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operational quality of service margins compared to 3rd generation
networks, simply due to the fact that lower system temperatures
mean network temperatures closer to the delivered operational
temperatures within customer systems. Lower margins of error
make it more important for the control process to know what is
going to happen in the near future. Finally, 4th generation district
heating is associated with dynamic pricing schemes, for example
based on marginal costs in production and distribution. This is yet
another aspect that increases the need for accurate demand fore-
casts. In general, the more complex operational environment of a
4th generation network, possibly including distributed generation
and prosumers, is a key driver in the development of more
advanced forecasting technologies.

The research in this paper builds on top of recent work by au-
thors [2,3], which proposed machine learning based approaches to
solve operational day-ahead heat demand forecasting in district
heating systems, and in Ref. [4], which shows that support vector
regressor (SVR) is the best model for forecasting the heat load of
district heating. In Ref. [2], a generic ensemble method using three
different forecasting algorithms based on extra-trees and extreme
learning machines was presented. For the proposed case study, the
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best mean absolute percentage error (MAPE) was shown to be 11.7%
for the winter months. In Ref. [3], an expert advice system was
presented based on four different forecasters: linear regression,
extremely randomized trees, feed-forward neural network and
SVR. Here, with the same case study as that of 2], the best error was
shown to be 11.5%, albeit for an extended test period including the
autumn months. In more recent work [5], a customized recursive
least square forecaster was used for forecasting the short term
greenhouse heat load in a district heating system; the model was
shown to be a simple, yet reliable forecaster. Polynomial regression
models were shown to supplement artificial neural networks in
Ref. [6]. In Ref. [4], SVR, regression trees, feed forwards neural
network (FFNN) and multiple linear regression (MLR) were again
used for forecasting the day-ahead heat load of smart district
heating systems; the comparison showed SVR to be the best per-
forming method.

While the research covered so far in literature has added
tremendous value, there are some gaps in it that we address. Firstly,
all the methods proposed above require lengthy, expensive and
manual feature selection. Particularly, to obtain the optimal set of
explanatory variables, the models need to be retrained multiple
times, and human intervention is usually needed to analyze the
results. Secondly, the rising popularity of deep learning and its
success in several energy-related tasks [7—13], shows potential for
its application even in forecasting the heat-load of district heat
networks. With that as motivation, the goal of this paper is to
investigate new techniques that consider the two afore mentioned
gaps. We first investigate the usage of automatic feature selection
techniques and their impact on the accuracy of heat load fore-
casting. We compare the results of the new methods with those in
Refs. [2—4,6], and show that these methods not only eliminate the
lengthy feature selection process, but also lead to better accuracies.
Additionally, we investigate the usage of deep learning as a viable
technique to forecast heat load of district heat networks. In
particular, we consider a forward neural network with two hidden
layers that uses state-of-the-art deep learning techniques, e.g.,
ReLU, dropout, training using stochastic gradient descent, and we
compare its accuracy with a range of other models. Based on the
obtained results, we show how the proposed deep learning tech-
nique is able to generalize better and obtain more accurate
forecasts.

1.1. Contributions

In the first approach, we show how regressors based on linear
models can provide improved accuracies when used with appro-
priately chosen features. In this context we explore a family of three
linear models: linear, ridge, and lasso regression. All three models
establish a linear dependence of the target variable on the
explanatory variables. The main advantage of using these models is
their simplicity: they are easy to formulate and the computational
complexity of training these models is very low, which means that
they can be retrained for drifts in parameters very swiftly. However,
when used naively, linear regressors are fairly limiting as many
dependencies that need to be captured can be non-linear. This has
been demonstrated several times, where forecasters that capture
complex non-linear dependencies have proven to be superior to
linear regression, for e.g., see Refs. [3,14]. In this paper we propose
an alternative over the naive approach. First, we encode the non-
linearities explicitly as additional features in the training process.
The difficulty here is that in most scenarios, the variables on which
there are non linear dependencies or the nature of such non-
linearities is not known. To circumvent this problem, we build a
super set of features involving many degrees of non-linearities and
the valid non-linearities are chosen through a special feature

selection process. While for the simple linear regressor we propose
an explicit automatic feature selection algorithm, the ridge and
lasso regressors perform embedded feature selection through
regularization. The parameter influencing the regularization term
in the ridge and lasso regressors is chosen through hyperparameter
optimization.

In the second approach, we use a forecaster based on deep
learning. This choice was motivated by the many advances made in
the field of neural nets (more recently referred to as deep learning).
These advances started with the overcoming of challenges inherent
to neural nets such as computation cost of training large models;
see Ref. [15], where efficient training of deep belief networks was
done with a greedy layer-wise pre-training. Subsequent improve-
ments lead to efficient training of networks with multiple hidden
layers, giving better results that were applicable to wider domains.
Studying these new architectures and methodologies was then
termed deep learning, where the term deep referred to the ability
to train a neural network model whose depth was not limited to a
single hidden layer [16]. Although deep learning models were
originally developed for computer science applications such as
image recognition [17], speech recognition [18], and machine
translation [19], their success in energy market applications
became widespread in the last two years [7—13]. Forecasting ac-
curacies vastly improved, especially in wind power forecasting
[10,12] and electricity markets [1,13]. In particular, within the
context of electricity prices, [13] showed that deep learning models
outperform a large benchmark of 98 prediction models. Motivated
by these improvements, we extend the deep learning research to
the field of heat load forecasting.

The paper is structured as follows. Section 2 presents the pre-
liminary concepts used throughout the paper. In particular, Section
2.2 and Section 2.3, present the details of the novel techniques used
for hyperparameter tuning and feature selection. In Section 3, the
basic theory behind the forecasters used in this paper is presented.
Section 4 gives an overview of the case studies considered in this
work. Here, in addition to the heat network introduced in
Refs. [2,3], the proposed methods are also tested on an additional
heat network. Finally, in Section 5, the results of the forecasting
models are presented for the two test cases.

2. Preliminaries

In this section, the theoretical concepts and algorithms that are
used and adapted in the research are introduced.

2.1. Baseline forecasters

In order to evaluate the models that we propose in the following
sections, we consider two of the most successful machine learning
forecasting methods as baseline algorithms. We use the SVR model
considered in Refs. [3,4] as the first baseline model. For the second
baseline model, we use the extreme gradient boosting (XGBoost)
algorithm [20], a forecaster which is similar to the extreme tree
regressors model used in Ref. [3] and is also based on an ensemble
of trees. However, in contrast with the latter, it uses boosting in
place of bagging in order to build the ensemble. We use XGBoost
instead of extreme tree regressors as it is known to obtain more
accurate results in practice [21,22].

In addition, as introduced in a later section, we also consider the
polynomial regression method of [6]. However, instead of using the
polyfit function of Matlab, we proposed a modification to perform
automatic feature selection.



G. Suryanarayana et al. / Energy 157 (2018) 141149 143

2.2. Hyperparameter optimization

In general, any machine learning model has some hyper-
parameters (set before training the model) determining its per-
formance. Needless to say, to obtain optimal results from a model,
these hyperparameter have to be chosen appropriately. The most
widely used techniques to perform hyperparameter optimization in
the machine learning community are Bayesian optimization algo-
rithms [23], a family of algorithms for optimizing black box func-
tions. For hyperparameter optimization, the black box functions of
interest are the performance indicators of forecasters expressed as
functions of hyperparameters. Bayesian optimization algorithms
require a much lower number of function evaluations than other
alternatives such as evolutionary optimization techniques or grid
search. With every sample of the black box function, these algo-
rithms update the prior belief used for sampling the next value.
This way, the number of samples drawn can be reduced leading to
efficient evaluation of the optimum value.

One such technique Bayesian optimization is the Tree-Structured
Parzen Estimator (TPE) [24], which is a sequential model-based
optimization (SMBO) algorithm [25]. A SMBO method iteratively
approximates the black box function (with every sample) and finds
the local optimum of the resulting approximations. At the ith
iteration, the black box function is first evaluated at a point 6; in the
parameter space. Next an approximation .7 ; is obtained by fitting
all the function evaluations from sample points so far. The next
sampling point ;.1 is then obtained by optimizing for .7 ;. This
process is continued till the maximum number of iterations is
reached, and the best sample so far is returned.

An illustration of the sequential model-based optimization
method is given in Algorithm 1. In this paper, we extensively use
this algorithm for tuning of hyperparameters of all the models.

Algorithm 1
Hyperparameter Optimization using sequential model-based optimization.

1: procedure hyperopt (T,0o)

2 it

3: P—@

4: fori=1,...,Tdo

5: pi < TrainModel(6;)

6: 7 —20{(pi,0)}

7: if i < T then

8: 7 i(0) —EstimateModel(.%)
9: 0; —argmaxy .7 ;(0)

10: 0" — BestHyperparameters(.%)
11: return 0"

2.3. Feature selection

As mentioned earlier, feature selection plays an important role
in model estimation. Feature selection algorithms can mainly be
classified into three categories: filter, wrapper, and embedded
methods [26]. Each of these families come with their advantages
and drawbacks. While wrapper methods look for the best set of
features among the sample space of all the features, embedded
methods such as regularization methods perform implicit feature
selection during the process of estimating the model. For the sake
of completion we mention that filter methods use certain statistical
measures to select important features. These methods do not es-
timate the models during feature selection, leading to fast
computation times, but with feature selections that are not entirely
reliable due to the absence of accuracy performance indicators. In
comparison with embedded methods, wrapper methods are often
computationally more intensive (though leading to more objective

feature selection) as the sample space of the feature set is often very
large. Due to their focus on the underlying model and complex
dependence on explanatory variables, the methods we propose will
be based on wrapper and embedded feature selections algorithms.
To reduce the computation time of wrapper methods but still
benefit from their higher accuracy, [1] proposed a wrapper method
that reduced the number of iterations required when performing
the search across the feature space. In particular, instead of per-
forming a regular grid search, it considered the TPE method, which
was described in Section 2.2, to infer the relations between selected
features and model performance, and then use these inferred re-
lations to guide the search. In detail, the feature selection methods
first model the features as two types of model hyperparameters:

1. Inclusion-exclusion features which can be modeled with a bi-
nary hyperparameter. These are the most common type of fea-
tures and can be used to decide whether to use a specific input.

2. Features that represent some length. An example could be how
many days of past grid load we need to consider in order to
forecast the day-ahead grid load. This type of feature is modeled
with an integer hyperparameter.

Then, after performing an optimization using the algorithm
described in Section 2.2, the procedure fine tunes the feature se-
lection using functional ANOVA [27].

It is important to note that this algorithm is really beneficial
when the feature space is big. Particularly, as it infers the relations
between performance and features to conduct the search for the
best set of features, we can observe its advantages when per-
forming a full search across the feature space is infeasible.

2.4. Performance metric

A performance metric is needed to evaluate and compare the
accuracy of the forecasters. In this paper, we use the mean absolute
percentage error (MAPE):

100 X [yg — il
MAPE = — " 2k Jkl (1)
N ,; Vil

where [yq,...,yn]" are the observed values and [y,...,J5]" the
forecasted values.

2.5. Diebold-Mariano test

While the MAPE is a good metric to provide a first assessment,
we can not infer from it a proper comparison between forecasters.
In particular, while based on MAPE a forecater might have a better
accuracy, that result might be the product of the stochasticity of the
data or the model estimation. Therefore, to assert whether a certain
forecaster is statistically significantly better than others, we need to
use statistical testing. In our application, we test the statistical
significance of the difference in the accuracies obtained by two
forecasters using the Diebold-Mariano (DM) Test, see Ref. [28].

Let [y1,...,yn] | be the time series vector to be forecasted, and
m,...,yN]g and [y, ...,yN]g be the forecasted values from two
models F; and F» respectively. We obtain the corresponding errors
in forecasting [ey, ..., ey]F, and [y, ..., ey, and define the following
loss differential function:

diF: L(eﬁl) _ L<8£z>, (2)

where L is a loss function that has to be chosen so that d',j BT



144 G. Suryanarayana et al. / Energy 157 (2018) 141—149

covariance stationary. We use a test called the one-sided test, very
similar to the widely used two-sided test. Here, the null hypothesis
Hp is that the forecaster F; has the same accuracy as that of F, and
the alternate hypothesis is that the accuracy of F; is better than that
of Fy:

Ho : [E[d;:"FZ] >0,

H - [E[d;:“FZ] <0, @

where E denotes the expected value. For the test to be reliable, the
loss differential needs to be covariance stationary, and a loss
function of the following form is typically used to ensure that:

L(ef) =

where pe{1,2}.

e P, (4)

K

3. Forecasters

This section presents the important concepts behind each of the
forecasting models used: linear regression, lasso regression and
ridge regression for the first approach and deep neural network for
the second.

3.1. Polynomial linear regression

As the name suggests the method involves establishing a linear
relationship between the target variable yeR"™ and the explanatory
variables, that are columned in a feature matrix X R™*"", Here, n is
the number of observations and m is the number of explanatory
variables. The model looks as follows

y=X0+c¢, (5)

where 6, the parameters of the model are to be determined and ¢
denotes the error term (unobserved). In linear regression (ordinary
least squares), the parameters are estimated by maximizing the
logarithm of the likelihood #(6) = p(y|f) assuming that the errors ¢
are Gaussian, i.e.,:

O = arg min| X0 -3

6)
1 (
= (XTX) XTy,
where 5 is used to denote the 2, norm. In polynomial regres-
sion, any non-linear dependence on explanatory variables can be
encoded explicitly. For instance, a polynomial dependence of the
form

Y = 01% + %% + O4x%

on some explanatory variable ¥ can be modeled by having three
different features in the feature matrix, one for each degree.

While this method is similar to the polynomial regression
method proposed in Ref. [6], it has a key distinction: to handle the
complexity of the large input feature space, the method is modified
to consider an automatic feature selection method. This modifica-
tion is briefly motivated in the paragraph below and explained in
more detail in the next sections.

One of the main assumptions made in this method of finding the
parameters is that the feature matrix has full rank, i.e., that the
explanatory variables are linearly independent of one-another.
However, if this linear independence does not hold due to

correlated features, the parameters obtained by this model are
prone to instabilities. When considering a large number of features,
there might arise co-linearities between some of the variables, and
this could lead to higher errors in the estimator [29]. Hence, we
need a robust feature selection procedure to be in place. For the
least-squares estimator, we use the method described in Section
2.3.

3.2. Ridge regressor

Ridge regression, proposed in Ref. [29] gives a method to
circumvent the problem faced by the ordinary least squares esti-
mator in the presence of co-linear features. The model used here is
the same as that given in (5), but in addition to the regular
assumption on ¢, the model also considers a prior Gaussian distri-
bution p(f) on the parameters § and maximizes the logarithm of the
likelihood () = p(f|y) using Bayes rules, i.e.,:

O = arg min(HXO fyﬁu + a\|0|\§)
o . (7)
- (xTx + a1> XTy.

This leads to a biased but stable estimator, even when the matrix
X™X becomes ill-conditioned due to the presence of correlated
features. The additional term in the minimization expression,
which models the prior distribution p(f), acts in practice as an 2,
regularization term that penalizes the magnitude of the parameter
estimators and that leads to an embedded feature selection. Note
that the factor « plays an important role. While very low values of «
could give results similar to that of linear regression, very high
values, can suppress the parameters more than necessary. It thus
needs to be chosen carefully, and will be subject to hyperparameter
tuning.

3.3. Lasso regressor

This regressor is an alternative to the ridge regressor and also
implicitly performs feature selection through the regularization of
the parameters. However, in contrast to the ridge regressor, the
prior distribution p(#) is assumed to be Laplacian, which in turns
leads to a regularization factor based on the 2;-norm [30], i.e. the
parameters are estimated via:

Busg = arg min (X0 —y1[3 -+ a6l ). (8)

Note that the 2; norm can push the values of some parameters
closer to zero compared to the 2, norm, leading to feature selection
in a stricter sense. The value of «a plays an important role here as
well and needs to tuned appropriately.

3.4. Deep neural net (DNN)

Several architectures of DNN's such as the standard, convoluted
or recurrent networks have been widely researched for forecasting
applications; for this work, we consider a standard DNN, i.e., the
extension of a multilayer perceptron to multiple hidden layers.

A general DNN with two hidden layers can be represented as in
Fig. 1. In this representation, X = [X1, ..., X;] | €R" is the input of the
network, Y = [y1,¥2,...,¥m] ' €R™ the output, ny is the number of
neurons of the kth hidden layer, and z; = [z, ..., 2y, ] T is the state
in the kth hidden layer,
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Fig. 1. Example of a DNN.

3.5. Model variants

For the linear models, two variants of each of the regressors are
implemented. In the first version, we built a single model for all
hours of the day (for day-ahead forecasting). In the second version,
we considered a separate model for every hour. These models are
denoted by linear-24, ridge-24 and lasso-24. The main advantage of
building a model per hour is that the available historical data can be
used more efficiently. The earlier hours can depend on more recent
lags than the hours later in the forecasting horizon. The same holds
even for temperature forecasts. The earlier hours can depend even
on future forecasts, compared to the later hours. This has the po-
tential of reducing the errors in forecasting for the earlier hours
substantially, bringing the overall error down.

4. Two case studies

The two heat networks used as case studies for this work are
explained in more detail in this section.

4.1. Rottne district heating network

The district heating network in Rottne, in the south of Sweden,
was used as one of two use cases for this study. The district heating
system (DHS) in Rottne is owned by Vaxjo Energi, and is operated as
a stand-alone smaller district heating system. The network itself is
a traditional 3rd generation DHS, with a central heat generation
plant with a set of boilers and is connected to a surrounding piping
network with a mixed demand consisting of residential buildings,
single-family houses, schools and commercial buildings. The heat
losses in the network vary roughly between 10 and 20% of the total
demand, depending on seasonal variations. The total consumer
base consists of about 200 buildings, with a majority of 150 of those
being single-family dwellings. The rest are a combination of offices,
schools and multi-family residential buildings.

The distribution network consists of roughly ten 300 m of piping
with a total volume of about 64 m>3. The production site was built
and made operational in 1998. Originally the production set-up
consisted of a 1.5MW dry wood burner in combination with a
3 MW fossil oil burner. Later, there was a need to use more moist
wood chip fuels, and in 2004 the wood burner was refurbished to
facilitate this. However, this lowered the heat capacity to 1.2 MW. In
connection with this, a second wood chip burner with a capacity of
1.5 MW was installed. Furthermore, in 2012, the oil burner was
retrofitted to use rapeseed oil based biodiesel instead of fossil oil.
The combination of the two wood chip boilers satisfy most of the
demand, and the biodiesel is primarily used to cover peak load and

prolonged cold streaks.

Biodiesel produced from rapeseed oil is considerably more
environmentally friendly than fossil oil. However, it is still much
more expensive than the wood chips used for the base load, and
should therefore be avoided if at all possible. The production site is
controlled based on the relation between primary supply temper-
ature and outdoor temperature. Basically, the colder it gets, the
warmer the supply temperature needs to be. The pressure is
maintained by automatically controlled pumps to ensure the
desired differential pressure. The wood chip boilers will try to
maintain the required supply temperature, but if the demand is
high they will not be enough and this will cause a drop in supply
temperature. This drop will automatically trigger the biodiesel
boiler to start generating heat supply. The combined heat capacity
of the two wood chip boilers is normally 2.7 MW (1.2 + 1.5), but
since 2017 the larger boiler has been refitted to accept lower quality
wood chips. This has lowered the heat capacity slightly, so now the
total peak cap is about 2.5 MW.

The price difference between wood chips and biodiesel is sub-
stantial. To optimize the operational behavior of the production
units, and to avoid using biodiesel whenever possible, a demand
side management system (DSM) is used in the DHS. The efficiency
of such a system is heavily linked to the ability to forecast heat
demand, which is why this study is relevant to the DHS of Rottne.

4.2. Karlshamn district heating network

The district heating network in Karlshamn is somewhat bigger
than the Rottne network, although it is relatively geographically
close. This makes it an interesting alternative as reference case. The
Karlshamn DHS had about 70 GWh in annual delivery when it was
made operational more than 25 years ago, and currently it has
grown to about 200 GWh in annual heat delivery. About 95% of heat
delivered is generated through excess heat from a nearby industry,
and the rest is covered by a combination of bio-oil, fossil oil and
natural gas. The network normally peaks at about 50—60 MW
during a normal winter.

The distribution network is connected to a nearby paper mass
factory, which is the source of the excess heat. This heat is then
distributed to a nearby village as well as to the central city of
Karlshamn. In Karlshamn the heat is further distributed to the city
center as well as further away to two other smaller urban areas. The
total distribution grid is about 250000 m and supplies about 1500
customers. Some 1000 of those are single family dwellings, while
the rest are office buildings, schools, multi-residential buildings
and public and commercial buildings of different kinds.

Similar to the Rottne DHS, the Karlshamn DHS also uses DSM's
to avoid or reduce peak loads. In Karlshamn the DSM system covers
roughly the hundred largest buildings in the DHS, and it has the
capacity to reduce the heat demand of about 10—15% in total, and
about 20—25% in certain parts of the network. As in Rottne, the
DSM system is dependent on robust heat demand forecasting.

5. Implementation

All the code is implemented in Python. We implement all the
models using the scikit package of python. For the GBT model, we
employ the XGBoost [20] python library. For the DNN, we use the
Keras [31] deep learning library together with the Theano [32] li-
brary for mathematical modeling. For hyperparameter tuning, we
use the hyperopt [33] package.

5.1. Hyperparameter optimization

The hyperparameters that are considered and optimized for
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each of the models are listed in Table 1.

5.2. Feature selection

For the DNN, SVR and GBT, the following possible input features
are considered: hour of the day, day of the week, last 7 days of heat
load and temperature forecasts, and the next 24 h of temperature
forecast. To select the optimal subset of features for each dataset,
the method described in Section 2.3 is used.

For the linear model variants with the same model for all hours
of the day, the following super set of features is used: hour of the
day, day of the week, day of the year, and heat load and temperature
forecast starting from the previous day up to one week in the past,
and the next 24 h of temperature forecast. The reason for using the
past information this way is that, while predicting the 24th hour
from now, the model has past information only till 24 h in the past.
This limitation is overcome in hourly linear models, where the
models for earlier hours can depend on more recent heat load
values, compared to the models of later hours. Polynomial depen-
dence of up to 4th degree is added to each of the heat load and
temperature forecast features. While for the linear regression
model, the method in Section 2.3 is then used to find the optimal
subset of features, the ridge and lasso regressors make use of
embedded feature selection from regularization.

5.3. DM test for heat load forecasting

We now discuss the use of the DM tests to asses the statistical
significance of the differences in forecasting accuracy. The
following loss differential function is used:

Fi
%

: (9)

Fif _
dk

Fy
_ ‘gk

We consider a separate time series for each hour of the forecast
horizon and perform the DM test independently for each of these
series, as in Refs. [1,13,34,35]. In addition, we also perform a DM test
considering the whole loss differential and serial correlation. There
are several advantages of doing this. Firstly, the errors within a day
are very likely to be correlated, as the same historical training in-
formation is used for all the hours. Secondly, hourly analysis helps
us distinguish between the following three cases:

Table 1
Summary of the optimized hyperparameter for the models.

Model Symbol Definition
Ridge ay Coefficient for ¢, regularization
Lasso ) Coefficient for ¢; regularization
SVR C Penalty parameter of the error
€ Epsilon of the epsilon-SVR model
XGBoost ng Number of trees
dimax Maximum tree depth
Ir Learning rate
¥ Minimum loss reduction needed to make a new partition on
a leaf node
ax Coefficient for ¢; regularization
Ax Coefficient for ¢, regularization
Tsub Subsample ratio of the training set used for training a tree
Tcol Subsample ratio of columns when training a tree
DNN ng Number of neurons on the kth hidden layer, with k =1,2,3,4.
nonlin  Activation function on the hidden layers
d Dropout coefficient
Air The initial learning rate used for the stochastic gradient
descent method.
BN Binary hyperparameter to select if batch normalization is
applied.

1. Forecaster Fy's accuracy is significantly better than that of F; for
all the hours.

2. The overall accuracy of forecaster F; is significantly better than
that of F,, but there exist some hours where the latter has
significantly better accuracies.

3. The accuracy of F; is not better that of F.

Finally, knowing the statistical significance of hourly accuracies,
can help us build ensemble methods, where for each hour, the
model proven to have significantly better accuracy can be used.

To make the distinction between the three cases described
above, we do the following one sided DM tests:

1. For every hour h and pair of models F; and F,, a DM test at a 95%
confidence interval with the null hypothesis in the lines of (3):

Hg : [E[di‘jp] >0,

M H; : [E[dﬁ{;f] <0,

forh=1,...24, (10)

where k is used to index the time series of the particular hour h.

2. For every hour h and pair of models F; and F,, a DM test with a
null hypothesis complementary to that in (10), i.e., that the
forecaster F, has the same accuracy as that of Fy:

—

By E|-dni®] 2 0,

forh=1,...24. (11)

H : E|-di] <0,

3. In case F; and F, each have significantly better accuracies for at
least 1 h, aregular DM test considering serial correlation and the
full loss differential, i.e., d2, is considered:

Hp : [E[d”z} >0,
DMSC{ (12)
H, - [E[dF‘=F2] <0.

Following the procedure in Ref. [1], we make the following
statements about the prediction accuracies of F; and F;:

1. The predictive accuracy of F; is significantly better than that of
F, if the following two conditions are met:

(a) The null hypothesis is rejected for at least one of the hours
for the regular DMy, i.e. F; has accuracy significantly better
than that of F, for at least 1 h.

(b) The null hypothesis of none of the complementary ]TVI,.,
tests is rejected, i.e. there is no hour where the predictive
accuracy of F; is better than that of Fj.

2. If both F; and F> have at least 1 h in which they have significantly
better accuracies, we consider the result of the DM test DMsc
that considers the whole differential loss with serial correlation.
Then, if the null hypothesis of DMy, is rejected, we conclude that
the overall accuracy of F; is better than that of F,, although there
are some hours at which F>'s accuracy is significantly better.

6. Results

This section presents the results and comparison between the
different models. For both data sets, roughly 27 months of data
from November 2014 to February 2017 were available. For the first
data set, we used the same test period as in Ref. [3], i.e.,, months



G. Suryanarayana et al. / Energy 157 (2018) 141149 147

from August 2016 to February 2017. For the second dataset, we
chose the test period closer to a heating season - end of October
2016 (28-10-2016) to end of February (27-02-2017). For the linear
models the rest of the data was used for training. The DNN, SVR and
GBT models used the first three months of the data for validation
and the rest for training. The reason for selecting these three
months is twofold; firstly, due to the lack of sufficient data we could
only use three months for validation. Secondly, as head load fore-
casting is crucial during the winter months, our test and validation
sets focus on these months.

To evaluate the error in the test set, the models are retrained at
every day so that testing is done as in real life conditions, i.e. using
the most recent data to recalibrate the models. It is important to
note that only the model is retrained; the hyperparameters are kept
fixed and equal to the best configuration obtained during the
hyperparameter optimization. We would again like to stress that
the simplicity of the linear models used here allows for quick
retraining, and that thus retraining every day in real-time is a
feasible option.

6.1. Results MAPE

Table 2 gives the MAPE values for the different models used.

Table 2
Model comparison in terms of MAPE for the two case studies.

Case study 1 Case study 2

Note that the deep learning model has the best MAPE in both cases,
8.08% and 4.15% respectively. The best linear models in both cases
come second with 8.77% and 4.44% respectively. In both cases the
hourly ridge regression gives errors very close to that of the deep
learning model. Both deep learning and the best linear model
outperform the SVR and GBT forecasters with respect to MAPE. We
also note that for case study 1, while SVR gives results similar to
that in Refs. [2,3], the models proposed in this paper give signifi-
cantly higher accuracies. It is also important to remark that we have
made improvements in the baseline models that were used in
Refs. [2,3]. The GBT especially gives an improved MAPE compared
to the extreme tree regressor that were used earlier.

6.2. Results DM test

Tables 3 and 4 summarize the DM test comparison results for
case studies 1 and 2 respectively. It is important to note that the
table's entries are not fully anti-symmetric, i.e., F; not being
significantly better than F, has no implication on whether or not F;
is significantly better than Fy. Three scenarios arise:

1. The prediction accuracy of the model F; is significantly better
than that of F, with the alternative hypothesis being accepted
with 95% confidence (represented with vin the tables).

2. Although F» may be significantly better in at least one of the 24 h
of the forecast horizon, the overall accuracy of F; for the full loss
differential is still statistically significantly better (represented
by /s in the tables).

Linear regression 9.08 4.77 3. The prediction accuracy of F; is not significantly better than F.
Ridge regression 9.06 4.76 (represented by blank entries in the tables)
Lasso regression 9.09 6.75
Linear regression-24 9.88 5.03 . .
Ridge regression-24 877 4.44 Fig. 2 shows the DM test results of thg DNN with re§pect to all
Lasso regression-24 9.44 446 other forecasters used for both case studies. By following each of
GBT 9.05 4.60 the curves over the full day, one can determine whether or not the
SD‘QL ;10-;5 :Zg DNN is significantly better.
. . Based on Tables 3 and 4 and Fig. 2, we observe the following:
Table 3
DM test comparison results for case study 1.
F1 FZ
Lasso-24 SVR GBT Linear Linear-24 Lasso Ridge Ridge-24 DNN
Lasso-24
SVR
GBT
Linear Vs
Linear-24 Vs
Lasso Vs
Ridge Vs v
Ridge-24 /s Vs /s v v/ Vs /s
DNN v Vs v v v/ v v/ v/
Table 4
DM test comparison results for case study 2.
Fy F
Lasso-24 SVR GBT Linear Linear-24 Lasso Ridge Ridge-24 DNN
Lasso-24 Vs Vs v v
SVR v v
GBT v v
Linear v
Linear-24 v
Lasso
Ridge v v
Ridge-24 v v v v
DNN Vs v /s v v Vs
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Fig. 2. DM results for the DNN model. Top: test results for case study 1. Bottom: test results for case study 2. Values above the top dashed line represent cases where, with a 95%

confidence level, the DNN is significantly better. Similarly, values below the lower dashed line accept at a 95% confidence level that the DNN is significantly worse.

1. The DNN does significantly better than all the linear models as
well as the baseline models in case study 1.

2. The hourly ridge regression model is significantly better than
both the baseline models in both case studies, and also better
than the rest of the linear models in case study 1.

3. In case study 2, the DNN is significantly better than both the
baseline models, and four of the linear models. However,
nothing can be concluded about its performance compared to
the hourly lasso and hourly ridge regression models.

4. The baseline models are significantly better than none of the
proposed models in case study 1, and better only compared to
the linear-24 and lasso models in case study 2.

5. In case study 1, only the DNN is better than the ridge 24, and in
case study 2, none of the models are better than ridge-24 and
lasso-24.

6. In both case studies none of the models are significantly better
than the DNN.

Overall, in case study 1 the DNN proves to be the strongest
model and the hourly ridge regression model is the next. For case-
study 2, although it cannot be concluded on which the best model
is, the DNN, the hourly ridge and hourly lasso regressors perform
the best. Particularly, we have demonstrated that the DNN and the
ridge-24 proposed in this paper are significantly better than the
state-of-the-art models.

7. Conclusion and future work

We have shown that simple linear models can be very powerful
in forecasting heat loads in district heating networks when non-

linearities can be accounted for and automatic feature selection is
done. In particular, they can outperform many of the advanced
machine learning forecasting tools and the state-of-the-art
methods proposed in literature such as SVR and GBT. The ridge
regressor with hourly models proved especially powerful in both
the use cases, giving a MAPE as low as 8.77 in the first case and 4.44
in the second. This model even proved better even with respect to
the DM test and performed nearly as well as the deep learning
model. We also showed that deep learning models provide the best
accuracies overall in terms of both MAPE (8.08 and 4.15) and the
DM test, provided enough computation time is available.

The data used for this study was collected from two district
heating systems in Sweden. The Karlshamn network, operated by
Karlshamn Energi, uses industrial excess heat from an external
source to cover more than 90% of the yearly energy demand. Since
they are not fully in control of this heat supply, they are dependent
on forecasting the demand as accurately as possible. The other grid
is the Rottne district heating system, operated by Vaxjo Energi. The
Rottne grid has been used as a demonstrator in the Horizon 2020
project STORM the last few years, in which an advanced grid
controller has been deployed. Such grid controllers are dependent
on accurate load forecasting and the results presented in this paper
will contribute to an even higher level of efficiency in the grid. For
both of these cases, the techniques presented in this study will
facilitate increased operational efficiency. In general, it is expected
that the results will contribute to the further development of
modern grid controllers for 4th generation district heating and
cooling.

We also foresee these forecasters to be used in other project
contexts, especially to predict the electricity load of a cluster of
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buildings; particularly, as the heat and electricity consumptions of
households follow similar patterns, i.e., trend, seasonality, the
proposed methods could potentially be easily extended to the
latter. This is an important area of research in the field of demand
response. In the next step we also want to include these improved
forecasters in an expert advice system. Additionally, having statis-
tical significance results for each hour, we can even consider an
ensemble of forecasters, where for each hour we can choose the
best model for that hour.
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