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Abstract

Blockchain technology has had a big impact on digital transactions and data
management, providing a decentralized, transparent, and immutable ledger.
Private blockchains, unlike public blockchains, are restricted to a pre-selected
group of participants, making them more suitable for controlled environments
such as enterprises, governments, or academic institutions. Hyperledger Fabric
(HLF) is a widely used framework for private blockchain technology, designed
for enterprise use.

With quantum computers on the rise, commonly used cryptographic algorithms
are increasingly at risk of becoming obsolete. Blockchain networks rely exten-
sively on these primitives. This reliance makes them particularly vulnerable
to advances in quantum computing. In order to counter this vulnerability,
post-quantum algorithms have seen rising popularity in the cryptographic com-
munity.

This thesis focuses on securing private blockchains built on HLF against po-
tential quantum adversaries using post-quantum cryptographic primitives. We
implement ML-DSA, Vesper, and TDUE as smart contracts for digital signing,
zero-knowledge proofs, and updatable encryption, respectively, and report on
their performance. Furthermore, we build on top of Fabric Private Chaincode
to keep the contract application state confidential. While overall performance is
not yet competitive with classical cryptographic primitives, we show that post-
quantum primitives have promising potential for use in private blockchains.
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1
Introduction

With quantum computers on the rise, cryptographic algorithms that are currently deemed
as the standard are increasingly at risk of becoming obsolete. Current algorithms such
as RSA, ECC, and ECDSA could be cryptanalytically broken with a sufficiently powerful
quantum computer using Shor’s algorithm (7, 8). While quantum computing is still in its
early stages, its eventual advancement will pose a vulnerability risk on classical crypto-
graphic primitives. Even without an immediate quantum threat, "harvest now, decrypt
later" programs still pose a risk on the long-term security of encrypted storage and com-
munication. Data that is sensitive today, may remain sensitive in the future.

To expand on this topic, blockchain networks make extensive use of cryptographic prim-
itives and rely almost exclusively on the hardness of currently used algorithms for their
security. This reliance makes them particularly vulnerable to advances in quantum com-
puting. Generally, blockchain networks use cryptographic primitives such as encryption
and digital signing algorithms to manage identities, execute and endorse transactions, dis-
tribute new blocks, query the ledger, etc. Blockchain technology has seen widespread
applications due to the qualities of its architecture, which inherently grant immutability,
decentralisation, and transparency. The emergence of quantum computing poses a threat
to these qualities.

In order to counter the vulnerability posed by these algorithms, a new suite of post-
quantum algorithms (also referred to as quantum-resistant algorithms) has seen rising
popularity in the cryptographic community. These algorithms are currently thought to
remain secure against cryptanalytic attacks, even under the assumption of the existence of
quantum computers. One approach to post-quantum algorithms can be reduced to lattice-
based cryptography, with hard problems such as LWE (9) and SIS (10). In 2024, NIST
has released three final versions of the first post-quantum cryptographic standards, two of
which utilise lattice-based cryptography (11).

This thesis focuses on securing private blockchains. Unlike public blockchains, private
blockchains are restricted to a pre-selected group of participants, making them more suit-
able for controlled environments such as enterprises, governments, or academic institutions.
A widely used framework for private blockchain technology is Hyperledger Fabric, which
is an open-source permissioned blockchain platform designed for enterprise use. We aim
to secure private blockchains, particularly those built on Hyperledger Fabric, against the
potential threat of quantum computers.

To illustrate the practical relevance of cryptography on blockchains, consider the follow-
ing scenario:

1



1. INTRODUCTION

Motivating Example: Blockchain Library with Subscription Payments
Consider a blockchain-based library system called Rainforest, where users can bor-

row books by making monthly subscription payments. Rainforest uses a private
blockchain to host their books and manage payments.

Books are stored as encrypted files on the ledger, all under the same key, and users
get the decryption keys upon successful payment. Every month, the keys get updated
to ensure that users can only access the books they have paid for in the current month.

Suppose a user named Alice wants to apply for a subscription. She needs to prove
that she has sufficient funds to make the payment without revealing her account bal-
ance or transaction history. To do this, Alice uses a zero-knowledge proof to demon-
strate that she owns at least the required amount of funds. This proof is verified by
the Rainforest blockchain network, allowing Alice to proceed with the payment with-
out exposing her (sensitive) financial details. The payment request is signed by her
private key, preventing unauthorized financial transactions.

This example illustrates how a private blockchain can be used to manage sensitive data,
such as financial transactions and personal information, while maintaining user privacy.
The use of zero-knowledge proofs allows users to prove their eligibility for actions (like pay-
ments) without revealing sensitive information, while digital signatures ensure the integrity
and authenticity of transactions. At its core, the Rainforest library relies on updatable en-
cryption to manage access to the books.

Building on this motivating example, we now formalize the research question addressed
in this thesis:

RQ. How can post-quantum cryptographic modules be integrated into Hyperledger Fabric
while preserving confidentiality, and how do they perform in practice?

Contributions. We propose replacements for three cryptographic primitives, including
the digital signing algorithm present in the architecture of Hyperledger Fabric. We imple-
ment ML-DSA (signing algorithm), Vesper (zero-knowledge proof), and TDUE (updatable
encryption) as smart contracts on top of the existing architecture, and report on their per-
formance to demonstrate their feasibility for use in practical scenarios. The novel aspect
of this research lies in the practical integration of multiple post-quantum cryptographic
primitives into a real-world private blockchain framework, while using trusted computing
technology to hide the application state.

1.1 Organization

First, we cover related work in Section 2. In Chapter 3, we provide the necessary back-
ground on the cryptographic primitives used in this thesis. Chapters 4, 5, and 6 present
a brief overview of the three cryptographic primitives we implement, namely ML-DSA,
TDUE, and Vesper, respectively. Chapter 7 covers the architecture of blockchain systems,
with a focus on Hyperledger Fabric. In Chapter 8, we present a high-level overview of
our design for three modules that implement the cryptographic primitives in Hyperledger

2



1.1 Organization

Fabric. In Chapter 9, we describe the implementation details of these modules. We bench-
mark the performance of our implementations in Chapter 10, and discuss the results in
Chapter 11. Finally, we conclude our work in Chapter 12.
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2
Related Work

In this chapter, we discuss related (scientific) works that share similar goals and/or method-
ology to ours.

Post-quantum distributed ledger technology: a systematic survey. Parida et al.
(2023) (12) investigate the status quo of post-quantum cryptosystems within the framework
of (public) blockchains. The article classifies approaches aimed at fortifying blockchains
with post-quantum cryptography. The article also identifies specific (quantum) weaknesses
in current blockchain systems, such as speeding up hash collision using Grover’s algorithm
(13) and breaking classical encryption using Shor’s algorithm (7). The article does not
focus on private blockchains, such as Hyperledger Fabric, and does not provide a concrete
architectural design for integrating post-quantum cryptography into such systems.

Algorand. A practical example of post-quantum distributed ledger technology (PQDLT)
is Algorand (14), first proposed in a whitepaper in 2017. In 2022, Algorand announced its
transition to a post-quantum secure blockchain. They started this endeavour by replacing
elliptic curve signing with FALCON (15), a post-quantum signature scheme based on lattice
trapdoors. The consensus mechanism of Algorand still relies on the quantum-vulnerable
Verifiable Randomness Function (VRF) (16), but there are plans to replace it with a post-
quantum secure VRF in the future.

PQFabric: A Permissioned Blockchain Secure from Both Classical and Quan-
tum Attacks. There have been multiple previous attempts at replacing classical primi-
tives within Hyperledger Fabric with post-quantum primitives. These efforts have mostly
focused on replacing ECDSA with either hybrid schemes (17, 18, 19) or non-standardized
post-quantum algorithms (20). Since the NIST standardized post-quantum algorithms in
2024 were released, there have been works that have started to replace ECDSA with the
standardized ML-DSA (21). What separates our thesis from these works, is that we fo-
cus on providing a more complete post-quantum platform for HLF by not only replacing
the crucial elements, but also providing two additional cryptographic primitives. Com-
bined with our efforts to keep the application state confidential by using FPC, our work
can be viewed as more of a foundational set to develop complete applications for private
blockchains.

4



3
Prerequisites

We denote the set of real numbers by R and the set of integer numbers by Z. We follow
the convention of using bold symbols to represent (column-)vectors and matrices, while
standard (non-bold) symbols are used to denote scalars. The transpose of a vector v is
given by vt, and the transpose of a matrix A is given by At. We represent the 2-norm
of a vector v with ∥v∥ :=

√∑
i v

2
i , where vi are the components of v. We denote the

largest singular value of a matrix A by s1(A) := max
u
∥Atu∥, where the maximum is taken

over all unit vectors u. We use standard asymptotic notation for O, ω, and Θ. Let λ be
the security parameter, which is a positive integer that determines the security level of
cryptographic schemes.

3.1 Lattices

An m-dimensional lattice Λ is a discrete subgroup of Euclidean space. The simplest lattice
in m-dimensional space is the integer lattice Λ = Zm, which encapsulates the discrete
vector space. Other lattices are obtained by applying a linear transformation Λ = BZm.
Lattices are thus generally defined as:

Λ =

{
k∑

i=1

zibi | zi ∈ Z

}
= BZk (3.1)

for some k ≤ m linearly independent basis vectors B = {b1, . . . ,bk}. Equivalently, an
m-dimensional lattice Λ is a discrete additive subgroup of Rm. The basis is commonly
used to represent a lattice. The same lattice has multiple bases. The dual of the lattice is
defined as:

Λ∗ := {x ∈ span(Λ) | ⟨x,Λ⟩ ⊆ Z} (3.2)

and can be interpreted as the lattice consisting of all the vectors that produce integer dot
products with vectors in the primary lattice.

This thesis exclusively discusses full-rank lattices, where k = m. Moreover, we concern
ourselves with q-ary lattices specifically, which contain qZm as a sublattice for some integer
q. In other words, a q-ary lattice is a lattice derived from integer vectors modulo q. For

5



3. PREREQUISITES
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Figure 3.1: The simplest 2D lattice,
with basis vectors b1 = (1, 0) and b2 =

(0, 1)
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Figure 3.2: A more interesting 2D lat-
tice, with basis vectors b1 = (2, 0.25)

and b2 = (0.25, 1.5)

positive integers n and q, let A ∈ Zn×m
q be arbitary and define the following full-rank

m-dimensional q-ary lattices:

Λ⊥(A) := {z ∈ Zm : Az = 0 mod q} (3.3)

Λ(At) :=
{
z ∈ Zm : ∃s ∈ Zn

q s.t. z = Ats mod q
}

(3.4)

Note that Λ⊥(A) and Λ(At) are dual lattices, up to a scaling factor q: q∗Λ⊥(A)∗ = Λ(At).
For any u for which Ax = u mod q, define the coset:

Λ⊥
u = {z ∈ Zm : Az = u mod q} = Λ⊥(A) + x (3.5)

Note that this new lattice can be considered simply as the original lattice shifted by x.
Importantly for our purposes is the following property shown (implicitly) by Agrawal et al.
(22): for any invertible matrix H ∈ Zn×n

q , we have

Λ⊥(H ·A) = Λ⊥(A) (3.6)

Lattice problems are mostly formulated on the premise of computing some result given a
basis. Some problems will be harder or easier to solve for the same lattice depending on the
given basis of the lattice. Two important lattice problems are the Shortest Integer Solution
(SIS) and Learning With Errors (LWE) problem which are covered in Sections 3.1.2 and
3.1.3 respectively.

3.1.1 Gaussians

Consider the n-dimensional Gaussian function ρ : Rn → (0, 1], defined by

ρ(x) ≜ exp(−π · ∥x∥2) = exp(−π · ⟨x,x⟩).

6



3.1 Lattices

When applying a linear transformation via a matrix B with linearly independent columns
(not necessarily square), we obtain a generalized or potentially degenerate Gaussian func-
tion. This function, denoted ρB, is defined as:

ρB(x) ≜

{
ρ(B+x) = exp

(
−π · xtΣ+x

)
if x ∈ span(B) = span(Σ),

0 otherwise,

where Σ = BBt ≥ 0 denotes a positive semi-definite matrix.
Since ρB is uniquely determined only up to the span of Σ, we may simplify notation

by writing ρ√Σ. Normalizing this function over span(Σ) yields the continuous Gaussian
distribution D√

Σ. We refer to Σ as the covariance matrix of the Gaussian distribution
D√

Σ.
The discrete Gaussian (23) distribution DΛ+c,

√
Σ is defined as the distribution over

Λ + c, where Λ ⊂ Rn, c ∈ Rn, and Σ > 0 is a positive semi-definite matrix such that
(Λ + c) ∩ span(Σ) ̸= ∅. This is formally defined below.

Definition 1 (23) For a positive semi-definite matrix Σ, the discrete Gaussian distribution
over a lattice Λ, centered around c, is defined by the density function

DΛ+c,
√
Σ(x) =

ρ√Σ(x)

ρ√Σ(Λ + c)
∝ ρ√Σ(x). (3.7)

Specifically, when Σ = s2In for some s > 0, the discrete Gaussian distribution is defined
as:

DΛ,s(x) :=
ρs(x)∑
y∈Λ ρs(y)

, (3.8)

where ρs(x) = exp(−π∥x∥2/s2).

3.1.2 Short Integer Solution

The Module Short Integer Solution (MSIS) problem is an average-case hard lattice problem
that was first introduced by Ajtai in 1996 (10). For β > 0, the MSISq,β problem is
formulated as follows. Given a uniformly random matrix A ∈ Zn×m

q for any m = poly(n),
find a relatively ’short’ z ∈ Zm

q , s.t. Az = 0 mod q and ∥z∥ ≤ β. The Inhomogeneous
MSIS problem, or I-MSISq,β(u), is a variant of the MSIS problem, where we are tasked to
find a small nonzero solution z ∈ Zm

q such that Az = u mod q for some u ∈ Zn
q .

The SIS problem is conjectured to be quantum-resistant, as it is believed to be hard to
solve even with quantum computers. Under the assumption that SIS is hard in the average
case, the following function is a (surjective) collision-resistant hash function (CRHF) (10):

fA(x) := Ax mod q ∈ Zn
q , (3.9)

7



3. PREREQUISITES

3.1.3 Learning With Errors

The LWEq,α problem was first introduced by Regev in 2005 (9). It has since seen various
cryptographic applications in algorithms with conjectured quantum-resistance (24) (25).

For parameters n ≥ 1, modulo q ≥ 2, and error distribution function DZm,αq on Zq, the
search-LWEq,α problem is formulated as follows: recover arbitrary secret s ∈ Zn

q given the
function

gA(s, e) = stA+ et mod q, (3.10)

where A ∈ Zn×m
q is a uniformly random matrix and e ← DZm,αq is a small error vector.

We can think of the problem as recovering an arbitary point in the lattice, perturbed by
some error e. The error should be within the unique decoding radius, s.t. the solution is
uniquely determined. Note that if the error e = 0 then As + e = As ∈ Λ(At), in which
case s can be recovered in polynomial time by using Gaussian elimination. We say that
an algorithm solves search-LWEq,α if given gA(s, e) for any s ∈ Zn

q , it outputs (s, e) with
high probability.

The decision-LWEq,α, or D-LWEq,α, problem is to distinguish between b and a uniformly
random sample from Zm

q .

3.2 Lattice trapdoors

Lattice-based cryptographic protocols that rely solely on hard problems tend to result
mainly in collision-resistant hash functions and public key encryption schemes, with few
other applications (26). More advanced applications, such as "hash-and-sign" digital sig-
natures, IBE, ABE, and conjunction obfuscation, rely on the concept of "strong lattice
trapdoors."

Lattice trapdoors, first introduced by Gentry et al. (27), essentially allow one to effi-
ciently invert one-way lattice functions by providing a secret key that can be used to recover
solutions that would otherwise be computationally infeasible to find. This technique re-
quires sampling from a discrete Gaussian distribution over a lattice, which is usually a
computationally intensive process.

x f(x)

easy

easy with trapdoor

hard

Figure 3.3: Simple visualization of trapdoor functions. Inversion of f(x) is hard, but with a
trapdoor, it becomes easy.

Micciancio and Peikert (26) introduce simple and efficient methods for generating and
using lattice trapdoors. This section provides a brief overview of their construction, which
is used in the TDUE scheme (25). Although there have since been various improvements
to the original construction (28, 29), the basic principles remain the same.
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The one-way functions fA(x) and gA(s, e) that we aim to invert are defined based on
the SIS and LWE problems (see equations 3.9 and 3.10). Since fA(x) is a "compressing"
CRHF (i.e., surjective), there are many possible preimages x for a given output fA(x).
Given u = fA(x) = Ax mod q for some x ∈ Zm

q , our goal is to sample a preimage
x′ = f−1

A (u) with probability proportional to exp(−∥x′∥2 /σ2). This is shown by (26). For
the function gA(s, e), we want to efficiently recover the unique pair (s, e) corresponding to
a given gA(s, e).

The approach can be broadly summarized in three steps:

1. Inversion For Special Structures: find functions f−1
G : Zn

q → Zm
q and g−1

G : Zm
q →

(Zn
q ,Zm

q ) for some special matrix G.

2. Trapdoor Generation: randomize matrix G to some matrix A.

3. Trapdoor Operation: find functions f−1
A : Zn

q → Zm
q and g−1

A : Zm
q → (Zn

q ,Zm
q ) for

A.

We’ll describe these steps in more detail below.

3.2.1 Inversion For Special Structures

The construction of trapdoors is based on a special family of lattices, which allow for fast
and parallelizable decoding algorithms. These lattices are defined by primitive matrices.
A matrix G ∈ Zn×m

q is called a primitive matrix if its columns generate all of Zn
q , i.e.,

G · Zm = Zn
q .

Micciancio and Peikert (26) start by constructing a primitive vector g ∈ Zk
q s.t.

gcd(g1, . . . , gk, q) = 1, where q is an integer modulus and k ≥ 1 is an integer dimension.
Concretely, they consider the following structure for g:

gt :=
[
1 2 4 . . . 2k−1

]
∈ Zk

q , k = ⌈log2 q⌉, (3.11)

which generates the lattice Λ⊥(gt) ⊂ Zk.
Let Sk ∈ Zk×k be a basis of Λ⊥(gt), such that gt · Sk = 0 ∈ Z1×k

q . Now g and Sk

are used to construct the gadget matrix G and basis S as G := In ⊗ gt ∈ Zn×nk
q and

S := In ⊗ Sk ∈ Znk×nk, illustrated below:

G :=


· · · gt · · ·

· · · gt · · ·
. . .

· · · gt · · ·

 ∈ Zm×nk
q , S :=


Sk

Sk

. . .
Sk

 ∈ Znk×nk
q .

Consequently, G is primitive and the lattice Λ⊥(G) has basis S.
Sampling preimages of fG(x) and inverting gG(s, e) can be accomplished by solving n

parallel instances of fgt(x) and ggt(s, e), respectively. For the former, if each of the fgt(x)

preimages has Gaussian parameter
√
Σ, then by independence, their concatenation has

parameter In ⊗
√
Σ. Similarly for the latter, if each of the ggt(s, e)-inversion subproblems

are solved, then we can invert gG(s, e). In the case that q = 2k is a power of 2, these
functions can be efficiently sampled and inverted using the following methods.

9
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Let g be the primitive vector defined above, and let Sk be defined as follows:

Sk :=


2
−1 2

−1 . . .
2
−1 2

 ∈ Zk×k.

For ggt(s, e), Micciancio and Peikert (26) describe a simple and efficient algorithm to
find an unknown scalar s ∈ Zq given the vector

bt = [b0, b1, . . . , bk−1]

= s · gt + et

=
[
s+ e0, 2s+ e1, . . . , 2

k−1s+ ek−1

]
mod q,

with small error e ∈ Zk. An iterative algorithm which recovers the binary digits of s from
least to most significant is illustrated in Algorithm 1. This algorithm is based on Babai’s
nearest plane algorithm (30), adapted to the scaled dual lattice q(Sk)

−t of the basis Sk,
which is a basis for Λ(g).

Algorithm 1 Iterative Inversion of ggt (26)

Require: Vector bt = [b0, . . . , bk−1] ∈ Z1×k
q

Ensure: s ∈ Zq and e = (e0, . . . , ek−1) ∈ [− q
4 ,

q
4)

k

1: s← 0

2: for i = k − 1 down to 0 do
3: temp← bi − 2i · s mod q

4: if temp ̸∈ [− q
4 ,

q
4) then

5: s← s+ 2k−1−i

6: end if
7: ei ← bi − 2i · s mod q ▷ Ensure ei ∈ [− q

4 ,
q
4)

8: end for
9: return s, e

For the sampling of preimages for fgt , we would like to sample with some Gaussian
distribution a vector from the set Λ⊥

u (g
t) = {x ∈ Zk : ⟨g,x⟩ = u mod q} for some u ∈ Zq.

The algorithm itself is a simple iterative process, which is illustrated in Algorithm 2. This
is a simplified version of the randomized nearest-plane algorithm presented in (27, 31).

The functions f−1
G (u) and g−1

G (b) can now be trivially reduced to n parallel and offline
calls to f−1

gt (u) and g−1
gt (b), respectively.

3.2.2 Trapdoor Generation

Let m ≥ nk ≥ n be integer dimensions. Define a G-trapdoor for a matrix A ∈ Zn×m
q as a

matrix R ∈ Z(m−nk)×nk
q such that A

[
R
I

]
= HG for some invertible matrix H ∈ Zn×n

q .

10



3.2 Lattice trapdoors

Algorithm 2 Iterative Preimage Sampling for fgt (26)

Require: Syndrome u ∈ {0, . . . , q − 1}
1: for i = 0, . . . , k − 1 do
2: xi ← D2Z+u,s

3: u← (u− xi)/2 ∈ Z
4: end for
5: return x = (x0, . . . , xk−1)

Concretely, a choice for A could be A = [A0| − A0R + HG], where A0 ∈ Zn×m
q is a

uniform matrix, H ∈ Zn×n
q is an invertible matrix, and G is the gadget matrix defined

above with k = ⌈log2 q⌉ (26). It follows from the leftover hash lemma (23) that−A0R+HG
is (very close) to uniformly random.

3.2.3 Trapdoor Operation

Recall that A

[
R
I

]
= HG. We can reduce an LWE instance bt = stA+ et to an instance

of gG(s, e) by multiplying the equation by
[
R
I

]
, yielding

bt

[
R
I

]
= st(HG) + et

[
R
I

]
, (3.12)

if R is a G-trapdoor for A. It is clear that this increases the error, so care must be taken

to ensure that et
[
R
I

]
∈ [−q/4, q/4).

Recall Equation 3.6. We can invert Equation 3.12 to recover (ŝ, ê) s.t. s = H−tŝ and
e = b−Ats. This process is encapsulated in a single function in the following lemma.

Lemma 1 ((26), Theorem 5.4) Let R be a G-trapdoor for A ∈ Zn×m
q with an invertible

tag matrix H, and consider an LWE sample bt = stA + et. If ∥RtI∥∞ ≤ q/4, then
there exists an efficient procedure Invert(R,A,H,b) that efficiently recovers (s, e) from
bt = stA+ et.

In order to sample preimages of u = fA(x) = Ax with some spherical Gaussian distri-
bution, we first sample a vector z ← f−1

G (u). Naively, we would then compute x = Rtz,
which would yield

Ax = A ·
[
R
I

]
· z = Gz = u mod q.

However, this leads to a grave problem; the covariance with which x is sampled leaks
information about the trapdoor R. The covariance of x is given by

Σ = E[xxt] = E[R · zztRt] ≈ s2RRt,

Ideally, this should be a spherical Gaussian distribution with covariance s2I.
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RRt

+

+ (s2I − RRt)

=

= s2I

Figure 3.4: Perturbation technique to correct covariance leakage. The leftmost distribution
leaks information about the trapdoor R. The middle distribution is the perturbation, which is
added to the left distribution to yield the right-hand spherical Gaussian distribution. Figure
adapted from Agrawal (1).

To correct for this, we use the perturbation technique described in (32). First, we
generate a perturbation vector p with covariance s2I − RRt. Then, we sample a vector

z← f−1
G (u−Ap) and compute the final vector as x = p+

[
R
I

]
· z. This yields

A · x = Ap+A ·
[
R
I

]
· z = Ap+Gz = u.

Figure 3.4 illustrates the perturbation technique. The complete sampling process is
summarized in the following lemma, which encapsulates the above steps in a single function.

Lemma 2 ((26), Theorem 5.5) Let R be a G-trapdoor for A ∈ Zn×m
q , with an in-

vertible matrix H, and let u ∈ Zn
q be arbitrary. There exists an efficient algorithm

SampleD(R,A,H,u, s), which outputs a vector x with probability distribution DZm,s, such
that Ax = u. s can be as small as

√
s1(R)2 + 1 ·

√
s1(ΣG) + 1 ·

√
log n, where s1(ΣG) is

a constant depending on G (specifically, 4 if q is a power of 2, and 5 otherwise).

3.3 Digital Signature

Digital signatures can be used to verify authenticity of digital messages or documents.
They are used in applications ranging from file distribution to financial transactions and
are vital in preventing tampering of data. Digital signature schemes ensure that an entity
that has signed a message cannot deny having signed the message at a later time. This
property is known as non-repudiation.

In general, a digital signature scheme consists of three algorithms:

• Key Generation: This algorithm outputs a pair of keys, a public key pk and a
secret key sk. The secret key is kept private by the signer, while the public key
is distributed to anyone who needs to verify signatures. The secret key should be
sampled uniformly at random from a set of possible secret keys.
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• Signing: This algorithm takes the secret key sk and a message m as input, and
outputs a signature σ. The signature is typically attached to the message, and can
be used to verify that the message was signed by the holder of the secret key.

• Verification: This algorithm takes the public key pk, a message m, and a signature
σ as input, and outputs either accept or reject.

Figure 3.5: Simple visualisation of a digital signature scheme. After key generation, the
signer uses their secret key (sk) to sign a message (m), producing a signature (σ). The verifier
then uses the public key (pk) to verify the signature on the message.

A digital signature scheme is secure if it satisfies the following properties:

• the authenticity of the signature can be verified by anyone who has access to the
public key, and

• it should be infeasible for an adversary to forge a valid signature for a message that
was not signed by the legitimate signer.

As an example of a digital signature scheme, consider the Schnorr signature scheme
(2). Its security is based on the hardness of the discrete logarithm problem. The Schnorr
signature scheme defines the following algorithms:

• Key Generation: Let p be a large prime number, q a prime divisor of p − 1, and
g a generator of the cyclic group Z∗

p. Choose uniformly at random x ∈R Zq. The
public key is then y = g−x mod p. Output (pk, sk) = (y, x).

• Signing: Choose random nonce k ∈ Zq and compute the challenge r = gk mod p.
Then, compute the hash commitment e = H(r||m) ∈ Zq, where H is a cryptographic
hash function. Finally, the signature (response) is computed as σ = k+xe mod (p−
1). The output is the signature (e, σ). Refer to Section 3.5.1 for details on this
structure.

• Verification: To verify a signature σ for a message m, the verifier computes r′ =
gσye mod p and checks if H(m||r′) = e. If this holds, the signature is valid; other-
wise, it is invalid.

13
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It is easy to see that the Schnorr signature scheme is complete; if the (honest) signer uses
their secret key x to sign a message m, then the verifier computes r′ = gσye = gk+xeg−xe =
gk = r, and thus H(m||r′) = H(m||r), which is equal to e.

Proving the security of the Schnorr signature scheme is more involved, but a proof
by Seurin (33) shows that the scheme is secure (in the random oracle model) under the
assumption that the discrete logarithm problem is hard.

3.4 Updatable encryption

Data stored on a semi-honest remote (cloud) server is typically encrypted by the user
(client-side). Frequently changing encryption keys is widely regarded as good security
practice to reduce the risk of key compromise (NIST recommends rotating keys at least
once a year (34)). Updatable encryption, first defined by Boneh et al. in 2013 (35), enables
the server to update ciphertexts to a new encryption key without sending it back to the
user. Given the old and new keys, the user generates a key-switching token and sends it to
the server. The server applies the token to the ciphertext, which becomes fully encrypted
under the new key. The server learns nothing about the plaintext, and the scheme conserves
bandwidth, which is especially useful for large ciphertexts. We distinguish two paradigms
of updatable encryption: ciphertext-dependent (c-d UE) and ciphertext-independent (c-i
UE). C-i UE generates tokens independently of the ciphertext, while c-d UE uses a portion
of the ciphertext (the ‘header’) in token generation.

We briefly summarize the syntax of c-d UE below.

Definition 2 (25, 36) A ciphertext-dependent UE scheme consists of the following algo-
rithms which operate in epochs starting from 0:

• KG(1λ): Generate an epoch key ke.

• Enc(ke,msg): Encrypt a message msg under the key ke, producing a ciphertext c.

• TokenGen(ke, ke+1, ĉte): Take two epoch keys ke and ke+1, and a ciphertext header
ĉte, and output either a key-switching token ∆e+1,ĉte or ⊥.

• Update(∆e+1,ĉte , (ĉte, cte)): Take a token ∆e+1,ĉte and a ciphertext (ĉte, cte), and out-
put a new ciphertext (ĉte, cte′) or ⊥. This essentially re-encrypts the ciphertext under
the new epoch key ke+1.

• Dec(ke, (ĉte, cte)): Decrypt a ciphertext (ĉte, cte) using the epoch key ke, returning the
plaintext message msg′ or ⊥.

Ciphertext-independent updatable encryption (c-i UE) is a special case of c-d UE where
the ciphertext header ĉte is empty.

A UE scheme is correct if for any epoch e, any message msg, and any ciphertext (ĉte, cte)
generated by the scheme, the output of Dec(ke, (ĉte, cte)) equals msg with overwhelming
probability.
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3.5 Zero-Knowledge Proof

Zero-Knowledge Proofs (ZKP) allow one to prove knowledge of a statement without reveal-
ing any information beyond the statement’s truth. The concept of ZKPs was introduced
by Goldwasser, Micali, and Rackoff in 1985 (37). To qualify as a zero-knowledge proof, the
proof must satisfy three properties:

1. Completeness: If the statement is true, the verifier will invariably accept the proof.

2. Soundness: If the statement is not true, a (cheating) prover will not be able to
convince the verifier of its validity, except with negligible probability.

3. Zero-knowledge: There exists a simulator that, given only the statement, can
produce transcripts of an interaction between a prover and a verifier that are indis-
tinguishable from real transcripts. Informally, this means if the statement is true,
then the verifier gains no information beyond the truth of the statement.

Zero-knowledge proofs enable secure, private verification across various domains. In cryp-
tocurrencies like Zcash, they allow transaction validation without revealing amounts or
parties (38). In digital identity, they enable users to prove age or credentials without ex-
posing personal data (39). Voting systems use them to ensure vote validity while preserving
voter anonymity. ZKPs also enhance blockchain scalability through zk-rollups, allowing
off-chain computation with on-chain verification.

3.5.1 Interactive vs. Non-Interactive Zero-Knowledge Proofs

Zero-knowledge proofs can be broadly categorized into interactive and non-interactive
types, distinguished by the communication requirements between the prover and the veri-
fier.

Interactive Zero-Knowledge Proofs (IZK): The original concept of ZKPs (37) in-
volve multiple rounds of interaction between the prover and the verifier. Interactive ZKPs
typically require 3 phases: commitment, challenge, and response. During the commit-
ment phase, the prover sends a commitment to the statement they want to prove. In the
challenge phase, the verifier sends a random challenge to the prover, which is typically
a random value or a question related to the statement. Finally, in the response phase,
the prover sends a response based on their commitment and the verifier’s challenge. The
verifier then checks if the response is valid according to the rules of the protocol.

Non-Interactive Zero-Knowledge Proofs (NIZK): In contrast, NIZKs require only
a single message from the prover to the verifier. This makes NIZKs highly desirable for
applications where real-time interaction is impractical or impossible, such as in blockchain
technologies. The challenge in designing NIZKs lies in achieving the zero-knowledge prop-
erty without the interactive element. This is often accomplished by relying on a common
reference string (CRS) or by employing cryptographic hashes in a specific way, such as
through the Fiat-Shamir heuristic.

This technique, proposed by Amos Fiat and Adi Shamir in 1987 (40), is used to trans-
form interactive ZKPs into non-interactive ones. The core idea behind the Fiat-Shamir
heuristic is to replace the verifier’s challenges, which are typically random values chosen
by the verifier in an interactive protocol, with challenges derived from a cryptographic
hash function. Since the hash function is assumed to be a random oracle (a theoretical
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ideal hash function that produces truly random outputs for any input), the prover cannot
predict the challenge before generating its initial commitments. This effectively simulates
the verifier’s random challenge without actual interaction.

Prover Verifier

Interactive ZKP Flow

y = g−x

r = gk for random k

e ∈R Zp

σ = k + xe

Prover Verifier

Non-Interactive ZKP Flow

y = g−x

(Co, Ch, Re)

Co = gk for random k

Ch = H(g, y, gk) ∈ Zp

Re = k + x · Ch

Figure 3.6: Comparison of Interactive and Non-Interactive Zero-Knowledge Proofs using
Schnorr’s scheme (2). The interactive ZKP requires multiple rounds of communication, while
the non-interactive ZKP uses a single message with a cryptographic hash function to simulate
the verifier’s challenge.

3.5.2 zk-SNARKs

Zero-Knowledge Succinct Non-Interactive Argument of Knowledge (zk-SNARK) was first
introduced by Bitansky et al. in 2012 (41). It is a specific type of non-interactive zero-
knowledge proof that has gained significant attention due to its small proof sizes and
fast verification times in various cryptographic systems, particularly in blockchain and
cryptocurrency. zk-SNARKS use arithmetic circuits to represent statements. We’ll first
define arithmetic circuits, then explain the zk-SNARK structure.

Definition 3 (Arithmetic Circuits) Let F = 0, . . . , p− 1 be a finite field for some prime
p > 2. An arithmetic circuit C : Fn → F is a directed acyclic graph (DAG) where each
node represents either an input or an arithmetic operation (addition or multiplication), and
the edges represent the flow of data. Each internal node, or gate, has two inputs and one
output, while the input nodes have no incoming edges. All n+1 input nodes are labeled with
variables 1, x1, . . . , xn. We can use arithmetic circuits to represent n-variate polynomial
functions and its evaluation. The size of a circuit C is given by |C|, which is the number
of internal nodes in the circuit.

An argument system is a tuple of functions (S, P, V ) for the setup, prover, and verifier,
respectively. In the context of argument systems, we construct a public arithmetic circuit
C(x,w) → F, where x is the statement and w is the witness. A prover might want
to convince a verifier, who is exclusively in possession of a statement x, that they hold
knowledge of a witness w such that C(x,w) = 0. We’ve seen the difference between
interactive and non-interactive argument systems in the previous Section 3.5.1.
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x1

x2

x3

+ × y

Figure 3.7: Example of a 2-gate, 3-input arithmetic circuit for y = (x1 + x2) · x3.

In the case of Non-Interactive argument systems, we typically preprocess the arithmetic
circuit. This setup phase S(C) → (Sp, Sv) generates some public parameters (e.g., CRS)
for both the prover and the verifier. These are then used by the prover to generate a proof
P (Sp, x, w) → π for a witness w such that C(x,w) = 0. The verifier can then check the
validity of the proof by running V (Sv, x, π) → {accept, reject}. Informally, an argument
system is called an Argument of Knowledge for a circuit C if, whenever the verifier V

accepts a proof π, it is guaranteed that there exists an efficient way to extract a witness w
from the prover P .

Succinctness of the system is characterized by the proof size and verification time. In
zk-SNARKs, the proof size and verification time are typically logarithmic in the size of the
circuit (42, 43). This is in part possible due to the preprocessing of the circuit performed
during the setup phase.

There are generally three types of setup phases, listed below in decreasing trust require-
ments:

1. Trusted Setup: A trusted party generates the public parameters, which are then
used by both the prover and the verifier. The security of the system relies on the
assumption that this trusted party does not collude with any malicious prover.

2. (Trusted) Universal Setup: A universal setup phase generates parameters that
can be used for any circuit of a certain class, without needing to know the specific
circuit in advance. This allows for greater flexibility and reusability of the parameters
across different circuits.

3. Transparent Setup: In this case, the setup phase is performed in a way that does
not require trusted parties. Instead, it relies on publicly verifiable randomness or
cryptographic techniques to ensure that the parameters are secure and cannot be
manipulated by any party.

As a brief example of preprocessing in zk-SNARKs, consider the Groth16 protocol (43),
which is a constant proof size and verification time zk-SNARK construction based on ellip-
tic curve pairings. Groth16 is a widely used zk-SNARK protocol in the blockchain space,
particularly for its extremely small proof size and fast verification. In Groth16, arithmetic
circuits are first transformed into their Rank 1 Constraint System (R1CS) representation.
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From Arithmetic Circuits to R1CS. Let m be the number of gates in the arithmetic
circuit. Define the set of variables in the arithmetic circuit as all input variables, all output
variables (for each gate), and a constant dummy variable 1. Let the size of this set be n.
Each constraint is represented as a tuple of vectors (a,b, c) and a witness vector s such that
⟨a, s⟩ · ⟨b, s⟩ = ⟨c, s⟩ holds. Each element of the vectors a,b, c corresponds to a variable
in the arithmetic circuit, while the witness vector s contains the concrete values of these
variables. The vectors are grouped into matrices A,B,C, s.t. As ·Bs = Cs holds. This
essentially encodes the arithmetic circuit into a set of m linear constraints with n variables
that must be satisfied by the witness vector s. Figure 3.8 illustrates a concrete example of
R1CS conversion.

Step 1: Defining Constraints

t1 = x1 + x2

t2 = t1 × x3

Step 2: Vector Representation
Variables: [1, x1, x2, x3, t1, t2]

For t1 = x1 + x2:
a = [0, 1, 1, 0, 0, 0]

b = [1, 0, 0, 0, 0, 0]

c = [0, 0, 0, 0, 1, 0]

For t2 = t1 × x3:
a = [0, 0, 0, 0, 1, 0]

b = [0, 0, 0, 1, 0, 0]

c = [0, 0, 0, 0, 0, 1]

Step 3: Matrix Representation

A =

(
0 1 1 0 0 0

0 0 0 0 1 0

)
B =

(
1 0 0 0 0 0

0 0 0 1 0 0

)
C =

(
0 0 0 0 1 0

0 0 0 0 0 1

)

Figure 3.8: Conversion of the arithmetic circuit seen in Figure 3.7 into a Rank 1 Constraint
System (R1CS) representation.

From R1CS to QAP. The R1CS representation is transformed into a quadratic arith-
metic program (QAP) representation, which is a polynomial representation of the con-
straints. The m constraint vectors of length n are transformed into n polynomials of
degree m. A polynomial ai(j) for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} should evaluate to the j-th
element of the a component for the i-th constraint. Lagrange interpolation is used to con-
struct these polynomials. Polynomials ai(x) are grouped into A(x) = [a1(x), . . . , am(x)].
When evaluated at a point x, A(x) returns the values of the a components for constraint x.
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The same process is applied to the b and c components, resulting in B(x) and C(x). Verify-
ing the R1CS constraints can then be reduced to checking ⟨A(x), s⟩ · ⟨B(x), s⟩ = ⟨C(x), s⟩
for all x ∈ {1, . . . , n}. This is equivalent to verifying

⟨A(x), s⟩ · ⟨B(x), s⟩ − ⟨C(x), s⟩ = H(x) · T (x), (3.13)

where typically T (x) = (x− 1)(x− 2) · · · (x− n), a polynomial that vanishes at all points
x ∈ {1, . . . , n}. For conciseness, we rephrase Equation 3.13 as

Ls(x) ·Rs(x)−Os(x) = H(x) · T (x). (3.14)

To check this equality efficiently, we rely on the Schwartz-Zippel lemma (44), which guar-
antees that if two polynomials agree at a randomly chosen point, then with high probability
the polynomials are identical.

Proving knowledge of a witness. Let [·]E be a homomorphic hiding function, which
is a function that hides the input while allowing additive and multiplicative operations
to be performed on the hidden values (bilinear elliptic curve pairings, in the case of
Groth16). The intuition behind the scheme is that the verifier chooses a random point
t ∈ F unknown to the prover and comoputes T (t). The verifier sends t to the prover,
who then evaluates the polynomials at that point and sends back the hidden evaluations
[Ls(t)]E , [Rs(t)]E , [Os(t)]E , and [H(t)]E . The prover shifts the evaluations of the left-hand
side equations by a random offset of T (t) to ensure zero-knowledge over multiple runs. The
verifier checks that [Ls(t)Rs(t)−Os(t)]E = [T (t)]E [H(t)]E . The Schwartz-Zippel lemma
ensures that if the prover sends the correct evaluations, then with high probability the
prover knows the witness.

In practice, the random point t is chosen from a common reference string (CRS) that is
generated during a trusted setup phase. While trusted setups have been a point of concern,
ongoing research and new constructions like zk-STARKs (45) aim to eliminate or minimize
this requirement.
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4
ML-DSA

The Module-Lattice-Based Digital Signature Algorithm (ML-DSA), originally published
as ‘CRYSTALS-Dilithium’ (3), is a digital signing scheme standardized by NIST under
FIPS204 as part of their most recent post-quantum cryptography suite (4). ML-DSA is
existentially unforgeable against chosen-message attacks assuming the D-MLWE and MSIS
problems are intractable. The standard describes the following functions: KeyGen, Sign,
and Verify. Advantages of ML-DSA include its relatively small key sizes, fast signing and
verification times, and resistance to quantum attacks. The scheme also exclusively uses
uniform random sampling as opposed to Gaussian sampling, which is difficult to implement
securely as evident from findings by multiple sources (46) (47) (48). A summary of these
functions is given below. We follow the latest version of the scheme published in FIPS-204
(4).

4.1 Simplified Scheme

Let Alice be the signer and Bob be the verifier. The symmetric modulo operator is denoted
by mod±. The infinity norm is denoted by ∥ · ∥∞ and represents the maximum absolute
value of the coefficients of a polynomial. Define Rq as the ring of polynomials in x, formally
Rq = Zq[x]/(x

n+1). Define Sη as the set of polynomials in Rq with (mods q) coefficients in
[−η, η]. Define S̃γ1 as the set of polynomials in Rq with (mods q) coefficients in (−γ1, γ1].
Let B̃τ be the polynomials in S1, of which exactly τ coefficients are ±1 and β = τη. Lastly,
define size parameters k, l with k ≥ l. For illustration, table 4.1 shows the parameters
used in the ML-DSA standard.

Classifier q n ζ (k, ℓ) η d γ1 τ β γ2 λ ω

ML-DSA-44 223 − 213 + 1 256 1753 (4,4) 2 13 217 39 78 (q − 1)/88 128 80

ML-DSA-65 223 − 213 + 1 256 1753 (6,5) 4 13 219 49 196 (q − 1)/32 192 55

ML-DSA-87 223 − 213 + 1 256 1753 (8,7) 2 13 219 60 120 (q − 1)/32 256 75

Table 4.1: Parameter sets for ML-DSA-44, ML-DSA-65, and ML-DSA-87 (4).
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4.1 Simplified Scheme

Before we get to the details of the scheme, we first introduce some functions that are
used in the scheme.

Decomposeq(r, α)

1: r ← r mod+ q

2: r0 ← r mod± α

3: if r − r0 = q − 1 then
4: r1 ← 0; r0 ← r0 − 1

5: else
6: r1 ← (r − r0)/α

7: end if
8: return (r1, r0)

HighBitsq(r, α)

9: (r1, r0) := Decomposeq(r, α)
10: return r1

LowBitsq(r, α)

11: (r1, r0) := Decomposeq(r, α)
12: return r0

Figure 4.1: Functions used in ML-DSA, adapted from (3).

For every Decomposeq(r, α) = (r1, r0), we have that r = r1α+ r0 with r0 ∈ (−α/2, α/2].
When applying the HighBitsq(r, α) and LowBitsq(r, α) functions to a polynomial r, we
apply them to each coefficient of the polynomial. See Figure 4.1 for the corresponding
pseudo-code.

A simplified version of the scheme is explained below.

• KeyGen
Alice generates a polynomial matrix A ∈ Rk×l

q , and secrets s1 ∈ Sl
η, s2 ∈ Sk

η. Alice
then computes t = As1 + s2. Her verifiying public key is now (A, t), and her secret
signing key is (s1, s2). Note that recovering s1 from (A, t) is an instance of LWE.

• Sign
Alice generates random y ∈ S̃γ1 and computes the commitment w = Ay. Note
that the coefficients of y lie within a power-of-two range, enabling efficient uniform
sampling using bitstrings. She then computes the ‘high-order’ bits of w and the
‘low-order’ bits of w such that w1 = HighBitsq(w, γ2) and w0 = LowBitsq(w, γ2).
Using w1, she computes the challenge c = H(M ||w1). c is formed as a polynomial
in B̃τ using the SampleInBall function. Finally, she computes the potential response
z = y + cs1. This response, however, reveals information about the secret key s1.

Coefficients in y are in a range of (−γ1, γ1], while coefficients in cs1 are in a range of
[−β, β]. Thus, the coefficients in z are in a range of (−γ1 − β, γ1 + β]. Suppose now
that some coefficient in z is exactly equal to γ1+β. The corresponding coefficient in
cs1 must then be equal to β, which leaks some information about s1. In general, if a
coefficient in z is γ1 + a for some −β+1 ≤ a ≤ β, then the corresponding coefficient
in cs1 must be in [a, β]. Similarly, if a coefficient in z is −γ1+a for some −β < a ≤ β,
then the corresponding coefficient in cs1 must be in [−β, a− 1]. ML-DSA solves this
security issue by rejection sampling. Alice computes c and z repeatedly until ∥z∥∞
< γ1−β. She also verifies that the low-order bits of w− cs2 are smaller than γ2−β.

The signature is comprised of σ = (c, z).
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4. ML-DSA

• Verify
Bob verifies the signature σ = (c, z) by obtaining an authentic copy of Alice’s
public key (A, t), (re)computing the high-order bits of commitment, and verifying
that c = H(M ||w′

1). Bob computes the high-order bits of Az − ct = Ay − cs2.
Because we know that ∥LowBitsq(Ay − cs2, 2γ2)∥∞ are smaller than γ2 − β, and
that the coefficients of cs2 are in [−β, β], we can conclude that adding cs2 to Ay
does not change the high-order bits of the polynomial. Thus, HighBitsq(Ay, 2γ2) =
HighBitsq(Ay − cs2, 2γ2) and Bob verifies the signature correctly.

This scheme works, but has several inefficiencies which we will discuss next. After all
the optimizations have been covered, we summarize the final scheme.

4.2 Public Key and Signature Size Reduction

Firstly, the public key size can be reduced. We generate the matrix A from some seed ρ
using SHAKE-128. For M ∈ {0, 1}∗ and d ≥ 1, SHAKE128(M,d) is the d-bit cryptographic
hash of M . SHAKE-128 is an eXtendable Output Function (XOF), which means that the
first d′ bits of SHAKE128(M,d′) are equal to the first d′ bits of SHAKE128(M,d) for any
d′ ≤ d.

The size of t can be reduced by dropping the low-order bits of the coefficients of t us-
ing the Power2Roundq(r, d) function. This is not to be confused with the HighBitsq(r, α)
and LowBitsq(r, α) functions. The Power2Roundq(r, d) function can be extended to poly-
nomials and vectors of polynomials by applying it each coefficient-wise. We calculate
Power2Roundq(t, d) = (t1, t0), such that t = t12

d + t0. Instead of t, we now include t1 in
the public key. The concrete reduction in public key size can be seen in Table 4.2.

Parameter Set Original t Size (bytes) Compressed t1 Size (bytes)

ML-DSA-44 2944 1280
ML-DSA-65 4416 1920
ML-DSA-87 5888 2560

Table 4.2: Public key size reduction by compressing t to t1 for each ML-DSA parameter set.

Now in order to verify the signature, Bob computes Az − ct12
d = Az − c(t − t0) =

Az − ct + ct0 = w − cs2 + ct0. We would like to correct for ct0 by adding −ct0 to
the equation. With high probability, we know that ∥−ct0∥∞ ≤ γ2. This is because the
coefficients of c are in B̃τ and the coefficients of t0 are in [−2d−1, 2d−1]. The coefficients
of −ct0 are thus in [−2d−1τ, 2d−1τ ]. The ML-DSA parameters are chosen such that with
high probability, ∥−ct0∥∞ ≤ γ2. For ML-DSA-65 and ML-DSA-87, this condition always
holds, whereas for ML-DSA-44 it holds with probability 0.596.

The signer verifies this is the case. Then adding −ct0 to w− cs2+ ct0 changes the ‘high-
order’ bits of the polynomial by -1, 0, or +1. Alice includes ‘hint bits’ in the signature to
enable Bob to correct for this change.

Take r ∈ [0, q − 1] and let r1 = HighBitsq(r, 2γ2) and r0 = LowBitsq(r, 2γ2). Notice that
when adding a z ∈ [−γ2, γ2] to r, the ‘high-order’ bits of the polynomial change by at most
1. This is made possible due to the condition in line 3 of the Decomposeq(r, α) function,
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4.3 Number Theoretic Transform

where we essentially ‘merge’ the last group of ‘high-order’ bits with the first group. This
ensures that no group of ‘high-order’ bits contains less than than 2γ2 elements, which
in turn allows us to produce a 1-bit hint to compute HighBitsq(r + z, 2γ2) from r and
h without knowledge of z. This procedure is defined in functions MakeHintq(z, r, α) and
UseHintq(h, r, α).

UseHintq(h, r, α)

13: m := (q−1)
α

14: (r1, r0) := Decomposeq(r, α)
15: if h = 1 and r0 > 0 then
16: return (r1 + 1) mod+ m

17: else if h = 1 and r0 ≤ 0 then
18: return (r1 − 1) mod+ m

19: end if
20: return r1

MakeHintq(z, r, α)

21: r1 := HighBitsq(r, α)
22: v1 := HighBitsq(r + z, α)

23: return Jr1 ̸= v1K

Power2Roundq(r, d)

24: r := r mod+ q

25: r0 := r mod± 2d

26: return
(
r−r0
2d

, r0
)

Figure 4.2: Functions used to compute the hint bits, adapted from (3).

Now, it is easy to see that UseHintq(MakeHintq(z, r, a), r, a) = HighBitsq(r + z, a) These
functions extend to polynomials by applying them to each coefficient of the polynomial.
The FIPS-204 standard specifies that the signer verifies that ∥−ct0∥∞ < γ2 (slightly
stricter than the previously mentioned constraint). Alice calculates the hint bits for
MakeHintq(−ct0,w− cs2 + ct0, 2γ2) and includes them in the signature. Alice also verifies
that the number of 1s in the hint bit vector is less than or equal to ω.

4.3 Number Theoretic Transform

Finally, multiplications in the polynomial ring Rq can be done more efficiently using the
Number-Theoretic Transform (NTT). The NTT is a version of Fast Fourier Transform
(FFT) that operates in the finite field Zq. The NTT is a function NTT : Rq → Zn

q that
transforms a polynomial into a vector of its coefficients in the NTT domain. This function is
invertible, s.t. NTT−1 : Zn

q → Rq. Classical multiplications of two polynomials in Rq take
O(n2) time, while NTT-based multiplications take O(n log n) time. For two polynomials
a(x), b(x) ∈ Rq, the product c(x) = a(x)b(x) mod (xn + 1) is classically computed as
follows:

1. Compute the polynomial product: Multiply each coefficient of a(x) =
∑n−1

i=0 aix
i

by every coefficient of b(x) =
∑n−1

j=0 bjx
j , forming

dk =
∑
i,j

i+j=k

aibj for 0 ≤ k ≤ 2n− 2.
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4. ML-DSA

2. Reduce modulo xn + 1: Use the relation xn = −1 to rewrite terms with powers
xm for m ≥ n as

xm = −xm−n,

folding higher-degree terms back into degree less than n.

3. Add coefficients modulo q: For each coefficient index, sum the folded coefficients
and reduce each

ci = di mod q,

to obtain the final polynomial coefficients ci for 0 ≤ i < n.

The bottleneck of this method is the polynomial multiplication step, which takes O(n2)
time. Using the NTT, we can compute the same polynomial product c(x) = a(x)b(x) as
follows:

1. Transform to NTT domain: Compute the â = NTT(a) and b̂ = NTT(b).

2. Pointwise multiplication: Compute ĉ = â ◦ b̂, which is an element-wise multipli-
cation.

3. Inverse NTT: Compute c = NTT−1(ĉ).

In this case the bottleneck is the NTT transform (and its inverse), which takes O(n log n)
time. The ML-DSA parameters are chosen such that the NTT can be computed efficiently.
To enable the NTT, we select n = 2k and modulus q as a prime such that q − 1 divisible
by 2n. Let ζ ∈ Z∗

q be an element of order 2n, such that ζ2n = 1 and ζn = −1. For a
polynomial a(x) ∈ Rq, the NTT is defined as polynomial evaluation of a(x) at the odd
powers of ζ, or

NTT(a) = â =
(
a(ζ1), a(ζ3), a(ζ5), . . . , a(ζ2n−1)

)
.

Multiplication in the NTT domain is computed component-wise. Let c(x) = a(x)b(x) mod
(xn+1) for a(x), b(x) ∈ Rq, or equivalently c(x) = a(x)b(x)+ℓ(x)(xn+1). For odd integers
i we have c(ζi) = a(ζi)b(ζi) + ℓ(ζi)(ζni + 1). Thus, ĉ = â ◦ b̂, where ◦ is component-wise
multiplication. Addition is also done component-wise, ĉ = â+ b̂.

4.3.1 NTT Transform

We’ll be using the polynomial remainder theorem (49) for the NTT transform, which states
that for a polynomial a(x), the value of a(ζi) is equal to the remainder of a(x) when divided
by x−ζi. From this theorem naturally follows the following property: if f(x) divides g(x),
then a(x) mod f(x) = (a(x) mod g(x)) mod f(x). This property is used to recursively
compute the NTT of a polynomial a(x) by dividing it into smaller polynomials:

xn + 1 = xn + ζn

= (xn/2 + ζn/2)(xn/2 − ζn/2)

...

To compute the NTT of a polynomial a(x), we need to reduce the polynomial modulo its
smallest factors.

24



4.3 Number Theoretic Transform

For example, to compute NTT(a(x)), we first compute the results upon division of a by
the degree 1 factors of x8 + 1, which are a0 = a mod (x4 − ζ4) and a1 = a mod (x4 + ζ4).
We then compute the results upon division of a0 and a1 by the degree 2 factors of x8 + 1,
which are a00 = a0 mod (x2 − ζ2), similarly for a01, a10, a11. This is repeated for the next
level of recursion, computing the last eight remainders a000, a001, . . . , a111.

To compute a0(x) and a1(x) from a(x) (and similarly for lower levels of recursion), we
proceed as follows:

a(x) = aL(x) + xn/2aR(x), where deg(aL), deg(aR) < n/2

a0(x) = a(x) mod (xn − ζn)

= aL(x) + ζn/2aR(x)

a1(x) = a(x) mod (xn + ζn)

= aL(x)− ζn/2aR(x)

For example, for n = 8:

a(x) = aL(x) + x4aR(x)

a0(x) = aL(x) + ζ4aR(x)

a1(x) = aL(x)− ζ4aR(x)

Dividing a(x) into a0(x) and a1(x) takes n time. This operation is repeated for each
level of recursion, which gives us a running time of T (n) = 2T (n/2) + O(n). Thus, the
NTT can be computed in O(n log n) time.

4.3.2 NTT Inversion

Inverting the NTT (polynomial interpolation) is done similarly, but in reverse order. For
example, we use the remainder of a(x) mod (x− ζ) and a(x) mod (x+ ζ) to compute the
remainder of a(x) when divided by x2 − ζ2. This is repeated for each level of recursion,
until we reach the original polynomial a(x). To reconstruct the higher-level polynomial
a(x) (degree < n) from its lower-level remainders a0(x) and a1(x) (each of degree < n/2),
use:

aL(x) =
a0(x) + a1(x)

2

aR(x) =
a0(x)− a1(x)

2ζ4

a(x) = aL(x) + xn/2aR(x)

Similarly, this can be computed in O(n log n) time.

4.3.3 NTT Domain Representation

ML-DSA modifies the order in which the NTT is stored. Instead of sequentially storing
the evaluation of the polynomial at the odd powers of ζ, it stores the evaluation in the
order it is computed. For example, for n = 8, the NTT is stored as

NTT(a) = (a(ζ1), a(ζ9), a(ζ5), a(ζ13), a(ζ3), a(ζ11), a(ζ7), a(ζ15)).
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4. ML-DSA

Formally, let brv(v) be the bit-reversal of an 8-bit integer v and let ζi = ζbrv(128+i). Then,
for n = 256, the NTT is stored as

NTT(a) = (a(ζ0), a(−ζ0), . . . , a(ζ127), a(−ζ127)).

This structure allows for ‘in-place’ NTT computation and avoids the permutation step that
is usually required after the NTT computation.

The NTT is naturally extended to polynomials in Rq by applying it to each coefficient
of the polynomial. During the key generation phase, Alice generates a random matrix in
NTT form from a seed Â = ExpandA(ρ). Note that elements of Â are in Z256

q (n = 256 for
all parameter sets), which enables uniform random sampling using SHAKE-128. She then
generates random s1, s2 and computes ŝ1 = NTT(s1). She computes b̂ = Âŝ1, after which
she inverts the NTT to obtain b = NTT−1(b̂). Finally, t = b + s2 is computed. Note
that A is never explicitly computed, only its NTT form Â is used. During the signature
generation, NTT is applied to the computation of w = Ay.

4.4 Complete Scheme

With all the optimizations in place, the complete ML-DSA scheme is given below. We refer
to SHAKE-256 as H and omit the details of NTT domain representation in this summary.
The expected number of iterations for signing is 1.5, 2.5, and 3.5 for ML-DSA-44, ML-
DSA-65, and ML-DSA-87 respectively (4).

To show completeness, we show that if Alice generates a valid signature, then Bob can
verify it. Bob computes

Az− ct1 · 2d = A(y + cs1)− c(t− t0)

= Ay + cAs1 − c(As1 + s2) + ct0

= w − cs2 + ct0.

Because we know that ∥−ct0∥∞ ≤ γ2, we can conclude that

w′
1 = UseHintq(h,Az− ct1 · 2d, 2γ2)
= HighBitsq(Az− ct, 2γ2)

= HighBitsq(w − cs2, 2γ2).

Since ∥LowBitsq(Ay − cs2, 2γ2)∥∞ < γ2 − β, we have that HighBitsq(w − cs2, 2γ2) =
HighBitsq(w, 2γ2) = w1. Thus w′

1 = w1 and Bob verifies the signature correctly.
An adversary that can forge a signature must be able to find a polynomial z such that

Az− ct is close to the commitment w. This is an instance of the MSIS problem, which is
believed to be hard. The scheme is thus secure against existential forgery under chosen-
message attacks, assuming the D-MLWE and MSIS problems are intractable.

Not discussed in this summary are the implementation details of the functions ExpandA,
ExpandS, ExpandMask, SampleInBall, and the hint vector representation. These functions
are covered in detail in the FIPS-204 standard (4).
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4.4 Complete Scheme

Algorithm 3 Dilithium Key Generation, Signing, and Verification (4) (3)
1: function Gen
2: ξ ← {0, 1}256

3: (ρ, ρ′,K) ∈ ({0, 1}256, {0, 1}512, {0, 1}256) := H(ξ, 256 + 512 + 256)

4: (s1, s2) ∈ Sk
η × Sl

η ← ExpandS(ρ′)
5: A ∈ Rk×l

q ← ExpandA(ρ) ▷ A is stored in NTT representation
6: t := As1 + s2

7: (t1, t0) := Power2Round(t, d)
8: tr ∈ {0, 1}512 := H(ρ∥t1, 512)
9: return (pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0))

10: end function
11: function Sign(sk,M)
12: A ∈ Rk×l

q ← ExpandA(ρ) ▷ A is stored in NTT representation
13: µ ∈ {0, 1}512 := H(tr∥M, 512)

14: ρ′′ := H(tr∥rnd∥µ, 512) ▷ rnd is either det. (0256) or hedged (rnd ∈R {0, 1}256)
15: κ := 0, (z, h) :=⊥
16: while (z, h) =⊥ do
17: y ∈ Sl

γ := ExpandMask(ρ′′∥κ)
18: w := Ay

19: w1 := HighBitsγ(w, 2γ2)
20: c̃ := H(µ∥w1)

21: c ∈ Bτ := SampleInBall(c̃)
22: z := y + cs1

23: (r1, r0) := Decomposeγ(w − cs2, 2γ2)

24: if ∥z∥∞ ≥ γ1 − β or ∥r0∥∞ ≥ γ2 − β or r1 ̸= w1 then
25: (z, h) :=⊥
26: else
27: h := MakeHintγ(−ct0, w − cs2 + ct0, 2γ2)

28: if ∥ct0∥∞ ≥ γ2 or #1’s in h > ω then
29: (z, h) :=⊥
30: end if
31: end if
32: κ := κ+ 1

33: end while
34: return σ = (z, h, c̃)

35: end function
36: function Verify(pk,M, σ = (z, h, c))
37: A ∈ Rk×l

q ← ExpandA(ρ) ▷ A is stored in NTT representation
38: µ ∈ {0, 1}512 := H(H(ρ∥t1, 512)∥M, 512)

39: w′
1 := UseHint(h,Az − ct1 · 2d, 2γ2)

40: return (∥z∥∞ < γ1 − β) ∧ [c = H(µ∥w′
1, 2λ)] ∧ [#1′s in h ≤ ω]

41: end function
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5
TDUE

Chen, Jiang, and Liang (25) introduce TDUE, a lattice trapdoor-based c-d UE algorithm.
They also introduce a packing technique that allows for simultaneous encryption and up-
dating of multiple messages within a single ciphertext. This helps further reduce the cost
of c-d UE.

Aside from this novel algorithm, the paper also defines a new confidentiality notion for
c-d UE and proves TDUE to be Chosen Ciphertext Attack-1 (CCA-1) secure with adaptive
security. Further details on CCA-1 security for updatable encryption are provided later in
this section.

Importantly, under the assumption that the LWE problem is intractable, the scheme is
quantum-resistant as well. TDUE is based on a new public key encryption scheme TDP,
which is a lattice-based trapdoor public key encryption scheme.

5.1 TDP

We use the same notation as defined in Section 3.1.1.
The TDP scheme assumes the existence of functions to invert the LWE problem and

sample a preimage to an SIS problem using trapdoors. Specifically, it assumes that given
a G-trapdoor R for A ∈ Zn×m

q there is a function Invert(R,A,H,b) that recovers s and
e from the LWE instance bt = stAt + et, if

∥∥[Rt I
]∥∥

∞ ≤
q
4 .

It also assumes that given a G-trapdoor R for A ∈ Zn×m
q with invertible matrix H and

any u ∈ Zn
q , there is a function SampleD(R,A,H,u, s) that samples a Gaussian vector x

from a distribution DZm,s such that Ax = u.
Refer to Section 3.2 for a more detailed description of lattice trapdoors.
The TDP scheme uses the following parameters:

• q = poly(λ), (modulus)

• n, k = ⌈log2 q⌉ = O(log n), m̄ = O(nk), (matrix dimensions)

• m = m̄+ 2nk

Let D = DZm̄×nk,ω(
√
logn) be a discrete Gaussian distribution. Let encode : {0, 1}nk →

Λ(Gt) be a function that encodes a message m as Bm ∈ Znk, where B is any basis of
Λ(Gt). Lastly, define the LWE error rate α as 1/α = 4 ·O(nk) · ω(

√
log n).
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5.1 TDP

Algorithm 4 Functions in TDP (25)

1: function TDP.KG(1λ)
2: A0 ← U(Zn×m̄

q )

3: R1,R2 ← D

4: A =
[
A0 −A0R1 −A0R2

]
=
[
A0 A1 A2

]
∈ Zn×m

q

5: return (pk = A, sk = R1)

6: end function

7: function TDP.Enc(pk = A,m ∈ {0, 1}nk)
8: Choose invertible tag matrix Hµ ∈ Zn×n

q

9: Aµ =
[
A0 A1 +HµG A2

]
10: d2 = (∥e0∥2 + m̄ · (αq)2) · w log n2

11: s← U(Zn
q )

12: e = (e0, e1, e2) ∈ DZm̄,αq ×DZnk,d ×DZnk,d

13: bT = sTAT
µ + eT + (0m̄,0nk, encode(m))T (mod q)

14: return c = (Hµ,b)

15: end function

16: function TDP.Dec(sk = R1, c = (Hµ,b))
17: if c or b is malformed, or Hµ = 0 then
18: return ⊥
19: end if
20: Aµ =

[
A0 A1 +HµG A2

]
21: Parse bT = (bT

0 ,b
T
1 ,b

T
2 )

22: (s, (e0, e1))← Invert(R1,
[
A0 A1 +HµG

]
, [b0,b1],Hµ)

23: if the call fails then
24: return ⊥
25: end if
26: (b2, e2)← g−1

G (bT
2 − sTA2) ▷ s.t. bt

2 − stA2 = utG+ et2
27: if ∥e0∥ ≥ αq

√
m̄ or ∥ej∥ ≥ αq

√
2m̄nk · w logn for j ∈ {1, 2} then

28: return ⊥ ▷ Error bounds exceeded
29: end if
30: m = encode−1(bT

2 − sTA2 − eT2 ) ∈ {0, 1}nk

31: if decoding fails then
32: return ⊥
33: end if
34: return m

35: end function
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5. TDUE

Functions in TDP are described in Algorithm 4.
TDP is correct and CCA-1 secure under the assumption that the LWE problem is in-

tractable (25). The runtime of KG is bounded by the matrix multiplications, which gives
us O(n ·m · nk). Assuming HµG is precomputed, Enc is bounded by the vector-matrix
multiplication, which gives O(n ·m). Dec is bounded by Invert, which takes O(nk) work
(26).

5.2 Full Scheme

TDUE builds on top of TDP by adding two new functions: TokenGen and Update. The
same parameters as in TDP are used, with the exception of:

• 1/α = 4l · ω(
√
log n)2l+2O(

√
nk)3l+3 where l is the number of updates the scheme

supports.

• τ =
√
s1(R)2 + 1 ·

√
s1(ΣG) + 1 · ω(

√
log n) where ΣG is either 4 if q is a power of

2, or 5 otherwise. The value τ is the smallest Gaussian parameter for the discrete
Gaussian distribution from which the function SampleD can sample a vector.

The TDUE scheme is described in Algorithm 5.

Algorithm 5 Functions in TDUE (25)

36: function TDUE.TokenGen(pk, sk, pk’,Hµ)
37: Parse pk =

[
A0 A1 A2

]
and sk = R1

38: Parse pk′ =
[
A′

0 A′
1 A′

2

]
39: Choose invertible matrix H′

µ

40: A′
µ =

[
A′

0 A′
1 +H′

µG A′
2

]
41: (X00,X10)← SampleD(R1, [A0 | −A0R1 +HµG],Hµ,A

′
0, τ)

42: (X01,X11)← SampleD(R1, [A0 | −A0R1 +HµG],Hµ,A
′
1, τ
√

m̄/2)

43: (X02,X12)← SampleD(R1, [A0 | −A0R1 +HµG],Hµ,A
′
2 −A2, τ

√
m̄/2)

44: M←

X00 X01 X02

X10 X11 X12

0 0 I


45: Sample s′, e′ and compute bT

0 = (s′)TA′
µ + (e′)T mod q

46: return ∆ = (M,b0,H
′
µ)

47: end function

48: function TDUE.Update(∆ = (M,b0,H
′
µ), c = (Hµ,b))

49: (b′)T ← bT ·M+ bT
0 mod q

50: return c′ = (H′
µ,b

′)

51: end function

TDUE is correct with overwhelming probability. Showing that (0m̄,0nk, encode(m))t

stays the same after the update is straightforward:
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5.3 Other lattice-based UE schemes

(b′)t = bt ·M+ bt
0

=
[
stAµ + et + (0, 0, encode(m))t

]
M+ (s′)tA′

µ + (e′)t

= (s+ s′)tA′
µ + (etM+ (e′)t) + (0, 0, encode(m))t mod q.

Note, however, that the error term grows significantly from et to etM + (e′)t after the
update. Proving the error bound is rather involved. The full proof of correctness is given
in (25). In conclusion, TDUE decrypts correctly except with 2−Ω(n) failure probability.

Under the new confidentiality notion for c-d UE, TDUE is IND-UE-CCA-1 secure:

Lemma 3 ((25), Theorem 3.1) For any IND-UE-CCA-1 adversary A against TDUE,
there exists a polynomial-time adversary B against LWEn,q,α such that

AdvIND−UE−CCA−1
TDUE,A (1λ) ≤ 2(l + 1)3 ·

[
(l + 2) · negl(λ)

+ (nDec + nUpd) · 2−Ω(n) + AdvLWE
n,q,α(B)

]
.

where l is the maximum number of ciphertext updates the scheme supports, and nDec and
nsUpd are the number of queries to the oracles ODec and OsUpd respectively.

The runtime of TokenGen is bounded by the SampleD function, which is quadratic in the
n dimension for a single vector (26). This gives O(m̄n2) for an X matrix. The Update
function is bounded by a vector-matrix multiplication in Zq, which gives O(m2).

Plaintext messages are nk bits long. Ciphertexts are m elements in Zq, where m =
O(nk), resulting in O(nk) elements in Zq. Update tokens are m(m̄ + nk) + m elements
in Zq, or O(n2k2) elements in Zq. Note that the size of the update token is quadratic
in the size of the ciphertext. Consequently, this implies that using TDUE requires at
least a number of ciphertexts quadratic in the size of a ciphertext (or half of that) to be
encrypted with the same key before using update tokens becomes more network-efficient
than manually downloading the ciphertexts, updating them locally, and reuploading them.

5.3 Other lattice-based UE schemes

Aside from TDUE, other lattice-based UE schemes have been proposed with slightly dif-
ferent parameters. We’ll briefly cover a few schemes below.

• The Direction of Updatable Encryption Does Not Matter Much by Jiang (50). Similar
to TDUE, the proposed scheme is based on a PKE rather than a Dec-then-Enc
structure. The PKE scheme is IND-CPA secure under the assumption that the
D-LWEq,α problem is intractable. The full scheme is randIND-UE-CPA secure.

Let plaintext messages be t bits long, let q be the modulus, and let A ∈ Zm×n
q be a

uniformly randomly selected matrix (for the LWE problem). Ciphertexts are nt+ t
elements in Zq, and update tokens are n + m elements in Zq. This is a significant
improvement over TDUE, as the size of the update token is linear in the ciphertext
size.
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5. TDUE

The main difference with TDUE is the ‘packing’ functionality of TDUE, which allows
for encrypting multiple messages in a single ciphertext. TDUE is also proven to
be secure under a stronger security definition, namely IND-UE-CCA-1, while this
scheme is only proven to be secure under the weaker IND-UE-CPA security definition
(with old notions of directional key updates, as we’ll cover next).

• The Direction of Updatable Encryption Does Matter by Nishimaki (51). This pa-
per makes new distinctions in uni-directional key updates for updatable encryption,
namely backward-leak uni-directional key updates, and introduces a new scheme
based on the LWE problem. This lattice-based c-i UE scheme is also based on a
PKE scheme, which is in turn inspired by Regev’s LWE-based PKE scheme (9). This
scheme is also randIND-UE-CPA secure under the newly established backward-leak
uni-directional key updates.

Let plaintext messages be l bits long, let q be the modulus, and let A ∈ Zm×n
q

be a random parity-check matrix in the LWE problem (for the Regev cryptosystem
variant). Ciphertexts are n+ l elements in Zq. Update tokens are (nη×n)+(m×n)
elements in Zq, where η is ⌈log2 q⌉. Although the size of the update token is quadratic
in the ciphertext size, the hidden constant is still smaller than in TDUE.

Similar to the previous paper, the main difference with TDUE is the ‘packing’ func-
tionality.

• Improving Speed and Security in Updatable Encryption Schemes by Boneh et al.
(6). This paper introduces a new security notion of compactness for c-d UE and
two new updatable encryption schemes, the first of which relies solely on symmetric
cryptographic primitives, while the second is based on the Ring-LWE problem. The
authors claim a 200x speedup over previous elliptic curve-based schemes for the
Ring-LWE based scheme.

The first scheme has extremely high encryption throughput approaching the perfor-
mance of AES, and relies entirely on symmetric cryptographic primitives. Decryption
throughput is higher for re-encryptions (updates) fewer than 50, after which the sec-
ond scheme takes the lead.

Similarly to TDUE, the second scheme is also considered post-quantum because its
hardness relies on LWE. A notable asset over TDUE is that the second scheme
supports a (nearly) unlimited number of updates. Compared to TDUE, the scheme
is also more practical for larger plaintext messages, because of the relatively small
ciphertext expansion of 19% at the lowest (the expansion is dependent on the modulus
used). However, the second scheme is only proven to be secure under slightly loosened
security definitions, namely a weaker version of the re-encryption (update) oracle in
the security games.

TDUE differs from these schemes in that it is based on a public-key encryption
scheme, and that it supports a packing functionality that allows for encrypting mul-
tiple messages in a single ciphertext.
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6
Vesper

This thesis builds on the work of Franschman (42), who introduces Vesper, a non-interactive
zero-knowledge proof system (specifically, a zk-SNARK). The construction is inspired by
Groth16 (43), but improves upon it by eliminating the need for a trusted setup phase.
Additionally, Vesper replaces elliptic curve commitments with the Regev encryption scheme
(9), making it suitable for post-quantum cryptography.

Proof generation. At its core, a Vesper prover seeks to demonstrate knowledge of a
secret s such that t = As + e for some public t and A, which is an instance of the
LWE problem. The prover processes the corresponding arithmetic circuit, converting it
into an R1CS and then a QAP. Verification of the QAP is performed using the equation
Ls(x) ·Rs(x)−Os(x) = H(x) · T (x) (see Equation 3.14).

Both sides of this equation are encrypted using Regev’s encryption scheme (9), which
is IND-CPA secure and additively homomorphic. Let [·]R denote the Regev encryption
function. The prover computes:

Left = [Ls(x) ·Rs(x)−Os(x)]R (6.1)

Right = [H(x) · T (x)]R . (6.2)

After encrypting both sides, the prover signs the encrypted QAP with ML-DSA, ensuring
integrity and authenticity of the proof.

Proof verification. The verifier checks that the encrypted left-hand side equals the
encrypted right-hand side, i.e., Left = Right. The signature is also verified to confirm the
proof’s origin and integrity.

Performance. The proof size is determined by the size of Left and Right, and by the
expansion factor of the Regev encryption scheme. Both sides are single scalar values, and
the encryption expands each to a ciphertext of size n (the dimension of the LWE instance
for Regev). Franschman reports a constant proof size of 512 bytes, and claims a reduction
to 128 bytes using hexadecimal representation—likely by hashing both sides of the equation
to 64 bytes each. Further research is needed to assess the security of this optimization.
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6.1 Alternative zk-SNARKS

Other post-quantum zk-SNARKs exist, though they are generally less efficient or practical
than Groth16. Alternatives are based on cryptographic hash functions (52) (53) or lattice-
based cryptography (54) (55). Two notable lattice-based zk-SNARKs are:

• (54) presents a lattice-based zk-SNARK with a proof size of around 16.4 KB (for an
NP relation of size 220) and a verification time of about 1.5 seconds. Compared to
Groth16, the proof size is 131 times larger, but proof generation and verification are
1.2 and 2.8 times faster, respectively. At an estimated 128-bit security level, setup
takes 2240 seconds, proof generation 68 seconds, and the CRS size is 5.3 GB.

• (55) introduces a zk-SNARK construction based on LWE. For a security parameter
λ = 162, the proof size is 0.64 MB, with average proof generation time of 53.6
seconds and verification time of 2.28 milliseconds. The setup phase takes 167 seconds,
generating a CRS of 8.36 MB. Performance was evaluated on a single-threaded Intel
Core i7-4770K CPU at 3.50 GHz, running Debian (kernel version 4.9.110).

While these alternatives show promising performance characteristics, they remain less
practical than pre-quantum zk-SNARKs or the Vesper protocol combined with ML-DSA.
Moreover, Vesper has a complete implementation ready for integration into Hyperledger
Fabric.
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7
Blockchain

In this section we briefly review blockchains, Hyperledger Fabric, and Fabric Private Chain-
code. These technologies are used to develop the secure blockchain modules.

7.1 Blockchains

Blockchain technology enables secure transmission and storage through a decentralized and
distributed database system. The system aims to provide transparency, decentralization
and immutability, by employing various cryptographic protocols. However, the specific
protocols may vary across different blockchain implementations and the aforementioned
qualities may be present in varying degrees. The database ledger keeps track of a complete
history of all exchanges, or transactions, between users on the network without central
authority. This history is divided into blocks, collections of transaction records, which are
linked via cryptographic hashes. Consensus mechanisms, which vary across blockchains,
validate and agree upon the contents of each subsequent block that is recorded. Choice of
consensus mechanism influences the performance and security of the system.

Blockchains are generally divided into two categories: permissionless (public) and per-
missioned blockchains. Notable examples of permissionless blockchains include Bitcoin (56)
and Ethereum (57), where consensus is reached through protocols such as Proof-of-Work
(PoW) and Proof-of-Stake (PoS). Anyone can join a permissionless blockchain network,
which may be unsuitable for enterprise environments. Unlike permissionless blockchains,
permissioned blockchains require every user in the network to be authenticated, restricting
access to identifiable participants. Enterprise blockchain applications also benefit from
higher transaction throughput and lower latency of transaction confirmation. Such perfor-
mance benefits are more easily achieved in permissioned blockchains, because the require-
ments for consensus are less stringent than in permissionless blockchains.

A permissioned blockchain network run by a pre-selected group of organizations is known
as a consortium blockchain, whereas a permissioned blockchain run by a single organization
is referred to as a private blockchain.
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7.2 Hyperledger Fabric

Hyperledger Fabric (HLF), also referred to as just Fabric, is a scalable, open-source, per-
missioned blockchain platform. HLF allows multiple organizations (and their clients) to
participate in a distributed ledger network of nodes. Each node, also referred to as peer in
the context of HLF, keeps a copy of the ledger containing all interactions, or transactions,
between parties. A transaction invokes an application called smart contract, or chaincode,
to interact with the ledger.

Chaincode is a program that defines the rules for how transactions are processed and
validated. In HLF, chaincode is written in Go, Java, or JavaScript, and functions as a
distributed application that runs on the blockchain network. HLF follows an execute-
order-validate architecture, where transactions are first executed by endorsing peers, then
ordered by a consensus mechanism, and finally validated by all peers in the network. This
architecture allows for greater flexibility and scalability compared to traditional blockchain
systems (order-execute), as it separates the execution of transactions from their ordering
and validation.

HLF supports the concept of channels, which are private sub-networks within the larger
blockchain network. Channels allow a subset of participants to have their own private
ledger, enabling confidential transactions between specific parties. Alternative approaches
to achieving privacy in HLF include private data collections, which allow for sharing of
sensitive data among a subset of participants without exposing it to the entire network.
Traditionally, confidential transactions may be achieved through encryption or ZKPs. The
counterargument is that encrypted data is still visible to all peers in the network (which
might be a problem in case of sensitive data), and ZKPs are computationally expensive.
A simple overview of the HLF architecture is shown in Figure 7.1.

P

C

CC

OAC

Blockchain Network

Figure 7.1: Simplified Hyperledger Fabric architecture overview (AC = client, CC = chain-
code, C = channel, O = orderer). The client interacts with all peers, which execute chaincode
and communicate with the orderer. In practice, the architecture supports multiple clients,
channels, peers and orderers.

Being a permissioned blockchain, HLF requires some form of identity management. Iden-
tities are distributed by a Certificate Authority (CA), which is a trusted authority that
issues digital certificates to participants. These certificates are based on the X.509 stan-
dard (58), which is widely used in public key infrastructure (PKI) systems. An X.509
certificate contains a public key, the identity of the participant, and a digital signature
from the issuing authority. By default, the digital signatures in HLF are generated using
the ECDSA algorithm, which is vulnerable to quantum attacks. After receiving an identity
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certificate, a participant can be added to the network by a Membership Service Provider
(MSP).

In conclusion, in order to strengthen the security of HLF against quantum attacks, it is
necessary to replace the ECDSA signatures with post-quantum cryptographic primitives.
This can be achieved by revisiting the implementation of the CA, and any peers that
require certificate verification.

7.3 Fabric Private Chaincode

HLF, through its inherently transparent nature, does not grant privacy of transactions.
All transactions are executed over all peers in the network, and as a consequence the ap-
plication state is not kept private. Hyperledger Fabric Private Chaincode (FPC) mitigates
this problem by executing code in a Trusted Execution Environment (TEE) using Intel
Software Guard Extensions (SGX). The TEE is also referred to as a secure enclave. By
leveraging Intel SGX, the privacy of chaincode data and computation is concealed from
executing peers. Any chaincode can now be executed in a secure enclave and any data can
now be optionally encrypted (through SGX) before storage on the ledger. This concept
was originally proposed by Brandenburger et al. (59). The paper covers the challenges as-
sociated with implementing TEEs for HLF and proposes the architecture currently known
as FPC. Figure 7.2 shows a simplified architecture of FPC for a single peer.

Input

Peer

TEE Outputvisible visibleencrypt decrypt

confidential execution

Figure 7.2: Simplified architecture of Fabric Private Chaincode (FPC) execution for a single
peer. The chaincode is executed in a TEE, which ensures that the application state is kept
private from the executing peer.

Note that a caveat of using FPC is that it requires all peers in the network to have
SGX-compatible hardware. This may not be desirable or feasible in all scenarios. Another
point to consider is that FPC does not match the performance of regular chaincode, as the
overhead can be significant. For submit transactions (which entail encryption and storage
of data on the ledger), the transaction throughput for FPC can range from 0.55x to 0.95x
that of the native execution (59). The trade-off between performance and confidentiality
of the application state is a key consideration when using FPC.

Fully Homomorphic Encryption. As an alternative to FPC, fully homomorphic en-
cryption (FHE) can be used to achieve similar results, as it allows for computations on
encrypted data without revealing the plaintext. The main disadvantage of FHE is that it
is computationally expensive, and the performance overhead can be significant.
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Design

We propose a quantum-resistant blockchain solution for secure data communication and
storage by extending HLF with three modules: digital signing, zero-knowledge proofs, and
updatable encryption. This section details the high-level design of these three blockchain
modules for HLF and the structures in place to support them. These modules will provide
a fundamental framework for post-quantum secure communication and storage on HLF.
Implementation details are covered in Chapter 9.

We’ll first provide a general outline of an interaction flow, followed by a description of
the client application, the middleware server, and finally the chaincode.

8.1 Interaction Flow

Interactions with the HLF network are initiated by a user client, which communicates
with a middleware server. The middleware server processes the user’s request and relays
it to a peer node in the HLF network. The peer node consequently executes the requested
chaincode function. To ensure the security and privacy of these operations, the design
makes use of FPC, which allows for private execution of chaincode. The application state
is kept private from the executing peers, ensuring that sensitive data remains confidential.
A simplified flow diagram of an example user request is shown in Figure 8.1.

8.2 Client

The client is responsible for all off-chain functionalities. The client must be able to perform
the following operations:

• Generate key pairs for digital signing and updatable encryption.

• Retrieve ciphertexts from the middleware server.

• Generate update tokens for updatable encryption.

• Decrypt ciphertexts with the private key.

• Sign messages with the private key.

• Encrypt plaintexts into ciphertexts.
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      Middleware   User   HLF

Return result

Send invoke request

Return result

Invoke

      Middleware   User   HLF

Figure 8.1: Simplified flow diagram of a user request

• Generate zk-SNARK proofs.

• Send requests to the middleware server with the relevant data (e.g. signatures,
ciphertexts, proofs).

The client can be implemented in any programming language, as long as it can perform
the above operations and send HTTP requests to the middleware server. As this thesis is
mostly focused on the design and implementation of the chaincode, we do only provide a
simple implementation of the client. UI/UX considerations are not covered in this thesis,
but future work may consider implementing a user-friendly client with a graphical interface.

8.3 Middleware

The middleware server acts as an intermediary between the user client and the HLF net-
work. The middleware server is solely responsible for parsing the user’s request and for-
warding it to the HLF network. This means that the middleware enforces a format for
the user’s request. Any malformed request will result in a failure message being returned
to the user. Requests will be POST requests, with the request body containing a JSON
object.

All requests, including the respective parameters, are sent to the middleware in plain.
The middleware server must be trusted with any plaintext data sent by the user. Extra
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considerations must be made to ensure that the middleware server is secure. Ideally, the
middleware server is self-hosted or hosted by a trusted party. The server should also be
secured with HTTPS to prevent eavesdropping of the user’s request.

8.4 Chaincode

All chaincode interactions are executed using FPC. The chaincode for all three modules is
present in the same FPC chaincode package, which is deployed on the HLF network. The
chaincode is responsible for handling the following functionalities:

• Digital signing: verifying signatures and their respective messages.

• Zero-knowledge proof verification: verifying zk-SNARK proofs and storing their
signatures on the ledger.

• Updatable encryption: storing ciphertexts, updating ciphertexts with update to-
kens, and retrieving ciphertexts.

8.4.1 Digital Signing

We propose to implement a contract to verify digital signatures on HLF. This will allow
contracts to verify the integrity and authenticity of transactions. Concretely, the following
functionalities have to be present:

• Off-chain generation of key pairs and signatures (for arbitrary messages).

• On-chain verification of signatures (and their respective messages).

We implement ML-DSA (4) as the digital signature scheme for this module. This algo-
rithm has been standardized by NIST as FIPS204, and has passed extensive cryptanalysis
and public review.

Aside from the requirements listed above, some considerations must be made regarding
the dissemination of the public key and the verification of signatures. We assume that a
Public Key Infrastructure (PKI) for ML-DSA is in place, where each user is aware of their
own public key and the public keys of other users in the network. Future work may consider
integrating key dissemination/management into HLF’s native public key infrastructure (i.e.
key rotation, key revocation, etc.) to ensure the security of the digital signing module.

Currently, HLF manages identities through X.509 certificates, which are issued by a
Certificate Authority (CA) and can be used to authenticate users in the network. Ide-
ally, these certificates would be implemented with ML-DSA. This way, peers can directly
verify signatures against a user’s public key (identity). The user can then sign arbitrary
messages with their private key, and send the signature and the message to the chaincode
for verification. The chaincode will verify the signature against the public key stored on
the ledger, and return either a "Success" or "Failure" status message. Additionally, a user
must take care to keep their private key secret and never share it with anyone.

Lastly, on-chain signature verification is executed in an SGX enclave, ensuring the mes-
sage is never revealed to the executing peers. This prevents the network from recovering
the potentially sensitive message, while still allowing the chaincode to verify the signature.
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8.4.2 Zero Knowledge Proof

This project builds on top of the Vesper protocol for its zk-SNARKs. The following features
should be present for this protocol to work:

• The same requirements as listed for Digital Signing in Section 8.4.1.

• Off-chain generation of zk-SNARK proofs.

• On-chain verification of zk-SNARK proof.

• On-chain storage of verified signatures of zk-SNARK proofs.

After a user requests their proof from the proof generation server, the user can send
their signed proof to the chaincode through a middleware server as a POST request. This
server parses the request and redirects it to the blockchain, where chaincode will verify
the signature (see previous Section 8.4.1), verify the proof, and store the signature on
the ledger. This allows for a use case where tokens or credentials are distributed via zk-
SNARKs, and subsequently put on the ledger to be verified for any member of the network.
SGX prevents the network from recovering the (sensitive) proof message by masking the
application state from the nodes in the network.

This process is illustrated in Figure 8.2. Importantly, the middleware must be trusted
with the plain proof message. This can be ensured by sending requests exclusively to a
self-hosted (or similarly trusted) middleware server. This is feasible in the context of a
private (consortium) blockchain, where organizations can set up their own middleware and
peer servers.

8.4.3 Updatable Encryption

Lastly, updatable encryption of files is implemented with the following requirements in
mind:

• Off-chain generation of public and secret keys.

• Off-chain encryption of plaintexts into ciphertexts.

• Off-chain decryption of ciphertexts into plaintexts.

• Off-chain generation of update tokens.

• On-chain storage of ciphertexts.

• On-chain updating of ciphertext through update tokens.

All updatable encryption operations are implemented according to Chen et al. (25),
which is based on the hardness of learning with errors (LWE).

The general process for updatable encryption starts with a user and their to-be-encrypted
plaintext message. The user calls KeyGen to generate their key pair (private matrix R1

and public matrix A). The user can then encrypt their message with the public key (via
Encrypt) and decrypt their message with the private key (via Decrypt). Storing ciphertexts
on the ledger is straight-forward: the user sends their ciphertext to the chaincode through
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Figure 8.2: ZKP Generation and Verification process
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a middleware server, and receives either a ledger id to retrieve the ciphertext on success or
a failure message. The ciphertext is stored as a key-value pair in the ledger, where the key
is the ledger ID and the value is the ciphertext. Retrieving ciphertexts from the ledger is
done similarly: the user requests a retrieval using the corresponding ledger ID and receives
either the ciphertext or a failure message. Updating ciphertexts can be done by sending
a request to the chaincode (through middleware) with a ledger ID and relevant update
token.

Note that the middleware server is able to read any ciphertexts and update tokens sent
to the chaincode. This is not a security issue, as the ciphertexts and update tokens by
themselves do not leak any sensitive information (25). Nonetheless, if openly sharing
ciphertexts and update tokens is not desired, an organization can choose to self-host the
middleware server, which would prevent other organizations from having direct access.
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Implementation

This section will discuss the implementation details of three blockchain modules. Chain-
code for FPC is written in C++11. The middleware is written in Go. These languages are
natively supported by FPC and are available in the default Docker development container,
following the official installation and setup guide. Using languages already present in the
container reduces dependencies and simplifies the setup process for users. This avoids the
need to install additional languages or tools in the container. A guide for setting up and
installing the modules can be found in the Appendix 12.1.

9.1 Client

Implementations of client-side operations for ML-DSA and Vesper are available from prior
work (60, 61). However, Chen et al. (25) do not provide an implementation of the Updat-
able Encryption scheme. The paper also does not provide specific examples for parameter
selection. We therefore implement only the required client-side operations for TDUE, and
rely on the existing implementations for ML-DSA and Vesper.

9.1.1 ML-DSA Client

Pseudocode for client-side ML-DSA operations is given in Section 4.4 in Algorithm 3.

9.1.2 Vesper Client

Simplified pseudocode for client-side Vesper operations is given in Algorithm 6. This
pseudocode only shows the Vesper parts of the proof generation and verification, and
omits the ML-DSA signature generation and verification. It also omits the details of R1CS
and QAP generation, which are given in detail in (42).

9.1.3 TDUE Client

We use the same notation and parameter names as in Section 5. For our implementation,
q is a power of 2, giving exactly k = log2 q. This makes the LWE trapdoor inversion
easier to implement (refer to Section 3.2.1). We implement a simple version of the TDUE
scheme and use the ‘lattice-estimator’ tool (62) to estimate the parameters for the scheme.
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Algorithm 6 Vesper Client Pseudocode
1: function generateProof(x, w) ▷ Statement and witness resp.
2: (A,B,C) ← Vesper.GenR1CS(x)
3: qap ← Vesper.GenQAP(A,B,C,w)
4: (left, right) ← qap
5: proof ← (Vesper.RegevEnc(left), Vesper.RegevEnc(right))
6: return proof
7: end function
8: function verifyProof(proof) ▷ Used alongside ML-DSA
9: proofIsValid ← two halves of proof are equal

10: return proofIsValid
11: end function

This tool estimates the parameters for the scheme based on the desired security level.
We treat the ciphertext as an LWE sample of size m̄ + 2nk. The tool estimates the
parameters m̄ + 2nk = 571, αq = 1.3 and q = 210 to have a conjectured security level
of 128 bits (equivalent to AES-128). An in-depth study has to be done to determine the
actual security guarantees these parameters provide. Our TDUE parameters for multiple
security levels are shown in Table 9.1. All parameter sets are chosen to encrypt messages
of around 200 bits. We vary the m̄ dimension to achieve this.

Parameter 80-bit 128-bit 192-bit

n (lattice dimension) 16 20 25

k (lattice dimension) 8 10 10

m̄ (lattice dimension) 128 171 270

q (modulus) 28 210 210

αq (error std. dev.) > 0.5 > 1.3 > 1.3

Table 9.1: TDUE parameters for different security levels.

We provide a static C++ library for the TDUE scheme, which is used by the client to
generate key pairs, encrypt/decrypt messages, and generate update tokens. The code uses
the Eigen library (63) internally for linear algebra operations and data structures. We
omit tag matrices from the implementation, but do provide placeholders for them in the
code. The TDUE library is a closely implemented version of the pseudocode given in
Figure 5. We refer to the client-side TDUE functions as keygen, encrypt, decrypt, tokengen,
and update1.

The trapdoor functions Invert and SampleD are implemented as private functions in the
library. It must be noted that these functions are implemented rather naively and are
not optimized for performance. Future work may include optimizing these functions, for
example, by incorporating (28) or (29).
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Message encoding. We implement the function the bitstring message encoding function
encode : {0, 1}nk → Λ(Gt) as a simple function that takes an array of bytes and greedily
packs the bits into a vector of integers modulo q. Bytes are 8 bits long, while integers
modulo q are k bits long. Due to the arbitrary nature of k, we require the message length
to be less than or equal to nk ·k bits. Any leftover bits are padded with zeros. For example,
we can visualize encoding two (8-bit) bytes into two 10-bit numbers as follows:

[1010 1100] [0000 1111]→ [1010 1100 00] [0011 1100 00] (9.1)

Note how the last four bits are padded with zeros. Decoding is the reverse operation,
which takes a vector of integers modulo q and unpacks the bits into bytes.

Randomness. TDUE requires a lot of random number generation. Specifically:

• keygen uses randomness to sample A0 ∈ Zn×m̄
q with uniform distribution and sample

R1,R2 ∈ Zm̄×nk with some discrete gaussian distribution,

• encrypt borrows randomness to generate error vectors with discrete gaussian distri-
bution,

• tokengen employs SampleD to sample vectors (or entire matrices in our case) with
some discrete gaussian distribution.

In our implementation, we borrow secure randomness from Linux’s /dev/urandom to seed
multiple Mersenne Twister pseudo-random number generators (PRNGs), which are used
to sample both uniformly and with discrete gaussian distribution.

9.2 Middleware

The middleware is a simple Go HTTP server that acts as an interface between clients and
the FPC chaincode. Table 9.2 shows the available endpoints.

Endpoint Method Expected req. body (JSON)
/verifySig POST {"sig": ..., "msg": ...,

"pk": ..., "ver": ...}
/putVerificationResult POST {"sig": ..., "msg": ...,

"pk": ..., "ver": ...}
/getVerificationResult POST {"sig": ...}
/putCiphertext POST {"ciphertext": ...}
/getCiphertext POST {"cipherId": ...}
/updateCipher POST {"cipherId": ..., "token":

..., "ver": ...}

Table 9.2: Middleware API Endpoints

All endpoints validate required fields and forward requests to the appropriate chaincode
functions via the Fabric Private Chaincode SDK.
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9.3 Chaincode

Requirements for developing the chaincode are:

• Docker, for the FPC development container, which includes the C++ compiler and
CMake.

• The reference implementation provided by the original ‘CRYSTALS-Dilithium’ paper
by Ducas et al. (3), available at (61). A static library of the implementation is
automatically downloaded, built, and included by the CMake file when building the
chaincode.

contract/
|-- CMakeLists.txt
|-- Makefile
|-- test.sh
|-- client_app/
| |-- CMakeLists.txt
| |-- client_app.go
| ‘-- client_app.h
|-- src/

|-- b64.cpp
|-- b64.h
|-- ml_dsa_cc.cpp
|-- tdue.cpp
|-- tdue.h
|-- verification.cpp
‘-- verification.h

Figure 9.1: Directory structure of the chaincode project

Figure 9.1 shows the directory structure of the project. The src/ directory contains the
main chaincode implementation, which is split into several files for clarity and modularity.
The Makefile in the root directory is used to call CMake to build the chaincode and
the client application. The CMakeLists.txt file automatically clones and builds the ML-
DSA library, and compiles the source files to a static library. This project uses base-64
encoding to import and export data, and to store data on the ledger. The code for base-64
encoding/decoding is in b64.cpp. The test.sh file is a simple script to test the chaincode
locally, which is useful for development and debugging purposes.

All chaincode functions have access to the ledger. In our pseudocode, we represent the
ledger as a key-value store, where data can be retrieved by key.

9.3.1 Digital Signing

Pseudocode for all ML-DSA operations is given in Section 4.4 in Algorithm 3. As far as we
know, there are no publically available audited implementations of ML-DSA at the time
of writing. We use the reference implementation provided by the original CRYSTALS-
Dilithium paper by Ducas et al. (3), which is updated to adhere to the latest standards
(4). Specifically, we use the ‘dilithium’ GitHub repository published under ‘pq-crystals’
(61) to implement ML-DSA in our smart contract. The repository offers both a reference
implementation and an avx2 vector accelerated implementation, which improves the effi-
ciency of the algorithm, as confirmed in Section 10. Unfortunately, FPC does not support
vector acceleration. The chaincode thus uses the slightly slower reference implementation.
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The enclave also doesn’t support shared libraries, so the ‘dilithium’ code is built and im-
ported as a static library. This isn’t an option made directly available by the original code,
but is a simple change to the Makefile.

The chaincode pseudocode for ML-DSA is given in Algorithm 7. The functions putVeri-
ficationResult1 and getVerificationResult are used in tandem with the ZKP verification pro-
cess, which is described in the next section.

Algorithm 7 ML-DSA Chaincode Functions
1: function verifySig(sig, msg, pk, ver)
2: return Dilithium.Verify(sig, msg, pk, ver)
3: end function
4: function putVerificationResult1(sig, msg, pk, ver)
5: result ← verifySig(sig, msg, pk, ver)
6: if result = true then
7: ledger[sig] ← true
8: end if
9: return result

10: end function
11: function getVerificationResult(sig)
12: return ledger[sig]
13: end function

9.3.2 Zero Knowledge Proof

Franschman (42) provides a simple implementation for proof generation, verification, and
simple code for middleware and chaincode. We build on top of the code for proof gener-
ation and verification, which we leave mostly untouched, but replace the middleware and
chaincode to better suit our own requirements. The proof generation runs on a (local)
Python server, which can be queried to retrieve a proof for a fixed statement and witness.
The proof is encoded as a base-64 string. The public key to sign the proof is sent along.

Verifying the proof is straightforward: we verify the signature of the proof using the
ML-DSA chaincode, and then verify the proof by simply comparing both halves of the
proof. We reimplement this in the chaincode. We therefore extend putVerificationResult1
to include proof verification capabilities. The updated function is given in Algorithm 8.

9.3.3 Updatable Encryption

The chaincode exposes the below functions for updatable encryption. Note that the version
parameter is used solely to select the appropriate TDUE parameter set for the update,
which determines the required memory allocation.

The updatable encryption functions in the chaincode are written in pure C++ by encod-
ing vectors and matrices as arrays. The chaincode re-implements the update1(cipher, token)
function without the use of the Eigen library. This reduces the dependencies of the chain-
code and also avoids having to include the Eigen library in the FPC development container.
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Algorithm 8 Updated ZKP Verification Function
14: function putVerificationResult2(sig, proof, pk, ver)
15: result ← verifySig(sig, proof, pk, ver)
16: proofIsValid ← verifyProof(proof)
17: if result = true and proofIsValid = true then
18: ledger[sig] ← true
19: return accept
20: end if
21: return reject
22: end function

Algorithm 9 Updatable Encryption Chaincode Functions
1: function putCiphertext(cipher)
2: cipherId ← Hash(cipher)
3: ledger[cipherId] ← cipher
4: return cipherId
5: end function
6: function getCiphertext(cipherId)
7: return ledger[cipherId]
8: end function
9: function update2(cipherId, token, version)

10: cipher ← ledger[cipherId]
11: cipher’ ← applyUpdate(cipher, token, version)
12: ledger[cipherId] ← cipher’
13: end function
14: function applyUpdate(cipher, token, version) ▷ Version for mem. allocation
15: (X00,X10,X01,X11,X02,X12,b0)← parse token
16: [ba | bb | bc]← parse cipher
17: b′

a ← ba ·X00 + bb ·X10

18: b′
b ← ba ·X01 + bb ·X11

19: b′
c ← ba ·X02 + bb ·X12 + bc

20: b′ ← [b′
a | b′

b | b′
c]

21: return b′ + b0

22: end function
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The update2(cipher, token) function performs a single matrix multiplication and addition,
which is simple enough to implement without the use of a library. In practice, the matrix
multiplication is broken down into three independent matrix multiplications to save on
memory usage and computational overhead. Chen et al. (25) describe a token update as
effectively performing the following calculation (omitting the old and new tag matrices):

TDUE.Update(M,b0,b) = bt ·M+ bt
0 (9.2)

where M is the key-switching matrix, b0 is an encryption of the zero message using the new
key and serves as a re-randomization of the secret s, and b = [ba|bb|bc] ∈ Zm̄+nk+nk

q is the
old ciphertext. The resulting ciphertext is a vector of the form b′ = [b′

a|b′
b|b′

c] ∈ Zm̄+nk+nk
q .

M can be represented as a matrix of the form:

M =

 X00 X01 X02

X10 X11 X12

0 0 I

 (9.3)

where I is the identity matrix and the Xij matrices are the sampled matrices from the
token generation process. It makes sense to exclusively consider the first two rows of M
when sending the token over the network, as the third row doesn’t contain any information.
The matrix multiplication in 9.2 is performed as follows:

b′
a = ba ·X00 + bb ·X10 (9.4)

b′
b = ba ·X01 + bb ·X11 (9.5)

b′
c = ba ·X02 + bb ·X12 + bc (9.6)

b0 is added element-wise to the resulting ciphertext vector b′ to complete the update.

Token encoding. In practice, the update token is sent as a base-64 encoded string of
the Xij matrices concatenated by the b0 vector. Each element is stored as a 32-bit integer
(which is suboptimal, because an element in Zq only requires k = ⌈log q⌉ bits), and the
structures are flattened into a single array. The array is base-64 encoded, which, in the
worst case, increases the size of the token by a factor of 4/3. This token can get quite
large. For convenience, we refer to the raw, optimal packing as the optimal encoding and we
refer to the base-64 encoded, suboptimally packed token as the base-64 encoding. Future
work may consider replacing base-64 encoding with a more efficient network transmission
format, such as Protocol Buffers, to reduce the size of the update token, although this might
not be feasible without major changes to the enclave structure. Using the parameters in
Table 9.1, the size of the base-64 encoded update token is approximately 1 MB. Adding a
tag matrix would not drastically increase the size of the update token, as the tag matrix
can theoretically be generated from a seed using a pseudo-random generator.

Key storage. Recall that the public key is a matrix A ∈ Zn×m
q and that the secret

key is a matrix R1 ∈ Zm̄×nk. In theory, this would imply storing n ×m elements in Zq

and m̄ × nk elements in Z for the public and secret key, respectively. In practice, we can
trivially improve on this by trading memory for resampling overhead. We can instead
store A0, R1, and R2 as a 256-bit seed to a pseudo-random generator, which generates the
matrices on the fly. Aside from the sampling overhead, the public key will also incur some
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computational overhead because of the two additional matrix multiplications −A0R1 and
−A0R2.

When the overhead for sampling or the matrix multiplications is not desired, the keys
can be stored locally in their raw binary form, because the matrices don’t require network-
friendly encoding (they are never sent over the network).

Handling large update tokens. The default parameters for the enclave cause the
enclave to crash from a buffer overflow when trying to process large update tokens (> 100
KB). The obvious first step is to increase the heap size of the enclave, because the update
token size exceeds the default heap size. Although this is a step towards the right direction,
it does not solve the problem. The enclave overflows when deserializing the (arguments of
the) query. Unfortunately, we haven’t been able to find a solution to the (buffer overflow)
problem yet. As a temporary fix, we can use smaller (toy) parameter sets, which do not
cause the enclave to crash.
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This section evaluates the performance of the chaincode implementation described in Sec-
tion 9. We focus on two main aspects: how fast operations run and how much data they
produce.

We test four components of our system. First, we measure the ‘dilithium’ library’s
key and signature sizes, and execution time for key generation, signing, and verification.
Second, we measure the execution time of Vesper proof generation and report its proof
sizes. Third, we evaluate the TDUE execution time for all client-side operations (key
generation, encryption, decryption, token generation, and updating) and the sizes of the
ciphertexts and update tokens. Finally, we measure the round-trip time (RTT) for the
chaincode functions putVerificationResult and updateCipher.

10.1 Test Bed

All performance evaluations were run on the same machine with the following specifications:

• CPU: AMD Ryzen 5 2500U (Raven Ridge) with Radeon Vega Mobile Gfx (8) @
2.000GHz, 4 Cores, 8 Threads

• GPU: AMD ATI Radeon Vega Series / Radeon Vega Mobile Series

• RAM: 15613MiB

• OS: Arch Linux x86_64

Note that this machine does not have an Intel CPU. FPC is not natively supported on
this machine, because it requires Intel SGX support. Tests were instead run in a simulated
SGX environment. This is enabled by default by the FPC development container, but can
be explicitly set in the FPC configuration file config.override.mk through the following
parameter: SGX_MODE=SIM.

Python programs were run using python version 3.13.3. C++ programs were compiled
using gcc version 15.1.1. Rust programs were compiled using rustc version 1.88.0. Local
(non-container) Go programs were compiled using go version 1.24.4. To further reduce vari-
ance in the benchmarks, we disabled CPU frequency scaling by setting the CPU governor
to ‘performance’ using the cpupower tool (64). Further details regarding the experimental
setup and additional configuration parameters can be found in the Appendix 12.2. All
tests are run single-threaded, unless otherwise specified.
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10.2 ‘dilithium’ evaluation

First, we evaluate the ‘dilithium’ library (61) on its own for its execution time on key
generation, signing, and verification. Furthermore, we summarize the sizes of public keys
and signatures. We do this for three different parameter sets: ML-DSA-44, ML-DSA-65,
and ML-DSA-87. Refer to Section 4 for a description of these parameter sets. Table 10.1
shows the median execution times of the ‘dilithium’ library on our test bed.

Function ML-DSA-44 ML-DSA-65 ML-DSA-87

Keygen median time (µs) 164 298 454

Keygen median time (AVX2) (µs) 80 143 232

Sign median time (µs) 651 1072 1307

Sign median time (AVX2) (µs) 194 316 419

Verify median time (µs) 188 293 485

Verify median time (AVX2) (µs) 81 140 227

Table 10.1: Measured ‘dilithium’ execution times by ML-DSA parameter sets.

Recall that signing for ML-DSA is a rejection sampling process, which can take multiple
rounds of sampling before a valid signature is found. We report the median execution time
rather than the average to better represent typical performance.

Table 10.2 summarizes the sizes of the verifying keys, signing keys, and signatures for
the ML-DSA parameter sets.

Parameter ML-DSA-44 ML-DSA-65 ML-DSA-87 ed25519

Verifying key size (bytes) 1312 1952 2592 32

Signing key size (bytes) 2560 4032 4896 32

Signature size (bytes) 2420 3309 4627 64

Table 10.2: ML-DSA and ECDSA key and signature sizes per parameter set (4) (5).

We can compare this to the Go standard crypto implementation of ECDSA. Specifi-
cally, we use the ‘crypto/ed25519’ package for the ‘ed25519’ curve (65). This makes sense,
because the Hyperledger Fabric framework uses the ‘ed25519’ curve for its ECDSA im-
plementation. We measure the execution time of key generation, signing, and verification
over 10,000 executions of each function. The results are shown in Table 10.3. Relevant
sizes of the keys and signatures are also shown in Table 10.2.

10.3 Vesper evaluation

Vesper is divided into two components: proof generation and proof verification. We omit
a separate evaluation of proof verification, as its performance is nearly identical to that
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Function ed25519

Keygen (ns) 51,725

Sign (ns) 62,160

Verify (ns) 154,619

Table 10.3: Measured ’crypto/ecdsa’ average execution times for ed25519 curve.

of ML-DSA signature verification. The verification process in Vesper consists primarily
of verifying an ML-DSA signature and comparing two byte strings, resulting in negligible
differences in execution time. Refer to Table 10.1 for the performance of ML-DSA signature
verification.

We evaluate the performance of proof generation by randomly generating witnesses and
measuring the average time it takes to generate a proof over 20 executions. Before mea-
suring, we run the setup procedure once to initialize the circuit. Benchmarks were taken
over 4 different parameter sets as defined by Franschman (42). These parameter sets are
conjectured to provide security levels of 80, 128, 192, and 256 bits (we include 256-bit
for continuity). Table 10.4 shows the concrete parameters for each security level. We use
Franschman’s Vesper implementation (60) to generate the proofs. The results are reported
in Table 10.5. The number of runs for the 256-bit security level was reduced to 5, due to
the lengthy execution times.

Parameter 80-bit 128-bit 192-bit 256-bit

n (lattice dimension) 4 6 9 12

g (order) 701 701 701 701

q (modulo) 28 28 28 28

Table 10.4: Vesper parameters by conjectured security levels.

Function 80-bit 128-bit 192-bit 256-bit

Proof generation (s) 0.4871 2.8107 32.6992 249.6747

Table 10.5: Average execution time for 1000 Vesper proof generations by parameter set.

In order to illustrate the performance difference between Vesper and classical zk-SNARKs,
we benchmark Groth16 (43) on the same test bed. We use the ‘groth16’ library (66) imple-
mented in Rust. The library offers three choices of elliptic curves: BLS12-381 for 128-bit
security, MNT4-298 for 80-bit security, and MNT6-298 for 80-bit security (67). Results
are shown in Table 10.6. The library is well optimized for multiple CPU cores, so we run
the benchmarks both with a dedicated CPU core and with no CPU affinity set (allowing
the process to use all available cores as scheduled by the OS).
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Function BLS12-381 MNT4-298 MNT6-298

Proof generation single (s) 49.489 45.331 86.708

Proof generation multi (s) 16.360 15.823 28.532

Proof verification single (µs) 8334 8835 17,553

Proof verification multi (µs) 8124 8193 15,305

Table 10.6: Average execution times for Groth16. Proof generation times are reported for
5 executions, while proof verification times are reported for 100 executions. Both single core
and multiple core execution times are reported.

Groth16 also features constant proof size. Vesper proofs are 128 bytes, while Groth16
proofs consist of 2 elements in G1 and 1 element in G2, where G means the elliptic curve
group. Groth16 proof sizes for three elliptic curves are summarized in Table 10.7.

Parameter Vesper BLS12-381 MNT4-298 MNT6-298

Proof size (bytes) 128 192 152 190

Table 10.7: Proof sizes for Vesper and three elliptic curves for Groth16 (BLS12-381, MNT4-
298, MNT6-298).

10.4 TDUE evaluation

In this section, we evaluate the performance of our TDUE client implementation. We
measure the time it takes to generate a key pair, encrypt a message, decrypt a message,
generate an update token, and (locally) update a ciphertext. We test three different security
levels: 80-bit, 128-bit, and 192-bit.

Parameters for the different security levels were presented in Table 9.1. Corresponding
plaintext, ciphertext, and update token sizes for each security level are shown in Table 10.8.

Some alternative approaches can be taken regarding the storage/representation of the
ciphertext, tokens, and keys. Ciphertexts and update tokens can be stored optimally by
encoding exactly the required number of bits for every element, which is k = ⌈log2(q)⌉ bits
per element in Zq. This gives us a ciphertext size of m · k bits, where m is the number of
elements in the ciphertext (m̄+ 2nk), and an update token size of m · (m̄+ nk) · k.

In our implementation, however, we use base-64 encoding to safely send ciphertexts and
update tokens over the network as strings. We also use 32 bits per element in Zq instead
of the optimal number of bits. This results in a ciphertext size of 4 · (m ·32)/3 bits, and an
update token size of 4 · (m · (m̄+ nk) · 32)/3 bits. This is a trade-off between performance
and storage efficiency.
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Parameter 80-bit 128-bit 192-bit

Plaintext (bits) 128 200 250

Ciphertext optimal (bits) 3072 5710 7700

Ciphertext b64 (bits) 16,384 24,363 32,854

Update token optimal (bits) 789,504 2,124,120 4,011,700

Update token b64 (bits) 4,194,304 9,038,550 23,047,083

Public key seeded (bits) 768 768 768

Public key optimal (bits) 32,768 114,200 192,500

Public key suboptimal (bits) 131,072 365,440 616,000

Private key seeded (bits) 256 256 256

Private key optimal (bits) 131,072 342,000 675,000

Private key suboptimal (bits) 524,288 1,094,400 2,160,000

Table 10.8: TDUE plaintext, ciphertext, token, and key sizes for different security levels.
The sizes for ciphertext and update token are given for both the optimal encoding and our
base-64 encoding. Optimal and suboptimal key sizes refer to the naive implementation (refer
to Section 9.3.3).

As for the keys, when stored naively (but with optimal bit representation), the public
key A ∈ Zn×m

q requires n ·m · k bits, and the private key R1 ∈ Zm̄×nk
q requires m̄ · n · k

bits. With suboptimal bit representation (32-bit integers), this evaluates to n ·m · 32 bits
for the public key and m̄ · n · 32 bits for the private key. However, we can also use 256-bit
PRNG seeds to generate the matrices for the public and private keys. Refer to Sections 5.2
and 9.3.3 for further details.

For each security level, we run 100 iterations of each operation and report the mean
execution time. Execution times are shown in Table 10.9.

Function 80-bit 128-bit 192-bit

Keygen time (µs) 3010 6310 12,837

Encrypt time (µs) 129 197 252

Decrypt time (µs) 55 133 219

Tokengen time (µs) 32,929 126,841 272,912

Update time (µs) 150 480 1347

Table 10.9: Average time for TDUE functions by security level.

The results show that execution time increases with security level, which is expected due
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to the larger parameter sizes required for higher security levels. Both key generation and
token generation take significantly longer than encryption and decryption. Key generation
is largely a process of sampling random values, which might explain the longer execution
time. As for token generation, it relies on the SampleD function to invert an SIS instance,
which is computationally expensive (refer to Section 5.2). This is further exacerbated by
the naive SampleD implementation, and the fact that the algorithm requires three calls to
the trapdoor function.

As far as we know, there are no standardized or widely used updatable encryption
schemes at the time of writing. Therefore, it is difficult to compare these benchmarks
to an established community standard. In order to provide some anchor for comparison,
we compare the TDUE performance to an alternative LWE-based updatable encryption
scheme, namely the Ring-LWE-based scheme by Boneh et al. (6). To keep results com-
parable, we use a plaintext message size of 256 bits, which is approximately the same as
the 192-bit security level of TDUE (250 bits). We also use their the highest security level
(with smallest ciphertext expansion) of 128-bit security. Each function is run at least 1000
times, and the average execution time is reported. Results are shown in Table 10.10.

Function 128-bit

Keygen time (µs) 90

Encrypt time (µs) 11,377

Decrypt time (µs) 10,854

Tokengen time (µs) 548

Update time (µs) 10,929

Table 10.10: Average time for Ring-LWE based UE scheme by Boneh et al. (6) for highest
security level.

The results show that the TDUE scheme is significantly slower for key generation and
token generation, but faster for encryption, updating, and decryption.

10.5 Chaincode results

For the chaincode, we evaluate the performance of the functions putVerificationResult and
updateCipher. We measure the RTT of these functions from the middleware to the chain-
code and back. We run the chaincode in an FPC development container, which is con-
figured to use the ‘dilithium’ library as described in Section 9. The middleware is run
locally in the same container as the chaincode, and the chaincode is run in a simulated
SGX environment.

We measure the average RTT of putVerificationResult by calling it 50 times for each of the
three ML-DSA parameter sets. The message is a 128-byte Vesper proof, which is constant
across all parameter sets. We also generate a new key pair for each call, and sign the
message with the random key. The RTT excludes the time it takes to generate the keys,
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generate the proof, and sign the message, as these are client-side operations. Results are
reported in Table 10.11.

Function ML-DSA-44 ML-DSA-65 ML-DSA-87

putVerificationResult (µs) 22,848 23,578 25,272

Table 10.11: Average RTT for 50 runs of putVerificationResult by parameter set

We can see that there’s a slight increase in RTT for putVerificationResult with increasing
security level. This is expected, since the execution time of signature verification on its
own also increases with the parameter sets (refer to Table 10.1) Note, however, that the
differences are a magnitude larger than the differences in execution time of the ‘dilithium’
library (refer to Table 10.1). This difference likely comes from overhead in the FPC en-
clave, Hyperledger Fabric transaction processing, or the extra time needed to store larger
signatures on the ledger.

Next, we evaluate the updateCipher function. We were unable to run updateCipher for
the normal parameter sets due to the buffer overflow bug (refer to Section 9.3.3). Instead,
we use a toy parameter set with a smaller token size of around 2.5 KB. The toy parameter
set is not secure and is only used for testing purposes. Table 10.12 shows the parameters
used for the toy parameter set.

Parameter Value

n (lattice dimension) 2

k (lattice dimension) 5

m̄ (lattice dimension) 10

q (modulus) 25

αq (error std. dev.) −

Table 10.12: TDUE toy parameters (not secure).

With these toy parameters, updateCipher is called 50 times with update tokens generated
by the TDUE client. New, random ciphertexts are used for each call, and the average RTT
is measured. We measure an average RTT of 2078 ms. This is significantly higher than the
RTT for putVerificationResult (which is approx. 25 ms for the strictest security parameters),
which is expected due to the larger size of the update token and the complexity of the
update operation. The larger size results in more data that needs to be transmitted,
read, and stored on the ledger. The update operation itself is also implemented rather
inefficiently, as it naively computes the matrix multiplication.
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11
Discussion

In this chapter, we discuss the results of our measurements and future directions for research
and development. We also offer insights into the limitations of our implementation and
propose ways to improve it.

11.1 Contributions

We implemented and benchmarked three modules for signing, zero-knowledge proofs, and
encryption in Hyperledger Fabric. We provide a full TDUE implementation, including the
trapdoor functions, and a chaincode that integrates ML-DSA and zk-SNARKs built using
FPC. We also provide TDUE parameter sets for three levels of conjectured security (80-bit,
128-bit, and 192-bit), although no in-depth analysis has been conducted to determine the
actual security guarantees of these parameters. We hope this implementation can serve as a
starting point for further development of TDUE and its integration into Hyperledger Fabric.
We also propose ways to greatly reduce the size of public and private keys. Although there
are still many points of improvement, the benchmarks for the TDUE library are promising,
with execution times of the main operations in the order of milliseconds for the 192-bit
security level.

Franschman (42) had initiated efforts to implement Vesper for FPC, although these
efforts were not fully realized. Their work did not include ML-DSA verification for the
FPC variant, and chaincode execution was tunneled through a makeshifted communication
channel. We complete their work by implementing Vesper fully for FPC, allowing for the
confidential verification of proofs.

Finally, we implemented ML-DSA signature verification (and storage) in the chaincode.
This implementation supports all three standardized parameter sets (ML-DSA-44, ML-
DSA-65, ML-DSA-87) and works in tandem with the Vesper protocol to provide zero-
knowledge proofs. ML-DSA boasted great results for the chaincode environment, with
RTTs in the order of milliseconds for the verification of signatures.

11.2 Limitations and future work

Identity management. As stated in Section 8.4.1, some form of identity management
is necessary in order for ML-DSA to be effective. A network must know its participants
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11. DISCUSSION

and their public keys. Our current implementation assumes a PKI system is in place. HLF
currently relies on ECDSA for its PKI. To fully arm against quantum attacks, we propose
to use ML-DSA as a replacement for ECDSA in all X.509 certificates. This would entail
changing the certificate generation process (in CAs) to use ML-DSA instead of ECDSA.
The HLF framework would also have to be updated to support ML-DSA signatures in the
certificate verification process.

Replacing cryptographic primitives. Our implementation builds on top of the ex-
isting architecture. Ideally, the cryptographic primitives that we implement should be
available directly in the HLF framework. However, without major changes to the HLF
codebase, it is not easy to replace the elliptic curve cryptographic elements with ML-
DSA. Future work could focus on integrating ML-DSA into the HLF framework, allowing
for a more seamless transition to post-quantum cryptography. Ideally, the framework’s
cryptographic components would be modular and pluggable, enabling ‘plug-and-play’ re-
placement of cryptographic primitives as needed. This would also allow flexible choice of
specific schemes. We can imagine, for example, that a consortium may want to opt for a
different post-quantum signature scheme than ML-DSA, such as the NIST standardized
SLH-DSA (68).

To add to this, there is no need for a network to fully transition to post-quantum cryp-
tography at once. A consortium may choose to use ML-DSA for some of its applications,
while still relying on classical cryptography in others. Pluggable cryptography would more
easily allow for such a hybrid approach.

TDUE implementation. A main point of improvement in our implementation is the
performance of TDUE. Token sizes are very large, which causes issues with the FPC
enclave. Unfortunately, this means we were not able to benchmark the performance of our
main parameter sets. However, the toy parameters already show suboptimal performance
for online (chaincode) operation. This is mainly due to the naiveté of the implementation,
but can also be attributed to the large size of the update tokens (quadratic in the size
of ciphertexts). Additionally, these sizes scale quadratically with the security parameter.
Performance of real-world applications with higher security requirements may suffer from
this. We propose to investigate the issue of large update tokens further, either by optimizing
token generation or by changing the way update tokens are processed in the FPC enclave.
Implementing the ‘packing’ functionality of TDUE (encrypting multiple messages in a
single ciphertext) could also help reduce the relative on-chain runtime.

A further point of improvement for the TDUE implementation, is the (client-side) imple-
mentation of the trapdoor functions. The main bottleneck in the current implementation
is the sampling function, which is evident through the execution time of Tokengen. We
propose to implement a more efficient version of Gaussian sampling, as detailed in (28).

Lastly, the current implementation is missing tag matrix functionality. Although this
should have minor impact on performance, it is still a limitation.
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12
Conclusion

In this thesis, we have explored the integration of post-quantum cryptographic primitives
into Hyperledger Fabric, a prominent permissioned blockchain framework. With fully
fledged quantum computers on the horizon, blockchain systems relying on classical crypto-
graphic algorithms face increasingly serious security threats. Hyperledger Fabric, specifi-
cally, is at risk due to its reliance on the ECDSA algorithm for digital signatures in identity
management1. Our key contribution for Hyperledger Fabric is the integration of ML-DSA,
a post-quantum digital signing algorithm. Additionally, we implement and benchmark two
other important post-quantum primitives: Vesper, a lattice-based zk-SNARK, and TDUE,
a lattice-based updatable encryption scheme. We map out a design for integrating these
primitives into FPC, which provides a secure enclave environment for executing chaincode.

Our implementation of signing relies on the assumption that a public key infrastructure
is in place. Future work could focus on embedding ML-DSA into the Hyperledger Fabric
framework. We also note that the TDUE implementation is not yet optimized for perfor-
mance, and the size of update tokens can be prohibitively large. Despite these limitations,
our benchmarks show promising performance for all three modules.

We hope that this thesis serves as a foundation for future development in securing private
blockchains against quantum threats.

1There has been some community interest in officially adding post-quantum signing to HLF, although
no concrete proposals have been made yet (69).
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Appendix

12.1 Setting up the development environment

The full code base consists of three parts: the chaincode, the middleware application, and
the TDUE library. This section guides the reader through the process of setting up the
development environment for this code base.

Chaincode. Firstly, the FPC development environment must be set up. This is done
by following the instructions in the fabric-private-chaincode repository (70). After
the Docker container is available, our chaincode can be imported into the container. Our
chaincode is available in the fpc-ml-dsa-contract repository (71). We recommend cloning
this repository into the samples/chaincode directory of the container. Further instructions
on how to run the chaincode are available in the repository.

Middleware application. The middleware application also runs in the FPC Docker
container. The middleware is available in the fpc-ml-dsa-application-client reposi-
tory (72). The application should be cloned into the samples/application directory of
the container. In order to run the application, we first need a local deployment. The
samples/deployment/test-network directory contains a guide on how to set up a local
deployment of Hyperledger Fabric. After deployment of the network, the application is
ready to be run. Further instructions on how to run the application are available in the
repository.

Simple web app. A simple web application to interface with the middleware server is
available in the fpc-ml-dsa-web-app repository (73). The web application uses React,
Typescript, and Vite. The web application can be run by following the instructions in the
repository. The interface only provides a simple way to generate key pairs, sign messages,
and send them to the middleware server.

TDUE. The TDUE implementation is available in the TDUE repository (74). The TDUE
library is written in C++ and depends on the Eigen library (63) for linear algebra op-
erations. Further instructions on how to build and use the library are available in the
repository.

12.2 Reducing variance in benchmarks

This section covers the measures that were taken to prevent or reduce variance in bench-
marking the programs in this thesis. All benchmarking in this work was done with the
help of Google’s ‘benchmark’ tool (75). The relevant measures were mostly taken from
guides posted in the corresponding GitHub repository.
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CPU frequency scaling can be a source of noise while running benchmarks. The simple
option to stabilize this noise is to disable the frequency scaling. We used the cpupower
tool to disable frequency scaling as follows:

sudo cpupower frequency-set --governor performance

Further measures to reduce noise from CPU frequency scaling include forcing the same
CPU to be used durig benchmarks and disabling turbo/boost. These measures can be
applied as follows:

echo 0 | sudo tee /sys/devices/system/cpu/cpufreq/boost

taskset -c 0 ./mybenchmark
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