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H I G H L I G H T S

∙ An encoder–decoder framework is presented to separate battery fast and slow dynamics.

∙ The model is made interpretable by integrating physics into loss and architecture.

∙ The latent space maps to quantifiable states without requiring explicit labels.

∙ The model is validated using sparse intermittent cycles for single/multi-cells.
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A B S T R A C T

Developing accurate models for batteries, capturing ageing effects and nonlinear behaviors, is critical for the 

development of efficient and effective performance. Due to the inherent difficulties in developing physics-based 

models, data-driven techniques have been gaining popularity. However, most machine learning methods are black 

boxes, lacking interpretability and requiring large amounts of labeled data. In this paper, we propose a physics-

informed encoder–decoder model that learns from unlabeled data to separate slow-changing battery states, such as 

state of charge (SOC) and state of health (SOH), from fast transient responses, thereby increasing interpretability 

compared to conventional methods. By integrating physics-informed loss functions and modified architectures, 

we map the encoder output to quantifiable battery states, without needing explicit SOC and SOH labels. Our 

proposed approach is validated on a lithium-ion battery ageing dataset capturing dynamic discharge profiles that 

aim to mimic electric vehicle driving profiles. The model is trained and validated on sparse intermittent cycles 

(6 %–7 % of all cycles), accurately estimating SOC and SOH while providing accurate multistep ahead voltage 

predictions across single and multiple-cell based training scenarios.

1. Introduction

As the electric vehicle (EV) market experiences rapid growth and 

the demand for stationary energy storage solutions continues to surge, 

lithium-ion (Li-ion) batteries are emerging as a crucial technology in this 

industry. These batteries offer a higher energy density and extended cy-

cle life. However, batteries experience degradation over their lifetime, 

leading to decreased performance. This degradation results from sev-

eral complex phenomena that occur at the microscale, such as solid 

electrolyte interphase (SEI) formation, lithium plating, and particle frac-

ture. At the macroscopic level, this degradation manifests as decreasing 

capacity and increasing resistance.

Given this degradation behavior of batteries, accurate knowledge 

about their status, such as state of charge (SOC) and state of health 

(SOH), is important for effective control and optimization. However, 

in both battery research and practical applications, the ability to moni-

tor batteries remains confined primarily to measuring current, voltage, 

and temperature. Therefore, relying on mathematical models is essen-

tial to extract valuable insights into battery performance, particularly for 

estimating SOC and SOH. Various approaches are used to estimate a bat-

tery’s behavior, with physics-based, empirical, and data-driven methods 

being prominent.
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1.1. Existing modeling approaches

Physics-based techniques focus on Electrochemical (EC) models, 

which use partial differential equations (PDEs) to offer a deeper under-

standing of battery behavior. The widely-used pseudo-two-dimensional 

(P2D) model, based on principles such as porous electrode theory and 

concentrated solution theory, provides a detailed view of battery dy-

namics [1,2]. The single particle model (SPM) simplifies the electrode 

representation, making it a computationally efficient choice for battery 

modeling [3]. Although offering good performance, these methods re-

quire many parameters to be either measured or estimated from data, 

and involve a high computational cost [4]. Also, it’s worth noting that 

to achieve a comprehensive understanding of battery behavior over 

its lifetime, it is necessary to integrate degradation models with these 

core EC models. Battery degradation can result from various mecha-

nisms, either individually or in combination. While significant progress 

has been made in the development of models to understand individual 

degradation mechanisms within the framework of EC models, such as 

solid–electrolyte interface (SEI) formation [5], lithium plating [6,7], and 

particle fracture [8,9], the intricate interplay between multiple degra-

dation mechanisms remains relatively less accurate [10]. Understanding 

and modeling multiple mechanisms is even more challenging, exacer-

bating the parameterization problem for models built upon multiple 

degradation mechanisms, as emphasized by [11].

Equivalent circuit models (ECM), on the other hand, offer an em-

pirical approach by modeling batteries as a series of resistor–capacitor 

elements, thus capturing the macroscopic behavior of the battery. This 

modeling approach strikes a balance between accuracy and complexity, 

effectively describing battery performance at specific points in its life-

time and under fixed operating conditions. In spite of this, however, ECM 

lacks a microscopic physics foundation, making it incapable of capturing 

the nonlinear and time-varying dependencies of parameters on factors 

like state of charge (SOC), temperature, and current [12]. This limita-

tion greatly constrains ECM’s utility and accuracy over extended periods, 

making it unsuitable for modeling the evolving degradation processes 

that occur over time [13].

To overcome these limitations, data-driven models based on ma-

chine learning (ML) techniques have been proposed due to their ability 

to automate feature extraction and discover complex patterns within 

high-dimensional datasets [14]. ML applications in battery modeling are 

diverse, ranging from estimation of SOC, to health metrics like capac-

ity and internal resistance [15,16]. Although these ML-based methods 

show promising performance, they often rely on supervised learning and 

require labeled data, such as SOC, capacity, or resistance at different 

degradation levels. Obtaining accurate labels is challenging in practical 

scenarios due to dynamic and varying load conditions [17,18].

ML has also been used to develop health-aware battery models 

that simulate battery behavior over its lifetime. For instance, Zhao 

et al. [19] and Hong et al. [20] used recurrent neural networks (RNNs) 

for multistep-ahead voltage prediction and fault diagnosis. However, the 

limited interpretability of these models, acting as black boxes, makes it 

difficult to gain insights into battery states, especially the interplay be-

tween slowly varying charge and degradation dynamics and fast voltage 

dynamics.

1.2. Related work

In recent years, encoder–decoder architecture-based data-driven ap-

proaches have gained popularity for identifying nonlinear dynamical 

systems [21–23]. These models map sequences of past input–output 

data into lower-dimensional latent spaces representing system states. 

The flexibility of these models allows for the incorporation of state-

space structures, which improves interpretability compared to other 

data-driven methods.

Encoder–decoder architectures have been applied to various tasks 

in battery management. For SOC estimation, encoder–decoder models 

have been used to denoise the signals, thereby increasing estimation

accuracy [24]. Furthermore, advanced variants incorporating attention 

mechanisms and bidirectional long short-term memory (LSTM) net-

works have been developed to estimate SOC under complex ambient 

temperature conditions [25,26]. For SOH estimation, encoder–decoder 

models have been used to map battery charging curves to SOH values 

[21]. Encoder–decoder architectures have also been used to predict bat-

teries’ remaining useful life (RUL), assuming labeled capacity data are 

available [27,28]. Despite their widespread usage, a common limitation 

of these encoder–decoder-based approaches is their reliance on explicit 

labels for SOC and SOH.

1.3. Proposed approach and contributions

In this paper, to address the challenges of limited interpretability 

and reliance on labeled data in ML-based battery modeling, we propose 

a physics-informed encoder–decoder model. Our work integrates known 

physical principles into an encoder–decoder model to estimate SOC and 

SOH without explicit labels. By disentangling slowly varying dynamics 

from fast voltage dynamics within the latent space, our model increases 

interpretability and enables accurate state estimation from unlabeled 

data. To the best of the authors’ knowledge, this article provides the 

first attempt at directly leveraging an encoder–decoder model’s ability 

to learn representations that separate slow and fast dynamics in battery 

systems.

Compared to our previous work [29], we further improve the model’s 

interpretability by constructing a physics-guided architecture. Indeed, 

while the data-driven encoder–decoder model proposed in [29] could 

capture slow dynamics and predict multistep-ahead voltage based on 

the encoder output, it could not offer quantifiable state estimates. 

This limitation is addressed in this paper by inducing a mapping of 

the latent representation to measurable battery states. Specifically, by 

incorporating physics-informed loss functions that capture known phys-

ical characteristics of the battery, more interpretable and accurate 

predictions are achieved.

The key contributions of this work are as follows:

• We propose a physics-informed encoder–decoder framework that

separates slow-changing battery states, such as SOC and SOH, 

from fast voltage dynamics, capturing the batteries’ multi-timescale 

behavior. This separation increases interpretability compared to 

conventional machine learning methods that often act as black boxes.

• By integrating physics-guided architecture and physics-informed loss

functions, the encoder–decoder framework directly maps the latent 

space to quantifiable battery states without requiring explicit SOC 

and SOH labels and by just using SOC boundary conditions (BCs). 

This addresses the common problem of the unavailability of labeled 

data.

• The model is trained on sparse, intermittent cycle data, show-

ing that the need for SOC BCs can be considerably reduced. It 

delivers consistent performance across both single-cell and multi-

cell-based training scenarios, accurately estimating SOC and SOH 

while providing reliable voltage predictions multiple steps ahead.

We validate our proposed framework on Stanford’s open-source 

lithium-ion battery ageing dataset, which features dynamic discharge 

profiles designed to mimic EV driving patterns [30]. While laboratory 

data cannot fully capture the complexity of real-world EV operations 

– which include driver-specific behaviors, partial charging/discharging 

cycles, and varying environmental conditions – this dataset offers sev-

eral advantages over traditional constant-current discharge tests [31]. 

The dataset has highly dynamic discharge profiles based on the Urban 

Dynamometer Driving Schedule (UDDS), incorporating both charging 

and discharging segments within cycles, simulating regenerative brak-

ing typical in EVs. Additionally, the drive profiles follow standardized 

urban driving schedules, making the dataset more representative of real-

world EV load profiles compared to simplified constant current testing 

protocols [32,33].
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1.4. Paper organization

This paper is organized as follows: We discuss the importance and 

complexities of general battery multi-timescale modeling in Section 2. 

Data-driven and physics-informed data-driven model constructions are 

discussed in Sections 3 and 4, respectively. The data used for model 

validation is described in Section 5. Section 6 covers model training and 

algorithms. Section 7 presents the results for single and multiple-cell-

based training scenarios. Lastly, Section 8 summarizes conclusions and 

outlines future directions.

2. Multi timescale battery modeling

In the context of lithium-ion batteries, temporal dynamics exhibit dis-

tinct scales. Fast timescale phenomena, encompassing intervals on the 

order of microseconds to a few seconds, are associated with ohmic resis-

tance, charge-transfer processes, and diffusion. On the other hand, the 

state of charge, representing available energy, experiences timescales 

typically spanning several hours, contingent upon charge–discharge 

rates. Conversely, battery degradation is generally a prolonged pro-

cess unfolding over months and years, often dependent on a cumulative 

number of charging and discharging cycles.

Although batteries exhibit dynamics on multiple timescales, for 

modeling purposes, we combine the SOC dynamics and degradation 

processes into a single slow timescale, since both evolve much more 

slowly than the fast electrochemical processes. The concurrent presence 

of fast and slow dynamics in batteries motivates us to consider a general, 

two-time-scale nonlinear system of the form:

Σ ∶

⎧

⎪

⎨

⎪

⎩

̇ 𝜉 𝑓 = 𝜓(𝜉 𝑓 , 𝜉 𝑠, 𝑢, Θ),
̇ 𝜉 𝑠 

= 𝜙(𝜉 𝑓 , 𝜉 𝑠, 𝑢, Θ),
𝑦 = 𝜒(𝜉 𝑓 , 𝜉 𝑠, 𝑢, Θ),

(1)

where 𝜉 ∈ R 

𝑛𝜉 𝑓 𝑛is the fast 𝜉 𝑓  varying state vector and 𝜉 𝑠 is the𝑠 R  

 

 

∈   

slowly varying one associated with SOC and  

 

 degradation. 𝑢 ∈ R 

𝑛𝑢 is a 

controlled 

𝑛input 𝑦 
 vector and 𝑦 ∈ R  

 is a measured output vector. Finally,

Θ ∈ R 

𝑛Θ  is a parameter vector associated with battery characteristics.

Assume ||𝜓|| ≫ ||𝜙|| to distinguish between fast and slow dynamics.

The separation of timescales allows for more efficient and effec-

tive control system design. Fast timescales are often associated with 

local, rapid responses, while slow timescales govern global or long-

term behavior. Control strategies are designed to meet each timescale’s 

unique characteristics and demands. Such multiscale dynamical sys-

tems find relevance across various scientific domains, including chem-

ical, biological, and industrial processes. When an accurate description 

of the system’s dynamics is available, these multi-timescale models 

can be identified and controlled with established techniques such as 

Mori–Zwanzig [34] or singular perturbation theory [35].

However, the modeling and control complexity escalates when pre-

cise equations governing specific dynamics are unavailable. Within 

many such systems, a superposition of multiple timescales occurs, 

rendering the clear separation of these timescales a challenge. This 

phenomenon is particularly relevant to battery systems, notably in the 

context of degradation; indeed, the effect of slowly evolving degradation 

dynamics at the micro level and their impact on macro-level battery be-

havior still remains poorly understood [11]. Consequently, there have 

been limited efforts in the literature to develop battery models explicitly 

designed with multi-timescale separation [36].

Modern machine learning methods, especially those leveraging the 

encoder–decoder approach, attempt to separate multiscale dynamics 

[37]. This neural network architecture finds common application in 

sequence-to-sequence learning tasks, exemplified in significant studies 

such as language translation [38]. Comprising two main components, 

the encoder processes input data, transforming it into a latent represen-

tation that captures essential features. The subsequent step involves the 

decoder exploiting this representation to generate an output sequence.

Fig. 1. Encoder–decoder battery model.

The application of the encoder–decoder structure extends beyond 

language tasks. In molecular dynamics, it has been employed to 

distinguish slow dynamics from fast ones through step-ahead prediction 

in the decoder [37]. Similarly, in the study of fluid flow, this architec-

ture has been applied to learning the temporal evolution of complex fluid 

dynamics [39]. This showcases the broad applicability of the encoder– 

decoder structure in effectively capturing and separating dynamics in 

various domains.

In the following sections, we first describe the data-driven encoder– 

decoder model for separating battery dynamics from previous work. 

Then, we demonstrate how integrating basic physics insights into the 

model improves its interpretability.

3. Data-driven approach

We have previously shown that battery modeling can be success-

fully achieved by building an architecture based on an encoder–decoder 

structure, as shown in Fig. 1 [29]. In this structure, a multi-step ahead 

prediction of the battery voltage is included to ensure that stiff latent 

space generation is avoided [22]. In the remainder of this section, we 

summarize this general structure. Following this, in Section 4, we pro-

vide a specific formulation that integrates physics-based knowledge of 

the    

Our proposed encoder–decoder model is structured to process in-

put/output data from full charge–discharge cycles,1 

      while generating 

estimates of the output. Specifically, the encoder processes a “window” 

of length 𝑛𝑒  

of current (input) and voltage (output) data, denoted as 

𝑈 𝑛[ −𝑘 𝑚] and 𝑌 𝑛[𝑘 𝑚]− 

 , respectively, while the decoder generates  

   

𝑛𝑑 

out-

put estimates, 𝑌 subsc𝑛[𝑘 ript𝑚]+ . The   

  

𝑛 ∈ {1, … , 𝑁} is used to indicate 

that the data is associated to one of the 𝑁 charge–discharge cycles, of 

−length 𝐾 .𝑛  Furthermore, the notations  

 

[𝑘] ∶= [𝑘 − 𝑛𝑒  

, … , 𝑘 − 1] and

[ +𝑘]  

 ∶= [𝑘, … , 𝑘 + 𝑛𝑑 − 1] denote, respectively, a time  

 

window in the past 

and in the future with respect to the generic time instant 𝑘.
The time instants 𝑘 𝑚            

 

∈ {1,… , 𝐾
 

} at which the encoder–decoder is𝑛
evaluated are spaced apart by 𝑛 time-steps,𝑑  thus avoiding redundant 

output predictions and reduce the computational burden, i.e., 𝑘 𝑚+1 

= 

𝑘 𝑚 + 𝑛 ,𝑑   

 

with index 𝑚 ∈ {1, … ,𝑀 𝑑 

}, and 𝑀 𝑑 ∶= ⌊(𝐾 𝑛 

− 𝑛 

 

)∕𝑛 ⌋𝑒 𝑑 

.

Formally, the encoder (Σ 

 

)-decoder (Σ ) based 

 

battery model𝑒 𝑑   can be 

defined through the following set of difference equations:

system within the model.

Σ 𝑒 ∶ 𝑥 𝑛 

[𝑘 𝑚 

] = 𝑔
(

𝑈𝑛[𝑘 𝑚 

] 

− , 𝑌 𝑛 

[𝑘 𝑚 

] 

− , 𝜃 𝑔 

) 

, (2a) 

Σ 𝑑 ∶ 

𝑥 𝑛[𝑘 + 1] = 𝑓 

( 

𝑥 𝑛[𝑘], 𝑢 𝑛 

[𝑘], 𝜃 𝑓 

) 

, 

𝑦̂ 𝑛[𝑘] = ℎ 

( 

𝑥𝑛[𝑘], 𝑢 𝑛 

[𝑘], 𝜃 ℎ 

) 

, 𝑘 ∈ [𝑘 𝑚 

] 

+ .
(2b)

∈ 𝑛
The encoder, parameterised by 𝜃  R 

𝜃  𝑔𝑔  

 

, maps the past data samples 

𝑈 

 

[ −𝑘   

 

]  

 , 𝑌 [𝑘 

 

]− to a battery state 𝑥 

 

[𝑘 

 

] in the late𝑚  model’s𝑛 𝑛 𝑚 𝑛 𝑚  nt space,
𝑛using the static mapping function 𝑔 ∶ R(  𝑢+𝑛 𝑦)×𝑛 𝑒 → R𝑛𝑥   

 

         . For future

1 Each cycle is defined as the combination of a full charge, followed by a full 

discharge.
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Fig. 2. Encoder–decoder battery model with disentangled latent space and modified recurrent neural network with interpretable state updates.

predictions, the decoder uses 𝑥𝑛  

[𝑘 𝑚 

] and “future” samples of the input
+ × ×current 𝑈 ] 𝑛

𝑛[𝑘 trans functio𝑚 ∈ R𝑛 𝑑 𝑛𝑢 . The state ition n 𝑓 ∶ R𝑛𝑥  

   

              

𝑢 → R 

𝑛𝑥  

 

and output function ℎ ∶ R 

𝑛𝑥  

×𝑛𝑢  → R  

 

𝑛𝑦 in the decoder, both parame-
𝑛

terised respectively by 𝜃  

 
𝑛 

𝑓  

𝜃
 

∈ R 

𝑓 and 𝜃 𝜃ℎ , concur to define theℎ ∈  
  R  

     

+multistep ahead voltage predictions as 𝑌 

 𝑛[𝑘𝑚  

] ∈ R  

 

𝑛𝑑 

×𝑛𝑦 . Here 𝜃 

 

,𝑔  𝜃𝑓 
and 𝜃 

 

are the tuneable weights-biases vector associatedℎ   with 𝑔, 𝑓 and

ℎ respectively. For simplicity, when discussing the model as a whole, 

these    

⊤
 parameters are collectively referred to as 𝜃 = [𝜃 

⊤
𝑔 𝜃 

⊤ 𝜃 

⊤] .𝑓 ℎ  

Having provided the architecture of the encoder–decoder model we

present in this paper, we now aim to inform the model with physical 

interpretability. Indeed, the model (2) can already be tuned to accurately 

predict multistep-ahead voltage, with the latent space 𝑥 𝑛 

[𝑘 𝑚 

] capturing

information about the slowly varying SOC and health states [29]. Still, 

this latent space output does not quantify individual battery states, as 

it lacks any inherent mapping to them. Moreover, on the decoder side, 

the learning-based function 𝑓 further complicates the interpretability of 

the decoder dynamics. Solving this issue is the topic of the following 

sections. 

4. Integrating physics into the data-driven approach 

The data-driven approach presented in Section 3 demonstrates the

potential of encoder–decoder models for battery modeling. However, 

the lack of physical interpretability in the learned latent space limits 

our ability to gain insights into the underlying battery dynamics. To 

address this limitation, we propose an integration of basic physics prin-

ciples into the encoder–decoder framework. Our approach involves two 

key modifications:

1. Physics-guided encoder–decoder architecture: We restructure the

model’s architecture to incorporate physically meaningful states 

in the latent space.

2. Physics-informed loss function: We develop a loss function that

enforces physical constraints and encourages the model to learn 

the battery dynamics that align with physical principles. 

While the first modification is an assumption about the latent space 

interpretation, the second one is our key mechanism for aligning the neu-

ral network with our desired interpretation. We thus start by redefining 

the latent state as follows: 

[ ]

𝑥̂ 𝑓,𝑛 

[𝑘𝑥̂ 𝑛[𝑘 ] =  

 

 

𝑚] 4
𝑚 ∈

𝑥̂ [𝑘 ]
  

  

R ,
 𝑠,𝑛   

[

 𝑚 (3)

𝑥̂ 𝑠,𝑛 

[𝑘𝑚 ] =
 ]

 ℎ̂soc,n[  ℎ 

 𝑘 ℎ̂𝑚 

]  cap,n 

[𝑘𝑚 

] ̂ r ,n 

[
 

] ⊤𝑘 𝑚  ,

where 𝑥̂ 𝑓,𝑛[𝑘 𝑚] captures  

  

fast dynamics, while 𝑥̂ 𝑠,𝑛 

[𝑘 𝑚 

] represents slow

dynamics-based states. Each state component is further assumed to 

represent what follows:

• ℎ̂cap,n [𝑘𝑚 ] represents the capacity-based SOH factor, calculated from 

the comparison of the battery’s estimated cycle capacity ( 𝑄̂ act,n 

[𝑘 𝑚 

])
to its initial nominal capacity (𝑄 nom 

), as given by the equation:

𝑄̂ [𝑘 ]
ℎ̂ n 𝑚 

 

]  

 cap,n 

[𝑘 𝑚 =
 act, .
𝑄

 (4)
 nom

As the capacity factor ℎ̂cap,n [𝑘  

 

] is slowly varying, we assume it𝑚   re-

mains constant within a single cycle but may vary across different 

cycles. This is based on the physical knowledge that significant ca-

pacity degradation or recovery, indicative of changes in SOH, does 

not occur within the relatively short duration of a cycle.

• 

 The SOC, denoted as ℎ̂ soc,n 

[𝑘  

 

], is defined as the ratio of the𝑚   remain-

ing charge ( 𝑄̂ 

 cur,n 

[𝑘 𝑚           

 

]) to the current cycle capacity (𝑄̂act,n[𝑘𝑚 

]) of the
battery, as:

𝑄̂ [𝑘
ℎ̂  

 soc,n[
  𝑚𝑘 cur,n ]

𝑚  

 

] = . (5)
𝑄̂act,n [𝑘 𝑚 

] 

• The state ℎ̂ r,n 

[𝑘 captures dynamics not directly linked to SOC or𝑚 ]         

SOH, such as temperature variation or internal resistance that can 

be useful for voltage prediction but not captured by other states. The 

state ℎ̂r ,n[𝑘 𝑚 

] is slowly varying and assumed to remain constant for 

the decoder’s 𝑛𝑑 prediction timesteps.

• The voltage from the previous timestep is used as the fast state

𝑥̂ , 

 

[𝑘  

 

] as it captures𝑓,𝑛 𝑚   rapid changes in battery state due to elec-

trochemical processes and polarization effects. For the first timestep 

in the decoder, this value is the actual measured voltage, while 

predicted values are used for the subsequent steps as follows:

{

𝑦 𝑛 𝑘 − 

 

[ 1], or
𝑥̂

 𝑘
[𝑘

 = 𝑘
 ] =

 f 𝑚 
 𝑓,𝑛 𝑚  

 

(6)
𝑦̂ 𝑛[𝑘 − 1]. for 𝑘 > 𝑘 𝑚

In the following subsections, we detail how this physics-informed 

approach is implemented, starting with the architecture of the encoder– 

decoder model and the physics-informed loss functions used to align the 

model with the meaningful battery states described above.

4.1. Encoder

The encoder function 𝑔 from Eq. (2a) is implemented using a one-

dimensional convolutional neural network (1D-CNN) [40]. The 1D-CNN 

has been shown to effectively extract complex patterns from the longer

time-series data of 𝑈 [𝑘 𝑚 

] 

− and 𝑌 [𝑘 𝑚 

] 

−, and has a lower computational

burden compared to RNNs [14]. To enforce state invariance of ℎ̂ cap,n 

[𝑘 𝑚 

]
as a hard constraint over a cycle, we propose a multistage 1D-CNN

as illustrated in Fig. 3. This multistage 1D-CNN processes data in two

stages: first, it estimates ℎ̂ soc,n[𝑘 𝑚 

] and ℎ̂ r,n[𝑘 𝑚 

], and extracts intermedi-

ate capacity features ( ℎ̃ cap,n 

[𝑘 𝑚 

]) from each batch. In the second stage,

it aggregates ℎ̃ cap,n[𝑘 𝑚] across all batches of a cycle to estimate the

overall capacity-based SOH. This two-stage process is summarized in 

Algorithm 1.

The slowly varying states ℎ̂ 

 

𝑛 [𝑘], ℎ̂ 

 

𝑛 [𝑘] and ℎ̂ 

 

𝑛 estimatedsoc,m cap r,m[𝑘]  by

the encoder are used as initial state values for the decoder model.
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Fig. 3. 1D-CNN based Multistage encoder: first stage convolution with sliding kernel and densely connected layer processes voltage and current data of any batch (𝑚) 

of a cycle data and estimates SOC and intermediate capacity feature. The second-stage encoder processes these intermediate capacity features from all cycle batches 

and estimates a single SOH for a cycle.

Algorithm 1: Multistage 1D-CNN encoder.

Input : 𝑋 1∶ = {𝑈 [𝑘 

 

]− , 𝑌 [𝑘 for  batches 

 

]− }𝑀  all 𝑚 of𝑛, 𝑀 𝑛 𝑚 𝑛 𝑚 𝑚=1
cycle 𝑛

Output: Estimated states 𝑥̂ 𝑛  

 

[𝑘𝑚 

]
Stage 1:

for each batch 𝑚 in cycle 𝑛 do
1. Perform multiple 1D convolutions on 𝑋𝑛,𝑚 

 

.

2. Flatten the output.

3. Apply dense layers to estimate states and intermediate

capacity feature:

[ ]

ℎ̂ soc,n[𝑘 𝑚 

], ℎ̃ cap,n[𝑘 

  𝑚 

], ℎ̂ 

 r,n 

[𝑘 𝑚 

] = 𝑔 1 

(𝑋𝑛,𝑚 , 𝜃 𝑔1 

) (7)

end 

Stage 2:

1. Aggregate ℎ̃cap,n [𝑘𝑚 ] from all batches: 

[ ]

= ̃ [ ] … ̃ ⊤𝐻 cap,𝑛 ℎ cap,n 

𝑘 1 

, , ℎ cap,n  

 

[𝑘𝑀 ]

2. Perform multiple 1D convolutions on 𝐻 cap .,𝑛 

3. Apply dense layers to estimate the overall capacity-based SOH

for the cycle 

ℎ̂ cap,n 

[𝑘 𝑚 

] = 𝑔2  

(𝐻 cap , 𝜃 (8),𝑛 𝑔2 

) 

4.2. Decoder

The decoder uses a modified RNN architecture, as illustrated in 

Fig. 2, to increase the interpretability. The decoder updates the esti-

mated states using the known physics governing these states rather than 

the learning-based function 𝑓 in (2b).

• The state 𝑥̂ 𝑓,𝑛 

[𝑘 𝑚 

] is obtained from the previous timestep’s output, as

shown in Eq. (6).

• 𝑥̂ 𝑠,𝑛 

[𝑘 𝑚] includes health indicator 

̂ ℎ cap,𝑛 

[𝑘 𝑚 

] and ℎ̂ r,n 

[𝑘 𝑚], which re-

main constant across 𝑛 𝑑 

timesteps of decoder as detailed in the

Section 4. However, ℎ̂ soc,n[𝑘 𝑚 

] is dynamically updated based on 

the current input and actual capacity 𝑄̂ act,n[𝑘 𝑚 

], using the Coulomb

counting method. This fundamental electrochemical principle of 

charge accumulation is described by:

𝑢 [𝑘
ℎ̂ 

𝑛
 soc,n[𝑘

  𝑚    

 

] ⋅ Δ𝑡 ⋅ 𝜂
  

 𝑚 

+ 1] = ℎ̂ soc, n 

[𝑘𝑚 ] + , (9)
𝑄 nom 

⋅ ℎ̂cap,n [𝑘𝑚 ]
 

 

where Δ𝑡 is the sampling time, and 𝜂 is the Coulombic efficiency. The 

battery’s current capacity is calculated based on 𝑄 nom 

and the SOH

factor estimated by the encoder, as per Eq. (4).

The nonlinear voltage prediction function ℎ in (2b) is implemented

through a time-distributed, shallow, 

2 two-layer dense neural network

as shown in Fig. 2 [41]. This network takes ℎ̂ soc, n 

[𝑘 𝑚 

], ℎ̂ 𝑟,𝑛[𝑘 𝑚 

], 𝑥̂ 𝑓,𝑛 

[𝑘 𝑚 

]
and 𝑢 𝑛 

[𝑘 𝑚 

] to predict multi-step ahead voltage as follows:

𝑦̂ 𝑛[𝑘 𝑚 

] = ℎ 

( 

𝑥̂ 𝑓,𝑛 

[𝑘 𝑚 

], ℎ̂ soc, n 

[𝑘 𝑚 

], ̂ ℎ 𝑟,𝑛 

[𝑘 𝑚 

], 𝑢 𝑛 

[𝑘 𝑚 

], 𝜃 ℎ 

) 

, (10)

here, ℎ represents a neural network that is trained to learn the relation-

ship between the input, states, and voltage.

4.3. Learning

The learning process of the physics-informed encoder–decoder model 

involves optimizing multiple objectives to achieve accurate voltage 

prediction and physically meaningful state estimation. We use an un-

supervised learning approach for state estimation, leveraging physical 

principles and constraints to guide the learning process. The comprehen-

sive loss function consists of several components: the multistep ahead 

voltage prediction loss ( pred 

), which quantifies the accuracy of voltage 

predictions over multiple timesteps; the SOC dynamics loss ( dyn,soc 

), 

which enforces consistency in SOC estimation over successive batches; 

and the SOC constraint loss ( con,soc) along with the SOH constraint loss 

( con,soh), which impose soft constraints to keep the estimated SOC and 

SOH values within physically realistic bounds.

The overall training process for the physics-informed encoder– 

decoder model involves solving the following constrained optimization 

problem numerically:

min pr ed 

+ 𝜆 dyn,soc 

dyn, 

 soc 

+ 𝜆 con, soc con, soc𝜃    

+ 𝜆con, 

 soh 

con, 

 soh 

,
(11)

s.t. constraints of (13)

where 𝜆 dyn,soc 

, 𝜆 con,soc 

, and 𝜆 con,soh are weighting factors for the respec-

tive terms in the cost function. Each of these loss functions and the

constraints are detailed as follows:

4.3.1. Multistep ahead voltage prediction loss (pred) 

The multistep ahead voltage prediction loss, based on the mean 

squared error (MSE), is defined as:

∑

𝑁
∑

𝑚+1−11
𝑀 𝑘 

∑

pr ed =
 2

 

‖ ‖

‖

𝑦̂ [𝑘
𝑁

 ] − 𝑦 

 

[𝑘]
‖

 

 

 , (12)
 ⋅ 𝑀 ⋅ 𝑛 𝑛 𝑛

𝑑 𝑛=1 𝑚=1 𝑘=𝑘 𝑚

2 The detailed parameter count of the physics-informed encoder–decoder 

model is provided in Appendix A.
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where, 𝑦 𝑛 

[𝑘] is the true measured voltage from data and 𝑦̂ 𝑛 

[𝑘] is the

predicted voltage from the model.

4.3.2. SOC dynamics loss ( dyn,soc) 

This dynamic loss leverages the multiple-shooting method to enforce 

consistency in SOC estimation over successive batches [42,43]:

 dyn, soc = 

1
𝑁 ⋅ 𝑀

𝑁
∑ 

𝑛=1

𝑀
∑

𝑚=1

‖

‖

‖

ℎ̂ soc,n[𝑘 𝑚 

] − ℎ̃ soc,n 

[𝑘 𝑚] 

‖

‖

‖

, (13)

where,

ℎ̃ soc,n 

[𝑘 𝑚 

] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ℎ soc,n,begin if 𝑚 = 1

ℎ̂ soc,n 

[𝑘 𝑚−1 

] +
𝑘 𝑚 

−1
∑

𝑘=𝑘 𝑚−1

𝑢 𝑛 

[𝑘] ⋅ Δ𝑡 ⋅ 𝜂

𝑄̂ act,n[𝑘 𝑚 

]
if 1 < 𝑚 < 𝑀

ℎ soc,n,end if 𝑚 = 𝑀.

(14)

where 𝑄̂ act,n[𝑘 𝑚 

] represents the actual battery capacity derived from

the estimated health indicator ( 

̂ ℎ cap,n 

[𝑘 𝑚 

]) using Eq. (4). For interme-

diate batches (1 < 𝑚 < 𝑀 ), the SOC evolution is calculated by 

applying Coulomb counting to the SOC estimate from the previous 

batch (𝑚 − 1), incorporating the current input (𝑢 𝑛 

[𝑘]), sampling time 

(Δ𝑡), and Coulombic efficiency (𝜂). The boundary conditions ℎ soc,n,begin
and ℎ soc,n,end define the initial and final SOC values for each cycle, 

adapting to partial charge/discharge scenarios in practical applications. 

This physics-informed formulation enables unsupervised learning of

both SOC and SOH by incorporating fundamental charge conservation 

principles into the loss function.

4.3.3. SOC constraint loss ( con,soc) 

This loss ensures that estimated SOC values remain within physically 

realistic bounds:

 con, soc = 

1
𝑁 ⋅ 𝐾

𝑁
∑ 

𝑛=1

𝐾
∑

𝑘=1

( 

max(0, ℎ soc,min 

− ̂ ℎ soc,𝑛 

[𝑘])

+ max(0, ℎ̂ soc,𝑛 

[𝑘] − ℎ soc,max)
)

,

(15)

where ℎ soc,min 

and ℎ soc,max denote the minimum and maximum limits for 

SOC, respectively. This formulation penalizes any SOC estimates that fall 

outside the predefined range, imposing soft constraints on the learned 

SOC values.

4.3.4. SOH constraint loss ( con,soh)

Similarly, the SOH constraint loss keeps the estimated SOH within 

realistic bounds:

 con, soh = 

1
𝑁 ⋅ 𝑀

𝑁
∑ 

𝑛=1

𝑀
∑

𝑚=1

( 

max(0, ℎ cap,min 

− ℎ̂ cap,𝑛 

[𝑘 𝑚 

])

+ max(0, ℎ̂ cap,𝑛 

[𝑘 𝑚 

] − ℎ cap,max)
)

, 

(16)

where ℎ cap,min 

and ℎcap,max represent the minimum and maximum values

for SOH, respectively. 

5. Data

We use Stanford’s open-source lithium-ion battery ageing datasets 

to validate the proposed approach [30]. This dataset includes discharge 

cycles that aim to mimic typical electric vehicle usage per the UDDS

Table 1 

Summary of charge C-rates for different cells.

Charge C-rate 3C 1C C/2 C/4

Cells W3, W10, G1 W9, V5 W5, W8 W4, W7, V4

cycle. While this dataset represents an improvement over traditional 

constant-current cycling tests by incorporating dynamic load profiles, 

it is important to acknowledge its limitations in fully representing real-

world EV operations. Laboratory data inherently cannot capture all com-

plexities of field conditions, where batteries experience driver-specific 

usage patterns, partial cycling, varying environmental conditions, ex-

tended rest periods leading to calendar ageing, and combinations thereof 

[31]. 

The dataset comprises data from INR21700-M50T NMC battery cells, 

each with a 𝑄 nom 

of 4.85 Ah. Throughout 23 months, 10 of these cells 

underwent a testing protocol that combined a constant current-constant 

voltage (CCCV) charging, spanning charging rates 

3 from C/4 to 3C, as 

detailed in Table 1. All procedures were conducted at a constant tem-

perature of 23 

◦ C. For a further detailed description of the experimental 

setup, we refer interested readers to [30].

The experiment adopts a detailed charging and discharging protocol, 

depicted in Fig. 4. This protocol is structured into a six-step cycle. The 

cycle initiates with a CC charging phase at a particular C-rate mentioned 

in Table 1 (Step 1). This phase transitions to CV charging once the bat-

tery’s voltage reaches 4 V (Step 2), persisting until the charging current 

is reduced to below 50 mA. In the second stage, Steps 3 and 4 are de-

signed to extend the battery’s voltage to 4.2 V, equating to a 100 % SOC 

through CC charging, followed by another CV phase. The subsequent 

step (Step 5) involves reducing the SOC from 100 % to 80 % through 

a constant current discharge at C/4. The cycle terminates with Step 6, 

where a sequence of UDDS cycles is used to deplete the battery’s charge 

from 80 % SOC down to 20 %, completing the one cycle.

To establish a reliable baseline for battery health, a series of refer-

ence performance tests (RPTs) were conducted at regular intervals every 

25–30 cycles. These tests included capacity measurements, hybrid pulse 

power characterization (HPPC), and electrochemical impedance spec-

troscopy (EIS). The intermittent actual capacity (𝑄 act,𝑛 

) of the cell was 

assessed by discharging at a rate of 𝐶∕20 from a state of full charge. Over 

time, 𝑄 act,𝑛 

of the cells declines due to ageing, as depicted in Fig. 6. The 

capacity-based health indicator at these intermittent cycles is calculated 

using:

ℎ cap,𝑛 =
𝑄 act,𝑛

𝑄 nom

=
∫ discharged

charged 𝐼 𝐶∕20(𝑡) 𝑑𝑡

𝑄 𝑛𝑜𝑚 

⋅ 3600 

.

(17)

The UDDS discharge profiles from six battery cells are selected for 

validation. The remaining cells are excluded due to inconsistencies 

observed during RPTs, leading to the discontinuation of their ageing 

campaign. UDDS profiles were chosen for their dynamic nature, which 

simulates urban driving conditions. As illustrated in Fig. 5, these profiles 

include both charging and discharging phases, simulating the typical re-

generation braking scenarios of EVs that aim to represent more realistic 

driving scenarios. Data are collected at a frequency of 10 Hz.

In the dataset, while the direct SOC indicator is absent, signals for 

charge capacity (𝑄 dis 

) and discharge capacity (𝑄 dis 

) are included, de-

rived by integrating current during charging and discharging phases,

3 C-rate indicates the charge or discharge rate relative to the battery’s capacity. 

For example, a 1C rate charges or discharges the battery in 1 h, while 2C does 

so in 30 minutes.
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Fig. 4. Battery ageing campaign with repeated charging and discharging steps: (1) Initial CC charge to 4 V, (2) Transition to CV charging until the current cut-off of 

50 mA, (3) CC charging to reach 4.2 V, (4) CV phase to sustain 4.2 V, (5) CC discharge to 80 % SOC, and (6) Multiple UDDS cycles down to 20 % SOC.

Fig. 5. Variations in current, voltage, and SOC under repetitive UDDS profiles 

(Step 6), with SOC varying from 80 % to 20 %.

respectively. At the start of Step 5, both 𝑄 ch 

and 𝑄 dis 

are reset. The cell 

is then discharged at a C/4 rate until 𝑄 dis 

reaches 0.2 times the actual 

capacity 𝑄 act,𝑛 

, marking time 𝑡 𝑏 

when the SOC is 80 %. In Step 6, dis-

charge continues until (𝑄 dis 

(𝑡 𝑐 

) − 𝑄 ch 

(𝑡 𝑐 

)) ≥ 0.8 × 𝑄 act,𝑛 

, marking time 

𝑡 𝑐 

, corresponding to an SOC of 20 %. Depth of discharge (DOD) is then 

used to calculate SOC for UDDS discharge profiles, providing the ground 

truth:

ℎ soc 

= 1 − 𝐷𝑂𝐷

= 1 − 

𝑄 dis 

− 𝑄 ch
𝑄 act,𝑛

. 

(18)

6. Training and deployment

The overall methodology for training and deploying the model is il-

lustrated in Fig. 7. During training, the model requires voltage, current, 

and cycle-specific boundary conditions (BCs) for the SOC. Specifically, 

the model can use any cycle segment for training provided that the SOC 

BCs are known, as shown in Equation (13), which is feasible in many

Fig. 6. Periodic assessments of actual battery capacity (𝑄 act,𝑛 

) through capacity 

test over multiple cycles [30].

scenarios. However, there is a possibility that these SOC BCs are not 

scaled in accordance with the battery’s current degradation level, as 

described by Eq. (18), a scenario that could affect the model’s ability 

to learn the SOH. In our work, we use cycle segments where these SOC 

BCs are accurately known as detailed in Section 5. However, we rec-

ognize that obtaining SOC BCs for all cycles is challenging in practice. 

To address this issue, we use sparse intermittent cycles where SOC BCs 

are more likely to be accurately known. The SOC BCs that are scaled 

appropriately can potentially be obtained during fully charged or fully 

discharged conditions or through SOC–OCV mapping after an appropri-

ate rest period. Although these intermittent cycles represent only about 

6 % to 7 % of the total cycles used for training, this approach allows the 

model to learn the SOC and SOH dynamics without requiring SOC BCs 

for every cycle.

The voltage and current data from intermittent cycles undergo a data 

preprocessing step: each cycle’s voltage and current data are normalized, 

downsampled to 1 Hz to reduce computational load, and segmented into 

training and validation. Specifically, 80 % of the cycles are used for train-

ing and 20 % for validation. Some other random cycles are chosen for 

testing the trained model, as illustrated in Fig. 8. The test cycles un-

dergo the same preprocessing as the training and validation cycles. As 

mentioned in Section 3, to avoid overlap in multistep-ahead voltage pre-

dictions, each cycle data is partitioned into 𝑚 non-overlapping batches, 

and each batch spans a length of 𝑛 𝑒 

+𝑛 𝑑 

timesteps, with a lag of 𝑛 𝑑 

steps 

between successive batches.
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Fig. 7. Schematic representation of encoder–decoder based battery model training and deployment framework.

Fig. 8. For cell W5, randomly chosen intermittent cycles for training, validation, 

and testing of the encoder–decoder battery model.

6.1. Model training

The data preprocessing is followed by model training, summarized 

in Algorithm 2. Model weights and biases (𝜃) are initialized according to 

the efficient Glorot scheme [44,45]. During the forward pass, the total 

loss,  𝑡𝑜𝑡𝑎𝑙 

, is computed based on the predicted voltage and the encoder’s 

latent space output as described in Section 4.3.

In the backward pass, gradients are calculated based on the total 

loss function  𝑡𝑜𝑡𝑎𝑙 

, employing the backpropagation through time (BPTT) 

with the modified RNN framework of the decoder [46]. These gra-

dients are subsequently propagated back through the latent space to 

the encoder, facilitating a comprehensive encoder–decoder learning as 

outlined by [47]. To optimize the adjustment of model parameters in 

response to these gradients, the Adam optimizer, known for its adap-

tive learning rate capabilities, is used [48]. To prevent overfitting, early 

stopping is implemented, which monitors validation loss and halts the 

training process when there is no significant improvement.

To ensure physical plausibility and numerical stability, additional

constraints are applied: for the SOC, we enforce 0 ≤ 

̂ ℎ soc,𝑛 

[𝑘 𝑚 

] ≤ 1,
and for the SOH, 0.1 ≤ 

̂ ℎ cap,𝑛 

[𝑘 𝑚 

] ≤ 1.05. The lower bound for SOH

is set to prevent numerical issues in the Coulomb counting Eq. (9). In 

contrast, the upper bound accommodates scenarios where a new bat-

tery’s capacity may exceed 𝑄 nom 

= 4.85 Ah, as shown in Fig. 6. The

above-described constraints are derived from typical battery behavior, 

observed under controlled conditions. However, the actual vehicle op-

eration may introduce factors such as temperature fluctuations, varying 

loads, and ageing that affect battery response. Thus, these fixed bounds 

defined above should be considered initial guidelines that must be tuned 

based on specific system data and real-world observations.

During training, not only the primary prediction loss  pred 

is moni-

tored, but also the soft-constraint penalties  con,soc 

and  con,soh 

defined 

in Eqs. (15) and (16), respectively. Achieving convergence of these losses 

during training, meaning they are driven toward approximately zero, is 

crucial. If either penalty fails to decline toward zero, it indicates persis-

tent SOC or SOH estimates outside the permissible range. Such violations

propagate through the recurrent decoder, since 

̂ ℎ soc 

and ℎ̂ cap 

directly

influence future voltage predictions, and degrade multi-step forecast 

accuracy. Therefore, we require

 con,soc 

→ 0,  con,soh 

→ 0,

before accepting a training model. If, in either training or online de-

ployment, the constraint losses plateau above a small threshold (e.g., 

𝜖 = 10 

−3 ), we need an adaptive recalibration:

• Adjust or shift [ℎ soc,min 

, ℎ soc,max 

] based on in-field OCV measurements

after rest, to accommodate systematic SOC drift.

• Adjust [ℎ cap,min 

, ℎ cap,max 

] in proportion to observed SOH deviations.

A coupled adjustment is essential because the two states are alge-

braically linked through the definitions in (4) and (5). This dynamic 

adjustment ensures that our soft bounds remain representative of the 

actual operating condition, thereby preserving both the physical plau-

sibility of 

̂ ℎ soc 

and ℎ̂ cap and the accuracy of the downstream voltage

predictions. 

6.2. Evaluation criteria

The model’s performance is assessed using the following performance 

metrics: root mean square error (RMSE), mean absolute percentage error 

(MAPE), and maximum absolute error (Max):

RMSE =
√

√

√
1
𝑁

𝑁
∑ 

𝑖=1
(𝑦 𝑖 − 𝑦̂ 𝑖) 

2 , (19)

MAPE = 1
𝑁 

𝑁
∑

𝑖=1

|

|

|

|

𝑦 𝑖 − 𝑦̂ 𝑖
𝑦 𝑖

|

|

|

|

, (20)

Max = max 

𝑖
|𝑦 𝑖 − 𝑦̂ 𝑖| (21)

√
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Algorithm 2: Training of the physics-informed encoder–decoder battery model.

Input : model, training-validation cycles data 

Output: Trained model with optimized parameters 𝜃 

for each epoch do
Training:

total training loss ← 0 

for cycle (n) ∈ training cycles do

] +𝑋𝑛, 1∶𝑀 = {𝑈 𝑀
 𝑛[ −𝑘 𝑚  , 𝑌 𝑛[ −𝑘 𝑚] 

𝑀
 

} =1, {𝑈 𝑛[𝑘 𝑚   

   

] } =1, {𝑌𝑛 [𝑘𝑚 

]+ 

𝑚 𝑚  }𝑀𝑚=1, ℎ soc, begin 

, ℎ soc,  

 end 

← cycle

Encoder: 

for 𝑚 ∈ [1, …
[

 ,𝑀] do 

]

ℎ̂ soc,𝑛 

[𝑘 𝑚 

], ℎ̃
 

 cap,𝑛  

         

 

[𝑘
 

̂𝑚], ℎr,𝑛 

[𝑘𝑚 

] ← 𝑔1 

(𝑋𝑛,𝑚, 𝜃𝑔1 

) (7)

end

ℎ̂ cap,𝑛 

[𝑘 𝑚 

] ← 𝑔2 ([
⊤ℎ̃ 

 cap,𝑛 

[𝑘1 ],… , ℎ̃cap ,𝑛[𝑘𝑀  

]] , 𝜃 𝑔2  

 

) (8)

Decoder:

for 𝑚 ∈ [1, … ,𝑀] do

for 𝑘 ∈ [𝑘 do𝑚 

,… , 𝑘 𝑚 

+ 𝑛𝑑 − 1] 

ℎ̂ soc  

 

[𝑘 + 1] ← ℎ̂ 𝑘
,𝑛 [ [

 soc,𝑛 

𝑘] + 𝑢 𝑛 

]⋅Δ𝑡⋅𝜂
(9)

𝑄nom ⋅ℎ̂cap ,𝑛[𝑘]

ℎ̂ 

 cap,𝑛 

[𝑘 + 1] ← ℎ̂ cap,𝑛 

[𝑘]
ℎ̂ ← ̂𝑟,𝑛[  

 

𝑘 + 1]  

 ℎ 𝑟,𝑛 

[𝑘]
(

 

)

𝑦̂ 𝑛 

[𝑘] = ℎ
 

  𝑥̂ 𝑓,𝑛 

[𝑘], 𝑥̂ 𝑠,𝑛 

[𝑘], 𝑢 𝑛 

[𝑘], 𝜃
 

 ℎ 

(10)

end 

end 

Loss Computation:
[ ]

‖ ‖

2
pr ed ← E ‖

̂ +𝑌 𝑛  

[𝑘𝑚 ] − 𝑌 𝑛[ +𝑘𝑚 

]
‖

 

  ‖

‖

(12)

⎡ ⎧ if
⎢

 
‖

‖

= 1 ⎫
‖
⎤ℎ 𝑚

‖

 ‖ ⎪

  

 soc,begin    

⎪‖⎥

⎢

 

 ←
⎢

 

‖ ‖

‖

⎪
∑E ‖ℎ̂ [𝑘 ] − ] −1

⎨

 𝑘ℎ̂ [𝑘 +   𝑚  𝑢 

⎪

 𝑛[ ⎥

 

]⋅Δ
    

𝑘 𝑡⋅𝜂 ‖

dyn,soc  
 

‖

soc,n   𝑚 soc,n  

 
 𝑚−1  

 

if̂  1𝑘=𝑘  < 𝑚 

 [  ]
<

⎥

(13
−1

 𝑀
⎬

‖ )
⎢‖ ⎪

𝑚 𝑄  

‖

act,n 𝑘𝑚 

‖

⎢

  ⎪‖⎥

 

‖

‖

⎪ ⎪

‖

⎥

 

⎣
‖ ⎩

ℎ
 

 soc,end if 𝑚 = 𝑀
⎭‖

⎦

[

 

 

con,soc ← E
 ]

 max(0, ℎ soc,min − ℎ̂soc ,𝑛[𝑘 max(0 ℎ̂𝑚 

]) + ,  soc,𝑛[𝑘 

 𝑚 

] − ℎsoc,max )
[

 (15)

con,soh ← E
 ]

 max(0, ℎ cap,min − ℎ̂ cap,𝑛 

[𝑘 𝑚 

]) + max(0, ℎ̂cap ,𝑛 

[𝑘 𝑚 

] − ℎcap,max ) (16)

Optimization: 

model.loss ← pr ed 

+ 𝜆 dyn,soc 

 dyn,soc 

+ 𝜆 con,soc 

 con,soc 

+ 𝜆 con,soh con,soh 

 

 (11)

model.loss.backward() 

model.optimizer.step() 

total training loss ← total training loss + model.loss 

end 

Validation: 

total validation loss ← 0 

for cycle ∈ validation cycles do
Apply the trained model to validation cycle data to compute validation loss. 

total validation loss ← total validation loss + validation loss 

end 

Compute average training and validation loss. 

if average validation loss < average training loss then 

Save model checkpoint.

end

end

where 𝑁 represents the number of samples, 𝑦  

 

denotes the true value of𝑖   

the 𝑖th sample, and 𝑦̂ 𝑖 

indicates the predicted value.

6.3. Deployment scenario

In deployment scenarios, data quality needs to be strictly monitored. 

Real-world vehicle data are often incomplete or noisy, underscoring the 

need for a robust data pipeline to clean and preprocess signals [18,31]. 

In our work, we assume that the cycle data selected for training are 

complete and free of missing values, which allows us to isolate model 

performance from data quality issues. 

With this assumption in place, the model’s deployment can be cate-

gorized into two distinct strategies: offline and online training. Offline 

training adopts a more conventional approach, wherein the model is

developed using a dataset derived from multiple cells. This methodology 

uses intermittent cycle data from multiple cells for training and valida-

tion in order to capture cell-to-cell variation. Importantly, by using only 

current and voltage measurements obtained during UDDS discharge cy-

cles, the model remains independent of specific charging profile features, 

such as the multi-stage CCCV protocol used in the Stanford dataset. This 

complete dependence on current and voltage data eliminates the neces-

sity for historical charging information, thereby mitigating the risk of 

data leakage and improving the model’s capacity to generalize across 

different cells [49]. The model is trained on data from multiple cells 

and tested on a holdout cell to demonstrate this. 

However, applying the model to entirely different charging profiles

may introduce new degradation patterns that are not captured in our
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current training setup. While the model can adapt to varying charging 

behaviors using voltage–current data, its performance could be affected 

if the underlying degradation mechanisms differ significantly. This lim-

itation underscores the importance of ensuring that the training dataset 

contains a diverse range of charging profiles to improve the model’s 

robustness.

In contrast, the emergence of cloud-based battery management sys-

tems introduces the flexibility of not only allowing for offline training, 

but also online model training and deployment [50,51]. The model, 

therefore, benefits from a dynamic, iterative training and deployment 

process in the online training framework. Similar to offline training, 

we focus on using current and voltage measurements, primarily from 

highly dynamic discharge cycles. As with offline deployment, encoun-

tering different charging profiles in online operations may introduce 

new degradation patterns. However, the continuous learning capabil-

ity of the online model helps address this issue by allowing it to adapt 

to new data reflecting the actual usage patterns of the battery. The 

model is updated in real-time as new data becomes available, partic-

ularly cycle data with known SOC BCs. However, as discussed earlier, 

obtaining accurate SOC BCs for all cycles is challenging in practice, and 

this issue is particularly critical in online learning scenarios. To address 

this, we rely on sparse intermittent cycles where SOC BCs are accu-

rately known. This continuous adaptive learning allows the model to 

improve with each new cycle without requiring SOC BCs for every cycle. 

The efficacy of this approach is assessed through training on intermit-

tent cycle data from individual cells, with detailed results presented in 

Section 7.

7. Results and discussion

The performance of the proposed model is evaluated for multi-step 

ahead voltage prediction, state of charge estimation, and health indi-

cators estimation (ℎ cap,𝑛 

[𝑘 𝑚 

], and ℎ 𝑟,𝑛 

[𝑘 𝑚 

]). Evaluation metrics include 

RMSE, MAPE, and Max, as defined in Section 6.2. The model is trained 

using 6 %–7 % of the available cycles, selected as sparse intermittent cy-

cles. For the online scenario, the model is trained independently on six 

individual cells, with data partitioned into training, validation, and test 

sets as shown in Fig. 8. In the offline scenario, the model is trained on 

sparse training cycles from five cells and tested over 10 % of the cycles 

from a holdout cell (W8) across different ageing levels.

Fig. 9. Variation of the encoder sequence length 𝑛 𝑒 

, and its impact on SOC 

estimation and voltage prediction in RMSE values.

Table 2 

Training epoch time for different decoder se-

quence lengths (𝑛 𝑑 

) for single-cell data.

𝑛 𝑑 Time per epoch (s)

50 0.57

100 1.00

200 2.01

300 2.89

400 3.83

Hyperparameter tuning primarily focuses on the learning rate, 

weight factor 𝜆 for loss functions in (11), and sequence lengths for the 

encoder (𝑛 𝑒 

) and decoder (𝑛 𝑑 

). After extensive experiments, 𝜆 dyn, soc 

was 

set to 1000 for SOC-related dynamic loss, with other 𝜆 values set to 1. 

A learning rate of 5 ⋅ 10 

−4 balances convergence speed with stability. As 

shown in Fig. 9, on test cycles of a single cell, varying the encoder length

𝑛 𝑒 from 20 to 200 indicated a sharp decline in SOC RMSE until 𝑛 𝑒 

= 50, af-

ter which it plateaued, while voltage RMSE remained steady at 6–7 mV.

The encoder length 50 shows substantially lower SOC estimation error,

whereas lengths above 50 provided only marginal accuracy gains at the

expense of increased computational cost. Consequently, 𝑛 𝑒 = 50 was

selected for all subsequent experiments.

Through the experimentation process, it was found that the decoder 

sequence length 𝑛 𝑑 

is an important hyperparameter, impacting not only 

the quality of the multistep-ahead voltage prediction but also the accu-

racy of the estimators of SOC and other health indicators. The influence 

of 𝑛 𝑑 

on model performance is extensively evaluated in the remaining 

section, with a detailed comparison of evaluation metrics.

Computational burden. All experiments were implemented in 

TensorFlow and run on a cluster equipped with an AMD EPYC

7402 CPU (24 cores at 2.80 GHz), 200 GB RAM, and an NVIDIA Tesla 

V100S-PCIE-32GB GPU. Decoder-length tests, as shown in Table 2

indicate per-epoch 

4 training time scales linearly from 0.57 s at 𝑛 𝑑 

= 50 

to 3.83 s at 𝑛 𝑑 = 400. This is because the modified RNN decoder

must perform backpropagation through time over 𝑛 𝑑 

steps [46], as 

discussed in Section 6.1. Each additional step adds another layer to the 

computational graph and incurs extra matrix multiplies and gradient 

computations. Over 2000–3000 epochs, total training time thus ranges 

from roughly 1–7 h, depending on sequence lengths and dataset size.

7.1. Multi-step ahead voltage prediction

The performance metrics for multistep-ahead voltage prediction 

across test cycles for each individual cell with varying 𝑛 𝑑 

are presented 

in Fig. 10. The results show that 𝑛 𝑑 

= 50 gives the lowest RMSE, MAPE, 

and Max. As 𝑛 𝑑 increases, prediction errors also increase due to the accu-

mulation of errors propagated through each prediction step, where the 

one-step voltage prediction serves as the input (𝑥 𝑓 

) for the subsequent 

step, as defined in Eq. (10). Despite this, RMSE varies only from approx-

imately 6–8 mV, across 𝑛 𝑑 

values from 50 to 400. The voltage predictions 

and errors, for 𝑛 𝑑 

= 50 and 𝑛 𝑑 

= 400, is presented in Fig. 11. This result 

is based on a test cycle of cell W5, with 92 % SOH and a SOC ranging 

from 80 % to 20 %. The results indicate the model’s ability to predict 

voltage across these different 𝑛 𝑑 

accurately.

In the multiple cell-based training-validation and testing on holdout 

cell, the performance metrics with varying 𝑛 𝑑 

are shown in Table 3. 

The results are comparable to those of individual cell-based train-

ing. However, the errors are lower in the multiple cell-based training. 

Specifically, RMSE ranges from approximately 5–7.5 mV as 𝑛 𝑑 

varies 

from 50 to 400, compared to higher RMSE values of 6–8 mV in individual

4 An epoch is one complete pass through the entire training dataset.
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Fig. 10. Individual cell-based training: performance metrics for multi-step ahead voltage prediction, evaluated across the test cycles of each cell with varying 𝑛 𝑑 

.

Fig. 11. Individual cell-based training: a comparative analysis of multi-step ahead voltage prediction for a test cycle (92 % SOH, with SOC varying from 80 % to 

20 %) of cell W5, with 𝑛 𝑑 at 50 and 400 steps.

cell-based training. MAPE follows a similar pattern. This demonstrates 

the model’s improved performance and generalization when trained on 

a diverse set of cycles from multiple cells.

Overall, both individual and multiple cell-based training scenar-

ios suggest that shorter 𝑛 𝑑 

results in lower errors. While RMSE and

MAPE values increase with longer 𝑛 𝑑 

, the increases are moderate, with
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Table 3 

Multiple cell-based training: performance metrics for multi-step ahead voltage prediction, trained and validated on sparse cycles from 

multiple cells and tested on the cycles of the holdout cell with varying 𝑛 𝑑 

. (Note: Bold values indicate the lowest error in each column.)

𝑛 𝑑 Train Validation Test

RMSE (mV) MAPE Max (mV) RMSE (mV) MAPE Max (mV) RMSE (mV) MAPE Max (mV)

50 5.3 0.11 % 81.2 5.3 0.11 % 40.5 5.1 0.11 % 35.0

100 5.8 0.12 % 77.0 5.9 0.12 % 38.8 6.4 0.14 % 40.6

200 7.3 0.15 % 94.0 7.4 0.16 % 53.1 7.4 0.16 % 39.1

300 6.7 0.14 % 96.4 6.7 0.14 % 53.3 7.0 0.15 % 48.6

400 7.0 0.14 % 90.3 6.9 0.15 % 48.4 7.5 0.16 % 49.5

Fig. 12. Individual cell-based training: performance metrics for SOC estimation, evaluated across the test cycles of each cell with varying 𝑛 𝑑 

.

MAPE ranging from 0.11 % to 0.16 %. Considering a sampling fre-

quency of 1 Hz, the results show that the decoder can accurately predict 

ageing-aware voltage 50–400 seconds ahead. These results confirm the 

model’s ability to maintain accuracy over longer prediction horizons us-

ing a shallow and modified RNN decoder model, which offers better 

interpretability compared to standard RNN networks.

7.2. State of charge

The performance metrics for SOC estimation across various test cy-

cles for each cell, with different 𝑛 𝑑 

, are presented in Fig. 12. The results 

indicate that SOC estimation accuracy improves with increasing 𝑛 𝑑 

, as 

evidenced by lower RMSE, MAPE, and Maximum error values. On aver-

age, the MAPE error for each cell varies from 2 % to 1.5 % as 𝑛 𝑑 

increases 

from 50 to 400. This trend is further illustrated in Fig. 13, which com-

pares SOC estimation and ground truth for one of the test cycle (92 % 

SOH) of cell W5 for the range of 𝑛 𝑑 

values.

The SOC estimation results for the multiple cell-based training, val-

idation, and testing on a holdout cell are shown in Table 4. The results 

are comparable to or better than those from the single cell-based train-

ing, with MAPE values decreasing from 1.98 % to 1.65 % as 𝑛 𝑑 

increases 

from 50 to 400 in the test cycles. This improvement is due to the inclu-

sion of many cycles from various degradation levels across multiple cells 

in the training set.

The improvement in SOC estimation with increasing 𝑛 𝑑 

is due to the 

learning process based on the multiple shooting method, as described by 

the dynamic loss function in Eq. (13). This method uses only the cycle’s 

SOC BCs to learn each batch’s SOC. For every batch, the SOC estimate

ℎ soc,𝑛 

[𝑘 𝑚 

] is treated as a free variable during optimization, constrained 

by the previous batch estimate (ℎ soc,𝑛 

[𝑘 𝑚−1 

]) and the Coulomb counting-

based update for the lag between consecutive batches. Consequently, as 

𝑛 𝑑 

decreases, the number of batches (M) within each cycle increases, 

potentially increasing the overall error due to the more frequent estima-

tion required by the dynamic loss function. However, the error remains 

relatively low even for 𝑛 𝑑 = 50, with RMSE around 0.0107 and MAPE 

approximately 198 % in the test set, as shown in Table 4. These re-

sults demonstrate that the proposed model can estimate the SOC across 

different ageing levels using only SOC BCs of sparse intermittent cycles.

7.3. Health indicator: ℎ cap

The capacity-based health indicator ℎ cap,𝑛 

[𝑘 𝑚 

], also referred to as 

SOH, is estimated using the multiple shooting-based SOC dynamic 

loss function described in Eq. (13). During the optimization process,

ℎ cap,𝑛 

[𝑘 𝑚 

] is considered as a free variable in addition to ℎ soc,𝑛 

[𝑘 𝑚 

]. Given 

the absence of explicit known dynamics for ℎ cap 

, its accuracy is affected 

by the accuracy of SOC estimation. As discussed in Section 7.2, lower 

values of 𝑛 𝑑 

lead to higher SOC estimation errors, subsequently affecting 

the accuracy of SOH estimation. The maximum error for some of the test 

cycles goes beyond 5 % for 𝑛 𝑑 

< 200 and hence not included here.

Performance metrics for test cycles with higher values of 𝑛 𝑑 

in indi-

vidual cell-based training are shown in Fig. 15. The estimated SOH for 

all train, validation and test cycles is compared with the ground truth 

obtained through RPTs in Fig. 14. In the case of multiple cell-based 

training, the performance metrics are shown in Table 5. The results 

are consistent with those from the individual cell-based training with 

maximum errors of 0.0224 and 0.0244 for 𝑛 𝑑 

= 300 and 𝑛 𝑑 = 400, re-

spectively. For each test cycle of the holdout cell, the estimated and 

ground truth SOH are plotted in Fig. 16. These results demonstrate that 

the proposed model can learn SOH using SOC BCs alone, without ex-

plicit SOH labels, especially for higher 𝑛 𝑑 

values where SOC estimation 

error is lower.

7.4. Health indicator: ℎ 𝑟

The other health indicator ℎ 𝑟,𝑛 

[𝑘 𝑚 

], as previously detailed in the 

Section 4, remains constant across the decoder’s prediction horizon (𝑛 𝑑 

). 

This indicator is unconstrained due to the absence of explicit physics-

based dynamics and is updated using the gradient derived from the 

multi-step ahead voltage prediction loss. As illustrated in Fig. 17, ℎ 𝑟,𝑛 

[𝑘 𝑚 

] 

varies with SOC within a cycle, and it also varies with ageing, as shown 

for two different test cycles at different ageing levels.

The mean value of ℎ 𝑟 

across the SOC range of 80 % to 20 % is plotted 

against the cycle number (𝑛) in Fig. 18. Fig. 18a shows the mean ℎ 𝑟 

val-

ues for training, validation, and test cycles for cell W5, while Fig. 18b 

depicts the mean ℎ 𝑟 

for the holdout cell W8’s cycles. These plots indi-

cate an increase in the mean ℎ 𝑟 

value with cycle number, suggesting the 

ageing state captured by ℎ 𝑟 

.
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Fig. 13. Individual cell-based training: SOC estimation and error for cell W5 during a test cycle (92 % SOH) with 𝑛 𝑑 values ranging from 50 to 400 steps.

Table 4 

Multiple cell-based training: performance metrics for SOC estimation, trained and validated on sparse cycles from 

multiple cells and tested on the cycles of the holdout cell with varying 𝑛 𝑑 

. (Note: Bold values indicate the lowest error 

in each column.)

𝑛 𝑑 Train Validation Test

RMSE MAPE Max RMSE MAPE Max RMSE MAPE Max

50 0.0106 1.95 % 0.0375 0.0114 2.15 % 0.0318 0.0107 1.98 % 0.0283

100 0.0092 1.80 % 0.0261 0.0099 1.99 % 0.0263 0.0095 1.86 % 0.0270

200 0.0086 1.72 % 0.0273 0.0092 1.87 % 0.0266 0.0086 1.75 % 0.0200

300 0.0090 1.78 % 0.0237 0.0098 1.99 % 0.0228 0.0093 1.90 % 0.0313

400 0.0077 1.53 % 0.0219 0.0084 1.73 % 0.0204 0.0084 1.65 % 0.0237

Fig. 14. Individual cell-based training: SOH estimation for train, validation and test cycles of cell W5, with 𝑛 𝑑 

= 300 and 𝑛 𝑑 = 400 steps.
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Fig. 15. Individual cell-based training: performance metrics for SOH estimation, evaluated across the test cycles of each cell with varying 𝑛 𝑑 

.

Table 5 

Multiple cell-based training: performance metrics for SOH estimation, trained and validated on sparse cycles from 

multiple cells and tested on the cycles of the holdout cell with varying 𝑛 𝑑 

.

𝑛 𝑑 Train Validation Test

RMSE MAPE Max RMSE MAPE Max RMSE MAPE Max

300 0.0094 0.71 % 0.0339 0.0098 0.80 % 0.0211 0.0118 1.01 % 0.0224

400 0.0151 1.35 % 0.0365 0.0154 1.38 % 0.0354 0.0146 1.35 % 0.0244

Fig. 16. Multiple cell-based training: SOH estimation for test cycles of holdout cell W8, with 𝑛 𝑑 

= 300 and 𝑛 𝑑 

= 400 steps.

7.5. Comparison with existing battery models

The proposed physics-informed encoder–decoder framework offers 

an effective balance between modeling accuracy and computational ef-

ficiency compared to traditional battery modeling approaches, based 

on Electrochemical (EC) models, or Equivalent Circuit Models (ECMs). 

Unlike EC models, such as the widely used Doyle-Fuller-Newman (DFN) 

model, which require solving complex coupled nonlinear partial dif-

ferential equations (PDEs) and identifying over 20 parameters through 

cell tear-down procedures or carefully designed experiments [52,53], 

our method is chemistry agnostic. It leverages common physical re-

lationships to capture battery behavior without extensive parameter 

identification or elaborate degradation modeling [54].

Similarly, ECMs are known for their runtime computational effi-

ciency. However, they face challenges in capturing the nonlinear and 

time-varying dependencies of parameters on states like SOC and age-

ing. ECMs require online adaptive parameter estimation schemes and 

continuous recalibration of SOC–OCV relationships as capacity fades 

to maintain model accuracy. Additionally, the nonlinear filters used 

with ECMs for state estimation, such as extended Kalman filters or

particle filters, necessitate careful tuning of covariance matrices and 

noise parameters, leading to practical implementation complexities and 

sensitivity to initialization errors [55,56].

While most of the existing data-driven methods have focused on es-

timating specific battery states independently, such as SOC estimation 

[16,57], degradation estimation [58], or voltage prediction [19,20]. 

These methods require extensive labeled data for model training and 

validation. For instance, SOC estimation models need reference SOC 

values across the operating range, while degradation monitoring ap-

proaches rely on periodic capacity characterization tests. In contrast, 

the proposed approach simultaneously estimates battery states and pre-

dicts multi-step voltage using only voltage–current measurements and 

sparse SOC boundary conditions (6 %–7 % of total cycles).

We conducted a comparative evaluation of the proposed physics-

informed encoder–decoder approach against the conventional EC and 

ECM models using the same dataset [30]. All experiments were per-

formed on a single test cycle of cell W8, which comprised 18,835 s 

of UDDS discharge data. In the remainder of this section we detail the 

results of this comparison.
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Table 6 
Comparison of EC, ECM, and proposed approaches: voltage and SOC estimation errors (RMSE) and 
computational time. (Note: Bold values indicate the lowest error and time in the respective column.) 

Approach Voltage RMSE (mV) SOC RMSE Computational time 

EC [52] 
ECM [59] 
Physics-informed encoder–decoder 

13.1–15 
16.6–18.9 
5–7.5 

�.�� × ��−�–�.� × ��−� 

1.0 × 10−3–1.56 × 10−2 

1.3 × 10−3–1.07 × 10−2 

3146 s 
9.7 s 
0.09 s 

Fig. 17. Variation of the health indicator ℎ� with the SOC (20 %–80 %) for two 
different test cycles of cell W8, comparing an early cycle and a later cycle. 

7.5.1. Accuracy comparison 
Regarding accuracy of voltage estimation, as captured by the RMSE, 

our approach achieves substantially lower values compared to EC and 
ECM models, as shown in Table 6. In addition, our model accurately 
predicts multi-step ahead voltage over a range of 50–400 s. In terms 
of SOC estimation, while the EC model achieves very low errors, it 
relies on a detailed and computationally intensive parameter identifica-
tion process. The ECM, although computationally efficient, shows higher 
SOC errors compared to our method. Notably, our physics-informed 
approach strikes a favorable balance by delivering competitive SOC 
estimation with chemistry-agnostic physics, thereby demonstrating its 
practical advantage. 

7.5.2. Computational efficiency comparison 
Computational efficiency is as critical as accuracy for practical bat-

tery model deployment. All inference computations were conducted on a 
benchmark platform using a Quad-Core Intel Core i7 processor running 
at 2.8 GHz, ensuring fair performance comparisons. In our experi-
ments, the DFN-based EC model was implemented via the COBRAPRO 
framework using the SUNDIALS IDA solver and CasADi’s automatic dif-
ferentiation [60–62]. As summarized in Table 6, the DFN model required 
approximately 3146 s (over 52 min) due to the computational over-
head of discretizing the governing PDEs into a differential algebraic 
system. Although ECMs reduce computational demand, their reliance 
on continuous online adaptive parameter estimation results in infer-
ence times of around 9.7 s. In contrast, the proposed physics-informed 
encoder–decoder framework delivers extremely fast inference times of 
approximately 0.09 s, although one-off model training takes some hours, 
as described at the beginning of Section 7. 

In summary, the experimental results confirm that the proposed 
physics-informed encoder–decoder framework outperforms traditional 
EC and ECM models by achieving lower voltage estimation errors and 
maintaining competitive SOC estimation, all while significantly reducing 
inference times. This comprehensive performance improvement, evident 
from the results in Table 6, indicates that our approach offers a practical 
advantage in terms of both accuracy and efficiency. 

7.6. Challenges in real-world battery conditions and future directions 

While our experiments using the Stanford laboratory dataset show 
that the proposed physics-informed encoder–decoder model accurately 
predicts multi-step ahead voltage, estimates SOC and infers battery 
health indicators (SOH), it is important to recognize that laboratory 
conditions cannot fully replicate the diverse environments experienced 
in real-world electric vehicle (EV) operations. In practice, battery per-
formance is influenced by several factors that are inherently variable 
and less controllable than lab settings. Here, we discuss some of the 
critical challenges and outline potential future directions to ensure the 
adaptability of the proposed model under actual operating conditions. 

Diverse user behaviors. In controlled laboratory tests, cells are cycled 
under standardized protocols (e.g., UDDS discharge profiles) that aim 
to mimic average driving conditions. However, in real-world scenarios, 
driving behavior varies widely among users. Aggressive acceleration, 
frequent braking, and inconsistent driving patterns lead to different load 
profiles and transient responses. Although our model uses a high dy-
namic discharge profile, the variability introduced by diverse driver 
behavior could affect the accuracy of SOC and SOH estimation and 
voltage prediction. Future work should incorporate driver-specific us-
age patterns through additional sensor data or tailored training datasets 
with synthetic drive cycles or real-world data to improve the model’s 
adaptability to a broader range of driving styles [63]. 

Varying ambient conditions. Laboratory experiments are typically con-
ducted at constant or mildly fluctuating temperatures, yet actual EVs 
operate under widely varying ambient conditions. Seasonal and geo-
graphic temperature variations influence battery electrochemical dy-
namics, degradation rates, and thermal behavior. Such ambient varia-
tions can alter both the magnitude and evolution of the measured voltage 
signals. A promising future direction is integrating temperature signals 
as inputs to the model. 

Inconsistent charging patterns. Charging protocols in lab experiments 
are precise and consistent, using fixed charging profiles. Conversely, EV 
charging in the field is often irregular; drivers engage in partial charging, 
experience fluctuating charging rates, or use fast charging methods that 
differ significantly from standardized protocols. These inconsistencies 
can lead to varying degradation rates not observed in the training dataset 
and also make it difficult to determine the SOC boundary conditions. 
Hence, future studies could benefit from incorporating a wider variety 
of charging scenarios. This might include hybrid training approaches 
combining controlled laboratory data with field-collected charge profiles 
or simulating diverse charging behaviors during model validation. 

Linking real-world challenges to the proposed model. The physics-
informed encoder–decoder framework proposed in this work is designed 
with interpretability and computational efficiency in mind. However, 
adaptation to real-world challenges is essential for practical deploy-
ment. Future model iterations could further improve its generalizability 
by expanding the training set to include diverse cycling and charging 
patterns, either through field data acquisition or realistic simulation. 
Incorporating additional sensors (e.g., temperature or driver behavior 
metrics) into the model’s input space might also help capture thermal 
influences. 
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Fig. 18. Mean value of ℎ 𝑟 

versus cycle number for cell W5 (left) and W8 (right), where the mean ℎ 𝑟 

is calculated as the SOC varies from 80 % to 20 % within each 

cycle.

In summary, while the current results using laboratory-based data 

are promising, addressing these real-world challenges remains an im-

portant next step. By integrating more diverse data sources, we aim to 

extend the capabilities of our physics-informed model toward a robust 

and practical battery management solution.

8. Conclusion

This study presents a physics-informed encoder–decoder framework 

to model the multi-timescale dynamics of lithium-ion batteries. By sep-

arating slow-changing states, such as state of charge (SOC) and state of 

health (SOH), from fast voltage dynamics, the model captures the bat-

teries’ multi-timescale behavior, increasing interpretability compared to 

conventional machine learning methods that often act as black boxes. 

The integration of physics-guided architecture and physics-informed loss 

functions enables direct mapping of the latent space to quantifiable bat-

tery states without requiring explicit SOC and SOH labels, using only 

SOC boundary conditions (BCs), thereby addressing the common chal-

lenge of the unavailability of labeled data. We validated the model using 

Stanford’s open-source lithium-ion battery ageing dataset, which fea-

tures dynamic discharge profiles aimed at mimicking electric vehicle 

driving patterns. The model is trained on sparse intermittent cycle data, 

which further reduces the need for SOC BCs, as the model effectively 

learns SOC and SOH dynamics without requiring BCs for every cycle. 

The model shows consistent performance across both single-cell and 

multi-cell scenarios, accurately estimating SOC and SOH while provid-

ing reliable voltage predictions up to 400 s ahead. Future work will focus 

on improving model accuracy by, e.g., incorporating thermal effects into 

the model, applying transfer learning techniques to adapt the model to 

field data, and extending the framework to pack-level battery systems.
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Appendix A. Model architecture

See Tables A.7 and A.8 for the model architecture.

Table A.7 

Encoder model architecture.

Layer Layer type Parameters Stage

1 Input layer 0 First

2 1D convolution 63 First

3 1D convolution 80 First

4 1D convolution 112 First

5 1D convolution 220 First

6 1D convolution 315 First

7 Flatten 0 First

8(a) Dense layer (ℎ r) 488 First

9(a) Output layer (ℎ r 

) 9 First

8(b) Dense layer (ℎ soc 

) 488 First

9(b) Output layer (ℎ soc 

) 9 First

8(c) Dense layer (ℎ̃ cap) 488 First

9(c) Output layer (̃ ℎ cap 

) 9 First

10 Padding layer 0 Transition

11 Masking layer 0 Transition

12 1D convolution 153 Second

13 1D convolution 155 Second

14 1D convolution 252 Second

15 Flatten 0 Second

16 Dense layer 40 Second

17 Output layer (ℎ cap 

) 6 Second

Total trainable parameters: 2887

Table A.8 

Decoder model architecture.

Layer Layer type Parameters

1 Modified RNN 31

Total trainable parameters: 31
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Data availability

The data used in this study is from Stanford’s open-source battery 

dataset [30]. The code is available upon request.
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