
Generalised Motions in
Active Inference by finite
differences
Active Inference in Robotics
I.L. Hijne

Te
ch

ni
sc
he

U
ni
ve

rs
ite

it
D
el
ft

Generalised
Motions in Active
Inference by finite

differences
Active Inference in Robotics

by

I.L. Hijne
to obtain the degree of Master of Science

in Mechanical Engineering (BioMechanical Design),
with the specialization BioRobotics,
at the Delft University of Technology,

to be defended on Thursday 13 August 2020 at 13:00h.

Student number: 4079183
Project duration: September 2019 – August 2020
Thesis committee: Prof. dr. ir. Martijn Wisse, Cognitive Robotics, TU Delft, supervisor

Prof. dr. Robert Babuska, Cognitive Robotics, TU Delft
ir. Corrado Pezzato, Cognitive Robotics, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
For this thesis I have been introduced into the intriguing theory of Active Inference. I could never have
imagined working on a neuroscientific theory about perception, action and learning in biological brains
that is applicable for the control of robotic systems. The concepts of Active Inference and the Free
Energy Principle are truly fascinating, and it perfectly fits the specialization of ‘BioRobotics’, because,
if modelling robot control based on the workings of the biological or human brain is not a BioRobotics
topic, then what is? Diving into this theory one quickly learns that the theory is esoteric and vast. It is
predominantly (co)written by leading neuroscientist Karl Friston who has published numerous papers
on the topic that each are a tough pill to swallow. Many researchers who take on the theory will agree
that the work by Karl Friston is very complicated and hard to understand. When starting research on
the topic, the literature is intimidating. Yet, it also sparks curiosity for the theory is also so elegant and
interesting, as it provides a biologically plausible yet mathematically well­defined unification of action
and perception that, in the end, boils down to a fairly simple gradient descent scheme on a quadratic
error function. Meetings and conversations with fellow researches, all tackling (slightly) different as­
pects of this theory, and with my supervisor Martijn Wisse have proven very helpful in tackling this topic
and, in hindsight, I’m pleased to have learned so much about it. It has definitely grown on me. As
is the case with most research, it is never finished. As my research progressed, my understanding
of the topic improved and the current literature a little less hard to read. New ideas for improvement
of the work arise and the same literature seems to reveal more and more insights to me each time
I browse through. Eventually though, the time to conclude this research has come. Ideas for future
research have been included and I hope this work may provide a useful start for a future researcher
that wishes to contribute to the application of Active Inference for robotics control. If enough people do
so, I believe that, in the future, Active Inference will prove to be a very powerful theory for very natural
high performance control of robotics in different environments.

I.L. Hijne
Delft, August 2020

iii

Abstract
This thesis is a contribution to the research on Active Inference for Robotics. Active Inference is an
intricate, intriguing theory from neuroscience, a field in which it has already gained a greater following
and popularity. This theory, based on the underlying Free Energy Principle, provides a unified account
of perception, action and learning in the biological brain. It has great explanatory power of the function
of the biological brain and furthermore it is mathematically well­defined. This property makes the theory
suitable for a translation to robotics, in which it can also provide a unified account of action and per­
ception. This is not only elegant, but potentially very powerful too. The research for Active Inference
in robotics is young, but the current research already shows that Active Inference indeed has great
potential for robotics control.

Literature on Active Inference is narrow and complex, and provides a lot of concepts to work with in
a translation to robotics control. Once such concept are the generalised coordinates of motion, which
are the instantaneous derivatives of a dynamic variable. The incorporation of generalised coordinates,
especially in combination with the assumption that the noise encountered in a dynamic environment
is coloured, has great potential to be beneficial for both action and perception when it comes to robot
control in real environments. Generalised coordinates provide a reference frame for the gradient de­
scent that is applied to provide the action and perception laws, which in a dynamic setting has to ‘hit
a moving target’. Furthermore, in combination with coloured noise the generalised coordinates are
advantageous for dealing with such noise.

In this thesis, detailed research is provided with regards to the application of generalised coordinates
in Active Inference for robotics. Current research for robotics in which Active Inference has been applied
doesn’t exploit the full potential of generalised coordinates. Therefore, this research aims to explore the
constructs necessary to apply generalised coordinates of motion in an on­line Active Inference control
loop of an LTI State Space system. A detailed derivation of the generalised precision, which relates
generalised coordinates and coloured noise, is provided. A method for obtaining generalised output by
means of finite differences is proposed, that constructs generalised coordinates from the on­line data
in scenarios in which the environment does not provide the required generalised coordinates naturally.
Themethod is implemented in the simulation of a one degree of freedomSISO LTI State Space scenario
which highlights the potential but also the difficulties still faced when applying Active Inference for on­
line robotics control. Besides the detailed derivations of some aspects of Active Inference for robotics,
open problems are identified and suggested for future research that can potentially yield methods to
apply Active Inference in robotics at full capacity, providing a true biologically plausible robot control
method.

v

Contents

Preface iii

Abstract v

List of Figures ix

List of Tables xi

List of Listings xi

1 Introduction 1
1.1 Active Inference . 1

1.1.1 Applications for robotics . 1
1.1.2 Generalised coordinates of motion . 2

1.2 Research objective . 2
1.2.1 Research directions . 3

1.3 Notation . 4

2 Free Energy principle 5
2.1 A theory of biological adaptive systems . 5

2.1.1 Homeostasis . 5
2.1.2 Bayesian Inference . 6

2.2 Explicit Free Energy . 8
2.2.1 The Laplace approximation . 8
2.2.2 Gaussian models . 10

2.3 Generalised motions . 11
2.3.1 The G­density. 11
2.3.2 Temporal correlations of disturbances. 12
2.3.3 Generalised motions in Active Inference . 13

3 Coloured noise 15
3.1 Covariance of coloured noise . 15

3.1.1 Definition of the noise . 15
3.1.2 The generalised covariance matrix . 16

3.2 Autocorrelation of Gaussians . 18
3.2.1 The autocorrelation function . 18
3.2.2 Derivatives of the autocorrelation function . 19

3.3 The generalised precision matrix . 19
3.3.1 Matrix formulation . 19
3.3.2 Generalised precision influence . 21

4 Generalised motions 23
4.1 Finite differences . 23

4.1.1 Taylor expansion . 23
4.1.2 Approximating derivatives . 24
4.1.3 Matrix equations . 25

4.2 Analytic evaluation . 28
4.2.1 Derivative accuracy . 28
4.2.2 Derivatives and noise . 30

4.3 Generalised coordinates from finite differences. 31

vii

viii Contents

5 Active Inference and State Space formulation 33
5.1 Closed loop State Space formulation . 33

5.1.1 The agent’s internal model . 33
5.1.2 Perception and action . 34

5.2 Generalised forward model . 35
5.3 The simulated system . 36
5.4 On­line simulation with generalised output . 37

5.4.1 Implementation . 37
5.4.2 Varying noise characteristics. 39

5.5 Simulation of a generalised plant . 40
5.5.1 Generalised noise . 41
5.5.2 Simulations . 42

5.6 Evaluation. 43

6 Conclusion 47
6.1 Research summary. 47

6.1.1 Generalised coordinates . 47
6.1.2 Generalised precision . 48
6.1.3 Perceiving generalised motions . 49
6.1.4 State Space control with Active Inference. 49
6.1.5 The research question . 49

6.2 Discussion and recommendations . 50

A Autocorrelation derivatives 51
A.1 The derivations . 51

A.1.1 Notations and definitions . 51
A.1.2 Analytic derivatives . 51

A.2 Evaluation. 53

B Matlab scripts 55
B.1 Coloured noise & generalised precision . 55

B.1.1 Coloured noise generator . 55
B.1.2 Generalised precision matrix. 56

B.2 Finite differences . 57
B.2.1 Finite difference matrix E. 57
B.2.2 Derivatives by finite differences . 59
B.2.3 Finite difference testing. 60
B.2.4 Finite difference evaluation . 63

B.3 Generalised forward model . 64
B.4 Simulation. 65

B.4.1 Parameter script . 65
B.4.2 Simulation program. 67
B.4.3 Dynamic update rules . 73
B.4.4 Free Energy computation . 75

Bibliography 77

List of Figures

2.1 Surprisal as a log­probability measure. 6

3.1 Two different coloured noise signals (Δ𝑡 = 0.001𝑠) by different filters. 16

4.2 Derivative estimates up to 6th order of equation (4.13), sampled with sampling time
ℎ = 10−2s and accuracy of 𝒪(ℎ2) (𝑜 = 2). Solid lines represent true analytic deriva­
tives. Approximations by means of backward differences are shown dashed, forward
differences dotted, and central differences dashdotted. 29

4.1 Derivative estimates up to 6th order of equation (4.13), with sampling time ℎ = 10−2s and
accuracy of 𝒪(ℎ) (𝑜 = 1). Solid lines represent true analytic derivatives. Approximations
by means of backward differences are shown dashed, forward differences dotted, and
central differences dashdotted. 30

4.3 Derivative estimates up to 6th order of equation (4.13) with added noise, sampled with
sampling time ℎ = 10−2s and accuracy of 𝒪(ℎ) (𝑜 = 1). Noise characteristics (sec­
tion 3.1.1) 𝜎𝑤 = 1 × 10−3, 𝑠𝑤 = 0.5. Solid lines represent true analytic derivatives
(without noise). Approximations by means of backward differences are shown dashed,
forward differences dotted, and central differences dashdotted. 31

4.4 Derivative estimates of equation (4.13) with added noise, sampled with sampling time
ℎ = 10−2s and accuracy of 𝒪(ℎ) (𝑜 = 1). Noise characteristics (section 3.1.1) 𝜎𝑤 =
1 × 10−3, and varying smoothness. Solid lines represent true analytic derivatives (with­
out noise). Approximations by means of backward differences are shown dashed, for­
ward differences dotted, and central differences dashdotted. 32

4.5 Derivative estimates of equation (4.13) with added noise, sampled with sampling time
ℎ = 10−2s and accuracy of 𝒪(ℎ) (𝑜 = 1). Noise characteristics (section 3.1.1) are varying
standard deviation, and 𝑠𝑤 = 0.5. Solid lines represent true analytic derivatives (without
noise). Approximations by means of backward differences are shown dashed, forward
differences dotted, and central differences dashdotted. 32

5.1 Block scheme of the LTI­State Space control loop consisting of the generative process
(plant) and agent (controller/observer). 35

5.2 Free Body Diagram of a one­DOF SISO system for simulations. 37
5.3 Coloured noises with 𝜎𝑤,𝑧 = 0.05 and 𝑠𝑤,𝑧 = 0.1. Random seeds in Matlab are 4 for 𝑤

and 6 for 𝑧. 38
5.4 Simulation results of an Active Inference control loop with generalised output coordinates

by means of backward finite differences and parameters as in table 5.1. 39
5.5 Simulation results of an Active Inference control loop with generalised output coordi­

nates, with varying noise parameters (increased variance) as in table 5.2. 40
5.6 Simulation results of an Active Inference control loop with generalised output coordi­

nates, with varying noise parameters (decreased smoothness) as in table 5.2. 41
5.8 Simulation results of an Active Inference control loop with a generalised plant, with pa­

rameters as in table 5.3. 42
5.7 Generalised noise and output signals of an Active Inference control loop with a gener­

alised plant, with parameters as in table 5.3. 43
5.9 Generalised outputs 𝑦̃ of the simulation in figure 5.8, compared to approximated deriva­

tives by finite differences (𝑜 = 1). 44

ix

List of Tables

4.1 Summation ranges in equations (4.9) and (4.10) to find approximations for derivatives
𝑦(𝑑)𝑘 by way of finite differences. *for central differences, 𝑜 must be chosen such that
𝑑 + 𝑜 is odd. 26

4.2 MSE of the approximated derivatives in figure 4.1 for backward, forward and central
differences. Sampling time ℎ = 10−2s, time 𝑇 = 10s and accuracy is of 𝒪(ℎ). 29

4.3 MSE of the approximated derivatives for backward, forward and central differences.
Sampling time ℎ = 10−2s, time 𝑇 = 10s and accuracy is of 𝒪(ℎ2). 29

4.4 MSE of the approximated derivatives for backward, forward and central differences.
Sampling time ℎ = 10−3s, time 𝑇 = 10s and accuracy is of 𝒪(ℎ). 31

5.1 Parameters for simulation of a one­DOF SISO system. 38
5.2 Parameters for simulation of a one­DOF SISO system with varying noise parameters. . 39
5.3 Parameters for simulation of a one­DOF SISO system with a generalised plant. 42

List of Listings
3.1 A Matlab function f_precision that creates a generalised precision matrix as in equa­

tion (3.15). The full script with an explanation of inputs and outputs of the function is pro­
vided in listing B.2 in appendix B.1. This code is very similar to that of SPM_DEM_R.m
from [9]. 20

4.1 A Matlab function f_finitediffmat that creates the matrix for finite differences 𝐸 as
in equation (4.11). The full script with an explanation of inputs and outputs of the function
is provided in listing B.3 in appendix B.2. 26

B.1 The Matlab function f_colourednoise. 55
B.2 The Matlab function f_precision. 56
B.3 The Matlab function f_finitediffmat. 57
B.4 The Matlab function f_finitediff. 59
B.5 A Matlab script to perform tests with finite differences. 60
B.6 The Matlab function f_diffcheck. 63
B.7 The Matlab function f_genforwardmodel. 64
B.8 A Matlab script to setup and run simulations. 65
B.9 The Matlab function f_sim. 67
B.10 The Matlab function f_plantupdate. 73
B.11 The Matlab function f_agentupdate. 74
B.12 The Matlab function f_freeenergy. 75

xi

1
Introduction

This first chapter of this work is an introductory chapter, meant to introduce the topic of Active Inference
in robotics and the aim of this research. The research field of control for robotics is rich and robotic
solutions exist in many ways, shapes or forms throughout our lives, to improve the quality thereof, for
applications ranging from comfort or entertainment­enhancing solutions to the replacement of humans
in hazardous environments or for tedious tasks. In contrast to robotics, biological organisms are highly
adaptive. To achieve such adaptivity and performance in uncertain environments in robotics, it seems
logical to look to nature for inspiration, to mimic the there­found behaviour, intelligence and/or perfor­
mance. On the rise is the theory of Active Inference, based on the underlying Free Energy Principle, of
neuroscientist Karl Friston. It is a unified theory of action, perception and learning in the biological brain
and has more recently received some attention in the world of robotics. This chapter explains how a
neuroscientific theory is of interest to the world of robotics, what challenges are faced in the research
towards robotics control by means of active inference and how those will be addressed in this thesis,
by introducing a research question and a set of sub­questions, thereby also presenting an outline of
this work.

1.1. Active Inference
Active Inference is a neuroscientific theory, or principle, by Karl Friston. It is a well­known theory within
neuroscience and is picking up attention in the research field of robotics. This theory provides a unified
account of perception, action and learning under the Free Energy Principle [11, 12]. A unified theory
of the workings of the biological brain would be a holy grail in neuroscience, but could also prove very
useful for robotics. The Free Energy principle states that all self­organizing biological organisms, or
agents, minimize a quantity called free energy, which can be done by means of a gradient descent
scheme, to bound the entropy over a life­span in order to survive. By performing this minimization a
brain, or agent, acts as a Bayesian Inference machine. The Free Energy Principle and Active Inference
are not only biologically plausible, but also mathematically well­defined, which makes research for an
application to robotics all the more interesting. The scientific content on Active Inference is esoteric and
vast, for which the theory is also criticized. Furthermore, the Free Energy Principle is not falsifiable.
It is, as confirmed by Friston, merely a principle [19]. This principle of minimization of Free Energy,
or in other words, the reduction of uncertainty, is promising for robotics control for the aforementioned
reasons, and also intrinsically accounts for uncertainty. It could prove to be a very complete and elegant
method for robotics control if it indeed unifies action and perception (and learning), whilst dealing with
uncertainty.

1.1.1. Applications for robotics
Research regarding the application of Active Inference for the control of robotics is still young and
narrow, although a few applications exist. It has already been shown that Dynamic Expectation Maxi­
mization (DEM, [18]), a theory also based on the Free Energy Principle and also by Karl Friston about
the inference of a systems states, parameters and hyperparameters, can outperform a classical Kalman

1

2 1. Introduction

Filter in the presence of coloured noise [1] (for coloured noise see chapter 3). Applications of Active
Inference in robotics exist in the form of simulations and for real robots with on­line control. In many
applications of the Free Energy Principle, the focus is on perception. A more action­driven approach
is of interest in applications for robotics. Applications based on simulations can be found in the work
of [29], which describes simulations of the control of a 7­DoF arm of a PR2 robot with visual input for a
reaching task based on Active Inference. In this simulation, the true configuration of the 7­DoF arm is
assumed to be known and action (control input) is the result of reflex arcs. A true closed feedback loop
is thus missing. Closed loop implementations are provided in [2] for a simulation of a simple wheeled
robot that performs phototaxis (it orients itself towards light), and in [23] for simulations of a robot with
a 2­DoF arm and a monocular camera for visual sensory input, performing a tracking task. Control of
real, on­line robots by means of Active Inference has meanwhile been shown by [26] and [27, 28]. The
former shows the control of the 3­DoF arm and head movement of the humanoid iCub robot, which is
velocity controlled and has a model defining the relationship between sensory input from the visual field
to the joint space of the arm. The latter shows on­line control of a 7­DoF Franka Emika Panda robot
arm performing torque­controlled tracking tasks for multiple set points, simulation a pick­and­place task.
Furthermore, the performance of this Active Inference control is compared to a state­of­the­art MRAC
controller, showing the potential of Active Inference as a high­performance robot control method.

1.1.2. Generalised coordinates of motion
Active Inference is an interesting and promising theory for robot control for various reasons, among
which is the aforementioned unification of action and perception, but also the natural ability to deal
with uncertainty and the potential to achieve more ‘natural’ behaviour in robotics due to the biological
plausible, nature­inspired background of the method. Another key feature of Active Inference is the ex­
istence and application of the so­called ‘generalised coordinates of motion’, or ‘generalised motions’ or
‘generalised coordinates’ [10]. These generalised motions are the instantaneous temporal derivatives
of a dynamic process and including generalised motions can provide more information on a dynamically
correlated process. This is especially interesting when coloured noises are assumed. In contrast to
white noise often assumed in classical algorithms, coloured noise is smooth and therefore its temporal
derivatives exist. If one assumes all disturbances to a process to be the result of a dynamical process
themselves, this assumption is valid. The generalised coordinates can potentially be very beneficial
for dealing with uncertainty, albeit unmodelled dynamics or a disturbance from the environment, given
the dynamical correlation that exists in the coloured noise.

Generalised motions are applied in some of the existing applications for robotics. One additional
dynamical order is present in the work of [29]. This occurs naturally in the equations of motion. For the
wheeled robot of [2], generalised motions are not considered at all. In [23] the authors discuss the use
of generalised motions up to the third order, but drop the third order for their simulations, considering
it to be only noise. The work of [26] mentions generalised motions up to the second order, but applies
only those of the first order. Lastly, in the work of [27, 28] the motions up to second order are taken
into account in the internal model. All these works in which generalised motions are applied have an
assumption in common that the dynamics of different orders of motion are uncorrelated. This also
means that it is assumed that there is no correlation of the coloured noise on the different dynamical
orders. In the mathematical review of [4] this assumption is also made and the mathematics are well­
explained. This has a great impact on the form of the Free Energy and the generalised precision matrix
it is parametrized by, as shown in chapters 2 and 3. Furthermore, the generalised motions have only
been considered up to an order that is available from the system description or equations of motion. A
State Space formulation for Active Inference has been proposed in [20]. Generalised motions are taken
into account for this State Space formulation, including correlation between dynamical orders and the
resulting form of the Free Energy equation. However, this has only been done for the process dynamics,
and also for dynamical orders up to the second only. Generalised motions were not considered for the
sensory input, or what is considered the system output in classical control.

1.2. Research objective
The objective of this thesis is to explore the application of Active Inference to robotics, taking into
account promising features of Active Inference that currently have not been fully explored. Generalised
coordinates of motion are an interesting concept when the noise present in a system is no longer

1.2. Research objective 3

assumed white but coloured, in which case the generalised coordinates of motion provide additional
information about the dynamics of a system and its noise. It is this correlation and potential gain for
performance in robotics control that needs to be explored. With it, however, come some difficulties
that are still to be solved. In this thesis, the necessities to apply generalised coordinates to their full
extent are researched. This means using generalised coordinates up to a desired order without the
necessity to be able to measure them or obtain them through system relations. The starting point for
this research is a suggestion made by Friston in [10] to create generalised coordinates by means of
finite differences (Taylor expansion). The research question for this work is:

What constructs are necessary to apply generalised coordinates to an Active Inference control loop
whilst taking correlation between dynamical orders into account?

In order to answer this question, several sub­problems need solving. Current research doesn’t show the
necessary tools to create an Active Inference control loop that fully supports generalised coordinates
and the use of correlation between the dynamical orders.

1.2.1. Research directions
To explore the application of Active Inference to a control loop for robotics, whilst including the promising
aspects of Active Inference mentioned, the following will be researched in this thesis. Sub­questions
to the above research question are posed, and with it, the structure of the document is explained:

a) What is the role of generalised coordinates in Active Inference?
In order to understand the generalised coordinates, it is important to understand the theory of
active inference and the underlying free energy principle. This is the content of chapter 2, a
chapter of background theory. In this chapter it is shown how a theory from neuroscience, of a
brain as a Bayesian Inference machine and of the minimisation of surprisal at all times leads to
a mathematical construct that can be applied to robotics control. Assumptions about coloured
noise as an influence on dynamical processes and their relationship to generalised coordinates
are treated in this chapter and aimed at answering this first sub­question. The position of this
research with regards to current literature is also addressed.

b) What is the relationship between generalised coordinates and coloured noise?
Generalised coordinates are introduced and described in chapter 2, as well as the role of noise
in Active Inference. The coloured noise influences the Active Inference algorithm by means of
a generalised precision matrix, which is first introduced in chapter 2. The generalised precision
matrix is the major topic of chapter 3, in which a detailed derivation of the matrix is given. It gives
insight into the relationship between generalised coordinates and coloured noise, and is required
for implementation of generalised coordinates in a robotics control loop.

c) How can generalised coordinates be generally applied in the Active Inference framework when
they are not readily available?
In Active Inference, generalised coordinates are assumed to exist. In reality, this is true, since
each dynamical process has an infinite amount of temporal derivatives. However, in a robotics
scenario in which a process is known by the input it is provided and the output that is measured,
temporal derivatives (generalised coordinates) are not generally available. A velocity and accel­
eration measurement of a position state might be available. Even then, only additional orders of
motion are available. It can be said that generally, generalised coordinates cannot be measured.
In [10] it is suggested that generalised coordinates can be created by means of finite differences
(Taylor expansion). This is the topic of chapter 4.

d) How can Active Inference with generalised motions be applied to an LTI­State Space control
loop?
Active Inference has been applied to control loops in previous research. As mentioned before,
it has even been successfully applied to a physical robot [26, 28]. In these scenarios, however,
the correlation between dynamical orders that was mentioned earlier is missing. The work in [20]
shows a State Space implementation of Active Inference, but with limited generalised coordinates
and no generalised output. For the desired practical implementation that this research is focused
on, it is important to have a functional State Space formulation of Active Inference with generalised

4 1. Introduction

coordinates and generalised precision. The topic of chapter 5 is the formulation of a simple one­
DOF LTI­State Space system that implements generalised coordinates and generalised precision
as described in preceding chapters. Simulation results will show the effects of the implemented
constructs as well as the challenges it presents.

Finally, chapter 6 is a conclusive chapter. It is aimed at summarising the research and answering
the research questions, but also at discussing and explaining directions for future research, because
Active Inference in robotics is still young and requires far more research than is presented in this thesis.

1.3. Notation
The math involved in the work of this thesis is written as consistent and clear to a reader from the field
of robotics as possible, although a lot of the literature on the topic is from a neuroscientific or other
background and notations vary greatly. For clarity, some notation conventions are declared:

• This work assumes dynamical processes. Dynamic variables are therefore time­dependent, but
this dependency is generally omitted for brevity and readability. E.g., a process 𝑥(𝑡) is denoted
simply by 𝑥, similarly for others such as 𝑦(𝑡), 𝑤(𝑡), 𝑧(𝑡), 𝜇(𝑡).

• All vectors are denoted in boldface: 𝒙, 𝒚 etc. (also without time­dependency (𝑡)), and matrices
are always denoted by a capital letter such as 𝐴, 𝐵, Σ, Π.

• A semicolon is followed by parameters. So 𝑓(𝒙; 𝜇, Σ) is a function of 𝒙, parametrized by the
variables 𝜇 and Σ.

• Partial derivatives are always written as a fraction: The partial derivative of 𝑓(𝒙, 𝒚) is denoted by
𝜕𝑓
𝜕𝒙 , the second partial derivative by 𝜕2𝑓

𝜕𝒙2 , etc.

• Temporal derivatives may be represented by a dot (e.g. 𝒙̇) or by d
d𝑡 , or more generally by a

superscript in parenthesis 𝒙(𝑑) with 𝑑 = 0, 1, 2, ….

• A tilde signifies generalised coordinates (introduced in section 2.3). Generalised coordinates
of motion are instantaneous (beliefs of) temporal derivatives, such as 𝝁̃, 𝒚̃, which are vectors
stacked with temporal derivatives. Individually these are represented by dashes, e.g. 𝜇′, 𝜇″, but
they may also be represented by a superscript in parentheses. Tildes also represent generalised
versions of functions or variables related to generalised coordinates, such as 𝐴̃ or Π̃.

• The Kronecker product of two matrices is represented by ⊗ and multiplies each element of the
left argument with the entire right argument.

2
Free Energy principle

This chapter is one of background knowledge. Active Inference is a very rich theory, originally from the
field of Neuroscience. The neuroscientific theory is esoteric and vast, providing an explanation of life
on timescales ranging from evolutionary to functional (the timescale of a dynamical process). The neu­
roscientific theory is outside the scope of this work. Fortunately, the theory of Active Inference and the
underlying Free Energy Principle are mathematically well­defined and therefore suited for a translation
to robotics. Because of the vastness of the theory, the underlying mathematics are also very extensive.
In this chapter, the mathematics of the Free Energy Principle that are required for understanding the
further research in this work are explained in a notation that is as familiar as possible for the field of
control theory. The mathematics are accompanied by some explanation of the neuroscientific theory,
to put it into context. By the end of this chapter, an answer to the research question ‘What is the role
of generalised coordinates in Active Inference’ can be formulated.

2.1. A theory of biological adaptive systems
The Free Energy principle is the underlying theory of Active Inference. It is an information theoretic
quantity, introduced into physical statistics [8] as a construct that converts a difficult or intractable in­
tegration of a probability density into an optimization problem. In Neuroscience, it provides a unified
account of action, perception and learning [12] for adaptive systems (biological agents like animals
or brains). Free Energy is an upper bound on surprisal, related to homeostasis, as explained in sec­
tion 2.1.1, but also the difference between an agents internal model of environmental states (a recog­
nition density 𝑞(𝒙)) and its model of states and sensory input from the outside world (a generative
density 𝑝(𝒙, 𝒚)), when a biological brain or agent is considered a Bayesian Inference machine. This
is explained in section 2.1.2. In this chapter, the terms ‘brain’ and ‘agent’ are used interchangeably,
because the origins of the theory lie with biological brains, but when translating the theory to robotics,
it makes more sense to talk about an agent. The relation between the two, as both terms are used,
becomes clear in this chapter. In the following chapters, the term ‘agent’ will solely be used. In this
chapter, the focus is on the mathematical derivation towards application in robotics, although with con­
nections to the neurological origin of the theory. In [12, 16], among others, more neurological­focused
descriptions of the Free Energy Principle and Active Inference can be found.

2.1.1. Homeostasis
As Friston explains [12, 13]: Any biological system that maintains its homeostasis, which is necessary
in order to survive, must resist a natural tendency to disorder. From the point of view of a brain, or
an agent, both the body (outside the brain) and the surrounding world are part of the environment.
Any sensory input to the brain is an output of the environment and in order to maintain homeostasis,
the mathematical probability of the sensory states that an adaptive biological system can be in, must
have low entropy. The probability of the states of a system in homeostasis must be high, and the
probability of remaining states low. Entropy is the long­term average of surprisal, which is the negative
log­evidence of probability and a construct from information theory [30]. The relationship between sur­

5

6 2. Free Energy principle

prise and the probability of a sensory input of the agent is displayed in figure 2.1. By defining surprisal
as a logarithmic function, the surprisal of multiple events becomes additive. Figure 2.1 illustrates that
a negative log­probability measure is an intuitive representation of surprisal: it is zero for a very typi­
cal event that occurs with probability one, and approaches infinity for the low probability of an unlikely
(atypical) event.
An intuitive example of surprisal is that of a fish out of water. Out of water, a fish cannot maintain

Figure 2.1: Surprisal as a log­probability measure.

homeostasis and in these conditions, the surprisal of that sensory state will be high. Since the fish will
spend (nearly) all of its life in water, the probability associated with the state ’out of water’ will be low
(and thus have high surprisal, if it does occur). Furthermore, entropy is high for a fish that more often
finds itself out of water.

Surprisal can, unfortunately, not be minimised directly as it would require an agent to know the
distribution of sensory inputs 𝑝(𝒚). Knowing this distribution means an agent (or brain) knows the
distribution of ‘surprising’ events, which intuitively is highly unlikely, if not impossible. This is where
Free Energy comes into play: as it turns out, Free Energy is an upper bound on surprisal. In contrast
to surprisal itself, Free Energy can be evaluated because it depends on the agents sensory input (𝒚),
which is available, and the so­called recognition density: an internal model of (hidden) states in the
world 𝑞(𝒙). By minimising Free Energy, surprisal can be minimised indirectly. This will be explained in
section 2.1.2.

2.1.2. Bayesian Inference
Research has shown that biological brains are likely to represent information by means of probability
distributions [21]. Both sensory and motor signals contain a degree of uncertainty, and this must be
accounted for. It appears that computations in the brain based on perception are ‘Bayes optimal’. This
means that the brain can be considered a Bayesian Inference machine. What follows is a description of
the probability densities that are involved when an agent performs Bayesian Inference based on its per­
ception and internal beliefs, and how this is related to Free Energy. This has been well­explained in [4].

Consider an agent that maintains a model of its environment. This internal model represents the
beliefs of the agent about its environment, about the (hidden) states that are the causes of its sensory
input. The states are ‘hidden’ because they cannot be perceived directly, but only by means of the
sensory input of the agent (i.e. the ‘output’ of the environment). For example, it is not possible to
perceive the velocity of a passing car directly, but only by means of our visual input. A mapping is
required to translate the visual input to (an estimate of) the velocity of the passing car. The model
is represented by a probability distribution over all the values that these variables could have. Such
a model needs to be maintained: it requires updating when evidence of the environment becomes
available through sensory input. By means of a Bayesian Inference process, the agent can update this
probability density that is known as the ‘Recognition Density’ or ‘R­density’ and effectively model its
environment. It is represented in equation (2.1). In order to update the R­density using the sensory input

2.1. A theory of biological adaptive systems 7

that is available to the agent, it needs to know how the states translate to their sensory inputs. Therefore,
another model is required that is made up of prior beliefs about the (hidden) states of the world. The
model is represented by a joint probability density that is also known as the ‘generative density’ or ‘G­
density’. This G­density is shown in equation (2.1) and can be factorised into two probability densities:

• The prior density, which encodes the agent’s beliefs about the world without any additional knowl­
edge from sensory input.

• The likelihood, a conditional density that encodes the agents belief of relationship between envi­
ronment states and its sensory input.

𝑞(𝒙)⏟
R­density

𝑝(𝒙, 𝒚)⏝⎵⏟⎵⏝
G­density

= 𝑝(𝒚|𝒙)⏝⎵⏟⎵⏝
likelihood

𝑝(𝒙)⏟
prior

(2.1)

It is assumed all the probability densities are normalised:

∫𝑞(𝒙)d𝒙 = ∫∫𝑝(𝒙, 𝒚)d𝒙d𝒚 = ∫𝑝(𝒙)d𝒙 = ∫𝑝(𝒚)d𝒚 = 1

The density of interest to an agent that aims to perceive the states in its environment is the the
posterior density 𝑝(𝒙|𝒚) which, when evaluated, gives the agent the most information possible about
a state 𝒙 in the environment given its sensory input. Applying Bayes theorem, the posterior belief of 𝒙
given the sensory input 𝒚 taking on some value 𝝓 can be computed as in equation (2.2).

𝑝(𝒙|𝝓) = 𝑝(𝝓|𝒙)𝑝(𝒙)
𝑝(𝒚 = 𝝓) = 𝑝(𝝓|𝒙)𝑝(𝒙)

∫ 𝑝(𝝓|𝒙)𝑝(𝒙)d𝒙 (2.2)

The denominator of equation (2.2) needs to be evaluated if an agent is to evaluate the posterior belief.
However, this integral is often intractable, as it requires the evaluation over all possible sensory states,
which requires knowing them all. Intuitively, this seems quite impossible. Since the posterior density
cannot be evaluated directly, it requires an approximation which can be done by means of ‘variational
Bayes’ (also called ‘ensemble learning’ or ‘approximate Bayesian inference’) [3, 18]. The method of
variational Bayes translates the problem of integral evaluation to one of optimisation, a problemwhich is
much easier to solve. It is the Free Energy that can be minimised by means of an optimisation process,
and it follows from the Kullback­Leibler Divergence [22] between the R­density and the posterior density
(equation (2.2)). The KL­divergence is a measure of difference between two probability densities, and it
is defined in equation (2.3). A KL­divergence between the R­ and posterior densities that is minimised
with respect to the R­density results in an R­density that is a better approximation to the posterior,
making it a better model of the environment. The KL­divergence cannot be evaluated, however, since
this still requires the evaluation of the posterior density. Rewriting it results in equation (2.4).

𝐷𝐾𝐿(𝑞(𝒙) ‖ 𝑝(𝒙|𝒚)) = ∫𝑞(𝒙) ln(
𝑞(𝒙)
𝑝(𝒙|𝒚))d𝒙 (2.3)

= ∫𝑞(𝒙) ln(𝑞
(𝒙)𝑝(𝒚)
𝑝(𝒙, 𝒚))d𝒙

= ∫𝑞(𝒙) ln(𝑞(𝒙))d𝒙 − ∫𝑞(𝒙) ln(𝑝(𝒙, 𝒚))d𝒙 + ∫𝑞(𝒙) ln(𝑝(𝒚))d𝒙
⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝

∫𝑞(𝒙)d𝒙=1

= ∫𝑞(𝒙) ln(𝑞(𝒙))d𝒙 − ∫𝑞(𝒙) ln(𝑝(𝒙, 𝒚))d𝒙
⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

≡ 𝐹

+ ln(𝑝(𝒚))⏝⎵⎵⏟⎵⎵⏝
𝑛𝑒𝑔.𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙

(2.4)

From equation (2.4) a definition of the (variational) Free Energy arises. This definition of Free Energy
(equation (2.5)) depends on the R­ and G­densities and not on the Bayesian posterior. Both the R­
and G­densities can, in contrast to the posterior density, be defined and evaluated, as will be shown in
sections 2.2.1 and 2.2.2.

𝐹 ≡ ∫𝑞(𝒙) ln(𝑞(𝒙))d𝒙 − ∫𝑞(𝒙) ln(𝑝(𝒙, 𝒚))d𝒙

8 2. Free Energy principle

= ∫𝑞(𝒙) ln(𝑞(𝒙)
𝑝(𝒙, 𝒚))d𝒙 (2.5)

Because of Jensen’s inequality [5], the KL­divergence is known to be non­negative. With the KL­
divergence depending on the Free Energy and on surprisal (equation (2.4) and section 2.1.1), it can be
stated that the (variational) Free Energy (equation (2.5) is an upper bound on surprisal. Minimising the
Free Energy therefore indirectly minimises surprisal (section 2.1.1) and minimises the KL­divergence,
meaning that minimising the Free Energy also makes the R­density a better approximation to the
Bayesian posterior:

𝐷𝐾𝐿 ≥ 0
𝐹 = 𝐷𝐾𝐿 − ln(𝑝(𝒚)) } 𝐹 ≥ − ln(𝑝(𝒚))⏝⎵⎵⎵⏟⎵⎵⎵⏝

surprisal

So far, it has been shown that with a theory of the requirement of any self­organizing organism to
maintain its homeostasis and with the Bayesian brain hypothesis, variational Bayesian Inference yields
a formulation of Free Energy that can be evaluated, in contrast to the original inference problem and,
when minimized, can indirectly minimise surprisal and make the R­density a better approximation to
the Bayesian posterior, which allows an agent to infer the states of the environment through its sensory
input. The Free Energy is currently specified as a function of undefined probability densities. A practical
implementation of the Free Energy will be presented in the following section.

2.2. Explicit Free Energy
The Free energy depends on the R­ and G­densities (𝑞(𝒙), 𝑝(𝒙, 𝒚)). A practical formulation of the
Free Energy requires an explicit definition of these probability density functions. Uncertainty, however,
makes an explicit definition impossible. Uncertainties can, for example, be the result of noise or un­
modelled dynamics. To arrive at a practical formulation of Free Energy, some assumptions need to be
made, which will be described in this section. This process involves:

1. The Laplace approximation to give form to the R­density by means of its sufficient statistics,
resulting in the Laplace­encoded Free Energy.

2. Choosing a functional form for the G­density as a product of the conditional and prior densities.

These are the topics of sections 2.2.1 and 2.2.2 respectively.

2.2.1. The Laplace approximation
The R­density 𝑞(𝒙) is an internal model of hidden states in the environment. It is the probability density
that represents an agent’s internal belief. Because this density is an internal model, it can be specified
‘freely’. It is common to make the Laplace approximation [18, 25], which provides an explicit definition of
the R­density by assuming it to be a Gaussian distribution (equation (2.6)) that is defined by its sufficient
statistics, the mean and variance. Furthermore, the (co)variance is assumed to be small. This means
that the distribution is sharply peaked around its mean value, which is the case if the states weakly
covary (independent states), and the better an agent knows its environment, the more accurate this
assumption is. This assumption is most valid when the agent is most certain about the R­density (its
internal model). This scenario is not unrealistic, but somewhat specific. The agent may have learned
about this environment before. For the derivation of the Laplace approximation, a single state 𝑥 will be
considered. An analogous derivation can be made for the multivariate set of states 𝒙.

𝑞(𝑥) ≡ 𝒩(𝑥; 𝜇, 𝜎2) = 1
√2𝜋𝜎2

exp(−
(𝑥 − 𝜇)2

2𝜎2) = 𝑧−1 exp (−𝜖(𝑥)) (2.6)

with
𝑧 ≡ √2𝜋𝜎2

𝜖(𝑥) ≡ 1
2𝜎2 (𝑥 − 𝜇)

2

Given the definition of the R­density in equation (2.6), together with the assumptions of the Laplace
approximation, the integral in the Free Energy in equation (2.5) becomes tractable. This is done in two
steps:

• Substituting the definition of the R­density in equation (2.6) into the Free Energy in equation (2.5).

2.2. Explicit Free Energy 9

• Apply a Taylor Expansion about the Gaussian that is assumed to be sharply peaked.

For the substitution of equation (2.6) into equation (2.5), the substitute variables 𝑧 and 𝜖(𝑥) from equa­
tion (2.6) are very useful:

𝐹 = ∫𝑞(𝑥) ln(𝑞(𝑥)
𝑝(𝑥, 𝑦))d𝑥

= ∫𝑞(𝑥) ln(𝑞(𝑥))d𝑥 − ∫𝑞(𝑥) ln(𝑝(𝑥, 𝑦))⏝⎵⎵⏟⎵⎵⏝
−𝐸(𝑥,𝑦)

d𝑥

= ∫𝑞(𝑥)(− ln(𝑧) − 𝜖(𝑥))d𝑥 + ∫𝑞(𝑥)𝐸(𝑥, 𝑦)d𝑥

= − ln(𝑧) − ∫𝑞(𝑥)𝜖(𝑥)d𝑥 + ∫𝑞(𝑥)𝐸(𝑥, 𝑦)d𝑥 (2.7)

The Free Energy in equation (2.7) now consists of three terms of which the first two are straightforward
to evaluate. They are simply constants:

− ln(𝑧) = −12 ln(2𝜋𝜎
2)

−∫𝑞(𝑥)𝜖(𝑥)d𝑥 = − 1
2𝜎2 ∫𝑞(𝑥)(𝑥 − 𝜇)

2 d𝑥
⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝

=𝜎2

= −12

The third term is less straightforward. The energy 𝐸(𝑥, 𝑦), which has been defined as such and is called
energy because of its similarities with Helmholtz’ Thermodynamic Energy, is still unspecified. It can be
simplified because of the assumptions that come with the Laplace approximation (which assumes that
the R­density is a sharply peaked Gaussian) by applying a second order Taylor expansion about 𝑥 = 𝜇.
In the following derivation 𝐸(𝑥, 𝑦) is written without arguments for brevity:

∫𝑞(𝑥)𝐸(𝑥, 𝑦)d𝑥 ≈ ∫𝑞(𝑥)(𝐸|
𝜇
+ 𝜕𝐸
𝜕𝑥 |𝜇

(𝑥 − 𝜇) + 12
𝜕2𝐸
𝜕𝑥2 |𝜇

(𝑥 − 𝜇)2)d𝑥

≈ 𝐸|
𝜇
∫𝑞(𝑥)d𝑥
⏝⎵⎵⏟⎵⎵⏝

=1

+ 𝜕𝐸
𝜕𝑥 |𝜇

∫𝑞(𝑥)(𝑥 − 𝜇)d𝑥
⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝

=0

+12
𝜕2𝐸
𝜕𝑥2 |𝜇

∫𝑞(𝑥)(𝑥 − 𝜇)2 d𝑥
⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝

=𝜎2

≈ 𝐸(𝜇, 𝑦) + 12
𝜕2𝐸
𝜕𝑥2 |𝜇

𝜎2

All three terms of equation (2.7) can now be substituted, which results in a definition of Free Energy as
in equation (2.8) that is parametrized by the mean, or expected value 𝜇 of the Gaussian R­density. This
means that in its internal model, an agent does not track the hidden environment state 𝑥, but merely
its belief (the expected value under uncertainty) thereof. The Free Energy furthermore depends on the
sensory input 𝑦 and is parametrized by the variance 𝜎2 of the Gaussian R­density.

𝐹(𝜇, 𝜎2, 𝑦) = 𝐸(𝜇, 𝑦) + 12(
𝜕2𝐸(𝑥, 𝑦)
𝜕𝑥2 |

𝜇
𝜎2 − ln(2𝜋𝜎2) − 1) (2.8)

The Energy 𝐸(𝜇, 𝑦) is called the Laplace Encoded Energy, which is the relevant part to arrive at an
explicit (practical) definition of the Free Energy. One more simplification is made to remove the de­
pendency of the Free Energy on the variance, which is substituted by its optimal value w.r.t. the Free
Energy:

𝜕𝐹
𝜕(𝜎2) =

1
2(

𝜕2𝐸(𝑥, 𝒚)
𝜕𝑥2 |

𝜇
− 1
𝜎2) ≡ 0 → 𝜎2∗ ≡ (𝜕

2𝐸(𝑥, 𝑦)
𝜕𝑥2 |

𝜇
)
−1

The result after the Laplace approximation is a Free Energy formulation (equation (2.9)) that depends
solely on the agents internal belief 𝜇 about the environment state 𝑥 and on its sensory input 𝑦. These

10 2. Free Energy principle

are both quantities that an agent has access to, in contrast to the hidden state 𝑥, meaning Free Energy
can be evaluated if the Laplace Encoded Energy is defined, which is the topic of section 2.2.2.

𝐹(𝜇, 𝑦) = 𝐸(𝜇, 𝑦) − 12(ln(2𝜋𝜎
2∗) + 1) (2.9)

In an analogue derivation of the approximation of the Free Energy by the Laplace Encoded Energy
for the multivariate set of states 𝒙 and sensory inputs 𝒚, the states are represented by the means or
expected values of those states, 𝝁.

2.2.2. Gaussian models
With the Laplace approximation in section 2.2.1, the Free Energy has been rewritten to the Laplace En­
coded Energy, which is different from the Free Energy by only a constant (equation (2.9)). Minimizing
the Laplace Encoded Energy therefore minimizes the Free Energy. From the derivation towards equa­
tion (2.7) the definition of the Energy follows. This energy is evaluated for the more general multivariate
case:

𝐸(𝒙, 𝒚) = − ln (𝑝(𝒙, 𝒚))
This Energy depends on the G­density, which in turn depends on the hidden state 𝒙. In contrast, the
Laplace Encoded Energy depends on the internal belief 𝝁 of the external state, which is its sufficient
statistic. Therefore the Laplace Encoded Energy in equation (2.10) is defined as a function of the
Laplace Encoded G­density, which can be factorised into likelihood and prior densities.

𝐸(𝝁, 𝒚) = − ln (𝑝(𝝁, 𝒚)) = − ln (𝑝(𝒚|𝝁)𝑝(𝝁)) (2.10)

Since minimizing this Laplace Encoded Energy minimizes the Free Energy, an explicit definition is
required. Remembering that the likelihood density is a generative mapping between the hidden states
in the environment, or in this case the belief thereof, and the sensory input it results in, a model can be
constructed. The same is true for the prior density regarding the (belief of) the hidden states in the world.
This density represents how the agent believes the hidden states in the environment evolve. Both these
processes can very well be represented by (stochastic) state space equations, as in equation (2.11).

𝝁̇ = 𝑓(𝝁) + 𝒘
𝒚 = 𝑔(𝝁) + 𝒛 (2.11)

The first equation in equation (2.11), which describes the state evolution, does not only depend on 𝝁
(and 𝒘), but also on its derivative 𝝁̇, which has not been discussed as of yet, and is not something that
is regarded in the R­ or G­densities. It is left as is for now and discussed further in section 2.3. The state
space equations are stochastic in nature only due to the stochastic variables 𝒘 and 𝒛, which represent
noise or unmodelled dynamics. As such, they represent the error on 𝝁 and 𝒚, and can therefore be
considered as 𝜺𝜇 and 𝜺𝑦 respectively. The definition is presented in equation (2.12).

𝜺𝜇 = 𝒘 = 𝝁̇ − 𝑓(𝝁)
𝜺𝑦 = 𝒛 = 𝒚 − 𝑔(𝝁)

(2.12)

If these noises are assumed to have a Gaussian nature, their probability density function is well defined.
AssumingGaussian noise is further discussed in section 2.3 and chapter 3. Furthermore, the probability
density functions of the Laplace Encoded G­density are defined by the probability density functions
of these disturbances, since these are fully responsible for the stochastic nature of the state space
equations. In equation (2.13) these densities are defined.

𝑝(𝒚|𝝁) = 𝑝(𝜺𝑦) = ((2𝜋)
𝑞|Σ𝑧|)

− 12 exp(−12(𝜺
𝑇
𝑦Σ−1𝑤 𝜺𝑦))

𝑝(𝝁) = 𝑝(𝜺𝜇) = ((2𝜋)
𝑛|Σ𝑤|)

− 12 exp(−12(𝜺
𝑇
𝜇Σ−1𝑤 𝜺𝜇))

(2.13)

Given the conditional and prior densities in equation (2.13), evaluating the Laplace Encoded Energy
(equation (2.10)) becomes straightforward:

𝐸(𝝁, 𝒚) = − ln (𝑝(𝒚|𝝁)) − ln𝑝(𝝁)

2.3. Generalised motions 11

= − ln(((2𝜋)𝑞|Σ𝑧|)
− 12 exp(−12(𝜺

𝑇
𝑦Σ−1𝑤 𝜺𝑦))) − ln(((2𝜋)𝑛|Σ𝑤|)

− 12 exp(−12(𝜺
𝑇
𝜇Σ−1𝑤 𝜺𝜇)))

= ln(((2𝜋)𝑞|Σ𝑧|)
1
2) + 12(𝜺

𝑇
𝑦Σ−1𝑧 𝜺𝑦) + ln(((2𝜋)𝑛|Σ𝑤|)

1
2) + 12(𝜺

𝑇
𝜇Σ−1𝑤 𝜺𝜇)

= 1
2((𝑛 + 𝑞) ln (2𝜋) + ln (|Σ𝑤||Σ𝑧|))⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

constant

+12(𝜺
𝑇
𝜇Σ−1𝑤 𝜺𝜇 + 𝜺𝑇𝑦Σ−1𝑧 𝜺𝑦)

By means of the Laplace approximation and the assumption of Gaussian disturbances, resulting in
Gaussian models, the Free Energy from equation (2.5) can, at the optimal variance of the R­density,
be approximated by a quadratic model and sensory prediction error, weighed by their precision. This
approximation deviates from the true Free Energy in equation (2.5) by constants, which are smaller
whenever the (co)variances are smaller: both of the R­density (the agent has better internal knowledge
of its environment) and of the G­density, which is the case when the uncertainties in the environment
are smaller (the precision is high). This could be because the dynamical model represents the environ­
ment better, or because the disturbances in the environment are small. Precision is simply the inverse
of covariance, the weighing factor in the quadratic error formulation of the Laplace Encoded Energy.
Therefore, the functional form of the Free Energy that is to be minimized is the quadratic function in
equation (2.14), in which precision Π = Σ−1. The influence of the errors on the Energy is thus weighted
by the confidence or reliability of the prediction. Even though this is not the Free Energy as in equa­
tion (2.5), but an approximation of it, it will be referred to as Free Energy. To mark the difference, it is
denoted as ℱ, instead of 𝐹.

ℱ(𝝁, 𝒚) = 1
2(𝜺

𝑇
𝜇Π𝑤𝜺𝜇 + 𝜺𝑇𝑦Π𝑧𝜺𝑦) (2.14)

With the (approximate) Free Energy defined as a weighted quadratic error function, its minimization
has become a very tangible problem. It can be achieved by a simple gradient descent scheme. The
minimization addresses both action and perception. Perception is the adjustment of the beliefs about
the states in the environment to make the internal beliefs better match the environment states. Action
is, in a way, its opposite: by acting on the environment, the agent can change the environment such
that it better matches its beliefs about it. How this is done is discussed in chapter 5.

2.3. Generalised motions
The equations in equation (2.11) describe a dynamical system: A system of which the states change
over time. It is suggested that a biological agent does not merely model, or keep track of, the (belief
of) environment states, but also the temporal derivatives thereof and the sensory input that is the result
of these ‘generalised motions’ [15, 18]. Generalised motions are the instantaneous derivatives of a
dynamical process, and they are potentially very useful. In a dynamical environment, Free Energy
must be minimized with respect to changing states and changing sensory inputs as a result. As aptly
stated in [15]: The gradient descent on Free Energy has to hit a moving target. Generalised motions
have effects on the models of the G­density, as shown in section 2.3.1, but are also involved with the
uncertainty caused by disturbances (𝑤 and 𝑧 in equation (2.11)), which is discussed in section 2.3.2.

2.3.1. The G­density
The instantaneous derivatives of sensory inputs or internal beliefs of states (state estimates) make a
far more precise specification of the environment state. For example, if a state represents a position,
all the higher order temporal derivatives (velocity, acceleration, jerk, etc.) give a very good insight into
the state trajectory. If an agent can indeed perceive, or keep track of generalised motions, this affects
the G­density. The equations in equation (2.11) can be ‘generalised’ as follows, with 𝑝 signifying the
‘embedding order’: The highest dynamical order considered.

𝝁′ = 𝑓(𝝁) + 𝒘 𝒚 = 𝑔(𝝁) + 𝒛

𝝁″ = 𝜕𝑓
𝜕𝝁𝝁

′ +𝒘′ 𝒚′ = 𝜕𝑔
𝜕𝝁𝝁

′ + 𝒛′

𝝁‴ = 𝜕𝑓
𝜕𝝁𝝁

″ +𝒘″ 𝒚″ = 𝜕𝑔
𝜕𝝁𝝁

″ + 𝒛″

12 2. Free Energy principle

⋮ ⋮

𝝁(𝑝+1) = 𝜕𝑓
𝜕𝝁𝝁

(𝑝) +𝒘(𝑝) 𝒚(𝑝) = 𝜕𝑔
𝜕𝝁𝝁

(𝑝) + 𝒛(𝑝)

These generalised equations are simply derivatives of the first equations at increasing higher orders
under a local linearity assumption. Since 𝝁 is a time­dependent variable, the chain (and product rule)
introduce nonlinear terms at higher­order derivatives of 𝑓(𝝁) and 𝑔(𝝁) with nonlinear combinations of
𝝁(𝑑), with 𝑑 indicating a derivative order of 1 or higher. It is common to neglect these terms, assuming
local linearity [10, 14, 18]. Generalised motions can be represented in short by a tilde, as demonstrated
below for the agent’s belief of motion 𝝁̃. A generalised vector of a signal will be of size 𝑛(𝑝 + 1), if 𝑛 is
the signal dimension and 𝑝 the embedding order.

𝝁̃ = [𝝁𝑇 𝝁′𝑇 𝝁″𝑇 𝝁(𝑝)𝑇]𝑇

If al generalised signals (𝝁̃, 𝒚̃, 𝒘̃, 𝒛̃) are defined similarly, and furthermore the functions 𝑓(𝜇) and 𝑔(𝜇)
are generalised into 𝑓̃(𝝁̃) and 𝑔̃(𝝁̃), as shown for 𝑓̃(𝝁̃) but completely analogous for 𝑔̃(𝝁̃):

𝑓̃(𝝁̃) = [𝑓(𝝁)𝑇 𝜕𝑓
𝜕𝝁𝝁

′𝑇 𝜕𝑓
𝜕𝝁𝝁

″𝑇 𝜕𝑓
𝜕𝝁𝝁

(𝑝)𝑇]
𝑇

The state update equation can now be represented as ̇𝝁̃ = 𝑓̃ + 𝒘̃. Since in generalised coordinates,
temporal derivatives are represented, the state update equation in generalised form is now merely a
shift in dynamical orders. Even though 𝝁̇ ≡ 𝝁′ is not necessarily true, since the dash represents a
belief of motion and the dot a true temporal derivative, the agent can represent its G­density model as
in equation (2.15), with 𝒟 a derivative operator that has a superdiagonal filled with ones.

𝒟𝝁̃ = 𝑓̃(𝝁̃) + 𝑤̃
𝒚̃ = 𝑔̃(𝝁̃) + 𝑧̃ with 𝒟 =

⎡
⎢
⎢
⎢
⎣

0 1
0 1

1
0

⎤
⎥
⎥
⎥
⎦

𝑝+
1

𝑝+1

⊗ 𝐼𝑛 (2.15)

The models underlying the G­density now depend on the generalised internal beliefs of environment
states 𝝁̃, the generalised sensory input 𝒚̃ and the environment disturbances 𝒘̃ and 𝒛̃. These distur­
bances are represented in the Free Energy by means of their precision, or inverse covariance. Gener­
alised coordinates of motion are tightly related to the disturbances or uncertainties, as will be discussed
in section 2.3.2 and subsequently chapter 3. In this section it has been shown that the generalised co­
ordinates provide a frame of reference of temporal relations that moves with the expected state (𝝁̃) for
the gradient descent that is to minimize the Free Energy.

2.3.2. Temporal correlations of disturbances
With the equations underlying the G­density in generalised coordinates (equation (2.15)) come gener­
alised disturbances 𝒘̃ and 𝒛̃. In section 2.2.2 it has been mentioned that the noises or disturbances
are assumed to have underlying Gaussian densities. In contrast to many classical algorithms of per­
ception and control, the Free Energy Principle and Active Inference assume noise to be coloured.
Classical white noise, a stochastic process with the Markov property, has no memory. For such pro­
cesses, there is no correlation between any two samples and temporal derivatives are not defined. It
is infinitely rough. Coloured, or non­Markovian noise, in contrast, is smooth. Samples are correlated
and most importantly, temporal derivatives are defined, and also smooth. Intuitively, the assumption of
coloured noise is a very valid one. The true sources of noise, whether they are unmodelled dynamics or
some disturbing force like, for example, wind, are always dynamical processes. Although wind, as an
example, can be quite erratic in nature, the process is bound by physics and has underlying dynamics.
It cannot change direction infinitely fast, nor increase (or decrease) infinitely fast in speed.

The smooth signals have infinitely many derivatives, which are in turn also smooth. These signals
have a finite variance, smooth autocorrelation functions and because of the existing correlations, both

2.3. Generalised motions 13

within and among dynamical orders, the derivatives provide information about the trajectories of the
noise, just as the derivatives, or generalised motions of 𝝁̃ provide more information about the trajectory
of the states. Not only are the generalised disturbances 𝒘̃ and 𝒛̃ necessary for equation (2.15) to
exist, they provide information about the disturbances in the environment and could therefore be very
beneficial in perception and control under the presence of such disturbances.

With generalised equations of motion as in equation (2.15), the Free Energy Formulation becomes
‘generalised’ too. In order to find the generalised practical formulation of Free Energy, the assumption
of correlation between dynamical orders is important. In the works of [4, 23, 26, 27], it is assumed that
the noise at different dynamical orders is uncorrelated. So, each dynamical order 𝑑 is perturbed by a
noise 𝒘(𝑑) from its own independent source. As a result, the likelihood of the G­density can be written
as a product of conditional densities and similarly, the prior density is factorised over consecutive orders
(as shown in, among others, [4]), such that:

𝑝(𝒚̃, 𝝁̃) =
𝑝

∏
𝑑=0

𝑝(𝒚(𝑑)|𝝁(𝑑))𝑝(𝝁(𝑑+1)|𝝁(𝑑))

The resulting practical form of Free Energy, which is the variable part that remains after evaluation the
negative logarithm of the G­density, is now a summation over dynamical orders:

ℱ(𝝁̃, 𝒚̃) =
𝑝

∑
𝑑=0

1
2(𝜺

(𝑑)𝑇
𝜇 Π(𝑑)𝑤 𝜺(𝑑)𝜇 + 𝜺(𝑑)𝑇𝑦 Π(𝑑)𝑧 𝜺(𝑑)𝑦)

In some works of Friston [10, 17, 18], however, it is suggested that the noise at different dynamical
orders is correlated. This is the case that will be investigated in this work, and under this assumption, the
G­density does not factorise into a product over dynamical orders. The resulting practical formulation
of Free Energy reads as in equation (2.16) and depends on the generalised precisions Π̃.

ℱ = 1
2(𝜺̃

𝑇
𝜇Π̃𝑤𝜺̃𝜇 + 𝜺̃𝑇𝑦Π̃𝑧𝜺̃𝑦) (2.16)

The generalised precisions Π̃𝑤 and Π̃𝑧 are the precision matrices of the generalised noises 𝒘̃ and 𝒛̃.
What such a matrix looks like and how it relates to the generalised coordinates is the topic of chapter 3.

2.3.3. Generalised motions in Active Inference
This last section of this chapter concludes the introduction to Free Energy and Active Inference, hav­
ing provided an overview of how a neurological inspired theory of the biological brain translates into
mathematics suited for robotics perception and control, and aiming to answer the first question from
section 1.2.1: ‘What is the role of generalised coordinates in Active Inference?’. Generalised coor­
dinates of motion are an important concept within this theory, as they provide information about the
trajectory of the (belief of) environmental states, providing a reference frame for the gradient descent
that minimizes the Free Energy as well as information about the motion of the disturbances in the en­
vironment which potentially allows the agent to better respond to such disturbances. Since the Free
Energy Principle unifies perception and action, the role of generalised coordinates is twofold as well.
The following chapters are more detailed chapters on the generalised precision matrix that is intro­
duced in equation (2.16) as well as the implications it has in Active Inference (chapter 3), and on the
practical side of generalised coordinates: how to work with these in a traditional robotics control setting
(chapter 4).

3
Coloured noise

In chapter 2 it has been shown how Free Energy can be formulated and that it is weighted by the preci­
sion of the uncertainty of the models that encode the belief the evolution of states in the environment,
and how these are mapped onto the sensory input of an agent. When generalised coordinates are ap­
plied, the weighting factors in the Free Energy function become generalised precision matrices, which
are mentioned by Friston in [10, 17, 18]. This matrix encodes the precision of the noise present in the
environment and on the sensory channels, relying on the structure in coloured noise to represent the
precision. This chapter is dedicated to the derivation of a generalised precision matrix in great detail,
since no such derivation has yet been presented. In­depth knowledge about such a matrix is necessary
for the general application of generalised coordinates and for the understanding of its function. After a
full derivation of the entries of this matrix, an answer to the research question ‘What is the relationship
between generalised coordinates and coloured noise?’ can be formulated.

3.1. Covariance of coloured noise
For the evaluation of the Free Energy as in equation (2.16) and repeated below, a definition of the
matrices Π̃𝑤 and Π̃𝑧 is required.

ℱ(𝝁̃, 𝒚̃) = 1
2(𝜺̃

𝑇
𝜇Π̃𝑤𝜺𝜇 + 𝜺𝑇𝑦Π̃𝑧𝜺𝑦)

The precision matrix Π̃ is merely the inverse of the generalised covariancematrix Σ̃. This is a covariance
matrix of the generalised coloured noise, and it is this covariance matrix that needs derivation. The
inversion of it is only a simple, final step in the process of finding the generalised precision matrix. The
generalised covariance matrix in question is that of noise or unmodeled dynamics 𝒘̃ and 𝒛̃ of the prior
and conditional densities (equation (2.15)) respectively that make up the G­density. The derivation of
the generalised covariance matrix for each of these noises 𝒘̃ and 𝒛̃ is completely identical and therefore
this chapter will focus on the derivation of the generalised precision (covariance) for 𝒘̃. The noise ‘acts’
on the generalised coordinates, which are the belief 𝝁̃ of the agent in the case of noise 𝒘̃. When it is
assumed to be coloured, temporal derivatives exist and therefore generalised noise exists. Noise can
be assumed to be coloured when it is assumed to be a dynamical process itself. If the noise is the
result of a natural process, this assumption is valid. A mathematical definition of the noise follows.

3.1.1. Definition of the noise
Coloured noise is naturally present in physical environments and can take on many forms. For this
application of Active Inference, it will be assumed to be of Gaussian nature, as proposed by Friston
[18]. Knowledge about the noise signal is required, and therefore a definition of a Gaussian noise is
given. Coloured noise can be ‘made’ by the convolution of a white noise and a Gaussian filter. Given a
zero mean white noise𝝎𝑤 with variance Σ𝑤, a Gaussian filter can be constructed that, upon convolution
of white noise and filter, yields a coloured noise signal [31]. The filter is shown for a single noise process

15

16 3. Coloured noise

𝜔𝑤 with variance 𝜎2𝑤 in equation (3.1).

ℎ𝑤(𝑡) = √
Δ𝑡
𝑠𝑤√𝜋

exp(− 𝑡2
2𝑠2𝑤

) (3.1)

This filter depends on the sampling time Δ𝑡 of the white noise signal, and has a kernel width 𝑠𝑤 which

acts as a smoothing factor. The scaling factor √ Δ𝑡
𝑠𝑤√𝜋

ensures that the filtered coloured noise has the

same variance 𝜎2𝑤 as the white noise it was created from. Throughout this chapter, the time­argument
of dynamical variables is often included in contrast to the rest of the report for its relevance in the
derivations in this chapter. An added advantage of describing coloured noise as the convolution of
white noise and a Gaussian filter is that this method can be applied to fabricate coloured noise for
simulations. The resulting coloured noise is smooth, correlated and infinitely differentiable, since each
noise is created from a different, uncorrelated white noise signal. As such, all the separate noise signals
are uncorrelated. Matlab code to create such coloured noise is available in listing B.1 in appendix B.1,
and examples of such smooth noise signals using different filters are shown in figure 3.1. The effects
of the variance (or standard deviation) and kernel width are quite clear from these graphs.

(a) Smoothing filter 𝑠𝑤 = 0.1 (b) Smoothing filter 𝑠𝑤 = 0.3

Figure 3.1: Two different coloured noise signals (Δ𝑡 = 0.001𝑠) by different filters.

3.1.2. The generalised covariance matrix
Noise disturbs all dynamical orders of a generalised signal. Therefore, for an 𝑛­dim signal there must
be 𝑛­dim noise, of which the noise on each dimension can be independent. Generalised noise 𝒘̃ of
embedding order 𝑝 is then defined as below, and has dimension 𝑛(𝑝 + 1) × 1:

𝒘 = [𝑤1 𝑤2 𝑤𝑛]
𝑇 𝒘̃ = [𝒘𝑇 𝒘′𝑇 𝒘″𝑇 𝒘(𝑝)𝑇]𝑇

The generalised covariance matrix is then the matrix with the (cross­)covariances (𝐶) of the generalised
noise. For an 𝑛­dim signal with embedding order 𝑝, a generalised covariance matrix is shown below.

Σ̃𝑤 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐶[𝑤1, 𝑤1] 𝐶[𝑤1, 𝑤𝑛] 𝐶[𝑤1, 𝑤(𝑝)1] 𝐶[𝑤1, 𝑤(𝑝)𝑛]

𝐶[𝑤𝑛 , 𝑤1] 𝐶[𝑤𝑛 , 𝑤𝑛] 𝐶[𝑤𝑛 , 𝑤(𝑝)1] 𝐶[𝑤𝑛 , 𝑤(𝑝)𝑛]

𝐶[𝑤(𝑝)1 , 𝑤1] 𝐶[𝑤(𝑝)1 , 𝑤𝑛] 𝐶[𝑤(𝑝)1 , 𝑤(𝑝)1] 𝐶[𝑤(𝑝)1 , 𝑤(𝑝)𝑛]

𝐶[𝑤(𝑝)𝑛 , 𝑤1] 𝐶[𝑤(𝑝)𝑛 , 𝑤𝑛] 𝐶[𝑤(𝑝)𝑛 , 𝑤(𝑝)1] 𝐶[𝑤(𝑝)𝑛 , 𝑤(𝑝)𝑛]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

3.1. Covariance of coloured noise 17

Because the different noise signals are uncorrelated, as stated in section 3.1.1, so are the derivatives
of these signals. Hence, every cross­covariance term is 0. This greatly simplifies the generalised
covariance matrix, which is displayed in equation (3.2).

Σ̃𝑤 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐶[𝑤1, 𝑤1] 0 𝐶[𝑤1, 𝑤(𝑝)1] 0

0 𝐶[𝑤𝑛 , 𝑤𝑛] 0 𝐶[𝑤𝑛 , 𝑤(𝑝)𝑛]

𝐶[𝑤(𝑝)1 , 𝑤1] 0 𝐶[𝑤(𝑝)1 , 𝑤(𝑝)1] 0

0 𝐶[𝑤(𝑝)𝑛 , 𝑤𝑛] 0 𝐶[𝑤(𝑝)𝑛 , 𝑤(𝑝)𝑛]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.2)

Equation (3.2) shows the need to evaluate the covariance of a noise signal with its own derivatives.
What follows now is a derivation of such a covariance term [6]. Since each 𝑤𝑖 is a stationary process,
it has the following properties (expectation 𝐸, variance 𝑉, covariance 𝐶) for a single 𝑤𝑖, simply called
𝑤(𝑡) from here on:

𝐸[𝑤(𝑡)] = 0, 𝑉[𝑤(𝑡)] = 𝜎2𝑤 , 𝐶[𝑤(𝑡 + 𝜏), 𝑤(𝑡)] = 𝛾𝑤(𝜏)

As such, the autocorrelation function 𝜌 is as in equation (3.3).

𝜌𝑤(𝜏) =
𝛾𝑤(𝜏)
𝛾𝑤(0)

= 𝛾𝑤(𝜏)
𝜎2𝑤

(3.3)

Because 𝑤(𝑡) was created by convolution with a Gaussian filter (section 3.1.1), it is smooth and differ­
entiable. Hence, the following exist:

d𝑤(𝑡)
d𝑡 = 𝑤̇(𝑡), ∫

𝑏

𝑎
𝑤(𝑡)d𝑡

Since 𝑤(𝑡) is smooth, it must have continuity at any particular time. This requires convergence in mean
square [24], as in equation (3.4).

lim
Δ𝑡→0

𝐸[𝑤(𝑡 + Δ𝑡) − 𝑤(𝑡)]2 = 0 (3.4)

Some small calculations show that this is equivalent to a requirement in terms of autocorrelation:

𝛾𝑤(Δ𝑡) = 𝐸[(𝑤(𝑡 + Δ𝑡) − 𝐸[𝑤(𝑡 + Δ𝑡])(𝑤(𝑡) − 𝐸[𝑤(𝑡)])]

𝜌𝑤(Δ𝑡) =
𝐸[𝑤(𝑡 + Δ𝑡)𝑤(𝑡)]

𝜎2𝑤
𝐸[𝑤(𝑡 + Δ𝑡) − 𝑤(𝑡)]2 = 𝐸[𝑤(𝑡 + Δ𝑡)]2 − 2𝐸[𝑤(𝑡 + Δ𝑡)𝑤(𝑡)] + 𝐸[𝑤(𝑡)]2

= 𝜎2𝑤 − 2𝐸[𝑤(𝑡 + Δ𝑡)𝑤(𝑡)] + 𝜎2𝑤
= 2𝜎2𝑤(1 − 𝜌𝑤(Δ𝑡))

And so it is required that the following limit holds:

lim
Δ𝑡→0

2𝜎2𝑤(1 − 𝜌𝑤(Δ𝑡)) = 0

Which means 𝜌𝑤(𝜏) is continuous at 𝜏 = 0. In very similar fashion, the condition in equation (3.5) must
hold for the differentiated signal:

lim
Δ𝑡→0

𝐸[𝑤̇(𝑡) − 𝑤(𝑡 + Δ𝑡) − 𝑤
(𝑡)

Δ𝑡]
2
= 0 (3.5)

18 3. Coloured noise

An alternative description of 𝑤̇(𝑡), which is well­defined for all Δ𝑡 ≠ 0, provides the following properties
of 𝑤̇(𝑡, Δ𝑡) for expectation and (co)variance:

𝑤̇(𝑡, Δ𝑡) = 𝑤(𝑡 + Δ𝑡) − 𝑤(𝑡)
Δ𝑡

𝐸[𝑤̇(𝑡, Δ𝑡)] = 0, 𝑉[𝑤̇(𝑡, Δ𝑡)] = 2𝜎2𝑤(1 − 𝜌𝑤(Δ𝑡))
(Δ𝑡)2 = 𝜎2𝑤

2𝜌𝑤(0) − 𝜌𝑤(Δ𝑡) − 𝜌𝑤(−Δ𝑡)
(Δ𝑡)2 ,

𝐶[𝑤(𝑡 + 𝜏), 𝑤̇(𝑡, Δ𝑡)] = 𝜎2𝑤
𝜌𝑤(𝜏 − Δ𝑡) − 𝜌𝑤(𝜏)

Δ𝑡 ,

𝐶[𝑤̇(𝑡 + 𝜏, Δ𝑢), 𝑤̇(𝑡, Δ𝑡)] = 𝜎2𝑤
𝜌𝑤(𝜏 + Δ𝑢 − Δ𝑡) − 𝜌𝑤(𝜏 + Δ𝑢) − 𝜌𝑤(𝜏 − Δ𝑡) + 𝜌𝑤(𝜏)

Δ𝑡Δ𝑢
Since 𝑤̇(𝑡, Δ𝑡) is well defined in the limit Δ𝑡 → 0, it is reasonable to expect that all the above tend to
finite limits as well. The limits to 0 of the expressions above are gathered in equation (3.6).

𝐸[𝑤̇(𝑡)] = 0, 𝑉[𝑤̇(𝑡)] = 𝜎2𝑤 ̈𝜌𝑤(0),
𝐶[𝑤(𝑡 + 𝜏), 𝑤̇(𝑡)] = 𝜎2𝑤𝜌̇𝑤(𝜏), 𝐶[𝑤̇(𝑡 + 𝜏), 𝑤̇(𝑡)] = −𝜎2𝑤𝜌̈𝑤(𝜏)

(3.6)

For 𝑉[𝑤̇(𝑡)] to exist, it is required that 𝜌𝑤(𝜏) is differentiable twice. This will show in sections 3.2.1
and 3.2.2. The above result could be extended to higher order derivatives, which will not be further
elaborated on. However, from a non­mathematical, though practical perspective, the result can be
generalized. The covariance of the noise signal with itself or one of its derivatives is the variance of
the original noise signal 𝑤(𝑡), multiplied by a derivative of the autocorrelation function evaluated at 0
(because no lag is considered). The order of the derivative of the autocorrelation function equals the
sum of the order of derivatives of the desired covariance. Furthermore, if this sum is the result of odd
derivatives, a minus­sign is present. With this information and knowledge of the derivatives of 𝜌𝑤(𝜏),
the generalised covariance matrix and ultimately the generalised precision matrix, can be constructed.
Therefore, the autocorrelation function must be evaluated.

3.2. Autocorrelation of Gaussians
In section 3.1.2 it has become clear that the entries of the generalised covariance matrix are a product
of the variance of the signal, which is known to be the variance of the white noise signal underlying
the coloured noise, and evaluations of the derivative of the autocorrelation function of the noise (equa­
tion (3.6)). This section is a detailed derivation of the derivatives of the autocorrelation function.

3.2.1. The autocorrelation function
The autocorrelation function 𝜌𝑤(𝜏) of the coloured noise 𝑤(𝑡) is equal to the autocorrelation function
𝜌ℎ(𝜏) of the filter ℎ𝑤(𝑡) since there is no correlation in the white noise 𝜔(𝑡) that 𝑤(𝑡) was created from.
It’s definition as the scaled autocovariance 𝛾ℎ(𝜏) is shown in equation (3.7) and after computing the
autocovariance function 𝛾ℎ(𝜏) from the definition in equation (3.8) to the function in equation (3.9) it can
be written as in equation (3.10).

𝜌ℎ(𝜏) =
𝛾ℎ(𝜏)
𝛾ℎ(0)

(3.7)

𝛾ℎ(𝜏) = ∫
∞

−∞
ℎ(𝑡 + 𝜏)ℎ(𝑡)d𝑡 (3.8)

= ∫
∞

−∞
√ Δ𝑡
𝑠𝑤√𝜋

exp(−
(𝑡 + 𝜏)2

2𝑠2𝑤
)√ Δ𝑡
𝑠𝑤√𝜋

exp(− 𝑡2
2𝑠2𝑤

)d𝑡

= Δ𝑡
𝑠𝑤√𝜋

∫
∞

−∞
exp(1

2𝑠2𝑤
(−(𝑡 + 𝜏)2 − 𝑡2))d𝑡

= 𝐾1∫
∞

−∞
exp(1

2𝑠2𝑤
(−2𝑡2 − 2𝑡𝜏 − 𝜏2))d𝑡 𝐾1 =

Δ𝑡
𝑠𝑤√𝜋

= 𝐾1∫
∞

−∞
exp(− 1

2𝑠2𝑤
((√2𝑡 + 1

√2
𝜏)
2
+ 12𝜏

2))d𝑡

3.3. The generalised precision matrix 19

= 𝐾1 exp(−
𝜏2
4𝑠2𝑤

)∫
∞

−∞
exp(− 1

2𝑠2𝑤
(√2𝑡 + 1

√2
𝜏)
2
)d𝑡

= 𝐾1𝐾2∫
∞

−∞
exp(− 1

𝑠2𝑤
(𝑡 + 12𝜏)

2
)d𝑡 𝐾2 = exp(− 𝜏2

4𝑠2𝑤
)

= 𝐾1𝐾2√𝑠2𝑤𝜋 (∫
∞

−∞
exp (−𝑎(𝑥 + 𝑏)2)d𝑥 = √𝜋𝑎)

= Δ𝑡
𝑠𝑤√𝜋

exp(− 𝜏2
4𝑠2𝑤

)√𝑠2𝑤𝜋

= Δ𝑡 exp(− 𝜏2
4𝑠2𝑤

) (3.9)

𝜌ℎ(𝜏) =
Δ𝑡
Δ𝑡 exp(−

𝜏2
4𝑠2𝑤

) = exp(− 𝜏2
4𝑠2𝑤

) (3.10)

The resulting expression for autocorrelation in equation (3.10) is a well­defined function of the lag 𝜏 and
is parametrized by the kernel width of the filter, also the smoothness of the coloured noise.

3.2.2. Derivatives of the autocorrelation function
Given the definition of the autocorrelation function in equation (3.10), its derivatives can be computed.
Because of the exponential function, this is a straightforward process of applying the chain rule and
product rule. The full computation of the derivatives up to and including the 10th derivative is shown in
appendix A. These derivatives of the autocorrelation function must be evaluated at 𝜏 = 0. This yields
0 for all odd derivatives and the following expressions for the even derivatives (from equations (A.2)
to (A.7)):

𝜌ℎ(0) = 1 𝜌(6)ℎ (0) = − 15
(2𝑠2𝑤)

3

̈𝜌ℎ(0) = −
1

(2𝑠2𝑤)
𝜌(8)ℎ (0) = 105

(2𝑠2𝑤)
4

𝜌(4)ℎ (0) = 3
(2𝑠2𝑤)

2 𝜌(10)ℎ (0) = − 945
(2𝑠2𝑤)

5

These zero­lag evaluations of the autocorrelation follow a pattern. This is a direct result of the structure
of the autocorrelation function and the application of chain­ and product rules in differentiation. It is
relevant to know the expressions above for any desired even derivative. An analysis of the result
above is presented in appendix A and the result can be generalised into equation (3.11). This equation
presents the means to quickly compute the entries of the generalised covariance matrix whilst knowing
only the kernel width (smoothness) of the filter that defines the coloured noise based on white noise
and the variance of the noise signal.

𝜌(𝑘)ℎ (0) = 1
(√2 𝑠𝑤)

𝑘

𝑘

∏
𝑗=0

(1 − 𝑗) 𝑘, 𝑗 ∈ 2ℕ (3.11)

3.3. The generalised precision matrix
3.3.1. Matrix formulation
All that remains to compute the required generalised precision matrix is to construct the generalised
covariance matrix from the knowledge of section 3.1.2. All the required entries are a multiplication of
the variance of the original noise signal and a derivative of the autocorrelation function evaluated at
0. All process noise signals 𝑤𝑖(𝑡) have been created using the same filter ℎ𝑤(𝑡). Only the variances
of the signals themselves are different. It is therefore more concise and easier to write the resulting
generalised covariancematrix as a Kronecker product of the so­called temporal covariancematrix 𝑆(𝑠2𝑤)

20 3. Coloured noise

(equation (3.12)) and the covariance matrix of 𝒘(𝑡), Σ𝑤, as in equation (3.13), and the generalised
precision matrix as in equation (3.14), finally resulting in equation (3.15).

𝑆(𝑠2𝑤) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜌ℎ 0 𝜌(2)ℎ 0 𝜌(4)ℎ 0 𝜌(𝑝)ℎ
0 −𝜌(2)ℎ 0 −𝜌(4)ℎ 0 −𝜌(6)ℎ
𝜌(2)ℎ 0 𝜌(4)ℎ 0 𝜌(6)ℎ 0
0 −𝜌(4)ℎ 0 −𝜌(6)ℎ 0 −𝜌(8)ℎ
𝜌(4)ℎ 0 𝜌(6)ℎ 0 𝜌(8)ℎ 0
0 −𝜌(6)ℎ 0 −𝜌(8)ℎ 0 −𝜌(10)ℎ

𝜌(𝑝)ℎ (−1)𝑝𝜌(2𝑝)ℎ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.12)

In equation (3.12), each 𝜌ℎ is evaluated at 0. This has been omitted for a more concise and clear
notation.

Σ̃𝑤 = 𝑆(𝑠2𝑤) ⊗ Σ𝑤 (3.13)
Π̃𝑤 = 𝑆(𝑠2𝑤)−1⊗Σ−1𝑤 (3.14)

Finally:

Π̃𝑤 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 − 1
2𝑠2𝑤

0 3
(2𝑠2𝑤)

2 0 𝜌(𝑝)ℎ

0 1
2𝑠2𝑤

0 − 3
(2𝑠2𝑤)

2 0 15
(2𝑠2𝑤)

3

− 1
2𝑠2𝑤

0 3
(2𝑠2𝑤)

2 0 − 15
(2𝑠2𝑤)

3 0

0 − 3
(2𝑠2𝑤)

2 0 15
(2𝑠2𝑤)

3 0 − 105
(2𝑠2𝑤)

4

3
(2𝑠2𝑤)

2 0 − 15
(2𝑠2𝑤)

3 0 105
(2𝑠2𝑤)

4 0

0 15
(2𝑠2𝑤)

3 0 − 105
(2𝑠2𝑤)

4 0 945
(2𝑠2𝑤)

5

𝜌(𝑝)ℎ (−1)𝑝𝜌(2𝑝)ℎ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1

⊗[
𝜎2𝑤1 0

0 𝜎2𝑤𝑛
]

−1

(3.15)
Lastly, equation (3.11) can be rewritten to equation (3.16) which provides the value of the 𝑖th diagonal
element of 𝑆(𝑠2𝑤).

𝑆(𝑠2𝑤)𝑖,𝑖 = − 1
(2𝑠2𝑤)

𝑖−1

𝑖

∏
𝑗=1

(2𝑗 − 3) 𝑖, 𝑗 ∈ ℕ\{0} (3.16)

Keep in mind that equation (3.16) only provides the diagonal terms of 𝑆(𝑠2𝑤). These terms are all
positive but the same terms on the anti­diagonals are alternatingly positive and negative. Depending
on the application, either equation (3.11) or equation (3.16) might be preferred. Given the derivation
leading up to equation (3.15), obtaining the matrix for any desired combination of noise parameters
and embedding order has become very simple. In listing 3.1 a Matlab function is displayed that creates
such a matrix. The full script with more explanatory comments about inputs and outputs of the function
is provided in listing B.2 in appendix B.1.

Listing 3.1: A Matlab function f_precision that creates a generalised precision matrix as in equation (3.15). The full script
with an explanation of inputs and outputs of the function is provided in listing B.2 in appendix B.1. This code is very similar to
that of SPM_DEM_R.m from [9].

1 function Pi_ = f_precision(s,sigma,p)
2
3 pp = p+1; % embedding order raised by one, for convenience
4
5 k = 0:2:2*p; % order of the required autocorrelation derivatives

3.3. The generalised precision matrix 21

6 rho(1+k) = cumprod(1­k)./((sqrt(2).*s).^k); % rho^(k)(0)
7
8 S = zeros(pp,pp); % preallocation of the temporal variance matrix
9 for r = 1:pp % One row for every embedding order

10 S(r,:) = rho(r:r+p); % assembly of the temporal variance matrix
11 rho = ­rho; % minus signs change every row
12 end
13
14 Pi_ = kron(inv(S),inv(diag(sigma.^2))); % generalised covariance matrix

3.3.2. Generalised precision influence
Given a coloured noise and the generalised noise which contains it derivatives, its generalised covari­
ance matrix can be constructed, of which the generalised precision matrix is the inverse. Using the
properties of the noise signal and the properties of the filter it was created with, the autocorrelation
function can be used to very easily compute the entries of the required matrix. These results have
been generalised such that only very simple, straightforward computations are required that depend
only on the variance of the noise and the kernel width of the filter, without requiring any integration or
differentiation. Inspection of equation (3.15) reveals the influence of the generalised precision matrix.
It depends on two variables: 𝑠2𝑤 and Σ𝑤 in the case of the process noise 𝒘. Completely analogous,
the observation noise will influence the generalised precision matrix Π̃𝑧 with smoothness 𝑠2𝑧 and Σ𝑧.
Remember (equation (2.16)) that the generalised precision matrix weighs the squared errors of the
agent’s belief of the state 𝝁̃ and the sensory input 𝒚̃. The elements of the generalised precision matrix
are a ratio of the smoothness of the noise, represented by the kernel width of the Gaussian filter, and by
the variance of the noise. It is assumed that the smoothness 𝑠𝑤 < 1 [18]. Since it occurs in the numer­
ators, precision increases with smoothness, however converges as the dynamic order increases. As
a result, there is no added value in an increase of the embedding order beyond 𝑝 = 5 [18]. The effect
of variance is opposite. It occurs in the denominators, therefore precision decreases with increased
variance, given variance 𝜎2𝑤𝑖 < 1 too. The assumptions that variance and smoothness are smaller than
one are not further reviewed in this work. However it is noteworthy that, if they are larger than one,
their effects reverse and that is peculiar.

With the knowledge presented in this chapter, an answer to the research question ‘What is the
relationship between generalised coordinates and coloured noise?’ can be formulated. It is clear from
the generalised precision matrix that the quadratic errors, which are caused by the noises, are weighted
by the precisions thereof, which is greater when noise is smaller and/or smoother. Hence, the more
confidence an agent can have over its perception and the knowledge of the environment, the more
it can act on perceived error. Intuitively, in the opposite case: If there is a lot of noise present in the
environment, one may not want to act to quickly when error is perceived, or change ones belief of the
environment based on noise. Furthermore, when smoothness becomes very small, the precision for
higher dynamical orders vanishes, with only the zero­order remaining in the extreme case (the upper
left 1 in equation (3.15)). So, in the case of a very noisy environment, an agent will rely mostly on
lower order dynamics but when precision is high, higher order motions can be taken into account.
Generalised precision is only possible when noise is coloured, and because generalised coordinates
are employed, the agent has more knowledge of the structure of the noise that affect its models and
knows how much confidence to have on the different dynamical orders.

4
Generalised motions

Generalised coordinates of motion are an important element of the Free Energy principle and the Active
Inference framework. They were introduced in chapter 2 and their relationship with coloured noise was
explored in chapter 3. As stated in chapter 1, generalised coordinates of a dynamic process always
exist, but including them in robotics control is something different. Although an agent can keep track of
generalised (beliefs of) motions by means of its internal model of the environment, its sensory input is
limited to the physical sensors that are applied for robotics control, in contrast to biological systems that
work with analogue data [18]. It is generally not possible (or feasible) to measure a decent amount of
temporal derivatives of a dynamical process, since no such sensors are generally available. To incor­
porate generalised motions to their full extent in an Active Inference control loop, they must be derived
from the available sensory input. This chapter explores the application of finite differences to achieve
this, answering the research question ‘How can generalised coordinates be generally applied in the
Active Inference framework when they are not readily available?’

4.1. Finite differences
A robotics control loop, assuming it is not executed on an analog system, is always sampled, even if
the math is described in continuous time. The sensory input to an agent on a digital system is therefore
always a sequence of samples. At a certain measurement point in time, surrounding measurement
values (past or future) provide finite differences that can be used to numerically estimate the temporal
derivatives of a measurement. In this section, a detailed derivation of the expressions required for
these estimates is given.

4.1.1. Taylor expansion
The Taylor expansion for a discrete signal 𝑦 with interval ℎ for a surrounding value 𝑦𝑘+𝑗 of 𝑦𝑘 can be
computed given the signal derivatives at 𝑦𝑘, as in equation (4.1).

𝑦𝑘+𝑗 =
𝑖𝑚𝑎𝑥
∑
𝑖=0

(𝑗ℎ)𝑖
𝑖! 𝑦(𝑖)𝑘 (4.1)

In a Taylor expansion, 𝑖𝑚𝑎𝑥 = ∞. However, in practice, the sum is finite (Taylor series) and an error
remains. Below expansions up to and including the 4th order term (𝑖𝑚𝑎𝑥 = 4), with the remaining error,
are shown as an example for values of the signal one and two (𝑗 = −1,−2) intervals back:

𝑦𝑘−1 = 𝑦𝑘 − ℎ𝑦(1)𝑘 + ℎ
2

2 𝑦
(2)
𝑘 − ℎ

3

3! 𝑦
(3)
𝑘 + ℎ

4

4! 𝑦
(4)
𝑘 + 𝒪(ℎ5)

𝑦𝑘−2 = 𝑦𝑘 − 2ℎ𝑦(1)𝑘 + 4ℎ
2

2 𝑦(2)𝑘 − 8ℎ
3

3! 𝑦
(3)
𝑘 + 16ℎ

4

4! 𝑦
(4)
𝑘 + 𝒪(ℎ5)

The largest error is that of the omitted terms with the lowest derivative, which is the 5th in the example
above (𝑖 = 5). With fewer derivative terms the expressions become shorter and the error higher in

23

24 4. Generalised motions

magnitude, assuming ℎ is sufficiently small (<< 1). There is a trade­off: more derivative information
makes for a better estimate, but a more complicated expression.

4.1.2. Approximating derivatives
The Taylor series mentioned above allow for the computation of the value of a signal at a previous
instant given the derivatives of the signal, but it is the opposite that must be achieved. To do so for
a first­order derivative 𝑦(1)𝑘 , a Taylor series of 𝑦𝑘−1 that includes this term is required, which can be
rewritten to compute the signal derivative (equation (4.2)), and is as follows:

𝑦𝑘−1 = 𝑦𝑘 − ℎ𝑦(1)𝑘 + 𝒪(ℎ2)

𝑦(1)𝑘 = 1
ℎ(𝑦𝑘 − 𝑦𝑘−1) + 𝒪(ℎ) ≈

1
ℎ(𝑦𝑘 − 𝑦𝑘−1) (4.2)

For a small enough value of ℎ, this is consistent with the definition of a derivative by a backwards
difference, as in equation (4.3).

𝑦(1)𝑘 = lim
ℎ→0

1
ℎ(𝑦𝑘 − 𝑦𝑘−1) (4.3)

Similarly, with Taylor series for 𝑦𝑘−1 and 𝑦𝑘−2 with ample terms to include the second derivative, an
approximation for the second derivative can be obtained. The required equations are shown below.
By combining these equations linearly, all terms but the term including the second derivative can be
eliminated:

1
2 × [𝑦𝑘 = 𝑦𝑘]

−1 × [𝑦𝑘−1 = 𝑦𝑘 − ℎ𝑦(1)𝑘 + 1
2ℎ

2𝑦(2)𝑘 + 𝒪(ℎ3)]
1
2 × [𝑦𝑘−2 = 𝑦𝑘 − 2ℎ𝑦(1)𝑘 + 2ℎ2𝑦(2)𝑘 + 𝒪(ℎ3)]

⎫
⎪⎪

⎬
⎪⎪
⎭

1
2𝑦𝑘−2 − 𝑦𝑘−1 +

1
2𝑦𝑘 =

1
2ℎ

2𝑦(2)𝑘 + 𝒪(ℎ3)

So, an approximation for the second derivative of the signal is given in equation (4.4):

𝑦(2)𝑘 = 1
ℎ2 (𝑦𝑘−2 − 2𝑦𝑘−1 + 𝑦𝑘) + 𝒪(ℎ) (4.4)

Increased accuracy The approximation for the second­order derivative in equation (4.4) has an error
of the order of the sampling time. Whenever terms from (𝑘) up to and including (𝑘 − 𝑑) are utilised to
construct the 𝑑th derivative, the error will be of 𝒪(ℎ), since the remaining error or the Taylor series is
divided by ℎ𝑑 to obtain 𝑦(𝑑)𝑘 . The accuracy of the estimate of a derivative can be increased simply by
taking more past samples into consideration, and enough equations to solve for the desired derivative,
at the cost of a higher lag. Below is an example of the necessary equations for a third order derivative
with an error of 𝒪(ℎ2):

5
12 × [𝑦𝑘 = 𝑦𝑘]

− 9
6 × [𝑦𝑘−1 = 𝑦𝑘 − ℎ𝑦(1)𝑘 + 1

2ℎ
2𝑦(2)𝑘 − 1

6ℎ
3𝑦(3)𝑘 + 1

24ℎ
4𝑦(4)𝑘 + 𝒪(ℎ5)]

2 × [𝑦𝑘−2 = 𝑦𝑘 − 2ℎ𝑦(1)𝑘 + 2ℎ2𝑦(2)𝑘 − 4
3ℎ

3𝑦(3) + 2
3ℎ

4𝑦(4)𝑘 + 𝒪(ℎ5)]

−76 × [𝑦𝑘−3 = 𝑦𝑘 − 3ℎ𝑦(1)𝑘 + 9
2ℎ

2𝑦(2)𝑘 − 9
2ℎ

3𝑦(3)𝑘 + 27
8 ℎ

4𝑦(4)𝑘 + 𝒪(ℎ5)]
1
4 × [𝑦𝑘−4 = 𝑦𝑘 − 4ℎ𝑦(1)𝑘 + 8ℎ2𝑦(2)𝑘 − 32

3 ℎ
3𝑦(3)𝑘 + 32

3 ℎ
4𝑦(4)𝑘 + 𝒪(ℎ5)]

⎫
⎪
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎪
⎭

1
4𝑦𝑘−4 −

7
6𝑦𝑘−3 + 2𝑦𝑘−2

− 9
6𝑦𝑘−1 +

5
12𝑦𝑘

= 1
6ℎ

3𝑦(3)𝑘 + 𝒪(ℎ5)

And the resulting approximation for the third derivative with an error in 𝒪(ℎ2) is in equation (4.5).

𝑦(3)𝑘 = 1
ℎ3(

3
2𝑦𝑘−4 − 7𝑦𝑘−3 + 12𝑦𝑘−2 − 9𝑦𝑘−1 +

5
2𝑦𝑘) + 𝒪(ℎ

2) (4.5)

4.1. Finite differences 25

Higher order derivatives The examples above illustrate how a linear combination of Taylor series
can result in an equation that can be solved for a derivative 𝑦(𝑑)𝑘 . For higher­order derivatives and
smaller errors, the process becomes tedious. Fortunately, due to the structure in a Taylor expansion,
the process can be generalised. From the above example it is clear that all that needs to be solved
for are the coefficients 𝑐𝑗 with which the 𝑦𝑘+𝑗 should be multiplied. The resulting linear combination of
𝑦𝑘+𝑗 only needs to be divided by ℎ𝑑 to obtain 𝑦(𝑑)𝑘 . The procedure for computing this derivative with an
error 𝒪(ℎ𝑜) in the case of backward differences is as follows [7]:

1. Find the linear combination of the Taylor expansion for 𝑦𝑘 to 𝑦𝑘−(𝑑+𝑜−1) that include terms with
𝑦𝑘 to 𝑦(𝑑+𝑜−1)𝑘 that eliminates all 𝑦(𝑖)𝑘 but 𝑦(𝑑)𝑘

To eliminate the 𝑦(𝑖)𝑘 for 𝑖 ≠ 𝑑 and find the coefficients 𝑐𝑗 for the 𝑦𝑘+𝑗, the system of equations in
equation (4.6) is to be solved for the coefficients 𝑐𝑗:

𝑑+𝑜−1

∑
𝑖=0⏝⎵⏟⎵⏝

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠

0

∑
𝑗=−(𝑑+𝑜−1)⏝⎵⎵⏟⎵⎵⏝
𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠

𝑗𝑖𝑐𝑗 = {
0, 𝑖 ≠ 𝑑
1, 𝑖 = 𝑑 (4.6)

2. Divide by 1
𝑑!ℎ

𝑑 to isolate 𝑦(𝑑)𝑘

Given the 𝑐𝑗, equation (4.7) can be assembled, from which equation (4.8) can be obtained. This is the
final expression for the approximation of 𝑦(𝑑)𝑘 . Obviously, the equations hold for 𝑑 > 0 since there is no
need to approximate 𝑦(0)𝑘 .

1
𝑑!ℎ

𝑑𝑦(𝑑)𝑘 =
0

∑
𝑗=−(𝑑+𝑜−1)

𝑐𝑗 𝑦𝑘+𝑗 + 𝒪(ℎ𝑑+𝑜), 𝑑 > 0 (4.7)

𝑦(𝑑)𝑘 = 1
ℎ𝑑 𝑑!

0

∑
𝑗=−(𝑑+𝑜−1)

𝑐𝑗 𝑦𝑘+𝑗 + 𝒪(ℎ𝑜), 𝑑 > 0 (4.8)

Forward and central differences The above derivations and equations are mostly written in a very
general fashion in terms of the sample­shift number 𝑗, but all examples and equations are written
regarding backward differences: The approximations of derivatives 𝑦(𝑑)𝑘 consist of past values of the
signal: samples occurring before 𝑦𝑘. However, with a derivation completely analogous to the above,
one can construct approximations for the derivatives by means of forward or central differences: using
future values of the signal, or an equal number of past and future values. Rewriting equations (4.6)
and (4.8) to a more general form yields equations (4.9) and (4.10).

𝑑+𝑜−1

∑
𝑖=0

𝑗𝑚𝑎𝑥
∑

𝑗=𝑗𝑚𝑖𝑛

𝑗𝑖𝑐𝑗 = {
0, 𝑖 ≠ 𝑑
1, 𝑖 = 𝑑 (4.9)

𝑦(𝑑)𝑘 = 1
ℎ𝑑 𝑑!

𝑗𝑚𝑎𝑥
∑

𝑗=𝑗𝑚𝑖𝑛

𝑐𝑗 𝑦𝑘+𝑗 + 𝒪(ℎ𝑜), 𝑑 > 0 (4.10)

The required values of 𝑗𝑚𝑖𝑛 and 𝑗𝑚𝑎𝑥 are summarised in table 4.1 for backward, central and forward
differences. The forward and central difference method are valid methods for derivative approximation
in post­processing scenarios, since they require future values. Therefore, only the backward difference
method is causal and applicable in real­time simulations and is of most interest in this research.

4.1.3. Matrix equations
With the means to compute an approximation for the derivative of a signal given past values of said sig­
nal (equation (4.10)), it becomes straightforward to create a matrix equation that yields the generalised

26 4. Generalised motions

Table 4.1: Summation ranges in equations (4.9) and (4.10) to find approximations for derivatives 𝑦(𝑑)𝑘 by way of finite differences.
*for central differences, 𝑜 must be chosen such that 𝑑 + 𝑜 is odd.

backward central* forward

𝑗𝑚𝑖𝑛 −(𝑑 + 𝑜 − 1) −12(𝑑 + 𝑜 − 1) 0
𝑗𝑚𝑎𝑥 0 1

2(𝑑 + 𝑜 − 1) (𝑑 + 𝑜 − 1)

coordinates given a so­called time­series (array of past (and/or future) values) in the active inference
framework. The objective is to obtain the generalised coordinates of motion of the output (sensory
input) 𝒚̃. For a one­dimensional signal, that is:

𝒚̃ = [𝑦(0)𝑘 𝑦(1)𝑘 𝑦(𝑝)𝑘]
𝑇

An approximation of this generalised array is found by applying equation (4.11). The range of required
samples 𝑘𝑚𝑖𝑛 to 𝑘𝑚𝑎𝑥 is as 𝑗𝑚𝑖𝑛 and 𝑗𝑚𝑎𝑥 in table 4.1, with 𝑑 replaced by 𝑝, since the embedding order
𝑝 represents the highest order derivative in the generalised coordinates, and it is this derivative that
requires the most samples to approximate.

𝒚̃𝑘 = 𝐸 𝒚̌𝑘 , 𝒚̌𝑘 = [𝑦𝑘𝑚𝑖𝑛 𝑦𝑘𝑚𝑎𝑥]
𝑇

(4.11)

An example of equation (4.11) for an embedding order 𝑝 = 5, an approximation error of 𝒪(ℎ) and for
a 𝑞 = 1 dimensional signal 𝑦 by backward differences is shown below. In case of a 𝑞­dim signal 𝒚, 𝐸
is simply replaced by the Kronecker product 𝐸 ⊗ 𝐼𝑞 and the arrays for 𝒚̃ and 𝒚̌ will be extended, since
each entry will become a 𝑞 × 1­array by itself.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑦(0)𝑘

𝑦(1)𝑘

𝑦(2)𝑘

𝑦(3)𝑘

𝑦(4)𝑘

𝑦(5)𝑘

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 1
0 0 0 0 − 1

ℎ
1
ℎ

0 0 0 1
ℎ2 − 2

ℎ2
1
ℎ2

0 0 − 1
ℎ3

3
ℎ3 − 3

ℎ3
1
ℎ3

0 1
ℎ4 − 4

ℎ4
6
ℎ4 − 4

ℎ4
1
ℎ4

− 1
ℎ5

5
ℎ5 − 10

ℎ5
10
ℎ5 − 5

ℎ5
1
ℎ5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑦𝑘−5
𝑦𝑘−4
𝑦𝑘−3
𝑦𝑘−2
𝑦𝑘−1
𝑦𝑘

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Such an 𝐸­matrix can be created inMatlab, for which code that defines the function f_finitediffmat
is displayed in listing 4.1 and the complete script with explanatory comments regarding the in­ and
outputs is presented in listing B.3 in appendix B.2.

Listing 4.1: A Matlab function f_finitediffmat that creates the matrix for finite differences 𝐸 as in equation (4.11). The full
script with an explanation of inputs and outputs of the function is provided in listing B.3 in appendix B.2.

1 function E = f_finitediffmat(dt,p,o,n,method)
2
3 pp = p+1; % number of rows in the matrix E for a 1­dim signal
4 switch method
5 % s: # samples required for the approx. of all desired derivatives
6 % E1: preallocation of matrix E for a 1­dim signal
7 % E1(,)=1: prepare first row of E1 to pass y onto itself in y_
8 case 'f'
9 s = p+o;

10 if p==0; E1 = 1;
11 else; E1 = zeros(pp,s); E1(1,1) = 1;
12 end
13 case 'c'

4.1. Finite differences 27

14 if mod(p+o,2) == 0 % when p+o is even, o is increased by 1
15 s = p+o+1;
16 else
17 s = p+o;
18 end
19 if p==0; E1 = 1;
20 else; E1 = zeros(pp,s); E1(1,ceil(s/2)) = 1;
21 end
22 case 'b'
23 s = p+o;
24 if p==0; E1 = 1;
25 else; E1 = zeros(pp,s); E1(1,end) = 1;
26 end
27 end
28 C = zeros(1,s); % preallocation of array w/ coef for finite differences
29
30 for d = 1:p % we visit all p­values so we have all the derivatives
31 switch method
32 % sd: # samples required for the current derivative
33 % jmin, jmax: required finite differences around the point of interest
34 % imax: total number of samples (­1) required for the approximation
35 % sumij: preallocation of the matrix for computation of C
36 % sumijC: array with outcomes of the sums in sumij
37 case 'f'
38 sd = d+o;
39 jmin = 0; jmax = sd­1;
40 imax = sd­1;
41 sumij = zeros(sd,sd);
42 sumijC = zeros(size(sumij,2),1);
43 case 'c'
44 if mod(d+o,2) == 0 % when d+o is even, o is increased by 1
45 sd = d+o+1;
46 else
47 sd = d+o;
48 end
49 jmax = (sd­1)/2; jmin = ­jmax;
50 imax = sd­1;
51 sumij = zeros(sd,sd);
52 sumijC = zeros(size(sumij,2),1);
53 case 'b'
54 sd = d+o;
55 jmin = ­(sd­1); jmax = 0;
56 imax = sd­1;
57 sumij = zeros(sd,sd);
58 sumijC = zeros(size(sumij,2),1);
59 end
60 sumijC(d+1) = 1; % the sum must be 1 for j = d, 0 otherwise
61 jrange = jmin:jmax; % range of all the finite difference elements
62 for i = 0:imax % filling the matrix w/ elements to sum
63 sumij(i+1,:) = jrange.^i;
64 end
65 switch method % computing C (solving the linear system)
66 case 'f'
67 C(1:sd) = (sumij\sumijC)';
68 case 'c'
69 C((s­sd)/2+1:s­(s­sd)/2) = (sumij\sumijC)';

28 4. Generalised motions

70 case 'b'
71 C(s­sd+1:end) = (sumij\sumijC)';
72 end
73 E1(d+1,:) = (factorial(d)/dt^d).*C; % adding the elements to E
74 end
75
76 E = kron(E1,eye(n)); % E for an n­dim signal

In a simulation scenario, the generalised coordinate 𝒚̃must be computed for every 𝑘 in the timespan
of the simulation, which means the time­series array 𝒚̌𝑘 shifts one sample­set every time, and the
information has great overlap. Only the information in 𝒚𝑘 is new, so it is therefore possible to use the
already computed generalised coordinates 𝒚̃𝑘−1 augmented with 𝒚𝑘 but missing the highest derivative
in 𝒚̃𝑘−1, instead of 𝒚̌𝑘. The matrix 𝐸 from equation (4.11) has to be rewritten into the matrix 𝑄 as in
equation (4.12) with an example shown below, in which the embedding order, approximation order and
signal dimension are the same as in the previous example (𝑝 = 5, 𝑜 = 1, 𝑞 = 1).

𝒚̃𝑘 = 𝑄 ̌𝒚̃𝑘 , ̌𝒚̃𝑘 = [𝒚𝑘 𝒚̃𝑇𝑘−1]
𝑇

(4.12)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑦(0)𝑘

𝑦(1)𝑘

𝑦(2)𝑘

𝑦(3)𝑘

𝑦(4)𝑘

𝑦(5)𝑘

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
1
ℎ − 1

ℎ 0 0 0 0
1
ℎ2 − 1

ℎ2 − 1
ℎ 0 0 0

1
ℎ3 − 1

ℎ3 − 1
ℎ2 − 1

ℎ 0 0
1
ℎ4 − 1

ℎ4 − 1
ℎ3 − 1

ℎ2 − 1
ℎ 0

1
ℎ5 − 1

ℎ5 − 1
ℎ4 − 1

ℎ3 − 1
ℎ2 − 1

ℎ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑦𝑘
𝑦(0)𝑘−1

𝑦(1)𝑘−1

𝑦(2)𝑘−1

𝑦(3)𝑘−1

𝑦(4)𝑘−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

For this form, the generalised output 𝒚̃ needs to be initialized. This form will not be applied in this
research.

4.2. Analytic evaluation
To gain insight into the effect of computing derivatives bymeans of finite differences, this section focuses
on some tests to reveal the performance and show what happens in the presence of noise. For proper
testing, a ground truth must be established and therefore the analytic function in equation (4.13) is
chosen of which the derivatives are known. This function is then sampled to obtain ‘data’.

𝑦(𝑡) = sin 𝑡 + 3 cos 1
10𝑡 +

1
100𝑡

3 (4.13)

All the test results reported in this section can be reproduced with the Matlab script of listing B.5 in
appendix B.2.

4.2.1. Derivative accuracy
Approximated derivatives by means of backward, central and forward differences are compared with
the ground truth in figure 4.1. The sampling time ℎ (or Δ𝑡) is 10−2s and derivatives have been computed
with an accuracy of 𝒪(ℎ) (𝑜 = 1). With this sampling time and accuracy, some error is still visible in
the plots. From the close up plots (figures 4.1b to 4.1d) it can be seen that the approximations are ex­
tremely close to the ground truth. Approximations by backward differences will always underestimate
an increasing derivative and overestimate a decreasing derivative. The opposite is true for approxima­
tions by forward differences. The higher the order of the derivative, the more samples are required.
The close­up plots show how approximations by backwards differences can only be computed after
enough samples are available, and that approximations by forward differences cannot be estimated
for the final samples. Both of these ‘problems’ are present for central differences. Table 4.2 shows the
mean squared error (MSE) of the approximated derivatives. The samples for which no derivative could
be computed are excluded from this MSE. For these samples, the approximated derivative is set equal

4.2. Analytic evaluation 29

Table 4.2: MSE of the approximated derivatives in figure 4.1 for backward, forward and central differences. Sampling time
ℎ = 10−2s, time 𝑇 = 10s and accuracy is of 𝒪(ℎ).

derivative backward forward central
×10−3 ×10−3 ×10−8

1 0.0124 0.0125 0.0147
2 0.0530 0.0530 0.0033
3 0.1082 0.1083 0.0324
4 0.2077 0.2075 0.0133
5 0.3000 0.3008 0.2396
6 0.5596 0.5444 8975.8

to 0. The error contribution of these samples depends on the actual size of the derivatives themselves
and their contribution to the MSE varies with the total sampling time. Including them therefore makes
for an unfair comparison. The data in table 4.2 shows that the MSE of the derivative estimation is fairly
small and most noticeably, the MSE for backward and forward differences is extremely similar. For
central differences, the error is clearly significantly smaller. With increasing order of derivative the ac­
curacy decreases, which is all the more clear for central differences. For central differences, however,
the MSE does not increase with every increasing derivative order. This has to do with the symmetry of
central differences, which requires some derivatives to be approximated with more samples since the
total number of samples must always be odd. For derivatives up to order 6, the MSE remains small for
all approximation methods.

Table 4.3: MSE of the approximated derivatives for backward, forward and central differences. Sampling time ℎ = 10−2s, time
𝑇 = 10s and accuracy is of 𝒪(ℎ2).

derivative backward forward central
×10−6 ×10−6 ×10−8

1 0.0006 0.0006 0.0147
2 0.0040 0.0041 0.0000
3 0.0159 0.0159 0.0324
4 0.0389 0.0387 0.0000
5 0.3138 0.1618 0.2396
6 9122.1 4181.3 1.8908 × 106

Figure 4.2: Derivative estimates up to 6th order of equa­
tion (4.13), sampled with sampling time ℎ = 10−2s and
accuracy of 𝒪(ℎ2) (𝑜 = 2). Solid lines represent true an­
alytic derivatives. Approximations by means of backward
differences are shown dashed, forward differences dotted,
and central differences dashdotted.

To analyse the effect of the number of samples
on accuracy, table 4.3 shows the MSE for an error
in 𝒪(ℎ2), for which the plots are shown in figure 4.2.
These results are very interesting, showing that for
the first few derivatives, the accuracy has increased.
However, as the order of derivative increases, the
MSE grows much faster, as is also very clear from
figure 4.1b. Using more samples than necessary is
therefore inadvisable. Lastly, the effect of the sam­
pling time (ℎ) shall be studied. With an error of 𝒪(ℎ)
and a sampling time 10 times smaller than before
(ℎ = 10−3s), the MSE for signals sampled for 10s
is displayed in table 4.4. Comparing this table to ta­
ble 4.2 it is clear that for lower order derivatives, the
accuracy is higher. However, as the order of deriva­
tive increases, the error increases very fast, growing
very large for 5th and 6th derivatives. These derivative
approximations are extremely ‘noisy’. Unfortunately,
this is a culprit of derivative estimation. In the next

30 4. Generalised motions

(a) The function and its derivatives (b) Close­up showing accuracy

(c) Close up of first samples (d) Close up of the final samples

Figure 4.1: Derivative estimates up to 6th order of equation (4.13), with sampling time ℎ = 10−2s and accuracy of 𝒪(ℎ) (𝑜 = 1).
Solid lines represent true analytic derivatives. Approximations by means of backward differences are shown dashed, forward
differences dotted, and central differences dashdotted.

section, the effects of noise present in the original signal will be evaluated.

4.2.2. Derivatives and noise
An important part of this research is the presence of coloured noise. For white noise it is well known
that numerically approximating derivatives amplifies noise to the extremities. Coloured noise has faster
dynamics than the dynamic processes it influences, but it is smooth, in contrast to white noise. The
influence of coloured noise on the approximation of derivatives bymeans of finite differences is explored
in this section.
Figure 4.3 shows approximated derivatives for equation (4.13) with added noise. The noise has a

standard deviation 𝜎𝑤 = 1 × 10−3 and a smoothness 𝑠𝑤 = 0.5. For the noisy 𝑦(𝑡), no ground truth can
be established. Therefore, the reference signals are the analytic derivatives of the noise­less signal.
This also better shows the effect of noise on the derivative approximation. No MSE is computed for
these approximations, since for a fair evaluation, these must be the MSE of the noisy ground truth
and the noisy approximations. The former, however, is not available. It is very clear from figure 4.3
that noise adds discrepancies. From the 4th derivative, this really becomes visible. It is important to
keep in mind that the true derivative of the noise signal also does not equal the reference. The noise
does increase vastly with every increasing derivative order. Lastly, figures 4.4 and 4.5 show the
effects of decreased smoothness or increased variance. The plots in figure 4.4 show fewer derivatives
because the increase due to noise starts early (with lower order derivatives) and increases with every
order. Showing the higher order derivatives only makes for a more cluttered plot. It is very clear that the
performance of derivative approximation by means of finite differences is sensitive to the characteristics
of the coloured noise that is present. The sensitivity to the smoothness of the noise appears to be far
greater than the sensitivity to the variance. This is well accounted for in the Free Energy Principle, for

4.3. Generalised coordinates from finite differences 31

Table 4.4: MSE of the approximated derivatives for backward, forward and central differences. Sampling time ℎ = 10−3s, time
𝑇 = 10s and accuracy is of 𝒪(ℎ).

derivative backward forward central
×10−4 ×10−4 ×10−8

1 0.0012 0.0012 0.0000
2 0.0053 0.0053 0.0000
3 0.0107 0.0107 0.0000
4 0.3794 0.1151 0.2483
5 50.1636 50.2149 110670
6 8.95 × 1011 1.84 × 1012 2.4864 × 1012

(a) Full­scale plot (b) Scaled plot for better derivative visibility

Figure 4.3: Derivative estimates up to 6th order of equation (4.13) with added noise, sampled with sampling time ℎ = 10−2s
and accuracy of 𝒪(ℎ) (𝑜 = 1). Noise characteristics (section 3.1.1) 𝜎𝑤 = 1 × 10−3, 𝑠𝑤 = 0.5. Solid lines represent true analytic
derivatives (without noise). Approximations by means of backward differences are shown dashed, forward differences dotted,
and central differences dashdotted.

the precision matrices that weigh the errors based on the coloured noise properties have a increase
steeper with the smoothness than with the variance, as can be seen in equation (3.15), chapter 3.
Although the large fluctuations of approximations to higher order derivatives under the influence of
noise seem troublesome, most important is to learn how this affects the Active Inference algorithm.
This will become more clear in chapter 5.

4.3. Generalised coordinates from finite differences
Sections 4.1 and 4.2 have shown that by means of finite differences, samples from the sensory input
can be used to obtain approximations of derivatives of the perceived signal. As such, this chapter has
provided an answer to the research question ‘How can generalised coordinates be generally applied in
the Active Inference framework when they are not readily available?’. The performance of the method
of finite differences under the presence of noise largely depends on the required embedding order
(number of derivatives) and on the characteristics of the noise. How this influences the Active Inference
algorithm is discussed in chapter 5. Filtering methods might be a good addition to the method of finite
differences to refine the approximated derivatives, but that is outside of the scope of this work.

32 4. Generalised motions

(a) 𝑠𝑤 = 0.3 (b) 𝑠𝑤 = 0.1

Figure 4.4: Derivative estimates of equation (4.13) with added noise, sampled with sampling time ℎ = 10−2s and accuracy of
𝒪(ℎ) (𝑜 = 1). Noise characteristics (section 3.1.1) 𝜎𝑤 = 1 × 10−3, and varying smoothness. Solid lines represent true analytic
derivatives (without noise). Approximations by means of backward differences are shown dashed, forward differences dotted,
and central differences dashdotted.

(a) 𝜎𝑤 = 2 × 10−3 (b) 𝜎𝑤 = 5 × 10−3

Figure 4.5: Derivative estimates of equation (4.13) with added noise, sampled with sampling time ℎ = 10−2s and accuracy of
𝒪(ℎ) (𝑜 = 1). Noise characteristics (section 3.1.1) are varying standard deviation, and 𝑠𝑤 = 0.5. Solid lines represent true
analytic derivatives (without noise). Approximations by means of backward differences are shown dashed, forward differences
dotted, and central differences dashdotted.

5
Active Inference and State Space

formulation
In the preceding chapters, the topic of the Free Energy Principle and Active Inference has been ex­
plored, as well as some necessary constructs to apply this neuroscientific theory to robotics. The aim
of this research is to apply Active Inference to an LTI­State Space control loop whilst taking the afore­
mentioned constructs into account. A State Space description of Active Inference has already been
proposed [20], but it lacks generalised output coordinates. To combine generalised coordinates with
the precision matrices from chapter 3 that preserve the correlation between dynamical orders, the State
Space formulation needs to be researched. This is the topic of sections 5.1 and 5.2. This chapter also
provides closed­loop simulations for a simple system with one degree­of­freedom, described in sec­
tion 5.3, to evaluate the performance in the presence of the applied constructs. For this evaluation,
multiple simulations are performed in sections 5.4 and 5.5, altogether providing an answer to the ques­
tion ‘How can Active Inference with generalised motions be applied to an LTI­State Space control loop?’

5.1. Closed loop State Space formulation
Minimization of the Free Energy formulation provided in chapter 2 is what drives an Active Inference
agent to update its internal beliefs based on its perception and impose action on the environment to
make the environment conform with its internal beliefs. Consider a process in the environment that
conforms to an LTI­State Space model, as in equation (5.1).

𝒙̇ = 𝐴𝒙 + 𝐵𝒖 +𝒘
𝒚 = 𝐶𝒙 + 𝒛 (5.1)

In equation (5.1), 𝒙 are the environment states, 𝒖 are the inputs to the environment (actions) and 𝒘 is
a disturbance in the environment. The observed output 𝒚 is disturbed by the measurement noise 𝒛. In
this section and section 5.2, a general State Space formulation will be adopted. In section 5.3, the State
Space model in equation (5.1) will represent a one­DOF SISO system which is used in simulations.

5.1.1. The agent’s internal model
The equations in equation (5.1) are a model description for deterministic states 𝒙. An Active Inference
agent, however, considers a Gaussian recognition density 𝑞(𝒙) and it beliefs the environment state 𝒙
to be the Gaussian mean 𝝁 = 𝐸[𝒙], which is the quantity the agent keeps track of, and as explained
in section 2.2.1. Furthermore, the agent considers generalised coordinates meaning it does not only
track its belief 𝝁, but the generalised 𝝁̃ (section 2.3):

𝝁̃ = [𝝁𝑇 𝝁′𝑇 𝝁″𝑇 𝝁(𝑝)𝑇]𝑇

where 𝑝 is the embedding order. Similarly, it expects to observe 𝒚̃, which can be obtained by means of
finite differences as explained in chapter 4. Although the environment is modelled as in equation (5.1),

33

34 5. Active Inference and State Space formulation

the internal model of the agent is represented in generalised coordinates and as a function of the belief
of environment state 𝝁̃ rather than the actual (hidden) state 𝒙. Furthermore, the control input term (𝐵𝒖,
equation (5.1)) is represented by a prior variable 𝝃 [20]. This prior variable allows the embedding of
a reference, for example for tracking, in the agent’s internal model, and allows the controller designer
to influence the prior model 𝑝(𝝁), which is the model of evolution (and behaviour) of states in the
environment.

As a result, the generalised internal model of an agent as defined in equation (2.15) in the case of
an LTI State Space system is as in equation (5.2). With this model and the Free Energy formulation
chapter 2, controller and filter equations can be derived, as shown in section 5.1.2.

𝒟𝝁̃ = 𝐴̃𝝁̃ + 𝝃̃ + 𝜺̃𝜇
𝒚̃ = 𝐶̃𝝁̃ + 𝜺̃𝑦

with
𝐴̃ = 𝐼𝑝+1⊗𝐴
𝐶̃ = 𝐼𝑝+1⊗𝐶

and
𝜺̃𝜇 = (𝒟 − 𝐴̃)𝝁̃ − 𝝃̃
𝜺̃𝑦 = 𝒚̃ − 𝐶̃𝝁̃

(5.2)

5.1.2. Perception and action
The practical form of Free Energy is a quadratic function that can be minimized by means of a gradient
descent (chapter 2 and equation (2.16)). The Free Energy unifies action and perception, depending
on both the error of state dynamics and the perception error. To minimize the Free Energy, the agent
can change its perception by updating its belief about the perceived states in the environment. This
is represented by a filtering equation. Since the Free Energy is twofold, an agent can also act on
its environment (providing input), thereby changing the environment and making it comply better with
its beliefs, thus also minimizing Free Energy. The Free Energy formulation is repeated from equa­
tion (2.16) in equation (5.3).

ℱ(𝝁̃, 𝒚̃) = 1
2(𝜺̃

𝑇
𝜇Π̃𝑤𝜺̃𝜇 + 𝜺̃𝑇𝑦Π̃𝑧𝜺̃𝑦) (5.3)

Perception or filtering is the minimization of the Free Energy w.r.t. the belief of motion 𝝁̃ by means
of a gradient descent. Equation (5.4) shows the perception update rule. It includes 𝛼𝜇, the learning
rate of the gradient descent algorithm, as a tuning parameter. The gradient descent is offset by 𝒟𝝁̃,
which is required to maintain the belief of motion. When this offset is not introduced, the vanishing of
the Free Energy causes the belief of motion to vanish as well. The dependencies in equation (5.4),
following a Jacobian notation convention for derivatives, show that perception, or the update of the
belief of motion in the environment, is weighed by the precision of both the process and the sensory
input (measurement), and that is influenced by prior beliefs, current belief of motion and the perceived
sensory input.

̇𝝁̃ = 𝒟𝝁̃ − 𝛼𝜇(
𝜕ℱ(𝝁̃, 𝒚̃)
𝜕𝝁̃)

𝑇

= 𝒟𝝁̃ − 𝛼𝜇(
𝜕ℱ
𝜕𝜺̃𝜇

𝜕𝜺̃𝜇
𝜕𝝁̃ + 𝜕ℱ

𝜕𝜺̃𝑦
𝜕𝜺̃𝑦
𝜕𝝁̃)

𝑇

= 𝒟𝝁̃ − 𝛼𝜇((𝒟 − 𝐴̃)
𝑇(𝜺̃𝑇𝜇Π̃𝑤)

𝑇 − 𝐶̃𝑇(𝜺̃𝑇𝑦Π̃𝑧)
𝑇)

= 𝒟𝝁̃ − 𝛼𝜇((𝒟 − 𝐴̃)
𝑇Π̃𝑤((𝒟 − 𝐴̃)𝝁̃ − 𝝃̃) − 𝐶̃𝑇Π̃𝑇𝑧 (𝒚̃ − 𝐶̃𝝁̃)) (5.4)

Action or the generation of input to the environment also follows from the minimization of the Free
Energy, but w.r.t. the action or control input 𝒖̃. This control input does not appear directly in the Free
Energy formulation. It does, however, indirectly depend on input by way of the sensory input 𝒚̃. These
are related by means of the forward model: 𝒚̃ = 𝐺̃𝒖̃, which is the topic of section 5.2. The action update
rule is given in equation (5.5), also adhering to a Jacobian notation convention, and also includes a
gradient descent learning rate 𝛼𝑢. Action is weighed only by the precision of sensory input, depends
on current belief of motion and sensory input and is not affected by the prior.

̇𝒖̃ = −𝛼𝑢(
𝜕ℱ(𝝁̃, 𝒚̃)
𝜕𝒖̃)

𝑇

= −𝛼𝑢(
𝜕ℱ
𝜕𝜺̃𝑦

𝜕𝜺̃𝑦
𝜕𝒚̃

𝜕𝒚̃
𝜕𝒖̃)

𝑇

5.2. Generalised forward model 35

= −𝛼𝑢(𝐺̃𝑇𝐼𝜺̃𝑇𝑦Π̃𝑧)
= −𝛼𝑢𝐺̃𝑇Π̃𝑧(𝒚̃ − 𝐶̃𝝁̃) (5.5)

With equations for perception and action (equations (5.4) and (5.5), filter and controller), closed­loop

Figure 5.1: Block scheme of the LTI­State Space control loop consisting of the generative process (plant) and agent (con­
troller/observer).

control can be implemented. A block scheme of an Active Inference agent in a closed loop with the
generative process (environment or plant) is displayed in figure 5.1. There is a discrepancy between
the generative process, or environment, and the agent with regards to generalised coordinates. This
is addressed in section 5.4.

5.2. Generalised forward model
In order to write an expression for the partial derivative of the free energy with respect to the input, as in
equation (5.5), the expression of 𝒚̃ as a function of 𝒖̃ is required, since the Free Energy only depends
on 𝒖̃ via 𝒚̃, and not directly. In an LTI­State Space formulation, like equation (5.1) without the noises 𝒘
and 𝒛, this relationship is generally known as the forward model 𝐺:

𝒚 = 𝐺𝒖, 𝐺 = −𝐶𝐴−1𝐵

This forward model can be obtained by assuming steady­state, or 𝒙̇ = 0. In this scenario, 𝒚 can
be solved for 𝒖. If a generalised forward model to relate 𝒚̃ to 𝒖̃ is naively constructed similar to 𝐴̃
or 𝐶̃ as a block­diagonal matrix with blocks 𝐺 on the diagonal (𝐺̃ = 𝐼𝑛 ⊗ 𝐺), one has set the entire
generalised system to steady­state: On every dynamical order, the state­update equation will be in
steady state. This causes an unnecessary loss of information. If the generalised forward model is
built from the highest dynamical order down, however, the relationship between the dynamical orders
can be preserved. Consider the generalised LTI­state space equations in equation (5.6) that are not

36 5. Active Inference and State Space formulation

perturbed by any noise.
𝒙̇ = 𝐴𝒙 + 𝐵𝒖 𝒚 = 𝐶𝒙
𝒙̇′ = 𝐴𝒙′ + 𝐵𝒖′ 𝒚′ = 𝐶𝒙′
⋮ ⋮

𝒙̇(𝑝) = 𝐴𝒙(𝑝) + 𝐵𝒖(𝑝) 𝒚(𝑝) = 𝐶𝒙(𝑝)

The procedure below then provides a generalised forward model 𝐺̃ by iteratively determining the rela­
tionship between 𝒚̃ and 𝒖̃ at some given dynamical order.

0 = 𝐴𝒙(𝑝) + 𝐵𝒖(𝑝)

𝒙(𝑝) = −𝐴−1𝐵𝒖(𝑝) ⟶ 𝒚(𝑝) = −𝐶(𝐴−1𝐵𝒖(𝑝))

𝒙̇(𝑝−1) ≡ 𝒙(𝑝) = 𝐴𝒙(𝑝−1) + 𝐵𝒖(𝑝−1)

𝒙(𝑝−1) = −𝐴−2𝐵𝒖(𝑝) − 𝐴−1𝐵𝒖(𝑝−1) ⟶ 𝒚(𝑝−1) = −𝐶(𝐴−2𝐵𝒖(𝑝) + 𝐴−1𝐵𝒖(𝑝−1))
⋮ ⋮

𝒙̇(1) ≡ 𝒙(2) = 𝐴𝒙(1) + 𝐵𝒖(1)

𝒙(1) = −𝐴−𝑝𝐵𝒖(𝑝) − 𝐴−(𝑝−1)𝐵𝒖(𝑝−1)… ⟶ 𝒚(1) = −𝐶 (−𝐴−𝑝𝐵𝒖(𝑝) − 𝐴−(𝑝−1)𝐵𝒖(𝑝−1)…
− 𝐴−1𝐵𝒖(1) −𝐴−1𝐵𝒖(1))

𝒙̇ ≡ 𝒙(1) = 𝐴𝒙(0) + 𝐵𝒖(0)

𝒙(0) = −𝐴−(𝑝+1)𝐵𝒖(𝑝) − 𝐴−𝑝𝐵𝒖(𝑝−1)… ⟶ 𝒚(0) = −𝐶 (−𝐴−(𝑝+1)𝐵𝒖(𝑝) − 𝐴−𝑝𝐵𝒖(𝑝−1)…
− 𝐴−1𝐵𝒖(0) −𝐴−1𝐵𝒖(0))

(5.6)
Following this derivation, a generalised forward model 𝐺̃ can be constructed, as is provided in equa­
tion (5.7). A Matlab function to create such a generalised forward model is presented in listing B.7 in
appendix B.3.

𝒚̃ = 𝐺̃𝒖̃

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝒚(0)

𝒚(1)

𝒚(𝑝)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐶𝐴−1𝐵 𝐶𝐴−2𝐵 𝐶𝐴−𝑝𝐵 𝐶𝐴−(𝑝+1)𝐵
0 𝐶𝐴−1𝐵 𝐶𝐴−(𝑝−1)𝐵 𝐶𝐴−𝑝𝐵

𝐶𝐴−1𝐵 𝐶𝐴−2𝐵
0 0 𝐶𝐴−1𝐵

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝒖(0)

𝒖(1)

𝒖(𝑝)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.7)

5.3. The simulated system
Given the update rules for perception and action in equations (5.4) and (5.5) and the generalised for­
ward model in equation (5.7), a control loop can be implemented. This research includes simulations
of a simple one­dimensional SISO­system, to simplify as much as possible in order not to complicate
the problem too much. An analysis of the workings and performance of an Active Inference agent with
generalised sensory input by finite differences can be made.

The simulated system is a point mass with a single state: its velocity. It can move in one dimension.
One could consider a car driving on an endless straight road, or a boat sailing straight on open sea
with no position­reference. A Free Body diagram of such a system is shown in figure 5.2. If the system
has a point mass 𝑚[kg], velocity 𝑣[m/s] which is the state 𝑥, input force 𝑢 = 𝐹𝑢[N], and damping force
𝑑𝑣[N], with 𝑑[Ns/m] some damping constant, and there is a disturbance force, proportional to the
mass 𝑤 = 1

𝑚𝐹𝑤[m/s
2] acting on the system, the following force­equilibrium must hold:

𝑚𝑥̇ = 𝑢 +𝑚𝑤 − 𝑑𝑥

Considering a direct velocity measurement, corrupted by some noise 𝑧[m/s], the State Space matrices

5.4. On­line simulation with generalised output 37

Figure 5.2: Free Body Diagram of a one­DOF SISO system for simulations.

of equation (5.1) are as follows:

𝐴 = − 𝑑𝑚, 𝐵 = 1
𝑚, 𝐶 = 1

For simplicity,𝑚 = 𝑑 = 1. Given this data about the model, all that is left is to artificially create coloured
noise to add to a simulation. The noise parameters (variance and smoothness) are then known and
can be used to construct the generalised precision matrices. When a choice for embedding order 𝑝 and
accuracy of the finite differences for generalised output 𝑜 (chapter 3) are set, together with the gradient
descent learning parameters 𝛼𝜇 and 𝛼𝑢, and the prior knowledge 𝝃̃ is chosen, the agent’s internal model
and perception and action rules can be implemented. It is worth noting that in this simulation scenario,
the agent knows the simulated model and thus has nearly perfect knowledge of its environment. Even
the actual noise parameters are known to the agent. This may seem unrealistic, however, the Free
Energy principle is an underlying principle for many mechanisms, of which Active Inference is just
a part. One example is that of Dynamic Expectation Maximization (DEM) [18], which is not a control
algorithm but meant for parameter estimation. It leverages the Free Energy principle to estimate system
parameters and hyperparameters, including noise characteristics. Therefore, the current simulation
scenario can be considered one of a well­known generative process, possibly identified earlier using
DEM, that is now merely being controlled.

5.4. On­line simulation with generalised output
The control­scenario of interest is one in which a real system, affected by coloured noise, is being con­
trolled by an Active Inference agent. The agent has access to a model of the system (environment),
can provide it with input and can observe the system output by means of some sensory measurement.
The closest simulation scenario is one in which the environment is simulated by means of a model, dis­
turbed by artificially created noise. All simulations for this section and section 5.5 are performed using
the Matlab code displayed in appendix B, with the simulation scripts specifically in appendices B.4.1
and B.4.2.

5.4.1. Implementation
Because the control is to be done on­line, generalised coordinates can only be obtained by means
of backward differences (section 4.1.3). Simulations are implemented in Matlab, for which the scripts
are provided in appendix B.4. An interesting challenge in this simulation, in which a plant is simulated
by means of Forward­Euler integration, is a lack of compatibility between the agent and plant when
it comes to input (action). The plant takes a non­generalised input 𝒖 and provides a non­generalised
output 𝒚. This non­generalised output is generalised in simulation by means of a backward differences
matrix 𝐸, multiplied with a time­series array 𝒚̌. The update rule for action in equation (5.5), which is part
of the agent, works entirely on generalised coordinates and as such provides a generalised input 𝒖̃.

38 5. Active Inference and State Space formulation

This input cannot be processed by the plant, and thus an alternative solution is required. The gradient
descent in equation (5.5) could be replaced by a partial derivative w.r.t. 𝒖 instead of 𝒖̃. This would result
in a fourth chain rule term in the second line of equation (5.5), the partial derivative 𝜕𝒖̃

𝜕𝒖 . This partial
derivative can be represented by a matrix of size 𝑙(𝑝 + 1)×𝑙, of which the first 𝑙 rows are filled with ones
and all other rows with zeros. In a one­DOF SISO case, this boils down to an array (𝑝 + 1)×1, of which
only the top entry is a 1. This effectively results in the disposal of the generalised action computed by
the agent and taking only the zero­derivative of this generalised action to provide to the generative
process. This obviously is a loss of information in the closed­loop. Such a simulation is performed with
the choice of parameters displayed in table 5.1, the choice of which is explained later in this section.

Table 5.1: Parameters for simulation of a one­DOF SISO system.

Δ𝑡[s] 𝑝 𝑜 𝜎𝑤[m/s] 𝜎𝑧[m/s] 𝑠𝑤 𝑠𝑧 𝛼𝜇 𝛼𝑢
1 × 10−3 3 1 0.05 0.05 0.1 0.1 0.2 0.1

Figure 5.3: Coloured noises with 𝜎𝑤,𝑧 = 0.05 and 𝑠𝑤,𝑧 = 0.1.
Random seeds in Matlab are 4 for 𝑤 and 6 for 𝑧.

Coloured noise is created for process and ob­
servation. The Gaussian filter that is used to
make artificial coloured noise is non­causal and
the noise is therefore created before the simula­
tion begins. In the case of a real­life system, the
noise would just be present in the environment so
there is no need to be able to create it on­line in
simulation. For repeatability of experiments, the
random seeds to create the noise are fixed. The
noise signals are shown in figure 5.3.

Simulations with the parameters from ta­
ble 5.1 are run for a simulation time of 5s. The
prior variable 𝝃̃ steers the controller towards a
desired behaviour. The error of the belief (equa­
tion (5.3)) is minimized in the free energy. There­
fore, choosing 𝝃̃ as follows below makes the
agent steer the belief 𝝁̃ of the state 𝒙̃ towards the
desired 𝝁̃𝑟𝑒𝑓.

𝝃̃ = (𝒟 − 𝐴̃)𝝁̃𝑟𝑒𝑓
To steer the mass towards a constant velocity, the generalised prior variable is constant for all time
instances and equals the desired velocity (an arbitrary 2m/s for the zero­order and zero otherwise.
With an embedding order 𝑝 = 3, the prior for this simulation is constant:

𝝃̃ = [2 0 0 0]𝑇

Furthermore, the state 𝑥 and belief of motion 𝝁̃ are initialized at 0. Simulation results are presented in
figure 5.4. This simulation shows some interesting results. It has been tuned using the noise param­
eters and gradient descent learning rates. Unfortunately, there is not a lot of freedom in the choice of
these parameters. As they are, reference tracking under the influence of coloured noise is achieved,
but there is little to no freedom to tweak the system and evaluate behaviour and performance. Many
choices of parameters render the system unstable.

At first glance, in figure 5.4a shows that the state 𝑥, output 𝑦 that measures the state and the belief
of the state 𝜇 are all steered towards the reference velocity of 2m/s. The influence of noise is clearly
present, but as figure 5.3 shows, the noise has significant amplitude. An interesting peak in the agent’s
belief 𝜇 shows at the beginning of the simulation. This behaviour is inherent to the duality of the Free
Energy: both 𝜺̃𝜇 and 𝜺̃𝑦 need to be minimized, and initially those are in conflict due to the influence
of the prior 𝝃̃ on 𝜺̃𝜇. The Free Energy decreases and remains small from the moment the belief is
consistent with the state.

Figure 5.4b shows the generalised output coordinates 𝒚̃. These are obtained on­line during simula­
tion by means of equation (4.11). The amplitude of the output with increasing dynamical order clearly

5.4. On­line simulation with generalised output 39

(a) Simulation results: states and outputs, input and Free Energy. (b) Generalised outputs

Figure 5.4: Simulation results of an Active Inference control loop with generalised output coordinates by means of backward
finite differences and parameters as in table 5.1.

increases, which is to be expected for a signal with oscillating behaviour. However, by the 3rd deriva­
tive, the output is extremely high for the first few iterations of the simulations, as is clear from the
enormous peak. A smaller version of this peak already shows for the 2nd derivative. For this reason,
the embedding order for this simulation is limited to 𝑝 = 3. For every embedding order added, there is
a larger peak, rendering the simulation unstable.

5.4.2. Varying noise characteristics
Since the influence of noise on the simulation is obvious from figure 5.4a, varying the noise to evaluate
behaviour and performance is an important step towards understanding the mechanics of an active
inference control loop with generalised output coordinates. The embedding order is still bound to 𝑝 =
3, smaller than the desired 𝑝 = 5, but varying of the noise yields some important insights. Most
importantly, smaller (smaller variance) or smoother (larger kernel width) noise is more problematic to
this simulation than the opposite. Simulations for a varying set of parameters, as displayed in table 5.2
show this with the results in figure 5.5. Larger noise variance does not only increase the magnitude of

Table 5.2: Parameters for simulation of a one­DOF SISO system with varying noise parameters.

Δ𝑡[s] 𝑝 𝑜 𝜎𝑤[m/s] 𝜎𝑧[m/s] 𝑠𝑤 𝑠𝑧 𝛼𝜇 𝛼𝑢
Inc. st. dev. 𝜎 0.001 3 1 0.3 0.3 0.1 0.1 0.2 0.1
­ w/ adj. learn. rates 0.001 3 1 0.3 0.3 0.1 0.1 0.5 0.5
Dec. smoothness 𝑠 0.001 3 1 0.05 0.05 0.05 0.05 0.5 0.5
­ w/ adj. learn. rates 0.001 3 1 0.05 0.05 0.05 0.05 0.5 0.5

the noise, but decreases precision in Π̃𝑤 and Π̃𝑧. This shows clearly in figure 5.5a, with parameters as
in the first row of table 5.2, in which the effect of the noise is much more present than in figure 5.4a. The
decreased precision also makes the control behaviour of the agent less aggresive: the state progresses
towards the desired value at a lower pace. Interestingly enough, the effect of larger noise on the state
can barely be seen. The belief of the agent deviates far more from the actual environment state, since it
is affected by the disturbed sensory input. The environment state, however, remains relatively smooth in
comparison to the present noise, suggesting the Active Inference agent is successful in counteracting

40 5. Active Inference and State Space formulation

(a) Increased noise variance (𝜎𝑤,𝑧 = 0.3). (b) Adjusted learning rates (𝛼𝜇,𝑢 = 0.5).

Figure 5.5: Simulation results of an Active Inference control loop with generalised output coordinates, with varying noise param­
eters (increased variance) as in table 5.2.

coloured noise. An increase of the learning rates as in the second row of table 5.2 yields results
displayed in figure 5.5b, showing that the decreased control action and influence of noise on sensory
input and belief (the relevant signals for the agent) can be counteracted somewhat by an increase in
learning rates. Aside from variance, the characteristics of the noise are also greatly influenced by the
Gaussian smoothness or kernel width. A decrease also causes a decrease of precision in Π̃𝑤 and Π̃𝑧.
With parameters as in the third and fourth rows of table 5.2, results are shown in figure 5.6. It seems
that when the agent has less confidence in its sensory input and knowledge of the environment, the
noise indeed has a smaller influence on the belief of motion 𝜇 which influences the action of the agent,
which in turn influences the sensory input. Increase in learning rates can make the control action more
aggressive (figure 5.6b).

Intuitively, one might expect larger noise, or noise that is less smooth to make a system more prone
to instability. However it seems from the results in figures 5.5 and 5.6 that the effect of the change of the
precision matrices Π̃𝑤 and Π̃𝑧 has a much greater effect on the closed loop than the change in the actual
noise signals. Furthermore, comparing figures 5.5 and 5.6 with figure 5.4 shows that the decreased
precision results in a lower free energy, especially early in the simulation. In the scenario in this section,
the noise parameters that were used to create the noise are the same parameters that make up the
precision matrices. Given the influence of the precision matrices of the behaviour in the closed loop,
it is important to research the effects of the precision matrices as tuning parameters. When noise is
not artificially created, the characteristics of it might be estimated but they are never truly known. It
thus seems logical that the precision matrix does not represent the precision due to noise exactly. This
research, however, is not part of the research for this thesis.

5.5. Simulation of a generalised plant
In section 5.4 it has been shown that closed­loop control can be achieved for the tracking of a reference,
using generalised outputs obtained by backward finite differences in a state space formulation. This
scenario comes with a lot of drawbacks, however, among which are the sacrifice of generalised action,
sensitivity to parameter changes, especially regarding noise, and limitation of embedding order. The
simulations in this section are aimed at providing a better understanding of the closed­loop behaviour
in a scenario with generalised coordinates, taking advantage of the artificially generated noise and
thus the knowledge thereof. With this knowledge, it is possible to simulate a generalised plant, as

5.5. Simulation of a generalised plant 41

(a) Decreased noise smoothness (𝑠𝑤,𝑧 = 0.05). (b) Adjusted learning rates (𝛼𝜇,𝑢 = 0.5).

Figure 5.6: Simulation results of an Active Inference control loop with generalised output coordinates, with varying noise param­
eters (decreased smoothness) as in table 5.2.

in equation (5.8). In this generalised plant, the generalised noise, obtained by finite differences, is
added to the equations, meaning the plant outputs generalised sensory input for the agent and takes
its generalised action.

̇𝒙̃ = 𝐴̃𝒙̃ + 𝐵̃𝒖̃ + 𝒘̃
𝒚̃ = 𝐶̃𝒙̃ + 𝒛̃

with
𝐴̃ = 𝐼𝑝+1⊗𝐴, 𝐵̃ = 𝐼𝑝+1⊗𝐵
𝐶̃ = 𝐼𝑝+1⊗𝐶

(5.8)

In order to simulate the plant in equation (5.8), the generalised noises 𝒘̃ and 𝒛̃ need to be known.
With those, different scenarios can be created to identify problems of the simulations of section 5.4 and
possibly find solutions. or identify future research towards finding solutions. Sections 5.5.1 and 5.5.2
are about the alternative scenarios and the resulting simulations, respectively.

5.5.1. Generalised noise
Because the artificial noise is generated before simulation, it is possible to use this information to com­
pute generalised noise. In the case of backward differences, this can be done on­line, very similar
to computing the generalised output in section 5.4. However, doing so is completely similar to a pre­
processing step in which all the generalised noise is computed, which is more efficient to implement.
Since there is no practical difference, this also allows for the exploration of central and forward finite
differences for derivative approximation (which could not be done on­line). Three different scenarios
are created, described below. In listing B.8 they are parametrized by gp, an integer taking on one of
the values below. The variable occurs all throughout listing B.9 to distinguish between the different
scenarios. The scenarios are made to be as close as possible to the original scenario in section 5.4.

1. Generalised coloured noise is created by means of finite differences, possibly backward, central
or forward, given a coloured noise signal that is longer (has more samples) than the simulation
has time­samples, such that there need to be no zero­samples in the derivatives for the first and/or
last few samples of the simulation. A full embedding order is available for all of the simulation.
This scenario, together with others should show whether the lack of full embedding order for the
first few samples and increase thereof during the simulation in section 5.4 is problematic and
possibly the cause of the generalised output peaks described in section 5.4.

2. In this scenario, generalised coloured noise is also created by means of finite differences. How­

42 5. Active Inference and State Space formulation

ever, in contrast to scenario 1 above, there are no additional samples for the noise. Only backward
differences are considered. This means that the higher­order derivatives of the noise are zero for
the first few samples.

3. A final scenario is closest to the scenario of section 5.4. Backward differences are applied to
obtain coloured noise before the generalised plant is simulated. Due to the lack of approxima­
tions for higher­order derivatives for the first few samples, the embedding order in simulation is
gradually increased as the higher order derivatives (of the noise) can be approximated.

The next section described simulation results from the scenarios of a generalised plant and what these
reveal about the closed­loop control with an Active Inference agent.

5.5.2. Simulations
Simulations are performed for the above scenarios by varying the integer for the variable gp inlisting B.8.
Other parameters are as those in table 5.1, for a fair comparison, aside from the embedding order, which
is increased to 𝑝 = 5, and the prior variable which is extended accordingly, to 𝝃̃ = [2 01×𝑝]

𝑇
. The

parameters for the simulations are displayed in table 5.3. Running a simulation for all three scenarios

Table 5.3: Parameters for simulation of a one­DOF SISO system with a generalised plant.

Δ𝑡[s] 𝑝 𝑜 𝜎𝑤[m/s] 𝜎𝑧[m/s] 𝑠𝑤 𝑠𝑧 𝛼𝜇 𝛼𝑢
0.001 5 1 0.05 0.05 0.1 0.1 0.2 0.1

described in section 5.5.1, which can be reproduced using the scripts in appendix B, shows that the dif­
ferences between the scenarios are so minimal, that they are not worth reporting. There are, however,
very clear differences with the simulations of section 5.4. For comparison, results of the third scenario
described in section 5.5.1 are compared to those in section 5.4. With the parameters as in table 5.3,
generalised noise and outputs are shown in figure 5.7, and simulation results are shown in figure 5.8.
The latter only shows non­generalised state, belief and input, to keep the plots clean and interpretable.

Figure 5.8: Simulation results of an Active Inference control
loop with a generalised plant, with parameters as in table 5.3.

Analysing the results of this simulation, some
interesting remarks can be made. Starting with
the noise plots in figure 5.7a, it can be observed
right away that the noise derivatives have a mel­
low behaviour and no disproportional peaks are
present, which also holds for the generalised out­
puts in figure 5.7b. The effect on states and the
belief thereof can be seen in figure 5.8 and con­
sidering that the parameters for this simulation
are the same as for the simulation shown in fig­
ure 5.4a (apart from the embedding order), it is
noteworthy how different the behaviour is. The
control action is much larger, resulting in a far
shorter rise time but a more oscillatory response.
Noise seems to be counteracted quite well. Un­
derstanding the underlying cause of these differ­
ences might be very helpful towards understand­
ing the control scenario of section 5.4, which could
lead to improving it. This however, is a topic for fu­
ture research.

The generalised outputs of this simulation (fig­
ure 5.7b) require further examination. Just from
looking at these plots, it can be seen that the
plot for 𝑦(1) does not correspond to the tempo­
ral derivative of 𝑦(0). This is further inspected in
figure 5.9, in which the generalised outputs are compared to approximate derivatives by means of

5.6. Evaluation 43

(a) Generalised noise (b) Generalised output

Figure 5.7: Generalised noise and output signals of an Active Inference control loop with a generalised plant, with parameters
as in table 5.3.

backward finite differences, based on one of the signals 𝑦(𝑑). In listing B.6 is a Matlab function
f_diffcheck that makes this comparison. The first plots in figure 5.9a show the data from figure 5.7b
together with backward difference­approximated derivatives based on 𝑦(0). Two things become clear:
the first derivative from the simulation does not nearly match the approximated derivative, although it
converges as simulation time progresses, and, higher order derivatives have disproportionately large
values for the first samples. This is the same phenomenon as observed in section 5.4. Therefore,
in figure 5.9b the same comparison is displayed, but with scaled plots. The disproportionately large
values are not displayed, such that the rest of the results can be reviewed. It is now clear that the
discrepancy between the simulation data and the approximated derivatives based on 𝑦(0) vanishes
as the dynamical order increases, and as the simulation time progresses. Lastly, in figure 5.9c the
approximated derivatives are based on 𝑦(1) instead of 𝑦(0), with the first samples not displayed like in
figure 5.9b. It is clear that the simulation outputs and approximated derivatives match very well. The
underlying reasons for these discrepancies are not very evident, but an evaluation of the closed­loop
State Space formulation is in place. This is the topic of section 5.6. Lastly, the varying of parameters
in listing B.8 shows that the simulation with a generalised plant suffers from the same problem as the
simulation in section 5.4: Increased precision renders the closed­loop unstable.

5.6. Evaluation
For the simulations and post­processing results in sections 5.4 and 5.5, some remarks can be made.
The similarities and differences of the simulations in these sections provide interesting insight into the
closed loop control scenario, divided into four topics. They are discussed below.

44 5. Active Inference and State Space formulation

(a) Using 𝑦(0) as a reference. (b) Using 𝑦(0) as a reference, scaled plot. (c) Using 𝑦(1) as a reference, scaled plot.

Figure 5.9: Generalised outputs 𝑦̃ of the simulation in figure 5.8, compared to approximated derivatives by finite differences
(𝑜 = 1).

Disproportionately large peaks at the beginning of a simulation are present in the derivative approx­
imations resulting directly from the application of finite differences. This is the case for the generalised
outputs in section 5.4 and for the post­processed approximations of section 5.5 in figure 5.9. This
behaviour presents itself when the finite differences approximation is applied to the output 𝑦 directly.
Section 4.2 and figure 5.7a show that this is not a direct result of the application of finite differences. It is,
however, known that approximating derivatives numerically is notoriously unreliable, especially in the
presence of noise. In this case, the noise itself is not necessarily problematic. However, any relatively
large difference between samples will be amplified by the numerical approximation. The problem may
therefore lie with the combination of the workings of free energy minimization and the finite differences.
Clearly, the peaks cause instability and it is important to research their cause and how to avoid it. It
might, for example, be related to the behaviour of the belief 𝝁̃, as discussed in section 5.4.

High precision in the precision matrices Π̃𝑤,𝑧 as a result of large smoothness or small variance of
the noise render the closed­loop unstable. It seems the coloured noise itself is not problematic for the
Active Inference control loop. It can deal with large noises fairly well. When noise is large enough, the
disturbances are very visible, but the system remains stable. The contents of the precision matrices,
on the other hand, have a large influence on the behaviour of the closed loop. Despite the noise
being small and/or smooth, which is represented by high precision, instability seems inevitable. In the
simulations performed for this research, the precision matrices are defined by the characteristics of
the actual noise. In the case of a real­world environment, the characteristics of the noise can only be
estimated. The estimate may be very good, but the true characteristics are never known, meaning the
precision matrices will not exactly match the noise. It is therefore questionable whether they should,
and if precision (or the noise characteristics that define it) should be tuning parameters. This may
positively impact the closed­loop control characteristics.

Input incompatibility is an issue in the scenario of section 5.4. By approximating generalised output
by means of finite differences, providing a solution to the lack of generalised measurements from an
environment that are expected by the agent, an opposite problem is created when it comes to the
action generated by the agent. This generalised action is incompatible with the input accepted by the
environment, as discussed in section 5.4, which results in a loss of information provided by the agent to
the environment. In order to fully understand the Active Inference framework for robotics, it is important
to research this issue.

5.6. Evaluation 45

Derivativemismatches between the generalised outputs of the simulations of section 5.5, figures 5.7b
and 5.9 provide insights into the closed­loop simulation. Two problems can be pinpointed that can con­
tribute to the presence of this mismatch. The first lies with the initial conditions. In the simulation, initial
conditions are provided for all the dynamic variables: 𝒙̃, 𝝁̃, 𝒚̃. The system is assumed to have zero ve­
locity, but also zero acceleration or any other higher order motion (the mass is not moving) at the start
of the simulation, hence all these variables are initialized at zero . Due to the presence of the noise,
however, this is not necessarily true. With the wrong initial condition, the generalised coordinates can
evolve differently than would be expected. Because of the correlation between dynamical orders, this
should be corrected during the simulation, which appears to be the case. This is, however, not as
straightforward as it seems, which is the second problem. Consider equations (5.2) and (5.8), which
depend on the generalised system matrices 𝐴̃ and 𝐶̃ (and 𝐵̃). These matrices are (block­)diagonal
(this follows from the Kronecker product with an Identity matrix), which means there is no correlation
between the dynamical orders in the equations they are part of. Even though an equation ̇𝒙̃ = 𝐴̃𝒙̃ has
the 𝑑th derivative on the left­hand side on the 𝑑th row and on the right­hand side on the (𝑑 + 1)th row (in
case of a single state 𝑥), which makes it seem like the rows are cross­correlated, this is not actually the
case in a simulation in which the state transition is performed by a state update rule 𝒙̃𝑖+1 = 𝒙̃𝑖 + ̇𝒙̃𝑖Δ𝑡.
The same is true when the equation includes an input term 𝐵̃𝒖̃ or in case of the agent’s internal model in
equation (5.2). Yet, the derivatives in figure 5.9 converge to the approximate derivatives. This can only
be due to the generalised forward model from section 5.2, equation (5.7), illustrating its importance. It
remains, however, questionable whether the current form of State Space model for closed­loop Active
Inference­based control (with generalised coordinates) is correct. Intuitively, these State Space equa­
tions should represent the dynamic correlation between the generalised coordinates.

Research towards the topics or problems mentioned above could provide a greater understanding
of Active Inference and generalised coordinates for robotics. The research in Active Inference for
robotics is young and there is far more research to be done before the topic is well­understood. The
topics mentioned above are left for future research. This is discussed further in section 6.2. An answer
to the research question that this chapter is devoted to can be provided. It reads: ‘How can Active
Inference with generalised motions be applied to an LTI­State Space control loop?’ A short answer is
provided by sections 5.1, 5.2 and 5.4, that show the required update equations for perception and action
following the gradient descent on Free Energy. The application of generalised precision matrices from
chapter 3, finite differences from chapter 4 and the generalised forward model from section 5.2 make
closed­loop control with generalised coordinates possible in an environment that does not provide them.
In section 5.4 it is shown that closed­loop control for reference tracking can be achieved. However, from
sections 5.4 and 5.5 it is also clear that the current State Space formulation for generalised coordinates
is far from perfect and more research is required for a true answer to the question. The tools researched
and applied in this work (generalised precision, finite differences and a generalised forward model)
are keys to the state­space implementation of Active Inference with generalised coordinates, but the
problems described in this section, and probably more, are in need of further research.

6
Conclusion

This final chapter is one of conclusion, discussion and recommendations for future work. The research
posed in previous chapters will be summarized and the research questions posed in chapter 1 will be
revisited. This research does not only answer open questions in the research towards the application
of Active Inference in robotics, but also provides new questions, opening up opportunities for future re­
search that can hopefully, eventually lead to a successful implementation of Active Inference in robotics
that outperforms existing control methods in certain scenarios.

6.1. Research summary
The aim of this research was to explore aspects of Active Inference mentioned in neuroscientific lit­
erature and in some of the pioneering literature of its application to robotics that have not yet been
applied in their full potential when it comes to the control of robotics. The field of Active Inference is
vast and although the first successful implementations in robotics exist [26–28], the full potential has
most definitely not yet been reached. One aspect of Active Inference and the Free Energy Principle
that has not been widely explored in robotics so far is the application of generalised coordinates, or
generalised motions. These are mentioned often, but their application is either limited in the number
of generalised coordinates or lacks some of the key features of these generalised coordinates, such
as the dynamical correlation among them and the useful information it provides in a control loop. The
dynamical correlation that generalised coordinates provide are tightly related to the assumption of the
presence of coloured noise to disturb system states or measurements. This research therefore aims
to answer the question (chapter 1):

What constructs are necessary to apply generalised coordinates to an Active Inference control loop
whilst taking correlation between dynamical orders into account?

This research question can be answered after the sub­questions are answered. The work of this thesis
is summarized below, together with answers to these sub­questions from section 1.2.1.

6.1.1. Generalised coordinates
The first sub­question of this research reads ‘What is the role of generalised coordinates in Active Infer­
ence?’. An understanding of generalised coordinates of motion is of utter importance for this research.
Chapter 2 is all about the Free Energy Principle, which is the underlying theory for Active Inference.
The literature on this topic is narrow and intricate. A review [4] already provides a good insight into
the math involved with the Free Energy Principle and Active Inference, but makes some simplifying
assumptions about the lack of correlation between dynamical orders in generalised coordinates that
are not made in this research. The chapter provides the required background necessary to understand
the research in this thesis, as familiar to a reader from the field of robotics or control as possible. Free
Energy is a quantity that, due to its form, can be optimized, in contrast to the surprisal or the recog­
nition (probability) density that it bounds. Minimizing Free Energy, which in practice boils down to a

47

48 6. Conclusion

quadratic cost function of state and observer error, weighted by the precision of these quantities, indi­
rectly minimizes the surprisal and the difference between an agents model (recognition density) and the
true Bayesian posterior of a state given an observation. Minimization of the Free Energy is achieved by
minimizing w.r.t. the (belief of) the environment state (perceptual inference), and w.r.t. the environment
input or action on the environment (active inference). In order to do so, explicit representations of the
underlying probability densities of internal beliefs about the environment and the generative mapping
(generative density) between environment states and sensory inputs are required. Assuming Gaussian
densities, the agent’s internal beliefs about the environment are encoded by the Gaussian sufficient
statistics: mean (𝝁) and variance. The generative density consists of a prior density (state equation)
and conditional density (output equation). Both densities are considered to be made up of a determin­
istic part (state and output model), influenced by noise, which is responsible for the stochastic nature
of the probability densities. Assuming Gaussian (coloured) noise on both process and measurement
has multiple advantages. It presents the opportunity to define the generative density as a Gaussian
density, of which the statistics are represented by the coloured noise. This yields the practical quadratic
form of the Free Energy that is weighted by the Gaussian covariance, which is important in the second
sub­question. Furthermore, with coloured noise all dynamical processes remain smooth, instead of
having the roughness that comes with white noise. As such, the temporal derivatives of the dynamical
processes exist and are correlated. This is what generalised coordinates of motion are: instantaneous
temporal derivatives of a dynamical process that are correlated. It appears that biological agents reg­
ister these generalised motions. Due to the correlation present, these provide information about the
(progression of) the coloured noise. This is potentially very advantageous. So, generalised coordinates
provide information about the dynamical processes involved in perception and control in the presence
of coloured noise that can improve perception and action when influenced by noise. The research for
the second sub­question provides more knowledge of the relationship between the coloured noise and
generalised coordinates.

6.1.2. Generalised precision
Following up on the first research sub­question is ‘What is the relationship between generalised coor­
dinates and coloured noise?’. The research of chapter 2 and from the research and summary above
it is already shown that these are tightly related. The Free Energy function that is minimized in the
process of Active Inference weighs the quadratic error on state and observation by their believed pre­
cision, which fully depends on the characteristics of the noise. Precision is simply the inverse of co­
variance. Because different dynamical orders (the generalised coordinates) are assumed correlated,
the covariance comes in the form of a generalised covariance matrix, which is a matrix that contains
the (co­)variances of the noise signal and the derivatives thereof. Chapter 3 is dedicated to a thorough
derivation of the contents of such a matrix, in which different noise sources (eg noises on different
states) are assumed to be uncorrelated, but the correlation of a noise signal and its own derivatives
is non­zero. As it turns out, each covariance term in the matrix is equal to the product of the negative
variance of the noise and a derivative of the autocorrelation function of the noise, evaluated at zero
lag. For every derivative in the covariance term, the autocorrelation function must be differentiated
once. In the case of Gaussian noise, the autocorrelation function can be that of a Gaussian filter,
which is well­defined and the derivatives of this analytic function are easy to compute. The result is a
generalised covariance matrix of which the elements all depend on the variance and a power of the
smoothness or kernel width of the Gaussian filter. In the generalised precision matrix, the inverse of the
generalised covariance matrix, smoothness is a factor in the numerator of the elements and variance
occurs in the denominators. With the assumption that both are smaller than one, increased variance
decreases precision and increased smoothness increases precision. The power of the smoothness
increases towards the bottom right end of the matrix, meaning precision decreases with increased em­
bedding order (higher order derivatives). It has been shown that for sixth derivatives and higher, the
precision essentially becomes zero, meaning the embedding order of generalised coordinates should
generally not be higher than five. Until there, the generalised precision as a result of the application
of generalised coordinates can weigh the quadratic error in the Free Energy function, meaning that
when precision is high (the noise is smooth and/or small), error must be accounted for but whenever
precision is lower (in the cases of rougher or larger noise, meaning larger uncertainty), perception and
action should not be aggressively adjusted when perceptions don’t match the agent’s beliefs about the
environment.

6.1. Research summary 49

6.1.3. Perceiving generalised motions
The role and potential of generalised coordinates have become clear from the research in chapters 2
and 3, yet in literature no general application of generalised coordinates can be found. The application
is usually limited to the available generalised output, which is little. A practical problem with gener­
alised coordinates is that, although biological agents appear to be able to perceive them, sensors for
robotics generally cannot. The third sub­question therefore reads: ‘How can generalised coordinates
be generally applied in the Active Inference framework when they are not readily available?’. Research
in chapter 4 has explored the use of finite differences to obtain generalised output measurements. In
the case of backward differences, this process is causal and can be applied on­line. A procedure is
derived that eliminates the need to go through the process of deriving the finite difference equations
and allows to set up the required matrix without further computations. Tests with an analytic ground
truth reveal that for higher order derivatives, numerical approximation is noisy (as is a well­known culprit
of numerical derivative approximation), however for an embedding order up to 5 the approximations
are accurate enough. The addition of coloured noise shows that the derivative approximations remain
smooth, but oscillations are much bigger, starting at lower embedding orders. Part of the oscillations
are due to the true derivatives, because the original signal has more oscillations as a result of the
coloured noise. Since generalised precision in the Free Energy formulation already decodes that pre­
cision decreases with increasing orders of derivatives, this culprit is partially accounted for in Active
Inference. Therefore, finite differences can provide generalised coordinates in Active Inference.

6.1.4. State Space control with Active Inference
An Active Inference control loop based on an LTI­State Space model has been implemented in chap­
ter 5 to evaluate the application of Active Inference to robotics in the presence of generalised coordi­
nates and provide an answer to the question ‘How can Active Inference with generalised motions be
applied to an LTI­State Space control loop?’ In other works, the State Space­description lacks gener­
alised outputs or lacks the correlation between dynamical orders of generalised coordinates, both of
which change the mechanics of the control loop. To retain the correlation between dynamical orders,
proper derivations of the controller and filter equations are presented and a generalised forward model
is proposed that relates the in­ and output variables of all dynamical orders. Simulations of a simple
one­dimensional point­mass system reveal the complexities of applying generalised coordinates in a
control loop. When considering a robotic system (plant) as is usual, which runs in non­generalised
coordinates, a compatibility issue between plant and agent is present. Providing an agent with gener­
alised output (sensory input) results in generalised input (action), which the plant is incompatible with.
A quick solution to run a working simulation is to discard the generalised input provided by the agent
when simulating the plant. This causes a loss of information generated by the agent. Simulation of a
reference tracking task with such a system is found to be unstable for embedding orders higher than 3,
and marginally stable otherwise w.r.t. the tuning parameters. In stable scenarios, the agent is capable
of performing the tracking task in the presence of coloured noise. A different simulation was created
that runs a plant in generalised coordinates to identify the problems of the former simulation scenario.
This scenario is only possible in simulation, when the noise is artificially created and therefore known.
This plant yields generalised outputs and accepts generalised inputs, something a real­life robotic sys­
tem is generally not capable of. It shows that an Active Inference based agent can perform a tracking
task under the presence of coloured noise, but it also reveals a lack of connection between dynamical
orders in the generalised description that underlies the filter­ and input equations of the agent. The out­
puts of the process reveal the discrepancy between the generalised coordinates and raise the question
whether the generalised state space­description is not fundamentally wrong. So, Active Inference with
generalised motions can be applied to an LTI­State Space control loop when applying finite differences
to obtain generalised output and adopting a generalised forward model, but accepting the discrepancy
between the input generated by the agent and accepted by the plant is necessary. More research is
required before Active Inference can be applied to robotics systems without the current compromises.
This is further discussed in section 6.2.

6.1.5. The research question
Answers to the research sub­questions posed in section 1.2.1 have been provided throughout this
research and summarized in sections 6.1.1 to 6.1.4. The research question of this work is now revisited:

50 6. Conclusion

What constructs are necessary to apply generalised coordinates to an Active Inference control loop
whilst taking correlation between dynamical orders into account?

The application of generalised coordinates in Active Inference in general, without the explicit means
to measure generalised outputs first of all requires a method to obtain generalised measurements. It
has been shown that this can be done by means of finite differences, with which derivatives can be
numerically approximated. Generalised coordinates of motion are tightly related to coloured noise. Due
to the dynamical correlation between the dynamical orders of generalised motions, Active Inference
can supposedly better deal with coloured noise than other methods. In order to respect the correlation
between dynamical orders, a generalised precision matrix is required. This matrix is derived in detail
and weighs the errors in the Free Energy based on the variance and smoothness of the noise. Precision
decreases for higher order derivatives, of which the computed generalised coordinates are also less
accurate. With the means to numerically approximate derivatives, with a generalised precision matrix
and a generalised forward model to preserve correlation between dynamical orders, update equations
for the agent’s belief and for the input or action can be derived. An agent based on such equations,
however, is not compatible with a non­generalised plant. This is further discussed in section 6.2.

6.2. Discussion and recommendations
Active Inference is a very interesting neuroscientific theory that has a lot of potential for robotics control
for many reasons: The biologically inspired unification of action and perception is not only elegant, but
shows great potential for very natural behaviour even under noisy circumstances. The interest for the
topic in the field of robotics is growing and progression is being made, and the Free Energy Principle
and Active Inference are already very popular theories in the field of neuroscience. The theory seems
very suitable for a translation to robotics, but despite that, a lot more research is required before Active
Inference can be applied to robotics with all its benefits.

The contribution of this work is the detailed exploration of aspects of a core strength of Active In­
ference: the generalised coordinates. The necessary knowledge of Free Energy for the understanding
of generalised coordinates have been bundled with a very detailed account of generalised precision
and generalised coordinates, together with a simulation scheme for State Space models. This work
confirms that Active Inference is a very intriguing, intricate topic that requires far more research effort
within the research field of robotics. The topics of generalised precision, obtaining generalised coor­
dinates and preserving the relations between dynamical orders have been researched in detail. This
provides some insight into these aspects of Active Inference, but also shows directions for future re­
search. There is definitely a need for more research regarding the validity of some of the assumptions
made, such as the local linearity assumption for the generalised models of the G­density (section 2.3),
or the assumption that smoothness and variance of coloured noise are generally smaller than 1 (sec­
tion 3.3.2). Furthermore it is clear from chapters 4 and 5 that the current scenario for control as applied
in this work is far from ideal. Improvements can likely be made with more research effort on obtaining
generalised coordinates from data. Filtering may improve the results obtained using finite differences,
although this research must also include the effects filtering has on the properties (smoothness, vari­
ance) of the noise, and if this should be accounted for in the generalised precision matrix. Lastly, if
Active Inference is to be applied on­line for robotics control, improvements can be made regarding the
closed­loop. The current incompatibility between the agent­provided action and control input to the
environment is unfortunate and needs solving. Possibly, with a better description of the closed loop
control, classical performance and stability measurements can be applied or fitting measurements can
be derived.

All in all, there is a lot to learn and a lot to gain in this very intriguing and intricate biologically inspired
topic from neuroscience and hopefully, this work inspires to further the research towards true Artificial
Intelligence.

A
Autocorrelation derivatives

This appendix contains a full derivation of the autocorrelation function equation (3.10) of section 3.2.2
to gain an insight in the structure of the derivatives of this autocorrelation function, which need to be
evaluated at 𝜏 = 0 to learn the values of the entries of the generalised covariance matrix. The deriva­
tives up to and including the 10th are presented, which are required for an embedding order 𝑝 = 5. This
gives enough insight to generalise the result of derivatives evaluated at 𝜏 = 0 to obtain values of even
higher order derivatives evaluated at 𝜏 = 0.

A.1. The derivations
The autocorrelation function in question is stated in equation (3.10) and is repeated below, in equa­
tion (A.1).

𝜌ℎ(𝜏) = 𝑒
− 𝜏2
4𝑠2𝑤 (A.1)

The notation is simplified and some definitions are created in appendix A.1.1 and manual derivations
of the autocorrelation function are provided in appendix A.1.2.

A.1.1. Notations and definitions
To keep notation clear and concise, and the derivation easier to read, the following notation and knowl­
edge regarding analytic derivatives is adopted given the autocorrelation function in equation (3.10) and
repeated in equation (A.1).

• The subscripts ℎ and 𝑤 are omitted, such that 𝜌 and 𝑠 remain.
• The exponential function will be written as 𝑒𝑢, because it remains the same throughout the deriva­
tion and 𝑢(𝜏) = − 𝜏2

4𝑠2 is only applied in the chain rule.
• For the application of the chain rule we know 𝑢̇(𝜏) = − 𝜏

2𝑠2 .
• The denominator 2𝑠2 of 𝑢̇(𝜏) is substituted by 𝑑, such that 𝑢̇(𝜏) = − 𝜏

𝑑 .

A.1.2. Analytic derivatives
Below follow the analytic derivatives of the autocorrelation function in equation (A.1) with respect to 𝜏.

𝜌(𝜏) = 𝑒𝑢 (A.2)

𝜌̇(𝜏) = − 𝜏𝑑𝑒
𝑢

𝜌̈(𝜏) = (−1𝑑)𝑒
𝑢 − (− 𝜏𝑑)

𝜏
𝑑𝑒

𝑢

= (−1𝑑 +
𝜏2
𝑑2)𝑒

𝑢 (A.3)

51

52 A. Autocorrelation derivatives

𝜌(𝜏) = (2𝜏𝑑2)𝑒
𝑢 − (−1𝑑 +

𝜏2
𝑑2)

𝜏
𝑑𝑒

𝑢

= (2𝜏𝑑2 +
𝜏
𝑑2 −

𝜏3
𝑑3)𝑒

𝑢

= (3𝜏𝑑2 −
𝜏3
𝑑3)𝑒

𝑢

𝜌(4)(𝜏) = (3𝑑2 −
3𝜏2
𝑑3)𝑒

𝑢 − (3𝜏𝑑2 −
𝜏3
𝑑3)

𝜏
𝑑𝑒

𝑢

= (3𝑑2 −
3𝜏2
𝑑3 −

3𝜏2
𝑑3 +

𝜏4
𝑑4)𝑒

𝑢

= (3𝑑2 −
6𝜏2
𝑑3 +

𝜏4
𝑑4)𝑒

𝑢 (A.4)

𝜌(5)(𝜏) = (−12𝜏𝑑3 +
4𝜏3
𝑑4)𝑒

𝑢 − (3𝑑2 −
6𝜏2
𝑑3 +

𝜏4
𝑑4)

𝜏
𝑑𝑒

𝑢

= (−12𝜏𝑑3 +
4𝜏3
𝑑4 −

3𝜏
𝑑3 +

6𝜏3
𝑑4 −

𝜏5
𝑑5)𝑒

𝑢

= (−15𝜏𝑑3 +
10𝜏3
𝑑4 − 𝜏5

𝑑5)𝑒
𝑢

𝜌(6)(𝜏) = (−15𝑑3 +
30𝜏2
𝑑4 − 5𝜏

4

𝑑5)𝑒
𝑢 − (−15𝜏𝑑3 +

10𝜏3
𝑑4 − 𝜏5

𝑑5)
𝜏
𝑑𝑒

𝑢

= (−15𝑑3 +
30𝜏2
𝑑4 − 5𝜏

4

𝑑5 +
15𝜏2
𝑑4 − 10𝜏

4

𝑑5 + 𝜏6
𝑑6)𝑒

𝑢

= (−15𝑑3 +
45𝜏2
𝑑4 − 15𝜏

4

𝑑5 + 𝜏6
𝑑6)𝑒

𝑢 (A.5)

𝜌(7)(𝜏) = (90𝜏𝑑4 −
60𝜏3
𝑑5 + 6𝜏

5

𝑑6)𝑒
𝑢 − (−15𝑑3 +

45𝜏2
𝑑4 − 15𝜏

4

𝑑5 + 𝜏6
𝑑6)

𝜏
𝑑𝑒

𝑢

= (90𝜏𝑑4 −
60𝜏3
𝑑5 + 6𝜏

5

𝑑6 +
15𝜏
𝑑4 −

45𝜏3
𝑑5 + 15𝜏

5

𝑑6 − 𝜏7
𝑑7)𝑒

𝑢

= (105𝜏𝑑4 − 105𝜏
3

𝑑5 + 21𝜏
5

𝑑6 − 𝜏7
𝑑7)𝑒

𝑢

𝜌(8)(𝜏) = (105𝑑4 − 315𝜏
2

𝑑5 + 105𝜏
4

𝑑6 − 7𝜏
6

𝑑7)𝑒
𝑢 − (105𝜏𝑑4 − 105𝜏

3

𝑑5 + 21𝜏
5

𝑑6 − 𝜏7
𝑑7)

𝜏
𝑑𝑒

𝑢

= (105𝑑4 − 315𝜏
2

𝑑5 + 105𝜏
4

𝑑6 − 7𝜏
6

𝑑7 −
105𝜏2
𝑑5 + 105𝜏

4

𝑑6 − 21𝜏
6

𝑑7 + 𝜏8
𝑑8)𝑒

𝑢

= (105𝑑4 − 420𝜏
2

𝑑5 + 210𝜏
4

𝑑6 − 28𝜏
6

𝑑7 + 𝜏8
𝑑8)𝑒

𝑢 (A.6)

𝜌(9)(𝜏) = (−840𝜏𝑑5 + 840𝜏
3

𝑑6 − 168𝜏
5

𝑑7 + 8𝜏
7

𝑑8)𝑒
𝑢

− (105𝑑4 − 420𝜏
2

𝑑5 + 210𝜏
4

𝑑6 − 28𝜏
6

𝑑7 + 𝜏8
𝑑8)

𝜏
𝑑𝑒

𝑢

= (−840𝜏𝑑5 + 840𝜏
3

𝑑6 − 168𝜏
5

𝑑7 + 8𝜏
7

𝑑8 −
105𝜏
𝑑5 + 420𝜏

3

𝑑6 − 210𝜏
5

𝑑7 + 28𝜏
7

𝑑8

− 𝜏
9

𝑑9) 𝑒
𝑢

A.2. Evaluation 53

= (−945𝜏𝑑5 + 1260𝜏
3

𝑑6 − 378𝜏
5

𝑑7 + 36𝜏
7

𝑑8 − 𝜏9
𝑑9)𝑒

𝑢

𝜌(10)(𝜏) = (−945𝑑5 + 3780𝜏
2

𝑑6 − 1890𝜏
4

𝑑7 + 252𝜏
6

𝑑8 − 9𝜏
8

𝑑9)𝑒
𝑢

− (−945𝜏𝑑5 + 1260𝜏
3

𝑑6 − 378𝜏
5

𝑑7 + 36𝜏
7

𝑑8 − 𝜏9
𝑑9)

𝜏
𝑑𝑒

𝑢

= (−945𝑑5 + 3780𝜏
2

𝑑6 − 1890𝜏
4

𝑑7 + 252𝜏
6

𝑑8 − 9𝜏
8

𝑑9 +
945𝜏2
𝑑6 − 1260𝜏

4

𝑑7 + 378𝜏
6

𝑑8

−36𝜏
8

𝑑9 + 𝜏10
𝑑10) 𝑒

𝑢

= (−945𝑑5 + 4725𝜏
2

𝑑6 − 3150𝜏
4

𝑑7 + 630𝜏
6

𝑑8 − 45𝜏
8

𝑑9 + 𝜏10
𝑑10)𝑒

𝑢 (A.7)

These derivatives of the autocorrelation function must be evaluated at 𝜏 = 0, as stated in sec­
tion 3.2.2. This yields 0 for all odd derivatives and the following expressions for the even derivatives
(from equations (A.2) to (A.7)):

𝜌(0) = 1 𝜌(6)(0) = −15𝑑3

𝜌̈(0) = −1𝑑 𝜌(8)(0) = 105
𝑑4

𝜌(4)(0) = 3
𝑑2 𝜌(10)(0) = −945𝑑5

A.2. Evaluation
From these evaluated derivatives it is clear that there is a lot of structure to them, which is a direct result
of the structure of the autocorrelation function and the resulting application of chain and product rule in
differentiation. The derivatives up to and including the 10th are now known, but it is relevant to gener­
alise this result such that one can find the zero­lag evaluation of any derivative of the autocorrelation
function. Also, the expressions for the derivative functions themselves are not of interest, but merely
the terms that remain when 𝜏 = 0. Therefore, an analysis of the results follows:

• Every derivative function comes in the form of 𝑎(𝜏)𝑒𝑢(𝜏), with 𝑢(𝜏) as defined earlier in ap­
pendix A.1.1. 𝑎(𝜏) is always a polynomial in 𝜏, with powers of 𝜏 in the numerators and powers of
𝑠 in the denominators.

• Every derivative is a result of a combination of the chain and product rules. Both 𝑎 and 𝑢 are
functions of 𝜏 and as such, the product rule causes a set of terms that is differentiated: the terms
go down one power in 𝜏. On the other hand, the chain rule causes all terms to get multiplied with
𝑢̇(𝜏), which causes them to go up one power in 𝜏. The chain rule also causes terms to switch
sign upon every differentiation.

• Because of the chain rule, the denominators are always multiplied with 𝑑 = 2𝑠2, causing the
power of 𝑑 to be raised by one or equivalently, the constant multiplication of 2𝑠2 to be doubled
and their power to be raised by 2.

• All the odd derivatives contain only odd powers of 𝜏, hence they are zero when 𝜏 = 0. Even
derivatives contain even powers of 𝜏, and the constant terms remain when 𝜏 = 0.

B
Matlab scripts

This appendix contains all theMatlab scripts created for this research. Parts of some scripts have been
included into the chapters for illustration purposes. The full scripts are included here. All the code has
been run inMatlabR2018a, which by default uses the ‘Mersenne Twister’ for random sequences1. This
is relevant for the reproduction of the results in this work. With the scripts in this appendix, all results in
the report can be reproduced. All scripts are equipped with explanatory comments and a description
of all involved parameters.

B.1. Coloured noise & generalised precision
This section presents two scripts, both defining a function for coloured noise and generalised precision,
which are the topic of chapter 3.

B.1.1. Coloured noise generator
This script in listing B.1 defines the function f_colourednoise given parameters regarding white
noise and a Gaussian filter, as well as sampling parameters and an optional random seed for repro­
ducibility. It generates coloured noise as described in section 3.1.1.

Listing B.1: The Matlab function f_colourednoise.

1 %% Coloured noise generator
2 %{
3
4 Iris Hijne
5 August 2020
6
7 INFO__
8 This function creates a white noise signal which is then filtered by a
9 gaussian filter, given the white noise standard deviation, the filter's

10 standard deviation, the sample time and end time of the signal, and
11 optionally a random seed.
12
13 INPUTS__
14 sigma [1xn]: the sd of the white noise
15 s [1x1]: the sd of the filter
16 dt [1x1]: the sample time
17 T [1x1]: the end time of the time signal
18 seed [1x1]: [optional] the desired random seed
19

1https://nl.mathworks.com/help/matlab/ref/rng.html

55

https://nl.mathworks.com/help/matlab/ref/rng.html

56 B. Matlab scripts

20 OUTPUTS___
21 w [nxN]: The coloured noise signal
22
23 %}
24
25 %%
26 function w = f_colourednoise(sigma,s,dt,T,varargin)
27
28 if nargin > 4 && ~isempty(varargin{1})
29 rng(varargin{1}) % choose the random seed
30 end
31
32 n = length(sigma);
33 N = length(0:dt:T);
34
35 omega = sigma'.*randn(n,N); % compute the white noise signal
36
37 tau = ­T:dt:T; % width of the filter
38 h = sqrt(dt/(s*sqrt(pi))).*exp(­(tau).^2./(2*s^2)); % Gaussian filter
39
40 w = zeros(n,max(length(h)­N+1,0)); % preallocate w
41 for i = 1:n % Convolve
42 w(i,:) = conv(h,omega(i,:),'valid');
43 end

B.1.2. Generalised precision matrix
The script presented in listing B.2 defines f_precision, which generates a generalised precision
matrix Π̃ as in equation (3.15) given only the variance and smoothness of the noise, and an embedding
order to know the size of the matrix. This matrix is very easy to construct given the derivation in
chapter 3, where part of this script is presented (listing 3.1) for illustration purposes.

Listing B.2: The Matlab function f_precision.

1 %% Generalised precision matrix
2 %{
3
4 Iris Hijne
5 August 2020
6
7 INFO__
8 This function computes the generalised precision matrix of a coloured
9 noise that is a gaussian­filtered white noise. This is the generalised

10 precision matrix as used in the Free Energy function as used in Active
11 Inference.
12
13 INPUTS__
14 s [1x1]: the sd of the filter
15 sigma [1xn]: the sd of the white noises, n = number of noise signals
16 p [1x1]: the embedding order
17
18 OUTPUTS___
19 Pi_ [npp x npp]: The generalised precision matrix
20
21 %}
22
23 %%

B.2. Finite differences 57

24 function Pi_ = f_precision(s,sigma,p)
25
26 pp = p+1; % embedding order raised by one, for convenience
27
28 k = 0:2:2*p; % order of the required autocorrelation derivatives
29 rho(1+k) = cumprod(1­k)./((sqrt(2).*s).^k); % rho^(k)(0)
30
31 S = zeros(pp,pp); % preallocation of the temporal variance matrix
32 for r = 1:pp % One row for every embedding order
33 S(r,:) = rho(r:r+p); % assembly of the temporal variance matrix
34 rho = ­rho; % minus signs change every row
35 end
36
37 Pi_ = kron(inv(S),inv(diag(sigma.^2))); % generalised covariance matrix

B.2. Finite differences
In this section are the scripts regarding the finite differences in chapter 4, one function to create the
matrix 𝐸 and one function to compute approximated derivatives using the matrix 𝐸. A script for the tests
in section 4.2 that relies on these functions is also provided.

B.2.1. Finite difference matrix E
The script in listing B.3 defines the function f_finitediffmat which generates the matrix 𝐸 as in
equation (4.11) in chapter 4. In listing 4.1 the script without explanatory comments is displayed.

Listing B.3: The Matlab function f_finitediffmat.

1 %% Finite difference matrix
2 %{
3
4 Iris Hijne
5 August 2020
6
7 INFO__
8 This function generates a finite difference matrix that approximates the
9 derivatives of a signal when multiplied by an array of surrounding values,

10 using Taylor Expansion with a forward, central or backward difference.
11
12 INPUTS__
13 dt [1xn]: the sampling time [s] (>0)
14 p [1x1]: the embedding order (int>=1) (number of derivatives)
15 o [1x1]: the error order (int>=1)
16 n [1x1]: the signal dimension (int>=1)
17 method [str]: the method: 'f' forward, 'c' central, 'b' backward
18
19 OUTPUTS___
20 E [n(p+1) x n(p+o(+1))]: The finite difference matrix
21
22 %}
23
24 %%
25 function E = f_finitediffmat(dt,p,o,n,method)
26
27 pp = p+1; % number of rows in the matrix E for a 1­dim signal
28 switch method
29 % s: # samples required for the approx. of all desired derivatives
30 % E1: preallocation of matrix E for a 1­dim signal

58 B. Matlab scripts

31 % E1(,)=1: prepare first row of E1 to pass y onto itself in y_
32 case 'f'
33 s = p+o;
34 if p==0; E1 = 1;
35 else; E1 = zeros(pp,s); E1(1,1) = 1;
36 end
37 case 'c'
38 if mod(p+o,2) == 0 % when p+o is even, o is increased by 1
39 s = p+o+1;
40 else
41 s = p+o;
42 end
43 if p==0; E1 = 1;
44 else; E1 = zeros(pp,s); E1(1,ceil(s/2)) = 1;
45 end
46 case 'b'
47 s = p+o;
48 if p==0; E1 = 1;
49 else; E1 = zeros(pp,s); E1(1,end) = 1;
50 end
51 end
52 C = zeros(1,s); % preallocation of array w/ coef for finite differences
53
54 for d = 1:p % we visit all p­values so we have all the derivatives
55 switch method
56 % sd: # samples required for the current derivative
57 % jmin, jmax: required finite differences around the point of interest
58 % imax: total number of samples (­1) required for the approximation
59 % sumij: preallocation of the matrix for computation of C
60 % sumijC: array with outcomes of the sums in sumij
61 case 'f'
62 sd = d+o;
63 jmin = 0; jmax = sd­1;
64 imax = sd­1;
65 sumij = zeros(sd,sd);
66 sumijC = zeros(size(sumij,2),1);
67 case 'c'
68 if mod(d+o,2) == 0 % when d+o is even, o is increased by 1
69 sd = d+o+1;
70 else
71 sd = d+o;
72 end
73 jmax = (sd­1)/2; jmin = ­jmax;
74 imax = sd­1;
75 sumij = zeros(sd,sd);
76 sumijC = zeros(size(sumij,2),1);
77 case 'b'
78 sd = d+o;
79 jmin = ­(sd­1); jmax = 0;
80 imax = sd­1;
81 sumij = zeros(sd,sd);
82 sumijC = zeros(size(sumij,2),1);
83 end
84 sumijC(d+1) = 1; % the sum must be 1 for j = d, 0 otherwise
85 jrange = jmin:jmax; % range of all the finite difference elements
86 for i = 0:imax % filling the matrix w/ elements to sum

B.2. Finite differences 59

87 sumij(i+1,:) = jrange.^i;
88 end
89 switch method % computing C (solving the linear system)
90 case 'f'
91 C(1:sd) = (sumij\sumijC)';
92 case 'c'
93 C((s­sd)/2+1:s­(s­sd)/2) = (sumij\sumijC)';
94 case 'b'
95 C(s­sd+1:end) = (sumij\sumijC)';
96 end
97 E1(d+1,:) = (factorial(d)/dt^d).*C; % adding the elements to E
98 end
99

100 E = kron(E1,eye(n)); % E for an n­dim signal

B.2.2. Derivatives by finite differences
In listing B.4 is the script with the function definition for f_finitediff, which computes generalised
coordinates based on the input data. It uses f_finitediffmat from listing B.3 to compute the E­
matrix. This function is used for the tests in section 4.2 by means of the script in listing B.5.

Listing B.4: The Matlab function f_finitediff.

1 %% Backwards difference derivative computation
2 %{
3
4 Iris Hijne
5 August 2020
6
7 INFO__
8 This computes the derivatives of a signal by means of a backwards
9 difference given the original signal, the number of desired derivatives,

10 the order of error of the derivative calculation and the sample time.
11
12 INPUTS__
13 y [nxN]: the original signal
14 p [1x1]: the embedding order (#derivatives)
15 o [1x1]: the order of error of the backwards difference (O(dt^o))
16 dt [1x1]: the sample time of the original signal
17 method [str]: the method: 'f' forward, 'c' central, 'b' backward
18
19 OUTPUTS___
20 y_ [nppxN]: The generalised signal
21
22 %}
23
24 %%
25 function y_ = f_finitediff(y,dt,p,o,method)
26
27 % Dimensions
28 q = size(y,1);
29 N = size(y,2);
30 pp = p+1;
31
32 % Derivative preallocation
33 y_ = zeros(q*pp,N);
34

60 B. Matlab scripts

35 % Creating the E­matrix
36 switch method
37 case 'b'; E = f_finitediffmat(dt,p,o,q,'b');
38 case 'f'; E = f_finitediffmat(dt,p,o,q,'f');
39 pmax = p; ppmax = pmax+1;
40 % Forward method only changes pmax at final samples
41 case 'c'; E = f_finitediffmat(dt,p,o,q,'c');
42 end
43 ns = size(E,2)/q; % number of time­samples in yv
44
45 % Computing the derivatives
46 for i = 1:N
47 switch method
48 case 'b'
49 if i <= ns % The first few samples, when not enough available
50 pmax = min(max(0,i­o),p); ppmax = pmax+1; % max at sample
51 E = f_finitediffmat(dt,pmax,o,q,'b'); % Get proper size E
52 end
53 if pmax == 0; yv = y(:,i);
54 else; yv = reshape(y(:,i­pmax­o+1:i),[],1); % Stack samples
55 end
56 case 'f'
57 if i > N­ns+1 % The last samples, when not enough available
58 pmax = min(max(0,N­i­o+1),p); ppmax = pmax+1; % at sample
59 E = f_finitediffmat(dt,pmax,o,q,'f'); % Get proper size E
60 end
61 if pmax == 0; yv = y(:,i);
62 else; yv = reshape(y(:,i:i+pmax+o­1),[],1); % Stack samples
63 end
64 case 'c'
65 if i <= ceil(ns/2) || i > N­ceil(ns/2)+1 % first/last samples
66 pmax = min(min(max(2*i­1­o,0),p),...
67 min(max(2*(N­i)+1­o,0),p)); ppmax = pmax+1;
68 E = f_finitediffmat(dt,pmax,o,q,'c'); % Get proper size E
69 end
70 if pmax == 0; yv = y(:,i);
71 elseif mod(pmax+o,2) == 0 % when p+o even
72 yv = reshape(y(i­(pmax+o)/2:i+(pmax+o)/2),[],1);
73 else % when p+o odd
74 yv = reshape(y(i­(pmax+o­1)/2:i+(pmax+o­1)/2),[],1);
75 end
76 end
77 y_(1:ppmax*q,i) = E*yv; % Compute the derivatives
78 end

B.2.3. Finite difference testing
Listing B.5 provides a script that has been used to perform the tests in section 4.2. In it the analytic
function is defined, it is sampled and the derivatives are computed using the functions in listings B.3
and B.4, after which performance measurements are computed and results are plotted.

Listing B.5: A Matlab script to perform tests with finite differences.

1 %% Finite differences derivative estimation test
2 %{
3
4 Iris Hijne

B.2. Finite differences 61

5 August 2020
6
7 INFO__
8 This script tests the functionality of the E­matrix to compute derivatives
9 by finite differences. An analytical function is chosen such that a ground

10 truth of derivatives is available and the samples of the analytical
11 function serve as the signal to compute the derivatives of. The results
12 are plotted and errors are computed.
13 %}
14
15 clearvars
16 close all
17
18 %% Symbolic function and derivatives
19
20 % The symbolic function
21 syms x
22 yref = sin(x) + 3*cos(0.1*x) + 0.01*x^3;
23
24 % Desired embedding order and order of estimation error
25 p = 6; pp = p+1;
26 o = 1;
27
28 % Analytic derivatives of the symbolic function
29 yref_ = sym(zeros(pp,1));
30 yref_(1) = yref;
31 for i = 1:p
32 yref_(i+1) = diff(yref_(i));
33 end
34
35 %% The sampled signal
36
37 % Time signal and sampled function
38 dt = 0.01; T = 10;
39 t = 0:dt:T; N = length(t);
40 y_ = zeros(pp,N);
41 for i = 1:pp
42 y_(i,:) = double(subs(yref_(i),x,t));
43 end
44
45 % Estimated derivatives by means of E
46 yb_ = f_finitediff(y_(1,:),dt,p,o,'b');
47 yf_ = f_finitediff(y_(1,:),dt,p,o,'f');
48 yc_ = f_finitediff(y_(1,:),dt,p,o,'c');
49
50 %% Plots
51
52 figure('Name','Derivative test','NumberTitle','off');
53 hold on
54 for i = 1:pp
55 plot(t,y_(i,:))
56 end
57 ax = gca; ax.ColorOrderIndex = 1;
58 for i = 1:pp
59 plot(t,yb_(i,:),'­­');
60 end

62 B. Matlab scripts

61 ax = gca; ax.ColorOrderIndex = 1;
62 for i = 1:pp
63 plot(t,yf_(i,:),':');
64 end
65 ax = gca; ax.ColorOrderIndex = 1;
66 for i = 1:pp
67 plot(t,yc_(i,:),'­.');
68 end
69
70 legendstrings = [];
71 for i = 1:pp
72 legendstrings = [legendstrings; strcat('y^{(',num2str(i­1),')}')];
73 end
74 legend(legendstrings)
75 xlabel('time [s]')
76
77 %% Performance measurements
78
79 % Samples to skip
80 skip = p+o;
81
82 % Mean squared error
83 MSEb = mean((yb_(:,skip:N­skip+1)­y_(:,skip:N­skip+1)).^2,2);
84 MSEf = mean((yf_(:,skip:N­skip+1)­y_(:,skip:N­skip+1)).^2,2);
85 MSEc = mean((yc_(:,skip:N­skip+1)­y_(:,skip:N­skip+1)).^2,2);
86
87 disp('MSE of b­, f­, c­difference');
88 disp([MSEb(2:end) MSEf(2:end) MSEc(2:end)])
89
90 %% Noise
91
92 sigma = 0.001;
93 s = 0.5;
94 z = f_colourednoise(sigma,s,dt,T);
95
96 y_noise = y_(1,:)+z;
97
98 % Estimated derivatives by means of E
99 yb_noise = f_finitediff(y_noise,dt,p,o,'b');

100 yf_noise = f_finitediff(y_noise,dt,p,o,'f');
101 yc_noise = f_finitediff(y_noise,dt,p,o,'c');
102
103 %% Plots
104
105 figure('Name','Derivative test with noise','NumberTitle','off');
106 hold on
107 for i = 1:pp
108 plot(t,y_(i,:))
109 end
110 ax = gca; ax.ColorOrderIndex = 1;
111 for i = 1:pp
112 plot(t,yb_noise(i,:),'­­');
113 end
114 ax = gca; ax.ColorOrderIndex = 1;
115 for i = 1:pp
116 plot(t,yf_noise(i,:),':');

B.2. Finite differences 63

117 end
118 ax = gca; ax.ColorOrderIndex = 1;
119 for i = 1:pp
120 plot(t,yc_noise(i,:),'­.');
121 end
122
123 legendstrings = [];
124 for i = 1:pp
125 legendstrings = [legendstrings; strcat('y^{(',num2str(i­1),')}')];
126 end
127 legend(legendstrings)
128 xlabel('time [s]')

B.2.4. Finite difference evaluation
The function in listing B.6 takes data and computes generalised coordinates based on this data, then
plots both the data and the recomputed derivatives by finite differences to compare them against gen­
eralised data from a simulation loop.

Listing B.6: The Matlab function f_diffcheck.

1 %% Derivative check
2 %{
3
4 Iris Hijne
5 August 2020
6
7 INFO__
8 This function takes a generalised signal from a simulation in generalised
9 coordinates and then uses the finite difference method to recompute the

10 derivatives from the reference signal (one of the generalised orders, so
11 0<= ref <=p). The data together with the recomputed derivatives are
12 plotted for comparison.
13
14 NB ref means: From which derivative in data (eg y) should the rest of the
15 derivatives be computed.
16 if ref=0, then y is used to compute all the derivatives using E.
17 if ref=1, then y' is used to compute the derivatives y'' and onward using
18 E, and so on.
19
20 NB start is a lazy way to get rid of the peaks at the beginning that I'm
21 aware of. By getting rid of it, the y­axis scaling of the plots are such
22 that I can see the rest of the signal better.
23
24 INPUTS__
25 data [nppxN]: the generalised data from a simulation
26 p [1x1]: the embedding order
27 o [1x1]: the accuracy order of the derivatives (dt^o)
28 ref [1x1]: the order of derivative of the reference signal (0<=ref<=p)
29 dt [1x1]: the sample time
30 T [1x1]: the simulation time
31 start[1x1]: the number of the sample to start plotting from
32
33 OUTPUTS___
34 none
35
36 %}

64 B. Matlab scripts

37
38 %%
39 function f_diffcheck(data,p,o,ref,dt,T,start)
40
41 % Derivative computation
42 y_ = f_backdiff(data(ref+1,:),p­ref,o,dt);
43
44 % Setup for plots
45 pp = p+1;
46 time = 0:dt:T;
47
48 % Comparison plot
49 figure('Name','Derivative checks','NumberTitle','off');
50 for i = 1:pp
51 subplot(pp,1,i)
52 hold on; ax = gca; ax.ColorOrderIndex = 1;
53 plot(time(start:end),data(i,start:end),'LineWidth',2)
54 if i > ref
55 plot(time(start:end),y_(i­ref,start:end),'LineWidth',2)
56 end
57 if i==ref+1
58 legend('data','recomputed derivative')
59 end
60 str = strcat('y^{(',num2str(i­1),')}');
61 ylabel(str)
62 end
63 xlabel('time [s]')

B.3. Generalised forward model
The generalised forward model in equation (5.7) from section 5.2 has a very clear structure to it that
can easily be assembled using the Matlab function in listing B.7.

Listing B.7: The Matlab function f_genforwardmodel.

1 %% Generalised forward model
2 %{
3
4 Iris Hijne
5 August 2020
6
7 INFO__
8 This function generates generalised forward model (G_ or G_tilde)
9

10 INPUTS__
11 A [nxn]: the state transition matrix
12 B [nxl]: the input matrix
13 C [1x1]: the output matrix
14 D [1x1]: the feedthrough matrix
15 p [str]: the embedding order (int>=0) (number of derivatives)
16
17 OUTPUTS___
18 G_ [q(p+1) x l(p+1)]: The generalised forward model
19
20 %}
21
22 %%

B.4. Simulation 65

23 function G_ = f_genforwardmodel(A,B,C,D,p)
24
25 l = size(B,2);
26 q = size(C,1);
27
28 pp = p+1;
29
30 G_ = zeros(q*pp,l*pp);
31 Garray = zeros(q,l*pp);
32
33 for i = 1:pp
34 Garray(:,(i­1)*l+1:i*l) = ­C*A^(­i)*B + D;
35 end
36
37 for i = 1:pp
38 G_((i­1)*q+1:i*q,(i­1)*l+1:end) = Garray(:,1:end­(i­1)*l);
39 end

B.4. Simulation
The simulations in sections 5.4 and 5.5 have been performed using the Matlab scripts in this section,
which are the script that sets up the simulation and a script with a function that is the simulation. The
simulation in appendix B.4.2, relies on all the functions defined before (listings B.1 to B.4 and B.7) plus
additional functions defined in listings B.10 to B.12 from appendices B.4.3 and B.4.4.

B.4.1. Parameter script
In listing B.8 is the parameter script that defines all the simulation parameters. It is not necessary,
since the function f_sim (listing B.9) can be called directly, but it is convenient and shows how all
the parameters are set. Parameters can be changed as desired and running the script runs the whole
simulation.

Listing B.8: A Matlab script to setup and run simulations.

1 %% SISO­system with 1 DOF in generalised coordinates
2
3 %{
4 Robotics control by means of Active Inference and the Free Energy
5 Principle using time­series for generalised coordinates
6
7 Iris Hijne
8 August 2020
9 %}

10
11 %{
12 A 1­DOF SISO system (a point mass with a velocity and an input force) is
13 used as a simple test case. (Although the script should work with a MIMO
14 system, but this is not tested). This script is used to set parameters and
15 then run a simulation by forward Euler method of an LTI State Space system
16 using the Active Inference framework.
17 %}
18
19 close all
20 clearvars
21
22 %% Simulation method
23
24 % 0: The plant is not generalised, the generalised output is computed by

66 B. Matlab scripts

25 % means of Taylor series on the plant output signal. The method of
26 % differentiation is always by backwards differences. The embedding
27 % order is increased in the first few iterations as more samples become
28 % available.
29 % 1: The plant is generalised, which is done by computing generalised
30 % noise before simulation and simulating a generalised plant, which
31 % yields a generalised output. The generalised noise is made from a
32 % noise signal that has more samples than required, such that enough
33 % data is available to compute all the required derivatives.
34 % Differentiation can be done by backward, forward or central
35 % differences.
36 % 2: The plant is generalised as in 1, but the generalised noise is made
37 % without the availability of additional samples, just as would be the
38 % case in 0. The method of differentiation is always by backwards
39 % differences.
40 % 3: As 2, but the embedding order is increased in the first few
41 % iterations as more non­zero information from the noise is available,
42 % just like 0.
43
44 gp = 3;
45
46 %% The generative process
47
48 % Parameters
49 m = 1; %kg
50 d = 1; %N/(m/s)
51
52 % System matrices
53 A = ­d/m;
54 B = 1/m;
55 C = 1;
56
57 % State reference
58 xref = 2; %m/s
59
60 % Initial values
61 x0 = 0; %m/s
62 u0 = 0; %N
63
64 % Noise parameters
65 sigma_w = 0.05; % standard deviations of each process noise
66 s_w = 0.1; % standard deviation of the filter
67 sigma_z = 0.05; % standard deviation of each observation noise
68 s_z = 0.1; % standard deviation of the filter
69
70 seed_w = 4; % random seed for process noise. may also be empty []
71 seed_z = 6; % random seed for observation noise. may also be empty []
72
73 % Derivative calculation (only relevant if gp = 1. Otherwise ignored)
74 diffmethod = 'b'; % b, c or f
75 o = 1; % Derivative accuracy order (dt^o)
76
77 %% The agent
78
79 % The embedding order
80 p = 10;

B.4. Simulation 67

81
82 % Learning rates
83 alpha_mu = 0.2;
84 alpha_u = 0.1;
85
86 %% Time signal
87
88 dt = 0.001; %s
89 T = 5; %s
90
91 %% Run the simulation
92
93 par.genproc = {A,B,C,gp};
94 par.init = {xref,x0,u0};
95 par.noise = {sigma_w,s_w,seed_w;sigma_z,s_z,seed_z};
96 par.taylor = {diffmethod,o};
97 par.agent = {p,alpha_mu,alpha_u};
98 par.time = {dt,T};
99

100 [states,beliefs,inputs,outputs] = f_sim(par);

B.4.2. Simulation program
The script in listing B.9 defines the simulation function f_sim, which runs a full simulation, relying on all
other functions listed in this appendix B. It takes the parameters from the parameter script in listing B.8,
then prepares the simulation and runs a simulation loop, afterwards plotting the results.

Listing B.9: The Matlab function f_sim.

1 %% AI Simulation
2 %{
3
4 Iris Hijne
5 August 2020
6
7 INFO__
8 This function performs a simulation of an Active Inference controlled
9 system given all the required parameters

10
11 INPUTS__
12 struct par: struct with all parameters
13
14 par.genproc: the generative process (state space)
15 A : the state transition matrix
16 B : the input matrix
17 C : the output matrix
18 gp : 0,1,2,3 stating if the generative process is to be generalised:
19 0: no generalised plant. Output is generalised in simulation
20 1: generalised plant. Noise is generalised with ample samples
21 2: generalised plant. Noise is generalised with limited
22 samples, like output is generalised in case 0.
23 3: generalised plant. Like case 2, but embedding order starts
24 at 0 instead of p.
25
26 par.init: the reference signal and initial values
27 xref : the state reference value(s)
28 x0 : the initial state

68 B. Matlab scripts

29 u0 : the initial input
30
31 par.noise: the parameters for generating the noise
32 ROW 1: PROCESS NOISE
33 sigma_w : array with the standard deviations of the noise signal (one
34 for each state)
35 s_w : the standard deviation of the Gaussian filter for smoothing
36 seed_w : the seed for the random generator
37
38 ROW 2: OBSERVATION NOISE
39 sigma_z : array with the standard deviations of the noise signal (one
40 for each output)
41 s_z : the standard deviation of the Gaussian filter for smoothing
42 seed_z : the seed for the random generator
43
44 par.taylor: the parameters for choosing how to compute the derivatives of
45 signals.
46 diffmethod : 'b', 'c' or 'f'
47 o : the order of error (dt^o) of derivative computation
48
49 par.agent: the tuning parameters of the agent
50 p : the embedding order (number of generalised coordinates)
51 alpha_mu : learning rate of state estimation
52 alpha_u : learning rate of control action
53
54 par.time: the parameters that define the time signal
55 dt : the sample time [s]
56 T : the total simulation time [s]
57
58 OUTPUTS___
59 states: x (gp=0) or x_ (gp=1,2,3)
60 beliefs: mu
61 inputs: u_
62 outputs: y_
63
64 %}
65
66 function [states,beliefs,inputs,outputs] = f_sim(par)
67
68 % Generative process
69 A = par.genproc{1};
70 B = par.genproc{2};
71 C = par.genproc{3};
72 gp = par.genproc{4};
73
74 % Initial values and reference
75 xref = par.init{1};
76 x0 = par.init{2};
77 u0 = par.init{3};
78
79 % Noise parameters
80 sigma_w = par.noise{1,1};
81 s_w = par.noise{1,2};
82 seed_w = par.noise{1,3};
83
84 sigma_z = par.noise{2,1};

B.4. Simulation 69

85 s_z = par.noise{2,2};
86 seed_z = par.noise{2,3};
87
88 % Signal differentiation
89 diffmethod = par.taylor{1};
90 o = par.taylor{2};
91
92 % Agent parameters
93 p = par.agent{1};
94 alpha_mu = par.agent{2};
95 alpha_u = par.agent{3};
96
97 % Time signal
98 dt = par.time{1};
99 T = par.time{2};

100
101 %% Setting up the system
102
103 % Time signal
104 time = 0:dt:T; %s
105
106 % Dimensions
107 N = length(time);
108 n = size(A,1);
109 l = size(B,2);
110 q = size(C,1);
111 pp = p+1; % for convenience
112
113 % Initial generalised state
114 mu0 = zeros(n*pp,1);
115 mu0(1:n) = x0;
116
117 % Reference signal and prior
118 muref = zeros(n*pp,1); muref(1:n) = xref;
119 D = kron(triu(ones(pp),1)­triu(ones(pp),2),eye(n));
120 A_ = kron(eye(pp),A);
121 xi = D*muref­A_*muref; % xi = muref;
122
123 %% Noise signals
124
125 % COLOURED NOISE
126 switch gp
127 case {0,2,3}
128 w = f_colourednoise(sigma_w,s_w,dt,T,seed_w); % Process noise
129 z = f_colourednoise(sigma_z,s_z,dt,T,seed_z); % Observation noise
130 case 1
131 % Process noise
132 Ew = f_finitediffmat(dt,p,o,n,diffmethod); % The E­matrix
133 nsw = size(Ew,2)/n; % Number of samples required in time­series
134 w = f_colourednoise(sigma_w,s_w,dt,T+(nsw­1)*dt,seed_w);
135
136 % Observation noise
137 Ez = f_finitediffmat(dt,p,o,q,diffmethod); % The E­matrix
138 nsz = size(Ez,2)/q; % Number of samples required in time­series
139 z = f_colourednoise(sigma_z,s_z,dt,T+(nsz­1)*dt,seed_z);
140 end

70 B. Matlab scripts

141
142 % GENERALISED NOISE
143 switch gp
144 case 1
145 w_ = zeros(n*pp,N); % prealloc of generalised process noise
146 z_ = zeros(n*pp,N); % prealloc of generalised observation noise
147 wv = [zeros(n,1); reshape(w(:,1:nsw­1),[n*(nsw­1),1])]; ...
148 % Creating the initial time­series array for w_
149 zv = [zeros(q,1); reshape(z(:,1:nsz­1),[q*(nsz­1),1])]; ...
150 % Creating the initial time­series array for z_
151 for i = 1:N % Computing the derivatives
152 wv = [wv(n+1:end); w(:,i+nsw­1)]; % Shift time­series array
153 w_(:,i) = Ew*wv; % Compute the derivatives
154 zv = [zv(q+1:end); z(:,i+nsz­1)]; % Shift time­series array
155 z_(:,i) = Ez*zv; % Compute the derivatives
156 end
157
158 case {2,3}
159 w_ = f_backdiff(w,p,o,dt); % Process noise
160 z_ = f_backdiff(z,p,o,dt); % Observation noise
161 end
162
163 % NOISE PLOTS
164 figure('Name','Noise signals','NumberTitle','off');
165
166 switch gp
167 case 0
168 hold on;
169 plot(time,w(1,:),'LineWidth',2)
170 plot(time,z(1,:),'LineWidth',2)
171 ylabel('Noise')
172 legend('w','z')
173
174 case {1,2,3}
175 for i = 1:pp
176 subplot(pp,1,i)
177 hold on; ax = gca; ax.ColorOrderIndex = 1;
178 plot(time,w_(i,:),'LineWidth',2)
179 plot(time,z_(i,:),'LineWidth',2)
180 str = strcat('noise^{(',num2str(i­1),')}');
181 ylabel(str)
182 if i==1
183 legend('w','z')
184 end
185 end
186 end
187 xlabel('time [s]')
188
189 %% Simulation
190
191 % PREALLOCATION & INITIALIZATION
192 switch gp
193 case 0
194 x = zeros(n,N); x(:,1) = x0;
195 yv = [];
196 Ey = f_finitediffmat(dt,p,o,q,'b');

B.4. Simulation 71

197 ns = size(Ey,2);
198 case {1,2,3}
199 x_ = zeros(n*pp,N); x_(1:length(x0),1) = x0;
200 end
201 u_ = zeros(l*pp,N); u_(1:length(u0),1) = u0;
202 mu = zeros(n*pp,N); mu(1:length(mu0),1) = mu0;
203 y_ = zeros(q*pp,N);
204
205 % SIMULATION LOOP
206 switch gp
207 case 0
208 maxsystemsize = 0; % To prevent unnecessary calculations later
209 for i = 1:N
210 [xdot,y_(1:q,i)] = ...
211 f_plantupdate(x(:,i),u_(1:l,i),A,B,C,w(:,i),z(:,i));
212 if i ~= N; x(:,i+1) = x(:,i)+xdot*dt; end % Skip x(N+1)
213 pmax = min(max(0,i­o),p); ppmax = pmax+1;
214 if length(yv) < ns
215 yv = [yv; y_(1:q,i)];
216 Ey = f_finitediffmat(dt,pmax,o,q,'b');
217 else
218 yv = [yv(q+1:end); y_(1:q,i)];
219 end
220 y_(1:ppmax*q,i) = Ey*yv;
221 if length(yv) <= ns && ~maxsystemsize
222 A_ = kron(eye(ppmax),A);
223 C_ = kron(eye(ppmax),C);
224 G_ = f_genforwardmodel(A,B,C,zeros(q,l),pmax);
225 D = kron(triu(ones(ppmax),1)­triu(ones(ppmax),2),eye(n));
226 xi = D*muref(1:n*ppmax)­A_*muref(1:n*ppmax);
227 Pi_w_ = f_precision(s_w,sigma_w,pmax);
228 Pi_z_ = f_precision(s_z,sigma_z,pmax);
229 if length(yv) == ns; maxsystemsize = 1; end
230 end
231 [mudot,udot] = f_agentupdate(mu(1:ppmax*n,i),...
232 y_(1:ppmax*q,i),A_,C_,D,G_,xi,Pi_w_,Pi_z_,...
233 alpha_mu,alpha_u);
234 if i ~= N
235 mu(1:ppmax*n,i+1) = mu(1:ppmax*n,i)+mudot*dt;
236 u_(1:ppmax*l,i+1) = u_(1:ppmax*l,i)+udot*dt;
237 end
238 end
239
240 case {1,2}
241 % Generalised system matrices
242 A_ = kron(eye(pp),A);
243 B_ = kron(eye(pp),B);
244 C_ = kron(eye(pp),C);
245 % The forward model
246 G_ = f_genforwardmodel(A,B,C,zeros(q,l),p);
247
248 % The differentiator matrix (shift mu)
249 D = kron(triu(ones(pp),1)­triu(ones(pp),2),eye(n));
250 Pi_w_ = f_precision(s_w,sigma_w,p); % Gen precision mat w
251 Pi_z_ = f_precision(s_z,sigma_z,p); % Gen precision mat z
252 for i = 1:N

72 B. Matlab scripts

253 [x_dot,y_(:,i)] = f_plantupdate(x_(:,i),u_(:,i),...
254 A_,B_,C_,w_(:,i),z_(:,i));
255 if i ~= N; x_(:,i+1) = x_(:,i)+x_dot*dt; end % Skip x(N+1)
256 [mudot,udot] = f_agentupdate(mu(:,i),y_(:,i),...
257 A_,C_,D,G_,xi,Pi_w_,Pi_z_,alpha_mu,alpha_u);
258 if i ~= N
259 mu(:,i+1) = mu(:,i)+mudot*dt;
260 u_(:,i+1) = u_(:,i)+udot*dt;
261 end
262 end
263
264 case 3
265 for i = 1:N
266 pmax = min(max(0,i­o),p); ppmax = pmax+1;
267 if sum(w_(:,i) ~= 0) <= size(f_finitediffmat(dt,p,o,n,'b'),2)
268 A_ = kron(eye(ppmax),A);
269 B_ = kron(eye(ppmax),B);
270 C_ = kron(eye(ppmax),C);
271 G_ = f_genforwardmodel(A,B,C,zeros(q,l),pmax);
272 D = kron(triu(ones(ppmax),1)­triu(ones(ppmax),2),eye(n));
273 xi = D*muref(1:n*ppmax)­A_*muref(1:n*ppmax);
274 Pi_w_ = f_precision(s_w,sigma_w,pmax);
275 Pi_z_ = f_precision(s_z,sigma_z,pmax);
276 end
277 [xdot,y_(1:ppmax*q,i)] = f_plantupdate(x_(1:ppmax*n,i),...
278 u_(1:ppmax*l,i),A_,B_,C_,w_(1:ppmax*n,i),z_(1:ppmax*q,i));
279 [mudot,udot] = f_agentupdate(mu(1:ppmax*n,i),...
280 y_(1:ppmax*q,i),A_,C_,D,G_,xi,Pi_w_,Pi_z_,...
281 alpha_mu,alpha_u);
282 if i ~= N
283 x_(1:ppmax*n,i+1) = x_(1:ppmax*n,i)+xdot*dt;
284 mu(1:ppmax*n,i+1) = mu(1:ppmax*n,i)+mudot*dt;
285 u_(1:ppmax*l,i+1) = u_(1:ppmax*l,i)+udot*dt;
286 end
287 end
288 end
289
290 %% Simulation results
291
292 % MSE of \mu and x
293 switch gp
294 case 0; MSE_mu_x = sum(mu(1:n,:)­x,2).^2;
295 case {1,2,3}; MSE_mu_x = sum(mu­x_,2).^2;
296 end
297 disp('MSE \mu and x: ');
298 disp(MSE_mu_x(1:n));
299 F = f_freeenergy(mu,y_,A_,C_,D,xi,Pi_w_,Pi_z_);
300
301 % Plots
302 figure('Name','Simulation','NumberTitle','off');
303
304 subplot(3,1,1)
305 hold on; ax = gca; ax.ColorOrderIndex = 1;
306 plot([time(1) time(end)],xref.*[1 1],'k')
307 switch gp
308 case 0; p1 = plot(time,x,'LineWidth',2);

B.4. Simulation 73

309 case {1,2,3}; p1 = plot(time,x_(1:n,:),'LineWidth',2);
310 end
311 p2 = plot(time,mu(1:n,:),'LineWidth',2);
312 p3 = plot(time,y_(1:q,:),'LineWidth',2);
313 ylabel('Velocity [m/s]')
314 legend([p1 p2 p3],'x','\mu','y')
315
316 subplot(3,1,2)
317 hold on; ax = gca; ax.ColorOrderIndex = 1;
318 plot(time,u_(1:l,:),'LineWidth',2)
319 ylabel('Input Force [N]')
320
321 subplot(3,1,3)
322 semilogy(time,F,'LineWidth',2)
323 set(gca,'YGrid','on')
324 ylabel('Free Energy')
325
326 xlabel('time [s]')
327
328 % Generalised output plots
329 figure('Name','Generalised output','NumberTitle','off');
330
331 for i = 1:pp
332 subplot(pp,1,i)
333 hold on; ax = gca; ax.ColorOrderIndex = i+2;
334 plot(time,y_(i,:),'LineWidth',2)
335 str = strcat('y^{(',num2str(i­1),')} [m/s]');
336 ylabel(str)
337 xlim([0 T])
338 end
339 xlabel('time [s]')
340
341 %% Function outputs
342
343 switch gp
344 case 0; states = x;
345 case {1,2,3}; states = x_;
346 end
347 beliefs = mu;
348 inputs = u_;
349 outputs = y_;

B.4.3. Dynamic update rules
In the simulation loop of f_sim (listing B.9), both the plant and agent require an update on every
iteration, which can be achieved with the simple functions f_plantupdate and f_agentupdate in
listings B.10 and B.11 respectively.

Listing B.10: The Matlab function f_plantupdate.

1 %% Plant update: Generative process
2 %{
3
4 Iris Hijne
5 August 2020
6
7 INFO__

74 B. Matlab scripts

8 This function computes the state derivative and output by means of the
9 state space equations of the generative process.

10
11 INPUTS__
12 x [nx1]: current state
13 u [lx1]: current input
14 A [nxn]: Generative process state­matrix
15 B [nxl]: Generative process input­matrix
16 C [qxn]: Generative process output­matrix
17 w [nx1]: The current process noise
18 z [qx1]: The current sensor noise
19
20 OUTPUTS___
21 x_dot [nx1]: The state derivative
22 y_new [qx1]: The new output
23
24 %}
25
26 %%
27 function [xdot,y] = f_plantupdate(x,u,A,B,C,w,z)
28
29 xdot = A*x + B*u + w;
30 y = C*x + z;

Listing B.11: The Matlab function f_agentupdate.

1 %% Agent update: generalised coordinates and control
2 %{
3
4 Iris Hijne
5 August 2020
6
7 INFO__
8 This function computes udot and then the new control input by adding the
9 increase of one time­step to the previous control input.

10
11 INPUTS__
12 mu [npp*1]: current generalised coordinates
13 y_ [qpp*1]: current generalised system output
14 A_ [npp*npp]: Generalised state transition matrix
15 C_ [qpp*npp]: Generalised output matrix
16 D [npp*npp]: Differentiator (shift) matrix
17 G_ [qpp*lpp]: Generalised forward model
18 xi [npp*1]: Prior
19 Pi_w_ [npp*npp]: State precision matrix
20 Pi_z_ [qpp*qpp]: Output precision matrix
21 alpha_mu [1x1]: The generalised state belief learning rate
22 alpha_u [1x1]: The control update learning rate
23
24 OUTPUTS___
25 mudot [npp*1]: The generalised state belief derivative
26 udot [lpp*1]: The control action derivative
27
28 %}
29
30 %%
31 function [mudot,udot] = f_agentupdate(mu,y_,A_,C_,D,G_,xi,Pi_w_,Pi_z_,...

B.4. Simulation 75

32 alpha_mu,alpha_u)
33
34 mudot = D*mu­...
35 alpha_mu*((D­A_)'*Pi_w_*(D*mu­A_*mu­xi)­C_'*Pi_z_*(y_­C_*mu));
36
37 udot = ­alpha_u*G_'*Pi_z_*(y_­C_*mu);

B.4.4. Free Energy computation
Evaluation of the Free Energy is not necessary for simulation, but can be insightful. Listing B.12 defines
the simple function f_freeenergy that can evaluate the Free Energy for one or many time­iterations.
It can be used on­line, which is unnecessary, or during postprocessing.

Listing B.12: The Matlab function f_freeenergy.

1 %% Free Energy evaluation
2 %{
3
4 Iris Hijne
5 August 2020
6
7 INFO__
8 This function computes the free energy
9

10 INPUTS__
11 mu_ [npp*N]: generalised coordinates
12 y_ [qpp*N]: generalised system output
13 A_ [npp*npp]: Generalised state transition matrix
14 C_ [qpp*npp]: Generalised output matrix
15 D [npp*npp]: Differentiator (shift) matrix
16 xi [npp*1]: Prior
17 Pi_w_ [npp*npp]: State precision matrix
18 Pi_z_ [qpp*qpp]: Ouput precision matrix
19
20 OUTPUTS___
21 F [1xN]: The Free Energy
22
23 %}
24
25 %%
26 function F = f_freeenergy(mu_,y_,A_,C_,D,xi_,Pi_w_,Pi_z_)
27
28 F = zeros(1,size(mu_,2));
29 for i = 1:size(mu_,2)
30 eps_mu_ = (D­A_)*mu_(:,i)­xi_;
31 eps_y_ = y_(:,i) ­ C_*mu_(:,i);
32 F(i) = 1/2*(eps_mu_'*Pi_w_*eps_mu_ + eps_y_'*Pi_z_*eps_y_);
33 end

Bibliography
[1] Ajith Anil Meera and Martijn Wisse. Free energy principle based state and input observer design

for linear systems with colored noise. American Control Conferene 2020, 2020.

[2] Manuel Baltieri and Christopher L Buckley. An active inference implementation of phototaxis. In
Artificial Life Conference Proceedings 14, pages 36–43. MIT Press, 2017.

[3] Matthew James Beal et al. Variational algorithms for approximate Bayesian inference. PhD thesis,
university of London London, 2003.

[4] Christopher L Buckley, Chang Sub Kim, Simon McGregor, and Anil K Seth. The free energy
principle for action and perception: A mathematical review. Journal of Mathematical Psychology,
81:55–79, 2017.

[5] M Cover Thomas and A Thomas Joy. Elements of information theory. New York: Wiley, 3:37–38,
1991.

[6] D.R. Cox and H.D. Miller. The theory of stochastic processes, chapter 7.4, pages 293–295.
Methuen & Co, 1965.

[7] David Eberly. Derivative approximation by finite differences, 2020.

[8] Richard Phillips Feynman. Statistical mechanics: a set of lectures. WA Benjamin, 1972.

[9] The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, Lon­
don, UK. SPM software ­ statistical parametric mapping. https://www.fil.ion.ucl.ac.
uk/spm/software/, January 2020.

[10] Karl Friston. Hierarchical models in the brain. PLoS computational biology, 4(11), 2008.

[11] Karl Friston. The free­energy principle: a rough guide to the brain? Trends in cognitive sciences,
13(7):293–301, 2009.

[12] Karl Friston. The free­energy principle: a unified brain theory? Nature reviews neuroscience, 11
(2):127–138, 2010.

[13] Karl Friston. Life as we know it. Journal of the Royal Society Interface, 10(86):20130475, 2013.

[14] Karl Friston, Jérémie Mattout, Nelson Trujillo­Barreto, John Ashburner, andWill Penny. Variational
free energy and the laplace approximation. Neuroimage, 34(1):220–234, 2007.

[15] Karl Friston, Klaas Stephan, Baojuan Li, and Jean Daunizeau. Generalised filtering. Mathematical
Problems in Engineering, 2010, 2010.

[16] Karl Friston, Thomas FitzGerald, Francesco Rigoli, Philipp Schwartenbeck, andGiovanni Pezzulo.
Active inference: a process theory. Neural computation, 29(1):1–49, 2017.

[17] Karl J Friston. Variational filtering. NeuroImage, 41(3):747–766, 2008.

[18] Karl J Friston, N Trujillo­Barreto, and Jean Daunizeau. DEM: a variational treatment of dynamic
systems. Neuroimage, 41(3):849–885, 2008.

[19] KJ Friston, M Fortier, and DA Friedman. Of woodlice and men: A bayesian account of cognition,
life and consciousness. an interview with karl friston. ALIUS Bulletin, 2:17–43, 2018.

[20] Sherin Grimbergen. The state space formulation of active inference. Master’s thesis, TU Delft,
2019.

77

https://www.fil.ion.ucl.ac.uk/spm/software/
https://www.fil.ion.ucl.ac.uk/spm/software/

78 Bibliography

[21] David C Knill and Alexandre Pouget. The bayesian brain: the role of uncertainty in neural coding
and computation. TRENDS in Neurosciences, 27(12):712–719, 2004.

[22] Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathe­
matical statistics, 22(1):79–86, 1951.

[23] Pablo Lanillos and Gordon Cheng. Active inference with function learning for robot body percep­
tion. In Proc. Int. Workshop Continual Unsupervised Sensorimotor Learn., pages 1–5, 2018.

[24] Georg Lindgren. Lectures on stationary stochastic processes. PhD course of Lund’s University,
2006.

[25] David J.C. MacKay. Information theory, inference and learning algorithms, chapter 27, pages
341–342. Cambridge university press, 2003.

[26] Guillermo Oliver, Pablo Lanillos, and Gordon Cheng. Active inference body perception and action
for humanoid robots. arXiv preprint arXiv:1906.03022, 2019.

[27] Corrado Pezzato. Active inference for adaptive and fault tolerant control. Master’s thesis, TU
Delft, 2019.

[28] Corrado Pezzato, Riccardo Ferrari, and Carlos Hernández Corbato. A novel adaptive controller
for robot manipulators based on active inference. IEEE Robotics and Automation Letters, 5(2):
2973–2980, 2020.

[29] Léo Pio­Lopez, Ange Nizard, Karl Friston, and Giovanni Pezzulo. Active inference and robot
control: a case study. Journal of The Royal Society Interface, 13(122):20160616, 2016.

[30] Claude E Shannon. A mathematical theory of communication. Bell system technical journal, 27
(3):379–423, 1948.

[31] M. Wisse. Derivation of generalised covariance matrix. July 2019.

	Preface
	Abstract
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Active Inference
	Applications for robotics
	Generalised coordinates of motion

	Research objective
	Research directions

	Notation

	Free Energy principle
	A theory of biological adaptive systems
	Homeostasis
	Bayesian Inference

	Explicit Free Energy
	The Laplace approximation
	Gaussian models

	Generalised motions
	The G-density
	Temporal correlations of disturbances
	Generalised motions in Active Inference

	Coloured noise
	Covariance of coloured noise
	Definition of the noise
	The generalised covariance matrix

	Autocorrelation of Gaussians
	The autocorrelation function
	Derivatives of the autocorrelation function

	The generalised precision matrix
	Matrix formulation
	Generalised precision influence

	Generalised motions
	Finite differences
	Taylor expansion
	Approximating derivatives
	Matrix equations

	Analytic evaluation
	Derivative accuracy
	Derivatives and noise

	Generalised coordinates from finite differences

	Active Inference and State Space formulation
	Closed loop State Space formulation
	The agent's internal model
	Perception and action

	Generalised forward model
	The simulated system
	On-line simulation with generalised output
	Implementation
	Varying noise characteristics

	Simulation of a generalised plant
	Generalised noise
	Simulations

	Evaluation

	Conclusion
	Research summary
	Generalised coordinates
	Generalised precision
	Perceiving generalised motions
	State Space control with Active Inference
	The research question

	Discussion and recommendations

	Autocorrelation derivatives
	The derivations
	Notations and definitions
	Analytic derivatives

	Evaluation

	Matlab scripts
	Coloured noise & generalised precision
	Coloured noise generator
	Generalised precision matrix

	Finite differences
	Finite difference matrix E
	Derivatives by finite differences
	Finite difference testing
	Finite difference evaluation

	Generalised forward model
	Simulation
	Parameter script
	Simulation program
	Dynamic update rules
	Free Energy computation

	Bibliography

