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Abstract
Designing auction parameters for online industrial auctions is a complex problem due to
highly heterogeneous items. Currently, online auctioneers rely heavily on their experts in
auction design. The ability of predicting how well an auction will perform prior to the
start comes in handy for auctioneers. If an item is expected to be a low-performing item,
the auctioneer can take certain actions to influence the auction outcome. For instance, the
starting selling price of the item can be modified, or the location where the item is dis-
played on the website can be changed to attract more attention. In this paper, we take a
real-world industrial auction data set and investigate how we can improve upon the expert’s
design using insights learned from data. More specifically, we first construct a classification
model that predicts the expected performance of auctions. We propose a data driven auction
design framework (called DDAD) that combines the expert’s knowledge with the learned
prediction model, in order to find the best parameter values, i.e., starting price and display
positions of the items, for a given new auction. The prediction model is evaluated, and the
new design for several auctions is discussed and validated with the auction experts.

Keywords Machine learning · Optimization · Auction design

Mathematics Subject Classification (2010) 68T05 · 90C11 · 91B26

1 Introduction

Internet auctions have been upcoming since the early 2000s and most traditional auctions
have also been converted into internet auctions due to the growth and widespread use of the
internet, and the ease of bidding from the comfort of your own home. Industrial auctions
are a means for companies to sell their assets and inventories. Online auctioneers try to set
up the best possible auctions using several auction parameters, such as presentation of the
lots, timing of the auctions and the starting prices.
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Classical economic theory such as [20, 21] provide some guideline on auction mech-
anism frameworks. However, they work under strong assumptions about rationality and
valuation function of bidders. As many studies showed, bidders often behave irrationally due
to several psychological phenomena. In practice, auctioneers rely on their experience and
empirical analysis in the auction literature to tune auction parameters for daily operations.
For example, they often define starting prices low to make the auctioned items attractive to
a wide audience, but for items that are harder to sell, the starting prices are set relatively
high. This pricing strategy is supported by [16] which states that lower starting prices reduce
the barrier to bid, but lead to lower end prices when the market entry and participation are
reduced.

As many auctions are conducted throughout the years, data is collected on the charac-
teristics of auctions and the bids that are received. This historical data can give insights
into how the auctions are performing, and machine learning methods could help in learn-
ing relations between characteristics of auctions, auction parameters, and auction outcomes.
Existing research has typically focused on one specific kind of item with very similar
specifications (e.g., [24]), on predicting outcome for an on-going auction (e.g., [31]), on
predicting revenue with simulated auction data (e.g., [25]), or on using reinforcement learn-
ing for auction mechanism design (e.g., [23]). There is a lack of work on predicting auction
outcomes and optimizing auction parameters for online industrial auctions.

The ability of predicting how well an auction will perform prior to the start comes in
handy for auctioneers. If an item is expected to be a low-performing item, the auctioneer
can take certain actions to influence the auction outcome. For instance, the starting selling
price of the item can be modified, or the location where the item is displayed on the web-
site can be changed to attract more attention. In this paper, we take a real-world industrial
auction data set and investigate how we can improve upon the expert’s design using insights
learned from data. More specifically, we first construct a classification model that predicts
the expected performance of auctions. We propose a data-driven auction design framework
(called DDAD) that combines the expert’s knowledge with the learned prediction model, in
order to find the best parameter values, i.e., starting price and display positions of the items,
for a given new auction. The prediction model is evaluated, and the new design for several
auctions is discussed and validated with the auction experts.

Our contributions are as follows:

– We propose an optimization framework that seamlessly integrates prediction model
components, i.e., constructed constraints between features and their relation to the pre-
dictions, with expert knowledge and domain constraints in a mathematical optimization
model.

– Interestingly, our results demonstrate that despite the high variety of items and prices in
industrial online auctions, simple classification models such as decision trees are able
to predict the auction outcomes quite accurately, using expert knowledge and popularity
of items as features.

– We show that the new design, which was validated by the auction experts, improves the
expected revenue of the online auctioneer, evaluated by the classification model.

The remainder of this paper is organized as follows. In Section 2 we discuss the related
literature. Section 3 describes the auction setting and the auction optimization problem we
aim to solve. In Section 4 we discuss the real-life data set that we use. In Section 5 we
discuss our optimization framework (DDAD) that integrates the prediction model compo-
nents with expert knowledge and domain constraints in a mathematical optimization model.
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In Section 6 we apply our proposed method on a number of auctions in our data set and
investigate the properties of the resulting new design. Section 7 concludes our work.

2 Literature review and background

Auction design is very important to the way an auction will eventually play out [14]. A dif-
ferent design for an auction with the exact same items and participating agents may result in
a completely different outcome. Not only does the design influence the final allocation, but
it can also influence the behaviors of the bidders. An example of an aspect the auctioneer
needs to take into account is whether the bids are made public, i.e., all bidders may know
the bids of other bidders (open bid), or whether the bids will be secret (sealed bid). Another
example would be whether bidders should submit bids that exceed other bids until no par-
ticipant would like to make a better bid (English auction), or whether the auctioneer should
set a price no one is willing to pay for it, and lower it until there is a participant who is pre-
pared to accept the proposed price (Dutch auction). The starting price of an item, and the
order of items being shown in the auction, can have an impact on the performance of the
auction as well.

Traditionally, analysis of auction design focuses on the mechanism itself [21]. It has been
pointed out in the literature that a number of assumptions in the traditional game theoretical
approaches to auction design, for instance, bidder symmetry, common knowledge of private
valuation distributions, fixed numbers of bidders, result in auctions with limited usefulness
in practice, especially for Internet auctions [22].

For example, as many studies showed, bidders often behave irrationally due to several
psychological phenomena. The authors of [15] call the phenomenon of irrational and frantic
behavior of bidders which lead to overbidding “auction fever”. Participants at auctions enjoy
the thrill of winning [3]. The authors of [10] describe the opponent effect that is “an increase
in the subjective value of winning the auction when the behavior of other bidders in the
auctions is perceived to be competitive.” Another phenomenon is that bidders experience
a feeling of ownership when they have the highest bid during an auction. This feeling of
temporally ownership during an auction is named “pseudo-endowment effect” in [1] and
“quasi-endowment” in [10], which leads to a higher end price.

Due to the above mentioned limitation and the fact that Internet auctions have generated
a lot of data, many work have appeared that analyze and design auctions by data-driven
approaches.

In the statistics literature, [29] develop a forecasting system to predict the price of an
ongoing auction. They use the functional data analysis (FDA), where the relation between
price and time is modelled by a smooth curve. The authors argue that FDA is able to account
for the unequal spacing of bids and the changing dynamics of price throughout the auction.
They test their method to auction data of a novel set of Harry Potter and Microsoft Xbox.

In [2] a semiparametric regression model is used to model the online auction process. The
model is then used to forecast the price of an online auction, which can take into account
changing arrival rates in the bidding process and changing dynamics of prices. They apply
the model on a data set consisting of the bid history in auctions of the Microsoft Xbox gam-
ing system. Using the same data set, the authors of [17] use stochastic differential equations
(SDE) to model online auction price curves, in order to account for randomness of external
and internal factors. They also argue that bidder behaviors are crucial to determine the price
process, which they incorporate in their SDE approach.
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Several machine learning models have been applied in predicting auction price. The
authors of [7] use historical data in classification algorithms to predict the end prices of
online auction items. The item in question is an item with “hard” features, which define
the item objectively, e.g. specifications of an electronic device. They use data from auc-
tions regarding a specific model of an electronic device. In [30], the authors also use the
abundance of data from the online auction market to predict the final price of items to help
sellers optimize the selling price of their items and auction attributes. They compare sev-
eral machine learning algorithms and traditional statistical methods for forecasting the end
prices and demonstrate that machine-learning algorithms outperform traditional statistical
models. Again, the data set is restricted to a specific item type with hard features. In [4]
machine learning is used in a different way to predict prices in an auction. The task of pre-
dicting the prices of license plates that are sold in auctions is viewed as a natural language
processing (NLP) task. A deep recurrent neural network (RNN) is used to predict the prices
of license plates based on the characters on the plate, using 13 years of historical auction
prices. The deep RNN can explain over 80 percent of price variations. The authors of [13]
use machine learning methods to forecast project bids in highway procurement auctions.
They use random forest variable selection to select key tasks used for highway construction,
after which regularized linear regression methods, like Ridge and Lasso, are used to pre-
dict the intervals of winning bids. Their approach can be useful for bidders as bid guidance,
and it may help state agencies to predict their construction budgets. In [25, 28], the authors
study the auction prediction and design problem for sequential auctions, however, they use
simulated data with the limited item types.

The above-mentioned research has proven that machine learning methods can help in
learning relations between characteristics of auctions, auction parameters, and auction out-
comes. However, existing research has only focused on one specific kind of item with very
similar specifications (e.g., [4, 7, 24, 30]), on predicting outcome for an on-going auction
(e.g., [31]), or on predicting revenue with simulated auction data (e.g., [25]). There lacks
studies on predicting auction outcomes for industrial auctions with much more diverse items
of various categories.

In terms of research in designing auctions, the authors of [23] use reinforcement learning
for solving an auction mechanism design problem. There is a lack of research in helping
auctioneers to optimize their daily operations by designing auction parameters for sales,
such as starting prices of different items and online display positions of items.

3 Auction setting and problem formulation

The online auction company conducts many auctions throughout the year, selling many dif-
ferent kinds of items. The items that are auctioned cover a wide range, from kitchenware to
farming equipment and building contractors equipment. Each item that is being sold through
the auction is called a lot. A collection of lots from one or more sellers is called a sale. A
sale can be categorized in one of four categories: bank, dealer, liquidator, or volunteer. The
items get appraised by experts and receive an estimated value (EstValue), along with a start-
ing price for the lot, and they are assigned to a main and subcategory within the sale. A lot
can also be put on allocate, which means that the seller has set a reserve price, and the lot
will not be sold when the winning bid is lower than the reserve price. Lots are assigned a lot
number, which is a unique number within the sale and indicates where the lot will be shown
in the sale on the website, as the lots are automatically sorted on lot number. The lower the
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lot number, the higher the lot will appear on the website. Sales are announced through their
website well in time. Once an auction starts, bidders typically have a few weeks to bid on
the lots. The auction is a form of online English auction, where the auctioneer opens the
auction of a lot with a starting price, and buyers place increasingly higher bids. It uses a
five-minute soft close policy on each lot, i.e., if a buyer enters a bid within five minutes of
the lot’s initial closing time, a five-minute extension would be added on. The lot will not
close until bidding is static for five minutes. The item is sold to the highest bidder at a price
equal to his or her bid. The English auction form is the dominant form for industrial auc-
tions, such as Ritchie Bros. Auctioneers (RBA) and Troostwijk, and art auctions such as
Christie’s and Sotheby’s.

The highest bid, or EndPrice, on its own does not say much about the success of a lot
in an auction, if one does not know what kind of lot it was. Two lots might have the same
EndPrice, but one could be considered a cheap item, whereas the other could be considered
expensive. Therefore, the multiplier is used by the auctioneer as an auction performance
indicator. The multiplier ties the EndPrice and the EstValue (see Table 1) together by taking
the ratio between the two, i.e.,

multiplier = EndP rice

EstV alue
.

The multiplier therefore indicates how well an item has performed in the auction compared
to the expectations of the expert. Based on expert opinion (and business needs), we choose
to split the lots into three classes: (1) a multiplier equal to 0 is in the unsold class 0, or simply
unsold; (2) a multiplier higher than 0 and lower than 0.8 denotes the low-performing class
(low); (3) a multiplier of 0.8 or higher denotes the class with expected performance (high).

The auctioneer is particularly interested in items that may not be sold or may be sold for
a lower price than expected. If an item is expected to not perform well, the auctioneer can
take certain actions to update the auction parameters before the auction starts to influence
the auction outcome. The important auction parameters include for example the starting
prices of items and their display positions.

The auction optimization problem is defined as follows. Given a sale of N items or lots,
determine the starting price and the lot number (i.e., display position) for each item, such
that the expected outcome is maximized.

4 Auction data and feature engineering

We are provided with data collected over ten months. From this data, we select a subset of
the data from the following branches: construction, agricultural industry and consumer. The
main motivation for this subset is the fact that these branches make up about 75% of total
revenue. In summary, Table 1 shows an overview of the available variables in the database
of the auction company.

The data set consists of a total of 24,451 lots. There are 18,528 lots in the EstValue
range of [0, 200). This means that there are many lots consisting of small items with a low
estimated value. The multiplier is very sensitive to small variations in the end price when
the estimated value is small. We would also like to focus on predicting the larger lots, as
these are more important to predict correctly. Therefore, we filter out lots with an estimated
value of lower than 200. Furthermore, there are 80 lots with an estimated value of 20,000
and higher. As these lots are rare and should be treated by experts as special cases, we filter
out these lots as well. We end up with a total of 5,843 lots. Figures 1, 2 and 3 show the
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Table 1 Description of the
variables in the data and their
respective types

Variable Type Description

LotNr Ordinal Unique ID and position of a lot

within a sale

Allocate Binary Lot has a reserve price

EstValue Numeric Estimated value of the lot

StartPrice Numeric Starting price of the lot

EndPrice Numeric Price at which the lot is sold

Seller Ordinal Type of seller

CloseTime Ordinal Time of day the sale closes

Weekday Ordinal Day of the week the sale closes

distribution of the filtered lots over different ranges of estimated value, starting price and
end price, respectively. Figure 2 shows that the starting price of lots is lower in general than
its estimated value, as the graph shows a shift to the left compared to Fig. 1. The lots with
an estimated value of in between 200 and 300 mostly have a starting price of in between
100 and 200, although there are 146 lots that have an even lower starting price of lower than
100. In general, lots have starting prices approximately 0.5 or 0.67 times their estimated
value. In Fig. 3 we can see that about half of the lots have an end price lower than 500. This
coincides with Fig. 1, which has roughly half of the lots with an estimated value of lower
than 500. This would indicate that the experts’ estimates are generally quite okay. However,
the end price of about a quarter of these lots are lower than 200, whereas the estimated
value is 200 or higher. This shows that experts are overestimating the value on relatively
cheaper lots. For the other lots, the end price coincides roughly with the estimated value.
This of course does not mean that the experts are correct with their estimates all the time,
but they are performing quite well on average. For all these features we can say that there
are many lots in the lower regions, whereas the feature values get higher, the number of
lots decreases, creating a long tail. This means that the models will be trained more heavily
on the lots with lower values, whereas they will be more susceptible to variance once the
feature values get higher. This again shows that we are dealing with a large variety of items,
and it will therefore be difficult to construct a model that will perform well on every item in
the auction.

Fig. 1 Data distribution over various ranges of estimated value
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Fig. 2 Data distribution over various ranges of starting price

Feature construction and selection In a similar vein as defining the multiplier, the starting
price of a lot can be tied to its estimated value. Therefore, we introduce the variable SPEV,
defined as

SPEV = StartP rice

EstV alue
,

which indicates how far the starting price is from the estimated value of the lot initially. In
addition, auctioneers deem to believe that scarcity is important. The simple economic rule
of supply and demand is valid. If supply is lower, the price gets higher. If an auctioneer
offers one unique item, all attention and demand are focused on this specific item. When
the auctioneer offers two similar items, the attention and the number of bidders are spread
out, which results in less bidding activity and therefore lower prices. Hence, we create
additional features LotsSale, LotsSaleMain, and LotsSaleSub. LotsSale indicates the total
number of lots within the same sale. LotsSaleMain and LotsSaleSub present an even deeper
level of scarcity, where LotsSaleMain shows the number of lots within the same main cate-
gory within the same sale, whereas LotsSaleSub shows the number of lots within the same
subcategory of that main category. We use all these constructed features together with the
variables described in Table 1, with the exception of EndPrice and multiplier, as feature
variables.

In order to find out the relation between the multiplier and the feature variables, we
conduct a correlation test on the data set. We make use of Spearman’s rank correlation. The

Fig. 3 Data distribution over various ranges of end price
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correlation between the multiplier and the feature variables in the data set with all lots, in
which unsold lots are assigned a multiplier of 0, and with just the sold lots can be found in
Table 2.

In both sets, the feature variable that stands out with a positive correlation with the
multiplier is SPEV (0.37/0.33). The positive correlations between the multiplier and the
StartPrice and SPEV indicate that higher starting prices result in higher multipliers, with
SPEV being a better indicator. This is in line with the findings of [1], who remarks that
a low starting price may be used to attract more bidders, but will not necessarily result in
a higher end price. As the correlations between the multiplier and EstValue (−0.07/0.03)
seem to be rather low and not consistent, higher valued lots will not necessarily result in
higher multipliers, but there are cases in which the starting price is relatively high compared
to the estimated value, which will result in a higher multiplier. In addition, LotsSaleMain
(−0.06/−0.07) and LotsSaleSub (−0.08/−0.12) stand out with negative correlations. This
indicates that the fewer lots there are of the same main and subcategory within the same sale,
the higher the multiplier will be. This coincides with the intuition that scarcity will make the
lot more wanted, and therefore will generate a higher multiplier. LotsSale (0.03/−0.03) does
not seem to have the same effect, as it might be too generic, as there are items within the
same sale that can be very different from each other. Furthermore, the negative correlations
of LotNr (−0.08/−0.12) indicate that the lower the LotNr, which means that it is higher on
the page, the higher the multiplier will be. This is also as expected, as more bidders will see
the lot when it is higher up on the page. With Seller (−0.11/−0.08) we see that sales from
banks and liquidators result in slightly higher multipliers than sales from dealers and vol-
unteers, which also matches the auctioneer’s expectations. CloseTime (−0.05/−0.08) and
Weekday (−0.02/−0.05) seem to indicate that sales ending earlier on a day and in the week
have a slightly higher multiplier, but the effect is small. Allocate (−0.34/−0.03) has a sig-
nificant difference in correlation between all lots and just the sold lots. This is because lots
on allocate have a reserve price, which result in unsold lots with a multiplier of 0. When
only considering sold lots, there seems to be barely any difference between lots being on
allocate and not.

We include the following features in our prediction models: SPEV, StartPrice, EstValue,
LotsSale, LotsSaleMain, LotsSaleSub, LotNr, Weekday and Allocate. The features SPEV,
StartPrice, EstValue are included because relationship between the starting price relative to

Table 2 Spearman’s rank
correlation between the
multiplier and feature variables
over the entire data set, and over
only the sold lots

Feature Multiplier (all) Multiplier (sold)

LotNr −0.08 −0.12

Allocate −0.34 −0.03

EstValue −0.07 0.03

StartPrice 0.06 0.16

Seller −0.11 −0.08

CloseTime −0.05 −0.08

Weekday −0.02 −0.05

SPEV 0.37 0.33

LotsSale 0.03 −0.03

LotsSaleMain −0.06 −0.07

LotsSaleSub −0.08 −0.12
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the estimated value is important when auctioneers optimize the auction design. LotsSale,
LotsSaleMain, LotsSaleSub are selected since they jointly capture the effect of scarcity.
LotNr is selected because it is related to the visibility of a lot. Weekday is selected in con-
sultation with auction experts in order to capture potential time-effects. Allocate is selected
since it can potentially predict when a lot will be sold or not. Finally, note that SPEV,
StartPrice, and LotNr are design parameters that are directly controlled by the auctioneer.

The selected features were thus chosen based on the following approach. First, we start
with all of the features that the company provided. Next, we then selected a subset of
these features based on: (1) the expert opinion from auction experts on what features could
be relevant, and (2) additional insights obtained from a correlation analysis. Other feature
selection methods such as recursive feature selection yielded similar results. As some fea-
tures are auction design variables that we will optimize after building predictive model (see
Section 5), feature selection methods based on for example Principal Component Analysis
(PCA) are not preferred. Furthermore, we would like to point out that our proposed frame-
work (see Section 5) also works for alternative feature selection methods. Finally, we note
that the inclusion of additional features, such as the condition of the auction item (new or
used) and color of the item, could potentially also lead to improved performance. However,
these features were not recorded in the data that was provided by the auction company, and
as a consequence they could not be used.

5 Auction design optimizationmodel

We treat the problem of evaluating the expected performance of auctioning items in the
new sale as a classification problem. In the literature, there are various ways of utilizing
the prediction models for optimizing new designs. For example, in [6] and [11], predictions
are used as fitness functions to evaluate the quality of a solution. Another line of research,
called Empirical Model Learning [19], investigates embedding of the components of pre-
diction models into combinatorial models. See [18] for an overview. In [28], the authors
encode the prediction model using Mixed Integer Linear Programming (MILP) language
to find optimal auction sequence in a sequential auction using simulated action data. We
extend the encoding of [28] to combine with the expert and domain knowledge in the MILP
model. Our proposed auction design optimization framework DDAD is illustrated in Fig. 4,
where historical auction data is used to build a prediction model. A mathematical opti-
mization model, i.e., integer linear programming (ILP) model, is defined to solve the given
auction optimization problem. This ILP model takes into account both (1) the domain and
expert knowledge on variables and objectives, and (2) the internal structure of the prediction
model, i.e., the learned relations of different variables to predictions. In this paper we use
classification trees as prediction models, as this provides us with a framework to exploit and
extend the translation from the learned classification tree to a set of linear constraints from
[28]. Furthermore, the choice for classification trees as prediction models is reasonable,
since the performance of decision trees is comparable to other more complex tree-based
models (random forests and AdaBoost), see Table 4. Therefore, the choice for classification
trees as prediction models does not lead to a significant loss in terms of performance.

Decision variables Given a set I of N lots, we use a decision variable sr to denote the
starting price of lot r ∈ I , and the following variables to encode any possible index of lots:
xi,r ∈ {0, 1}. Lot r is given an index of i, 1 ≤ i ≤ N , if and only if xi,r = 1. Thus, if x3,1
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2. domain and expert 

knowledge 
New 
sale S

Fig. 4 Components of the data driven auction design model

is equal to 1, it means that the first lot is assigned 3 as its lot id. Each lot has one lot id, and
every lot is required to have a unique lot id. Hence,

∑
1≤r≤N

xi,r = 1 for all 1 ≤ i ≤ N

∑
1≤i≤N

xi,r = 1 for all 1 ≤ r ≤ N

Any assignment of ones and zeros to the x variables that satisfies these two types of
constraints corresponds to a valid lot id assignments of all lots. The starting prices sr have
the following bounds, based on the advice from auction experts: 0.4 × EVr ≤ sr ≤ 1.0 ×
EVr , for all r ∈ I .

Computing feature values Let Feat be the set of features that are used to build the
classification tree, i.e., LotNrRel, Allocate, EstValue, StartPrice, LotsSale, LotsSaleMain,
LotsSaleSub, Weekday, SPEV. We use F (F ⊆ Feat) to denote the features that are used
in the tree. The features LotNrRel, StartPrice, SPEV are related to our decision variables,
and hence if they are in F , their values need to be translated as follow.

StartPricer = sr for r ∈ I

LotNrRelr = {i|xi,r = 1}
N

for r ∈ I

SPEVr = sr

EVr

for r ∈ I

Objective function We denote the predicted class of lot r by binary variables pr,c, where
c ∈ C = {0, 1, 2} is the class label. pr,0 = 1 indicates that lot r is predicted to be in the
lowest performing class 0. The objective of the auction design is to maximize the expected
performance of all lots in the sale, i.e.,

max
∑

1≤r≤N

∑
c∈C

c · pr,c

Every lot r can only end up in one class, i.e.,
∑

c∈C
pr,c = 1 for all r ∈ I

Encoding classification tree We translate the classification tree models into ILP using lin-
ear constraints based on the encoding in [28]. We introduce a set of binary variables zl,r ,
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representing whether a leaf node l is reached for lot r . The internal (decision) nodes of the
trees can be represented implicitly by the constraints on these new z variables. Intuitively,
we encode that a z variable has to be false when the binary test of any of its parent nodes
fails. By additionally requiring that exactly one z variable is true at every index, we fully
encode the learned trees.

Let D be the set of all decision nodes in the classification tree. Every decision node in
D contains a Boolean constraint f ≤ t , which is true if and only if feature f has a value
less than or equal to a constant t . A key insight of our encoding is that every such Boolean
constraint directly influences the value of several z variables: if it is true, then all z variables
representing leafs in the right subtree are false; if it is false, then all that represent leafs in
the left subtree are false. In this way, we require only two constraints per Boolean constraint
in order to represent all possible paths to leaf nodes.

fvf + (Mf − c) ·
∑

l∈L
zl,r ≤ Mf for all r ∈ I, (f ≤ t) ∈ D

fvf + (mf − c) ·
∑

l∈L′zl,r ≥ mf for all r ∈ I, (f ≤ t) ∈ D

where fvf is a calculation of feature f ’s value, L and L′ are the leaf nodes in the left and
right subtrees of the decision node with constraint (f ≤ t) in the tree, and Mf and mf

are the maximum and minimum values of feature f . For the feature calculation we simply
replace fvf with the right-hand sides of the corresponding feature definitions.

The above constraints ensure that when zl,r obtains a value of 1, all of the binary test in
the parent nodes on the path to l in the tree for lot r return true. By construction of the trees,
this ensures that at most one z variable is true for every r .

∑
l
zl,r = 1 for all r ∈ I

The predictions of the trees are given by the z variable that is true. We multiply this z

variable with the class prediction in the leaf node it represents to obtain the prediction, and
store it in the p variables used to compute the objective value.

pr,c =
∑

l∈Lr

vl · zl,r for all r ∈ I

where vl is the constant prediction of leaf l in the tree.
In this way, we build a mathematical optimization model DDAD based on data and

domain knowledge. This model can be solved by any off-the-shelf optimization solvers like
CPLEX [12] and GUROBI [8], and guarantees to find the optimal decision variables, i.e.,
starting prices and lot numbers, for items in the new sale, such that the expected performance
is maximized.

6 Results

We use the provided data to investigate how the DDAD performs. First, we select the data
that we will use in our models, and we construct a training and test set. Then we use existing
tree based classifiers to predict the multiplier of lots using the feature variables. A variety
of different classification models with different parameters are used to observe the perfor-
mance on our data. Thereafter, one classification model will be chosen to be used with
DDAD. We use Scikit-learn in Python for the classification models, and we use CPLEX to
solve DDAD. The dataset and code used will be made available here: https://github.com/
yingqianzhang/online-auction-data.
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6.1 Classificationmodel

We first randomize the data set in order to obtain representative training and test data sets.
Because the data set consists of multiple sales made up of numerous lots, we have to make
sure that the sales stay intact. We randomly shuffle the sales and then use the first 70% of
the 5,843 lots as our training data set, and the remaining 30% as our test data set. As the
sales within the training and test data sets also have to remain intact, we do not cut off the
training data set at exactly 70% of the total data, but we also include all the lots in the last
sale of the training data set. Finally, we balance the training data set by undersampling lots
with class label 2 such that the total number of lots in class 1 and 2 are equal. This results
in a training data set of 3,087 lots (45 sales, 58.4%), and a test data set of 1,747 lots (32
sales, 41.5%). Table 3 shows the number of lots in each class. We also used other sampling
alternatives for class balancing, but these did not give very different results.

We perform k-fold cross validation on the training data for different classification models
with varying parameters in order to find the best classification model. We need to account
for the fact that the data is ordered in sales and time. Therefore, we shuffle the training data
set before applying k-fold cross validation. This ensures that the obtained accuracy from the
model will be representative of the performance of the model with arbitrary data. For our
classification models, we use ones that are readily available in Scikit-learn.

First of all, we use CART decision trees with maximum depths of 3, 5, 7 and 10. The
Gini impurity is used to measure the quality of a split. We also use random forest classifiers
(RFC), which are bootstrap aggregated decision trees, with the same maximum depths as the
CART decision trees and the same Gini impurity criterion. The number of trees in a forest
is set to 100. Next, we use AdaBoost classifiers, using both the SAMME.R real boosting
algorithm (AdaCR), and the SAMME discrete boosting algorithm (AdaC) [9]. A decision
tree classifier is set as the base estimator, and we use a maximum of 50 estimators with
a learning rate of 1.0. Finally, a bagging classifier (BagC) is used, which is an ensemble
meta-estimator. Again, we use a decision tree classifier as the base estimator, and we use a
maximum of 50 estimators.

Table 4 shows the results of the different classification models on the data based on the
selected features. The second and third columns show the mean and 95% confidence inter-
val of the accuracy in a 10-fold cross validation on the training data. The next four columns
show the overall accuracy and accuracy for each class, for the training set, while the last
four columns show the same for the test set. The results show that simple CART classifiers
are competitive with the ensemble classifiers. Among the CART models, CART with depth
10 (CART10) shows the best performance as it has the highest accuracy in 10-fold cross-
validation, on training, and on testing data sets. Note that CART10 has a reasonably high
accuracy across the different classes, whereas the smaller CART models tend to perform
poorly for a particular class. The random forest classifiers generally outperform CART10
but the differences are not that large. We use CART10 as input for the auction design

Table 3 Number of lots in the
low-, medium-, and
high-performing classes in the
training and test set

Multiplier Category #Lots train #Lots test

0 Low 237 46

(0, 0.80) Med 1425 690

[0.80,∞) High 1425 1011

Total lots 3087 1747
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optimization model since: (i) the performance on testing data is similar to the best random
forest classifier; and more importantly, (ii) we can leverage the translation from the learned
classification tree to a set of linear constraints as described in Section 5.

6.2 New auction design

In this section we conduct numerical experiments in order to investigate the new auction
designs that our approach would recommend. We randomly take five sales from the test set
and construct the optimization model from the learned classification tree to determine the
starting price and lot number of the lots.

Combining expert knowledge with optimization Note that there is some expert knowl-
edge that the optimization model does not take into account. In practice, the expert would
(everything else equal) assign lots with higher estimated values to lower lot numbers, so that
these items appear higher on the list that is shown to bidders. The primary objective of the
optimization model is to change the design parameters so that more lots will have a higher
multiplier. However, given that a set of lots have the same predicted class, the ordering of
the lots may not exhibit an easily distinguishable pattern. In order to avoid such situations,
we apply a re-ordering procedure after applying the auction design optimization model from
Section 5. The re-ordering procedure exploits the structure of the decision tree prediction
model. More specifically, after we apply the optimization model, we feed each lot (in the
sale) into the decision tree and keep track of the leaf node that each lot ends up in. Next, for
all lots within a particular leaf node, we re-assign the values of LotNrRel such that lots with
higher estimated values receive lower values of LotNrRel. Note that, due to the structure of
the decision tree, this swapping of the values of LotNrRel does not change the classification
of the swapped lots (their predicted class remains the same).

Results of newdesign Table 5 reports various metrics related to the redesign of the auction.
The second column of Table 5 shows the accuracy of the prediction model for each sale.
Overall the prediction model shows a relatively good performance in the test sets, with an
accuracy of at least 0.50 the cases considered. Since the composition of the type of lots can
vary considerably across different sales, these results are encouraging. The third column
shows the fraction of lots that is being classified as high according to the optimization model
by tweaking the starting price and lot number. We observe that the model is able to change
the starting price and lot number in such a way that the learned classification tree classifies
most lots, and in four sales even all lots, as high. Upon closer inspection, we notice that
overall the model assigns a higher starting price to lots compared to the expert. This can be
seen in the fourth column of Table 5 which shows the fraction of lots that receive a higher
starting price. Many lots are assigned a slightly different SPEV. The final column shows
the average change in SPEV for cases when it is adjusted upwards and in cases when it is
adjusted downwards. In general, these quantities tend to be of similar order but they depend
on the specific sale. Furthermore, we see that the relatively few times that the model assigns
a lower starting price to a lot, the lot in question tends to be relatively more expensive.
The model typically does this when the initial predicted class is medium and the model
changes the starting price so that the predicted class (after optimization) becomes high.
Experts usually deem these lots to be potentially more popular and will set the starting price
high, whereas the model does not take into account these properties as strictly. It is harder
to find a clear pattern in the new design for lots that have a relatively low estimated value.
The multiplier is more volatile for these lots because it is more sensitive with respect to the
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Table 5 New design results for
sales from test set using DDAD Sale Acc DDAD Higher Avg Diff

(lots) High SPEV SPEV (+/−)

1 (16) 0.56 1.00 0.75 +0.21/−0.25

2 (31) 0.58 0.81 0.65 +0.38/−0.13

3 (16) 0.50 1.00 0.44 +0.17/−0.31

4 (113) 0.55 1.00 0.59 +0.16/−0.21

5 (43) 0.53 1.00 0.65 +0.20/−0.16

starting price: small changes in starting price have a higher impact on the multiplier if lots
with low estimated value are sold. Furthermore, the values for the starting price are set in a
more subjective manner that varies across auction experts.

Validation from auction experts The differences compared to experts’ design strategies
are interesting. As the proposed data driven model demonstrates higher expected outcomes
of auctions with new designs, it may indicate that the auction experts’ belief on how starting
prices and lot numbers influence auctions is biased. Having said that, the learned classifi-
cation model used in DDAD might also be biased due to high variety of items in different
sales. The auction experts analyzed the results and were intrigued by it because the auto-
mated auction design has to potential to improve the revenue and reduces the manual labor
involved. In general, the experts find that the assignment of lot numbers and starting prices
are plausible and logical. They would consider using the new design as a baseline and adjust
it further based on their expert knowledge.

7 Conclusion and discussion

We propose an auction parameter design framework that integrates a classification tree that
predicts the expected performance of auctions into an auction design optimization model.
Currently, the starting prices and lot numbers are defined by experts. With the implementa-
tion of our proposed approach, the experts would only have to determine the expected value
but leave the design of starting prices and lot numbers to the model. We have shown that the
proposed approach is effective as it improves upon the design from the auction experts.

The quality of the model can be improved by including additional information about the
auctions. In particular, the auction experts suggest to also include information that measure
the expected value according the seller, the expected value according valuation reports,
and revenue performance of similar lots. This information was unfortunately not available
when data was shared with the researchers, but incorporating this information in a future
model could improve performance. Another variable that could be added to the model is the
individual closing time of the lots, currently only the closing time of the complete auction
is taken into account.

Auctioneers are in particular interested in predicting low-performing high-value items
well. In the future, we will take into account different costs for different classes, using cost-
sensitive learning [5]. We will extend the work of [26, 27] to learn classification models as a
multi-objective optimization problem to incorporate different costs and learning objectives
into learning algorithms.
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