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Abstract—Reinforcement Learning (RL) has emerged as a
promising solution for defining the optimal dispatch of Energy
Storage Systems (ESS) in distributed energy systems. However, a
notable gap exists in the literature: a lack of comprehensive and
fair comparisons between different RL algorithms, particularly
between linear and nonlinear approaches. This study critically
evaluates the trade-offs between computational efficiency and
operational accuracy among various Linear RL (LRL) strate-
gies and compares them against the nonlinear Deep-Q-Network
(DQN) algorithm. Through a comprehensive analysis, this study
benchmarks the model-based Mixed-Integer Linear Program-
ming (MILP) results to assess and compare these algorithms’
convergence, training efficiency, and optimization accuracy. Re-
sults indicate that while LRL approaches the operational cost
accuracy of DQN, it faces significant trade-offs in computational
efficiency and struggles with generalization across larger and
varied datasets. The results illuminate critical areas for further
development in LRL methodologies, particularly in enhancing
their adaptability and generalization capabilities.

Index Terms—Reinforcement Learning, Linear Representation,
Neural Network, Energy Storage System, Optimal Dispatch

NOTATION
Sets
B set of ESS
1% set of PVs
L set of load demands
T set of time steps of MDP
S set of states of MDP
A set of actions of MDP
P set of transition probabilities of MDP
R set of rewards of RL
Indexes
7 the 7 th battery of ESS, i € B
j the j th PV generator, j € V
k the k th load demand unit, k € £
t time step t € T
Parameters
PP, PP the i th battery’s maximum/minimum
charging/discharging power
EB, EB  the i th battery’s maximum/minimum SOC
mi  the i th battery’s energy efficiency
Wi the ¢ th battery’s discretization parameter
At the discretization time step
o the price of electricity at time step ¢
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©0, P1 the control factor of reward function

o the learning rate of RL algorithms

ol the discount factor of MDP

A the decay rate of eligibility traces

T the update rate of DQN’s target network
Variables

Pft the ¢ th battery’s active power at time step ¢
s0CP the i th battery’s SOC at time step ¢

Pjvt the 7 th PV’s active power at time step ¢
P,i%t the % th load demand unit’s active power at

time step t

I. INTRODUCTION

The increasing penetration of Renewable Energy Sources
(RES), such as Photovoltaics (PV) and Wind Turbines (WT),
introduces significant complexity and volatility into the distri-
bution networks due to their intermittent nature. This vari-
ability poses critical challenges for maintaining stable and
economical operations, particularly in balancing supply and
demand effectively [1]. Energy Storage Systems (ESS) play a
pivotal role in addressing these challenges. With their capa-
bility to store excess energy during periods of high renewable
output or low electricity prices and release it during peak
demand or low generation periods, ESSs enhance energy
supply’s consistency, reliability, and economic efficiency [2].

Various model-based and model-free optimization algo-
rithms have been explored to solve the ESS optimal dis-
patch problem. Model-based methods, including stochastic
and robust optimization, have shown success in addressing
the optimal dispatch of ESSs [3-6]. However, these methods
often rely on accurate, complete knowledge of the operational
environment [7]. Furthermore, model-based approaches tend to
be computationally intensive, particularly when dealing with
a large number of scenarios, which may lead to conservative
and time-consuming optimization results [8].

In contrast, optimal energy dispatch problems can ef-
fectively be transformed into a Markov Decision Process
(MDP) that can be solved by using model-free Reinforce-
ment Learning (RL) [9]. RL algorithms leverage historical
data to iteratively improve control decisions through repeated
interactions with the environment without the need for prior
system models [8]. The growing availability of data from
smart meters and sensors further enhances the viability of
data-driven RL approaches[10]. Traditional RL methods, such
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as Q-Learning, can find optimal solutions with discrete state
and action pairs by updating an optimal Q-table. To manage
larger or continuous spaces, the action-value functions are
typically represented using parameterized forms such as linear
functions, i.e., Polynomial (Poly), Fourier series (Four), Radial
Base Function (RBF), Tile Coding (TC), or nonlinear neural
networks (NN) [11]. In this concept, RL algorithms using
linear feature functions to represent a state can be categorized
as Linear RL (LRL) algorithms, while those employing NN
as Non-Linear RL (NonLRL) algorithms.

Based on Q-Learning with NN, namely Deep Q-Learning
(DQN), [12] proposed a NoisyNet-DoubleDQN to learn the
optimal strategy for energy storage participating in the energy
arbitrage, it was validated against the MILP model using actual
electricity prices, showing its effectiveness. [13] compared
four advanced NonLRL for managing generators and energy
storage in energy system scheduling. The results highlight
that by leveraging NN, RL agents can deliver high-quality,
real-time solutions, even in unseen scenarios, exhibiting NN’s
strong generalization and the ability to handle complex, high-
dimensional nonlinear relationships. However, these models
do not inherently guarantee convergence to optimal solutions,
meaning achieving the optimal solution is not ensured. LRL
algorithms are mathematically proven to be convergence-
guaranteed; in [14] and [15], LRL with TC and RBF are
implemented for battery strategy management and load tap
setting to assure an economical and reliable energy system
operation, showing that they are capable of approaching the
optimal solutions provided by MILP model. Evidence from
sequential tasks in environments such as OpenAl Gym and
Mujoco has demonstrated that LRL can achieve comparably
high or even superior performance, challenging the traditional
reliance on NNs for complex decision-making tasks [16, 17].
Despite the capabilities of RL in different applications, there
remains a gap in the literature regarding a fair comparison of
LRL and NonLRL algorithms in solving the optimal energy
dispatch of ESSs.

Our study addresses the existing gaps in the comparison
of LRL and NonLRL for optimal energy dispatch in ESS. By
employing MILP results as a benchmark, we aim to rigorously
assess and compare the performance of LRL algorithms,
specifically LRL-Poly, LRL-Four, LRL-RBF, and LRL-TC
with the nonlinear DQN. Our evaluation focuses on three
key aspects: convergence rates, training efficiency, and opti-
mization accuracy. Through detailed sensitivity analysis, we
explored the impact of tiles and tilings configurations on LRL
performance. Additionally, using various datasets simulating
different operation scenarios, we tested the adaptability of both
LRL and DQN to dynamic changes in demand, supply, and
pricing, gaining insights into their generalizability.

II. OPTIMAL DISPATCH OF ESSS AS AN MDP PROBLEM

A distribution system composed of ESSs, PVs, load demand
units, and an external power grid connection. The objective of
the optimal ESSs dispatch problem is to minimize the total
operational costs of the systems throughout the entire day by

strategically defining the charging and discharging actions of
ESS at each time step within the day.

Given this nature, this problem is classified as a sequen-
tial decision-making challenge, primarily due to the time-
dependent behavior of the ESS’s state-of-charge (SOC). The
SOC is directly changed by the charging/discharging oper-
ations defined in the preceding interval. Furthermore, the
decision is made based on time-varying uncertainties, such
as fluctuations in RES generation, variations in load demand,
and dynamic electricity prices. The mathematical formulation
of the optimal ESS dispatch problem is presented below:

min

o, PB PV, PL ZUt(Z P’CLvt a ZPE - Z‘Dj‘,/t)At e)

LUT T Rt e T kel i€B JEV

PtN:ZPIQt,ZPE—ZPJZ,VtGT 2)

kel i€B JEV
P <PN<PEVteT 3)
PP <Ph<PPVieBVteT ©)
EP <SOCE <EP VieBvteT 5)

SOCT, = SOCT, .y +n P, Vi € BVLET — (6)

In this formulation, the objective function (1) seeks
to minimize the total operational costs by defining the
charge/discharge power P/} of the ESS. P is the net load
that is subject to (2) and is constrained by the limitations as in
(3), which describes the power import/export limits within the
main grid. Notably, when P/¥ > 0, power is fed into the main
grid at the sell price o, = o5 4, while when PN < 0, power is
imported from the grid at a buy price oy = 03¢ P¢ and PY
are the maximum import/export capacity between the system
and the main grid. (4) and (5) defines ESS charge/discharge
power and the SOC, respectively, where Pfi > 0 means
discharge, and PlBt < 0 means charge. (6) models the evolution
of the ESS’s SOC after defining the charge/discharge actions.

The above-present ESS optimal energy dispatch prob-
lem can be formulated as an MDP described by a 5-tuple
(S, A, P, R,~), where S is the state space and A is the action
space. P is the set of transition probabilities of the MDP where
P:s,aeSxA—p=p(s|s a)is the probability of state
s taking action a transition to state s'. R is the set of rewards
where R : s,a,8 € SXAXxS — r = R(s,a,s/) eR
evaluating the effectiveness of action a at state s. v € [0,1] is
the discount factor that weights rewards in the long term.

s = {t,01, PN, S0CP,, SOCE,, .- ,S0CE} s, € 8 (7)

at:{Pft7P£t7"'7Pi€t}7a't€-/4 (8)

The state at each time step s; represents a comprehensive
encapsulation of the current operational dynamics within
the distributed energy system, which is defined by
7. The action space in (8) can be discretized by an
increment of charging/discharging power i.e., each Pft €

{PP,---,—2APFP,-APP,0,APP 2APF, ..., PP},

3 K2
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Fig. 1. Framework of training linear and nonlinear RL algorithms in solving the ESS optimal energy dispatch problem.

where APP = ﬁ(PiB — PP), u; € Ny. It is convenient to
have a symmetric range of power levels, positive and negative
values available to charge/discharge, and one option to set
the battery on idle mode [14].

The reward is designed to guide RL algorithms learning
an optimal policy, e.g., give a low value when agents define
uneconomic and unsatisfactory decisions as AP; in (9) exists,
where P}V represents the actual power imported from the main
grid when it is positive that objects to (10), verse visa. Thus, in
the formulated MDP, the reward function in (11) contains two
components that stimulate the RL agent to define actions that
can synchronously consider the operational cost and power
unbalance constraints, where ¢g and ¢ control the weight of
these two goals.

AP = |3 Bh— 3 P+ P -RNVIET ©)

kel i€B jeV
PftGa PtN > ?F
PN=oPN, PE<PN<PF (10)

re=o |—ou)_ By =3 PL+ D PY)| +ei(AR)

keL icB JEV
(11)

Linear and nonlinear approximation techniques are lever-
aged to overcome the limitations of tabular Q-representation
within the continuous state space. Linear approaches, Poly,
Four, RBF, and TC approximate the state space by computing
the sum of weighted features. Poly and Four representations
are generated by constructing m-th order cross-terms for each
dimension n, facilitating the capture of interactions among
various state variables. RBF features employ m Gaussian
centers per dimension. Their effectiveness is contingent on the
relative distance between a state s and a center c,,, adjusted
according to the width §,,, thereby localizing features around
these centers. TC, alternatively, segments the state space into

a grid of tiles across multiple overlapping tilings. Each tile
acts as a binary feature that is activated (assigned a value of
1) when a state falls within its bounds, while all other tiles are
deactivated (set to 0). Nonlinear approaches utilize an NN to
represent the Q table, directly building the mapping between
state-action pairs and a Q-value.

The training of these RL algorithms revolves around learn-
ing an optimal Q-function Q*(s, a) that satisfies the Bellman
optimality equation, subsequently deriving the optimal policy
implicitly. Both linear and nonlinear algorithms update the pa-
rameterized Q-function Q(s, a,w) towards the target Q-value
by minimizing the estimation error. This process involves
adjusting parameters to align closely with the Temporal-
Difference (TD) target, substituting for the unknown real value
of Q(s,a). The Q-function updating uses gradient descent
by sampling from the stationary distributions p,(sq) and
the replay buffer D = {(s,a,s’,7) : 5,5 € S,a € A}.
Following policy m, each state s4 has a certain probability
px(sq) of being visited while the replay buffer stores and
replays the trajectories collected from the interactions with the
environment. The update function can be described as follows:

w1 = we + a(Q(s,a) — Q(s,a,wy))VQ(s, a, wy)
=wt + Oé(?"t + ’}/Q(S/, a/a wt)) - Q<57 a, wt))vQ(S’ ?’17;})15)

III. CASE STUDY

In this paper, the time interval between charge/discharge
decisions is set to an hour, and for each episode, 7 = 24. The
selling price o5 = 0.50p is set, where o}, is the price of
import electricity from the main grid at time ¢. The exchanging
ability of the grid is set as 400kW. For ESS parameters, the
capacity of the ESS is set as 200kWh, the maximum and
minimum charging/discharging power is set as [—80, 80]kW,
the SOC is limited within [0.2,0.8], and the energy efficiency
is set as 1. The action space is discretized as p = 9, and the
initial SOC of each episode during training is set as 0.2. The
parameters g and 1 are set as 0.5 and 50, respectively.
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Leveraging the e-greedy policy [11] during training so the
exploration and exploitation can be well balanced, and € = 1
is initialized. The decay rate of € is set at 0.9996 for RL
algorithms, so each gets the same opportunity to explore
potential high-reward actions at the beginning of training. 5
order polynomials and Fourier series, 6 RBF centers, and 4
tiles in each dimension are implemented in linear RL agents.
The SARSA [14] with eligibility traces is implemented with
the four linear feature representations, in which A = 0.9 is set,
while the DQN target network’s update rate 7 is set as 0.005.
All algorithms are implemented in Python, and the MILP
optimization problem is formulated and solved by Pyomo
packages as benchmark results.

The performance of RL algorithms is evaluated using two
key indicators: training duration and operational cost error.
Operational cost error is determined by comparing results from
DRL algorithms against the global optimal solution obtained
from solving MILP. Training duration refers to the computa-
tional time for training RL agents until convergence (10000
episodes). Average results from five random seed simulations
are used to eliminate the randomness. Implemented details of
the environment and RL algorithms are open-sourced in [18].

A. Performance of LRLs on 1-day Operation

Rewards [-]
| | |
= [+ oo
s ¥ &

|
.
i)

GODO

4000
Episodes

0 2000 10000

(b)

—— LRLPoly

LRI Four
| —— LRL-RBF
— LRLTC

000 PSS pl==-DoN

1200

3500 [NAREE M AN, A A 10 TR S AL I R

3600 [

Operational Cost [$]

3400

3200

4000
Episodes

0 2000 GODO 8000 10000

Fig. 2. Training results of RL agents on one-day operation during 10000
episodes, (a) rewards, (b) operation costs.

Fig. 2 shows the average reward and operational cost
of all RL algorithms over 10000 episodes. During the first
500 episodes, RL agents generally selected actions yielding

rewards between —40 and —38. Over successive episodes,
DQN demonstrated a consistent increase, surpassing all the
LRLs with an average reward close to —31.66; both LRL-TC
and LRL-RBF exhibited rising rewards with terminal average
values close to DQN'’s, ranging from —33.10 to —32.17,
which implies their comparable performance to DQN. LRL-
Poly exhibited modest gains after the early episodes and
maintained steady thereafter. LRL-Four’s rewards improved
from around —38 to —36 by episode 5000 but failed to
maintain this growing pattern and eventually converged at an
average reward of around —35.42, a lower optimal value than
other algorithms. Operational costs showed a near-symmetrical
decreasing pattern compared to those rewards, reflecting the
agents’ successful adherence to power imbalance constraints.

Fig. 3 illustrates the operational day’s dynamics, presenting
PV generation, load demand, and electricity pricing alongside
the evolving SOC of the ESS, as governed by various agents’
learned charging/discharging strategies. Fig. 3 (b)-(f) presents

(a) (b)

0 5 10 15 20
Time [h]

Time [h]
(c) (d)

—r 038 e
LRLFour J J—
: 06T

SOC [
—
SOC |
I

0.4 : 04 —‘ ~—‘
0.2¢ 0.2 |_
0 5 10 15 20 0 5 10 15 20
Time [h] Time [h]
(e) (f)
0.8¢ — np 0.8 —
—r — oy
06 06
" -
o 1o}
o o
7 7
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Time [h] Time [h]

Fig. 3. Comparison of RL agents and MILP on one-day operation, (a) PV
generation, load consumption, and electricity price, (b) - (f) comparison of
ESS’s SOC changing of the given charging and discharging operation strategy
of LRL-Poly, LRL-Four, LRL-RBF, LRL-TC, DQN, and MILP.

the strategy derived from MILP. It involves initiating charging
at midnight to exploit low prices and demand, reaching max-
imum SOC by 2:00, which it maintains until 4:00 to coincide
with a price surge, and optimizing profit by discharging at
peak rates. The SOC hits its minimum by 14:00, just as PV
output exceeds load, preceding another price spike, making it
economical to resume storing energy. At 18:00, in response
to a load spike, the system discharges and then stabilizes
at minimum SOC from 19:00 onwards. Among the agents,
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TABLE I
MEAN AND 95% CONFIDENCE BOUNDS OF TRAINING DURATION [s], OPERATIONAL COST [$], AND ERROR [%] OF RL ALGORITHMS ON ONE-DAY OPERATION

Algorithms | LRL-Poly LRL-Four LRL-RBF LRL-TC | DON | MILP
Total duration [s] 3082.96 4816.95 2411.11 107.42 618.62
(3077.15, 3088.76)  (4810.59, 4823.30)  (2408.55, 2413.67) (107,10, 107.74) (617.14, 620.10)
Operation costs [$] 3541.36 3542.65 3283.47 3234.26 3166.84 3142.40
(3495.98, 3586.74)  (3524.29, 3561.01)  (3256.54, 3310.40)  (3217.72, 3250.80) | (3159.39, 3174.30) ’
Error [%] 12.70 12.74 4.49 2.92 0.78
(11.25, 14.14) (12.15, 13.32) (3.63, 5.35) (2.40, 3.45) (0.54, 1.02)

the LRL-Poly recognized only the initial and final phases,
resulting in a high operational cost of 3424.70. LRL-Four
identified the first charging phase but missed subsequent
discharging opportunities, costing 3479.35. In contrast, LRL-
RBF, LRL-TC, and DQN closely followed MILP’s strategy
with minor timing deviations. DQN aligned most closely with
MILP, achieving a cost of 3147.65. LRL-RBF, with slightly
delayed actions, incurs 3215.11, while LRL-TC’s delayed
charging effectively uses PV output, costing 3176.16.

The disparities in RL agent performance are due to the
nature of their function approximators and their interaction
with the complex state-action space. DQN excels with its
NN architecture, which adeptly handles nonlinear patterns,
whereas LRL-TC and LRL-RBF effectively generalize strate-
gies through their approximation functions. However, LRL-
Poly faces challenges with dimensionality and overfitting, and
LRL-Four’s periodic nature limits its adaptability to non-
periodic environments.

Table I outlines the mean values and 95% confidence bounds
for training duration, operational cost, and error of various RL
algorithms over a one-day operational simulation. Among the
RL algorithms, LRL-TC stands out for its training efficiency,
significantly outperforming LRL-Poly, LRL-Four, LRL-RBEF,
and DQN. Specifically, LRL-Poly, LRL-Four, LRL-RBF, and
DQN required approximately 45.01, 22.45, 28.70, and 5.75
times longer to train than LRL-TC, respectively.

When examining operational costs, the algorithms were
benchmarked against MILP outcomes. Here, DQN demon-
strated remarkable precision with a minimal average error rate
of just 0.78%. LRL-TC, with an average operational cost error
of 2.92%, surpassed its counterparts, showcasing superior cost-
effectiveness. LRL-RBF, despite a slightly higher error rate of
4.49%, still shows a promising inclination towards achieving
optimal solutions but suffers from a training duration 3.89
times longer than DQN. Conversely, LRL-Poly and LRL-Four
exhibited the highest errors at 12.70% and 12.74%.

B. Sensitivity Analysis of LRL-TC

As detailed in Section III-A, LRL-TC exhibits notable com-
putational efficiency due to its binary structure and achieves
performance levels close to DQN with fewer features over
shorter training durations. A sensitivity analysis was conducted
to determine whether LRL-TC can match or surpass DQN’s
accuracy while maintaining its computational advantages. This
analysis involved exponentially increasing the tiles and tilings
from 4 to 256 under consistent hyperparameter settings.

The operational costs associated with LRL-TC varied with
changes in the number of tiles and tilings, as illustrated in Fig.
4. Initially, a decrease in costs was observed, dropping from
3234.26 to 3227.18 as the number of tiles and tilings increased
from 4 to 16. A more substantial reduction occurred with the
increment to 64, resulting in a cost of 3212.83. However,
an uptick to 3233.06 was noted at 128 tiles and tilings,
accompanied by higher variance due to stochastic influences
on learning. Notably, at 256 tiles and tilings, operational costs
significantly dropped to 3180.64, with 95% confidence bounds
of (3171.98, 3189.31), closely approaching DQN’s average
operational cost of 3166.84 (3159.39, 3174.30). This suggests
that with sufficient scaling, LRL-TC could potentially achieve
parity with DQN’s performance.

The training duration for LRL-TC increased exponentially
with the number of features, defined by the power of the
number of tiles and tilings and the input dimension. Initially,
the durations were manageable, with averages of 107.42s,
121.13s, 142.03s, and 185.65s for 4, 8, 16, and 32 tiles and
tilings, respectively. However, a sharp rise in training time was
observed from 64 tiles and tilings onward, recording 258.08s,
428.39s, and 749.59s for 64, 128, and 256 tiles and tilings,
surpassing DQN’s training duration of 618.62s.

(a) (b)

—e-RLTC | | | | f e DON

—e-DON —4-LRLTC

400 a

Operational Cost [$]
Total Training Durtation [s]

3160 b
1 8 1632 64 128 256 1 8 16 32 64

Tiles and Tilings Tiles and Tilings

128 256

Fig. 4. Mean and 95% confidence bounds of (a) operational cost [$] and (b)
total training duration [s] of LRL-TC and DQN.

C. Performance of LRL-TC and DON on 3-Month Dataset

We utilized a diverse three-month dataset featuring varied
operational scenarios to train and evaluate both the LRL-
TC and DQN algorithms. To better accommodate the in-
creased variation in the dataset, the € decay rate was adjusted
to 0.9995. As depicted in Fig. 5, both algorithms began
their training with an average reward value of approximately
—35 and showed improvement to —20 within the first 1000
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Fig. 5. The training results of LRL-TC and DQN on a three-month data set
during 10000 episodes, average (a) rewards, (b) operation costs.
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TABLE 11
MEAN AND 95% CONFIDENCE BOUNDS OF LRL-TC’S AND DQN’S OPERATIONAL
COST [$] ON TEST SET

Day LRL-TC DQN MILP
1 424.56 (379.41, 469.72) 358.26 (329.76, 386.76) 146.37
2 2230.29 (2159.54, 2301.05)  2137.56 (2096.12, 2179.00) 1997.27
3 4572.42 (4526.40, 4618.45)  4410.82 (4355.28, 4466.36)  3988.14
4 1095.01 (1072.42, 1117.59)  1025.64 (1001.02, 1050.25)  838.38
5 1756.49 (1714.41, 1798.57)  1641.84 (1619.30, 1664.38) 1440.16
6 3717.35 (3680.74, 3753.97)  3472.59 (3441.71, 3503.47)  3358.59
7 2740.19 (2711.82, 2768.55)  2607.74 (2573.39, 2642.09)  2380.48
8 1974.95 (1922.82, 2027.07)  1705.21 (1689.54, 1720.89) 1464.88
9 2671.28 (2654.25, 2688.31)  2549.12 (2515.98, 2582.26)  2319.30
10 1761.44 (1749.45, 1773.42)  1717.72 (1688.41, 1747.02)  1616.36
11 1134.48 (1103.01, 1165.95)  1114.39 (1071.85, 1156.94)  884.00
12 5751.59 (5673.55, 5829.63)  5649.82 (5592.84, 5706.79)  5242.64
13 906.22 (886.95, 925.49) 881.86 (836.93, 926.79) 673.10
14 3569.42 (3537.85, 3600.99)  3442.68 (3400.49, 3484.80)  3142.40
15 1758.13 (1694.68, 1821.58)  1668.28 (1636.15, 1700.40)  1471.81

episodes. The rewards continued to gradually increase up
to the 4000 episodes, followed by minor fluctuations un-
til the end of the training period. Throughout the training,
DQN consistently outperformed LRL-TC, achieving slightly
higher rewards. The total training duration for LRL-TC and
DQN was closely matched, with mean and 95% confidence
bounds recorded at 762.46s(759.62, 765.29) for LRL-TC and
749.20s(747.68,750.71) for DQN, indicating similar com-
putational efficiency over the extended training period. The
operational accuracy of the algorithms was further tested
over 15 operation days, detailed in Table II. LRL-TC con-
sistently underperformed relative to DQN. The average error
percentage for LRL-TC was 30.63(28.10,33.16), compared
to 22.13(19.79,24.48) for DQN. These results underscore a
notable disparity in performance, with DQN demonstrating
superior accuracy and generalization across diverse operational
scenarios.

IV. CONCLUSION

This study explored the potential and limitations of using
linear features in RL for the optimal energy dispatch of
ESSs. Our investigation primarily focused on comparing the
convergence, training efficiency, and operational performance
of LRL strategies, specifically LRL-TC, against the more com-
plex DQN algorithm, with MILP serving as the benchmark.
Results indicate that LRL-TC is notably the most competitive

among the LRL variants for its computation efficiency and
operational cost accuracy. A sensitivity analysis was conducted
by incrementally increasing the tiles and tilings, while LRL-
TC demonstrates the potential to outperform DQN with a high
number of tiles and tilings, enhancing its ability to handle en-
vironmental variations and noise. However, this benefit comes
at the cost of significantly extended training durations. This
trade-off highlights a crucial consideration for the application
of LRL-TC in environments where training efficiency and
operational performance are both priorities. Further extending
the assessment to a three-month dataset revealed LRL-TC’s
challenges in generalization, demonstrating inconsistencies in
adapting to varied and complex scenarios.
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