
Delft University of Technology
Master’s Thesis in Computer Science

Distributed Kalman Filtering using
Broadcast Gossip

A.C. Kodde

Distributed Kalman Filtering using Broadcast

Gossip

Master’s Thesis in Computer Science

Embedded Software Section
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

A.C. Kodde
a.c.kodde@student.tudelft.nl

August 27, 2012

mailto:a.c.kodde@student.tudelft.nl

Author
A.C. Kodde (a.c.kodde@student.tudelft.nl)

Title
Distributed Kalman Filtering using Broadcast Gossip

MSc presentation
October 1, 2012

Graduation Committee
Prof. dr. K.G. Langendoen Delft University of Technology
Dr. S. Dulman Delft University of Technology
Dr. J. Sijs TNO Technical Sciences
H.-G. Gross, PhD Delft University of Technology

mailto:a.c.kodde@student.tudelft.nl

Abstract

For many processes it is required to have a reliable view of an environment
of interest. One way to achieve this is by performing a distributed Kalman
filter. In this thesis, three distribution methods from different research back-
grounds are implemented and evaluated using multiple metrics for use in a
Gossip based wireless sensor network: consensus, weighted consensus and
covariance intersection. The modular solution makes it possible to easily
switch between the different implemented distribution methods and Gossip
algorithms. From the evaluation based on metrics like the correctness of the
estimate and the agreement among the different nodes, it follows that the
naive consensus algorithm does not perform well. The weighted consensus
and covariance intersection perform both with errors smaller than two de-
grees Celsius. However, the weighted consensus does require assumptions
that covariance intersection does not.

iv

Acknowledgements

I would like to express my very great appreciation to my daily supervisor at
TNO, Dr. Sijs for his valuable and constructive suggestions and all his sup-
port throughout this research work. I would also like to thank Dr. Dulman
for his useful critiques and patience.

I would like to offer my special thanks to Martin Kodde whose insight and
ongoing motivation proved invaluable.

Finally, I wish to thank my parents, family and friends for their support
throughout my study.

A.C. Kodde

Delft, The Netherlands
August 27, 2012

v

vi

Contents

1 Introduction 1

1.1 Research Questions . 3

1.2 Organization . 4

2 Related Work 5

2.1 Gossiping in Decentralized Networks 5

2.2 Distributed Kalman Filtering 10

2.2.1 General Principles of Kalman Filtering 11

2.2.2 Adaptation to Distributed System 14

2.3 Temperature Model . 17

3 Implementation 19

3.1 TelosB Wireless Sensor Node 19

3.2 TinyOS . 20

3.3 Architectural Overview . 21

3.4 Platform Specific Considerations 22

3.4.1 Fixed Point Component 24

3.4.2 Matrix Component . 25

3.5 Temperature Measurement 27

3.6 Data Processing . 28

3.7 Data Storage . 29

3.8 Kalman Distribution . 30

3.8.1 Consensus . 30

3.8.2 Covariance Intersection 31

3.9 Distribution Dependent Considerations 32

3.9.1 Data Transmission . 32

3.9.2 Data Reception . 33

4 Experimental Results 35

4.1 Experiment Case . 35

4.2 Central Kalman Filter . 37

4.3 Evaluation Metrics . 38

4.4 Local Kalman Filter . 39

vii

4.5 Fully Connected Network . 41
4.5.1 Consensus . 42
4.5.2 Weighted Consensus 42
4.5.3 Covariance Intersection 44
4.5.4 Summary . 45

4.6 Mesh Network . 47
4.6.1 Consensus . 47
4.6.2 Weighted Consensus 48
4.6.3 Covariance Intersection 49
4.6.4 Summary . 49

4.7 Fully Connected Network with reduced coverage 49
4.7.1 Consensus . 51
4.7.2 Weighted Consensus 52
4.7.3 Covariance Intersection 52
4.7.4 Summary . 53

4.8 Method Selection . 53

5 Conclusions and Future Work 57
5.1 Conclusions . 57
5.2 Future Work . 58

viii

Chapter 1

Introduction

In many processes, it is required to know as much as possible about a given
environment of interest. For example, in a greenhouse knowing the temper-
ature as fine grained as possible throughout the building is very important
for the plants to grow optimally. For such a process, it is for example needed
to have early warnings when temperatures get to low and to have a history
of measurements to prevent liabilities.

However, a fine grained measurement setup will result in a large amount
of data that requires processing and communication. When using a central
processing unit to process all data, this will quickly become a bottleneck in
the network of sensors. By switching to a decentralized setup, these kind of
bottlenecks can be alleviated. For example, by processing information at the
sensor location itself, data does not have to be transmitted and can be shared
with neighbors to increase the reliability of the estimates. Furthermore, by
using sensors that do not require cables, so called wireless sensor nodes,
deployment of a fine grained network can be achieved with minimal effort.

Wireless sensor network are composed out of nodes that are small and
cheap to manufacture, have limited processing power, are able to sense their
environment and transmit this information. The use of small sensor nodes
with network capabilities allow for the gathering of information from any en-
vironment, without the need of fixed or expensive infrastructures. Wireless
Sensor Networks provide huge opportunities for monitoring environments.
Due to the distributed nature of wireless sensor networks, measurement
devices can easily be deployed over large areas and provide real-time data
about the state of the object under consideration [2].

In the last couple of years, it has become possible to use wireless sensor
networks for real life situations. Many Wireless Sensor Networks applica-
tions are already implemented and tested in the field, like Structural Mon-
itoring [7], Volcano Monitoring [39] and Habitat Monitoring [35]. With
the ongoing research into wireless sensor networks and the minification of
the hardware of individual nodes, making the platforms smaller and power

1

friendlier, future applications of this like smart dust are envisioned in all
kinds of environments [37], like intelligent vehicles, climate control or public
health monitoring.

Sensors obtain noisy measurements and it is the information embedded in
these measurements that is needed for real-world applications [9]. Without
any form of processing, the measured data will show fluctuations as if a
random variable is added to the signal. One of the methods that is avail-
able to remove noise and smooth the data from sensors, is the Kalman filter
developed by Kalman in 1960 [16]. This filter is able to remove noise from
measured data coming for different sensors, only using the previous meas-
ured data. This fact makes it very interesting for wireless sensor nodes,
where memory is scarce.

In many of the wireless sensor network applications, including this thesis
work, it is not enough to only forward the sensor data to a central gather-
ing point, but rather online processing needs to be performed on the sensor
data. Because wireless sensor networks have limited capabilities, a central-
ized estimation solution is suboptimal. In many wireless sensor networks,
cooperation between the different nodes is a must [10]. In this kind of net-
works, the communication is the most expensive operation a node can make
[27]. Minimizing the amount of data that needs to be transferred is a must.
Using an adaptation of the Kalman filter, the distributed Kalman filter [25],
the traffic between sensor nodes can be minimized. Therefore, it seems that
Distributed Kalman Filters and Wireless Sensor Networks are a natural fit
to each other. Such has been proposed and proved in literature before [26],
[33], [24]. However, the different ways of distributing the Kalman filter has
been split into two main groups: the “synchronization” group on one side
and the “fusion” group on the other side. As these two ideas come from
two different research communities, a survey comparing both methods using
wireless sensor networks has not been conducted.

In this thesis work, the goal is to estimate distributed parameters using
distributed Kalman filtering and current wireless sensor network techniques
and assess the implication of different distribution methods using Gossiping.
Gossiping is a way of communicating between two or more nodes over an
unreliable medium to exchange information. As a test case, the temperature
profile of a room will be measured using multiple wireless sensor nodes at
different locations in a closed room. All nodes will continuously monitor
the temperature in the room in such a way, that information is available for
various spatial locations in the testing environment at all times. In short,
the solution as proposed in this work will be able to perform a distributed
estimation of the temperature profile with the following properties.

• Frequent updates of the temperature information;

• Coverage over the entire room;

2

• Reliable for failures;

• Cheap.

Given the current level of computing power available in sensor nodes and
their communication abilities, the combination of Gossip and distributed
Kalman Filtering will result in a feasible solution abiding to aforementioned
specifications.

In the next paragraph the problem statement and research questions are
stated.

1.1 Research Questions

The problem statement of this thesis is: What are the different methods of
implementing Gossip Based Distributed Kalman Filtering and how does it
perform.

From this, the following research questions can be distilled.

1. What form of Gossip is best suited for Gossip based distributed Kal-
man Filter?

There are several forms of gossiping available in practice and lit-
erature [5, 32], each with their own strengths and weaknesses. A
proper choice of a gossiping implementation is important as this in-
fluences all aspects of the distribution of a distributed Kalman filter.
In Chapter 2, we present a survey of applicable gossiping methods and
select the method most appropriate for distributed Kalman filtering,
while chapter 3 shows the implementation details.

2. What are the different ways of distributing information in a distributed
Kalman filter and how do they compare?

It is possible to share information between different nodes in a network
in many different ways. The two important methods are consensus
and covariance intersection, which differ in the way the information is
merged into the local state. As the distribution method is an important
factor in the way the distributed Kalman filter works, it must be taken
into account. In chapter 2 the two methods are explained and com-
pared extensively. Chapter 3 will discuss the way the two methods are
implemented and the differences between them. Experimental results
will be presented in chapter 4.

3. What limitations are encountered when implementing Gossip based
Distributed Kalman Filter and how can one cope with those? In this
thesis we present an implementation of a modular Gossip based distrib-
uted Kalman filter for wireless sensor nodes to experimentally verify

3

the fitness of these technologies. However, several limitations of the
platform can influence the end result. Chapters 3 and 4 will discuss
these.

1.2 Organization

This Master’s is organized as follows. In chapter 2 the background and re-
lated work of wireless sensor networks, Kalman filtering and the distribution
of the Kalman filter will be discussed. In chapter 3 the implementation of
the distributed Kalman filter based on gossiping will be discussed in detail
along with the problems that are encountered during this implementation.
Chapter 4 will show the results of the distributed Kalman filter using differ-
ent distribution methods for the distributed Kalman filter and will perform
a survey on the differences between them. The final chapter 5 will answer
the research questions and propose future work.

4

Chapter 2

Related Work

In this thesis, the goal is to run a distributed Kalman filter using measure-
ments from multiple sensors spread out in a grid. In the practical sense, a
distributed Kalman filter running in a Wireless Sensor Network will estimate
the temperature distribution in a room by exploiting measurements obtained
by the deployed sensor nodes. This chapter will outline the techniques that
are used to attain this goal. it will describe the distributed system and how
the networked system can be setup. Furthermore, the different algorithms
that can be used to distribute the Kalman filter will be discussed. The Kal-
man filter itself will also be explained along with the model that is used in
this filter.

2.1 Gossiping in Decentralized Networks

Centralized networks have been in use for several decades now. In this type
of networks a central node is in charge of all decisions in a network. For a
central node to make these decisions, it needs to acquires all information in
the network, i.e. it knows the global state. On small networks, having this
central node is not a problem. When trying to upscale the network, such a
node can become a bottleneck [29]. as communication requirements become
impractical, especially for wireless sensor networks. In addition, having a
single central node is also a single point of failure. If this node fails for
whatever reason, the network has to cope and maybe even reorganize itself,
reducing the availability of the network.

To alleviate the burden on a central node, several options exist. One
of these options is to divide the network in several clusters, splitting the
network essentially in smaller portions [1]. While this works, it still brings
a burden on the cluster head. Especially in wireless sensor networks, having
one node do more work than other nodes, is suboptimal [5]. For example,
having it do more work drains its battery faster than surrounding nodes,
making the network die out unbalanced and losing coverage or connectivity.

5

Several ways to reduce this imbalance have been proposed, like switching
cluster head regularly [12], but this requires again communication, which is
again suboptimal. Furthermore, having clusters will increase the number of
nodes that can fail, but still reorganization is required after node failure.

The idea behind decentralized networks is to have no central node. In-
stead, all nodes perform the same operation, making the speed of draining
of the battery more even across the network [2].

Examples of applications of decentralized networks are a network of nodes
with the goal to calculate the size of the network, either in number of nodes
or in spatial extent by calculating the convex hull [28]. Another example
would be to achieve consensus within a network. In consensus, all nodes in a
network must more or less agree on a specific value [30]. An example of this
is temperature, where every node in a network knows its local temperature.
By exchanging messages, the nodes can reach a consensus on the (average)
room temperature.

With the ongoing minification of hardware and progress in wireless com-
munication, wireless sensor networks have become off the shelve products.
A wireless sensor network is made out of many inexpensive nodes, where
each node has processing power, sensing capabilities - like temperature or
light - and wireless communication [27]. Where previously nodes had to
have a static connection, now ad-hoc networks intersensor communication
is possible. This greatly reduces the effort required for installation and de-
ployment. For instance, it is now possible to drop the sensors out of a plane
and, once landed, start sensing their environment and send their results to
a base station.

Wireless sensor networks have many advantages over regular networks.
Since the nodes are small and portable, it is relatively easy to deploy the
network. Furthermore, most wireless sensor networks are designed in such
a way, that the network can organize itself. For example, the nodes can
cooperate to find the shortest path to the base station. Having many small
nodes also increases the coverage of a system. As in [39], having only a few
expensive measurement systems does not give the fine grained results that
a wireless sensor network can deliver. Since the nodes are small, usually
battery powered and possess only a little processing power, they are cheap.
Hence, it is possible to deploy many sensors at minimal costs. Of course,
wireless sensor networks do have some disadvantages as it comes with certain
drawbacks and constraints. Most of these constraints are a direct result from
the limited power on board a single node.

• Sending a single message is orders of magnitude more power consum-
ing then calculations. One of the goals of a wireless sensor network
design is therefore to limit the number of messages transmitted. An
additional benefit of reducing the number of messages is that with
less messages, the chance of message collisions is smaller and network

6

reliability increases.

• With wireless sensor networks, the density of the network is also a
problem. When many nodes are in each others communication range,
which can happen for a fine grained measurement setup, the chance
of message collision or contention increases again. This of course is a
consideration that must be made before deployment.

• A final drawback of the lack of power is that positioning is very hard.
For instance, the power requirements of GPS make it unusable in wire-
less sensor networks [2].

In this work we are interested in distributed Kalman filtering. To do this
there is a need for a method to exchange information efficiently between
nodes. Over time, different methods have been developed for communica-
tion, one of which is gossiping [32]. The main benefit in gossiping is the
lack of network organization, lack of required global state and relatively low
message count. Hence, gossiping is ideal for use in decentralized networks
[5].

The main idea of gossiping is based on the natural phenomenon of rumor
spreading in a community, hence the name. Gossiping is generally used
for two objectives. The first objective is dissemination of various types
of information across a network. The second objective that gossiping can
achieve is consensus. In consensus, every node already has the information,
but it wants to agree on it with the entire network [18].

For the two objectives mentioned earlier, different gossiping schemes have
been invented. Among other, these implementations differ in their network
coverage, their energy efficiency, latency and overhead.

• Network coverage is the effectiveness of the algorithm to spread its
information to as many nodes as possible, preferably to all nodes in
the network.

• The network efficiency metric is mostly concerned with the number of
messages that need to be exchanged, since communication is the main
power drain.

• The overhead metric is about the number of messages that is not
effectively transferring data, but instead shares information about the
algorithm itself.

• In consensus gossiping another important metric is the convergence
rate, which is the rate in which all nodes (approach) the network wide
average.

7

Metric N
et

w
o
rk

C
ov

er
a
g
e

E
n

er
gy

E
ffi

ci
en

cy

L
a
te

n
cy

C
on

ve
rg

en
ce

ra
te

O
ve

rh
ea

d

Gossip + 0 - 0
Push&Pull ++ - – –
Randomized Gossip + 0 – + +
Broadcast Gossip ++ + + ++ ++
Geographic Gossip + – - - -

Table 2.1: A comparison of the different Gossip algorithms with their re-
spective properties.

The gossiping strategies currently proposed differ in their criteria for se-
lecting to which neighboring node data should be sent

The main way to influence these metrics, is by tuning the selection criteria
which select the nodes who will receive a message. For example, by sending
a message to all nodes in range instead of to a single node, the local values
among the different nodes in the network might be able to convergence
quicker. See Table 2.1 for an overview of the different metrics for the different
gossip algorithms. The different gossip algorithms will be discussed in depth
next.

For data dissemination, the original “Gossip” algorithm is the most used,
along with its extensions. Another important gossip algorithm is Push&Pull.
Both dissemination algorithms (with their extensions) will be discussed in
the subsequent sections. For consensus gossiping, there are several other
algorithms. Three of these consensus algorithms - Randomized Gossip, Geo-
graphic Gossip and Broadcast Gossip which are popular in literature, will
be discussed in subsequent sections.

The first algorithm, Gossip [13], can be used to spread one piece of
information across a network in such a way that most of the network will
receive this message. The goal of this algorithm therefore is to spread a
message in an efficient matter to most of the nodes. Gossip is able to decrease
the number of messages send by up to 35%, while still reaching almost all
nodes.

In Gossip, the algorithms starts with flooding, i.e. always forwarding
messages, for the first few time steps to make sure the gossiping is started
up correctly. After this initialization phase, the node will retransmit any
incoming message with probability p1 after waiting for a predefined time
period of T . Messages that have been received during the waiting time T ,
will be ignored. In practice, this means that the Gossip algorithm is nothing

8

more than a flood algorithm with a way to reduce the flooding. If p1 = 1,
then the algorithm is just a flood algorithm [18].

An extension to Gossip is proposed in [13]. This extension not mentioned
in table 2.1 adds a small enhancement to maximize the coverage. If a node
has a small number of neighbors, it will increase its probability, making the
probability to send a message higher. This makes the coverage of Gossip2
slightly better than the original Gossip. The coverage can still not be guar-
anteed as only the probability is increased. To make the probability even
higher, a second extension is presented in [13].

Another extension to Gossip from [13] includes a method for better cover-
age. When a node has decided not to transmit, it will listen to the messages
spread by its neighbors, waiting for at least m copies of the message. If
the message is not overheard at least m times, the node will transmit the
message anyway. In this way, the Gossip3 algorithm is actively expanding
the coverage by sending its message when the coverage is measured to be
low.
Push&Pull gossiping [17] builds further on the ideas from the previous

gossip algorithm. Developed at Berkeley, its goal is to try and minimize the
number of update rounds required to spread a distributed database over the
entire network. Push&Pull is developed to be more robust for failures and
for it to handle node failures in a sparse network.

The Push&Pull algorithm is split into two phases. In the first phase, a
message along with an age counter is spread out to a random neighbor, i.e.
pushing a message to a random neighbor. In this phase, also called the
exponential growth phase, every iteration doubles to number of nodes that
known the message. When the message is of a certain age, the node switches
to the pull phase and only spreads its message when it is called upon by
a neighbor. This phase called the quadratic shrinking phase spreads the
message even faster since the number of nodes that are uninformed will
decrease in a squared fashion.
Randomized gossip [6] is an algorithm that is used for consensus, where

every node already has a value and the network only has to agree on a global
value. The name randomized Gossip comes from the fact that the algorithm
will choose a receiving node at random.

The procedure is as follows. In every time step, every node will wake up
with probability 0.5. If a node -j - is active, it will contact at most one
neighbor with probability 1/d, where d is the number of neighbors. The
neighbor of choice will be selected at random, while active nodes ignore any
request. If an inactive node k gets a request from and only from j, then
node k sends back its values, after which both j and k take the pair wise
average of the received values.
Geographic Gossip [8] is an extension on randomized gossip with the

addition of geographical information. With this addition, a basic assumption
is made that the nodes know the location of all other nodes. As noted in [6],

9

randomized gossip computes pair wise averages with their one hop neighbors,
making the convergence speed in typical wireless sensor network layouts
slower than necessary. Geographic gossip therefore combines geographic
routing with gossiping. In each gossip round, a node selects a location (y)
in the network to send a message to. The location picked can be anywhere
in the network, requiring multiple hops to reach. The sender node picks
a neighbor closest to y and sends the message. This node will forward to
message to the next node closest to y, unless itself is closest to y. If the
receiving node accepts the package, the receiving node will return a message
with its local values. With their values shared among them, both nodes will
calculate their new values by taking the pair wise average of the received
value and its local values.

Broadcast gossip [4, 3] is specifically designed for wireless sensor net-
works that want to achieve consensus. It keeps in mind that the medium
used in such a network is the air, and that every message send, can be
received by all neighbors, whether they were addressed or not. Further-
more, the required two way of gossip (i to j, j to i) means that the chances
for negative effects, e.g. packet loss, of wireless transmissions are doubled.
In broadcast gossip, a node wakes up with a certain probability and when
awoken, it broadcasts its state to all its neighbors. All the neighbors that
receive the message, update their interval values with a mixing parameter
and the gossip algorithm stops. In [4] it is shown that the values do conver-
gence with probability one, although the final calculated value is not exactly
the network wide average.

The gossip algorithms discussed in the previous sections will be used to
distribute a Kalman filter over a network of nodes. In the next section, the
distribution process of the Kalman filter will be discussed.

2.2 Distributed Kalman Filtering

Kalman filtering is a technique to get reliable information from noisy in-
puts, like sensors that have results with noise. By applying the Kalman
filter, results from these sensors can be used for all kinds of applications like
navigation, climate control and motion control. Usually, Kalman filtering a
central node that performs all calculations [38] is used. In this thesis, the
goal is to eliminate this central node and distribute the Kalman filter over
all nodes.

In distributed Kalman Filtering, it is necessary to have communication
between the different nodes in a network. An issue in wireless sensor network
is that communication is expensive in terms of battery power and life time
of the network [5]. The number of messages depends on the communication
protocol, the topology and connectivity of the network, but also on the
amount of information that needs to be spread.

10

The following sections will discuss the Kalman filter algorithm, along with
the different ways to distribute this algorithm in a efficient way suitable for
wireless sensor networks.

2.2.1 General Principles of Kalman Filtering

Sensors, especially those on wireless sensor network nodes like the TelosB,
give noisy measurement values. The measurement values behave as if a
stochastic random variable is added to the measured value. To alleviate this
problem, some sort of filtering can be performed to remove this stochastic
noise.

To perform this filtering for static processes, least squares estimations
needs to be performed which is able to estimate unknown parameters with
stationary random variables [19].
To estimate n unknown parameters with l measurements, the basic equation
to characterize the measurement is:

z = H × x+ v (2.1)

Where the vector x is the n-dimensional vector representing the unknown
parameters or the state. The l-dimensional vectors v and z represent the
observation noise and the measurement respectively. The matrix H of size
l× n is the design matrix and describes the relationship between the meas-
urements and the parameters. The noise vector v is a stochastic random
variable characterized by a Gaussian probability density function. Equation
2.1 will most likely be inconsistent due to the noise added by the vector v.
Therefore, the stochastically best estimate x̂ is the unbiased best estimate
representing x.

As it is not possible to model every aspect of a process, the way forward
is to find a best estimate of x̂, along with the correctness of this estimation
represented as the covariance matrix P . This matrix gives information about
the covariance of the estimation of x̂, i.e. the “correctness” of the estimation.
The minimization problem to find x̂ can be written down in equation form
as seen in equation 2.2.

vTR−1v = (z −Hx̂)TR−1(z −Hx̂) (2.2)

In equation 2.2, R is a matrix representing the weight given to the ob-
servations, as defined in equation 2.3. Reducing this equation results in the
equation as can be seen in equation 2.4.

R = cov(v) (2.3)

x̂ = (HTR−1H)−1HTR−1z (2.4)

11

To get the covariance matrix P describing the error in this estimation,
the equation in 2.5 can be used:

P = (HTR−1H)−1 (2.5)

It can be proven that the matrix P is the optimal covariance matrix,
meaning that x̂ is the best linear unbiased estimation of the parameters
given by z [21].

It is possible to find an estimation for x̂ that is the best given the para-
meters. However, for this estimation, it is required for the least squares
estimator to have access to all measurement values, past and current. On a
wireless sensor node, this becomes a problem with regards to storage space
and computational power: for every new measurement, all previous meas-
urements need to be accessed and incorporated.

One way to solve this problem, is by converting the least squares estimator
into a recursive algorithm. In [19], it is shown that this is indeed possible.
The equations for such a recursive estimator, are shown in equations 2.6 to
2.8.

Kj = Pj−1H
T
j (HjPj−1H

T
j +Rj)

T (2.6)

This K, called the gain matrix describes the gain achieved between the
new measurement (zj) with respect to the previous estimation (xj−1) in
sample instant j − 1. Using this gain, it is possible to calculate the new
states without using all previous measurements directly.

The equation for the covariance matrix P and estimation vector x are
given in equations 2.8 and 2.7.

x̂j = x̂j−1 +Kj(zj −Hj x̂j−1) (2.7)

Pj = (I −KjHj)Pj−1 (2.8)

Starting with initial estimation vector x̂0 and covariance matrix P0, this
recursive algorithm is able to find the best possible linear estimation for
every j > 0 [19].

For the least squares estimator to work using a non-stationary random
process, i.e. the state vector and stochastic behavior depends on time, the
least squares estimator needs to be extended. The Kalman filter is such an
extension, where each measurement is taken at discrete times denoted as
k. The Kalman filter is able to use multiple (noisy) input sensors, while
still able to calculate the optimal linear estimation. Kalman filtering uses a
matrix that describes the relationship between two consecutive state vectors,
i.e. the transition matrix. The equation for this relationship is given in
equation 2.9.

12

xk = Axk−1 + wk−1 (2.9)

The transition matrix A here is a n× n matrix and w is a n-dimensional
vector representing the noise. This vector follows a Gaussian distribution
with zero mean and has an n × n covariance matrix Q. This vector and
matrix describe the noise caused in the system by modeling uncertainties.

The gain calculation, or Kalman Weight, remains mostly the same equa-
tion as the gain calculation in the recursive least squares, as can be seen in
equation 2.10.

Kk = PkH
T
k (HkPkH

T
k +Rk)−1 (2.10)

However, the vector x and matrix P cannot be adopted from the recursive
least squares algorithm, since these two matrices change over time. Instead,
the vector x and matrix P need to be predicted using the dynamic model
given earlier in equation 2.9. These new equations are given in equations
2.11 to 2.14.

Time update equations of the Kalman filter are given in equations 2.11
and 2.12

x̃k = Ax̂k−1 (2.11)

P̃ k = APk−1A
T +Q (2.12)

Measurement Updates equations are given in equations 2.13 and 2.14

x̂k = x̃k +Kk(zk −Hkx̃k) (2.13)

Pk = (I −KkHk)P̃ k (2.14)

As can be seen in the equations, the Kalman filter is split up into two
separate steps. These two steps alternate, giving the recursive nature of
the Kalman filter. In the first step, the time update (a priori) is performed
to make a prediction of both the state vector and the covariance matrix
based on the previous state. In the next step, the measurement update
(a posteriori), this prediction is updated with the current value from the
sensors. This process is shown in Figure 2.1.

The measurement update uses the Kalman weight to determine the cor-
rectness of the prediction. This Kalman weight, represented as the matrix
K, is the weight that determines how much a prediction can be trusted. If
the measurements are very accurate (R ≈ 0) or the predicted state is of
very low accuracy (for example because of a high Q), the matrix K will
become the identity matrix I. From equation 2.13, it follows that the new
measurements will be highly weighted, yielding that the estimated state is
mainly determined by the current measurements rather than the predictions
from the process model. However, when the measurements are not accurate
or the process noise is very low, the K matrix will become 0. The result of

13

Figure 2.1: The Kalman process, an alternating sequence of measurement
and time updates.

(a) (b)

Figure 2.2: A wireless sensor network exchanging information. (a) Meas-
urement exchange; (b) Estimation exchange.

this weighing is that the prediction is weighted at a high level, ignoring the
measurement completely.

In the following sections, the centralized Kalman filter will be adapted to
a decentralized Kalman filter.

2.2.2 Adaptation to Distributed System

A central system requires a single node to perform all work. As discussed
earlier, this approach has its drawbacks since it creates a single point of
failure and places a bigger burden on a single node.

The same holds for Kalman filtering, where in a centralized implementa-
tion, one node will perform all the filtering. If all nodes need information
produced by the Kalman filter, the results should then be transmitted back
to the all other nodes. This is suboptimal and a distributed Kalman can
cope with these problems. In figure 2.2, two wireless sensor networks are
depicted performing a distributed Kalman filer. In distributed Kalman fil-

14

(a) (b)

Figure 2.3: The distributed Kalman process, including the same steps as
shown in figure 2.1, now including a distribution step. (a) Measurement
exchange; (b) Estimation exchange.

tering, an extra step in the Kalman process is added, called the Distribution
step. In this step, the distribution of the Kalman filter takes place. The
extra step is shown, along with the usual Kalman filtering steps in figure 2.3.
There are different ways to perform a distributed Kalman filter, each with
their own advantages and drawbacks. This section will outline this different
approaches to distributed Kalman filtering.

The most straightforward method to distribute a Kalman filter is by using
Measurement Exchange, depicted in figure 2.3(a). In this distribution
model, the measurements yi of every node is transmitted to its neighbors.
This received measurement is then used in the receiving node to calculate
the new estimation x using the standard Kalman filtering equations. This
mechanism however has several drawbacks. One of these drawbacks is in the
fact that the measurement yi will be processed multiple times by different
nodes. Furthermore, for a node to process the information contained in yi,
the model describing the linear process needs to be exchanged as well. The
final major drawback is that yi does not necessarily contain all information
needed to process yi [34]. Because off all these drawbacks, measurement
exchange will not be further explored in this work.

The logical step from exchanging measurements, is Estimation Ex-
change, depicted in 2.3(b). In this method, the measurements yi are not
exchanged, but instead the processed estimates xi are, solving the problems
of measurement exchange: the local measurement yi is only processed by a
single node which has to proper knowledge to do so.

In estimation exchange, two mechanism exists in the way estimates are
merged into the local state: synchronization and fusion.

Usually, synchronization using estimation exchange is achieved via con-
sensus, where the algorithm tries to minimize the differences between the
different estimates xi for all nodes in the network [24]. In principle, con-

15

sensus is achieved by performing several rounds of weighted averaging to
come to a point where xi − xj is minimal. In 2.15 this algorithm is shown.
In [14] it is shown that this weighted averaging is able to calculate a value
that is the average of all initial values of the individual nodes in the network.

x̂i = (1− w)xi + wxj (2.15)

The primary objective from which consensus strategies were designed was
the need for clock synchronization across a network. From this, it followed
that it can also be used to synchronize other values, such as local estimates
x. The downside of using synchronization for distributed Kalman filter is
however, that the error of the estimates are synchronized as well, instead
of reducing it [34]. Local estimates therefore become less accurate because
of the synchronization. In addition, local covariances are not synchronized.
As a result of this, the Kalman gain cannot benefit from the exchanged
information.

The second form of estimation exchange is fusion. In fusion, the local
covariance matrices are exchanged as well when merging the estimates. Fu-
sion therefore can use this information to remove uncertain areas of the
received information. The main fusion method is covariance intersection
[15]. Covariance intersection makes use of a weight that determines the way
two estimates are merged. To be able to cope with unknown covariances,
several algorithms for these weights have been developed. The algorithm as
described in [23] is one of the most popular algorithms.

Covariance intersection performs the fusion in three steps. These three
steps are:

1. Determining the mix weight;

2. Calculating the new covariance matrix P ;

3. Calculating the new estimation vector x.

The first equation, responsible for calculating the weight is given in Equa-
tion 2.16.

Wm =
Tr(Pm)−1∑n
i=0 Tr(Pi)−1

(2.16)

The result of equation 2.16 gives for every arbitrary covariance matrix a
value 0 ≤Wm ≤ 1 and

∑n
m=0Wm = 1.

The next step is applying this weight to both the covariance matrix Pm

and estimation vector xm. The equations for this are given in equations 2.17
and 2.18.

P−1m =

n∑
i=1

WiP
−1
i (2.17)

16

Property Value [unit]
Air density (p) 1.205[kg/m3]
Thermal conductivity (k) 0.0257[W/mK]
Volumetric capacity (Cv) 1210[J/m3K]

Table 2.2: Properties of air at 20 degrees Celsius

Property Value [unit]
Air density (p) 1.205[kg/m3]
Thermal conductivity (k) 1[W/mK]
Volumetric capacity (Cv) 100[J/m3K]

Table 2.3: Model properties of air at 20 degrees Celsius

x = Pm

n∑
i=1

WiP
−1
i xi (2.18)

2.3 Temperature Model

As described in the section 2.2.1, a model is required to describe the state
changes between two consecutive time steps. This transition matrix is de-
pended on the effects that can happen between these two time steps. In
this thesis, the natural effect monitored is the air temperature of a closed
room. Therefore, all relevant properties of this effect need to be expressed
in the model. The model is derived from the model for diffusion developed
at TNO [34].

In table 2.2, all relevant parameters of the model are shown. However,
temperature is both a convection and a conduction process which results in
problems when modeling temperature as a linear process: convection is a
process that is very non-linear. To alleviate this, the convection part of the
process will be modeled using conduction. The actual values that are used
in the temperature model are therefore different than the actual values in
nature. In table 2.3, the used values are shown.

In this thesis, a grid of 9 by 9 meters is used, with each grid point having
a size of one meter (dl) by one meter (dw). It is assumed that no heat is lost
in the z direction.

At each grid point q, the equation shown in 2.19 is the time continuous
model of the temperature, were F q is the new temperature of a cell, and
a being the transferred heat from one cell to another. All cells have four
neighbors, denoted as north, south, west and east.

F̃ q = aF q + anF
qn + asF

qs + awF
qw + aeF

qe (2.19)

17

The temperature F q is determined using the following equation

F = pCvdldw[kgJ/Km4] (2.20)

Given there is no wind, it is assumed all cells spread (a[n,s,w,e]) 0.3kg/m3

of air to each neighboring cell. This spreading can be modeled using the
following equation:

G = 0.3k
dl
dw

[kgJ/m4Kt] (2.21)

Filling in the parameters of air, the continuous model of temperature in
a room can be written as seen in equation 2.22.

F̃ q =
−1.2× 0.0257

1.205
F q +

0.3× 0.0257

1.205
F qn +

0.3× 0.0257

1.205
F qs

+
0.3× 0.0257

1.205
F qw +

0.3× 0.0257

1.205
F qe

(2.22)

To be to use this continuous model in a Kalman Filter, the model needs
to be converted to a discrete model. This last step results in the transition
matrix A that will be used in the Kalman Filter.

A = (
F

ts
−G)−1

F

ts
[unitless] (2.23)

18

Chapter 3

Implementation

In this work, the main aim is to assess the feasibility, performance, reliability
and functioning of different Kalman filter distribution methods on a wireless
sensor network that communicates via gossiping. To test the feasibility of
a distributed Kalman Filter with gossiping, an implementation needs to
be developed and tested. In this chapter, an overview will be given of the
architecture as used in the implementation of the distributed Kalman Filter.

3.1 TelosB Wireless Sensor Node

For this research TNO has provided TelosB nodes which will be the plat-
form for the implementation. These nodes are created from an open design
that may be implemented by everyone. These specific nodes, that are often
used for wireless sensor network research, are created by MEMSIC. As any
wireless sensor node, the node is composed out of several chips, together
forming the node.

The main controller of the chips, the microcontroller, is a 16 bit TI
MSP430 RISC microcontroller. This microcontroller will run the actual
code. To store this code a memory of 48 KB is provided, while the variables
can be stored in a RAM of 10 KB. [20]

Besides the microcontroller, a wireless sensor network needs to commu-
nicate. The communication platform on the TelosB is the CC2420 radio, an
IEEE 802.15.4 compliant radio. This radio can send data with a speed of
250 kbps using the antenna integrated in the circuit. Sensors are provided
for battery voltage, light, humidity and temperature [31]. The power re-
quired for the node is provided by two AA batteries that can be placed in a
holder on top of the circuit, providing the energy required for functioning.

To provide the necessary tools and hardware abstraction, an operation
system is required. The operation system of choice for this work is TinyOS,
discussed further in the section 3.2. In Table 3.1, an overview is given of the
TelosB node with the most important specifications.

19

Current drawn by processor in active mode 23 mA
Current drawn by processor in sleep mode 5.1 µA
Current drawn by radio in receive mode 23mA
Current drawn by radio in idle mode 21 µA
Current drawn by radio in transmit mode 17 mA (@ 0dBm)
Frequency band 2400 MHz to 2483.5 MHz
RF power -24 dBm to 0 dBm
Outdoor Range 75 m to 100 m
Indoor Range 20 m to 30 m
Visible Light Sensor Range 320 nm to 730 nm
Temperature Sensor Range -40◦ C to 123.8◦ C
Temperature Sensor Accuracy ± 0.5◦ C @ 25◦ C
Temperature Sensor Resolution 0.01◦ C
Size (mm) 65 x 31 x 6 (without battery pack)

Table 3.1: Overview of important specifications of the TelosB wireless sensor
node.

3.2 TinyOS

As described in section 3.1, an operating system is required for ease of
development and hardware abstraction. The operation system of choice is
TinyOS, an operating system that supports several commercially available
wireless sensor nodes, including the TelosB [36].

TinyOS, currently at version 2.1, is specifically designed for wireless sensor
node applications. TinyOS is programmed in a special version of the pro-
gramming language C, called nesC, providing additional language features
like components, concurrency and events [11]. A typical nesC application
is made out of several of these components wired together to form a single
application. Every component in TinyOS can provide interfaces that other
components can use. An interface defines a contract which commands and
events need to be implemented. By setting up TinyOS using these inter-
faces, the code is independent from the actual implementation, required for
the platform independence that TinyOS tries to achieve. For example, every
platform has its own Timer implementation that implements the same Timer
interface to cope with the different hardware. In the consuming component
however, only a single interface has to be used.

The events provided by TinyOS can range from hardware interrupts to
timers to callbacks from earlier command invocations: TinyOS used the so
called split-phase operations, where long tasks are split up into a “start”
signal and an event signaling when the task is done. This provides a non-
blocking way of performing long tasks, keeping the system responsive at all
times. An example of such an operation is shown in figure 3.1.

20

// start phase

send();

//completion phase

void sendDone(error_t err) {

if (err == SUCCESS) {

sendCount++;

}

}

Figure 3.1: An example of the split-phase technique used in TinyOS

3.3 Architectural Overview

As discussed in the previous section, a typical TinyOS application is com-
posed out of multiple components, together forming a single application.
The Kalman Filter implementation from this work also follows this pattern:
it is composed out of several system blocks and custom created blocks. The
blocks specifically created for this work, are components to perform the Kal-
man filter, gossip, store relevant parameters in a log and transmit this log
when required, matrix calculations and a fixed point library. In figure 3.2,
a figure is shown depicting the blocks and their interconnections. In figure
3.3, a flow chart is given of the control logic through the application. The
different colors in the two figures give an impression of which logic is per-
formed by which block. In the next sections, the blocks from figure 3.2 and
the steps from figure 3.3 are further discussed.

In figure 3.2, all (primary) components used are shown, with every arrow
showing its connection to the other blocks, stating the implemented interface
provided to the block that is pointed to. The depicted gray blocks are blocks
provided by the TinyOS platform, while all other blocks are written for this
thesis. For example, LedsC is the platform independent implementation of
the LED controller; the ActiveMessageC component provides communica-
tion and RandomC is a pseudo random number generator.

As stated earlier, these blocks work together and are tied together by
the main processing unit KalmanFilterNodeC to perform the needed work.
In figure 3.3, for clarity, the logging function provided by HistoryC is not
depicted. Furthermore, the described split-phase, event based model from
TinyOS is modeled in figure 3.3 as a queue that is polled at set times. In
reality, events are generated that initiate the flow.

From the flowchart in figure 3.3, it can be seen that the timer is the start
of the whole process. When the timer goes off - it is set at the sampling
frequency - the Kalman Filter process is started. The first step in this pro-
cess is to read the current temperature from the sensors. This temperature

21

Figure 3.2: The components used in the implementation of the Kalman
Filter

will be used later during the Kalman Filter Measurement update. Following
this reading of the sensor, the Kalman filter performs its prediction step, as
described in section 2.2. In this step, the Kalman filter will predict the state
according to an estimated mean and a covariance matrix. In the next step,
this prediction is fed into the measurement update, that with the sampled
temperature will result in a new estimate vector with accompanying covari-
ance matrix. The final step in this process, is the distribution step. In this
step, information about the local are spread out to its neighbors, depending
on the gossip and distribution algorithm.

At times that the timer did not signal, the node is in its receive state. In
this state, messages from its neighbors can be processed. This processing
is again dependant on the distribution algorithm, performing different pro-
cessing for different algorithms.

3.4 Platform Specific Considerations

The current platform of choice for this thesis is the TelosB wireless sensor
node. However, at TNO interest has been shown for other wireless sensor
platforms, like the TMote platform [22]. This platform is comparable with
the TelosB platform, but differs in its radio, microprocessor and other com-
ponents.

Since TinyOS has build in support for platform independent development
via components and interface, it has been decided to write a fixed point

22

Figure 3.3: Flowchart depicting the flow through the distributed Kalman
algorithm

23

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1

Table 3.2: The number 35 as represented in integer arithmetic

29 28 27 26 25 24 23 22 21 20 2−1 2−2 2−3 2−4 2−5 2−6

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1

Table 3.3: The same binary representation as table 3.2, using the Q10.6
fixed point notation

component and a matrix calculation component in nesC. The current im-
plementation is platform independent: it does not use any microcontroller
specific code. However, future implementation that do use microcontroller
specific code can be plugged into the module, without any need for refactor-
ing. The matrix component uses this fixed point component for fixed point
matrix calculations.

In the following sections, these two components will be described in further
detail.

3.4.1 Fixed Point Component

The TelosB platform has, just like most microcontrollers, no support for
floating point arithmetic, i.e. support real numbers. While this can be
simulated in a software environment, this is generally bad for performance.
As a solution to this, fixed point arithmetic can be used. In this method,
calculations are performed using native integer arithmetic, directly in the
hardware. The real part of the number is stored starting at a certain bit, as
explained further on. By default, TinyOS has no component or library for
fixed point calculation. Therefore, a custom component that can be used
throughout the application has been developed for this thesis work.

In fixed point arithmetic, the weight of every bit is different than in classic
integer arithmetic. In the table 3.2, a typical 16 bit integer is shown, repres-
enting the number 35. To retrieve the number represented in this diagram,
the weights of all bits that are one need to be added. This results in the
following equation: 20 + 21 + 25 = 35.

In this work, two fixed point formats will be used, one of which is Q10.6.
In this format, 6 bits will be used to represent the fractional part of the
number, while 10 bits will be used for the integer part and sign. This is
achieved by shifting the 20 bit to the left with 6 positions. If the same
binary representation as the Table 3.2 is used in this Q10.6 format, the
table as shown in Table 3.3 is formed.

Again, just as in the previous diagram, the number can be retrieved by
adding all weights for bits that are one: 2−1 + 2−5 + 2−6 = 0.546875.

24

A big advantage of using this method, is that the simple arithmetic func-
tions like adding and subtracting, can be performed using integer arithmetic
that is available in the hardware and thus providing the expected speed and
efficiency. Multiplication and division however does require some extra steps
in the process to get results in the same Q10.6 format as the input. An ex-
ample for multiplication is given in equation 3.1

x = (a× b)� pointlocation (3.1)

Since a part of the fixed point number is used for the fractal part, the
range is limited. For example, the maximal value a number can have in
Q10.6 is 15 one bits in a row, representing the number 511.9844. Likewise,
the smallest precision that can be reached is the value of a single one in the
lowest position, representing 2−6, or 0.015625. Any number that required
more precision to function, cannot use this representation.

As described earlier, this work uses two fixed point representations. The
first one is Q10.6 as discussed in the previous section. The second repres-
entation is Q21.11, with both more space for the integral part and for the
fractal part. This representation will be used for all calculation in the matrix
component described in the next section, since it can provide more precision
as well as less chance of overflow: the largest possible number that can be
expressed in this format is 1048575.9995, with a precision of 0.00048828125.
As can be seen from these numbers, using this format will result in results
with outcomes closer to the outcome when using real numbers.

In the fixed point component, a method is provided that converts between
the two formats, losing precision when going to the smaller format. Values
that will result in overflow are clamped to the maximal and minimal value
automatically.

3.4.2 Matrix Component

The Kalman filter uses matrix calculations for most of its computations.
Therefore, a library specifically designed for this work is required. For this,
a TinyOS component is written to perform operations on matrices. By
setting it up as a TinyOS component, future implementation can be plugged
in without any changes to the rest of the code. The module is setup in such
a way that it uses the fixed point component, making it possible to calculate
matrices with fractals.

The implemented Matrix library is able to perform matrix comparisons,
transposition, addition, subtraction, multiplication with other matrices, vec-
tors or scalars, matrix inversion and calculate the trace. The most stressing
matrix operations are multiplication and inversion, both often used in the
Kalman filter. In the current implementation, multiplication has the com-
plexity of O(N3). Inversion is performed via Gauss-Jordan elimination, an
operation of complexity O(N3) as well.

25

Because the matrix library uses the fixed point component for its calcu-
lations, the results of intensive calculations, for example a matrix inversion,
are not the values that will be obtained when using floating point arithmetic.
This is caused by the Q21.11 representation that regardless of its precision
in the order of 5× 10−4, is less precise than floating point numbers. To see
this offset from the actual values, an experiment is setup with the matrix
from equation 3.2.

x =


3 5 −1 −4
1 4 −0.7 −3
0 −2 0 1
−2 6 0 0.3

 (3.2)

When the matrix from equation 3.2 is inverted in floating point, the
inverted matrix is as shown in equation 3.3.

x−1 =


0.6546 −0.9355 −0.1930 0.0142
0.1979 −0.2829 −0.1036 0.1558
0.3683 −1.9565 −4.2643 −0.4230
0.3962 −0.5662 0.7924 0.3112

 (3.3)

In the fixed point implementation however, this inverse will be calculated
as the equation 3.4.

x−1 =


0.6544 −0.9348 −0.1912 0.0142
0.1983 −0.2832 −0.1034 0.1558
0.3683 −1.9547 −4.2635 −0.4249
0.3966 −0.5666 0.7932 0.3116

 (3.4)

When comparing these two results, the accuracy can be measured to be
at two digits. However, every step in the calculation will continue to add to
this error, resulting in a bigger error at the end of the calculation step. To
show this, the inverted matrix in equation 3.4 is inverted again, resulting
in the original matrix from equation 3.2. However, because of the fixed
point calculus, this matrix will only be approximated. The error of this
approximation, on average, is 0.1. As a result of this error, the Kalman
filter implementation can only approach a floating point implementation.

As previously stated, both multiplication and inversion are operations
with a complexity of O(N3). As a result of this, the operation can take
a lot of time to calculate the results. To test this, a timing experiment is
performed using representatives 9 × 9 matrices. The size of these matrices
is based on the experiments that are performed in chapter 4. The results of
this timing experiment is shown in table 3.4.

26

Inversion [ms] 0.30
Multiplication [ms] 0.25

Table 3.4: Time taken for matrix calculations to be completed

VDD [V] d1 [C]
3 -39.6

SOt [bit] d2 [C]
14 0.01

Table 3.5: Conversion for the sensor data to actual temperatures.

3.5 Temperature Measurement

In section 3.3, the architectural overview of the system is given. From figure
3.3, it follows that, once the timer has gone off, the first step in the Kalman
filtering processes as implemented is the collection of the sensor data. This
step is performed using the TinyOS split-phase execution model. In the
first step, a request is made to the operating system to get the temperature
from the onboard chip. Because of the interface / component setup from
TinyOS, this call is platform independent. When the OS has received the
temperature from the onboard sensor chip, the OS raises an event. In this
event, a sensor dependant value is supplied, leaving further processing to
the application.

The TelosB platform at TNO uses the Sensirion SHT1x humidity and
ambient temperature sensor for temperature measurements [31]. The value
returned by this sensor needs to be converted to degrees Celsius before any
other processing can happen. For the SHT1x, this conversion is a linear
equation dependent on the system voltage and the number of bits that are
read from the sensor. The equation that needs to be executed is shown in
equation 3.5.

T = d1 + d2 × SOt (3.5)

In this equation, SOt is the digital temperature readout provided by the
sensor. Values d1, d2 are the voltage and data width constants respectively.
For the TelosB, the data width is set to be 14. In table 3.5, the conversion
between voltage, data width, d1 and d2 is given.

The equation resulting in degrees Celsius therefore is given in equation
3.6.

T = −39.6 + 0.01× SOt] (3.6)

For some parts of the implementation, a random number generator is
required. In TinyOS, the default Pseudo Random Number Generator uses
the ID of the node for its seed. Because the same random numbers would
be used during every run, this is suboptimal. By using the first measured

27

temperature alongside the ID of the node to seed the PRNG, this problem
is averted.

3.6 Data Processing

In the data processing step, an estimation of the temperatures in the grid
is performed using the measured temperature is. When the software is con-
figured in as a distributed Kalman filter, the information from its neighbors
will also be processed in this step. In this section, it will be assumed all
information has been gathered into the local state.

In this thesis, every single wireless sensor node will try and estimate the
temperature of all grid cells in the network. This means that the Kalman
Filter will need to keep track of N states, where N is the number of grid
cells. Therefore, the resulting estimation vector has N elements. As dis-
cussed in section 2.2.1, the covariance matrix keeps track of the error in the
estimations. With N states, this matrix will be N×N in size. Therefore, the
bottleneck of the distributed Kalman filter is the covariance matrix. Because
of the quadratic size increase, the size of the network has been determined
to be a grid of 3× 3, resulting in 9 different states. Along with the O(N3)
multiplication and inversion operations, this was deemed stressing enough
to evaluate the performance of the wireless sensor nodes.

For the Kalman filter implementation, two forms of equations have been
assessed. In form 1, as seen in equation 3.7, the gain K needs to be computed
before the measurement update can happen. In form 2, as seen in equation
3.8, this gain is not calculated.

xp = Ax (3.7a)

Pp = APA′ +Q (3.7b)

K = PpC(CPpC
′ +R2

s)−1 (3.7c)

P = (I −KC)Pp (3.7d)

x = xp +K(y − Cxp) (3.7e)

xp = Ax (3.8a)

Pi = (APA′ +Q)−1 (3.8b)

P = (Pi + C ′(R2
s)−1C)−1 (3.8c)

x = P (Pixp + C ′(R2
s)−1y) (3.8d)

In these equations, A is the transition matrix, Q the process noise, C the
observation vector describing the local grid cell, Rs the sensor noise and y
the measurement value.

28

Although form 2 uses less multiplications (6 in form 2 versus 11 in form
1), the two inverse calculations make form 2 more expensive than form 1.
Since C is a vector of size 9, in form 1 the inversion becomes an inversion
of a 1 × 1 matrix which can be implemented as a single division. The
two inversions in form 2 however, are both a inversion of a 9 × 9 matrix.
As discussed in section 3.4.2, inversion is a costly operation requiring a
temporary matrix of 9×18 for the Gauss Jordan algorithm to work. Form 2
can be more efficient, but only in cases where the state is small with relation
to the measurement. As this is not the case in this work, the Kalman filter
implementation will use form 1.

3.7 Data Storage

To be able to measure the performance of the Kalman filter, some way of
extracting run time information from the algorithm is required. At every
time step, the required information for performance analysis needs to be
persisted.

The information that is meaningful for this evaluation are:

1. The temperature as measured directly by the sensor on the node. This
value will be used to evaluate the performance of the Kalman filter;

2. The neighbors that have contributed to the current Kalman filter state
in this round;

3. The estimation vector containing all temperature estimates for the
current round.

Implementing a way of persisting the data can be done is several ways, of
which two are considered.

1. Sending information during the test.
By sending the information, the base station is able to make real time
measurements of the test in progress. The downside of this approach
is that the transmitted data can cause interference with the normal
test, causing problems like missed messages. Furthermore, the base
station needs to be within range of all nodes performing the test.

2. Storing information during the test.
By storing all interesting information during the test on the node until
it is retrieved does not have the same problems as live transmission
has. All data is send after the test, causing no additional collisions.
Range is also not a problem, since the nodes can be moved within the
range of the base station for data extraction. The downside of storing
the information is the limited storage space available on the nodes.

29

To store the wanted information, 22 bytes per log item needs to be
allocated. In practice, it means that all remaining storage space will
be used by the log. An experimental maximum of 200 log entries was
determined, taking almost 4.5 kB of storage space. At a sample inter-
val of 3 seconds, it is only possible to store 10 minutes of information
with these 200 entries.

Accessing these two methods, the second option has been selected for its
low impact on the running experiment, while it is still able to reliably store
all relevant parameters of the experiment. In the implementation, the data
log can be retrieved by pressing the “User” button on the TelosB hardware,
stopping the Kalman Filtering and entering the data extraction mode. In
this mode, all logs are send out one by one at a rate of 10 per second to the
base station running a application persisting the log.

3.8 Kalman Distribution

In this work, the wireless sensor node need to cooperate in order for them to
estimate the temperature distribution throughout the network. In section
2.2.2, some approaches are discussed that can achieve this goal. Some of
these models will be implemented and evaluated in both simulations and
experiments. Every implemented distribution model is implemented as a
TinyOS component with the same interface. This way, different distribu-
tion models can be plugged in at compile time, resulting in an application
with different behavior. The implemented models will be discussed in the
following sections.

3.8.1 Consensus

The first two distribution models that are implemented are based on con-
sensus as discussed in section 2.2.2. As explained in that section, wireless
sensor nodes exchange their estimate vectors with each other. The received
vectors are then merged into a single new local estimate vector. The ap-
proach at which this merging is performed, can differ. In this work, two
different merging algorithms are implemented.

The first merging algorithm for consensus, is a simple averaging scheme
over all the received estimation vectors from its neighbors. If a node
has received three messages from its neighbors, every message - and its local
state - will each weigh in for 25 percent (equation 3.9a and 3.9b). This
averaging will result in a single new local state, that will be used in the next
Kalman Filter round.

x1 = 0.25x1 + 0.25recv11 + 0.25recv21 + 0.25recv31 (3.9a)

x2 = 0.25x2 + 0.25recv12 + 0.25recv22 + 0.25recv32 (3.9b)

30

50% 12% 5%

12% 12% 5%

5% 5% 5%

Table 3.6: Weights for the estimation vector per sender

The second implemented merging algorithm for consensus is, like the pre-
vious implementation, an averaging scheme. However, in this implement-
ation, the weighing is not in direct relation with the number of received
messages. Here, weighing per element of the vector is performed in-
stead of the entire vector.

The merging algorithm is based on the assumption that a node does not
accurately know all the temperatures in the network. However, it is assumed
that it does have knowledge about its local temperature and the temperat-
ures of its direct neighbors. The assumption of its knowledge about its local
temperature is a straight forward one: it measures this information locally.
The assumptions about its neighbors is based on the fact that temperature
is a process that is not very local: neighboring grid cells usually have the
same temperature profile. Furthermore, a node has more chance of receiving
messages from its direct neighbors.

Implementation wise, this merging algorithm is implemented using weights
on a per element basis. The used weights in this algorithm are dependent
on the sending node. Every node has a local table stating the direct neigh-
bors of the sender, the two hop neighbors and all other neighbors. In table
3.6, a table is shown that is used when a message is received from node 1:
this node has high chance of knowing the temperature in grid cell 1, so it
is assigned a weight of 50 percent (equation 3.10a). The direct neighbors of
node 1, grid cells 2 (equation 3.10b), 4 and 5 are weighted less since it is
only an estimate. The rest of the elements are weighted with 5 percent.

x1 = 0.5x1 + 0.5recv1 (3.10a)

x2 = 0.88x2 + 0.12recv2 (3.10b)

3.8.2 Covariance Intersection

Besides the estimation exchange implementation as discussed in the previ-
ous section, a different Kalman distribution method has been implemented.
This method is called covariance intersection and follows the principles as
discussed in section 2.2.2. As explained, covariance intersection sends its
covariance matrix along with the estimation vector, merging them both into
its local state. Since the covariance matrix holds information about the ac-
curacy of the estimation, it can be seen as an extension of the consensus
algorithm with sender based weighting. However, the information about the

31

correctness is not assumed, but determined during run time. Covariance
intersection also has its drawbacks. Where in the consensus the information
is build into the software, in covariance intersection the information needs
to be transmitted. In section 3.9.1, methods will be discussed to reduce the
computational and communication costs of covariance intersection.

3.9 Distribution Dependent Considerations

With the different models as discussed in the previous section, some consid-
erations need to be made for the implementation. For the other discussed
software components, the implementations are the same, independent of the
Kalman distribution. In this section, the parts that differ dependant on the
distribution method, will be discussed.

3.9.1 Data Transmission

In consensus, the data transmission is straightforward. As discussed in
section 2.2.2, the only information that needs to be shared between nodes is
the estimation vector. Internally, this vector is made out of nine fixed point
numbers with the Q21.11 representation. When transmitting this, it will
result in 36 bytes of data that needs to be transferred. Because in wireless
sensor networks transmitting and receiving data is the most expensive op-
eration, it can be beneficial to reduce the number of bytes that need to be
transferred. To reduce the number of bytes, the estimation vector is encoded
using the Q10.6 fixed point notation, using two bytes, reducing the data size
with 50 percent.

For covariance intersection, some extra information needs to be ex-
changed for the algorithm to work. The entire covariance matrix needs to
be transmitted as it is needed for correct information fusion. Luckily, the
matrix P is a symmetrical matrix, meaning that P = P T . By only trans-
mitting the unique information of the upper half of the matrix, 45 elements
instead of 81 in case of a 9 × 9 matrix, the amount of communication can
be reduced. By applying the same encoding of the elements as in the con-
sensus algorithm, two bytes per element need to be transmitted resulting in
90 bytes.

For optimizations reasons however, the covariance matrix is not trans-
mitted as is. From equations 2.16 to 2.18 in section 2.2.2 it follows that
only the trace of the covariance and the inverted covariance matrix is used.
To minimize the total amount of inversions in the network, the covariance
matrix is transmitted in its inverted form, requiring only a single inversion
per transmitted message instead of an inversion per received message. As
stated, the trace is also required by the algorithm; this value is transmitted
along with the inverted matrix as a trade off between computational power
and communication power.

32

3.9.2 Data Reception

In consensus, two additional vectors are used to store the incoming mes-
sages. Depending on the consensus merging algorithm, the incoming vector
is added without any further processing, or first multiplied with the merging
weight. The second vector is used to store the percentages of the weighted
consensus, keeping track of the remaining weighing percentage that will be
applied to the local state.

In covariance intersection, every received message is stored in memory
until the communication has finished. This is done because the covariance
intersection algorithm is only able to fuse all states into a single state when
all external states are known.

33

34

Chapter 4

Experimental Results

To test the implementation as discussed in chapter 3, several experiments
have been conducted with the implementation of the distributed Kalman
Filter that was designed and implemented within this research project.

In section 2.2, three different methods of distributing and merging the
Kalman state is described. Each of these methods has been tested in differ-
ent network layouts to be able to see the effect of the network layout on the
used distribution method. After all experiments, it is possible to make in-
formed decisions about which distribution method is best in certain network
layouts.

In the next sections, the experimental setup and the evaluation metrics
will be discussed followed by experimental results.

4.1 Experiment Case

For the experiments performed for this work, nine wireless sensor nodes were
deployed to measure the temperature in a grid of three by three with cell
sizes of one meter. A heat source is placed on one side, blowing hot air into
the grid. The grid is depicted in figure 4.1.

With this setup, a recording is made of the temperature at every grid
point. These recorded measurements are played pack during every exper-
iment allowing for comparison between different experiments as the input
data is identical. The sample rate of the recording and the sample rate of
the distributed Kalman filter are kept the same.

The measured temperatures are depicted in figure 4.2. The temperature
behavior during the experiment is as follows: from t = 0 to t = 220 the
temperature is stable. From t = 220, the heat source is enabled, blowing in
hot air until t = 390. From then, the temperature will slowly stabilize again
to its former state, falling back to the temperature when the experiment is
started. From this, it is logical that all temperatures seem to converge to a
single value, as the temperature in the grid returns to room temperature.

35

1 2 3

4 5 6

7 8 9

Heat Source

Figure 4.1: Overview of the grid as used in the experiments.

20

22

24

26

28

150 225 300 375 450 525 600

T
em

pe
ra

tu
re

 [C
]

Time [s]

Temperature 1
Temperature 2
Temperature 3
Temperature 4
Temperature 5
Temperature 6
Temperature 7
Temperature 8
Temperature 9

Figure 4.2: Temperatures measured in the grid during the experiments

36

20

22

24

26

28

150 225 300 375 450 525 600

T
em

pe
ra

tu
re

 [C
]

Time [s]

Temperature 1
Temperature 2
Temperature 3
Temperature 4
Temperature 5
Temperature 6
Temperature 7
Temperature 8
Temperature 9

Estimate 1
Estimate 2
Estimate 3
Estimate 4
Estimate 5
Estimate 6
Estimate 7
Estimate 8
Estimate 9

(a)

1

2

3

1

2

3
20

22

24

26

28

T
em

pe
ra

tu
re

 [C
]

X Node position
Y Node position

T
em

pe
ra

tu
re

 [C
]

(b)

Figure 4.3: (a): Temperature changes and estimate results of the central
Kalman filter from t = 150 to t = 600. (b): Estimate results of all grid cells
by the central Kalman filter at t = 375

Figure 4.2 indicates that nodes 5, 7 and 8 are influenced the most by the
heat source, rising five degrees Celsius above room temperature. Node 4
and 2 are only affected to a smaller degree. Nodes 1, 3, 6 and 9 are totally
unaffected by the temperature changes created by the heat source. These
differences in the way the nodes are affected by the temperature changes
are important, as they make it possible to clearly see the differences in the
different distribution methods that will be used.

In the following sections, the results from the different implementation
will be discussed, along with metrics that describe the effectiveness and
correctness of the implementation and allow for comparison between the
different implementations.

4.2 Central Kalman Filter

For a good comparison between the different distribution methods, a base
line is required for the algorithm used. As a base line for the distributed
Kalman filter, a central Kalman filter will be used.

In figure 4.3(a), the estimate for every grid point is shown, alongside the
temperature that has been recorded as discussed in section 4.1. From this
figure, it can be seen that the temperature model as described in section
2.3 is able to estimate the temperatures in all grid cells accurately: rising
with the temperature as the heat source is turned on at t = 220 and slowly
falling again when the heat source is turned off at t = 390.

In figure 4.3(b), a slice of the experiment is shown of the estimation at t =

37

375. This is an interesting point of time in the experiment, as it is a shifting
point from rising to falling temperatures. For all coming experiments, this
time slice will be used to show the capabilities of the distributed Kalman
filter. More precise metrics will be defined in the next section to quantify
the results from the different distribution methods along with the different
network layouts that are tested.

4.3 Evaluation Metrics

To evaluate the performance of the different implementations, some metrics
need to be defined to compare the three implementations with each other
in an objective manner. The method that performs best according to these
metrics, will be selected as the best implementation for the given environ-
ment of temperature measurement. The metrics shown are calculated on a
single time during the experiment: t = 375.

Since the goal of this thesis is to see which distribution method is best
suited for different network layouts, the most important metric is the cor-
rectness of the estimate with relation to the temperature estimated by a
central Kalman filter implementation. As such, the first metric is the RMS
value of the estimation error of every grid point per node. For a single node
this metric is calculated using the equation as stated in 4.1. In this equa-
tion, x is the estimate result of that node, c the estimate result of the central
Kalman filter and n the number of nodes, which is 9 in this experiment.

RMS =

√
(
∑n

i=1 xi − ci)2
n

(4.1)

A second metric that is important, is the degree of agreement between
the different nodes in the network: if only one node is able to estimate the
correct temperatures profile in the entire grid, with all other nodes having
a different notion of the temperatures, this is deemed incorrect. In the best
case scenario, all nodes are able to make the same estimate for every single
grid cell. To test this metric, the RMS is taken per grid cell of the error
between the estimate of a node and the average estimate of all the nodes.
This metric for a single node is defined in equation 4.2.

RMS =

√√√√(
1

n

n∑
i=1

(xi −
1

n

n∑
j=1

xj))2 (4.2)

If an algorithm is able to perform well on the metrics Agreementand Cor-
rectness, it means that all nodes in the network are able to accurately es-
timate the temperature in the grid with an acceptable error.

Another metric that is important, is the time taken for the algorithm
to perform. Since calculation time is in direct proportions to the power

38

consumption, using less time to process is better for the lifetime of the
battery. This metric is recorded on the hardware using a timer with a
resolution of 32 KHz, or 312.5 µs; making this the resolution of this metric.
The definition of the metric Timeis given in 4.3.

Time required for received messages (4.3)

Besides calculation time, data transmission is also a big power consumer.
It is required to know how much data is transferred. This way, a selection
can be made on the power consumption of an algorithm. Since all three
algorithms spread their information at the same rate, the only difference
is in the amount of data transferred. This therefore the metric Memory,
defined in 4.4.

Number of bytes transferred per gossip round (4.4)

The third metric concerned with implementation details is metric Storage.
In this metric, the amount of memory is counted. Since in a wireless sensor
node memory is sparse, a more memory efficient algorithm can be important.
The definition of metric Storageis defined in 4.5.

Number of storage bytes required (4.5)

4.4 Local Kalman Filter

The first implementation that is used in an experiment is an implementation
of a Kalman Filter without any form of communication between the different
nodes in the network. As an effect of this, all nine nodes will have only
information about the temperature in its local grid cell, therefore not able
to estimate the temperature in the other grid cells precisely. The main
purpose of this section therefore is to evaluate whether the implementation
is done correctly.

In figures 4.4(a) and 4.4(b), the estimation results of node 3 and 8 are
shown of this experiment. From these graphs it can be seen that all nodes
independently try to estimate the temperature of the grid. Since there is
no communication, the nodes are not able to get a reliable view of the
temperature distribution. The only estimate that is correct, is the estimate
at its local grid point, with all other grid cells following the temperature of
the local grid point.

Metric Agreement is not relevant for the local Kalman filter implement-
ation, because of the lack of communication. This metric is therefor not
shown.

Figure 4.4(c) (metric) shows the offset of the experiment with the cent-
ral Kalman filter implementation of section 4.2. Every single node in the

39

1
2

3

1

2

3
20
22
24
26
28

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(a)

1
2

3

1

2

3
20
22
24
26
28

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(b)

1
2

3

1

2

30
1
2
3
4
5
6

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(c)

1
2

3

1

2

30
1
2
3
4
5
6

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(d)

Figure 4.4: Local Kalman filter results. (a), (b): Estimate results of node
3 and 8 respectively. (c): Offset to central Kalman filter. (d): Metric
Agreement.

40

Metric Correctness
Minimum [oC] 2.67
Maximum [oC] 5.49

Mean [oC] 4.11

Metric Agreement
Minimum [oC] 0.56
Maximum [oC] 4.98

Mean [oC] 2.44

Table 4.1: Results from local Kalman filter implementation

1 2 3

4 5 6

7 8 9

Figure 4.5: The fully connected network as used in the experiments.

network has a large error, ranging from 2.5 degrees Celsius in node 7 to 5.5
in node 3.

Metric Memoryand Timecan be handled quickly for the local implementa-
tion. Since there is no communication, all time taken in processing is purely
in the Kalman Filter, 0.38µs. The amount of data transferred therefore is
0 bytes. Metric Correctnessand metric Agreementare summarized in table
4.1.

The goal of this thesis is to have a working decentralized Kalman Filter,
so in the next sections, communication and data merging will be added.

4.5 Fully Connected Network

In the first real experiment with communication between nodes, the nodes
are again spread as described in section 4.1. Since the nodes are in relat-
ively close range to each other and transmission power is at its maximum, all
nodes can communicate with all other nodes, forming a so called fully con-
nected network, were every node can reach every other node. This topology
is depicted in figure 4.5.

In the following sections, experiments with the three different Kalman
distribution algorithms as discussed in section 3.8 will be performed and

41

evaluated.

4.5.1 Consensus

The first distributed Kalman filter algorithm that will be evaluated, is the
consensus algorithm as discussed in section 3.8.1.

From the graph in 4.6(a) showing the estimation results made by node 3
of all the grid cells, it can be seen that consensus is able to make an estimate
of the temperature in other grid cells, whereas the local Kalman filter from
section 4.4 is not able to do this.

In figure 4.6(b) the metric Correctnessis shown. It can be seen that the
temperature estimate has an error with standard deviation of 2.1 degrees
for all grid points in the network. Statistically, this means, that 68% of the
nodes at this time have an estimate of the temperature within an error of
2.1 degrees. This equal error can be attributed to the consensus step, as it
tries to spread all information to the entire network, independent of whether
this spreading is actually improving the estimate.

However, it is also important for nodes to agree on the estimates between
each other. From metric Agreement in figure 4.6(c), it shows that the nine
nodes have a different value for the temperatures in the grid cells. This is
especially visible in node 5, that has a deviation from the average estimate
of 0.8 degrees. This high error can be attributed to the fact that node 5
is the node with the largest temperature increase. All neighbours of this
node sent information with lower estimates, influencing the local estimation
process.

The last three metrics that are defined in 4.3 are Memory, Timeand Stor-
age. These three metrics are shown in table 4.2.

The differences in agreement and loss in precision stems from a weakness
in the consensus algorithm. Consensus is only able to get values to converge
when the measured state is measured by all nodes. In this experiment, the
nine nodes all measure a different state. To improve the performance of the
consensus algorithm, the averaging algorithm is changed to use a weighted
during the averaging step. The results of this are shown in the next section.

4.5.2 Weighted Consensus

In the previous consensus algorithm, every incoming message is treated as
equal. In this section however a weighted consensus algorithm is used with
a different approach. As described in 3.8.1, elements of the estimate vector
x are given a weight that is based on the sender of the message. This weight
expresses the general idea of how good the sender can estimate that element.
A result of this is, that estimations that are most likely correct will be
weighted more than others, giving results closer to the actual temperature.

42

Estimate Correctness Agreement

C
o
n

se
n

su
s

1
2

3

1

2

3
20
22
24
26
28

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(a)

1
2

3

1

2

30
0.5

1
1.5

2
2.5

3
3.5

4

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(b)

1
2

3

1

2

30

0.5

1

1.5

2

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(c)

W
ei

gh
te

d
C

on
se

n
su

s

1
2

3

1

2

3
20
22
24
26
28

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(d)

1
2

3

1

2

30
0.5

1
1.5

2
2.5

3
3.5

4

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(e)

1
2

3

1

2

30

0.5

1

1.5

2

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(f)

C
ov

a
ri

a
n

ce
In

te
rs

ec
ti

on

1
2

3

1

2

3
20
22
24
26
28

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(g)

1
2

3

1

2

30
0.5

1
1.5

2
2.5

3
3.5

4

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(h)

1
2

3

1

2

30

0.5

1

1.5

2

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(i)

Figure 4.6: The estimate results, metric Correctnessand metric Agree-
ment for consensus, weighted consensus and covariance intersection for the
fully connected network

43

In 4.6(d) the estimates of node 3 of all the grid cells at t = 375 are shown.
The profile from this estimator is radically different than that from the non-
weighted consensus from section 4.5.1. The nodes that do not experience
any effects from the heat source are clearly visible in the plot.

The difference to the central Kalman filter, Correctnessis given in 4.6(e).
Where as in the non-weighted consensus the error of the estimate is 2.1
degrees, the weighted consensus is able to reduce this error to 1.2 degrees.
This reduction is the result of the weighting in this algorithm. By applying
the weights, the nodes can filter out members that do not help in the estim-
ation. By apply this weighing, the error of the estimate has been reduced
with 42%.

Metric Agreement in figure 4.6(f), shows that the differences between the
estimates have gone down. The average error has been reduced to 0.17.
The estimation results of node 5 also have improved, as its error has been
reduced to 0.47.

The last metrics, metric Memory, Timeand Storageare presented in table
4.2.

4.5.3 Covariance Intersection

The third algorithm that is evaluated for the fully connected network layout,
is covariance intersection. As described in 3.8.1, in covariance intersection
the covariance matrix is exchanged along with the estimated mean, poten-
tially giving better results.

From figure 4.6(g), it can be seen that node 3 is able to estimate the
temperature for other grid cells well. Just like the weighted consensus from
the previous section, the nodes that are unaffected by the heat source can
be clearly seen.

In figure 4.6(h), metric Correctnessis shown for t = 375. The average error
of all nodes is 1.6 degrees, a result that is between the error of the consensus
and the weighted consensus algorithms. However, the metric Agreement in
figure 4.6(i) shows that covariance intersection is able to outperform the
naive consensus algorithm: it has an average error of 0.25. The weighted
consensus however performs better on this metric. One interesting aspect of
the covariance intersection is that node 5 is only in this experiment the node
with the smallest error in Correctness. It is however not able to influence
the other nodes enough, hence the peak on node 5 on the Agreement.

Metric Time, Memoryand Storageare shown in table 4.2. Covariance
intersection requires more calculation time and bytes transfers for its results
than the consensus algorithm that only exchanges its estimates vector.

44

M
et

ri
c

C
o
n

se
n

su
s

W
ei

g
h
te

d
C

on
se

n
su

s

C
ov

a
ri

an
ce

In
te

rs
ec

ti
on

Correctness
Minimum [oC] 2.10 1.08 1.19
Maximum [oC] 2.20 1.25 1.81

Mean [oC] 2.16 1.12 1.62

Agreement
Minimum [oC] 0.06 0.08 0.10
Maximum [oC] 0.85 0.47 0.61

Mean [oC] 0.39 0.17 0.25

Memory 18 18 112

Time 2.37 2.40 385.62

Storage
ROM [b] 916 1300 1726
RAM [b] 124 498 1672

Table 4.2: Summary of all metrics of the fully connected network experi-
ments. Note that the represented values are error values.

4.5.4 Summary

From the experiments with a fully connected network, it can be concluded
that it is possible to get a reliable view of a grid in a wireless sensor network.
All values from the previous sections, are repeated in table 4.2.

While the three different methods show different kind of results, all al-
gorithms in this experiment are within 2.3 degrees from the actual temper-
ature. Also, the three algorithms agree on their estimates with an error of
1 degree.

From table 4.2 however, it shows that the weighted consensus filter has
the best performance on all metrics. Of course, as stated in section 3.8, the
weighted consensus algorithm requires some assumptions about the network
topology that are not always possible to be made. Covariance intersection
fixes these problems, by being independent of the network layout. How-
ever, as can be seen in table 4.2, fusion requires more data transfer and the
time taken for calculations is also 190% more than in consensus. In short,
when assumptions can be made about the network topology, the weighted
consensus is best suited for a fully connected network.

45

Estimate Correctness Agreement

C
o
n

se
n

su
s

1
2

3

1

2

3
20
22
24
26
28

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(a)

1
2

3

1

2

30
0.5

1
1.5

2
2.5

3
3.5

4

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(b)

1
2

3

1

2

30

0.5

1

1.5

2

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(c)

W
ei

gh
te

d
C

on
se

n
su

s

1
2

3

1

2

3
20
22
24
26
28

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(d)

1
2

3

1

2

30
0.5

1
1.5

2
2.5

3
3.5

4

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(e)

1
2

3

1

2

30

0.5

1

1.5

2

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(f)

C
ov

a
ri

a
n

ce
In

te
rs

ec
ti

on

1
2

3

1

2

3
20
22
24
26
28

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(g)

1
2

3

1

2

30
0.5

1
1.5

2
2.5

3
3.5

4

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(h)

1
2

3

1

2

30

0.5

1

1.5

2

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(i)

Figure 4.7: The estimate results, metric Correctnessand metric Agree-
ment for consensus, weighted consensus and covariance intersection for the
Mesh Network

46

1 2 3

4 5 6

7 8 9

Figure 4.8: The mesh network as used in the experiments.

4.6 Mesh Network

The second network layout that is evaluated, is a mesh network. In a mesh
network, not every node can communicate with every other node. In most
cases, this is the network that one has in a real life setup, because of the
distance between the nodes and communication failures. As such, nodes
can only communicate with its direct neighbors, limiting the amount of
information a node has of the network and the temperatures therein.

The network as used in these experiments, is shown in figure 4.8. The
arrows in this figure represents the direction of the communication. When
no arrow is present, no communication is possible. In this graph, the limited
connectivity of the network is visible: only nodes that are direct neighbors
can communicate. In order for the experiment to be repeatable among runs,
this setup is reliably achieved by ignoring received messages that are not in
the whitelist of a node as represented in figure 4.8.

In the following sections, the three distributed Kalman models as de-
scribed in section 3.8 will be discussed.

4.6.1 Consensus

As in the previous section, the first experiment conducted is the consensus
algorithm. In this consensus algorithm, all incoming messages are weighted
equally.

From figure 4.7(a), it is already visible that node 3 is not able to estimate
the temperatures as correctly as with consensus in the fully connected net-
work layout. The plotted surface is flat, disregarding the high temperatures
in node 5, 7 and 8. This shows even better in figure 4.7(b) representing
Correctness. It shows that the standard deviation of the error has increased
to 3 degrees, opposed to the 2.2 degrees in the fully connected topology, a
decrease in performance of 25%. This rise can be attributed to the lack of

47

information available to the nodes, resulting in estimates that do not show
the rise in temperature, resulting in a bigger error.

As in the previous experiments, the offset to the actual temperature is
not the only metric. The other metric, is the agreement of the nodes on the
temperatures they have estimated: metric Agreement. In figure 4.7(c) the
results for this metric are shown. Here it is clearly visible that without global
communication, consensus is not able to actually reach consensus. The
nine nodes have highly different values for the temperatures in the network,
reaching an error of 1.3 degrees. Furthermore, this error is not equal through
the network, which was the case for the fully connected consensus algorithm,
i.e. different nodes have different estimation errors.

The last three remaining metrics are metrics Time, Memoryand Storage,
which have not changed with regards to the fully connected consensus al-
gorithm as they are network layout independent. They are presented in
table 4.3.

From this experiment, it becomes clear that the consensus algorithm is
not able to perform well when not in a fully connected network. Both the
offset to the actual temperature as the offset between the nodes have risen
with 25%.

4.6.2 Weighted Consensus

The next algorithm that is evaluated in the mesh network layout, is the
weighted consensus algorithm. In this consensus algorithm, the incoming
estimate vectors are weighted depending on the sender of the vector, and
the sender’s possible knowledge of the temperatures that it has estimated.

In figure 4.7(d), one can see that the estimates of the nodes have improved
over the estimates by the naive consensus algorithm. Nodes that are affected
by the heat source are visible in the results, a direct improvement over the
naive consensus algorithm.

The first metric as defined in 4.3, is metric Correctnessand defines the
offset of the estimates to the central Kalman filter. It is shown in figure
4.7(e). The error has risen with regards to the fully connected network
layout, from 1.1 to 1.8 degrees. This is a direct result from the limited
connectivity: because there is no direct communication, the information
needs to flow through the network.

The next metric, Agreement, is the agreement of the temperature estim-
ates between the different nodes in the network. This metric is shown in
figure 4.7(f). As with the metric Correctness, the metric Agreement is also
higher: 0.53 instead of the 0.17 from the fully connected network

The last three metrics metric Time, Storageand Memory, have not changed
since these are network layout independent. They are presented in table 4.3.

48

4.6.3 Covariance Intersection

The third experiment in the mesh network layout is the covariance intersec-
tion algorithm. As described in 3.8, in covariance intersection the covariance
matrix is send along the estimate vector, potentially increasing the correct-
ness of the estimates with regard to the actual temperature.

In figure 4.7(g) it is visible that node 3 is able to estimate the temperatures
relatively well, with clear differences between the nodes that are affected by
the heat source and those who do not.

In figure 4.7(h) metric Correctnessis depicted. Here, the strength of co-
variance intersection is visible. Covariance intersection is able to keep the
mean error the same as in the fully connected network layout, 1.6 degrees.
Furthermore, the metric Agreement in figure 4.7(i) also shows a more stable
result than the other two methods with only a slight rise in error.

The last metrics, metric Time, Memoryand Storageare independent of the
network layout and have remained the same. They are presented in table
4.3.

4.6.4 Summary

With all three experiments performed in a mesh network, a comparison
between the three can be made. Compared to the fully connected network
however, it has become more difficult to get a reliable view of the temper-
ature that is shared among all nodes. A table showing all results from the
mesh network experiments is table 4.3.

As with the fully connected experiments, all three methods give different
results. However, both the weighted consensus and the fusion algorithm
are still able to give a temperature estimate with an error with a standard
deviation of 2.3 degrees. The naive consensus algorithm however has seen an
increase in its error with almost 30%. The error in the agreement among the
nodes has also increased for most algorithms, remaining below 0.5 degrees
for both weighted consensus and covariance intersection.

4.7 Fully Connected Network with reduced cover-
age

The third configuration that is tested with the three distributed Kalman
algorithms, is a configuration with more grid cells than sensors. The tem-
perature model in the Kalman filter is setup is such a way, that it is able
to estimate temperatures in grid cells even though there is no actual sensor
deployed in that grid cell. For this experiment, four sensor nodes are re-
moved from the grid, which results in a grid with holes. The connectivity
of the nodes are not limited, so in effect, the nodes are in a fully connected

49

Estimate Correctness Agreement

C
o
n

se
n

su
s

1
2

3

1

2

3
20
22
24
26
28

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(a)

1
2

3

1

2

30
0.5

1
1.5

2
2.5

3
3.5

4

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(b)

1
2

3

1

2

30

0.5

1

1.5

2

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(c)

W
ei

gh
te

d
C

on
se

n
su

s

1
2

3

1

2

3
20
22
24
26
28

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(d)

1
2

3

1

2

30
0.5

1
1.5

2
2.5

3
3.5

4

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(e)

1
2

3

1

2

30

0.5

1

1.5

2

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(f)

C
ov

a
ri

a
n

ce
In

te
rs

ec
ti

on

1
2

3

1

2

3
20
22
24
26
28

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(g)

1
2

3

1

2

30
0.5

1
1.5

2
2.5

3
3.5

4

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(h)

1
2

3

1

2

30

0.5

1

1.5

2

T
em

pe
ra

tu
re

 [C
]

X Node positionY Node position

T
em

pe
ra

tu
re

 [C
]

(i)

Figure 4.9: The estimate results, metric Correctnessand metric Agree-
ment for consensus, weighted consensus and covariance intersection for the
Fully Connected Network with reduced coverage

50

M
et

ri
c

C
o
n

se
n

su
s

W
ei

g
h
te

d
C

on
se

n
su

s

C
ov

a
ri

an
ce

In
te

rs
ec

ti
on

Correctness
Minimum [oC] 2.43 1.35 1.37
Maximum [oC] 3.02 2.25 1.73

Mean [oC] 2.67 1.77 1.57

Agreement
Minimum [oC] 0.29 0.12 0.24
Maximum [oC] 1.32 0.84 0.75

Mean [oC] 0.84 0.53 0.46

Memory 18 18 112

Time 2.37 2.40 385.62

Storage
ROM [b] 916 1300 1726
RAM [b] 124 498 1672

Table 4.3: Summary of all metrics of the mesh network experiments. Note
that the represented values are error values.

network just as in section 4.5. The grid layout with the missing sensors is
depicted in figure 4.10.

In the following sections, the performance of the three different distributed
Kalman Filter methods as described in section 3.8 will be assessed.

4.7.1 Consensus

The first experiment in this network layout, is the consensus algorithm.
As described in section 3.8, in this algorithm all incoming messages are
averaged, without any form of weighing.

From figure 4.9(a), it can be seen that the node is still able to estimate
the temperature in all grid cells, although no sensor input from every cell in
the network is available

In figure 4.9(b), the error relative to the central Kalman filter (metric
Correctness) is shown. The error is in the same range as the error during
the fully connected consensus algorithm. This is not completely surprising,
as both network layouts are fully connected.

In figure 4.9(c) Agreement is shown. The error in the agreement however
has risen and has almost doubled with relation to the fully connected net-
work layout. In short, it can be stated that the naive consensus algorithm
is not robust against the reduced coverage. The missing information from

51

1 3

5

8 9

Figure 4.10: The network as used in the experiments.

these cells are not estimated well, decreasing performance on all metrics.

For metrics Time, Storageand Memoryno changes have occurred, although
the average number of incoming messages has decreased, resulting in less
computational power usage. The metrics are presented in table 4.4.

4.7.2 Weighted Consensus

The second experiment conducted with a network with missing nodes, is the
weighted consensus algorithm. In this algorithm, as described in section 3.8,
the members of the incoming estimation vector are weighted based on the
sender.

From figure 4.9(d), it is clear that the weighted consensus algorithm is
able to estimate temperatures reasonably well, with a profile similar to the
profiles in the previous experiments.

Metric Correctnessis shown in figure 4.9(e) and shows an error slightly
higher than in the fully connected case: 0.2 degrees more. This error can
be attributed to the limited amount of knowledge that is available in the
network about the temperatures in the grid cells without any sensors.

The metric Agreement is about the agreement of the nodes about their
estimates. If all nodes have the same values for the temperatures, this
metric will be lower. This metric in shown in 4.9(f). As with the naive
consensus algorithm, the error of the agreement has increased slightly, with
0.2 degrees.

Metric Time, Storageand Memoryare independent of network layout and
are therefore not changed. They are presented in table 4.4.

4.7.3 Covariance Intersection

The last experiment that is performed with a network with empty grid
cells, is with a Kalman Filter using covariance intersection. In covariance

52

intersection, not only the estimate vector is transmitted, also the covariance
matrix is shared among its neighbors.

From figure 4.9(g), it can be seen that the estimation results are quite
good. From figure 4.9(h), it shows that the maximal error from the actual
temperature is 1.8 degrees, the same error that has been reached with the
fully connected network layout.

The agreement among nodes, Agreement is shown in figure 4.9(i). It can
be concluded that there is only a small disagreement among the nodes. The
highest peak is at 0.6 degrees. This is comparable with the results from the
weighted consensus and almost 50% better than the naive consensus and the
same as the error achieved with the fully connected network. It can therefore
be stated that the covariance intersection algorithm has no problems with
the empty grid cells.

As explained earlier, metric Time, Storageand Memoryare independent
on the algorithm and have not changed with regard to the previous fusion
implementation. They are presented in table 4.4.

4.7.4 Summary

Concluding from the three experiments with this network configuration, a
configuration with reduced coverage, a method selection can be performed.
All results from the three experiments is shown in table 4.4.

From table 4.4, the differences between the naive consensus and the other
two experiments can clearly be seen. The consensus algorithm is not able to
cope with the fact that there is no information from all cells. The covariance
intersection and weighted consensus however do perform well. Both the
naive consensus and the weighted consensus have more difficulty now that
there are grid cells without any sensor. Covariance intersection however, has
relatively less trouble with this fact, although in absolute numbers covariance
intersection and weighted consensus are comparable. From this, it can be
concluded that depending on the assumptions that can be made, weighted
consensus is best suited for this application. However, when the network
positions are not known, covariance intersection shows that is very robust
and able to estimate temperatures, even when the number of grid cells is
larger than the number of nodes measuring temperature.

4.8 Method Selection

In the previous sections, the three algorithms as described in section 3.8
were tested for three different network layouts in both a actual experiment
and a simulation. From these experiments a method selection can be made
resulting in a method that is best suited for a given task.

Depending on the kind of network that will be setup, different methods
can be used. From the previous sections, it follows that using the naive

53

M
et

ri
c

C
on

se
n

su
s

W
ei

gh
te

d
C

o
n

se
n

su
s

C
ov

ar
ia

n
ce

In
te

rs
ec

ti
o
n

Correctness
Minimum [oC] 2.27 1.26 1.37
Maximum [oC] 2.65 1.50 1.86

Mean [oC] 2.38 1.35 1.65

Agreement
Minimum [oC] 0.51 0.23 0.08
Maximum [oC] 1.28 0.49 0.58

Mean [oC] 0.73 0.31 0.32

Memory 18 18 112

Time 2.37 2.40 385.62

Storage
ROM [b] 916 1300 1726
RAM [b] 124 498 1672

Table 4.4: Summary of all metrics of the fully connected network with
reduced coverage experiments. Note that the represented values are error
values.

54

consensus is never the best option. In all metrics, it is unable to perform
better than the local Kalman filter on the other two distributed Kalman
Filters. The weighted consensus filter however, is a cheap alternative to
the naive consensus: it performs better at all metrics than the naive im-
plementation, while barely regressing the metrics Time, Memoryand Stor-
ageconcerned with computational and communication power.

The major choice an engineer there for has, is in the choice between co-
variance intersection and the weighted consensus algorithm. A major plus
of the covariance intersection algorithm is that it just works. From the pre-
vious sections, it can be seen that during all three experiments, the results
remain in the same order of magnitude, barely regressing when communic-
ation is difficult or the number of sensors is low. Covariance intersection
however comes with a cost. As described in section 3.8, for covariance in-
tersection to work additional internal state from the Kalman filter needs to
be exchanged with its neighboring nodes, 112 bytes instead of the 18 used
in the consensus based algorithms. Although computation is not as power
consuming as communication, the rise in the computational time and thus
power is large as well. The strength in covariance intersection however is,
next to its robustness against network layout, the fact that it does not need
to assume anything about its neighbors or the network. Where weighted
consensus requires knowledge about all its possible neighbors, covariance
intersection does not.

In a network where topology assumptions or indirect ways of getting the
information about the topology is not a problem, weighted consensus can
be considered. In all three experiments is performs well, usually as the best
or just beaten by covariance intersection. This is caused by the implicit co-
variance intersection that is inherit in the weighted consensus. This implicit
fusion however is static and cannot change along with its network, requir-
ing reconfiguration any time the network changes. The implicit covariance
intersection however is able to reduce the computational time and number
of bytes per transmission to such an extent, that the increased battery life
may be worth the reduction in flexibility.

55

56

Chapter 5

Conclusions and Future
Work

Following the preceding chapters, it is possible to answer the research ques-
tions as stated in section 1.1. Furthermore, several suggestions for future
work are stated.

5.1 Conclusions

The problem statement of this work is: What are the different methods of
implementing Gossip Based Distributed Kalman Filtering and how does it
perform.

This problem statement and the research questions can now be answered.

1. What form of Gossip is best suited for Gossip based distributed Kal-
man Filter?

In section 2.1, relevant gossip algorithms are explained and assessed.
From this, the quick convergence rate and the large network coverage of
Broadcast gossip show that using gossiping information can be spread
quickly and efficiently.

2. What are the different ways of distributing information in a distributed
Kalman filter and how do they compare?

Sections 2.2 and 3.8 discussed in depth the different ways of distrib-
uting the distributed Kalman filter and its implementation details. It
followed that both a weight based consensus algorithm and covariance
intersection is able to perform an accurate distributed Kalman filter,
where covariance intersection is always able to perform well independ-
ent of knowledge about the network topology.

3. What limitations are encountered when implementing Gossip based
Distributed Kalman Filter and how can one cope with those?

57

In chapter 3 the implementation details for this work are presented.
Although the used network nodes, the TelosB, are low powered units
they are able to perform the extensive matrix calculations. In the tem-
perature case, these calculations using fixed point arithmetic have an
error of only 0.1 degrees Celsius and should not pose for any problems.

5.2 Future Work

In this work, different distribution methods are accessed for a distributed
Kalman filter using gossiping. However, there are ways in which the work
can be improved. In this section, some suggestion are made that potentially
can improve the results or make the network behave different.

1. As the main goal of this thesis was the comparison of the different
distribution methods for a distributed Kalman filter, the results are
not as optimal as they can be. As discussed in section 2.3, the tem-
perature model that is used is a linear model. The results can therefor
be improved by switching to a non-linear model or to a extended or
unscented Kalman filter.

2. The only Gossip algorithm that is evaluated is the broadcast gossip
algorithm. However, many other gossip algorithms exist in literature.
It is interesting to also experiment with different gossip algorithms to
how this influences the results from chapter 4.

58

Bibliography

[1] a.D. Amis, R. Prakash, and T.H.P. Vuong. Max-min d-cluster formation in
wireless ad hoc networks. Joint Conference of the, 1:32–41, 2000.

[2] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor
networks: a survey. Computer Networks, 38(4):393–422, Mar. 2002.

[3] TC Aysal and ME Yildiz. Broadcast gossip algorithms. Theory Workshop,
2008., pages 343–347, May 2008.

[4] Tuncer C. Aysal, Mehmet E. Yildiz, Anand D. Sarwate, and Anna Scaglione.
Broadcast gossip algorithms: Design and analysis for consensus. 2008 47th
IEEE Conference on Decision and Control, pages 4843–4848, 2008.

[5] Stephen Boyd, A Ghosh, and B Prabhakar. Randomized gossip algorithms.
Information Theory, IEEE, 2006.

[6] Stephen Boyd, A Ghosh, and B Prabhakar. Randomized gossip algorithms.
Information Theory, IEEE, 2006.

[7] KK Chintalapudi, D Ganesan, and Alan Broad. A wireless sensor network for
structural monitoring. networked sensor, 2004.

[8] ADG Dimakis and AD Sarwate. Geographic gossip: Efficient averaging for
sensor networks. Signal Processing, IEEE, (Ipsn):1–15, 2008.

[9] Eiman Elnahrawy. Cleaning and querying noisy sensors. international confer-
ence on Wireless sensor, page 78, 2003.

[10] D Estrin, L Girod, and G Pottie. Instrumenting the world with wireless sensor
networks. Acoustics, Speech, and, 2001.

[11] David Gay, P Levis, R Von Behren, and Matt Welsh. The nesC language: A
holistic approach to networked embedded systems. Acm Sigplan, 2003.

[12] I Gupta and Denis Riordan. Cluster-head election using fuzzy logic for wireless
sensor networks. Communication Networks, 2005.

[13] ZJ Haas and JY Halpern. Gossip-based ad hoc routing. INFOCOM 2002.
Twenty-First, pages 1–10, 2002.

[14] Ali Jadbabaie, Jie Lin, A Stephen Morse, Ali Jadbabaie, Jie Lin, and
A Stephen Morse. Coordination of Groups of Mobile Autonomous Agents
Using Nearest Neighbor Rules Coordination of Groups of Mobile Autonom-
ous Agents Using Nearest Neighbor Rules. IEEE Transactions on Automatic
Control, 48(6):988–1001, 2003.

[15] S.J. Julier. A non-divergent estimation algorithm in the presence of unknown
correlations. American Control Conference, 1997., 4:2369–2373, 1997.

[16] R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems.
Journal of Basic Engineering, 82(1):35, 1960.

[17] R Karp and C Schindelhauer. Randomized rumor spreading. of Computer
Science,, 2000.

59

[18] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate
information. In 44th Annual IEEE Symposium on Foundations of Computer
Science, 2003. Proceedings., pages 482–491. IEEE Computer. Soc, 2003.

[19] B. Legat, K. Hofmann-Wellenhof, and M. Wieser. Navigation, Principles of
Positioning and Guidance. Springer, 2003.

[20] MEMSIC. The TelosB platform.
[21] EM Mikhail. Observations and least squares. IEP, New York, New York, USA,

1976.
[22] Moteiv. TMote Sky, 2006.
[23] Wolfgang Niehsen. Information Fusion Based On Fast Covariance Intersection

Filtering. ISIF, pages 901–904, 2002.
[24] R. Olfati-Saber. Consensus filters for sensor networks and distributed sensor

fusion. Decision and Control, 2005 and, (1):6698–6703, 2005.
[25] R. Olfati-Saber. Distributed Kalman filter with embedded consensus filters.

Decision and Control, 2005 and 2005, pages 8179–8184, 2005.
[26] R. Olfati-Saber. Distributed Kalman filtering for sensor networks. Decision

and Control, 2007 46th IEEE, pages 5492–5498, 2007.
[27] G.J. Pottie. Wireless integrated network sensors. Communications of the

ACM, 43(5):51–58, 2000.
[28] Andrei Pruteanu, Venkat Iyer, and Stefan Dulman. NetSize: Gossip-based

Algorithms for Network Size Estimation, 2011.
[29] Lawrence G Roberts and Barry D Wessler. Computer network development

to achieve resource sharing. In Proceedings of the May 5-7, 1970, spring joint
computer conference, AFIPS ’70 (Spring), pages 543–549, New York, NY,
USA, 1970. ACM.

[30] Luca Schenato. A distributed consensus protocol for clock synchronization
in wireless sensor network. Decision and Control, 2007 46th IEEE, pages
2289–2294, 2007.

[31] Sensirion. Humidity and Temperature Sensor SHT1x, 2011.
[32] Devavrat Shah. Gossip Algorithms. Foundations and Trends in Networking,

3(1):1–125, 2007.
[33] X Sheng and YH Hu. Distributed particle filter with GMM approximation

for multiple targets localization and tracking in wireless sensor network. on
Information processing in sensor, pages 181–188, 2005.

[34] Joris Sijs. State-estimation in networked systems. PhD thesis, TU Eindhoven,
2012.

[35] P Singh. Wireless Sensor Networks for Habitat Monitoring. cs.umd.edu,
page 88, 2002.

[36] Stanford. TinyOS.
[37] B Warneke, M Last, and B Liebowitz. Smart dust: Communicating with a

cubic-millimeter computer. Computer, 2001.
[38] Greg Welch. An introduction to the Kalman filter. University of North Car-

olina at Chapel, pages 1–16, 1995.
[39] G Werner-Allen, Konrad Lorincz, and M Ruiz. Deploying a wireless sensor

network on an active volcano. Internet Computing, (April):18–25, 2006.

60

	Introduction
	Research Questions
	Organization

	Related Work
	Gossiping in Decentralized Networks
	Distributed Kalman Filtering
	General Principles of Kalman Filtering
	Adaptation to Distributed System

	Temperature Model

	Implementation
	TelosB Wireless Sensor Node
	TinyOS
	Architectural Overview
	Platform Specific Considerations
	Fixed Point Component
	Matrix Component

	Temperature Measurement
	Data Processing
	Data Storage
	Kalman Distribution
	Consensus
	Covariance Intersection

	Distribution Dependent Considerations
	Data Transmission
	Data Reception

	Experimental Results
	Experiment Case
	Central Kalman Filter
	Evaluation Metrics
	Local Kalman Filter
	Fully Connected Network
	Consensus
	Weighted Consensus
	Covariance Intersection
	Summary

	Mesh Network
	Consensus
	Weighted Consensus
	Covariance Intersection
	Summary

	Fully Connected Network with reduced coverage
	Consensus
	Weighted Consensus
	Covariance Intersection
	Summary

	Method Selection

	Conclusions and Future Work
	Conclusions
	Future Work

