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Online databases contain extensive collections of (bio)chemical reactions serving as valuable resources for a variety of applications.
However, these large datasets often suffer from incomplete reaction data missing, for example, co-reactants and by-products.
Machine learning can help to predict these missing molecules in partial reactions. In this study, we adapt an existing transformer
model to enhance its capability in completing these incomplete reactions. We retrain the model using a more diverse dataset of
atom-balanced ground truth reactions and introduce both soft and hard atom-balance constraints to improve the completeness
and chemical validity of the predictions. Our findings indicate that models trained with soft constraints in their loss function
do not demonstrate improved balancing performance and require further tuning. Conversely, the implementation of hard
atom-balance constraints during constrained beam search, where we restrict predicting tokens that violate the atom-balance of
the prediction, effectively improves the performance of transformer-based models in reaction completion tasks. However, this
approach also presents the risk of inaccurately balancing reactions; a limitation that is difficult to identify without chemical
expertise, underscoring the necessity for reliable ground truth data to evaluate the predictions.

1. INTRODUCTION

Developments in text mining have significantly increased
the availability of extensive online databases containing
(bio)chemical reactions, such as the USPTO database sourced
from patents, providing valuable resources for a wide range of
applications [1]. These reactions can be used to train models for
predictive chemistry that can predict products from reactants
and vice versa, or predict reaction conditions [2, 3]. Additionally,
reaction networks that are based on these reactions are used
for pathway selection [4]. Moreover, they play a crucial role
in sustainability assessments, employing mass-based evalua-
tion strategies to analyse reaction efficiency and environmental
impact [5, 6].

Despite the potential of these extensive datasets, they often
suffer from incomplete reaction data, which particularly com-
plicates these mass-based sustainability assessments. Many re-
actions lack necessary information, such as missing molecules
on either the reactant or product side [7]. Additionally, sto-
ichiometric data and contextual information about solvents,
(bio)catalysts, and reaction conditions such as temperature and
pressure, is often not fully available [3].

Figure 1 shows an example of a reaction with missing
molecules (completion task at the top of the figure). These com-
pletion tasks can often be solved using rule-based algorithms
that rely on chemical heuristics [8–10]. Curated balanced re-
actions can be used for training machine learning models to
tackle various completion tasks. Beyond predicting small miss-
ing molecules, these models can also learn to perform forward
prediction (inferring products from reactants) and retrosynthesis
(inferring reactants from products).

However, a notable limitation of current machine learning al-
gorithms is their failure to adhere to known chemical constraints,

Fig. 1. Summary of chemical reaction completion methods.
Rule-based or algorithmic approaches are used to curate im-
balanced reaction data with small missing molecules. The
curated reactions are used to train machine learning models
on various reaction completion tasks, including forward pre-
diction and retrosynthesis.
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such as the atom-balance. Their architecture is not designed to
keep track of the number of atoms in reactions, which can lead
to atom-imbalanced predictions. Incorporating known chemi-
cal constraints into these predictive models has the potential to
improve their performance and generalization capabilities [13].

A. Current approaches for reaction balancing
Multiple machine learning approaches for completing chemical
reactions have already emerged. Table 1 shows an overview of
these approaches. Several studies based their approach on the
autoregressive encoder-decoder transformer model [7, 10, 11].
These studies use an adapted version of the Molecular Trans-
former, which was originally trained on forward prediction
tasks [2]. Zhang et al. developed an encoder-only transformer
model for reaction completion based on the BERT architec-
ture [9]. Encoder-decoder models perform better on the reaction
completion task than the encoder-only models, especially when
predicting large molecules [10]. This is presumably because
encoder-decoder models take into account previously predicted
tokens when producing their output.

The performance of the current machine learning approaches
is limited by two aspects. First, there is a lack of balanced reac-
tions serving as ground truth data to optimally train the model.
Part of the prediction tasks involve imbalanced reactions that are
more complex than the ground truth data that current models
are trained with. This ground truth data includes the reactions
balanced by rule based methods, but these methods are not able
to curate all reactions, especially in cases with complex miss-
ing molecules [9, 10]. The performance of machine learning
models can be improved by training on ground truth data that
includes more complex reactions. Second, the predictions by the
machine learning models do not necessarily adhere to chemical
constraints. These constraints include atom-balance and stoi-
chiometry, and are ideally learned by the model, yet current
models do not enforce chemical constraints, so their outputs can
contain imbalanced reactions.

The USPTO dataset, which is used as ground truth dataset

in current approaches, contains many imbalanced reactions [1].
However, the ground truth data should consist of a diverse
and extensive number of chemically valid reactions to serve
as training data for machine learning models. Existing studies
address this limitation of the USPTO dataset in various ways.
Several approaches used this dataset of more than 1 million
entries for training the models, including the reactions with
missing molecules [7, 11]. Other approaches, which train only
on balanced reactions, first complete part of the imbalanced
reaction SMILES to increase the number of valid ground truth
reactions, following the approach outlined in Figure 1 [8–10].

Simple rule- or heuristic-based approaches can aid in identify-
ing the missing molecules in partial reactions. These approaches
are also summarized in Table 1. Various rule-based methods
exist, which all employ a predetermined set of helper molecules
often missing from reactions [10]. ChemBalancer, for example,
initially attempts to balance the stoichiometric coefficients using
a linear solver [9]. If unsuccessful, it iteratively seeks helper
species on either the left- or right-hand side of the reaction. An-
other algorithmic strategy, specifically for carbon-imbalanced
reactions, uses the maximum common subgraph (MCS) between
reactants and products to identify missing molecules [8]. This
strategy is combined with a rule-based approach, in which the
molecules are first decomposed into ions, in a framework called
SynRBL, with a machine learning model predicting the associ-
ated confidence score of the balanced output reactions. Applica-
tion of these rule-based methods can expand the ground truth
dataset, thus improving the performance of machine learning
methods for completing more complex reactions.

B. Transformer models for predictive chemistry
The Molecular Transformer was developed for forward pre-
diction, to predict products from reactants and reagents [2].
The Reaction Balancer is a fine-tuned version of the Molecu-
lar Transformer trained to complete partialized reactions, where
molecules can be missing on both sides of the reaction [10]. Fig-
ure S3 provides an overview of the two models and the data that

Reference Rule-based approach Machine learning approach

Vaucher et al. (2020) [7] None, uses uncurated data as ground truth Modified Molecular Transformer

Zipoli et al. (2024) [11] None, uses uncurated data as ground truth Modified Molecular Transformer: Multi-task
model for forward, retro and reagents, cata-
lysts, and solvents (RCS) tasks

Phan et al. (2024) [8] Rule-based approach for carbon-balanced re-
actions and Maximum Common Subgraph
(MCS) approach for carbon-imbalanced reac-
tions (SynRBL).

An XGBoost machine learning model is used
to predict the confidence scores associated
with the predictions of SynRBL.

Zhang et al. (2024) [9] Rule-based approach using linear solver and
helper species (ChemBalancer)

RoBERTa based transformer model
(ChemMLM)

Van Wijngaarden et al. (2024) [10] Rule-based approach using helper species Modified Molecular Transformer: Model
trained on curated data (Reaction Balancer)

Table 1. Summary of current approaches for reaction balancing. Rule/heuristic-based approaches are used to curate incomplete
reactions. In hybrid approaches, the resulting curated reactions are added to the ground truth data [9, 10]. Machine learning ap-
proaches for completing partial reactions are based on either the autoregressive encoder-decoder Molecular Transformer [2] or
encoder-only RoBERTa transformer [12] model.



Master’s Thesis Delft University of Technology 3

was used to train them. The Molecular Transformer was trained
on the USPTO STEREO dataset of 1 million reactions, which
was augmented to double the size by replacing the molecules by
an equivalent random SMILES representation [2]. The training
data included both separated and mixed reactants and reagents
and the model demonstrated robust performance for both input
types. Only 3.5% of the USPTO STEREO reactions are atom-
balanced, so the model is not trained to predict an atom-balanced
product side, but generates only the single main product. To
train the Reaction Balancer, a rule based curation algorithm was
used to balance the USPTO STEREO data, which resulted in an
atom-balanced dataset with 495k entries [10]. This curated data
was partialized into 4 million reactions by removing part of the
molecules.

Both models share the same auto-regressive transformer ar-
chitecture. The input reaction SMILES are tokenized using the
following regular expression, which captures at most one atom
per token (when disregarding hydrogen, which is represented
implicitly):

(\[[ˆ \]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|
=|#|-|\+|\\\\\/|:|˜|@|\?|>|\*|\$|\%[0-9]2|[0-9])

By capturing at most one atom per token, this approach facili-
tates the counting of predicted atoms and theoretically allows
for the imposition of restrictions on the prediction of certain
tokens based on atom-balance constraints.

The transformer models are trained using the Adam opti-
mizer with cross-entropy loss and an adaptive learning rate.
The cross-entropy loss for a batch of N samples is captured by
Equation 1:

LCross-Entropy = − 1
N

ΣN
i=1ΣC

j=1(yi,j · log(pi,j)) (1)

In this equation, C denotes the number of classes, which cor-
respond to the tokens in the vocabulary within the transformer
architecture. The ground truth label for sample i and class j
is stored in the variable yi,j, which has a value of one for the
token that should be predicted and zero for other tokens. The
associated probability of the model predicting this label, which
is the logits normalized by the softmax function, is pi,j. Only
the probability of predicting the correct label contributes to the
loss function, since yi,j is zero for all other classes. However, this
makes it impossible to distinguish between wrongly predicted
tokens in those cases where some wrong predictions should be
penalized more than others. The logarithm of pi,j is taken, which
ensures a large outcome when the probability of predicting the
right label is very small. This makes cross-entropy loss suitable
for gradient descent methods such as Adam optimization.

During inference, the transformer models use beam search
decoding. This technique maintains the n (beam size) most prob-
able outputs during sequence generation, providing a balance
between speed and accuracy. By considering the top-n outputs,
beam search aims to maximize overall sequence probability as
opposed to greedily taking the most probable token at each step.

C. Constrained Machine Learning
Constrained machine learning is a methodology that ensures
the outputs of a model comply with specific predefined rules
or limitations. This approach is particularly valuable in appli-
cations where adherence to physical, chemical, or operational
constraints is essential for generating valid and reliable pre-
dictions. Within the field of constrained machine learning, a
distinction can be made between soft and hard constraints.

Soft constrained machine learning preserves flexibility in the
model’s predictions. The model is encouraged to conform to
predefined rules through the incorporation of additional penalty
terms in the loss function during the training process [14]. These
penalties should guide the model towards desirable behaviour
without strictly enforcing compliance. This technique has been
effectively implemented in transformer architectures [15, 16].

In contrast, hard constrained machine learning imposes strict
adherence to constraints. This can be achieved through various
approaches, including introducing a projection layer in the archi-
tecture or constrained beam search [13, 17]. In the latter scenario,
the inference process is modified to ensure that only outputs
conforming to the specified constraints are considered.

In constrained beam search, the beam search algorithm is
adapted to filter out any outputs that do not satisfy the defined
rules, ensuring that the final predictions are optimal in terms of
likelihood while being compliant with the constraints. Depend-
ing on the constraints, the beam search algorithm is adapted
in different ways. Various studies have already incorporated
constrained beam search in their models and a constrained beam
search feature was implemented in HuggingFace’s transformers
library [17–21]. This feature allows users to specify a sequence of
words that should be part of the model’s output. It is achieved
by forcing the token that is needed to obtain the specified se-
quence in the output at each iteration of the beam search while
also extending the sequence with the most probable tokens as in
original beam search.

Another way of enforcing constraints in the output of a ma-
chine learning model is by formulating Karush-Kuhn-Tucker
(KKT) conditions. When independent constraints between input
x and output y can be expressed in the form of Ax + By = b,
the predicted output ŷ can be projected orthogonally on the con-
strained solution space in case it does not satisfy the constraints.
This method was used to model hard linear constraints to en-
force mass balances in chemical reactor simulations [13]. The
process of projecting on the constrained solution space takes the
ground truth data into account in the training phase, which influ-
ences the model’s learning process. In this way the constraints
can be learned by the model. However, this method cannot
be directly applied to constrain the atom-balance in reaction
completion tasks, as these tasks require not only counting the
missing atoms but also determining their appropriate placement
within the string representations of molecules.

Another implementation of constrained beam search was
used in the Molecular Transformer to ensure that only the atom
types of the reactants can be predicted as part of products [2]. In
this approach a mask is created that prevents predicting tokens
representing atoms that are not part of the reactants. As each
token in the vocabulary is associated with at most one atom type,
except for hydrogen, which is not regarded in the constrained
beam search, the tokens in vocabulary can be mapped to it cor-
responding atom type. Multiple tokens can have the same atom
type, for example, C, c, [C@H] and [C@@H] all represent carbon
atoms. The mask is a matrix with dimensions of beam size ×
batch size × vocabulary size, where the tokens representing atom
types that are present the input molecules are assigned a value
of 1 and other atom types are assigned a very small value (1e-
15). Tokens that do not represent atoms, but indicate structural
features, such as bonds, or molecule separation also have entry
1 in the mask. This mask is multiplied with the log probability
matrix during each iteration during beam search, ensuring only
valid tokens can be predicted. While this method guarantees
that no new atom types appear in the product of the reaction, it
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does not consider the number of atoms, so the resulting reaction
can still be imbalanced. To address this limitation, we adopt a
similar constrained beam search approach, but with a dynami-
cally changing mask that tracks the atom-balance, ensuring that
the model’s outputs result in balanced reactions.

D. Contributions in this work
In this work we further adapt the Reaction Balancer to enhance
its performance in completing partial reactions, focusing on the
chemical reactions of the USPTO dataset, as well as biochemical
reactions from different datasets. We also investigate the perfor-
mance on forward prediction and retrosynthesis tasks, which
distinguishes the abilities of machine learning approaches from
the rule-base completion approaches. We retrain the model us-
ing a more diverse dataset of balanced ground truth reactions,
and we introduce a loss function that considers atom-balance
alongside constrained beam search to improve the chemical
validity of the model. We evaluate the performance of the con-
strained models against the baseline models on both chemical
and biochemical datasets.

In this study, we aim to address the following research
question and its associated subquestions:

To what extent can soft- and hard atom-balance constraints im-
prove the performance of transformer-based models for completion
of partial (bio)chemical reactions?

1. How can atom-balance-based constraints be effectively im-
plemented into a transformer model for reaction balancing?

2. What characteristics should the reaction data have to be suit-
able for training and benchmarking the proposed model?

3. How do selected constrained machine learning approaches
compare in their performance across different classes of
reactions and across chemical and biological datasets?

2. METHODOLOGY

A. Data
The chemical reaction data that is used in this work is stored as
strings in the format of reaction SMILES. SMILES (Simplified
Molecular Input Line Entry System) describes the structure of a
molecule using short ASCII strings [22]. Molecules are described

by the standard abbreviations of their atoms, where hydrogen
is omitted because it can be deduced from the description of
the molecule, with additional descriptors for bonds, rings, aro-
maticity, branching, stereochemistry and isotopes. In reaction
SMILES the representations of molecules at each side of the reac-
tion are separated by a period and the two sides of the reaction
are separated by a double arrow (»). Solvents, catalysts and
other reagents can be noted between the two arrows. Figure 2
illustrates how the molecules of a reaction correspond to their
SMILES representation. Atom mappings that indicate which
atoms correspond to each other on both sides of the reaction can
be added by inserting a colon and a numeric label behind the
atoms. SMILES representations of molecules are not unique in
the sense that the same molecule can be represented by multi-
ple strings. To obtain unique representations, SMILES strings
can be canonicalized, which is important to be able to compare
molecules and for consistency when they are used as input for
computational tools [23].

Chemical reaction data from USPTO

The chemical reaction data that we use is from the USPTO
database [1]. This openly available online database contains
1.8M text-mined reactions from United States patents between
1976 and 2016. Various subsets of the USPTO data have been
created for different research projects, the subsets that are
relevant for this work are schematically shown in Figure S1.
USPTO STEREO contains unique reactions with one product,
of which 96.5% are imbalanced [24]. This subset was used to
train the Molecular Transformer and the Original Reaction Bal-
ancer [2, 10]. The USPTO 50k datasets are subsets with 50,000
randomly selected reactions that could be classified by NameRxn
and atom mapped by NameRxn [25–27]. The distribution of the
reaction classes in the datasets is not uniform as is shown in
Figure S2

B. Performance of existing methods
To evaluate the performance of existing methods across different
reaction classes, we apply the Reaction Balancer, its rule-based
curation algorithm, and SynRBL to the USPTO 50k subsets illus-
trated in Figure S1. We exclude already balanced reactions from
the datasets, resulting in 49,230 reactions for the 2015 dataset
and 48,809 for the 2016 dataset [25, 26]. In the absence of ground-
truth reactions, we consider reactions to be curated when they
were atom-balanced by the applied methods. From the subset
of reactions solved by the MCS-based approach of SynRBL, we

Fig. 2. Example of a chemical reaction with the structure, name and SMILES representation of each molecule. The coloured atoms
in the structures correspond to the coloured symbols in the SMILES representation of the molecules. In the reaction SMILES the
molecules are separated by periods and the set of reactants, reagents and products are separated by arrows.
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Fig. 3. Overview of the training setup for the transformer ar-
chitecture used in this study. This simplified representation
omits certain details, such as positional encoding and the add-
and-norm components. These details are available in the origi-
nal transformer paper [28].

retain only those curated reactions that achieved a confidence
score of at least 90%.

C. Architecture
For our models, we use the same transformer architecture as
employed by the Molecular Transformer and Reaction Balancer.
A schematic overview of this autoregressive encoder-decoder
model is shown in Figure 3. We adopt the same hyperparameters
as those used in the previous studies. The implementation is
based on the OpenNMT version 0.4.1, with minor modifications
to ensure compatibility with PyTorch version 1.13.1 [29, 30].

D. Training data preprocessing
We train three different models. To avoid data leakage from the
reactions that were already seen during training of the Molecular
Transformer or the Original Reaction Balancer, we retrain the
models from scratch. We train one model on a large chemical
dataset and one model on a smaller biochemical dataset. Because
the biochemical dataset is smaller, as a third model, we fine-
tune the model trained on chemical reactions on the smaller
biochemical dataset. These models are summarized in Table 2
and the preprocessing of the data is described below.

Chemical Reaction Balancer

Before training the model, several preprocessing steps are ap-
plied to the raw USPTO dataset to ensure data quality and suit-
ability [31]. These steps are summarized graphically in Fig-
ure S4.

The first step involves standardizing the data, during which
all molecules are canonicalized using RDKit [32]. Part of the
reactants are atom-mapped to their corresponding atoms in the
products. Similar to the preprocessing conducted for USPTO
STEREO, we move reactants that have no atom-mapping to
the reagents [24]. Subsequently we discard any recorded atom-
mappings in the data. Next, we group reactions that share the
same set of reactants and products, while separately recording
all sets of reagents. We additionally discard 640 reactions that
RDKit could not canonicalize, resulting in 1.1 million unique
standardized reactions.

From these standardized reactions, we retain only those that
have no overlapping patent numbers with either of the USPTO
50k datasets, as we use the USPTO 50k data to evaluate our mod-
els. This conservative approach ensures that the model has not
encountered reactions similar to those in the USPTO 50k dataset.
The importance of considering dataset structure when creating
data splits was recently highlighted by a study, which found
that using random splits in chemical reaction prediction models
leads to overoptimistic performance estimates [33]. The set of
standardized reactions includes many imbalanced reactions. To
curate these reactions for training, we employ the rule-based
algorithmic approach SynRBL that successfully curated 460,563
unique reactions (with a confidence level of ≥90% for its MCS-
based approach) [8]. We discard reactions where the reactants
are identical to the products, resulting in 453,597 balanced re-
actions, which are split in training (90%) and validation (10%)
sets.

These balanced reactions are partialized into training in-
stances, following a method similar to that of the Original Reac-
tion Balancer [10]. For each balanced reaction, a maximum of 10
partialized reactions is created, including the balanced reaction
itself without any removed molecules, allowing the model to
learn to recognize balanced reactions. In the remaining partial-
ized reactions, molecules are removed such that they accounted
for no more than 50% of the total atoms in the reaction. After par-
tialization we obtain 3,726,463 training and 414,079 validation
reactions.

To teach the model to recognize reagents, we include reagents
as reactants in some of the partialized reactions. The model is
designed to predict these reagents on both sides of the reaction.
If recorded reagents are present, we assign a 50% chance of
including them in each partialized reaction. When reagents
are added, one set of reagents is randomly selected, with each
reagent being included with a probability of one divided by the
number of reagents in that set. This means that if a reagent is
the only one in a set, it is always added; if there are two or more,
each has a lower probability of being added, which can lead to
no, one, or multiple reagents being included in the partialized
reaction. To prevent bias in the order of molecules within a
reaction, the molecules on each side are shuffled.

Biochemical Reaction Balancer

The Biochemical Reaction Balancer is trained using reaction data
from the Rhea database [34]. This is an open source expert-
curated knowledgebase containing 17,098 enzymatic and trans-
port reactions in SMILES format. Several preprocessing steps
are applied to this data, as illustrated in Figure S5. First, we stan-
dardize the reactions and filter out those that are imbalanced
or belong to reaction classes containing asterisks that indicate
unspecified side groups in a molecule. Upon inspecting the
imbalanced reactions, we identified a subset that could be bal-
anced by altering the notation of S, which RDKit recognizes as
hydrogen sulfide (H2S), to [S], which denotes sulfur (S). Next,
we discard transport reactions where the reactants were iden-
tical to the products. This preprocessing results in a dataset of
12,091 standardized balanced reactions. These reactions are sub-
sequently divided into training (72%), validation (8%), and test
(20%) datasets and partialized using the same approach as de-
scribed for the chemical reaction data above. After partialization
we obtain 78,240 training and 8,743 validation reactions.
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Fine-tuned Biochemical Reaction Balancer

To train the Fine-tuned Biochemical Reaction Balancer, we use
the trained Chemical Reaction Balancer model. We fine-tune
this model with the reactions from the Rhea dataset that we also
use for training the Biochemical Reaction Balancer. To manage
GPU memory limitations, we reduce the dataset to include only
reactions with a maximum of 250 tokens in both the input and
target sequences. This adjustment decreases the number of train-
ing reactions from 78,240 to 69,991 and the number of validation
reactions from 8,743 to 7,795.

Model variations

For the Chemical and Biochemical Reaction Balancer setup, we
train three models: a baseline model and a two constrained
models, in which we adapt the loss function with a different
weight, as will be explained in Section 2E. For the fine-tuned
Biochemical Reaction Balancer we only train a baseline model.
Additionally, we introduce hard constraints during inference
in our experiments, outlined in Section 2F. The Chemical Reac-
tion Balancer model was trained for 500,000 steps which took
approximately 36h for the baseline and 43h for both constrained
models on a single GPU and the Biochemical Reaction Balancer
model was trained for 250,000 steps which took approximately
15h for the baseline and 21h and 11h for the two constrained
models on a single GPU. The Fine-tuned Biochemical Reaction
Balancer was fine-tuned from the Chemical Reaction Balancer
for 250,000 steps with Rhea data.

E. Soft constraints on the loss function

The cross-entropy loss described in Section 1B only considers
the ground truth token and does not differentiate between incor-
rectly predicted tokens. Therefore, we extend the loss function
to incorporate an additional term that penalizes violations of
the atom-balance. This modification provides the model with

specific feedback regarding atom-balance, guiding it toward
learning how to balance reactions. This additional loss term re-
flects the divergence between the probability distributions of the
atom types, arrow and end-of-sequence token based on context
(pcontext) and the actual predictions (ppred).

First, pcontext, as shown in Equation 2 and 4, can be pre-
computed based on the input and the left-hand context. For
each atom type, the number of atoms appearing in the products
is subtracted from the number occurring as reactants. The same
process is applied to the left-hand context of the predicted to-
ken, which includes the tokens preceding the current prediction
that are visible (i.e., not masked) during the prediction process.
This left-hand context always consists of the non-masked part
of the ground truth due to the teacher-forcing mechanism in-
herent in the transformer decoder, which makes it possible to
pre-compute pcontext. The resulting values for the atom-balance
of the input and left-hand context are added and in case the pre-
diction is on the reactant side and the atom type is not missing
on the reactant side, so the outcome of this sum is greater or
equal to zero, the probability value is set to zero. In all other
cases the probability values for each atom type are normalized
by dividing them by the total sum of the distribution, resulting
in a probability distribution that sums to 1. The probability for
the arrow token is always set to zero; if the model can predict
the arrow token without violating the atom-balance, we do not
compute the atom-balance loss and instead return a value of
zero. The probability for the end-of-sequence token is set to 1
only when the prediction is on the product side and all atom
types are balanced.

Second, ppred, shown in Equation 3 and 5, is computed based
on the predicted probabilities over the vocabulary. These pre-
dicted probabilities are grouped by atom type and also include
the probabilities for the arrow and end-of-sequence tokens. Sim-
ilar to pcontext, in case the prediction is on the reactant side and

pcontext
react (i) =


|isrc,react−isrc,prod+ileft-hand,react−ileft-hand,prod|

||pcontext|| if i ∈ atoms and isrc,react − isrc,prod + ileft-hand,react − ileft-hand,prod < 0

0 if i ∈ atoms and isrc,react − isrc,prod + ileft-hand,react − ileft-hand,prod ≥ 0
0 if i = > or i = <\s>

(2)

ppred
react(i) =


∑t∈tokens of i p(t)

||ppred|| if i ∈ atoms and isrc,react − isrc,prod + ileft-hand,react − ileft-hand,prod < 0

0 if i ∈ atoms and isrc,react − isrc,prod + ileft-hand,react − ileft-hand,prod ≥ 0
p(i)

||ppred|| if i = > or <\s>

(3)

pcontext
prod (i) =


|isrc,react−isrc,prod+ileft-hand,react−ileft-hand,prod|

||pcontext|| if i ∈ atoms

0 if i = >
1 if i = <\s> and ∀x ∈ atoms s.t. pcontext(x) = 0
0 if i = <\s> and ∃x ∈ atoms s.t. pcontext(x) > 0

(4)

ppred
prod(i) =


∑t∈tokens of i p(t)

||ppred|| if i ∈ atoms
p(i)

||ppred|| if i = > or <\s>
(5)

L =

{
LCross-Entropy + λ ∑i |ppred(i)− pcontext(i)| if ∃x ∈ atoms s.t. pcontext(x) > 0 or if pcontext(<\s>) = 1
LCross-Entropy else

(6)
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the atom type is not missing on the reactant side the value is set
to zero and in all other cases ppred is normalized by dividing all
values by the total size of the distribution.

The computation of the loss is summarized in Equation 6.
The original cross-entropy loss is always calculated, while the
additional term is computed for the reactant side only when
there are missing atoms, and for the product side, it is always
included. This additional loss term represents the absolute differ-
ence between the two probability distributions, yielding a value
between 0 (when the distributions are identical) and 2 (when the
non-zero values have no overlap). To balance the two loss terms,
the additional loss term is multiplied by a factor, denoted as λ,
which is a hyperparameter that must be set manually.

F. Constrained beam search
As explained in Section 1C, during beam search, a mask can
be used to restrict certain tokens from being predicted. In the
Molecular Transformer, a constrained beam search option was
implemented for preventing atom types that are not part of the
reactants from being predicted as part of the product. In this
work we adapt constrained beam search to enforce the output
to be balanced. We restrict predicting tokens that violate the
validity of the atom-balance during beam search. For each beam
a mask is constructed that restricts the selected tokens. Because
the transformer makes predictions in an auto-regressive fashion,
it first predicts molecules on the reactant side and subsequently
on the product side. We restrict predicting the arrow-token mark-
ing the transition between these sides until all missing atoms on
the reactant side are predicted based on the products of the input
reaction. Note that the decoder can add more reactants before
the arrow tokens are predicted; we do not enforce predicting the
arrow token. On the product side, we restrict predicting the end-
of-sequence tokens until the reaction is balanced and we restrict
predicting balanced atom types. Because the atom-balance can
change for each additional predicted token, the mask is updated
during each iteration.

In contrast to the mask that restricts atom types in the output
of the Molecular Transformer, the atom-balance enforcing mask
needs to be dynamic because it is based on counts. To initialize
the mask, the atoms of the imbalanced input reaction are counted
and if there are missing atoms on the left-hand (reactant) side of
the reaction, the arrow token (>) cannot be predicted. This mask

is updated for every token that is predicted, to check whether
there are still missing atoms on the reactant side and if there
are no missing atoms, the arrow token will be stopped being
constrained. Once the arrow tokens are predicted, the total
number of atoms and charge on the reactant side are determined
to calculate the exact number of atoms per atom type that are still
needed on the right-hand (product) side to balance the reaction.
Until the reaction is both atom and charge balanced, the end-of-
sequence token (</s>) is restricted. All tokens representing atom
types that are already balanced are constrained as well. Because
the atom-balance can change for each additional predicted token,
the mask is updated during each iteration.

For tokens that are not in the training vocabulary of the
model, the atom type cannot be identified. If out-of-vocabulary
tokens appear in an input sequence, they are represented by
the unknown (<unk>) token. Because it is not possible to de-
rive the atom-balance from a sequence with unknown tokens,
constrained beam search is disabled for reactions with out-of-
vocabulary tokens. Additionally, the model can predict un-
known tokens as part of its output, which are subsequently re-
placed by the input token with the highest input weight. This can
lead to violations of the atom-balance, because out-of-vocabulary
tokens representing atoms are not identified when constructing
the atom-balance. Therefore, we always constrain the unknown
token in constrained beam search.

Constrained beam search ensures that the model’s output is
atom-balanced, with the exception of hydrogen, causing it to
be a hard constraint. However, it does not guarantee that the
predicted outcomes align with the ground truth or consist of
valid molecules. Additionally, by restricting tokens that might
otherwise have a high probability, the use of constrained beam
search can result in predicting sequences with lower probability
outcomes.

G. Evaluation
We benchmark our models using datasets for which ground
truth data is available. Additionally, we assess the models’ abil-
ity to balance reactions without ground truth data. We also
compare the models across different reaction classes. A sum-
mary of the datasets used for training and evaluating the models
is presented in Table 2.

For benchmarking the Chemical Reaction Balancer models,

Model Training data Benchmark data Balancing data Class data

Chemical Reaction
Balancer (CRB)

• USPTO excluding overlap
with USPTO 50k curated by
SynRBL (454k*)

• Original and partialized val-
idation set from SynRBL (5k +
5k*)
• Rhea test set (2k*†)
• ECReact (28k*†)

• Uncurated USPTO exclud-
ing overlap with USPTO 50k
(147k†)

• USPTO 50k (92k)

Biochemical Reaction
Balancer (BRB)

• Rhea train set (10k*) • Rhea test set (2k*†)
• ECReact (28k*†)

- -

Fine-tuned Biochemical
Reaction Balancer
(ft-BRB)

• USPTO excluding overlap
with USPTO 50k curated by
SynRBL (454k*)
• Rhea train set (10k*†)

• Original and partialized val-
idation set from SynRBL (5k +
5k*)
• Rhea test set (2k*†)
• ECReact (28k*†)

• Uncurated USPTO exclud-
ing overlap with USPTO 50k
(147k†)

• USPTO 50k (92k)

Table 2. Overview of the transformer models developed in this work and the datasets used for their training and evaluation. The
number of reactions of the datasets is denoted between brackets for each dataset. The reactions of the datasets indicated with *
are partialized before being used as training data. Datasets indicated with † are filtered to only contain reactions of maximally 250
tokens for both input and target sequence (if available).
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we use the validation set of SynRBL, which was manually veri-
fied by the authors of the study [8]. This validation set, compris-
ing of 5,420 reactions, is sourced from three datasets, including
the USPTO 50k dataset of 2016 [26, 35, 36]. We select only the re-
actions listed in the expected_reaction column of their dataset
that we confirm to be atom-balanced, resulting in a total of 4,610
reactions. In this original validation set, the completion task
involves reconstructing the reaction from the raw data, where
both the main reactant and product are always present. We
test our models on this original validation set as well as on a
partialized version, where we randomly remove molecules that
account for no more than 50% of the total atoms in the reaction.
This partialized dataset contains 41,530 reactions and includes
both forward prediction, retrosynthesis, and completion tasks
with a combination of missing molecules.

For benchmarking the Biochemical Reaction Balancer models,
we use a held-out test set comprising 20% of the Rhea data [34].
The reactions in this test set are partialized in the same manner
as the training data, yielding 21,897 partialized reactions. For
benchmarking on an out-of-distribution dataset, we use the
biochemical reactions from ECReact, where we exclude any
overlap with Rhea and imbalanced reactions [37]. The resulting
dataset contains 28,146 unique reactions that are partialized into
249,257 reactions.

To evaluate the models’ ability to balance reactions from an
external dataset without ground truth, we use the uncurated por-
tion of the USPTO data, which comprises 147,558 reactions. To
compare performance across different reaction classes, we take
the 92,205 unique reactions with reaction class labels from the
USPTO 50k datasets of 2015 and 2016. During standardization
of the 2016 dataset we use the reported reactant set identified by
NameRxn to discard the reagents from the reactant side. For the
2015 dataset the set of reactants is not explicitly recorded, so we
keep all reactants. We discard five unique reactions for which
the standardized reactions belong to multiple reaction classes.

To keep the inference runtime feasible, the reactions of the
Rhea, ECReact and uncurated USPTO evaluation sets are filtered
to only contain reactions of maximally 250 tokens for both input
and target sequence (if available). After filtering the Rhea test
dataset contains 19,806 reactions, the ECReact dataset contains
204,222 reactions and the uncurated USPTO dataset contains
146,573 reactions.

Round-trip accuracy

To estimate accuracy on the uncurated USPTO reactions, we
employ a modified version of round-trip accuracy, a metric that
was introduced in the Original Reaction Balancer work [10]. In
this approach, the predicted output molecules are used as input
for a new prediction task. If the result of this reverse predic-
tion matches the initially predicted reaction, it is defined to be
round-trip accurate. For completion tasks with only a small set
of missing molecules, the output set may be too small to form a
partial reaction. To address this, we add additional molecules
to meet a predefined round-trip minimum percentage of atoms
that should be present in the modified partial reaction. We set a
round-trip minimum of 50% of the atoms for the modified reac-
tions to ensure that these reactions cannot be the full balanced
reactions. We observe that when the round-trip minimum ex-
ceeds 50%, for a subset of the partialized reactions no molecules
can be removed, meaning the model does not need to predict any
missing molecules and the accuracy can appear overoptimistic.

3. RESULTS AND DISCUSSION

A. Performance of existing methods
The results of experiments on existing methods demonstrate
that the algorithmic approach, SynRBL, outperforms solely rule-
based methods across reaction classes. As illustrated in Fig-
ures S6A and B, SynRBL consistently shows higher performance
and a more balanced distribution across reaction classes, with
the only exception being the reactions from class 7 (reductions)
in the 2015 dataset. Most of the reactions of this class that are
solved by the MCS-based method have a confidence score be-
low 90%. Additionally there is a subset consisting of 4.8% of
the reactions of this dataset that only missed molecular oxygen
(O2) or hydrogen (H2) that were not solved by SynRBL. This
also partly explains the superior balancing performance of the
curation algorithm in this class since both molecular oxygen and
hydrogen are part of its set of helper species. In general, the
reactions solved by SynRBL using only the rule-based compo-
nent show a distribution comparable to those balanced by the
curation algorithm, as can be seen in Figures S6C and D. This
similarity in performance can also be observed for the Original
Reaction Balancer, which is trained on reactions curated by the
curation algorithm, resulting in comparable outcomes. These
findings suggest that the performance of a machine learning
model can be improved by training it on a more diverse set
of ground truth reactions. As detailed in Section 2, we curate
USPTO reactions, excluding those present in either USPTO 50k
dataset, using SynRBL. From the reactions identified through
the MCS-based approach, we retain only those with a confi-
dence score exceeding 90%, which constituted the majority of
the dataset, as shown in the confidence distribution in Figure S7.

B. Performance of the trained models
An overview of the evaluation results is presented in Table 3.
This table shows the performance of our trained models and Syn-
RBL on the evaluation data stated in Table 2, which includes the
percentages of balanced reactions (both fully balanced (Bal.) and
balanced disregarding hydrogen (Bal. -H)), the accuracy (Acc.)
in case ground truth data is available and the percentage of re-
actions that contain an unknown token, leading to constrained
beam search being disabled, (Unk.) for the experiments with con-
strained beam search. For the validation set of SynRBL and for
the USPTO 50k data we report the SynRBL accuracy (SynAcc.),
which is the percentage of reactions that exactly match the pre-
diction of SynRBL in case SynRBL predicts a balanced reaction
with a confidence of at least 90% for its MCS-based approach.
Additionally, the training performance of the models on both the
Rhea and USPTO validation sets of the training data is presented
in Table 4. The reported token accuracy and loss values during
training are presented in Figures S8 and S9. The remainder of
this section will discuss these results and present additional
analysis to interpret our findings.

Remarks on the pre-processing steps and experiments

During the pre-processing steps and throughout our exper-
iments, we made several noteworthy observations. Firstly,
the USPTO dataset includes a few reagents that could not be
parsed by RDKit and were discarded, these are: [NH4+]=S, C=Cl,
and C1C=CC([Sn-](F)(F)(C2C=CC=CC=2)C2C =CC=CC=2)=CC=1.
Secondly, we notice that in the pre-processing step of SynRBL,
brackets around uncharged atoms are removed, along with any
recorded hydrogen atoms within those brackets. We observe
that this alteration can sometimes change the identity of the
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molecule; for instance, [Br] is converted to Br, transforming the
molecule from bromine (Br) to hydrogen bromide (HBr). Further-
more, SynRBL identifies a small subset of imbalanced reactions
as solved—specifically, 30 out of 608,121 processed reactions.
These imbalanced reactions involve carbon, sulfur, potassium
and hydrogen imbalances. We also notice a peculiarity in the
validation set of SynRBL.

In the reactions where the authors of SynRBL manually added
molecular hydrogen to balance a reaction of their validation set,
they used the SMILES notation [HH] instead of the conventional
[H][H]. This notation remains unchanged during the canoni-
calization process, meaning it appears in both the input and
ground truth data of the validation test sets. Since [HH] is never
used in the training data, it is not part of the models’ vocabu-
lary and represented by the unknown token during translation.
Unfortunately, this deviating notation was identified too late to
be addressed in our experiments. It affects one input reaction
and 308 target sequences (6.68% of the dataset) in the original
validation set and 1,557 partialized input reactions (3.74%) and
1,247 partialized target sequences (3.0%) in the partialized val-
idation set. Lastly, the process of partialization reveals several
reactions that can be decomposed into two balanced reactions,
which occur as balanced yet incomplete reactions within the
partialized data. Specifically, we identify two reactions in the
partialized validation set, five reactions in the Rhea test set, and
29 reactions in the ECReact data of which both the input and the
output are non-empty and balanced.

C. Constrained loss function

Our results indicate that the constrained loss function does not
improve the models ability to balance the reactions. This fol-
lows from the reported training performance on the validation
sets presented in Table 4. Both the Chemical and Biochemical
Reaction Balancer models are trained using the constrained loss
function with weights (λ) of 1 and 0.1. When using a λ of 1, the
model disproportionately weighs the atom-balance loss, leading
to a higher cross-entropy loss and, consequently, lower accuracy.
In contrast, when adjusting the weight to 0.1, both loss terms
have a similar range of values, allowing the model to reduce
the atom-balance loss while maintaining a low cross-entropy
loss. However, despite this ability of the model with λ = 0.1,
we do not observe significant improvements in accuracy. The
reported accuracy and loss values during training are presented
in Figures S8 and S9. From these plots we observe that the con-

strained models with λ = 1 have relatively unstable accuracy
and cross-entropy loss values and the constrained models with
λ = 0.1 have less stable values for the atom-balance loss.

When comparing the baseline models to their equivalents
with the constrained loss function, we find that the constrained
models with λ = 1 perform worse than their corresponding
baseline models across all experiments, with the exception of the
original validation set of SynRBL. As can be seen in Table 3, for
the constrained models with λ = 0.1, the performance deviates
from the baseline models by only about 1%. Overall, these
constrained models tend to perform slightly better on datasets
that are similar to the training data, such as the validation sets
and USPTO 50k for the Chemical Reaction Balancer, as well as
Rhea for the Biochemical Reaction Balancer. Conversely, their
performance appears to be worse compared to baseline models
on out-of-distribution datasets, including Uncurated USPTO
and Rhea for the Chemical Reaction Balancer, and ECReact for
both models.

Effect of the atom-balance loss on the cross-attention weights

We observe differences in cross-attention weights when exam-
ining a specific reaction where the output of the constrained
Chemical Reaction Balancer with λ = 0.1 is imbalanced, while
the baseline model produces a balanced output. An example
of this is presented in the forward prediction task shown in
Figure 4, accompanied by corresponding cross-attention plots
in Figure 5. The cross-attention layers, as depicted in Figure 3,
allow the model to focus on relevant parts of the input sequence
when generating an output. The cross-attention weights repre-
sent how much attention the model pays to different parts of the
input when making predictions for a specific output token.

While both the baseline and constrained Chemical Reaction
Balancer with λ = 1 generate accurate balanced outputs, their
cross-attention plots reveal significant differences. In the base-
line model, the cross-attention weights for output tokens are
often highest for input tokens or atoms of reactants that map
closely to the tokens or atoms of the products, particularly those
predicted next. In contrast, the constrained model with λ = 1
displays more fixed distributions of attention weights through-
out the output sequence, with the highest attention weights
assigned to a limited set of four input tokens: ., ), > and >. Ad-
ditionally, the constrained model with λ = 0.1 generated an
incorrect output, predominantly focusing on the same fixed set
of tokens: ., > and >. This loss of dynamic attention patterns

BL C (λ=1) C (λ=0.1) BL C (λ=1) C (λ=0.1) BL

Data CRB CRB CRB BRB BRB BRB ft-BRB

Rhea Token Acc. 90.54% 88.10% 90.43% 95.98% 95.69% 96.05% 97.22%

CE-Loss 0.381 0.597 0.392 0.295 0.431 0.305 0.197

AB-Loss - - - 0.867 0.140 0.498 -

USPTO Token Acc. 98.02% 96.36% 98.01% 53.17% 53.93% 53.00% 88.91%

CE-Loss 0.049 0.216 0.050 5.610 4.251 5.789 1.092

AB-Loss 0.634 0.105 0.388 - - - 0.697

Table 4. Metrics of the trained models on the validation sets of the training data (both validation sets are 10% of the training data).
Token accuracy (Token Acc.), cross-entropy loss (CE-Loss) and atom-balance loss (AB-Loss) for the baseline (BL) and constrained
(C) Chemical Reaction Balancer (CRB), Biochemical Reaction Balancer (BRB) and fine-tuned Biochemical Reaction Balancer (ft-BRB).
Since the vocabulary of the CRB and ft-BRB models does not include all tokens of the Rhea validation set and the vocabulary of the
BRB models does not include all tokens of the USPTO validation set the atom-balance loss cannot be calculated, because it cannot
interpret the <unk> tokens.
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may explain the constrained model’s less stable performance.

Potential improvements of the atom-balance loss

It is not straightforward to determine the exact contribution
of the constrained loss function to the training of the model,
as transformers are often considered black box models. This
complexity also makes it challenging to identify potential im-
provements for the additional loss function. For future inves-
tigations, understanding how the backpropagation of the dif-
ferent loss terms affects the cross-attention weights might be
helpful. Another area for improvement is better alignment of
the objectives of the cross-entropy loss and the atom-balance
loss. Currently, the atom-balance loss is calculated based on the
difference between two probability functions, which means it
reaches a minimal value only when the precomputed and pre-
dicted probabilities in pcontext and ppred are perfectly aligned. As
a result, achieving an atom-balance loss of zero often requires
distributing probability scores across different tokens, while the
cross-entropy loss is minimized only when the full probability
is assigned to the ground truth token. A possible solution to this
issue is to create a Boolean vector from the pcontext vector, with
entry True for non-zero and False for zero values, and construct
the loss using predicted probability scores that correspond to
the False entries in the Boolean pcontext vector.

Input reaction:

Output BL CRB and C (λ = 1) CRB:

Output C (λ = 0.1) CRB:

Fig. 4. Input and output reactions from the partialized val-
idation set for which the baseline and constrained (λ = 1)
Chemical Reaction Balancer produced a balanced output and
constrained (λ = 0.1) Chemical Reaction Balancer produced an
imbalanced output. The output of the baseline model matches
the ground truth.

D. Constrained beam search
The percentage of balanced reactions and accuracy achieved
through constrained beam search is consistently at least as high
as that of normal beam search. This is because constrained
beam search allows for the full generation of balanced reactions,
meaning that tokens that do not violate atom-balance are not
restricted. As shown in Table 3, using constrained beam search
results in a higher number of balanced reactions and slightly im-
proved accuracy in most experiments. Especially the percentage
of balanced reactions when ignoring hydrogen is significantly
higher in experiments with constrained beam search, because
the model does not consider the hydrogen balance. In some
types of reactions, such as reductions or oxidations, this can lead

BL CRB:

C (λ = 1) CRB:

C (λ = 0.1) CRB:

Fig. 5. Cross-attention plots of the baseline (BL) and con-
strained (C) Chemical Reaction Balancer models for the re-
action depicted in Figure 4.
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Fig. 6. Overlap in the performance of the Chemical Reaction Balancer and fine-tuned Biochemical Reaction Balancer models with
and without constrained beam search and of SynRBL on the partialized validation set categorized into balanced, imbalanced and
invalid predictions. Each matrix of 3 × 3 outlined by white borders contains the overlap between any two models adding up to the
total of all 41530 reactions. The matrices on the main diagonal contain the categories within each method. The algorithmic approach
SynRBL never produces invalid reactions.

to false outcomes. So, when constrained beam search fails to
produce a balanced reaction, we typically observe either reac-
tions with hydrogen imbalanced or invalid reactions, which, for
example, reach the maximum sequence length.

In our analysis of the predictions, we occasionally observe
violations in atom-balance or reaction validity by models us-
ing constrained beam search in reactions that were balanced
using normal beam search. As illustrated in Figure 6, we cate-
gorize the predicted reactions of the partialized validation set
into balanced, imbalanced, and invalid predictions and report
the overlap in number of reactions per category between any
two models. As expected, both the baseline and constrained
Chemical Reaction Balancer with λ = 0.1 always generate bal-
anced reactions in case the same model without constrained
beam search generates a balanced reaction. In contrast, the con-
strained Chemical Reaction Balancer with λ = 1 generates six
imbalanced and three invalid reactions in cases where this model
without constrained beam search predicted balanced reactions.
These specific reactions are shown in Figure S11. Notably, only
two out of nine reactions resulted in a balanced outcome that
matches the ground truth. This scenario can only occur when
the generated imbalanced or invalid sequence achieves a higher
probability score but remains undiscovered by the normal beam
search due to limited beam size. These findings indicate that
this model is insufficiently trained to consistently assign higher
probability scores to balanced reactions.

Additionally, compared to normal beam search, we observe

an increase in invalid reactions with constrained beam search.
This happens because the constrained beam search restricts the
prediction of imbalanced reactions. In cases where the model
cannot predict the missing atoms, it can generate long sequences
of nonsensical tokens, as the arrow or end-of-sequence token
remains constrained. We hypothesized that the constrained
loss function might mitigate the generation of invalid results;
however, our findings indicate that constrained models using
constrained beam search do not outperform their corresponding
baseline models with constrained beam search.

Effect of the beam size on constrained beam search

Increasing the beam size in constrained beam search can be
misleading, as it appears to increase the number of balanced re-
actions without improving accuracy on out-of-distribution data.
Figure 7 illustrates the impact of beam size on the performance
of the baseline Chemical Reaction Balancer on the biochemical
Rhea dataset. While increasing the beam size with normal beam
search maintains stable accuracy and percentage of balanced
reactions, the percentage of balanced reactions in constrained
beam search continues to rise with larger beam sizes, even as
accuracy remains relatively stable. This discrepancy is particu-
larly concerning in real-life scenarios where ground truth data
is unavailable, as a high percentage of balanced but inaccurate
reactions can lead to wrong conclusions.
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Fig. 7. Performance of the baseline Chemical Reaction Bal-
ancer with varying beam size on partialized Rhea test set with
and without constrained beam search (CBS).

Round-trip accuracy proves unreliable for confidence estimation

To evaluate whether we can distinguish between inaccurate
and accurate balanced predictions, we determine the round-
trip accuracy on the Rhea test set, as described in Section 2G.
We generate modified partialized reactions from the balanced
predictions of the Chemical Reaction Balancer using normal and
constrained beam search. With ground truth data available, we
can construct a confusion matrix. If round-trip accuracy were a
perfect indicator of the model’s accuracy, all reactions would be
classified as either both round-trip and ground truth accurate or
as neither. However, as shown in Figure 8, the majority of the
round-trip accurate predictions do not align with the ground
truth. This indicates that using the round-trip accuracy is not
informative for the actual accuracy of the predictions.

Probability scores for confidence estimation

To still distinguish inaccurate from accurate balanced predic-
tions using an alternative method, we measure the confidence
using the probability score of the model, which can provide a
more reliable assessment of prediction quality. Figure 9 shows
the distribution of probability scores for predictions that are
accurate, balanced, but not accurate, and imbalanced (and not
accurate). The plot shows that accurate predictions mostly have
probability scores close to one, whereas inaccurate predictions
have probability scores closer to zero. This makes the prob-
ability score a good estimate of the certainty of a prediction
being accurate. The observed distributions for experiments with
both normal and constrained beam search are similar. The indi-

Fig. 8. Confusion matrices of the round-trip accuracy of the
baseline Chemical Reaction Balancer on the Rhea test set,
with and without constrained beam search. The balanced pre-
dictions are again partialized into modified reactions with a
round-trip minimum of 50% and used as input for the model.
The confusion matrices show the number of predictions that
match the initial balanced output prediction as round-trip accu-
rate and the number of prediction that match the ground truth
reaction as ground truth accurate.

cated quartiles show that the probability scores of the inaccurate
predictions made by models with constrained beam search are
lower than for models with normal beam search. However, there
are also inaccurate predictions with high probability scores and
accurate predictions with low probability scores that risk being
misclassified when only considering this score.

The heatmaps in Figure S10 show the relationship between
the length of the prediction versus the probability score for ac-
curate, inaccurate balanced and imbalanced predicted reactions.
In general there are relatively few long predictions with high
probability scores. For predictions with a score below 0.1 at
least half is inaccurate across all length ranges. Balanced but
inaccurate predictions appear mostly on the lower triangular
matrix, which include short predictions with any probability
value, mid-length predictions with low to medium probability
values and long predictions with a low probabilities indicating
some correlation between the prediction length and probability
score within this group of predictions.

Runtime of constrained beam search

During our experiments we notice an increase in runtime when
using constrained beam search. While running inference on
in-distribution validation sets results in only a slight runtime
increase (by a factor of 1-2), the runtime increases more for

Fig. 9. Probability distributions of the probability scores associated with the predictions made by the baseline Chemical Reaction
Balancer with normal and constrained beam search on the partialized validation set of SynRBL for accurate, balanced inaccurate
and imbalanced inaccurate predictions. The quartiles of the distributions are indicated by dotted lines.
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out-of-distribution datasets, with observed runtimes of up to
four times slower. Due to the experiments being conducted on
different GPUs within our cluster, precise comparisons are not
feasible, and we do not report these runtimes.

E. Algorithmic versus Machine Learning approaches
While the algorithmic completion methods excel at predicting
small missing molecules, our transformer models demonstrate
superior performance across a variety of completion tasks. Our
results, as shown in Table 3, indicate that SynRBL achieves the
best performance on the original validation set, whereas our
Chemical Reaction Balancer models perform better on the par-
tialized validation set.

Performance on the different types of tasks

Figure 10 shows the performance of the models on the partial-
ized validation set, for which the tasks is divided into different
categories. The performance on tasks where only hydrogen is
imbalanced is the same for all Chemical Reaction Balancer mod-
els, as would be expected since the constraints do not keep track
of hydrogen imbalances. SynRBL generates a relatively large
number of balanced, yet inaccurate reactions in this category
of hydrogen-imbalanced reactions, by predicting molecular hy-
drogen ([H][H], H2) where the ground truth contains hydrogen
atoms ([H], H). Additionally, part of the inaccurately predicted
reactions that are missing molecular hydrogen arise from the
deviating notation [HH] in part of the target sequences, as men-
tioned in Section 3B. For other carbon-balanced reactions, Syn-
RBL is not able to accurately solve most of the reactions where
at least ten tokens are missing. For carbon-imbalanced reactions

the performance of all methods seems relatively similar for a
varying number of missing tokens. In cases of partialized reac-
tions with carbon atoms present on only one side of the reaction
(C-incomplete), SynRBL fails in nearly all instances due to its
inability to construct a maximum common subgraph (MCS).
Moreover, SynRBL is not able to solve any forward prediction
or retrosynthesis tasks. In contrast, the Reaction Balancer mod-
els maintain relatively stable performance across these various
tasks.

Synergy between algorithmic and machine learning approaches

The integration of algorithmic and machine learning approaches
presents a synergistic potential. By training our models on reac-
tions curated through an algorithmic method and extending the
variety of tasks that these models can perform, algorithmic and
machine learning approaches enhance each other’s functionality.
Additionally, both approaches can be used to cross-verify each
other’s predictions.

To cross-verify the predictions of our models and SynRBL
we measure the percentage of reactions that exactly match the
prediction of SynRBL in case this prediction is balanced and has
a confidence of at least 90% for the MCS-based method. This
SynRBL accuracy is reported in Table 3 (SynAcc.) for the original
validation set and USPTO 50k. All Chemical Reaction Balancer
models achieve a SynRBL accuracy of around 6% higher than
their accuracy on the original validation data. All values are
relatively similar across these models on both the original val-
idation data and USPTO 50k indicating that the atom-balance
constraints do not have a large impact on this value.

Fig. 10. Performance per task on the partialized validation set of SynRBL of A: Baseline CRB, B: Baseline CRB with CBS, C: Con-
strained (λ=1) CRB, D: Constrained (λ=1) CRB with CBS, E: Constrained (λ=0.1) CRB, F: Constrained (λ=0.1) CRB with CBS, G:
Baseline ft-BRB, H: Baseline ft-BRB with CBS, I: SynRBL. The tasks are divided into balanced reactions (first bar), imbalanced reac-
tions with input molecules on both sides of the reaction (second to tenth bar), reactions with only the reactants as input (forward,
eleventh bar) and reactions with only the products as input (retrosynthesis, twelfth bar). The imbalanced reactions are again di-
vided into reactions with carbon balanced (C-balanced), carbon imbalanced, but with carbon atoms on both sides of the input
reaction (C-imbalanced) and carbon imbalanced with carbon atoms on only one side of the input reaction (C-incomplete). The C-
balanced reactions are subdivided into reactions where only hydrogen atoms are missing and reactions where other atom types
are missing of less than ten missing tokens and of ten or more missing tokens. The C-imbalanced reactions are subdivided into
reactions that are missing less than 15, 15-24, 25-39 and 40 or more tokens. The C-incomplete reactions are subdivided in reactions
that are missing less than 40 and 40 or more tokens.
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Fig. 11. Balancing performance of the Chemical Reaction Balancer and fine-tuned Biochemical Reaction Balancer models with and
without constrained beam search and of the Original Reaction Balancer and SynRBL on USPTO 50k data per reaction class. The
full bars show the total fraction of reactions that are balanced by each method within each reaction class. The brighter bars within
each bar indicate the SynRBL accuracy, which is the fraction of reactions that exactly match the predictions made by SynRBL with
a confidence of at least 90% for the MCS-based method. Note that this measure can never exceed the SynRBL accuracy of SynRBL
itself.

Performance of machine learning approaches on reactions uncurated
by algorithmic approaches

The uncurated part of the USPTO data is of particular interest, as
it contains reactions that could not be solved by the algorithmic
approach SynRBL. Since this dataset lacks ground truth, we
report only the number of balanced reactions in Table 3. In our
experiments with benchmarking datasets, we observe that the
gap between the percentage of balanced reactions and accuracy
can be large. Moreover, the transformer models are trained on
curated data, which means the reactions from the uncurated
part of the dataset are out-of-distribution.

To estimate the accuracy, we can use the probability scores
that we determined to be a more reliable estimation than the
round-trip accuracy, as described in Section 3D. Figure 12 shows
the number of reactions categorized by the number of predicted
tokens and the prediction probability scores of the balanced pre-
dictions generated by the baseline Chemical Reaction Balancer
using normal beam search. The figure reveals that the majority
of predictions have low probability scores, which indicates they
are most likely inaccurate. Predictions made with constrained
beam search demonstrate a similar distribution. However, given
that the reactions are out-of-distribution, a lower probability
score is not unexpected. To verify the true accuracy of these
predictions, manual verification of the reactions using expert
domain knowledge is required, but out of scope for this work.

F. Reaction classes

The Reaction Balancer models developed in this study perform
better across reaction classes compared to the original Reaction
Balancer. Figure 11 shows the fraction of balanced reactions from
the USPTO 50k datasets for each reaction class. The performance
of SynRBL, along with all Chemical Reaction Balancer models,

Fig. 12. Number of reactions binned by the number of pre-
dicted tokens and prediction probability scores of the balanced
predictions made by the baseline Chemical Reaction Balancer
with normal beam search on the uncurated USPTO reactions.

is relatively consistent across the reaction classes, suggesting
that training on reactions from all reaction classes results in
improved generalizability across reaction classes. The Original
Reaction Balancer has lower and more variable performance
across reaction classes, failing to predict any balanced reactions
for reaction class 6. This discrepancy is likely due to the original
model being trained on a dataset curated by an algorithm that
did not perform well across imbalanced reactions of all reaction
classes, as opposed to our models.

The SynRBL accuracy, which is indicated by the brighter
part of the bars in the plot, is comparable among the Chemical
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*N*.CC(C)(C)OC(=O)OC(=O)OC(C)(C)C > > CC(C)(C)OC(=O)N(*)*.CC(C)(C)OC(=O)O

Fig. 13. Molecular structures and SMILES representation of the general format of protection reactions from the USPTO 50k dataset
in which di-tert-butyl dicarbonate (C10H18O5) is converted into tert-butyl hydrogen carbonate (C5H10O3). Asterisks represent
varying side groups. In the reported reaction SMILES in the dataset tert-butyl hydrogen carbonate is missing.

Reaction Balancer models but shows some deviations for the
fine-tuned Biochemical Reaction Balancer models. Especially
on the reactions from class 7 (reductions) and 8 (oxidations) the
models achieve a low SynRBL accuracy. Figure S2 shows that
only a small fraction of the dataset belong to reaction class 8, of
which most reactions originate from the 2015 dataset. To explore
this further, we split the performance on this dataset based on
the source years (2015 and 2016), as shown in Figure S13.

Performance on the 2015 dataset

Examining the performance on the 2015 dataset reveals over-
all lower results for all trained models. We observe that the
reactions of the 2015 dataset have a higher average absolute
atom-imbalance than reactions of the 2016 dataset as shown in
Figure S14, which makes them more difficult to complete. Most
likely this difference is caused by the preprocessing of the data.
The 2016 dataset underwent preprocessing of reagents, while the
2015 dataset did not, resulting in reagents still being present on
the reactant side. While our models were trained on data with
these reagents added to part of the training instances, they still
struggle with this dataset. However, SynRBL still demonstrates
reasonable performance, indicating its ability to identify these
reagents. However, the average confidence of SynRBL for these
reactions is lower than for the reactions where the reagents are
discarded from the reactants. Removing the non-atom mapped
reactants, which are likely reagents, from the 2015 dataset is
expected to improve the performance of our trained machine
learning models.

Performance on the 2016 dataset

For the 2016 dataset, the performance of the Chemical Reaction
Balancer models approaches 100%. An exception is noted in
class 5 (protections), where the constrained Chemical Reaction
Balancer with λ = 1 and normal beam search performs worse

SynRBL:

Fine-tuned Biochemical Reaction Balancer:

Fig. 14. Comparison of oxidation reactions of reaction class
8 missing hydrogen are completed by: SynRBL (top) and the
fine-tuned Biochemical Reaction Balancer (bottom). The com-
pletion task is illustrated by the molecules marked with aster-
isks, which represent varying side groups.

than the other models. The reactions for which this model fails
all involve di-tert-butyl dicarbonate (C10H18O5) and appear to
be missing only tert-butyl hydrogen carbonate (C5H10O3) on the
product side as is illustrated in Figure 13. The SMILES repre-
sentation of this missing molecule is CC(C)(C)OC(=O)O. Interest-
ingly, the constrained Chemical Reaction Balancer model with
λ = 1 correctly predicts this molecule for more than half of the
tasks involving this format. However, in 42% of these reactions
it incorrectly predicts another molecule where oxygen appears
earlier in the sequence, such as CC(C)(O)C(=O)O, CC(O)C(=O)O
and CC(O)(C)OC(=O)O. This issue may arise because the atom-
balance loss primarily focuses on the atom types that are most
imbalanced. At the beginning of the sequence, carbon is the
most imbalanced atom type, as the reaction is missing five car-
bon atoms. After predicting two carbon atoms, both the oxygen
and carbon imbalances reduce to three atoms. Since this model
is not using constrained beam search to prevent imbalanced re-
actions and was trained with a strong emphasis on atom-balance
loss, it suggests that the atom-balance loss has not effectively
taught the model to count the atoms accurately.

In the 2016 dataset the fine-tuned Biochemical Reaction Bal-
ancer still has the lowest SynRBL accuracy on the reactions in
the reduction (7) and oxidation (8) classes. Further investigation
reveals that most reduction reactions involve only hydrogen and
possibly oxygen imbalances. SynRBL balances these reactions by
adding molecular hydrogen (H2) and, if necessary, water (H2O)
molecules. In contrast, the fine-tuned Biochemical Reaction Bal-
ancer models are often not able to solve these reactions. When
only hydrogen is missing in many predictions no molecules are
added. If oxygen is also imbalanced, the predictions contain a
variety of different molecules.

In the case of oxidations, the fine-tuned Biochemical Reaction
Balancer appears to have adopted a different strategy. Most
oxidation reactions in the 2016 dataset involve a molecule with
an alcohol group being converted to a carbonyl group, resulting
in a two-hydrogen atom imbalance on the product side. Fig-
ure 14 illustrates how the methods solve these completion tasks.
SynRBL adds chlorochromate (CrO3Cl−) to the reactant side
(along with pyridinium as a reagent) and chromium compound
(Cr(OH)2O) and chloride (Cl2) to the product side. Pyridinium
chlorochromate is commonly used as a reagent in oxidations [38].
However, the fine-tuned Biochemical Reaction Balancer adds
molecular oxygen (O2) as a reactant and water peroxide (H2O2)
as a product. This difference likely occurs because the biochem-
ical training data contains similar oxidation reactions where
molecular oxygen and water peroxide are part of the complete
reaction.

This difference also reveals a potential limitation in the cu-
ration process of SynRBL. Since oxidation reactions can occur
using a variety of molecules, including but not limited to chloro-
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mate, the curation by SynRBL may be overly specific. This
overspecification could hinder the generalization capabilities of
the machine learning models that are trained on these curated re-
actions. This issue might also arise for reactions of other reaction
classes.

G. Fine-tuning with new data

From Table 3, we observe that the fine-tuned Biochemical Re-
action Balancer performs better on biochemical reactions than
the Biochemical Reaction Balancer, which is trained from scratch
on a relatively small dataset. However, the performance of the
fine-tuned model on chemical datasets is lower than that of the
Chemical Reaction Balancer, suggesting that it may have un-
learned or adapted its ability to complete chemical reactions. We
observed this adaptation in the oxidation reactions of the USPTO
50k dataset (Figure 14). While we designed the fine-tuned Bio-
chemical Reaction Balancer to perform well on biochemical reac-
tion data, we believe that to achieve strong performance on both
datasets, the training sets should be iterated more frequently.

4. CONCLUSION

In this work, we demonstrate the application of soft atom-
balance constraints in the loss function during the training phase
and hard constraints by restricting the prediction of specified
tokens during the inference phase in transformer models. For
effective training and evaluation of machine learning models
on reaction completion tasks, it is crucial to have extensive and
diverse ground truth data. This data should cover all reaction
classes to ensure the model’s ability to generalize to new, un-
seen reactions and, specifically for benchmarking purposes, be
validated by experts.

Our results indicate that models using soft constraints in the
loss function do not lead to improved balancing performance
and require further tuning. In contrast, the implementation of
hard atom-balance constraints within constrained beam search
proves to be the most effective approach for improving the per-
formance of transformer-based models in reaction completion
tasks. However, this method carries the risk of inaccurately bal-
ancing reactions, a challenge that is difficult to identify without
chemical expertise, particularly in the absence of reliable ground
truth data.

Recommendations

Based on our findings, we propose the following recommenda-
tions to improve the performance and applicability of reaction
balancing and prediction models.

First, it is essential to minimize or effectively identify the
gap between accuracy and balancing performance. We investi-
gated potential solutions to this issue by using both round-trip
accuracy and probability scores of the predictions. Our analysis
revealed that probability scores serve as a more reliable metric
for evaluation.

Secondly, the models should be benchmarked against state-
of-the-art forward prediction and retrosynthesis methods in
addition to the completion method SynRBL [39, 40]. The for-
ward prediction model mentioned in this work, the Molecular
Transformer, was not designed to output a balanced product
side, but solely the main product of the reaction, which makes it
unsuitable for benchmarking against our proposed method.

Furthermore, the generalizability could potentially be en-
hanced by data augmentation methods such as including both

directionalities of the training reactions in both directions. Es-
pecially in biochemical reactions, both directionalities of the
reaction are often of equal interest. Moreover, in inference exper-
iments, the same input reaction could be given in both direction-
alities to compare and verify their outcomes.

Most importantly, high-quality benchmarking data remains
essential for verifying the performance of our proposed meth-
ods. Robust datasets are needed for accurate assessments and
comparisons of various approaches.

This work is primarily focused on the completion of the re-
actants and products in valid partial reactions. Our models
are not able to repair invalid molecules or reactions, nor pre-
dict missing solvents, reagents and catalysts. These limitations
highlight areas for potential improvement. Future work could
enhance the model’s capabilities by incorporating features that
allow for the identification and correction of invalid compo-
nents. Additionally, providing the model with more contextual
information, such as details about reported reaction conditions,
solvents, reagents, and catalysts, could improve its predictive
accuracy and overall performance.

Lastly, we want to highlight applications of constrained beam
search. The constrained beam search approach has potential
applications beyond reaction balancing. It can be used in related
fields where certain tokens must be restricted at predefined
points in the prediction process, based on the input and the
previously generated part of the sequence, such as in automated
chemical flowsheets [41].
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SUPPLEMENTARY INFORMATION

USPTO (1976-2016)
1.8M

text-mined SMILES 
reactions from grants

Unique USPTO
1.3M

without duplicate 
reactions

USPTO STEREO
1M

reactions with one 
product

Reaction class
800k

assigned by 
NameRxn

Atom mapped
630k

mapped using Indigo 
TK and NameRxn

USPTO 50k (2016)
50k

randomly selected

USPTO (1976-2013)
1.1M

text-mined SMILES 
reactions from grants

Reaction class
600k

assigned by Carey et 
al. and NameRxn

Atom mapped
600k

mapped using 
NameRxn

USPTO 50k (2015)
50k

randomly selected 1000 
reactions of 50 most 

common reaction types

Fig. S1. Subsets of the United States Patent Trademark Office (USPTO) reaction database [1]. The number of reactions in each
dataset is denoted under the name of the datasets. The full dataset of 1.8M reactions, text-mined from grants between 1976 and
2016, contains 1.3M unique reactions of which 1M reactions have a single product (USPTO STEREO) and of which a subset is pub-
licly available of 50,000 randomly selected reactions with class labels (USPTO 50k) [24, 26]. From a dataset with 1.1M reactions,
text-mined from grants between 1976 and 2013, exists a publicly available subset of 1000 reactions of the 50 most common (three-
level) reaction classes [25]

Reaction Classes
1. Heteroatom alkylation and arylation
2. Acylation and related processes
3. C-C bond formation
4. Heterocycle formation
5. Protections
6. Deprotections
7. Reductions
8. Oxidations
9. Functional group interconversion (FGI)
10. Functional group addition (FGA)

Fig. S2. The distribution of reaction superclasses of the reactions in the USPTO 50k dataset of 2015 [25] and 2016 [26].



Master’s Thesis Delft University of Technology 20

Molecular Transformer
Forward prediction

Input: reactants and reagents
Output: products

Curated USPTO STEREO
495k

100% balanced
Partialized to 4M

USPTO STEREO
1M 

3.5% balanced
Augmented to 2M

Rule based 
curation 

algorithm

Reaction Balancer
Reaction completion
Input: reactants and products
Output: missing molecules

train train

fine-tune from

Fig. S3. Overview of the data and models that were used to train the Reaction Balancer [10]. The Molecular Transformer was
trained on forward prediction tasks using the 1M reactions of USPTO STEREO as training dataset [2, 24]. The USPTO STEREO
data was partly curated to 495,197 atom-balanced reactions, which were used to train the Reaction Balancer on reaction completion
tasks.

USPTO (1976-2016)
1.8M

Text-mined SMILES reactions
from grants

Standardized-Overlap
847k (433k unique)

Canonicalized reactions with 
patent number in USPTO 50k

Standardized-No Overlap
961k (608k unique)

Canonicalized reactions with
patent number not in USPTO 50k

Non-Standardized
640

Reactions that could not be 
canonicalized by RDKit

Uncurated
148k

Reactions not solved by SynRBL
or with conf. < 0.9 for mcs

Solved with Confidence
461k

Reactions solved by SynRBL
(conf. >= 0.9 for mcs)

Imbalanced
31 

Reactions with incorrect atom-
or charge-balance

Processed
454k

Balanced reactions 

Empty
6935

Reactions with the same 
reactants as products

Fig. S4. Preprocessing steps applied to the chemical reactions in the USPTO database [1]. Dataset sizes are denoted below the name
of each subset. The preprocessing steps are described in Section 2D.

Rhea
17k

Enzymatic reactions

Reaction class
3883

Reactions that contain asterisks 
indicating it is a class

Processed
12k

Canonicalized balanced 
reactions 

Empty
1113

Reactions with the same 
reactants as products

Balanced
13k

Balanced full reactions 
(changed S to [S])

Imbalanced
11

Reactions with incorrect atom-
or charge-balance

Fig. S5. Preprocessing steps applied to the chemical reactions in the Rhea database [34]. Dataset sizes are denoted below the name
of each subset. The preprocessing steps are described in Section 2D.
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Fig. S6. A) Fraction of the 49,230 imbalanced reactions of the USPTO 50k dataset of 2015 balanced by existing reaction balancing ap-
proaches [8, 10, 25]. B) Fraction of the 48,809 imbalanced reactions of the USPTO 50k dataset of 2016 balanced by existing reaction
balancing approaches [8, 10, 26]. C) Overlap of the reactions of USPTO 50k (2015) solved by SynRBL, the Reaction Balancer and its
curation algorithm [8, 10, 25]. The reactions solved by SynRBL are split in rule-based or MCS-based, so they show no overlap [8].
D) Overlap of the reactions of USPTO 50k (2016) solved by SynRBL, the Reaction Balancer and its curation algorithm [8, 10, 26].
The reactions solved by SynRBL are split in rule-based or MCS-based, so they show no overlap [8]. E) Confidence distribution of
the USPTO 50k (2015) reactions solved by SynRBL with MCS-based approach. F) Confidence distribution of the USPTO 50k (2016)
reactions solved by SynRBL with MCS-based approach.
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Fig. S7. Confidence distribution of the 502,761 USPTO reactions solved by SynRBL with MCS-based approach. The confidence
values have a mean of 0.893, median of 0.994 and stanndard deviation of 0.238. The 170,253 reactions with confidence ≥ 0.9 were
included in our training dataset. In this selected set 158,681 reactions have confidence ≥ 0.95 and 125,057 confidence ≥ 0.99.
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Fig. S8. Accuracy, cross-entropy loss and atom-values loss values reported during training our Chemical Reaction Balancer (CRB)
and Biochemical Reaction Balancer (BRB) models. For the baseline and fine-tuned models the values are reported every 1,000 steps
and for the constrained models the values are reported every 100 steps.
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Fig. S9. Accuracy, cross-entropy loss and atom-values loss values reported during training our Chemical Reaction Balancer (CRB)
and Biochemical Reaction Balancer (BRB) models. The values are reported every 10,000 steps.
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A Normal Beam Search B Constrained Beam Search

C D

E F

Fig. S10. Heatmaps of the number of reactions binned by number of predicted tokens and prediction probability scores of the
baseline Chemical Reaction Balancer with normal (A, C, E) and constrained (B, D, F) beam search on the partialized validation
set of SynRBL for accurate, balanced inaccurate and imbalanced inaccurate predictions. The heatmaps are coloured based in the
percentage of accurate (A, B), balanced inaccurate (C, D) or imbalanced inaccurate (E, F) reactions with the same probability and
length range.
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Input reaction:
O=C(c1cccc([N+](=O)[O-])c1/C=C/c1ccc2c(c1)OCO2)N1CCOCC1 > >

O=C=O.O=C(c1cccc2[nH]c(-c3ccc4c(c3)OCO4)cc12)N1CCOCC1

Ground truth reaction:
O=C(c1cccc([N+](=O)[O-])c1/C=C/c1ccc2c(c1)OCO2)N1CCOCC1.[C-]#[O+].[C-]#[O+] > >

O=C(c1cccc2[nH]c(-c3ccc4c(c3)OCO4)cc12)N1CCOCC1.O=C=O.O=C=O

Output C (λ = 1) CRB:
O=C(c1cccc([N+](=O)[O-])c1/C=C/c1ccc2c(c1)OCO2)N1CCOCC1.[H][H].O=CO > >

O=C=O.O=C(c1cccc2[nH]c(-c3ccc4c(c3)OCO4)cc12)N1CCOCC1.O.O

Output C (λ = 1) CRB with CBS:
O=C(c1cccc([N+](=O)[O-])c1/C=C/c1ccc2c(c1)OCO2)N1CCOCC1.CO > >

O=C=O.O=C(c1cccc2[nH]c(-c3ccc4c(c3)OCO4)cc12)N1CCOCC1.O

(a) Input, ground truth and output SMILES and reaction from the partialized validation set for which the constrained (λ = 1) Chemical Reaction
Balancer without constrained beam search produced a balanced output and with constrained beam search produced an imbalanced output. Both
outputs do not match the ground truth.
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Input reaction:
[O].[O].[O].CC=CC=CC(=O)OC.[O] > > C=CC=CC(OC(C)=O)C(=O)OC.O

Ground truth reaction:
C.C.CC=CC=CC(=O)OC.[O].[O].[O].[O].[O] > > O.O.O.C=CC=CC(OC(C)=O)C(=O)OC

Output C (λ = 1) CRB:
[O].[O].[O].CC=CC=CC(=O)OC.[O].CCOCC > > C=CC=CC(OC(C)=O)C(=O)OC.O.O.CC=O

Output C (λ = 1) CRB with CBS:
[O].[O].[O].CC=CC=CC(=O)OC.[O].CCO > > C=CC=CC(OC(C)=O)C(=O)OC.O.O.O

(b) Input, ground truth and output SMILES and reaction from the partialized validation set for which the constrained (λ = 1) Chemical Reaction
Balancer without constrained beam search produced a balanced output and with constrained beam search produced an imbalanced output. Both
outputs do not match the ground truth.
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Input reaction:
COc1ccc(OCCCC2=CCC(O[Si](C)(C)C(C)(C)C)CC2CC=O)cc1 > >

CCOC(=O)CC(=O)CC1CC(O[Si](C)(C)C(C)(C)C)CC=C1CCCOc1ccc(OC)cc1

Ground truth reaction:
COc1ccc(OCCCC2=CCC(O[Si](C)(C)C(C)(C)C)CC2CC=O)cc1.CCOC(=O)C=[N+]=[N-] > >

N#N.CCOC(=O)CC(=O)CC1CC(O[Si](C)(C)C(C)(C)C)CC=C1CCCOc1ccc(OC)cc1

Output C (λ = 1) CRB:
COc1ccc(OCCCC2=CCC(O[Si](C)(C)C(C)(C)C)CC2CC=O)cc1.CCOC(=O)CC(=O)OCC > >
CCOC(=O)CC(=O)CC1CC(O[Si](C)(C)C(C)(C)C)CC=C1CCCOc1ccc(OC)cc1.CCOC=O

Output C (λ = 1) CRB with CBS:
COc1ccc(OCCCC2=CCC(O[Si](C)(C)C(C)(C)C)CC2CC=O)cc1.COC(=O)CC(C)=O > >

CCOC(=O)CC(=O)CC1CC(O[Si](C)(C)C(C)(C)C)CC=C1CCCOc1ccc(OC)cc1.CO

(c) Input, ground truth and output SMILES and reaction from the partialized validation set for which the constrained (λ = 1) Chemical Reaction
Balancer without constrained beam search produced a balanced output and with constrained beam search produced an imbalanced output. Both
outputs do not match the ground truth.
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Input reaction:
O=C(c1cccc([N+](=O)[O-])c1/C=C/c1ccc(F)cc1)N1CCCC1 > > O=C(c1cccc2[nH]c(-c3ccc(F)cc3)cc12)N1CCCC1.O=C=O

Ground truth reaction:
O=C(c1cccc([N+](=O)[O-])c1/C=C/c1ccc(F)cc1)N1CCCC1.[C-]#[O+].[C-]#[O+] > >

O=C(c1cccc2[nH]c(-c3ccc(F)cc3)cc12)N1CCCC1.O=C=O.O=C=O

Output C (λ = 1) CRB:
O=C(c1cccc([N+](=O)[O-])c1/C=C/c1ccc(F)cc1)N1CCCC1.[H][H].O=CO > >

O=C(c1cccc2[nH]c(-c3ccc(F)cc3)cc12)N1CCCC1.O=C=O.O.O

Output C (λ = 1) CRB with CBS:
O=C(c1cccc([N+](=O)[O-])c1/C=C/c1ccc(F)cc1)N1CCCC1.CO > > O=C(c1cccc2[nH]c(-c3ccc(F)cc3)cc12)N1CCCC1.O=C=O.O

(d) Input, ground truth and output SMILES and reaction from the partialized validation set for which the constrained (λ = 1) Chemical Reaction
Balancer without constrained beam search produced a balanced output and with constrained beam search produced an imbalanced output. Both
outputs do not match the ground truth.
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Input reaction:
CCOC(=O)c1c(OC)cc(-c2cnc(OC)c(OC)c2)nc1C > > O=C1CCC(=O)N1

Ground truth reaction:
CCOC(=O)c1c(OC)cc(-c2cnc(OC)c(OC)c2)nc1C.O=C1CCC(=O)N1Br > >
CCOC(=O)c1c(OC)cc(-c2cnc(OC)c(OC)c2)nc1CBr.O=C1CCC(=O)N1

Output C (λ = 1) CRB:
CCOC(=O)c1c(OC)cc(-c2cnc(OC)c(OC)c2)nc1C.O=C1CCC(=O)N1Br > >
O=C1CCC(=O)N1.CCOC(=O)c1c(C)nc(-c2cnc(OC)c(OC)c2)c(OC)c1Br

Output C (λ = 1) CRB with CBS:
CCOC(=O)c1c(OC)cc(-c2cnc(OC)c(OC)c2)nc1C.O=C1CCC(=O)N1Br > >

O=C1CCC(=O)N1.CCOC(=O)c1c(C)nc(-c2cnc(OC)c(OC)c2)cc1OC.[Br-].[H+]

(e) Input, ground truth and output SMILES and reaction from the partialized validation set for which the constrained (λ = 1) Chemical Reaction
Balancer without constrained beam search produced a balanced output and with constrained beam search produced an imbalanced output. Both
outputs do not match the ground truth.
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Input reaction:
O=C(CCl)C1=NOC(c2c(F)cccc2F)C1.CSC1CN(C(=O)Cn2nc(C(F)(F)F)cc2C)CCC1C(N)=S > > [Cl-]

Ground truth and output C (λ = 1) CRB:
O=C(CCl)C1=NOC(c2c(F)cccc2F)C1.CSC1CN(C(=O)Cn2nc(C(F)(F)F)cc2C)CCC1C(N)=S > >

[Cl-].CSC1CN(C(=O)Cn2nc(C(F)(F)F)cc2C)CCC1c1nc(C2=NOC(c3c(F)cccc3F)C2)cs1.[OH-].[H+].[H+]

Output C (λ = 1) CRB with CBS:
O=C(CCl)C1=NOC(c2c(F)cccc2F)C1.CSC1CN(C(=O)Cn2nc(C(F)(F)F)cc2C)CCC1C(N)=S > >

[Cl-].CSC1CN(C(=O)Cn2nc(C(F)(F)F)cc2C)CCC1c1nc(C2=NOC(c3c(F)cccc3F)C2)sc1O.[H+]

(f) Input and output SMILES and reaction from the partialized validation set for which the constrained (λ = 1) Chemical Reaction Balancer without
constrained beam search produced a balanced output and with constrained beam search produced an imbalanced output. The output of the model
without constrained beam search matches the ground truth.
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Input reaction:
Cc1cc(C(=O)N2Cc3cnn(C)c3Nc3ccccc32)ccc1CCC(=O)O.O=C(OCc1ccccc1)N1CCC(CO)CC1 > >

Ground truth:
O=C(OCc1ccccc1)N1CCC(CO)CC1.Cc1cc(C(=O)N2Cc3cnn(C)c3Nc3ccccc32)ccc1CCC(=O)O > >
Cc1cc(C(=O)N2Cc3cnn(C)c3Nc3ccccc32)ccc1CCC(=O)OCC1CCN(C(=O)OCc2ccccc2)CC1.O

Output C (λ = 1) CRB:
Cc1cc(C(=O)N2Cc3cnn(C)c3Nc3ccccc32)ccc1CCC(=O)O.O=C(OCc1ccccc1)N1CCC(CO)CC1 > >
O.Cc1cc(C(=O)N2Cc3cnn(C)c3N(CC3CCN(C(=O)OCc4ccccc4)CC3)c3ccccc32)ccc1CCC(=O)O

Output C (λ = 1) CRB with CBS:
Cc1cc(C(=O)N2Cc3cnn(C)c3Nc3ccccc32)ccc1CCC(=O)O.O=C(OCc1ccccc1)N1CCC(CO)CC1 > >
O.Cc1cc(C(=O)N2Cc3cnn(C)c3N(CC3CCN(C(=O)OCc4ccccc4)CC3)c3ccccc32)oc1CCC(=O)CC1

Invalid

(g) Input, ground truth and output SMILES and reaction from the partialized validation set for which the constrained (λ = 1) Chemical Reaction
Balancer without constrained beam search produced a balanced output and with constrained beam search produced an invalid output. The output
of the model with constrained beam search contains an invalid molecule, so it cannot be plotted.
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Input reaction:
CCCCCC(=O)Nc1ccccc1Br.O=C([O-])[O-] > >

Ground truth:
CCCCCC(=O)Nc1ccccc1Br.O=C([O-])[O-] > > CCCCCc1nc2ccccc2o1.O=C([O-])O.[Br-]

Output C (λ = 1) CRB:
CCCCCC(=O)Nc1ccccc1Br.O=C([O-])[O-] > > [OH-].CCCCCC(=O)Nc1ccc(C(=O)[O-])cc1Br

Output C (λ = 1) CRB with CBS:
CCCCCC(=O)Nc1ccccc1Br.O=C([O-])[O-] > > [OH-].CCCCCC(=O)Nc1ccc(C(=O)[O-])Br)cc1

Invalid

(h) Input, ground truth and output SMILES and reaction from the partialized validation set for which the constrained (λ = 1) Chemical Reaction
Balancer without constrained beam search produced a balanced output and with constrained beam search produced an invalid output. The output
of the model with constrained beam search contains an invalid molecule, so it cannot be plotted.

Input reaction:
COC(=O)c1cccc([N+](=O)[O-])c1C.BrBr > > [Br-]

Output C (λ = 1) CRB and ground truth:
COC(=O)c1cccc([N+](=O)[O-])c1C.BrBr > > [Br-].[H+].COC(=O)c1cccc([N+](=O)[O-])c1CBr

Output C (λ = 1) CRB with CBS:
COC(=O)c1cccc([N+](=O)[O-])c1C.BrBr > > [Br-].[H+].COC(=O)c1cccc([N+](=O)[O-])Br)c1C

Invalid

(i) Input and output SMILES and reaction from the partialized validation set for which the constrained (λ = 1) Chemical Reaction Balancer without
constrained beam search produced a balanced output and with constrained beam search produced an invalid output. The output of the model
without constrained beam search matches the ground truth. The output of the model with constrained beam search contains an invalid molecule, so
it cannot be plotted.

Fig. S11. All input, ground truth and output SMILES and reactions from the partialized validation set for which the constrained
(λ = 1) Chemical Reaction Balancer without constrained beam search produced a balanced output and with constrained beam
search produced an imbalanced (a, b, c, d, e, f) or invalid (g, h, i) output.
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A

B

Fig. S13. Balancing performance of the Chemical Reaction Balancer and fine-tuned Biochemical Reaction Balancer models with
and without constrained beam search and of the Original Reaction Balancer and SynRBL on USPTO 50k data of 2015 (A) and 2016
(B) per reaction class. The full bars show the total fraction of reactions that are balanced by each method within each reaction class.
The brighter bars within each bar indicate the SynRBL-accuracy, which is the fraction of reactions that exactly match the predic-
tions made by SynRBL with a confidence of at least 90% for the MCS-based method. Note that this measure can never exceed the
SynRBL-accuracy of SynRBL itself.
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Fig. S14. Difference in absolute average atom imbalances between the USPTO 50k datasets for 2015 and 2016, categorized by reac-
tion class. For each atom type present in either dataset, the absolute average atom imbalance is calculated per reaction class. This is
done by first determining the absolute atom imbalance for each reaction and then averaging these values. If an atom type is absent
in a reaction, its balance is considered zero. The figure displays the difference in absolute average atom imbalances, calculated as
the value for the 2016 dataset subtracted from that of the 2015 dataset. Positive values (in blue) indicate that atom types are, on
average, more imbalanced in the 2015 dataset for that reaction class, while negative values (in red) indicate greater imbalance in the
2016 dataset. Values are reported separately for carbon, hydrogen, and oxygen due to their larger scale ranges.
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