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Abstract

With the arrival of smart electricity meters energy consumption can be
monitored continuously and displayed on external devices such as phones or
tablets. As a consequence, users become more aware of their energy usage
which may result in a reduction in energy consumption. Nevertheless, many
countries in Europe still use an analog electricity meter based on a rotat-
ing disk, which rotates at a speed proportional to the consumption passing
through the meter. In contrast to a smart meter it is not possible to read
out the consumption directly. As an alternative, the rotating disk can be
observed such that the power (W) and Energy (kWh) consumption can be
derived. The current sensor device developed by Quby, uses an LED and
phototransistor, where the LED emits light on the disk that is reflected to-
wards the phototransistor. Because of the physical properties of the disk, the
sampled phototransistor signal can be represented as a pulse signal, where
each pulse indicates a revolution of the disk. The sensor device is mains
powered, however, many electricity meters are not located near a power out-
let requiring the sensor device to be battery powered. This is a challenging
problem since the LED has a relatively large power consumption. The pulse-
detection algorithm running on the mains-powered sensor device assumes an
LED current of 10 mA with a sampling frequency of 10 kHz. Quby requires
that the battery-powered device will last at least one year on an energy budget
of 4200 mAh (roughly four AA batteries), and the percentage error of the de-
termined energy consumption should be less than 5%. This implies a factor 50
in power reduction. In this thesis we propose an energy-efficient noise-robust
pulse-detection algorithm to detect pulses while keeping the LED current to
a maximum of 1 mA. To preserve more energy, the LED is duty cycled to
at most 20% instead of 100%, and the sampling frequency is reduced to a
maximum of 400 Hz. The proposed method is based on a statistical model
where pulse detection is used by means of a multiple-sample likelihood ratio
test. Due to the low LED current the signal statistics, such as pulse amp-
litude, offset and noise, are very sensitive to ambient light. Therefore, an
additional method is proposed to estimate these statistics continuously. As
a consequence, the detection thresholds in the likelihood ratio test are dy-
namically adjusted based on predefined probabilities of a false alarm and true
detection. The proposed algorithm is extensively tested in a lab setup with
three different analog electricity meters, a varying load and a light source
emitting light in the same relative spectral-power distribution as sunlight.
Moreover, measurements are performed at two households for one week each.
From the experiments it can be concluded that the proposed method can last
for at least one year when battery-powered, while predicting energy consump-
tions with an error of less than 2%.
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Chapter 1

Introduction

Many households have their own electricity meter, which keeps track of the
energy consumption. Nowadays, not only the energy suppliers are interested
in these numbers - to bill their customers - but also the customers them-
selves. With the introduction of the smart meter, the amount of electricity
consumed can be communicated in real-time to the customer. This con-
sumption is presented on a device, e.g., a smartphone or tablet, which gives
more insight to the customers and motivates them to reduce their energy
consumption up to 9% [1]. In 2009, the European Union set a goal to re-
place 80% of all electricity meters with smart meters by 2020. A commission
report from July 2014 by the Joint Research Centre (JRC) estimated 72%
coverage for smart electricity meters by 2020 based on the current national
roll-out plans [2]. This coverage is likely to be even lower, since Germany
decided to selectively roll-out the smart meters (23% at 2020) [3] instead of
a wide roll-out (>80%), and the discovery of multiple malfunctions in smart
meters [4][5]. For example, the Netherlands still only has a coverage of smart
meters of 26% in Q4 2016 [6][7], and the UK only has 10% covered [8].

Because of the slow transition from non-smart meters to smart meters, and
the interest from people to get more insight into their energy consumption,
there exists a growing market for non-smart meters extended with a device
that transfers information about the energy consumption to the customer.
The Dutch company Quby, developer of the smart thermostat called Toon,
converts these non-smart meters to semi-smart meters with their product
called meter module. The meter module is attached to the electricity meter
and keeps track of the meter readings, which are wirelessly transferred to
the Toon display located in the living room. Because the Toon display is
placed in the central point of a household this is the ideal location to show
statistics about the energy consumption to the customer. Currently, Quby
wants to expand their market reach to more European countries. This in-
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troduces difficulties where electricity meters are not placed nearby a power
outlet to power the meter module. Internal research at Quby shows that
meters are often located in basements or even outside homes. This thesis
will discuss a method to obtain meter readings, known as automatic meter
readings (AMR), from these electricity meters.

This chapter will describe the following: Section 1.1 explains the different
electricity meters on the market. Section 1.2 clarifies the chosen sensor to
keep track of the indicated energy consumption. Section 1.3 gives the prob-
lem statement. Section 1.4 discusses the methodology. Section 1.5 shows the
main contributions, and Section 1.6 describes the remaining organization of
this thesis.

1.1 Electricity meters

There are three types of electricity meters:

1. Smart meters

2. Digital meters

3. Analog meters

In this report, the electricity meters will be discussed in order of relevance
for this work starting with the least relevant one.

1.1.1 Smart meters

Smart meters are the most recently developed type of meters. They measure
the energy consumption with a digital circuit and periodically communicate
this information to the grid operator. The grid operator passes this inform-
ation to the customer’s corresponding utility company. Next to the data
presented by the utility companies, customers also have the possibility to
read out the smart meter themselves. The smart meter is equipped with a
serial port, which sends a telegram message with the current meter read-
ing every 10 seconds [9]. Some smart meters provide extra information by
interfacing with the gas, thermal (heat and cold) and water meter [9].

1.1.2 Digital meters

Digital meters also measure the energy consumption, but they do not com-
municate with the grid operators nor do they have the ability for customers
to plug in a cable. The interface of a digital meter consists of a small di-
gital display showing the meter readings and a blinking LED, see Figure 1.1.
Every n-th on-off transition of the LED means exactly 1 kWh is consumed,
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Figure 1.1: Digital meter where
the arrow indicates the blinking
LED.

Figure 1.2: Disk of an analog meter
with a serrated edge and a black
stripe.

where n is a constant value indicated by the meter as impulses/kWh. So
monitoring the blinking LED gives the ability to derive the energy consump-
tion over time. The impulses/kWh value differs for each brand and is often
referred to as the constant value or C-value. The higher this C-value, the
higher the sampling frequency of a sensor needs to be to capture the on-off
transition of the LED. By inspecting hundreds of pictures of digital elec-
tricity meters for different countries in Europe, it was concluded that the
smallest encountered C-value is 600 and the largest is 10.000 impulses/kWh,
see Appendix A.

1.1.3 Analog meters

Analog meters are mechanical meters containing a metal spinning disk and
an analog counter, which indicate the total energy consumed. When current
flows through this meter an electric field is generated that drives the disk to
spin. So the angular velocity of the disk is linearly related to the consumed
power. There are two types of metal disks. The first type has a serrated
edge, while the other has a smooth edge. In addition, each disk contains a
red or black stripe covering around 5% of the surface of the disk. Figure 1.2
shows an example of a serrated disk of an analog meter with a black stripe.
Each analog meter has a C-value indicating the number of revolutions the
disk needs to make before exactly 1 kWh is consumed. This constant value
is often shown on the meter as C or rev/kWh (revolutions/kWh). Tracking
the number of revolutions of the disk can be used to derive the energy
consumption over time, similar to the blinking LED of the digital meter.
One revolution can be recognized by observing the red or black stripe. The
smallest encountered C-value for analog meters is 50 and the largest is 800,
see Appendix A.
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This thesis will mainly focus on analog meters since those are the most
challenging meters to track. However, the developed method will also work
for digital meters. Smart meters will not be discussed since they do not
require an external sensor to track the meter readings.

1.2 Sensors

Several types of sensors can track the meter readings. Quby requires the
purchase cost of the sensor to be e2 or lower, support as many meters as
possible, and be easy to install by the customers themselves. They examined
the following types of sensors for their meter module:

• Current clamp,

• Camera,

• Photo-reflector.

Current clamp

A current clamp is a coil, clamped around an electrical conductor. When
current passes through the conductor, an electrical field is generated. The
coil will measure this electrical field and translate it to a current flow. Cheap
current clamps can only measure current in a single core cable, requiring
multi-core cables to be split before a core can be measured. To measure a
household’s energy consumption a current clamp needs to be attached to the
power cable entering the electricity meter. Since this cable consists of three
cores, it needs to be split. Splitting the entering power cable is only allowed
by a certified company, making this method not feasible since customers
cannot install this sensor themselves.

Camera

A camera could be placed in front of the meter taking pictures periodically.
The meter readings can be extracted from these pictures with image pro-
cessing techniques. These image processing techniques could be performed
on a server [10] or locally on an embedded device connected to the camera.
The main advantage of using a camera is that it can be applied to almost
every meter. Nevertheless, this sensor is not selected to track the meter read-
ings, because of the relatively high price and computational power required
on an embedded device.
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Figure 1.3: Photo-reflector measurements method. Light from the LED
is reflected by the disk and sampled by the phototransistor. The sampled
signal can be represented as a pulse signal where each pulse corresponds to
a revolution of the disk.

Photo-reflector

The photo-reflector consist of a LED and phototransistor in one case. This
sensor is positioned in front of the rotating disk, where the LED emits light
which is then reflected by the disk and measured by the phototransistor.
Each time the stripe passes the sensor, the measured reflection drops because
light is absorbed by the stripe. Because of the hardware design of the photo-
reflector, the output data is inverted, meaning a drop in reflection translates
to a pulse in the recorded signal. See Figure 1.3 for a schematic overview
of the photo-reflector measurement method with the inverted y-axis. Note
that the photo-reflector can also be used to detect the blinking LED of a
digital meter by only using the phototransistor. The low purchase cost of
e1 and support for a wide range of meters made Quby choose this sensor
for their meter module.

1.3 Problem statement

The meter module needs to be battery powered in order to track meter
reading of electricity meters far from a power outlet. Quby wants the meter
module to last at least one year on an energy budget of 4200 mAh, which
corresponds to four AA batteries. Energy efficiency was not a main priority
in the hard- and software design of the mains-powered meter module. In
this meter module, the LED is set to a constant current of 10 mA and
the sampling frequency of the phototransistor is at 10 kHz. In fact, the
estimated battery lifetime will be around seven days if the mains-powered
meter module without any hardware or software adjustments would be used.
This means a battery-powered meter module needs to be a factor 50 more
power efficient than the current mains-powered meter module. Another
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requirement is that the error in measured energy consumption should be
less than 5%. To limit the scope, it is assumed that the current hardware
design of the photo-reflector sensor remains unaltered. This brings us to the
following research question:

Is it possible to monitor analog electricity meter readings with the
help of a photo-reflector sensor for at least one year with an energy
budget of 4200 mAh and an error in the measured energy consumption
less than 5%?

While answering this research question, significant variations in ambient
light caused by sunlight needs to be taken into account, since some electricity
meters are placed in outside environments.

1.4 Methodology

As will be shown in Section 2.1, the energy consumption of the photo-
reflector needs to be reduced in order to meet the lifetime of the battery-
powered meter module with the given energy budget. To be energy efficient,
the sampling frequency and LED current need to be reduced. Reducing the
LED current will result in a lower Signal to noise ratio (SNR) of the sampled
photo-reflector signal making it difficult to detect pulses. Therefore, a lit-
erature study is conducted on topics that discuss how to detect pulses in
noise.

To reduce the sampling frequency, prior knowledge of the household’s
maximum power consumption is required together with the C-value of the
electricity meter. This means the minimum sampling frequency is different
for each household. Finally, the LED can be duty cycled to preserve even
more energy.

1.5 Contributions

This thesis presents an energy-efficient algorithm to keep track of electricity
meter readings. During this research the following contributions were made:

• A noise-robust pulse detection algorithm is proposed that can detect
different pulses varying in pulse frequency, offset and amplitude.

• In contrast to common pulse detection methods, we do not assume
stationarity. Instead, the algorithm continuously estimates signal stat-
istics.

• During operation time the algorithm is able to express its performance
using a probability model. This performance value can be used to
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control the LED current to a level such that optimal energy efficiency
is reached.

• A model of the signal that is recorded by the photo-reflector is de-
veloped in python. Using this model a wide range of power consump-
tion scenarios can be simulated and used to validate the algorithm.

• Valuable data is recorded from the photo-reflector sensor. Quby can
run their future algorithms against this database. Note that the
gathered data is not only data generated in the lab, but also real
life data recorded at people’s homes.

1.6 Thesis outline

The upcoming chapter will present the current architecture of the meter
module. Chapter 2 will also discuss the related work corresponding to
energy-efficient pulse detection. Chapter 3 explains the designed algorithm
in three main blocks. Then, Chapter 4 evaluates the algorithm with the
help of the data gathered from the lab and in actual homes. Finally, the
conclusion and possible future work will be discussed in Chapter 5.
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Chapter 2

Background

In this chapter, first the hardware architecture of the meter module will be
discussed. Then a deeper understanding of the origin of the signal varieties
sampled by the photo-reflector will be explained. Thereafter, related work
is discussed.

2.1 Meter module architecture

The battery-powered meter module consists of a microcontroller, photo-
reflector and wireless module, see Figure 2.1. The microcontroller samples
the photo-reflector with an internal 10-bit ADC. Subsequently, a signal-
processing algorithm is applied that detects the pulses and translates these
to the energy consumption. Every 10 seconds the wireless module sends the
updated energy consumption to the display, located in the living room.

The battery-powered meter module will consist of a new power-efficient
microcontroller and wireless module, in comparison to the mains-powered
meter module. The photo-reflector sensor is considered to remain the same.

Figure 2.1: Meter module architecture.
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Table 2.1: Current consumption of the battery-powered meter module com-
ponents.

Module
Average current

draw (mA)
Measurement method

Microcontroller 0.21 Datasheet

Wireless module 0.06 Datasheet

Photo-reflector 10 Current meter

Because the battery-powered meter module is still under development, the
current consumption of the microcontroller and wireless module are estim-
ated with the help of the datasheets. To derive the power consumption of
the photo-reflector, measurements are performed with the mains-powered
meter module. A current meter is placed between the photo-reflector and
microcontroller, while running the algorithm developed by Quby. This al-
gorithm samples the photo-reflector at 10 kHz and tunes the LED current
to a level such that the SNR is maximized within the dynamic range of the
digitized signal. After several experiments with different levels of ambient
light, the LED current tends to converge to around 10±1 mA.

As shown in Table 2.1 the photo-reflector is responsible for a significant
part of the total energy consumption. Based on this finding the main focus
in this thesis will be on reducing the current of the LED. The small value
for the wireless module is because only once every 10 seconds an update is
sent to the Toon display. Thus, most of the time the wireless module is in
deep sleep mode. Given the requirement that the meter module should last
at least for one year, the following equation needs to be met:

Qbattery

Imicrocontroller + Iwireless + Iphoto-reflector
> 8760 hours, (2.1)

where Q is the capacity of the battery and I the current draw of the compon-
ents. Assuming an energy budget of 4200 mAh, the photo-reflector current
needs be reduced to 0.2 mA. This means that an improvement in energy
consumption of at least a factor 50 is required.

2.2 Photo-reflector signal properties

The sampled photo-reflector signal can be described with the following signal
features:

• Offset,

• Pulse-peak,

• Noise,

• Pulse frequency,

• Slope of the pulse.
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(a) Description of sampled signal. (b) Reflection results.

Figure 2.2: Influence of reflection for different LED current levels.

The pulse frequency and slope are related to the angular velocity of the
disk of the analog meter. When more power is consumed, the disk will
spin faster resulting in a higher slope of the pulse and pulse frequency.
Figure 2.2a shows one pulse period with the offset, pulse-peak and the pulse
amplitude. A pulse will be present in the sampled signal, if the red or black
stripe of the disk passes the photo-reflector. The peak and offset value
indicate the average reflected light related to the stripe and metal part of
the disk, respectively. As a consequence, the amplitude is a direct result of
the difference in reflected light between the two different disk surfaces. The
observed noise consists of the same repetitive pattern for each revolution,
which is a result of reflected irregularities on the metal part of the disk.

To analyze the influences of different LED currents relative to the sampled
reflection data of an analog meter disk, the following experiment is per-
formed: The reflection of the disk is sampled for different LED currents
while the disk spins at a fixed angular velocity by applying a constant load
of 2 kW. The LED current is varied between 0 and 16 mA with a step size
of 1 mA. To exclude external light sources from influencing the experiment,
all measurements are performed in a completely dark environment. Fig-
ure 2.2b shows the results of the experiment with respect to the described
signal features. Since the slope and pulse frequency are not related to the
reflected light but to the rotation speed of the disk, they are not included in
the results. The peak and offset values are estimated by taking the median
value during pulse and non-pulse active regions, respectively. The standard
deviation is determined during non-pulse active regions in order to describe
the noise. In general the results show that the offset and pulse-peak values
decrease when the LED current increases. Note that, as indicated in Sec-
tion 1.2, more reflection implies a lower ADC value. An explanation for the
fact that the pulse-peak is also reducing in value, is that the LED emits blue
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(a) 10 mA LED current. (b) 1 mA LED current.

Figure 2.3: Influence of reflection for 10 mA LED current vs. 1 mA in a
completely dark environment.

light that does not get fully absorbed by the red or black stripe. Further,
the results show that the largest amplitude is at 6 mA. The highest SNR
is at around 10 mA, where SNR is defined as the amplitude divided by the
noise in the logarithmic domain. Note that 10 mA is the same LED current
set by the algorithm developed by Quby.

Figure 2.3 shows the difference between the recorded reflection data with
a LED current of 10 mA and 1 mA. One interesting observation, in the case
of 10 mA, is the fact that the noise is attenuated significantly compared
to the 1mA case. Probably the sensor is saturated, resulting in a reduced
sensitivity of the dynamic range where the noise is active. This could also
explain the fact that the current algorithm is active in this SNR region, since
it has to be less robust against noise.

Since some meters may be placed outside in direct sunlight we also invest-
igated the effect of ambient light on the recorded signals. One example is
shown in Figure 2.4 where the LED current is fixed at 1 mA and an external
light source is enabled. Because the LED current is set to the region where
the photo-reflector sensor is not saturated, ambient light will have a direct
influence to the offset, amplitude and noise of the recorded signal. Light has
the property of adding up, so the intensity of ambient light will be summed
to the intensity of the light emitted by the LED. This means that if the
LED current is reduced, the lack of emitted light can be compensated by
the ambient light source.

This research will focus on setting the LED current of the photo-transistor
as low as possible while still being able to detect pulses. This implies am-
bient light will become significant and influences the offset, amplitude and
noise. Also, the angular velocity of the disk will vary over time because
of changing power consumption. Therefore, the features offset, amplitude,

12



(a) No ambient light. (b) Ambient light present.

Figure 2.4: Influences of ambient light on a recorded signal with 1 mA LED
current.

noise, pulse frequency and slope of the recorded signal need to be taken into
account when developing a pulse detection algorithm.

2.3 Related work

Based on previous sections it is clear that our problem can be described as
the detection of a pulse in a (noisy) signal. This is a very general problem and
can be found in many applications. Applications like pulse oximetry, which
measures a person’s oxygen level based on a photo-reflector sensor; Elec-
trocardiography (ECG) to measure the heart rate; line finders; and radar
communication were examined. None of these methods describe a pulse-
detection method addressing all mentioned features. Oximetry sensors are
developed in such a way that light from a LED is emitted through a body
part and measured at the other side [11]. Since this is considered as a closed
system, ambient light can be neglected, and so the offset does not vary
strongly over time. According to [12], traditional ECG detection algorithms
work on interrupt basis when the sampled signal crosses a fixed threshold
value. When this threshold is exceeded, a fixed time window is examined
to detect the QRS signal (the pulse introduced by the heart beat). In our
application we have no prior information about the maximum time a pulse
takes nor the ability to set a hard threshold. Line finders remove ambi-
ent light by applying a carrier frequency on the emitted light beam from the
LED. The phototransistor demodulates the received signal and will only find
the reflection introduced by the LED [13]. Since ambient light has the same
influences on the signal as the LED, the LED could for instance be disabled
assuming enough ambient light is available. Because the goal of this thesis
is to set the LED current as low as possible, it would be a waste to remove
the ambient light. In radar communication the transmitted signals are pre-
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defined [14]. Since our signal varies in infinite possible pulse frequencies and
amplitudes, radar communication algorithms cannot be used.

Since none of the pulse detection methods address all varying signal fea-
tures, we need to look at the basics of a pulse detection algorithm, which is
the ability to differentiate pulses from noise. Motivated by this we decided
to use an approach based on signal-detection theory. As will be shown in
the next chapter this will give a flexible framework that can be extended
to give a robust algorithm for detecting the reflected pulses. In the next
sections a brief background on the elements of signal-detection theory will
be given that is needed to understand the proposed method.

2.3.1 Likelihood ratio test

Assume we want to detect a variable s with constant value c in white Gaus-
sian noise W , given the sensor output X. Where X and W are independent
and identically distributed (i.i.d.) stochastic processes. If s is present in
the sensor output, X can be expressed as X = c + W . In the case s is not
present, then X = W . This results in two hypotheses for X:

1. X = W , this hypothesis will be named ‘H0’,

2. X = c+W , which will be considered as hypothesis ‘H1’.

Since s is constant and W is normally distributed, both hypotheses can
be represented as normal distributions. The following general equation de-
scribes the normal distribution for X given H0 or H1 is true:

f(x|H) =
1√
2πσ

e−
x−s
2σ2 , (2.2)

where x represents a realization of X, σ is the standard deviation of the
noise and s is the signal to be detected. The variable s will be equal to 0 or
c, respectively if H0 or H1 is true.

Given the measured sample x, the hypothesis with the highest probability
for x should be selected. This can be expressed as:

P (H1|x)
H0

≶
H1

P (H0|x), (2.3)

where H1 is chosen if P (H1|x) > P (H0|x) or H0 is chosen if P (H1|x) <
P (H0|x). However, P (H1|x) and P (H0|x) are not known. Rewriting Equa-
tion 2.3 into known quantities using Bayes rule gives:

f(x|H1) · P (H1)

f(x)

H0

≶
H1

f(x|H0) · P (H0)

f(x)
. (2.4)
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Figure 2.5: Hypothesis testing using two normal distributions and threshold
γ. Samples smaller than γ belong to distribution f(x|H0) and samples larger
than γ belong to distribution f(x|H1).

Assuming f(x) > 0, the equation can be simplified into:

f(x|H1) · P (H1)
H0

≶
H1

f(x|H0) · P (H0). (2.5)

However, this equation is often written in the form:

Λ(x) =
f(x|H1)

f(x|H0)

H0

≶
H1

P (H0)

P (H1)
= η, (2.6)

where Λ(x) is called the likelihood ratio and η denotes the ratio between
the a priori probabilities. This equation is referred to as the likelihood ratio
test. Using Equation 2.2 and Equation 2.6 the following equation can be
derived [14]:

x
H0

≶
H1

1

c

(
c2

2
+ σ2ln(η)

)
= γ, (2.7)

where c is the constant value of signal s, σ is the standard deviation of both
distributions and γ denotes the threshold value on x. Figure 2.5 shows the
distribution functions for both hypotheses using Equation 2.2. As can be
seen from this figure, γ is located at the intersection of both density func-
tions. This implies that every sample left from γ belongs to H0 while every
sample right from γ is classified as H1, which corresponds to Equation 2.7.

Nevertheless, wrong classifications can occur, for example there exists
a probability that x originated from H0 but has a higher value than the
threshold, meaning it will be classified as H1. This type of incorrect classi-
fication is called a false alarm and can be mathematically described as:

PFA = P (H1|H0) =

∫ ∞
γ

f(x|H0)dx, (2.8)
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Figure 2.6: Receiver operating characteristic (ROC). Both ROC curves show
the relation between PD and PFA for two different cases.

where P (H1|H0) indicates the probability a sample is classified as H1 while
it originated from H0. This could also be expressed as the area under the
curve of the density function H0 where the integral covers the domain from
γ to infinity. The name false alarm is chosen due to the fact that such a
wrong classification will falsely detect the presence of signal s.

Another type of wrong classification is called a miss and happens when the
signal was present (H1) but was not detected (H0). This can be described
by the following equation:

PM = P (H0|H1) =

∫ γ

−∞
f(x|H1)dx, (2.9)

where the area under the curve of H1 is calculated for the domain negative
infinity to γ. Instead of using the probability for a miss, more often the
probability to correctly detect the signal is used. This probability is called
PD and since the area of f(x,H0) is 1 by definition it follows that PD =
1−PM. So PD can also be described as the area under the curve of H1 right
from γ, see equation 2.10.

PD = P (H1|H1) =

∫ ∞
γ

f(x|H1)dx (2.10)

The PD and PFA represent the performance of the likelihood ratio test.
To control PD and PFA, γ can be altered. The relation between PD and PFA

can be shown in a Receiver Operating Characteristic (ROC) curve where the
threshold value is set from −∞ to ∞ [14]. Figure 2.6 shows an example of
two different ROC curves. A general approach is to keep the probability of
the false alarm below a predefined value while maximizing the probability
of detection. When the desired PD and PFA couple has been found, the
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corresponding γ can be determined. Mathematically γ can be expressed in
terms of PD or PFA by using the inverse cumulative distribution function
(CDF) of H0 or H1, also known as the Quantile function (Q). For normal
distributions the quantile function can be scaled with respect to µ and σ [15].
In the following equations we assume that the quantile function is the inverse
cumulative distribution function of the standard normal distribution:

γ = Q (PFA)σ0 + µ0, (2.11)

γ = Q (PD)σ1 + µ1, (2.12)

where µ0 and σ0 are the mean and standard deviation of the distribution
for hypothesis H0 and µ1 and σ1 for H1.

Note that from Figure 2.6 it can be observed that the classification will
improve if the solid line shifts more to the left top corner, like the dashed
line. This shift can be achieved by moving the density functions apart. To
indicate the distance between two normal distributed density functions the
sensitivity index can be used:

d′ =
µ1 − µ0√
1
2(σ2

1 + σ2
0)
, (2.13)

where d′ represents the sensitivity index, µ0 and µ1 the means of the distri-
butions, and σ0 and σ1 the standard deviation of the distributions. When
two density functions cannot be discriminated, d′ equals zero. The more
two density functions move apart the higher d′ will be. When PD = 0.99
and PFA = 0.01, d′ will be 4.65, which is considered by many researchers as
the upper bound of d′ [16].

2.3.2 Multiple-sample likelihood ratio test

To improve the classification between the assumed H0 and H1 even further,
the multiple sample likelihood ratio test is introduced [14]. Instead of mak-
ing a classification based on only one sample, N samples are used. During
this approach it is assumed that at least N samples are measured from the
same hypothesis in a row. Also each sample is modeled as a realization from
a normal i.i.d. distributed stochastic process. For each of the N samples
the probability to be in a hypothesis is calculated, then all probabilities are
multiplied to each other. This multiple-sample likelihood ratio test is given
by:

Λ(x) =
f(x[1], x[2], ..., x[N ]|H1)

f(x[1], x[2], ..., x[N ]|H0)

H0

≶
H1

P (H0)

P (H1)
= η. (2.14)
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Since the samples are considered statistically independent:

f(x[1], x[2], ..., x[N ]|H) =
1

(2πσ)(N/2)

N∏
i=1

e−
x[i]−s[i]

2σ2 , (2.15)

where s[i] is the expected signal value for each of the corresponding measured
samples x[i]. Testing for the hypothesis where the signal was not present
(H0), results in s[i] = 0 for every i. In the case of the hypothesis where the
signal is present (H1), s[i] = c for every i. Note that similar to Equation 2.6,
the multiple sample likelihood can be rewritten in the form:

N∑
i=1

x
H0

≶
H1

1

c

(
N
c2

2
+ σ2ln(η)

)
= γ. (2.16)

Since x is a realization from an i.i.d. normal distribution, the
∑N

i=1 x remains
normally distributed [17]. Because of this property γ can still be expressed
using Equation 2.11 in PD and PFA.

2.3.3 Matched filter

The matched filter is a special case of the multiple-sample likelihood ratio
test discussed in Section 2.3.2. Where the multiple sample likelihood ratio
test assumes in Equation 2.15 that s[i] is the same for every i, the matched
filter does not. This way s[i] is not fixed to a specific hypothesis and can
be used to describe a transition in a signal, for instance a part or a com-
plete transition of a pulse signal. Equation 2.17 shows the mathematical
representation of a matched filter. In this equation y[n] is the matched filter
output, x[i] represents the sampled signal and s[n − i] is the time-reversed
expected signal also called the impulse responds or template. Note that s[i]
is time reversed since this is considered optimal. For the full derivation from
the likelihood ratio test to the matched filter see [14].

y[n] =
∞∑

i=−∞
x[i]s[n− i] (2.17)

Shifting the template over the sampled signal will maximize the SNR by
using the correlation between them.
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Chapter 3

Pulse Detection Algorithm

For the proposed method we use a signal-detection approach, similarly as
described in Section 2.3, where the signal statistics can vary over time.
Figure 3.1 shows a schematic overview of the proposed method. From this
figure we can divide the algorithm into the following three components:

• Estimate signal statistics: This stage estimates the assumed signal
statistics such as means and variances that may vary, e.g., due to
ambient light.

• Likelihood ratio test: Based on the estimated statistics the signal
is classified whether the pulse is present or not. This stage is able to
detects pulses over the full domain of household power consumptions
[0, 17 kW].

• Pulse to energy consumption: Here the detected pulses are con-
verted into the energy consumption and instantaneous power usage.

In the remainder of this chapter we explain the assumed statistical model,
together with a detailed explanation of each of the individual three com-
ponents. In each section we will motivate the proposed approach and will
indicate the contributions with respect to the related work.

Figure 3.1: Pulse detection algorithm components.
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3.1 Assumed statistical model

For the proposed method we use a signal detection approach for which we
need to describe the reflected signal with a statistical model. Let x[n] denote
the observed sensor value at sample index n. The signal will be modeled
with a stochastic process denoted by Xn. In the case that x originates from
the reflection of the metal part of the disk, we model x as a normal i.i.d.
distributed stochastic process with mean µ0 and variance σ2

0. Similarly, in
case of a stripe reflection, the signal is modeled as a normal i.i.d. distributed
stochastic process with mean µ1 and variance σ2

1. Note that we adjusted
the statistical model from Section 2.3 by using two different variances for
the pulse and non-pulse region in the signal rather than one. It is clear
from Figure 3.2 that this is more in line with the actual signal, where the
noise variance during the strip reflection is significantly smaller than the
noise variance during the metal-reflected part. Also note that µ0 and µ1

actually represent the signal features offset (µ0) and peak( µ1), described in
Section 2.2.

Figure 3.2: Signal statistics description.

3.2 Estimate signal statistics

For the likelihood ratio test to successfully detect if a pulse is present, the
signal statistics need to be known. In this section an approach will be
discussed to estimate µ0, µ1, σ0 and σ1. We assume that these statistics vary
slowly over individual disk revolutions, since they are influenced by ambient
light, typically sunlight, which varies slowly over time. Using the property of
a disk that the rotation speed is proportional to the power consumption, we
propose a method where the signal statistics are only updated if the recorded
signal of a revolution corresponds to a predefined power consumption range.
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Figure 3.3: Estimate signal statistics diagram.

The suggested approach is indicated in Figure 3.3. First the signal is
split in a short time window, where the signal in this window is indicated
as Xm. For each window it will be verified if a pulse, corresponding to a
predefined power consumption, is present. Only if this pulse is present, the
signal statistics are estimated from this window. Although this method is
dimensioned for the specific power consumption of 2 kW, the method has a
deviation of around 30% for power consumptions below 4 kW.

The window size is equal to the number of samples required to record
exactly one revolution of the disk for the predefined power consumption of 2
kW. Since the rotation speed is proportional to the power consumption, we
can calculate the number of samples required with the following equation:

window size =
3600

P · C
· fs, (3.1)

where P is the power in kW, C is the C-value, which is assumed to be known,
and fs is the sampling frequency in Hz. Because of the physical properties of
the disk, 95% of the samples originate from the metal-reflected part, while
the remaining 5% originates from the stripe-reflection. So given the power
consumption and properties of the disk, the period and duty cycle of the
signal can be predicted. The period represents one revolution of the disk
and so consists of the same number of samples as the calculated window
size. The duty cycle for each period equals 5%. Since the photo-reflector
sensor properties, disk rotation speed and duty cycle, are known, the meas-
ured pulse can be fully predicted.

To verify if the signal in the window corresponds to this predicted signal
a matched filter is applied, which output is indicated as ym in Figure 3.3.
As a template the rising edge of the expected signal is chosen, since this is
most characteristic for the predefined power consumption. However, at this
point the signal statistics are still unknown, so we cannot use the matched
filter as was presented in Section 2.3.3 that assumes the template has the
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(a) Filter output at 2 kW input signal. (b) Template.

Figure 3.4: Matched filter output with corresponding template.

exact dimensions as the input signal. Therefore, the template is normalized
and centered around zero. Shifting this template over the input data will
give a peak value when the template matches and a value around zero when
it does not. The scale of the matched filter output remains unknown since
the scale of the input signal is not known. Figure 3.4 shows an example of
the matched filter method. The template is the rising edge corresponding
to a predefined power consumption of 2 kW. The input is a simulated signal
with noise added, representing the recording of a spinning disk at 2 kW.
As a reference, the input signal without noise is plotted in red. During
the occurrence of a pulse, there are two peaks present in the output of the
matched filter: a negative and positive one. The negative peak comes from
the template matching the rising edge of the pulse. The positve one matches
the falling edge of the pulse. The reason the template also responds to the
falling edge is because the signal can be described as the negative of the
template. In order to define whether a found negative (positive) peak in the
matched filtered signal relates to the rising (falling) edge of the expected
pulse in the input signal, we have to define a threshold. Since the scale
of the output value is unknown, a fixed threshold cannot be used. As an
alternative a variable threshold scaled with the standard deviation of ym is
applied. The scalar is chosen in such a way that the threshold value will be
away from the noise. This way only peaks that differ significantly from this
noise are detected when crossing the threshold value.

To estimate the standard deviation of ym, indicated as σy, some signal
processing is applied as can be seen in Figure 3.3. First the negative values
of ym are removed by using the absolute quadratic value. Then the signal is
low pass filtered by applying a moving average with a window size smaller
than the area consumed by the predicted pulse. From this filtered signal the
median value will give an estimation for the variance of ym. To get σy the
square root of the variance is applied.

When the scalar is chosen to be equal to 5, two thresholds: 5 · σy and
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−5 · σy make sure only positive and negative peaks that are significantly
different from the noise are considered as part of the expected pulse. If
both thresholds are crossed, the window contains a pulse corresponding to
the predefined power consumption. As mentioned before this method does
not only apply to exactly the predefined power consumption. The matched
filter will also output large peak values for power consumptions close to
the predefined power consumption, but these peaks will be a little smaller.
Dependent on the set scalar value these peaks will also exceed the thresholds.
After experimenting, a trade off was made between the ability to differentiate
the peak from the noise, and the detection range of the predefined power
consumption, by setting the scalar value to 5.

If a pulse is detected the signal statistics can be estimated as will be
described below. Note that for each time the signal statistics are estimated,
the values will be updated with a factor 0.7 to make the system robust for
outliers.

3.2.1 Estimate µ0

The default equation to estimate the mean is [18]:

µ =
1

N

N−1∑
i=0

xi, (3.2)

where xi are samples from the same distribution and N are the total number
of samples. Unfortunately, this equation cannot be used since the window
consists of samples from the metal-reflected part and the pulse-reflected
part, which are both from a different distribution. To apply this method for
µ0, first the pulse-reflected samples need to be removed from the window,
which corresponds to removing the highest values present in the window.
However, since the window is sensitive for a range of power consumptions it
is unknown how many samples of the window need to be removed. Removing
a fixed number of samples, for example 5% of the highest values, could then
result in over- or under-estimation of µ0. Therefore, we propose to apply
the median value on the window to estimate µ0. Although this is a rough
estimation, this method is found 20% closer to the actual value of µ0 than
Equation 3.2.

3.2.2 Estimate µ1

To estimate µ1 the area between the negative and positive peak in the
matched filter output (ym) is examined. This area corresponds to the area
between the center of the rising edge and the center of the falling edge of
the pulse in the input signal (xm), when the delay of the filter is taken into
account. The sample of ym equal to zero between the negative and positive
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peak always corresponds to exactly the middle of the pulse in xm. Therefore,
µ1 is estimated as the sample of xm that corresponds to the first sample of
ym crossing the zero line between the negative and positive peak.

Note that we cannot easily use the positive and negative peaks in the
matched filter output (ym) to remove the pulse in xm and determine µ0.
The reason for this is that the filter is maximum correlated with the center
of the rising and falling edge of the pulse, meaning it is hard to detect the
start and end point of the pulse.

3.2.3 Estimate σ0

The general equation to estimate the standard deviation is [18]:

σ2 =
1

N − 1

N−1∑
i=0

(xi − µ)2, (3.3)

where σ is the standard deviation. For the same reasons as using Equa-
tion 3.2, this equation cannot be used. Instead, a similar approach used
to determine σy is applied. But first, the signal is centered around zero by
subtracting the estimated µ0 value. Now the same signal-processing steps
as for σy can be applied to retrieve σ0.

3.2.4 Estimate σ1

To estimate σ1 the area of the pulse needs to be examined. However, because
of the properties of the photo-transistor sensor, σ1 is always smaller than
σ0. After trial and error, σ1 = σ0

3 is found to give in general a realistic
estimation of σ1.

3.3 Likelihood ratio test

Section 2.3 showed that based on a statistical model a signal can be detected
using a hypothesis testing method. In our application the metal-reflected
part and the stripe-reflected part of the signal need to be differentiated. To
differentiate between these signals, the multiple sample likelihood ratio test
is used as described in Section 2.3.2.

Using the assumed statistical model of our signal, the hypotheses are
described as:

H0 : Xn ∼ N (µ0, σ
2
0), (3.4)

H1 : Xn ∼ N (µ1, σ
2
1), (3.5)

where n = 1, 2, . . . , N , H0 represents the metal-reflected signal and H1 the
stripe-reflected signal. In contrast to Section 2.3.2 the standard deviation
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of both hypotheses are unequal and hypothesis H0 is not centered around

zero. Therefore, the classification of N samples based on
∑N

n=1 x
H0

≶
H1

γ,

shown in Equation 2.16, is not valid anymore and needs to be redefined.
Using Equation 2.15 where s[i] equals µ0 and σ equals σ0 for hypothesis H0,
and s[i] equals µ1 and σ equals σ1 for hypothesis H1, the multiple sample
likelihood ratio test equation shown in Equation 2.14 can be rewritten as:

Y =
(
σ2

1 − σ2
0

) N∑
n=1

x2
n + 2

(
µ1σ

2
0 − µ0σ

2
1

) N∑
n=1

xn
H0

≶
H1

Nµ2
1σ

2
0 −Nµ2

0σ
2
1 + 2σ2

0σ
2
1ln

((
σ1

σ0

)N
η

)
= γ, (3.6)

where we introduce a new random variable Y denoting the left-hand term of
the equation and γ is our decision threshold. In order to set this threshold
to a meaningful value we want to have γ expressed in terms of the false
alarm rate (PFA) and the detection rate (PD). Observing Y reveals that it
is a summation of a normal distribution and a Chi squared distribution that
are not independent. This means expressing γ in terms of PD and PFA with
the help of the quantile function, as shown in Equation 2.11, is a challenge,
because Y is not normally distributed as is the case in Equation 2.14.

To overcome this we propose to approximate Y with a normal distribution
with mean µ̃ and variance σ̃2. Since we will use a sum of N independent
terms we expect this approximation to be valid due to the central limit
theorem. This introduces the following new hypotheses related to the new
variable Y :

H0 : Y ∼ N (µ̃0, σ̃
2
0), (3.7)

H1 : Y ∼ N (µ̃1, σ̃
2
1). (3.8)

From these new distributions the mean and standard deviation need to be
estimated in order to apply Equation 2.11 to determine a value for γ. First
we will discuss how to estimate the mean, and then we will discuss the
variance.

Mean

Following Equation 3.6, the mean value of Y can be expressed in terms of
its first and second order non-central moments:

E[Y ] = α

N∑
n=1

E[X2
n] + β

N∑
n=1

E[Xn], (3.9)

where
α =

(
σ2

1 − σ2
0

)
, (3.10)
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Table 3.1: Non central moments from [19].

Order Non-central moment

1 µ

2 µ2 + σ2

3 µ3 + 3µσ2

4 µ4 + 6µ2σ2 + 3σ4

and

β = 2
(
µ1σ

2
0 − µ0σ

2
1

)
. (3.11)

By using Table 3.1, which shows the non-central moments for different or-
ders, the following equations can be derived:

H0 : E[Y ] = αN
(
µ2

0 + σ2
0

)
+ βNµ0, (3.12)

and

H1 : E[Y ] = αN
(
µ2

1 + σ2
1

)
+ βNµ1. (3.13)

Variance

The variance of Y is given by:

Var[Y ] = E[Y 2]− E[Y ]2. (3.14)

Since E[Y ] is known from the previous section, only the second moment of
Y has to be found:

E[Y 2] = E

( N∑
n=1

αX2
n + βXn

)2
 . (3.15)

Squaring the sum in the previous equation will result in N2 terms, from
which N terms are statistically dependent (Xn, Xm, n = m) and N2 − N
cross terms are independent (Xn, Xm, n 6= m). Let the dependent and inde-
pendent sum of cross terms be denoted by ξ and ψ then we have:

E[Y 2] = Nξ +
(
N2 −N

)
ψ, (3.16)

where

ξ = α2E[X4] + 2αβE[X3] + β2E[X2], (3.17)

and

ψ = α2E[X2]2 + 2αβE[X2]E[X] + β2E[X]2, (3.18)

and E[X], E[X2], E[X3] and E[X4] can be expressed in the known quant-
ities µ and σ with the help of Table 3.1.

26



Figure 3.5: Measured and estimated variables of the statistics of Y .

In Figure 3.5 an example is shown where the statistics of Y are estimated
by generating 100,000 realizations of X. For X we choose the following
statistics, in the case of H0: µ0 = 800 and σ0 = 50, and in the case of H1:
µ1 = 1, 000 and σ1 = 20. These values correspond to the observations when
the LED is set to 1 mA, as was shown in Figure 2.3b. N is related to the
sampling frequency as will be shown in the next section. In this example
N equals 4, which results in a reasonable sampling frequency. The realiz-
ations are then compared with the analytic results under the assumption
that Y was normally distributed. The top graph of Figure 3.5 shows the
histograms, based on the measured realizations, and the normal probability
density functions based on the mean and variances found in the previous
section. The bottom graph shows the estimated and analytical values of PD

and PFA. Based on the figure it is clear that for this particular example the
expressions for PD and PFA can be well approximated under the assumption
that Y is normally distributed.

Using the approximated normal distribution of Y , γ can finally be de-
termined for a chosen PD or PFA. Different from Section 2.3 we propose
to use two thresholds, γmin and γmax where γmin is closer to µ0 and γmax

is closer to µ1. When sample Yn < γmin it will be classified as H0, and if
Yn > γmax it will be classified as H1. In the region between γmin and γmax

no classification is made, which prevents unwanted fast switching between
the two hypotheses, also known as hysteresis.
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Figure 3.6 shows an example where γmin = µ̃0 and γmax is related to
PFA = 0.02%. γmin is chosen to be exactly at the center of the noise as can
be seen from Figure 3.7. This figure represents the signal corresponding to
Figure 3.6. Note that γmax is removed from the noise, which is the result of
a low value for PFA.

Figure 3.6: Distributions of Y with γmin = µ̃0 and γmax = Q(0.02)σ̃0 + µ̃0.

Figure 3.7: Simulated signal corresponding to the distributions shown in
Figure 3.6.
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3.4 Pulse to energy consumption

The previous section discussed how pulses are detected. The output of the
algorithm needs to report the instantaneous power consumption and total
energy consumption. Since the C-value indicates the number of revolutions
per kWh, and each detected pulse indicates a revolution, the energy con-
sumption can be calculated by counting all detected pulses divided by the
C-value. This can be expressed in an equation as follows:

E =
Npulse

C
, (3.19)

where, E is the energy in kWh, Npulse the total number of detected pulses
and C is the C-value.

To estimate instantaneous power consumption the time between two pulses
need to be examined. Given the C-value and the interval between two pulses
the instantaneous power can be calculated by the following equation:

Pavg =
3600

tpp · C
, (3.20)

where Pavg is the power in kW and tpp the time between two pulses in
seconds. Note that between two detected pulses it is only possible to calcu-
late the average power consumption, because tpp is dependent on the power
consumption, which can vary over time.

3.5 Sampling frequency and duty cycle

The minimum sampling frequency depends on the maximum rotation speed
of the disk and the number of samples required in the area of the stripe to
successfully classify the stripe as a pulse. As discussed in Section 1.1.3 the
rotation speed of the disk is proportional to the measured power consump-
tion and depends on the C-value. Since the stripe covers 5% of the total
disk surface, the sampling frequency can be calculated with the following
equation:

fs =
P

3600 · C
0.05

· (N + 1), (3.21)

where fs is the sample frequency in Hz, P is the power consumption in kW,
C is the C-value in rev/kWh and N is the number of samples required for the
classifier. Considering the worst case scenario: the fastest rotation speed will
occur with a meter having the highest encountered C-value of 800 rev/kWh,
and the power consumption at maximum just below the main fuse. For the
highest possible power consumption in a consumer household, we assume a
three-phase grid with each a main fuse of 25A at 230V, resulting in an over-
all maximum power consumption of 75A · 230V = 17.25kW. Assuming the
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Table 3.2: Measured rise and fall times of the photo-reflector.

LED Phototransistor

tr 200 ns 374 µs

tf 800 ns 426 µs

Figure 3.8: Phototransistor response (in blue) to enabling the LED (in red).
Measured with the oscilloscope.

likelihood ratio test needs at least 4 samples from the stripe, the minimal

sampling frequency will be:
17.25
3600

·800

0.05 · 5 ≈ 400Hz. This implies the sampling
frequency is reduced by at least a factor 25 with respect to the fixed 10 kHz
used by the algorithm developed by Quby.

The next step will be to duty cycle the LED to preserve energy. This
could be achieved with the following approach: enable the LED, sample
the phototransistor, and disable the LED afterwards. In this approach the
minimal on-time of the LED needs to be obtained by investigating the time
required to take a valid sample after the LED is enabled. To get more insight
in the timings of the LED and phototransistor the rise and fall times need to
be examined. Since the datasheet does not provide this information for low
currents applied to the photo-reflector, the rise and fall times are measured
with an oscilloscope. Table 3.2 shows the measured rise and fall times.

Figure 3.8 shows that when the LED is enabled and so light falls onto the
phototransistor, the voltage over the phototransistor drops. When the LED
is turned off the voltage over the phototransistor increases again. To cal-
culate the minimum time the LED needs to be on, the fall time of the
phototransistor needs to be inspected. The rise time of the phototransistor
can be ignored since we are only interested in the on-time of the LED. To
calculate the minimal on-time the following equation is used:

tLED,on = tr,LED + tf,phototransistor + tADC + tf,LED, (3.22)
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where tr stands for rise time, tf for the fall time and tADC for the sample and
hold time of the ADC. The sample and hold time of the examined micro-
controller is defined as 2 µs. Using Table 3.2 and Equation 3.22 the minimal
on-time of the LED will be 0.2µs+ 426µs+ 2µs+ 0.8µs = 429µs.

Assuming a sampling frequency of 400 Hz, the LED can be duty cycled
around 20% while still provide valid readings.
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Chapter 4

Evaluation

To evaluate the presented algorithm of Chapter 3, a Python implementation
was created running on a PC. Supplying the photo-reflector signal as an in-
put to the Python implementation gives the estimated power consumption
(Watt) and energy consumption (kWh) over time as output. These pre-
dicted electricity consumption values will be compared with a ground-truth
reference and more insights will be given in the algorithmic behavior. For
this work the proposed algorithm was tested in a lab environment where ex-
treme conditions, such as fast switching power consumptions and changes in
ambient light, can be simulated. Next to the lab experiments, measurements
were performed at two households with a different analog meter. First, the
lab experiments will be discussed and thereupon the experiment performed
at the households.

Figure 4.1: Schematic overview of the lab test setup.
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Table 4.1: Meter properties lab setup.

C-value Stripe color Disk type

Meter-750 750 black serrated

Meter-600 600 red smooth

Meter-350 350 black smooth

4.1 Lab experiments

4.1.1 Test setup

Figure 4.1 shows a schematic overview of the test setup in the lab environ-
ment. An electric heater with different heating levels is used as the load.
Between the analog meter and the heater a Fibaro wall plug [20] is placed,
which measures the power and energy consumption of the heater. These
measurements are logged and used as a reference for the output of the al-
gorithm. The phototransistor is logged with an Arduino, while the sensor is
attached to the analog meter. A specifically-designed light source is used to
simulate sunlight. Below the mentioned components are described in more
detail.

Analog meters

The experiments were performed with three different analog meters. The
meters differ in C-value, stripe color and disk type. Table 4.1 gives an
overview of the different meters.

Load

The electric heater has four different heating levels, which can be changed
manually with a switch. The different levels correspond to the following
power consumptions: 0 W, 700 W, 1250 W and 2000 W. Note that the
heater has no thermostat, meaning this power is consumed continuously.

Photo-reflector logger

Since the meter module is not able to store the photo-reflector sensor data
to a storage device, an Arduino UNO with the photo-reflector sensor, a real-
time clock (RTC), and an SD-card extension board is used. At a sampling
frequency of 1 kHz, the photo-reflector sensor is sampled with the Arduino’s
internal 10 bit ADC and stored to an SD-card. The RTC makes sure that
the stored photo-reflector signal is provided with a timestamp such that it
can be easily compared with the reference signal. The sampling frequency of
1 kHz is the highest possible sampling frequency found at which we are still
able to store the samples to an SD card. However, in the Python model this
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frequency can be downsampled to the required sampling frequency according
to Equation 3.21. The LED of the photo-reflector is limited to a constant
current flow of 1 mA with the help of a resistor.

Reference sensor

To measure the energy and power consumption of the load, a Fibaro wall
plug is used. The wall plug can measure power consumptions up to 3 kW and
has an accuracy of ±0.5% between 0 and 1 kW, ±1.5% between 1 kW to 2
kW, and ±2% above 2 kW [21]. It compensates for its own consumption and
has a resolution of 0.1 W and 0.01 kWh for power and energy consumption,
respectively. To interface with the Fibaro wall plug, the wireless Z-wave
protocol is used. Using a Raspberry Pi and a Z-wave dongle, the wall plug
is configured to send an update of the power and energy consumption at a
frequency of 1 Hz. A Python script running on the Raspberry Pi logs these
consumptions together with a timestamp to the SD-card.

Sunlight simulator

To simulate different levels of sunlight a GTI gle-m4/32 light source is
used [22]. This device can emit light in the same relative spectral-power
distribution as sunlight. The measured intensity of the light source is 2200
lux at a distance of 50 cm. As a reference, our office lighting is found to
be around 300 lux. When measured outside at an overcast day an intensity
of 1400 lux was found. However, on sunny days the intensities can vary
between 10,000 and 25,000 lux [23]. Since the GTI gle-m4/32 has only two
settings, on and off, we decided to use a set of neutral density filters. These
filters reduce the light intensity with a fixed percentage equally over the full
spectrum, meaning the spectral power distribution corresponding to sun-
light will remain. The lowest filter available was a neutral density filter that
transmits 70% of the incoming light intensity. Stacking these filters will
imply a transmission rate of 0.70N , where N is the number of filters.

4.1.2 Switching power consumption

In this experiment the load is varied between the four different power con-
sumptions for a period of 25 minutes while the ambient light is kept at an
intensity of 200 lux. The first 20 minutes the load is varied slowly and the
last 5 minutes the load is switched rapidly. A rapidly switching load is for
example common in the case when a coffee machine is used. Figure 4.2 shows
an example output of the algorithm during the experiment performed with
Meter-750. The top graph shows the recorded signal of the photo-reflector
sensor. A ‘+’ sign indicates when a pulse is detected. This location corres-
ponds to the first sample that crosses the γmax threshold in the likelihood
block. The second graph shows the calculated power consumption based on
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Figure 4.2: Switching power consumption experiment. The first 20 minutes
the load is varied slowly and the last 5 minutes the load is switched rapidly.

the detected pulses, compared to the reference sensor. As can be seen from
this graph the algorithm closely follows the reference. The bottom graph
shows the energy calculated by the algorithm and the energy consumption
measured by the reference sensor. Note that the reference sensor only up-
dates the energy after a 0.01 kWh increment. To indicate the performance of
the algorithm the Root-mean-square error (RMSE) of the power consump-
tion is calculated. For the case of the energy consumption, the difference
between the signals is examined at the end of the experiment when the last
pulse is detected. This difference will be expressed as a percentage error.
Table 4.2 shows the results.

Table 4.2: Results switching power consumption experiment.

RMSE
(Watt)

Algorithm
(kWh)

Reference
(kWh)

Error

Meter-750 24.9 0.307 0.310 -0.97%

Meter-600 33 0.218 0.220 -0.91%

Meter-350 37 0.268 0.270 -0.74%

Examining the recorded signals more closely, showed that all pulses for all
meters were detected. This means the calculated errors are most likely
caused by the inaccuracy of the Fibaro wall plug.
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Table 4.3: Results ambient light experiment.

RMSE
(Watt)

Algorithm
(kWh)

Reference
(kWh)

Error

Meter-750 64 1.318 1.33 -0.90%

Meter-600 81 1.357 1.37 -0.95%

Meter-350 75 1.058 1.07 -1.12%

4.1.3 Ambient light influences

In the following experiment, the load is fixed at 2 kW while ambient light
is increased from 30 to 2200 lux. Twelve density filters are stacked and
placed between the photo-reflector and the sunlight simulator. Then, every
4 minutes two density filters are removed, resulting in a doubling of the
light intensity. Figure 4.3 shows the data of the experiment performed with
Meter-350. The signal statistics are updated after every pulse because the
matched filter in the ‘estimate signal statistics’ part of the algorithm is
dimensioned to a predefined power consumption of 2 kW, which for this
experiment equals the input signal. The ‘likelihood ratio test’ part of the
algorithm uses these statistics and detects the actual pulses in the signal.
However, the moment the last two filters were removed, three consecutive
pulses were missed. As a consequence, the calculated power is off by 1400
watt, indicated in Figure 4.3 by the drop in power. The cause of these pulse
misses is that µ0 and µ1 are updated with a factor 0.7. Since the step from
1100 to 2200 lux introduced a rather large change in offset, updating µ0 and
µ1 to the new value takes three pulses. Figure 4.4 shows the estimated µ0

and µ1 over time. The top graph in this figure shows that it takes several
steps before the statistics are completely adjusted. The bottom graph shows
the estimated amplitude of the recorded signal. Note that, as described in
Section 2.2, the amplitude increases when more light is added. Table 4.3
shows the calculated errors. In all test cases, only two or three pulses were
missed during the last transition from 1100 to 2200 lux.
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Figure 4.3: Increasing ambient light from 30 to 2200 lux while the load is
fixed at 2 kW. Every 4 minutes two density filters are removed, resulting in
a doubling of the light intensity.

Figure 4.4: Estimated µ0 and µ1 corresponding to Figure 4.3.
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Figure 4.5: After updating the signal statistics at 2 kW in the first four
minutes, the signal is set to 750 W, while the light intensity is varied between
30 and 2200 lux. Every 4 minutes one density filter is removed resulting in
an increase in light intensity by approximately 43%.

In the next experiment the load is set to consume 2 kW for the first two
minutes and then to 750 W. During the consumption of 750 W, the light in-
tensity is varied between 30 and 2200 lux. Every 4 minutes one density filter
is removed resulting in an increase in light intensity by approximately 43%.
The matched filter is dimensioned at a power consumption of 2 kW such
that only the first two minutes the signal statistics are updated. Figure 4.5
shows the algorithm output of the experiment performed with Meter-600.
After removing the eighth filter, between timestamps 13:38 and 13:48, pulses
are no longer detected. This is due to the fact that the old threshold val-
ues γmin and γmax determined at the first two minutes of the experiment
are still used because the signal statistics are not updated during a power
consumption of 750 W. Only if the power consumption is set back to 2 kW
for a short period, the signal statistics will be updated, and pulses will be
detected again. However, in practice the template used to estimate the sig-
nal statistics is chosen to match a wide range of powers that occur regularly,
such that this situation will be prevented.

4.2 Household experiments

4.2.1 Test setup

In two households the Arduino based photo-reflector logger is placed in the
meter closet, where an analog meter is located. In this particular setup we
cannot use the Fibaro wall plug as a reference due to the fact that we do not
have access to a plug conducting the main power signal. As an alternative,
the household residents wrote down the energy consumption displayed on
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Table 4.4: Meter properties households.

C-value Stripe color Disk type Sunlight

Household A 120 red smooth No

Household B 600 black serrated Yes

the analog meter every 4 hours during daytime for one week. Table 4.4 shows
the meter properties used in the households. In household A the meter closet
is closed by default and only opened when the owner wrote down the meter
readings. In household B the meter closet door was completely removed to
examine the influence of sunlight, which enters the room through a window.

4.2.2 Evaluation

Both household owners were asked to retain their usual electricity consump-
tion pattern when the Arduino logger was placed. To validate the algorithm,
the meter readings written down by the household owners are compared to
the energy consumption calculated by the algorithm. Different from the
lab experiments the matched filter, to update the signal statistics, is di-
mensioned to a power consumption of 300 W. This power consumption was
found to occur regularly and therefore chosen. As an example, Figure 4.6
shows two graphs with the power and energy consumption over a period of
36 hours for household B. The top graph indicates the power consumption
calculated by the algorithm, while the bottom graph shows the calculated
energy consumption in comparison to the actual meter readings. The solid
points in the graph indicate the moment in time a meter reading is performed
by one of the household owners. Note that the power consumption lacks a
reference since this information cannot be extracted from the meter read-
ings. However, from Figure 4.6 it can be concluded that for this recording
the algorithm follows the actual energy consumption quite well.

Table 4.5 shows the error in the measured energy consumption for each 24
hours of recorded data in both households and the total error over the full
week. All errors are within the 5% error range, mentioned in Section 1.3,
except the error of 10.4% at day four Household A. After examining the raw
signal, it was concluded that no false pulses were detected, which could have
lead to an overestimated energy consumption. The reason for this error is
most likely the fact that the meter readings of Household A are written down
without a fractional part. This makes the percentage error of Household
A less valuable and should therefore only be seen as an indication of the
performance of the algorithm. Household B wrote down the meter readings
with one digit behind the dot, making the percentage error more reliable.
Examining the raw signals revealed that no false pulses were detected over
all recorded data of household A and B. However, some pulses were missed in
the case of household A and B. For household A, around 2 pulses were missed
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Figure 4.6: Estimated energy consumption of Household B.

in the short period that the household owner wrote down the meter readings
and aimed a flashlight directly onto the electricity meter. The pulse misses
in household B were introduced because the signal statistics were sometimes
not updated for a couple of hours while the ambient light increased due to
the sun rise. This corresponds exactly to the previous explained experiment
performed in the lab. However, the influences of the changing ambient light
happen so slowly that only 5 pulses were missed before the signal statistics
were already updated. Looking at the total error after one week, it can be
concluded that the algorithm meets the requirement of a percentage error
less than 5%.

Table 4.5: Calculated energy-consumption error of both households.

Household A Household B
Algorithm

(kWh)
Reference

(kWh)
Error

Algorithm
(kWh)

Reference
(kWh)

Error

Day 1 7.90 8 -1.25% 4.30 4.3 0%

Day 2 12.17 12 1.41% 5.75 5.9 -2.54%

Day 3 6.96 7 -0.57% 5.27 5.3 -0.69%

Day 4 5.52 5 10.4% 5.33 5.4 -1.59%

Day 5 12.22 12 1.83% 5.23 5.2 0.71%

Day 6 8.33 8 4.12% 1.05 1.1 -4.55%

Day 7 8.91 9 -1.0% 5.03 5.0 0.6%

Total 62.01 61 1.66% 31.96 32.2 -0.75%
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Chapter 5

Conclusion and Future Work

5.1 Conclusions

In this work, an energy-efficient pulse-detection algorithm is proposed that
monitors the consumed energy (kWh) and power (W) indicated by analog
electricity meters. Analog electricity meters have a disk that has a rotation
speed proportional to the energy consumption. By observing this disk with
the help of a photo-reflector sensor the energy consumption and power can
be determined. Because of the physical properties of the disk, each captured
revolution can be represented as a pulse signal that is 5% duty cycled. The
company Quby developed a device (referred to as the mains-powered meter
module) that is attached to an analog electricity meter and uses a photo-
reflector to track the energy consumption and power. In order to increase
their target customer group, Quby is interested in a battery-powered meter
module. With these battery-powered meter modules electricity meters that
do not have a power outlet nearby can be monitored. Two main aspects of
the mains-powered meter module were revealed that have a big impact on the
total power consumption. This includes the LED current, which is currently
set to 10 mA, and the sampling rate of the optical signal, which is set to 10
kHz. One of the requirements for a future battery-powered meter module is
that it runs for at least one year with an energy budget of 4200 mAh (roughly
four AA batteries). The error percentage in the derived energy consumption
should be less than 5%. To achieve energy efficiency a new pulse-detection
algorithm is proposed, which is more robust to noise. As a result, the LED
current can be reduced from 10 mA to 1 mA. Moreover, the sample frequency
of the phototransistor is reduced from 10 kHz to a maximum of 400 Hz. In
addition, the LED was duty cycled to 20% in order to save more energy.
Note that, due to the reduced LED light, the sensor is more sensitive to
ambient light. As a result, the signal statistics of the recorded signal vary
significantly over time when electricity meters are exposed to ambient light.
Our proposed algorithm continuously estimates the signal statistics and is
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therefore robust to these changing conditions. Based on an approach where
the sampled signal is continuously matched to a signal corresponding to a
predefined frequently occurring power consumption, the signal statistics are
estimated. These estimated signal statistics are then used in a multiple-
sample likelihood-ratio test classifier to detect pulses in all possible power
consumption ranges.

To evaluate the proposed algorithm, measurements are performed in a lab
and at two households. The maximum error found in the lab test was -1.12%,
and the highest mean error at the households after one week was 1.66%. In
total, the algorithm was evaluated with 5 different meters, for a total of 350
hours. Both lab and household experiments have errors below the required
5% and show that the proposed method gives stable and reliable results
in different realistic circumstances. There was one case where the signal
statistics were not updated properly when the ambient light was changed
abruptly in a lab environment. A possible solution to update the signal
statistics more frequently, resulting in fewer pulse misses, will be discussed
below.

Due to the reduction of the LED current, the most important part of
the algorithm is the estimation of the signal statistics. This component
gives the algorithm the ability to detect pulses while the signal statistics are
varying over time. Without the correct signal statistics the multiple-sample
likelihood-ratio test classifier will not be able to detect any pulses. The
purpose of the classifier is to remove the impact of the noise by examining
multiple samples, resulting in a higher probability of detecting a pulse.

The proposed pulse-detection algorithm is at least 50 times more energy
efficient than the current pulse-detection algorithm developed by Quby. This
factor 50 is based on the worst-case C-value of 800 rev/kWh. For lower C-
values the improvement in energy consumption will be even higher since the
sampling frequency of the phototransistor and the duty cycle of the LED
can be further reduced. This implies that the battery-powered meter-module
will be able to last -at least- one year with an energy budget of 4200 mAh.

5.2 Future work

Section 4.1.3 showed the limitation of the proposed algorithm when the
template does not match for a long period. To cope with this limitation,
research should be done to use a set of filters instead of one filter, where each
filter is dimensioned to a different frequently-occurring power consumption.
This would result in a more frequent update rate of the signal statistics.

A second area for improvement is that the algorithm is evaluated with
an LED current set to 1 mA while 20% duty cycled. Most likely the LED
current can be reduced even further, i.e. looking to Figure 4.2 pulses are
still clearly present in the signal.
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Another possible research area is to dynamically adjust the LED cur-
rent during run time. The sensitivity index, in Equation 2.13, can be used
to determine the distance between two normal distribution functions. This
sensitivity index should be applied to the two approximated normal distribu-
tion functions used in the ‘multiple sample likelihood ratio test’ component,
presented in Section 3.3. A small value for the sensitivity index implies the
distribution functions are close to each other, meaning it will be hard to
differentiate pulses from noise. Increasing the LED current will increase the
SNR as shown in Section 2.2. This most likely also implies the distribution
function will shift apart, which results in an increased value of the sensitivity
index. Therefore, we propose to relate the LED current to the sensitivity
index as follows: a small sensitivity index means the LED current needs
to be increased, a high sensitivity index indicates the LED current can be
decreased. For example, using this relation the LED current could be auto-
matically set to zero in the cases where ambient light introduces enough
reflected light from the disk to differentiate between pulses and noise.

A fourth research area is that during our experiments, the LED was duty
cycled at 20% between zero and 1 mA. Ongoing research at the Embedded
Software Group at the University of Delft shows that when an LED is duty
cycled between the on and off state, it could be more energy efficient to keep
the LED at a low current level close to zero instead of fully disabling it. As
a result, the rise and fall time could be shorter, meaning an even lower duty
cycle could perhaps be applied.

Finally, before the algorithm goes to market, more field tests need to be
performed, since only two different households were examined. Also, the lab
test can be expanded to a test setup performed in an outside environment
influenced by real sunlight instead of a simulator.
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Appendix A

Different C-values

In this work over 300 pictures of electricity meters are examined. The pic-
tures were made by volunteers living across Europe. By manually inspecting
these pictures the C-values are determined. The following table shows the
number of occurrences for each C-value from the inspected pictures and
Figure A.1 shows the corresponding histogram.

Table A.1: Occurrences of C-values in Europe, derived from over 300 pic-
tures.

C-value (rev/kWh) Occurrence C-value (rev/kWh) Occurrence
50 2 250 16
70 1 278 6
75 108 300 1
96 40 375 30
100 1 384,5 1
120 3 400 36
125 2 416 7
143 1 500 2
150 8 556 13
166 5 600 7

187,5 1 625 3
200 8 800 4
240 1
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Figure A.1: Histogram of the occurring C-values in Europe, based on Table
A.1.
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