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Abstract

This article addresses the tradeoff between the losses caused by a new virus and the size of

the team for developing an antivirus against the virus. First, an individual-level virus spread-

ing model is proposed to capture the spreading process of the virus before the appearance

of its natural enemy. On this basis, the tradeoff problem is modeled as a discrete optimiza-

tion problem. Next, the influences of different factors, including the infection force, the infec-

tion function, the available manpower, the alarm threshold, the antivirus development effort

and the network topology, on the optimal team size are examined through computer simula-

tions. This work takes the first step toward the tradeoff problem, and the findings are instruc-

tive to the decision makers of network security companies.

1 Introduction

Computer networks and online social networks provide us with a fast channel of acquiring

information and communicating ideas. Meanwhile, computer viruses can also spread rapidly

through these networks, inflicting enormous economic losses [1]. For the loss estimation, see

Refs. [2–6]. When a new computer virus emerges, there is often no ready-made antivirus that

is capable of detecting and eliminating it. As a result, before an antivirus targeting the virus is

released, the virus is able to spread itself freely through networks, infecting a significant frac-

tion of the hosts.

Consider a network security company that is dedicated to developing antiviruses. Suppose

that when the fraction of the victims of a new virus exceeds a presupposed alarm threshold, the

company will initiate a project of developing an antivirus against the virus. First, the amount

of effort needed for the project, which is typically measured by persons years or persons

months, is estimated [7–10]. When the effort is determined, the company will organize a team

for the project. At this point, the decision maker of the company must make a decision on the

size of the team. Definitely, the losses inflicted by the virus should be minimized. For this pur-

pose, the development cycle for the project should be minimized or, equivalently, the number

of the team members should be maximized. However, if too many manpower resources are
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injected into the project, the company will take the risk of having no enough manpower to

undertake other projects. Therefore, a deliberate tradeoff must be made between the two con-

flicting demands of reducing the losses caused by the virus and reducing the team size. In our

opinion, the tradeoff problem is worthy of deep-going study. To our knowledge, to date this

problem has not been addressed mathematically.

The key to solving the tradeoff problem is to accurately estimate the speed and extent of

virus infections. Computer virus spreading dynamics as an emerging interdiscipline is devoted

to gaining insight into the consequence of computer viruses through modeling and analyzing

their spreading process. Since the seminal work by Kephart and White [11, 12], large numbers

of computer virus spreading models, ranging from the population-level spreading models

[13–17] and the network-level spreading models [18–22] to the individual-level spreading

models [23–30], have been proposed. In particular, a special type of spreading models known

as the Susceptible-Infected (SI) models [31, 32] are especially suited to capturing the spreading

process of a new digital virus before the relevant antivirus is released.

This article addresses the above-mentioned tradeoff problem. First, an individual-level

virus spreading model, which is known as the individual-level SI model, is proposed to capture

the spreading process of the virus before the appearance of its natural enemy, which is then uti-

lized to assess the expected losses caused by the virus during the development period of an

antivirus aiming at the virus. Then, the tradeoff problem is modeled as a discrete optimization

problem. On this basis, the influences of different factors, including the infection force, the

infection function, the available manpower, the alarm threshold, the antivirus development

effort and the network topology, on the optimal team size are examined through computer

simulations. This work takes the first step toward the tradeoff problem, and the findings are

instructive to the decision makers of network security companies.

The subsequent materials of this work are organized as follows. Section 2 presents the indi-

vidual-level SI model, and models the tradeoff problem. Section 3 experimentally examines the

influences of different factors on the optimal team size. Finally, this work is summarized by

Section 4.

2 The modeling of the tradeoff problem

Imagine that a network security company prepares to develop the antivirus aiming at a new

computer virus. From the company’s perspective, the losses inflicted by the virus should be

minimized, and the manpower allocated for the development project should be minimized so

that there is enough manpower to undertake other projects. Therefore, the decision maker of

the company must make a tradeoff between the two conflicting demands. This section is dedi-

cated to modeling the tradeoff problem. For this purpose, the virus spreading process must

first be modeled.

2.1 The modeling of the virus spreading process

Suppose the new virus appears at time t = 0 and then spreads through a network G = (V, E)

connecting N hosts labelled 1, 2, � � �N. Let A = (aij)N×N denote the adjacency matrix of the net-

work. Before the release of the relevant antivirus, the virus is able to spread freely through the

network, and every host in the network is either susceptible or infected. Let Xi(t) = 0 and 1

denote the event that at time t, host i is susceptible and infected, respectively. Let Si(t) and Ii(t)
denote the probability of host i being susceptible and infected at time t, respectively.

SiðtÞ ¼ Pr fXiðtÞ ¼ 0g; IiðtÞ ¼ Pr fXiðtÞ ¼ 1g:
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Let θ denote the presupposed alarm threshold for the virus, τ the time at which the expected

fraction of the infected hosts in the network exceeds θ.

t ¼ inf
�

t :
1

N

XN

i¼1

IiðtÞ � y

�

: ð1Þ

At this time, the security company will initiate the development project of the antivirus against

the virus. Let W denote the effort of the project, n the number of the team members assigned

to the project. Then the development period for the project is W
n .

It is assumed that due to the infections by neighboring infected hosts, at time t 2 0; tþ W
n

� �

susceptible host i gets infected at rate bf ð
PN

j¼1
aijIjðtÞÞ, where the parameter β> 0 is referred

to as the infection force, the function f is referred to as the infection function, which is strictly

increasing and concave, f(0) = 0, f(x)� x, x� 0. For the rationality of the assumption, see

Ref. [30]. According to the assumption, the spreading process of the virus is modeled as the

following dynamical system.

dIiðtÞ
dt
¼ b½1 � IiðtÞ�f

XN

j¼1

aijIjðtÞ

 !

; 0 � t < tþ
W
n
; 1 � i � N: ð2Þ

We refer to the model as the individual-level SI model.

2.2 The modeling of the tradeoff problem

Suppose the losses per unit time led by an infected host are one unit. Then the overall losses

caused by the virus in the time interval t; tþ W
n

� �
are expected to be

LðnÞ ¼
XN

i¼1

Z tþW
n

t

IiðtÞdt: ð3Þ

Definitely, this expected loss should be minimized, which implies that n should be maximized.

However, with the increase of n, the company will take a higher risk of having no enough man-

power to undertake other projects. To reduce the risk, n should be minimized. To the extreme,

it is best to assign only a single person for the project. Therefore, the decision maker of the

company must make a deliberate tradeoff between the two conflicting demands. Let �n be the

number of currently available programmers of the company. Let us measure the tradeoff with

JðnÞ ¼ kn þ LðnÞ ¼ kn þ
XN

i¼1

Z tþW
n

t

IiðtÞdt; ð4Þ

where k> 0 stands for the relative weight of the two parts in the tradeoff; a larger k value

means an emphasis on the reduction of the risk of manpower shortage, whereas a smaller k
value implies that a lower loss is pursued. The tradeoff problem is then reduced to solving the

following discrete optimization problem.

Minimize 1�n��n JðnÞ ¼ kn þ
XN

i¼1

Z tþW
n

t

IiðtÞdt: ð5Þ

An optimal solution to the optimization problem stands for a better choice of the team size

from the company’s respective.
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3 The determination of the factors involved in the optimization

problem

The optimal team size, i.e., the optimal solution to the optimization problem (5), involves six

factors: the network G, the infection force β, the infection function f, the alarm threshold θ, the

antivirus development effort W, and the available manpower �n. Before solving the problem,

these factors must be determined.

The available manpower �n is at hand, the alarm threshold θ can be set flexibly by the com-

pany, the development effort can be estimated with the software cost estimation techniques

given in Refs. [7–10], and the topological structure of the network G is obtainable using the

network crawler described in Ref. [33].

The infection function f can be approached by applying the deep learning techniques pre-

sented in Refs. [34, 35] to the massive synthetic infection data. This is what we are going after.

The infection force β can be estimated by applying the time series analysis techniques exhib-

ited in Ref. [36] to the successively monitored fraction of the infected hosts. See Refs. [37, 38].

This is what we will figure out.

When these factors are all determined, the optimization problem can be solved

numerically.

Consider three instances of the optimization problem (5), where k 2 {1, 3, 5}, β = 0.001,

f ðxÞ ¼ x
1þx, θ = 0.01, W = 100, �n ¼ 100, and a Facebook sub-network with 2000 nodes given in

Ref. [39] is taken as the virus-spreading network, denoted G0. The team size vs. the tradeoff is

shown in Fig 1. It can be seen that with the increase of the team size, the tradeoff first goes

sharply down then goes slowly up, and the respective optimal team sizes are 47, 27 and 21 for

k = 1, 3 and 5.

4 The influence of different factors on the optimal team size

The optimal team size is dependent upon six factors: the infection force β, the infection func-

tion f, the available manpower �n, the alarm threshold θ, the development effort W, and the net-

work G. This section is devoted to exploring the influence of each of these factors on the

optimal team size.

Fig 1. The team size vs. the tradeoff for the above parameters.

https://doi.org/10.1371/journal.pone.0191101.g001
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In the following five experiments, G = G0, the infection function f 2 ffi : fiðxÞ ¼ x
1þix ;

1 � i � 5g.

4.1 The influence of the infection force

To understand the influence of the infection force on the optimal team size, we present Fig 2,

where each data point is obtained by solving the optimization problem (5) with a given set of

parameters.

Fig 2. The optimal team size vs. the infection force. Each data point is obtained by solving the optimization problem (5) with β 2 {a � 10−3: a = 1, � � �, 8}, k 2 {1, 3, 5},

G = G0, f = f1, �n ¼ 50, (a) θ = 0.01, W = 150; (b) θ = 0.01, W = 200; (c) θ = 0.01, W = 250; (d) θ = 0.02, W = 150, (e) θ = 0.02, W = 200; (f) θ = 0.02, W = 250; (g) θ = 0.03,

W = 150; (h) θ = 0.03, W = 200; (i) θ = 0.03, W = 250. It can be seen that the optimal team size is increasing with the infection force.

https://doi.org/10.1371/journal.pone.0191101.g002
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It is concluded from the figure that the optimal team size is increasing with the infection

force. This phenomenon can be explained as follows. The loss part in the tradeoff is increasing

with the infection force. To better balance the two parts in the tradeoff, the team size must be

increased properly.

4.2 The influence of the infection function

To understand the influence of the infection function f on the optimal team size, we present

Fig 3, where each data point is obtained by solving an optimization problem (5) with a given

set of parameters.

It is concluded from the figure that the optimal team size is increasing with the infection

function. The explanation of this phenomenon is similar to that of the previous one.

4.3 The influence of the available manpower

To understand the influence of the available manpower on the optimal team size, we present

Fig 4, where each data point is obtained by solving the optimization problem (5) with a set of

given parameters.

It is concluded from the figure that the optimal team size is increasing and tends to satura-

tion with the available manpower. This phenomenon can be explained as follows. When there

is a small available manpower, the balance between the two parts in the tradeoff would lead to

an optimal team size that is equal to the available manpower. With the increase of the available

manpower, the balance would lead to an optimal team size that is increasing less rapidly than

the available manpower and finally tends to saturation.

Fig 3. The optimal team size vs. the infection function. Each data point is obtained by solving an optimization problem with f 2 {fi: 1� i� 5}, k 2 {1, 3, 5}, G = G0,

�n ¼ 50, (a) β = 0.001, θ = 0.01, W = 150; (b) β = 0.001, θ = 0.01, W = 300; (c) β = 0.001, θ = 0.02, W = 150; (d) β = 0.001, θ = 0.02, W = 300, (e) β = 0.002, θ = 0.01,

W = 150; (f) β = 0.002, θ = 0.01, W = 300; (g) β = 0.002, θ = 0.02, W = 150; (h) β = 0.002, θ = 0.02, W = 300. It can be seen that the optimal team size is increasing with the

infection function.

https://doi.org/10.1371/journal.pone.0191101.g003
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4.4 The influence of the alarm threshold

To understand the influence of the alarm threshold on the optimal team size, we present Fig 5,

where each data point is obtained by solving the optimization problem (5) with a given set of

parameters.

It is concluded from this figure that the optimal team size is increasing with the alarm

threshold. This phenomenon can be explained as follows. The loss part in the tradeoff is

increasing with the alarm threshold. To better balance the two parts in the tradeoff, the team

size must be increased properly.

4.5 The influence of the antivirus development effort

To understand the influence of the antivirus development effort on the optimal team size, we

present Fig 6, where each data point is obtained by solving an optimization problem with a

given set of parameters.

It is concluded from this figure that the optimal team size is increasing with the antivirus

development effort. This phenomenon can be explained as follows. The loss part in the tradeoff

is increasing with the effort. To better balance the two parts in the tradeoff, the team size must

be increased properly.

4.6 The influence of the network heterogeneity

To understand the influence of the network heterogeneity on the optimal team size, the follow-

ing experiment assumes G 2 {Gi: 1� i� 5}, where Gi are scale-free networks with 100 nodes,

109 edges, and a power exponent of 2.7, 2.8, 2.9, 3.0, and 3.1, respectively [40]. See Fig 7.

We present Fig 8, where each data point is obtained by solving the optimization problem

(5) with a given set of parameters.

Fig 4. The available manpower vs. the optimal team size. Each data point is obtained by solving the optimization problem (5) �n 2 f50; 55; 60; 65; 70; 75; 80; 85g,

k 2 {1, 3, 5}, with f = f1, G = G0, (a) β = 0.001, θ = 0.01, W = 150; (b) β = 0.001, θ = 0.01, W = 300; (c) β = 0.001, θ = 0.02, W = 150; (d) β = 0.001, θ = 0.02, W = 300, (e)

β = 0.002, θ = 0.01, W = 150; (f) β = 0.002, θ = 0.01, W = 300; (g) β = 0.002, θ = 0.02, W = 150; (h) β = 0.002, θ = 0.02, W = 300. It can be seen that the optimal team size is

increasing and tends to saturation with the available manpower.

https://doi.org/10.1371/journal.pone.0191101.g004
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It is concluded from this figure that the optimal team size is increasing with the network

heterogeneity. This phenomenon can be explained as follows. The loss part in the tradeoff is

increasing with the effort, because malware spreads more rapidly in a more heterogeneous net-

work than in a more homogeneous network. To better balance the two parts in the tradeoff,

the team size must be increased properly.

Fig 5. The optimal team size vs. the alarm threshold. Each data point is obtained by solving the optimization problem (5) with θ 2 {a � 10−2: a = 1, � � �, 7}, k 2 {1, 3, 5},

f = f1, G = G0, (a) β = 0.001, �n ¼ 50, W = 150; (b) β = 0.001, �n ¼ 100, W = 200; (c) β = 0.001, �n ¼ 50, W = 150; (d) β = 0.001, �n ¼ 100, W = 200, (e) β = 0.002, �n ¼ 50,

W = 150; (f) β = 0.002, �n ¼ 100, W = 200; (g) β = 0.002, �n ¼ 50, W = 150; (h) β = 0.002, �n ¼ 100, W = 200. It can be seen that the optimal team size is increasing with the

alarm threshold.

https://doi.org/10.1371/journal.pone.0191101.g005

Fig 6. The optimal team size vs. the antivirus development effort. Each data point is obtained by solving the optimization problem (5) with W 2 {80 + a � 20: a = 1, � � �,

8}, k 2 {1, 3, 5}, f = f1, G = G0, (a) β = 0.001, θ = 0.01, �n ¼ 50; (b) β = 0.001, θ = 0.01, �n ¼ 100; (c) β = 0.001, θ = 0.02, �n ¼ 50; (d) β = 0.001, θ = 0.02, �n ¼ 100, (e) β =

0.002, θ = 0.01, �n ¼ 50; (f) β = 0.002, θ = 0.01, �n ¼ 100; (g) β = 0.002, θ = 0.02, �n ¼ 50; (h) β = 0.002, θ = 0.02, �n ¼ 100. It can be seen that the optimal team size is

increasing with the antivirus development effort.

https://doi.org/10.1371/journal.pone.0191101.g006
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5 Conclusions

This article has addressed the tradeoff between the losses caused by a new virus and the size of

the team for developing an antivirus against the virus. First, an individual-level virus spreading

model has been proposed to capture the spreading process of the virus before the appearance

of its natural enemy. Then, the tradeoff problem is modeled as an optimization problem. Next,

the influences of different factors, including the infection force, the infection function, the

available manpower, the alarm threshold, the antivirus development effort and the network

topology, on the optimal team size have been examined through computer simulations. The

findings are instructive to the decision makers of network security companies.

Towards this direction, there are a number of problems that are worth study. As was indi-

cated previously, the infection force and the infection function must be determined. The

model should be extended to more sophisticated virus spreading models such as the impulsive

spreading models [41–43], the stochastic spreading models [44–46], and the spreading models

on time-varying networks [47–49].

Fig 7. Five scale-free networks with 100 nodes, 109 edges, and a power exponent of 2.7, 2.8, 2.9, 3.0, and 3.1, respectively.

https://doi.org/10.1371/journal.pone.0191101.g007

Fig 8. The optimal team size vs. the network heterogeneity. Each data point is obtained by solving the optimization problem (5) with G 2 {Gi: 1�

i� 5}, k 2 {1, 3, 5}, f = f1, W = 300, �n ¼ 50 (a) β = 0.001, θ = 0.01; (b) β = 0.003, θ = 0.01; (c) β = 0.005, θ = 0.01; (d) β = 0.007, θ = 0.01; (e) β = 0.002,

θ = 0.02; (f) β = 0.004, θ = 0.02; (g) β = 0.006, θ = 0.02; (h) β = 0.008, θ = 0.02. It can be seen that the optimal team size is increasing with the network

heterogeneity.

https://doi.org/10.1371/journal.pone.0191101.g008
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