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Abstract

Over the years gradually flight management systems have been added to airplanes which reduce pilot work-
load and increase safety. These systems however do not provide an adequate response when in an emergency
situation the aircraft looses all thrust. A system that creates glide trajectories to airports that are reachable
would enable pilots to focus their attention on stabilizing and regaining control in an in-flight emergency sit-
uation.

The objective of this study is to develop such an emergency flight system, that can generate glide trajectories
from the position at which the emergency starts to all reachable runways. By first determining the maximum
range of the aircraft, a footprint is defined in which the reachable runways are identified. To reduce risk on
board as well as on the ground, the trajectories generated must be balanced between flying over populated
areas effectively increasing the risk of loss of life on ground or avoiding populated areas possibly increasing
the risk of loosing control of the aircraft by having to be airborne for a longer period of time. The trajectories
to all reachable runways are ranked based on several airport and runway quality factors and are presented to
the pilot to choose from.

The trajectories are generated by an Approximate Dynamic Programming (ADP) algorithm which is commonly
used in robotics for path planning. In this research it is investigated if it can also be applied in the field of
aeronautics for the purpose of an on line emergency trajectory planner. In a test scenarios, trajectories were
generated by several ADP variants and compared with a benchmark trajectory created by the A* algorithm.
This algorithm generates optimal obstacle avoiding trajectories providing certain conditions are met. From
the test it resulted that Q-learning performed the best and was therefore chosen to generate the trajectories for
the emergency trajectory planner. When the trajectories are generated by the ADP algorithm, they are used as
a reference path to create a smoothed trajectory in the horizontal as well as in the vertical plane.

With the trajectory generating algorithm determined, the emergency trajectory planner is used in a scenario in
which the aircraft has to generate trajectories to the reachable airports in the footprint. The results show that
Q-learning generates shorter trajectories than the benchmark to airports which are surrounded by obstacles.
The trajectories for this scenario vary between 55% and 74% compared to the A*. The Q-learning trajectories
are shorter because it balances between a longer route resulting in a higher summed distance cost or a shorter
route but receiving penalties. The Q-learning trajectories to airports which are not surrounded by obstacles
vary between 94% and 112% compared with the A*. The fact that the Q-learning trajectories are longer than the
A* is in agreement with the theory. The shorter routes are due to the fact that where the A* avoids all obstacles,
Q-learning is able to go through the obstacles resulting in shorter trajectories.

Although approximate dynamic programming is a valuable algorithm for path planning in robotics, it proves
less suitable to create trajectories on line in emergency situations. While it successfully generated trajectories
to the reachable runways, the time the algorithm needs to create these trajectories is too long to be able to
implement it in emergency situations. By using a stopping criterion to converge the value function, optimality
of the results are not guaranteed which is an undesirable property in emergency situations. Also by not taking
into account flight dynamics when generating the trajectory, obstacles might not be avoided optimally.
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1
Introduction

1.1. Background

On the 23rd of July 1983 Air Canada flight 143, also known as the ’Gimli Glider’, lost all engines mid route due
to fuel mismanagement resulting in insufficient fuel on board. The pilots were able to glide the aircraft to a
nearby airport landing it safely, thanks to the gliding experience of the captain (FSF, 2015). During the accident
investigation several attempts by other crews who were given the same circumstances in a simulator resulted
in crashes indicating that the ’Gimli Glider’ could have ended fatal.

Another example of landing after full loss of thrust is Air Transat flight 236. While flying over the Atlantic
Ocean the aircraft lost all engine power 65 miles (120 km) out of the nearest runway on the Azores. The aircraft
managed to reach the island gliding, while the aircraft suffered structural damage there were no fatal casualties
(GPIAA, 2001).

According to the 24nd Joseph T. Nall report (AOPA, 2015) in 2012, 146 of the in total 1162 accident (13 %) with
non commercial fixed wing aircraft suffered from loss of thrust. For part 135 charter and cargo aircraft 3 of the
26 (11 %) accidents were caused by loss of thrust. The causes for these accidents were pilot related (erroneous
fuel management) and mechanical (power plant, fuel systems). Both causes result in loss of thrust that, if not
handled well, can create hazardous situations.

For commercial jet airplanes it can be deduced from figure 1.1 that in the period between 2005 & 2015 ac-
cidents in the category System/Component Failure or Malfunction (SCF-PP) can partly be attributed to loss
of thrust. The accidents in this category are caused by system and component failure/malfunctioning which
also includes the power plant (engine). In this category in total there were 165 fatalities from which 12 not on
board. Loss of thrust might not be the biggest risk in non-commercial flights but pilots should be aware of the
occurrence of forced landing due to complete or partial loss of thrust.

If the engines of an aircraft shut down, pilots immediately follow checklists to restart the engines. If they
cannot be restarted, the aircraft can be provided with the necessary power for the essential systems (flight
critical instrumentation, flight controls and hydraulics), by a ram air turbine (RAT). This is a small turbine
that generates power from the air stream due to the speed of the aircraft and is deployed below the hull of the
aircraft. The next step to safely land the aircraft would be to find a runway to land.

The goal of this research is to explore the possibility of creating a system that can generate gliding routes on
line from the current aircraft position to reachable airports taking into account the degraded performance
of the aircraft due to power loss. This system would enable pilots to focus their attention on stabilizing and
regaining control in an in-flight emergency situation. To increase the glide range and with that the number of
reachable airports, the planner should optimize the glide path. If pilots are unable to restart the engines, the
trajectory planner would already have, if possible, multiple routes generated for them to follow, increasing the
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possibility of a successful landing.
In figure 1.1 next to onboard fatalities, external fatalities are specified. In order to reduce on ground fatalities
the routes have to take into account populated areas and avoid them if possible in case the aircraft is not able
to stay airborne during the trajectory to the reachable airport.

Figure 1.1: Fatal accidents worlwide commercial jet fleet 2005 through 2014 (Boeing, 2014)

1.2. Literature

To date several different systems have been proposed for transport aircraft as well as Unmanned Areal Vehicles
(Boskovic and Mehra, 2003; Coombes et al., 2013). Several models have been developed for situations in which
an aircraft suffers from engine failure immediately after taking of (Rogers, 1995; Jett, 1982; Hoffren and Raivio,
2000; Brinkman and Visser, 2007). Others for aircraft that suffer actuator failure (Strube et al., 2004). This
research focuses on loss of thrust during cruise and assumes that all actuators function normally.

The study done by Chen and Pritchett (2001) focuses on the pilot interaction with a system that generates
landing paths. Results of landings in emergency situations with and without the help of a path generating
system were compared. It was concluded that a system that generates paths, has a positive influence on the
landing procedure and that lack off notifying the pilot of all trade offs can create an over reliance or under
reliance of the system. Atkins et al. (2006) developed a framework based on the system of Chen and Pritchett
(2001). First the system determines the maximum range the aircraft is able to fly when experiencing full loss
of thrust taking into account a degrading aircraft system. This so called footprint, which can be seen in figure
1.2, is defined as a circle in which the radius is determined by the best glide path straight ahead and two
symmetrical boundary points 120° on either side of the circle marked with ’x’. The aircraft in this system
assumes a best glide bank of 30°.

Figure 1.2: Generated footprint (Atkins et al., 2006)
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Within the footprint the system proposed by Atkins et al. (2006) tries to construct a Dubins path of guaranteed
minimum length to each airport. In figure 1.3 it can be seen that, depending on the situation, the path can
be changed and/or stretched. The paths are created by using user defined waypoints Wm = {xm , ym ,hm ,ψm}
where xm and ym indicate the horizontal position, hm the altitude and ψ the heading angle. If for example the
descent angle γ in figure 1.3a is too steep between waypoint W1 and W2, the path is stretched by adding an
extra turn enabling the aircraft to descent with a reduced descent angle resulting in the path shown in figure
1.3b. A created path is considered feasible if the flight paths angles between the waypoint satisfy the constraint
γ ∈ [γmi n , γmax ] where γmi n is the ’steepest allowed descent angle’ and γmax the ’best-glide descent’.

(a) (b)

Figure 1.3: Dubins path (Atkins et al., 2006)

If multiple routes are possible, they are ranked using a safety oriented utility function U (Atkins et al., 2006)
defined as:

U =∑
i

Ci ·wi =C1 · r1

r1,max
+C2 · rw

rw,max
+C3 ·qI +C4 · (

d

dmax
)

+C5 · wh

wh,max
+C6 ·

(wc,max −wc )

(wc,max −wc,mi n)
+C7 ·qs +C8 ·q f ,

(1.1)

where rl is the runway length, runway width rw , instrument approach quality qI , distance d from the footprint
boundary, headwind velocity wh , crosswind velocity wc , surface quality qs and facility availability measure
q f .The weighting factors have to be determined by the respective experts, this could be airlines, air traffic
controllers or pilots. The function U could help solve the earlier mentioned problem of Chen and Pritchett
(2001) concerning "over and under reliance" because it gives the pilot control to choose by providing a list of
all reachable airports.

Coombes et al. (2013) use a more advanced footprint in their research. As can be seen in figure 1.4, the foot-
print boundary is limited by the aircraft movements. If the aircraft makes a turn, the speed has to be in-
creased to maintain vertical equilibrium, which decreases the maximum glide range. For the landing proce-
dure, Coombes et al. (2013) use a so called ’high key low key’ technique in which an aircraft is required to be at
a specific altitude at a certain location. This procedure is shown in figure 1.5. The five points on the clockwise
circuit (cDW,cEB1,cEB2,cDH1,DH2) or the anti-clockwise circuit descent path (aDW,aEB1,aEB2,aDH1,DH2)
have to be calculated in order to make a feasible approach route.

Peng et al. (2011) adopt the framework provided by Atkins et al. (2006) and use preset dynamic pressure pro-
files to generate trajectories. By assuming monotonous decreasing altitude of the aircraft and substituting
flight velocity with dynamic pressure enables to use preset dynamic pressure profiles to determine maximum
range. This maximum range depends on the initial speed and height. This is similar to the energy profile but
dependent on altitude instead of range to go.
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Figure 1.4: Footprint (Coombes et al., 2013)

Figure 1.5: The high key low key technique (Coombes et al., 2013)

The models proposed by Meuleau et al. (2009) and Fernandes de Oliveira and Büskens (2013) optimize emer-
gency trajectories to minimize risk of life. The work of Meuleau et al. (2009) takes into account different cate-
gories of obstacles, among these are terrain, urban development and weather radar observations. With a visi-
bility graph routes are made using an A* algorithm which finds a sequence of hybrid (discrete and continuous
component) states leading from the current state until the chosen runway taking in to account these obstacles
that are represented as 2D polygons with a ceiling and floor. Depending on the obstacle (soft or hard), it can
be avoided by flying over, alongside and, in the case of the soft obstacles, sometimes through the obstacle. The
calculated risk influences the ranking of possible routes to airports generated by the A* algorithm.

The model of Fernandes de Oliveira and Büskens (2013) adopts the risk based approach of Meuleau et al. (2009)
with determining the risks on-board and on the ground and generating routes minimizing the probability of
loss of life. Fernandes de Oliveira and Büskens (2013) note that the use of an A* based approach does not fully
take into account aircraft dynamics and eventual limitations related to the emergency situation. Although
the method is determined to be computational efficient, Fernandes de Oliveira and Büskens (2013) conclude
that the generated A* trajectories have limited quality. To resolve this quality issue, Fernandes de Oliveira
and Büskens (2013) define the risks in an optimal control problem, optimizing trajectories to avoid hazardous
weather and flying over populated areas taking into account aircraft dynamics and the aircrafts flight envelope.
However the direct approach used by Fernandes de Oliveira and Büskens (2013) has the disadvantage that it is
computationally expensive (Betts, 1998; Garg, 2011).

The system of Wu et al. (2012); Wu and Mora-Camino (2013) uses dynamic programming to train a neural net-
work to optimize only the feasible vertical glide trajectory towards a safe landing place. Routes are generated
to the runways available in the footprint. Actuator use is minimized by penalizing the use of it, resulting in a
smooth gliding path without unnecessary use of the remaining hydraulic energy. The neural network is trained
by considering different variables and parameters such as altitude, speed, glide path angle and distance to the
landing site. In emergency situations, the trained network generates paths based on the information in its
database by giving pitch angle directives. Direct application to on-line gliding control is considered infeasible
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due to the involved computational burden. To alleviate this burden, the amount of available states is reduced.
This is achieved by using a heuristic melting procedure where states are clustered to create a central state.

The high computational burden of using Dynamic Programming is also underlined by Adler et al. (2012). In
their research it is stated that, Dynamic Programming can assure globally optimal solutions via an exhaustive
search, however it becomes impractical for problems with more than a few state dimensions.

In the field of robotics Dynamic Programming (DP) is used for path planning (Sallaberger, 1995; Shin and
McKay, 1984; Kala et al., 2012), however Sallaberger (1995) like Atkins et al. (2006) and Wu et al. (2012) criticize
the algorithm to be ’computationally very expensive’. Powell (2007) suggests Approximate Dynamic Program-
ming (ADP) as a solution for this curse. Szepesvari (2009) states that ADP can turn the infeasible Dynamic
Programming methods into practical algorithms so that they can be applied to large-scale problems. Goswami
et al. (2010); Konar et al.; Viet et al. (2011); Macek et al.; Aranibar and Alsina (2004) use ADP for path planning
in robotics while Santos et al. (2012) use ADP to find the shortest paths in simulated games. To find the optimal
path, depending on the situation a different ADP algorithm is used. To create trajectories in an unknown en-
vironment, the algorithm simulates paths and receives rewards for reaching the goal and penalties for passing
through obstacles. The rewards and penalties earned by visiting a certain state is called the ’value’ and is stored
in a value function, in which for every state the value is defined. The paths are continued to be simulated until
the value function is converged. Assuming a minimization problem, by passing through the states with the
lowest values from the start to the goal state the optimal path for the value function is found.
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1.3. Research Definition

1.3.1. Objectives

The objective of this research is:

To develop an emergency trajectory planner that can generate trajectories to landing sites in situations with total
loss of thrust taking into account loss of life.

In order to achieve the objective the following goals have been set:

1. To create a model that generates feasible gliding trajectories in emergency situations to land the aircraft
safely in a short amount of time.

2. To create an Approximate Dynamic Programming algorithm that generates trajectories in an acceptable
short time to be able to implement it on-line.

3. To design a model that takes into account passenger and on ground risk when generating emergency
trajectories.

1.3.2. Research Questions

Based on the objective and goals, the following research question and sub-question are formulated:

1. How can an emergency trajectory planner generate gliding trajectories using Approximate Dynamic Pro-
gramming to safely land a transport aircraft with total loss of thrust?

1.1. What methods are currently available to maximize glide range for aircraft with full loss of thrust?

1.2. How is the safety of the passengers on board and people on the ground assured while following the
emergency trajectory?

1.3. Which simulation/optimization models have been used for this problem?

1.4. Report Structure

In chapter 2 the architecture of the emergency trajectory planner is presented and discussed. The functions
of the individual elements of the trajectory planner are elaborated and it is explained how the elements are
connected. In chapter 3 the Approximate Dynamic Programming (ADP) algorithm that is used to generate the
trajectories for the emergency planner is extensively discussed. Firstly the theory of Dynamic Programming
is discussed and explained with examples. With the concept of Dynamic Programming introduced, the ADP
algorithm is explained thoroughly. After the theory, the discussed variants of ADP are compared in two scenar-
ios with a benchmark to determine which algorithm performs the best. The algorithm that performs the best
is chosen to create trajectories in the model and further discussed in chapter 4. Chapter 5 presents the results
of the research. The trajectories created will be displayed and analyzed. Finally the conclusions of this study
based on the results of chapter 5 as well as the recommendations will be presented in chapter 6.
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2
The Trajectory Planner

The planning of the trajectories in emergency situations is done in several phases by several modules as can
be seen in figure 2.1. The planner proposed in this research is based on the Adaptive Flight Planner of Atkins
et al. (2006). In this chapter the system architecture shown in figure 2.1 is explained beginning with the first
module, in which the footprint is generated.

2.1. Footprint

The footprint is an approximation of the region in which feasible solutions can be found. In this footprint every
runway is considered reachable, however this does not assure a feasible trajectory. The footprint depends on
the altitude, speed and aircraft type. In this research it is assumed that the speed of the aircraft at the start of the
glide path is equal to the optimal glide speed calculated in equation 2.3. The specifications of the Boeing 737-
300 model that is used in this research can be found in table 2.1. The footprint is defined as a circle with a radius
determined by the maximum horizontal gliding distance. The circle is not adjusted to account for the aircraft
maneuvering like in the research of Coombes et al. (2013). To determine the maximum horizontal gliding
distance, first the maximum glide path has to be calculated which follows from the minimum glide angle. The
angle is achieved with the maximum lift-to-drag ratio assuming a parabolic drag polar and is calculated with
the following equation (Vinh, 1993):

(γd )mi n = 2
√

KCD0 , (2.1)

where K is the induced drag factor, CD0 the zero-lift drag coefficient Cd =Cd0 +KC 2
L and γd =−γ.

The angle is assumed to be small so that:

cosγd ≈ 1 (2.2)

The speed V (m/s) to fly while following (γd )mi n is:

V =
√√√√2W

ρS

√
K

CD0

, (2.3)

where W is the aircraft weight (N ), ρ the air density (kg /m3) and S the aircraft wing surface (m2).
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Figure 2.1: Architecture of the trajectory planner

Parameter Value
Wing surface (S) 105.4 m2

Weight (W ) 550000 N
Induced drag parameter (K ) 0.0425
Zero-lift drag coefficient (CD0 ) 0.0210
Maximum lift coefficient (CLmax ) 1.4

Table 2.1: Boeing 737 model (clean configuration)
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To estimate the maximum glide range, the following equations are used:

Vver t =V · sin(γd ) (2.4)

Vhor =V ·cos(γd ) (2.5)

∆t = dver t

Vver t
(2.6)

r =∆t ·Vhor , (2.7)

where dver t is the vertical distance and r the radius of the footprint which is equal to the maximum glide range.

Combining equation (2.1) and equation 2.3, Vver t also called the rate of descent can be calculated which is
shown in equation 2.4. The horizontal distance is defined by equation 2.5. Using a constant descent angle
(γd )mi n and knowing the vertical distance, the distance between the initial altitude and the runway altitude
assumed to be at 0 m, a rough estimate of the time of descent in straight flight can be made which can be seen
in equation 2.6. In equation 2.7 the radius of the footprint is determined by multiplying the calculated time of
equation 2.6 and the initial horizontal speed of equation 2.5. It is assumed that the aircraft is at cruise altitude
when the emergency starts. Using the data from table 2.1 the radius of the footprint is calculated to be 167 km
for an initial altitude of 10 km.

An example of a footprint is shown in figure 2.2 in which the initial aircraft position, the possible airports and
the footprint are indicated. The detailed map of The Netherlands is created by using data points of CBS (2015)
that define province borders with the dutch system of coordinates, the so called Rijksdriehoekscoördinaten
(RD-coordinates). The axis of the map are normalized such that a square is formed around the Netherlands
with point (0,0) in the map equal to RD-coordinates (4393,306505) with scale 1:100.

Figure 2.2: Map with footprint
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2.2. Trajectory Generation

If there are runways found in the footprint, the next step is to create trajectories to the runways. To achieve
the objective of the research, stated in section 1.3.1, the trajectory planner has to take into account risk while
planning the routes. Section 1.2 briefly mentioned models in which trajectories are optimized to minimize
risk of life which is achieved by taking into account several safety constraints. The first constraint taken into
account is population avoidance.

2.2.1. Population Avoidance

Avoiding flying over populated areas when in a state of emergency reduces the risk of on ground casualties. To
evaluate this risk a similar approach as employed by Fernandes de Oliveira and Büskens (2013) has been used.
The risks associated to the generated trajectories are taking into account population data of The Netherlands
provided by CBS. The dataset which has a resolution of 0.01 km2 contains information regarding population
distribution in the whole area of The Netherlands.

The population of a country is spread all over the surface of the country. Some regions are highly populated
while other areas have a low population density. If each house has to be avoided it would be impossible to
generate trajectories. To overcome this problem the population of the Netherlands is clustered into 100 groups.
The approach chosen to achieve this the K-means method is used.

To start, the K-means algorithm needs three parameters to be specified by the user:

1. Number of clusters.

2. Initialization of cluster centroids.

3. Distance metric, typically Euclidean.

Considering that the population data is represented by set X= {xi }, i = 1, ..,n and is clustered into a set of K
clusters, C = {ck ,k = 1, ....,K }. The position of the clusters are determined by minimizing the distance between
the mean of the cluster µk and the points in the cluster ck , the so called squared error (Jain, 2010):

J (ck )
∑

xi∈ck

∥ xi −µk ∥2 (2.8)

The sum of the squared error is then minimized over all K clusters:

J (ck )
K∑

k=1

∑
xi∈ck

∥ xi −µk ∥2 (2.9)

Minimizing equation 2.9 is an iterative process to accurately determine the cluster centers with the following
main steps (Jain, 2010):

1. Select an initial partition with K clusters; repeat steps 2 and 3 until cluster membership stabilizes.

2. Generate a new partition by assigning each pattern to its closest cluster center.

3. Compute new cluster centers.

This iterative process is depicted in figure 2.3.
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Figure 2.3: K-means

With the position of the 100 clusters known, the dimensions of the areas have to be determined which depend
on the average distance from the cluster center to the data points pertaining to that cluster and the population
density of the cluster. For each cluster the distances of each data point to the center are aggregated in the
variable sumd. Dividing sumd by the number of data points, that is the inhabitants, gives the average distance
which is taken as the distance from the center of the square to one of the four vertices and is portrayed as the
black line in figure 2.4.

Figure 2.4: Obstacle defining

If the dimensions would only be based on the average distance, this would mean
that in rural zones with low population density, the average distance would cre-
ate huge areas which do not represent correctly the actual population. To solve
this problem, it has been assumed that in each cluster the population density is
at least 1000 inhabitants/ km2. To achieve this, the surfaces of big areas in rural
zones are adjusted (shrunk) until this condition is met. To show the effect of the
area adjustment an example of an area with low population density is illustrated
in figure 2.5a. It can be seen that the adjusted area (red square) is smaller than the
original area (blue square). The (brown) circle in the middle of the area indicates
the cluster center.

For the areas with more than 1000 inhabitants/ km2 the dimensions are also ad-
justed. The factors that increase the surface of the areas are educated guesses and
are listed in table 2.2.

Table 2.2: Population density factors

Population Density(PD)/km2 Factor

1000 < PD < 2000 1.05
2000 < PD < 3000 1.10
3000 < PD < 4000 1.15
PD > 4000 1.2

The fact that an area is more densely populated does not increase an area, however flying over this area has
a higher potential risk and should therefore be avoided. By increasing the area the chance that a trajectory is
created over densely populated zones is decreased. The differences between the original area and the adjusted
area in a high population density area in figure 2.5b.
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(a) Low population density

(b) High population density

Figure 2.5: Comparing original and adjusted area
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2.2.2. Horizontal Trajectories

The horizontal trajectories are called target trajectories because they serve as a reference for the next phase,
Dynamic Model in which routes are generated in the 3D plane, meaning horizontal as well as vertical. In the
previous section it was noted that by avoiding population, the risk of on ground casualties is reduced, however
according to Meuleau et al. (2009) the risk of diminishing controllability of the aircraft increases with time and
distance. The generated trajectories must therefore by an equilibrium of population avoidance and shortest
path. The target trajectories are created by an algorithm known as Approximate Dynamic Programming (ADP)
and will be explained extensively in chapter 3. The ADP algorithm does not take into account heading angles
when generating the target trajectories which can result in routes in which the aircraft is not aligned with the
runway. To cope with this, the trajectories are generated to a target point at a distance indicated in figure 2.6
from the threshold of the runway aligned with the orientation of the runway. It is assumed that the distance
is sufficient to correct the possible angle difference between the heading angle of the aircraft and the runway
orientation. The horizontal distance between the runway threshold and the target point results from the alti-
tude of 305 meters (≈ 1000 ft) at an angle of 3 degrees at which the aircraft should be stabilized when flying on
the glide slope.

For each created trajectory it will be checked if the descent angle satisfies the constraintγd ∈ [(γd )mi n , (γd )max ]
where (γd )mi n is the best glide descent and (γd )max the steepest allowed descent angle. The aircraft is assumed
to be in steady gliding flight if the descent angle falls in this range. To determine if the descent angle satisfies
the constraint, the smoothing trajectory function shown in the system architecture in figure 2.1 estimates the
ground track of the 3D trajectory by creating a route using the dynamic model, which will be explained in
section 2.3.

The length of the ground track is an estimation because the ground track is slightly different depending on the
flight path angle. For the estimation, the best glide descent angle is used. With the estimated ground track
and initial altitude it is calculated if the needed flight path angle, to descent to the altitude of the target point
indicated in figure 2.6, satisfies the constraint. Using equation 2.1 and the aircraft specifications from table
2.1 the value of best glide descent (γd )mi n is calculated to be 3.4° and the value of (γd )max is set equal to 6°. If
the flight path angle needed for the trajectory is too steep, the trajectory will not be feasible and an alternative
trajectory will be generated featuring a stretched path. This alternative trajectory consists out of two segments
starting with the segment from the initial position to an area called Energy Dissipation Sector. The second part
of the trajectory is generated between the energy dissipation sector and the reachable airport.

Figure 2.6: Adapted from Fernandes de Oliveira and Büskens (2013)

2.2.3. Energy Dissipation Sector

In these sectors possible excess speed and altitude can be dissipated by using the speed brake and gradually
descending by spiraling down. The sectors are placed in uninhabited zones and are indicated in figure 2.2. In
the figure it can be seen that next to the sectors placed in the North Sea and Wadden Sea, also deviation sectors
are placed on the border with Belgium and Germany in areas which are assumed to be uninhabited.
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2.3. Dynamic Model

When the target trajectories are created, these are only generated in the horizontal plane and do not take into
account aircraft maneuver limitations. A point mass trajectory dynamics model is used to create a smoothed
trajectory in the horizontal plane as well as in the vertical plane using the earlier created target trajectories as a
reference path. The dynamic model used in this research is based on the dynamic module made in Matlab by
Lazos Fernandez (2015). The nonlinear equations of motions of the aircraft are numerically integrated using
a Runge-Kutta integration and minimize errors by using a time step of 0.2 seconds. The equations describing
the point mass trajectory dynamics in the 3D space are (Vinh, 1993):

Ẋ =V cosγ cosψ (2.10)

Ẏ =V cosγ si nψ (2.11)

Ż =V sinγ (2.12)

V̇ = −Dg

W
− g sinγ (2.13)

ψ̇= g

V
tanµ (2.14)

γ̇= g

V

( L

W
cosµ−cosγ

)
, (2.15)

where X ,Y , Z denote the aircraft position in the inertial reference frame, g the acceleration of gravity (m/s2),
µ is the bank angle and ψ is the heading angle. The drag and lift forces are denoted by respectively D and L.

Drag force D is defined by:

D =CD0 qS +
( L

W

)2
K

W 2

qS
, (2.16)

where q is the dynamic pressure.

The control variables in this model are bank angle µ and flight path angle γ. Assuming equilibrium of forces
in the vertical plane (γ̇=0), equation 2.16 can be rewritten to an equation in which the direct influence of the
bank angle on the drag is seen:

D =CD0 qS + (1+ tan2(µ))K
W 2

qS
(2.17)

The model described above embodies the following assumptions:

• Standard atmosphere conditions

• Flat, non-rotating earth

• Wind is neglected

• Speed loss due to ram air turbine is neglected

• Coordinated turns (no side slip)

The parameters of the aircraft model and International Standard Atmosphere (ISA) values used to calculate the
values of the model can be found in appendix A.3.
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A lateral autopilot is used to control the heading of the aircraft. It does this by selecting the bank angle such
that the heading follows a first order response:

ψ̇= 1

τψ
(ψc −ψ) (2.18)

where ψc is the commanded value of the heading angle and τψ the gain of the response of the autopilot to
a command (Lazos Fernandez, 2015). The commanded heading angle follows from the target trajectory gen-
erated by the ADP algorithm. The positions of the smoothed trajectory, approach the positions of the target
trajectory. At each position of the smoothed trajectory it is determined which angle must be chosen as the
commanded heading angle to approach the next position of the target trajectory.

It is required to also calculate the associated bank angle. As can be seen in equation 2.17 the bank angle
influences the drag directly and thereby affecting the glide range. The value of µ is determined by:

µ= arctan
(V ψ̇

g

)
, (2.19)

where ψ̇ is evaluated using equation 2.18. It is noted that the bank angle is constrained within a range [µmi n ,
µmax ].

As explained in section 2.2.2, to determine if a direct route is possible from the current aircraft position to the
runway, the flight path angle has to be determined. First an estimation of the ground track is made using the
dynamic model with descent angle (γd )mi n . With the vertical distance, the difference between the altitude
at the initial aircraft position and the altitude at the target point, and the estimated ground track known, the
descent angle for the trajectory is determined. If this descent angle satisfies the constraint γd ∈ [(γd )mi n ,
(γd )max ] a direct trajectory is possible. This direct trajectory made by the dynamic model will consists out of
one segment and will have a constant descent angle. Using a loop for the dynamic model, the exact descent
angle for the trajectory is determined.

If the flight path angle is to steep and does not satisfy the constraint, the trajectory will comprise two segments.
The first segment will be generated between the current aircraft position and the energy dissipation sector and
the second segment between the energy dissipation sector and the runway. The flight path angle is constant
for both parts of the route and equal to (γd )mi n .
The second part of the trajectory from the energy dissipation sector to the airport, will be generated backwards
by the dynamic model from the target point until the dissipation sector. Because the model stops the trajectory
before the landing sequence starts, it will not take into account the use of flaps and landing gear. This terminal
point is defined in figure 2.6. The second part of the trajectory is generated backwards because the conditions
at the target point are fixed but the conditions at the energy dissipation sector are variable in order to create a
feasible route. A route is considered to be feasible (physically possible) if the altitude of the trajectory from the
start to the energy dissipation sector is higher than the altitude of the backward integrated trajectory from the
airport to the energy dissipation sector.

In the last phase of the trajectory planner, the feasible trajectories are ranked.

2.4. Trajectory Ranking

In section 2.2.1 the first safety constraint, population avoidance, was introduced. This safety constraint is used
to create trajectories avoiding population. The multiple generated routes reach different airports which vary
in size and available facilities. The emergency facilities available at an airport influence the risk of landing at
that specific airport. If in an emergency situation the aircraft is uncontrollable when it touches the ground and
the facilities at the airport are not sufficient, it can have a large impact on the airport safety. By ranking the
possible airports this risk can be reduced.
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To achieve this the utility based prioritization function U (Atkins et al., 2006) already introduced in section 1.2
is used, however because in this research wind is not taken into account, the function used is slightly adjusted
resulting in the following equation:

U =∑
i

Ci ·wi =C1 · r1

r1,max
+C2 · rw

rw,max
+C3 ·qI +C4 · (

d

dmax
)+C5 ·qs +C6 ·q f , (2.20)

where rl is the runway length, rw is the runway width, qI instrument approach quality, distance d from the
footprint boundary, surface quality qs and facility availability measure q f . The values of rl , rw and d are
normalized [0.0 1.0]. The weighting factors have to be determined by the respective experts; this could be
airlines, air traffic controllers or pilots. In this research the weighting factors determined by Atkins et al. (2006)
are used which are set to {C1,C2,C3,C4,C5,C6}= {0.15,0.15,0.15,0.15,0.1,0.1}.

The value of U determines the rank of each created trajectory. As stated earlier the values of rl , rw and d
are normalized and are different for each initial condition. The values of qI , qs are fixed and depend on the
facilities at the airport. In this research the values of qI , qs determined by Atkins et al. (2006) are used. These
are listed in figure 2.7.

Figure 2.7: Quality measures for runway utility computation (Atkins et al., 2006)

The primary risk factors according to Meuleau et al. (2009) are runway length, width and relative wind. The
authors assume as a general rule 12 meters of runway for each knot of speed at touchdown. This risk could be
reduced by only taking into account runways that surpass the minimum runway length needed by the aircraft.
According to Brady (2015) the minimum runway length for a Boeing 737-300 is 1400 meters. In emergency
situations however a runway must be found to get the aircraft on the ground. To increase the chance of finding
a runway, the minimum runway length has been lowered to 1200 meters. The shorter runway will certainly
affect the ranking of the airport but provides more possible solutions. The airports in The Netherlands that
satisfy the conditions are listed in Appendix A.2 and are indicated in figure 2.2.
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3
Dynamic Programming

In chapter 1 it could be seen that several different approaches have been used to generate trajectories in emer-
gency situations. One of these approaches was Dynamic Programming, which was deemed effective but prob-
lematic to use on board in problems with large dimensions due to the so called ’curse of dimensionality’. This
curse refers to the fact that computational requirements grow exponentially with the number of state variables
(Sutton and Barto, 1998). In this chapter Dynamic Programming and a solution for the curse will be discussed
in order to create the target trajectories.

3.1. Dynamic Programming

Dynamic Programming (DP) is a term defined by Richard Bellman to describe a class of methods that can
be used to solve problems that are complex and large, by breaking it down into subproblems and finding the
optimal solutions for the subproblems. If these subproblems are overlapping, then the optimal solutions of the
subproblems will result in a global optimum. According to Sutton and Barto (1998) Dynamic programming
refers to ’a collection of algorithms that can be used to compute optimal policies given a perfect model of
the environment as a Markov Decision Process (MDP)’. This is also underlined by Busoniu et al. (2010b) who
states that the DP problems can be formalized as a MDP which is defined by Kallenberg (2007) as a ’model for
sequential decision making under uncertainty, taking into account both the short-term outcomes of current
decisions and opportunities for making decisions in the future’.

If the decision of taking a certain action only depends on the present state and action and is not influenced by
previous decisions it is said it has the Markov Property. If the MDP model is known, an optimal solution can
be found using Dynamic Programming. If the dimensions are too large, using DP to find the optimal solution
becomes unfeasible and a method called Approximate Dynamic Programming (ADP) might be used. These
two methods to solve MDP problems will be presented and explained in this chapter.

3.1.1. Markov Decision Process

With the action and state space known, the MDP is defined by the transition probability function P and its
reward function R. The transition probability function is defined as P(s′ = st+1|s = st , a = at ) and determines
the probability of reaching state s′ when taking action a in state s. The expected value of the reward is defined
as R= E(s′|s, a). A reward is defined by Sutton and Barto (1998) as ’the intrinsic desirability of that state’ and
will be further explained in section 3.1.2.

The MDP is usually used for stochastic problems, but can also be used for deterministic problems (Busoniu
et al., 2010b). In this research only deterministic problems are assumed. For deterministic MDP the transition
probability function is defined as P(s′|s, a) = 1 and the reward function R= E(s′|s, a) = 1 (Ortner, 2010).
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Figure 3.1: Deterministic Markov Decision Process

Using the example in figure 3.1 this would mean that when in state S0 action a1 is chosen, the next state will
be Sc . The same holds for the situation in which action a2 is chosen, this will lead to state Sa .

3.1.2. Value Functions

The optimal solution for a MDP is found by passing through the states with the lowest values (in this research
minimization problems are assumed). To determine the optimal solution, the optimal policy has to be found
which leads to the states with the lowest values. Policy is defined as the mapping for actions for each state, in
other words it determines which action a is chosen in each state s. To find the optimal policy, first the value
function for policy π has to be found. This can be calculated using the recursive Bellman equation:

V π(st ) = rt+1 +V π(st+1), (3.1)

where rt+1 is the reward ’earned’ by going from state st to state st+1 and V π(st+1) the value of the next state. The
rewards in equation 3.1 can be divided into two categories, ’the immediate reward’ (rt+1) and the ’longterm re-
ward’ (Vt+1). The immediate reward is earned by going from the current state st to the next state st+1 while the
longterm reward V (st+1) shows the rewards that might be earned from state st+1 until the final state summed
up. The final state of the solution, also called the terminal state, is always zero. This can be explained by the
fact that in the last state no rewards for reaching the final state can be received because it is already reached.
V π is called the state-value function for policy π.

In problems concerning for example finance, assuming inflation, in which the value of currency reduces over
time, a discount rate is used. Discount rate γ (0 ≤ γ≤ 1) determines the present value of future rewards. This
means that future rewards have to be discounted based on the fact that they will not be earned directly but in
the future.

Another reason to discount according to Busoniu et al. (2010a) is to ensure bounded rewards even with an
infinite horizon. In the following chapters, the discount factor γ will be used to formulate generic equations
for all types of problems, finite and infinite. If γ is zero, the decision which state will be visited next is only
based on minimizing the immediate reward rt+1, and will not take into account the possible future rewards
V (st+1). A policy that only takes into account immediate rewards is called myopic. When γ is equal to 1, future
earned rewards are not discounted. The general version of the Bellman’s equation:

V π(st ) = rt+1 +γV π(st+1) (3.2)

The value function can also be determined separately for all possible actions in each state. For each policy this
can be determined and is called the action-value function Qπ. It is defined as:

Qπ(st , at ) = rt+1 +Qπ(st+1, at+1), (3.3)

where Qπ(st+1, at+1) is the value of Q in the next state by taking action at+1 determined by the policy.
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The optimal value function results from the optimal policy and is defined as:

V ∗(s) = min
π

V π(s), (3.4)

for all s ∈S

The optimal action-value function has the same policy as the optimal state-value function and is defined as:

Q∗(s) = min
π

Qπ(s, a) (3.5)

for all s ∈S and a ∈A(s).
Equations 3.4 and 3.5 determine respectively the optimal state-value function and action-value function by
minimizing over all different functions determined by different policies. V ∗ and Q∗ are correlated in such
a way that the action a that minimizes value Q∗(s, a) of state s is equal to V ∗(s). Consequently V ∗ can be
calculated by:

V ∗(s) = min
at∈At

Qπ∗
(s, a) (3.6)

V ∗(s) = min
{

rt+1 +γ V ∗(st+1)|st = s, at = a
}

(3.7)

This is called Bellman’s optimality equation.

Bellman’s optimality equation for the action-value function is defined as:

Q∗(s, a) = rt+1 +γmin
at∈At

Q∗(st+1, at+1) (3.8)

3.1.3. Policy Iteration

To find the optimal policy, several methods can be used. One of these methods is policy iteration. It consists
out of two steps respectively the policy evaluation followed by policy improvement.

Policy Evaluation

Starting with the policy evaluation, the state-value function V π of policy π is determined iteratively for each
state:

Vi+1(st ) = rt+1 +γVi (st+1), (3.9)

where i is the number of iterations. The stopping condition for the evaluation process is:

maxs∈S(|Vi −Vi+1|) <∆ (3.10)

The policy can also be evaluated for the action-value function Qπ:

Qi+1(st , at ) = rt+1 +γQi (st+1, at+1) (3.11)

With the equivalent stopping condition:

maxs∈S(|Qi −Qi+1|) <∆, (3.12)

where ∆ is a to be defined low value.
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It can be seen that equations 3.9 and 3.11 are the Bellman equation for respectively the state-value function
(equation 3.2) and action-value function (equation 3.3). After each iteration the stopping condition is tested.
For i → ∞ the value function in equation 3.9 will converge to V ∗ (Sutton and Barto, 1998). With the value
function iterated for the policy, the next step is to try to find a policy better than the current one.

In figure 3.2 the backup diagrams for the state-value function V π and the action-value function Qπ are shown.
The difference between the two is that while the backup diagram in figure 3.2a is made for state s, the backup
diagram in figure 3.2b is made for state action pair s, a.

(a) V π
(b) Qπ

Figure 3.2: Backup diagrams Policy Iteration (Sutton and Barto, 1998)

Policy Improvement

With policy improvement, for all the states it is checked which action in each separate state leads to the best
next state. This is also called greedy policy improvement. For the state-value function this is determined by:

π′(st ) = ar g min
a

(rt+1 +γV π(st+1)) (3.13)

The greedy policy improvement for the action-value function:

π′(st ) = ar g min
a

Qπ(st , at ) (3.14)

The value function of the new policy π′ is evaluated using policy evaluation until the stopping conditions is
satisfied (equation 3.10 and 3.12). The policy iteration continues until there is no policy better found than the
current policy. Algorithm 1 shows the Policy Iteration process in pseudocode.

With policy iteration, a potential bad policy is evaluated multiple times until iteration stops. Sutton and Barto
(1998) state that policy iteration can be ’truncated without losing the convergence guarantee’, resulting in a
method called value iteration. Powell (2007) notes that it might be the most widely used algorithm in dynamic
programming because it is the simplest to implement.

3.1.4. Value Iteration

With value iteration all states are backed up once after which the policy in all the states is improved. The
state-value function is approximated iteratively for each state:

Vi+1(st ) = min
a

(rt+1 +γVi (st+1)), (3.15)

for all s ∈S.

Value iteration for the action-value function can be calculated with:

Qi+1(st , at ) = rt+1 +γmin
at∈At

Qi (st+1, at+1) (3.16)
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Algorithm 1: Policy iteration (Sutton and Barto, 1998)

1. Initialization
V (s) ∈R and π(s) ∈A arbitrarily for all s ∈S

2. Policy evaluation
Repeat
∆← 0
For each s ∈S:

v ←V (s)
V (s) ← rt+1 +γVi (st+1)
∆← max(∆, |v −V (s)|)

until ∆< θ (a small positive number)

3. Policy Improvement
poli c y-st able ← tr ue
For each s ∈S

b ←π(s)
π′(st ) ← ar g min

a
(rt+1 +γV π(st+1))

if b 6=π(s), then policy-stable ← false
If policy-stable, then stop; else go to 2

The value iteration stops when there is no policy better than the current one. The backup diagrams for the
value iteration process are displayed in figure 3.3. It can be seen that the backup diagrams of policy iteration
and value iteration are almost identical except for the minimization of the choices of respectively states in
figure 3.3a and action in figure 3.3b. This can be explained by the fact that while value iteration and policy
iteration use Bellman’s equation, as noticed before, value iteration uses Bellman’s optimality equation to iter-
atively compute an optimal value function, from which an optimal policy is derived (Busoniu et al., 2010a).
Algorithm 2 shows pseudocode for Value Iteration.

(a) V ∗ (b) Q∗

Figure 3.3: Backup diagrams Value Iteration (Sutton and Barto, 1998)

Algorithm 2: Value iteration (Sutton and Barto, 1998)

Initialize V arbitrarily, e.g., V (s) = 0, for all s ∈S

Repeat
∆← 0
For each s ∈S:

v ←V (s)
V (s) ← min

a
(rt+1 +γV (st+1))

∆← maxs∈S(∆, |v −V (s)|)
until ∆< θ ( a small positive number)

Output a deterministic policy, π , such that

π(s) = ar g min
a

(rt+1 +γV (st+1))
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3.1.5. Example

In sections 3.1.3 & 3.1.4 the theories of Policy Iteration and Value Iteration have been explained. To better
understand these methods, the following example is used.

Figure 3.4: Example 1 (Visser, 2015)

In this minimization problem, displayed in figure 3.4 the optimal route between state A and state M has to be
found. At each stage m, there are multiple possible next states. In stage m = 1 for example the next state will
be B , C , D . The optimal route will go through the states with the lowest values and therefore is the route with
the lowest summed up rewards. The rewards, this could be the time or fuel consumption between two states,
are the black numbers and the value of each state will be displayed in green. It is assumed that V0 = 0 and that
the problem will not be discounted (γ= 1).

The Policy Iteration and Value Iteration algorithms start in stage m=1 and end in stage m=5 and are used to
find the optimal solution shown in figure 3.5.

Figure 3.5: Optimal solution example 1

Policy iteration

As earlier explained for a given policy the values of all states are iterated until it converges to V π. In this
example the iteration starts with policy π1 for which the next state in every state is indicated with the black
arrows in figure 3.6a.

The values for all states will be calculated using the iterative update version of Bellman’s equation:

Vi+1(s) = rt+1 +γVi (st+1) (3.17)
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It is assumed that V0 = 0 for all states. The resulting values for all states are shown in table 3.1. To clarify how
these values are determined the values for states A, B, C and D for the first iteration are calculated as follows:

V1(A) = 102+V0(D) = 102+0 = 102
V1(B) = 103+V0(G) = 103+0 = 103
V1(C ) = 103+V0(H) = 103+0 = 103
V1(D) = 101+V0(I ) = 101+0 = 101

To calculate the values of A, B, C and D in the second iteration the values of their following states, determined
by policy π1, are needed. These values can be found in table 3.1. The values of A, B, C and D in the second
iteration will be:

V2(A) = 102+V1(D) = 102+101 = 203
V2(B) = 103+V1(G) = 103+102 = 205
V2(C ) = 103+V1(H) = 103+101 = 204
V2(D) = 101+V1(I ) = 101+104 = 205

States
Iteration A B C D E F G H I J K L M Policy
1 102 103 103 101 103 103 102 101 104 106 105 104 0 π1

2 203 205 204 205 209 208 206 205 208 106 105 104 0
3 307 309 308 309 209 208 206 205 208 106 105 104 0
4 411 309 308 309 209 208 206 205 208 106 105 104 0
5 411 309 308 309 209 208 206 205 208 106 105 104 0

6 406 309 308 307 209 208 206 205 208 106 105 104 0 π2

7 406 309 308 307 209 208 206 205 208 106 105 104 0

Table 3.1: State values Policy Iteration

This iteration process will be repeated for all states until the maximum difference between the value of all
states of the current iteration and the previous iteration is smaller than ∆= 0.1:

maxs∈S(|Vi −Vi+1|) <∆ (3.18)

As can be seen in table 3.1 the difference between the values of the fourth and fifth iteration satisfy the stopping
conditions and therefore stop the evaluation phase. The values of all states of evaluated policy π1 can be seen
in figure 3.6b displayed in green.

With the value function for π1 known, the next step is to determine if the current policy is optimal for all states:

π′(s) = ar g min
a

(rt+1 +γV π(st+1)) (3.19)

With the current policy π1 after state A, D is visited. Using equation 3.19 at state A, it is determined if the
current policy is optimal:

ar g min
A→B

(99+309) = 408

ar g min
A→C

(98+308) = 406

ar g min
A→D

(102+309) = 411

From these calculations it can be concluded that a better solution is found by changing the policy in state A to
visit state C next instead of state D . These calculations are made for all states and result in the new policy, π2,
shown in figure 3.6c. The changes between policy π1 and π2 are indicated with the red circles in figure 3.6c.
The new policy is also evaluated. The resulting values for all states are shown in table 3.1 and in green in figure
3.6d. In turn policy π2 is also tested for improvement, however there is no policy found that is better than π2.
The resulting path follows the policy indicated with arrows in figure 3.7 and is equal to the optimal solution
shown in figure 3.5.
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(a) π1 (b) π1

(c) π2 (d) π2

Figure 3.6: Policy Iteration

Figure 3.7: Policy Iteration optimal solution example 1
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Value Iteration

It is recalled that the value iteration algorithm makes a backup of all states and afterwards, if necessary, the
policy is improved. In example 1 this is done for all states in each stage m:

Vi+1(s) = min
a

(rt+1 +γVi (st+1)) (3.20)

The values for all states for the several needed iterations are shown in table 3.2. To clarify how value iteration
calculates the values of states, the first iteration for states A,C and G is shown.

V1(A) = min
{

99+V0(B)
∣∣∣98+V0(C )

∣∣∣102+V0(D)
}

V1(A) = min
{

99+0
∣∣∣98+0

∣∣∣102+0
}

V1(A) = 98

V1(C ) = min
{

103+V0(F )
∣∣∣104+V0(G)

∣∣∣103+V0(H)
}

V1(C ) = min
{

103+0
∣∣∣104+0

∣∣∣103+0
}

V1(C ) = 103

V1(G) = min
{

103+V0(J )
∣∣∣106+V0(K )

∣∣∣102+V0(L)
}

V1(G) = min
{

103+0
∣∣∣106+0

∣∣∣102+0
}

V1(G) = 102

The policy changes after each iteration and is displayed with black arrows for each iteration in figure 3.8. In
the calculations can be seen that the lowest value for A is achieved by visiting state C after A. For state C there
are two states that give the same value. In this example the chosen next state is determined to be F , the other
possible option is indicated with the transparent arrow. The changing policy for each iteration is shown in
figure 3.8. The changes between policies determined by the above explained calculations are indicated with
red circles. After iteration III the policy does not change anymore. The stopping conditions is achieved after
the fourth iteration as can be deduced from the values in table 3.2. The optimal solution found with value
iteration is displayed in figure 3.8d and is equal to the optimal solution found by the policy iteration.

States
Iteration A B C D E F G H I J K L M
1 98 101 104 101 103 103 102 101 104 106 105 104 0
2 200 204 204 203 209 208 206 205 208 106 105 104 0
3 302 309 308 307 209 208 206 205 208 106 105 104 0
4 406 309 308 309 209 208 206 205 208 106 105 104 0
5 406 309 308 309 209 208 206 205 208 106 105 104 0

Table 3.2: State values Value Iteration

In this chapter it was explained how Value and Policy iteration work. In each state the state value function V (s)
was determined, the value however can also be calculated for each action in a state separately resulting in the
action-value function Q(s, a). In the example in this chapter, the values of all states have to be backed up. The
computational power needed to calculate this increases exponentially with the number of state variables. A
simple calculation shows how fast the amount of dimensions increase. Assume that there are N = 100 different
states in which L = 4 different actions can be taken. This small problem already results in N L = 1 ·108 possible
outcomes.
To overcome this curse, Approximate Dynamic Programming (ADP) has been presented as a solution (Powell,
2007) and this will be explained in the next section.
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(a) Iteration I (b) Iteration II

(c) Iteration III (d) Optimal solution example 1

Figure 3.8: Value Iteration

3.2. Approximate Dynamic Programming

According to Sutton and Barto (1998) another term for ADP is ’Reinforcement Learning’ (RL). Gosavi (2014)
states that ’the power of Reinforcement Learning lies in its ability to solve, near-optimally, complex and large-
scale MDP’s on which classical DP breaks down’. Szepesvari (2009) underlines the use of RL to ’turn the in-
feasible Dynamic Programming methods into practical algorithms so that they can be applied to large-scale
problems’. As explained in section 3.1.3 the first step in policy iteration is, policy evaluation. Kunz (2013) states
that one of the most used approaches for policy evaluation in Reinforcement Learning is Temporal Difference
(TD) Learning. This method will be explained in the following section.

3.2.1. Temporal Difference Learning

TD calculates the value function, or the approximation of the value function, by minimizing the error of the
temporal consecutive predictions. By taking k steps following a certain policy π, rewards are received and
backed up determining a new estimate. The difference between the new estimate and the old estimate is
called the temporal difference error and is used to update the value of the state. This is repeated for all the
states which are visited by the ’agent’ of the TD algorithm by following policy π until the goal is reached. The
sequence of steps from the start state until the goal, is called episode or trial and is repeated until the value
function is determined.

The values of the states V (st ) are calculated incrementally (Sutton and Barto, 1998):

V̄ (st ) ← V̄ (st )+αδt , (3.21)

where V̄ (st ) is the estimation of the value in state st , α the step size and δt the temporal difference error. Here
the ’←’ notation means that the right hand side of the equation updates the left hand side incrementally.
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Temporal difference error δt is defined by:

δt = R(k)
t − V̄t (st ), (3.22)

where the return Rt is defined as:

R(k)
t = rt+1 +γrt+2 +γ2rt+3 + ...+γk−1rt+k +γkVt (st+k ) (3.23)

Combining equation 3.21 and equation 3.22 results in the detailed TD equation:

V̄ (st ) ← V̄ (st )+α[R(k)
t − V̄t (st )] (3.24)

There are two different ways of updating the values of the states. The on-line update is done during the episode
as soon as error δt is calculated:

Vt+1(st ) =Vt (st )+αδt (3.25)

With off-line updating, temporal difference error δt is not used to update the value of the states until the end
of the episode is reached:

V (st )+
T−1∑
t=0

δt (3.26)

The range of k steps is between 1 and the full return as can be seen in figure 3.9.

Figure 3.9: K-steps return (Sutton and Barto, 1998)

The 1-step TD is also referred to as ’the simplest TD method’ and is one of the two extremes of the k-steps
return. The return for the 1-step method is calculated using equation 3.23 for k=1:

R(1)
t = rt+1 +γV̄t (st+1) (3.27)

The TD error for the 1-step method using equation 3.22 is:

δt = rt+1 +γV̄t (st+1)− V̄t (st ), (3.28)

where (rt+1) is the direct reward and Vt+1 the future rewards. If the method of estimating the value of a state in
itself is based on an existing estimate, in this case Vt+1, it is said that the method is bootstrapping. Algorithm 3
shows pseudocode for tabular TD(0).

In figure 3.10 it is shown how 1-step TD is related to backup diagram of DP. Following policyπ a sample is made
in contrary to DP where a full backup is done.
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Figure 3.10: Backup diagram TD

Algorithm 3: Tabular TD(0) (Sutton and Barto, 1998)

Initialize V (s) arbitrarily, π to the policy to be evaluated
Repeat (for each episode):

Initialize s
Repeat (for each step of episode):

a ← action given by π for s
Take action a; observe reward, r , and next state, s′
V (s) ←V (s)+α[r +γV (s′)−V (s)]
s ← s′

until s is terminal

The other extreme of the k-steps return is the full return which is also known as the Monte Carlo (MC) method.
This term might be confusing because it normally refers to a class of methods involving significant repeated
random sampling. Sutton and Barto (1998) however, use this term specifically for methods based on complete
returns:

Rt = (rt+1 +γrt+2 +γ2rt+3 + ...+γT−t−1rT ), (3.29)

where the T is the time step at the terminal state (goal).

If the return from equation 3.29 is filled in equation 3.22 the TD error is:

δt = [(rt+1 +γrt+2 +γ2rt+3 + ...+γT−t−1rT )− V̄t (st )] (3.30)

The Monte Carlo method bases the value of the state on the full return of the sample path and therefore has
to wait until the end of the episode to increment V̄ (st ). The Monte Carlo method and the 1-step TD can be
compared using the example introduced in section 3.1.5. When sampling paths with a greedy policy, in this
example two possible paths are possible. This is explained by the fact that at state C, two of the three immediate
rewards are equal (103). The path chosen to explain the difference between both methods is chosen to be the
path shown in figure 3.11 as the continued red line while the other possible route is indicated with a dotted
transparent red line.

Assuming V 0 = 0 and γ = 1 using the 1-step TD method the value of state A after the first iteration will be
determined by the temporal difference error δt :

[(98+0)−0] (3.31)

The TD error using the full return backup is given by:

[(98+103+103+105)−0] (3.32)

The two backup diagrams are portrayed in figure 3.12.

According to Sutton and Barto (1998) ’on-line and off-line TD prediction methods using k-steps backups con-
verge to the correct predictions under appropriate technical conditions’, however the use of the 1-step, k-steps
or Monte Carlo backup result in different prediction errors.
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Figure 3.11: TD greedy policy sample path example 1

Figure 3.12: TD backup diagrams for example 1

In figure 3.13 an experiment performed by Sutton and Barto (1998) shows the Root Mean Square (RMS) error
between the true values of the states and the values found by TD. In this experiment, in which 19 states are
visited by a random walk, different k-steps backups are used. It can be seen that the extremes of the k-steps
for both on-line and off-line have the biggest (RMS) error. Sutton and Barto (1998) note that this underlines
the effectiveness of combining the Monte Carlo Method with Temporal Difference learning. Determining the

(a) On-line k-step TD
(b) Off-line k-step TD

Figure 3.13: Performance k-step TD methods (Sutton and Barto, 1998)

value function of a problem can go on indefinitely, therefore a stopping criterion has to be used. The criterion
used by Sutton and Barto (1998) states that iterative policy evaluation should stop if the maximum difference
between the new and old estimate of value V is less than ∆:

max
s∈S

|Vi+1(s)−Vi (s)| ≤∆ (3.33)
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Note that this is the same stopping criterion as in section 3.1.3.

Exploration versus Exploitation

With TD, a policy is followed to sample paths. If this policy is greedy, it means that only states are chosen that
give a high immediate reward.By following a greedy policy the same path will be sampled over and over again.

Figure 3.14: Backup diagram TD ε greedy

For the backup diagram in figure 3.14 this would mean that only the
red circled state is visited and the rest of the states that might have
higher values are never visited. To overcome this problem the value
field should be explored, which means that the algorithm should be
forced to visit states by taking actions different from the ones deter-
mined by the policy. When states are exploited, it means that the values
of the visited states are used to find the optimal solution. A method of-
ten applied to explore uses a so called ε-greedy policy (Powell, 2007) in
which with probability ε at random an action is chosen from the list of
possible actions, regardless of the values that can be obtained by taking
this action. If an ε-greedy policy is used in the backup diagram in figure
3.14 the green circled state can be visited (exploring) while with a greedy
policy only the red circles state is visited (exploitation). An equilibrium
of both exploration and exploitation has to be found in order to find the optimal solution.

3.2.2. Sarsa & Q-learning

In section 3.1.2 it was shown that for DP the Bellman equation could be used to define the state-value func-
tion V and the action-value function Q, this also applies to Temporal Difference learning. Sutton and Barto
(1998) identified two main classes with their corresponding methods: Sarsa for on-policy and Q-learning for
off-policy. An on-policy method follows the policy it is learning about while the off-policy method can learn
from behavior generated by a different policy (Precup et al., 2001).

Sarsa

The name refers to the sequence of calculating the value of states: State, action, reward, (next) state, (next)
action (Busoniu et al., 2010a). The values of the 1-step Sarsa are calculated by:

Q(st , at ) ←Q(st , at )+α[rt+1 +γQ(st+1, at+1)−Q(st , at )] (3.34)

Algorithm 4 shows pseudocode for Sarsa. Note that the ε-greedy policy is in respect to the value of Q and not
in respect to the immediate reward. According to Sutton and Barto (1998) the convergence depends on ’the
nature of the policy’s dependence on Q’. If all state-action pairs are visited an infinite amount of times, it will
converge to the optimal policy with a probability of 1 (van Seijen et al., 2009).

Algorithm 4: Sarsa (Sutton and Barto, 1998)

Initialize Q(s, a) arbitrarily
Repeat (for each episode):

Initialize s
Choose a from s using policy derived from Q (e.g., ε− g r eed y)
Repeat for (each step of episode):

Take action a, observe reward, r and next state, s′
Choose a′ from s′ using policy derived from Q (e.g., ε− g r eed y)
Q(s, a) ←Q(s, a)+α[r +γQ(s′, a′)−Q(s, a)]
s ← s′; a ← a′;

until s is terminal
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Q-learning

Like with Sarsa, the policy determines the states Q-learning will visit. In contrary to Sarsa, Q-learning mini-
mizes over all action-values in the state visited by following the policy where Sarsa only uses the action-value
determined by the policy. In order for Q-learning to converge to the optimal policy, it is required that all pairs
are updated an infinite amount of times (Sutton and Barto, 1998).

The 1-step Q-learning is determined by:

Q(st , at ) ←Q(st , at )+α[rt+1 +γ min
at+1

Q(st+1, at+1)−Q(st , at )] (3.35)

Algorithm 5 shows pseudocode for tabular Q-Learning.

Algorithm 5: Q-Learning (Sutton and Barto, 1998)

Initialize Q(s, a) arbitrarily
Repeat (for each episode):

Initialize s
Repeat for (each step of episode):

Choose a from s using policy derived from Q (e.g., ε− g r eed y)
Take action a, observe reward, r and next state, s′
Q(s, a) ←Q(s, a)+α[r +γmin

a′ Q(s′, a′)−Q(s, a)]

s ← s′;
until s is terminal

Sarsa and Q-learning are respectively the equivalent of policy evaluation and value iteration for sample paths.
In figures 3.15a & 3.15b the red circle indicate the sample path backup in comparison with the full backup of DP.
Although Sarsa and Q-learning look alike, depending on the ε, there is a difference in which states are visited.
In Sarsa both states (per each Sarsa step) are visited by taking ε-greedy actions while with Q-learning the first
action is ε-greedy and the next state that will be visited has the minimum value for Q(st+1, at+1), essentially
a greedy action. If ε is equal to zero, meaning only greedy steps, Sarsa and Q-learning will observe the same
rewards and therefore have the same backup (Singh et al., 2000).

(a) Sarsa (b) Q-learning

Figure 3.15: Backup diagrams Sarsa & Q-learning (Sutton and Barto, 1998)

3.2.3. TD Lambda

Temporal Difference methods and Monte Carlo both have their advantages and disadvantages. In situations
in which episodes are very long, MC is delayed in learning and has to wait until the end of the episode before
the return is known while 1-step TD only needs to wait 1 step. Sutton (1988) suggested an algorithm to create
’a bridge from Temporal Difference to Monte Carlo Methods’ (Sutton and Barto, 1998), it is called the TD(λ)
algorithm. Singh and Sutton (1996) labeled it a ’fundamental mechanism to handle delayed reward’. Sutton
and Barto (1998) describe two possible views on the TD(λ) namely, the forward view and the backward view.
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(a) λ decay (Sutton and Barto, 1998)

(b) λ return (Sutton and Barto,
1998)

Figure 3.16: Forward view

Forward view

The forward view is seen as the ’theoretical’ view and is used to explain the more ’practical’ backward view.
With TD(λ) the more recent earned rewards have a greater effect on the return, meaning that for a k-steps
return for every step in the future from the current until k the rewards are weighted with λ. The decay of this
weight can be seen in figure 3.16a. The return weighted proportional to λk−1 where 0 ≤ λ ≤ 1 is called the λ
return:

Rλ
t = (1−λ)

∞∑
n=1

λk−1R(k)
t , (3.36)

where normalization factor (1-λ) guarantees that the weights sum to 1.

The backup diagrams of the λ return can be seen in figure 3.16b. As might be noticed, it is equivalent to figure
3.9 but with weighted returns. For TD(λ) also holds that the extremes of the range are the 1-step TD, λ= 0, and
the Monte Carlo method, λ= 1.

With the λ return defined, the increment ∆Vt (st ) can be calculated:

∆Vt (st ) =α
[

Rλ
t −Vt (st )

]
(3.37)

Backward view

In the backward view an additional variable is used, it is called the eligibility trace. Every state that is visited is
’marked’ by leaving a trace. This trace can be seen as a memory of having visited that state. For every time step
the eligibility traces of all states decay while the eligibility trace at current state st , is incremented with 1. This
kind of trace is called accumulating trace (Sutton and Barto, 1998):

et (s) =
{
γλet−1(s) if s 6= st

γλet−1(s)+1 if s = st

The accumulation of the eligibility trace due to the times the states are visited is shown in the middle sub-figure
3.17.

Figure 3.17: Accumulating and replacing traces (Singh and Sutton, 1996)
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Taking into account eligibility traces, the temporal difference error is given by:

∆Vt (st ) =α
[

Rλ
t −Vt (st )

]
et (s) (3.38)

At each state, depending on the k-steps prediction, the current TD error is propagated back and assigned to
the earlier visited states.

With accumulating traces, it can occur that the eligibility trace of certain states acquire large values due to the
fact that these are visited much more than others. These states therefore receive a bigger part of future rewards
than more recent states. This can result in a biased return and can cause very large (undesirable) updates
(Wiering, 1999).

To overcome these problems, Singh and Sutton (1996) suggested replacing eligibility traces:

et (s) =
{
γλet−1(s) if s 6= st

1 if s = st

In figure 3.17 can be seen that with replacing traces, every time a state is visited, the trace is reset to 1 while with
accumulating traces the value of 1 is added to the current trace. The pseudocode for on-line tabular TD(λ) can
be seen in algorithm 6. The value of eligibility trace λ has a big influence on the success of the TD(λ) method.

Algorithm 6: On-line tabular TD(λ) (Sutton and Barto, 1998)

Initialize V (s) arbitrary and e(s)=0, for all s ∈S
Repeat (for each episode):

Initialize s
Repeat for (each step of episode):

a ← action given by π for s
Take action a, observe reward, r and next state, s′
δ← r +γV (s′)−V (s)
e(s) ← e(s)+1 (accumulating traces)
or e(s) ← 1 (replacing traces)
For all s:

V (s) ←V (s)+αδe(s)
e(s) ← γλe(s)

s ← s′
until s is terminal

For deterministic problems Wiering (1999) suggests large values of λ, so that the trace, updates the values of
states for a longer part of the episodes. This however also results in a higher variance in update steps. The value
of λ is affected by the value of learning rate α, according to Grzes (2010) for lower values of α higher values of
λ are considered better. In figure 3.18 it can be seen that the result of the 19-state random walk experiment,
earlier explained in section 3.2.1, performed by Sutton and Barto (1998) underlines the choice of a high λ value
for low learning rates. Analyzing figure 3.18 and figure 3.13a, the equivalence of the k-steps backup with a long
trace backup for on-line TD can be seen.

3.2.4. Sarsa λ & Q λ

Sarsa (λ)

Eligibility traces can also be applied to Sarsa (Sutton and Barto, 1998), resulting in Sarsa(λ). The Q values are
iterated by:

Qt+1(s, a) =Qt (s, a)+αδt et (s, a) (3.39)

Temporal difference error δt is defined as:

δt = rt+1 +γQt (st+1, at+1)−Qt (st , at ) (3.40)
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Figure 3.18: Performance on-line TD(λ) (Sutton and Barto, 1998)

The traces are not only dependent on state s but also on action a. For accumulating traces this results in:

et (s, a) =
{
γλet−1(s, a)+1 if s = st and a = at ;

γλet−1(s, a) if other wi se

Equivalently for replacing traces:

et (s, a) =
{

1 if s = st and a = at ;

γλet−1(s, a) if other wi se
for all s, a.

As earlier explained in section 3.2.2, Sarsa is an on-policy method meaning that the Qπ(s, a) is approximated
for the current policy π. Depending on the amount of steps chosen, between 1 and full return, the accumu-
lated rewards are determined and weighted using trace et (s, a). The pseudocode for this method is shown in
algorithm 7.

Algorithm 7: Tabular Sarsa (λ) (Sutton and Barto, 1998)

Initialize Q(s, a) arbitrary and e(s, a) = 0, for all s, a
Repeat (for each episode):

Initialize s, a
Repeat for (each step of episode):

Take action a, observe reward, r and next state, s′
Choose a′ from s′ using policy derived from Q (e.g., ε-g r eed y)
δ← r +γQ(s′, a′)−Q(s, a)
e(s, a) ← e(s, a)+1 (accumulating traces)
or e(s, a) ← 1 (replacing traces)
For all s,a:

Q(s, a) ←Q(s, a)+αδe(s, a)
e(s, a) ← γλe(s, a)

s ← s′; a ← a′
until s is terminal

Q(λ)

When eligibility traces are applied to Q-learning it is called Q(λ). The method was first introduced by Watkins
(1989) and only leaves a trace at the states it visits by taking greedy steps. The trace of the current state-action
pair is incremented with 1 while the traces of the other states decay with γλet−1(s, a).
The first non-greedy (exploratory) step ends the episode and its trace is set to 0:

et (s, a) =
{
γλet−1(s, a)+1s=st ·1a=at if Qt−1(st , at ) = maxaQt−1(st , a)

1s=st ·1a=at otherwise
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The algorithm updates the values of Q in the same way as Sarsa(λ)

Qt+1(s, a) =Qt (s, a)+αδt et (s, a), (3.41)

where
δt = rt+1 +γ min

a′ Qt (st+1, a′)−Qt (st , at ). (3.42)

3.2.5. Learning Rate

Dabney (2014) states that ’the choice of a learning-rate, can profoundly affect the performance of the learn-
ing algorithm’, it is therefore important to choose an adequate learning rate. For TD learning every state has
multiple next states, resulting in multiple possible values for the state. In order to converge the value of V (s) a
variable learning rate has to be used to average the values.

According to Powell (2007) learning rate α has to meet the following three conditions:

αn−1 ≥ 0,n = 1,2, ..., (3.43)
∞∑

n=1
αn−1 =∞, (3.44)

∞∑
n=1

(αn−1)2 <∞, (3.45)

where n is the amount of times a certain state is visited.
Choosing the value of the learning rate is important and depends on the problem itself. Sutton and Barto
(1998) suggest the following learning rate which meets the three convergence conditions:

αn−1 = 1

n
(3.46)

This learning rate however puts the highest weight on the early iterations when the estimates are the worst
(Powell, 2007). An alternative learning rate that also satisfies the conditions for convergence is proposed by
Powell (2007). This learning rate is a generalization of 1

n :

αn−1 = a

a +n −1
, (3.47)

where a is a tuning variable.

Gosavi (2014) proposes a variation on the learning rate in equation 3.47:

αn−1 = a

b +n
, (3.48)

where a and b are tuning variables.

With Q-learning and Sarsa, for every state the value Q(s, a) is determined for all actions in that state separately.
In a deterministic state space every action taken in a state leads to one specific next state every time. Because
the values of each state is determined for every action, in contrary to TD the values do not have to be averaged
over all actions per state. Q-learning (Koenig and Simmons, 1996) and Sarsa (van Seijen et al., 2009) can there-
fore use learning rate α= 1. Assuming however that an ε-greedy policy is used, a small learning rate can result
in more exploration of the value field potentially leading to better results. This results from the fact that with a
smaller learning rate, the stopping criterion will be satisfied slower in comparison with a higher learning rate.
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3.2.6. Example

To explain how TD learning works, the same minimization problem will be used as in section 3.1.5. To solve
the problem, the 1-step TD method is used. Although it has been explained that the 1-step TD methods needs
a decaying learning rate to average over all possible actions in each state, a constant step size α= 1 is used to
simplify the explanation of the solution to the problem.

As stated before in section 3.2.1 if a greedy policy is used in example I, two sample paths are possible. The first
possible sample path is shown in figure 3.19.

Figure 3.19: Greedy policy sample path scenario I

States
Iteration A B C D E F G H I J K L M
1 98 0 103 0 0 0 0 101 0 0 0 104 0
2 201 0 204 0 0 0 0 205 0 0 0 104 0
3 302 0 308 0 0 0 0 205 0 0 0 104 0
4 406 0 308 0 0 0 0 205 0 0 0 104 0
5 406 0 308 0 0 0 0 205 0 0 0 104 0

Table 3.3: Greedy policy sample path scenario I

When there are multiple actions possible in a state, several scenarios can be used. The algorithm can for
example choose the same action every time it visits the specific state. In example I this would mean that
after state C every time state F or H is visited. In another scenario a probability factor could be used that
determines which action is chosen, meaning that sometimes F is visited after C and sometimes H . Below, the
first two scenarios are explained.

It is recalled that the 1-step TD is calculated by:

V (st ) ←V (st )+α[rt+1 +V (st+1)−V (st )] (3.49)

The same path will be sampled until the stopping criterion is satisfied.

max
s∈S

|Vi+1(s)−Vi (s)| ≤∆, (3.50)

where ∆= 0.001.

The first time the states are visited the values will be:
V (A) ← 0+ [98+0−0] = 98
V (C ) ← 0+ [103+0−0] = 103
V (H) ← 0+ [101+0−0] = 101
V (L) ← 0+ [104+0−0] = 104
V (M) = 0,because it is the terminal state.
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When the states are visited for the second time:
V (A) ← 98+ [98+103−98] = 201
V (C ) ← 103+ [103+101−103] = 204
V (H) ← 101+ [101+104−101] = 205
V (L) ← 104+ [104+0−104] = 104
This process is repeated until the stopping criterion is satisfied which happens in iteration 5 as can be seen in
table 3.3.

Following a greedy policy can also result in another sample path that is different from the one in figure 3.19. In
state C the highest reward can be earned by going to state H but also to state F . By following the path through
state F the sample path in figure 3.20 is created. The values for the visited states per iteration are shown in
table 3.4.

Figure 3.20: Greedy policy sample path scenario II

States
Iteration A B C D E F G H I J K L M
1 98 0 103 0 0 103 0 0 0 0 105 0 0
2 201 0 206 0 0 208 0 0 0 0 105 0 0
3 304 0 311 0 0 208 0 0 0 0 105 0 0
4 409 0 311 0 0 208 0 0 0 0 105 0 0
5 409 0 311 0 0 208 0 0 0 0 105 0 0

Table 3.4: Greedy policy sample path scenario II

Knowing the result from section 3.1.5, following a greedy policy can lead to the optimal result shown in figure
3.19 but can also lead to a solution that is not optimal, as shown in figure 3.20. Without prior knowledge it can
not be known if the solution is optimal without exploring the value function. If an ε greedy policy is used, more
states are visited and if better states exist, depending on exploration probability ε, they can be found. In the
last two greedy policy examples the learning rate was set equal to 1 to simplify the solution of the problem. By
having a different sample path every iteration (second scenario), a learning rate lower than 1 has to be used in
order to converge the value function, this can be explained with a simple example.

Assume that ε = 0.2, that statistically means that one in every 5 actions is random. For this example it is
assumed that the values for all states are known (green indicated numbers) and the stopping criterion is still
not met after multiple iterations and therefore more sample paths are needed. Two of these possible sample
paths are illustrated in figure 3.21 with I and II. The policy in each state is indicated with black arrows.

When sample path I is followed the calculation for the state value of A will be:

V (A) ← 406+1 · [102+307−406]

V (A) = 409
(3.51)
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If the first sample path reaches the goal state (M) and the second sample path is followed the state value of A
will be:

V (A) ← 409+1 · [98+308−409]

V (A) = 406
(3.52)

Figure 3.21: TD ε-greedy

The values of all the visited states will change continuously depending on the sample paths. In section 3.2.5
the different possible learning rates for the state value function V (s) and action value function Q(s, a) were
explained. For the ε greedy example, the Q-learning algorithm will be used which calculates the action value
function Q(s, a). The same value for ε will be used and therefore the two illustrated paths are also possible
sample paths for this example. In theory if Q-learning runs infinite iterations, the algorithm will converge to
the optimal policy. The values of the optimal solution are shown in table 3.5. It can be seen that the value per
state action pair differs and from the table the optimal solution can be deduced by following the action in each
state that has the lowest value.

Current State
Next
state

A B C D E F G H I J K L M

A 0 0 0 0 0 0 0 0 0 0 0 0 0
B 408 0 0 0 0 0 0 0 0 0 0 0 0
C 406 0 0 0 0 0 0 0 0 0 0 0 0
D 409 0 0 0 0 0 0 0 0 0 0 0 0
E 0 310 0 0 0 0 0 0 0 0 0 0 0
F 0 310 311 0 0 0 0 0 0 0 0 0 0
G 0 309 310 309 0 0 0 0 0 0 0 0 0
H 0 0 308 307 0 0 0 0 0 0 0 0 0
I 0 0 0 309 0 0 0 0 0 0 0 0 0
J 0 0 0 0 209 211 209 0 0 0 0 0 0
K 0 0 0 0 0 208 211 209 0 0 0 0 0
L 0 0 0 0 0 0 206 205 208 0 0 0 0
M 0 0 0 0 0 0 0 0 0 106 105 104 0

Table 3.5: Q-learning values ε-greedy

When a stopping criterion is used, this will prevent the algorithm of doing an infinite amount of iterations. It
therefore will not have the exact values of the optimal solutions but an approximation as can be seen in table
3.6. The stopping criterion used to determine the values shown in table 3.6 is a small value as explained before
in section 3.2.1. In this simulation it was set equal to ∆ = 0.001. Although the values in the simulation are an
approximation, the policy found is equal to the optimal policy as can be deduced from the table.
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Current State
Next
state

A B C D E F G H I J K L M

A 0 0 0 0 0 0 0 0 0 0 0 0 0
B 406.524 0 0 0 0 0 0 0 0 0 0 0 0
C 405.994 0 0 0 0 0 0 0 0 0 0 0 0
D 407.730 0 0 0 0 0 0 0 0 0 0 0 0
E 0 308.894 0 0 0 0 0 0 0 0 0 0 0
F 0 308.501 310.340 0 0 0 0 0 0 0 0 0 0
G 0 308.204 309.390 307.104 0 0 0 0 0 0 0 0 0
H 0 0 307.994 306.581 0 0 0 0 0 0 0 0 0
I 0 0 0 306.581 0 0 0 0 0 0 0 0 0
J 0 0 0 0 208.883 210.200 208.740 0 0 0 0 0 0
K 0 0 0 0 0 207.975 209.104 208.890 0 0 0 0 0
L 0 0 0 0 0 0 205.994 204.995 207.720 0 0 0 0
M 0 0 0 0 0 0 0 0 0 106 105 104 0

Table 3.6: Q-learning values ε-greedy

Eligibility Traces

In section 3.2.3 it has been explained that eligibility traces propagate a ’share’ of the rewards gained during the
episode. In other words, a certain reward has been earned by visiting the states in an episode and therefore
these states are considered ’good’ because they lead to a reward. Assume the same greedy policy is followed
resulting in the sample paths seen in figure 3.22 using accumulating traces.

It is recalled that:

et (s) =
{
γλet−1(s) if s 6= st

γλet−1(s)+1 if s = st

For this example, the value for the trace is chosen to be λ=0.7, γ=1 and learning rate α=1. This value for the
learning rate has been chosen to be able to compare the state values with the TD method. Per episode 5 states
are visited by the ’agent’ of the algorithm. When the agent goes from one state to the next it leaves a trace, the
resulting eligibility traces can be seen in table 3.7. In the first column of the table, the stages (m=1-4) of the
agent are indicated. In the first step of the first episode the agent goes from state A to state D . This is also seen
in table 3.7 in which the trace of D becomes 1 in stage 2, while the trace of A decays to 0.700 ·1 = 0.700. If the
agent moves from D to H , it can be seen that the trace of H becomes 1 while traces of A and D decay to 0.490
respectively 0.700. This process is repeated for all three episodes in this example resulting in table 3.7.

Figure 3.22: TD ε-greedy eligibility traces
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States
Stage A B C D E F G H I J K L M Episode
1 1.000 0 0 0 0 0 0 0 0 0 0 0 0 I
2 0.700 0 0 1.000 0 0 0 0 0 0 0 0 0
3 0.490 0 0 0.700 0 0 0 1.000 0 0 0 0 0
4 0.343 0 0 0.490 0 0 0 0.7000 0 0 0 1.000 0

1 1.343 0 0 0.343 0 0 0 0.490 0 0 0 0.700 0
2 0.940 0 1.000 0.240 0 0 0 0.343 0 0 0 0.490 0 II
3 0.658 0 0.700 0.168 0 1.000 0 0.240 0 0 0 0.343 0
4 0.461 0 0.490 0.118 0 0.700 0 0.168 0 0 1 0.240 0

Table 3.7: Eligibility traces

If the values of the states are calculated on-line, the last steps of algorithm 6 are applied:
For all s:
V (s) ←V (s)+αδe(s)
e(s) ← γλe(s)

Every state the agent visits, it determines δt = R(k)
t −V̄t (st ). This temporal difference error δt (for k = 1) is used

with the eligibility trace to determine the values of the states, which results in the values in table 3.8. It can be
seen that the values of each state change substantially after each step of the agent. Depending on learning rate
α, λ and the k-steps return, the values of the states will be different, however the solution (the path through the
value field) will be the same. The algorithm will stop when the earlier mentioned stopping criterion is satisfied.

States
Stage A B C D E F G H I J K L M Sample

Path
1 102 0 0 0 0 0 0 0 0 0 0 0 0 I
2 173.400 0 0 102 0 0 0 0 0 0 0 0 0
3 222.890 0 0 172.700 0 0 0 101 0 0 0 0 0
4 258.562 0 0 223.660 0 0 0 173.800 0 0 0 104 0

1 42.937 0 0 168.587 0 0 0 95.125 0 0 0 -8.393 0
2 139.757 0 103 193.317 0 0 0 130.454 0 0 0 42.076 0 II
3 207.539 0 175.100 210.629 0 103 0 155.184 0 0 0 77.406 0
4 255.907 0 226.550 222.982 0 176.500 0 172.831 0 0 105 102.616 0

Table 3.8: Value function with eligibility traces

In this section the off-policy (Q-Learning) and on-policy (Sarsa) Temporal Difference learning algorithms and
the variants with eligibility traces( Q-λ, Sarsa λ) have been discussed as potential techniques for the optimal
route synthesis. In section 3.3 the different algorithm are used to create trajectories in several scenarios. These
trajectories will be compared in order to find the best algorithm to create the target trajectories for the emer-
gency trajectory planner.

3.3. Selecting the route planning algorithm

In order to find out which algorithm creates the most optimal routes in the shortest time period, they are
compared with trajectories generated by an A* (star) algorithm. The A* algorithm (Hart et al., 1968) is one
of the most widely used algorithms for shortest-path problems and will always find the optimal trajectory if
certain conditions are met (Korf, 1990). In this chapter the A* algorithm will be explained and compared with
the TD algorithms.
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3.3.1. A* Algorithm

Beginning at the starting state, the surrounding states are checked if these are accessible or if there are ob-
stacles in these surrounding states. The states that are accessible are added to a list and marked ’open’; this
list can be seen as a list of states that have to be checked. For every state on the ’open’ list the following cost
function has to be calculated:

f (s) = g (s)+h(s), (3.53)

where g (s) is the actual cost of an optimal path from the start state to the current state s and h(s) is the actual
cost of an optimal path from current state s to the goal state.

The real values for f , g and h until this point are unknown and therefore have to be estimated by:

f̂ (s) = ĝ (s)+ ĥ(s), (3.54)

were f̂ , ĝ , ĥ are the estimated values of f , g and h.

The next state is the adjacent state with the lowest value for f . When a state is visited, it is put on the ’closed’
list. The adjacent states of the current state are added to the ’open’ list (if they are not already there). For all
adjacent states on the ’open’ list the value for f is determined. The next state is again chosen based on the
lowest value for f . This process is repeated until the A* algorithm puts the goal state on the ’closed’ list or if it
fails to find the goal state, which means no path is found. The first condition for which the A* algorithm finds
the optimal path is, that a path from start to goal exists. The second condition is ĥ ≤ h, this means that ĥ, the
estimate of h, has to underestimate the value of h in order to find the optimal path.

3.3.2. Experiment

The objective of this experiment is to determine which ADP algorithm performs the best in generating target
trajectories and will therefore be used in the emergency trajectory planner. It is recalled that these trajectories
have to be generated in a short amount of time to be able to use it on line.

Due to the fact that the ADP algorithms with eligibility traces have to update the trace for all states after each
step, the algorithm is multiple times slower making it unsuitable for the purpose of generating trajectories in
emergency situations. Q-λ and Sarsa-λ will therefore not be examined in the experiment.

As stated in section 3.2 both Q-learning (Sutton and Barto, 1998) and Sarsa (van Seijen et al., 2009) converge to
the optimal policy and value function Q(s, a) if all states are updated an unlimited amount of times. A practical
solution for Q-learning to converge is to use a stopping condition max

s∈S
|Qi+1 −Qi | ≤ ∆ where ∆ has a small

value. When a stopping condition is used, it is not guaranteed that Sarsa or Q-learning will find the optimal
policy. Important factors to increase the chance of finding the optimal policy are the learning rate α and the
exploration factor ε. If a low learning rate is used it will take longer until the value function is converged, which
in turn enables more steps to be taken to explore the environment. If an ε-greedy policy is used, the amount
of random steps is determined by ε, which is the probability of taking a random step. If only greedy steps are
used, the value field will converge only to local optima, resulting in a non optimal solution.

To determine the effects of learning rateα and exploration probability ε on the performance of the algorithms,
multiple simulations will be done. To give a statistically significant measure of performance, the number of
simulations is 100 (Caironi and Dorigo, 1994).

The above mentioned algorithms and the A* will all generate a path in two different scenarios from the same

41



predefined start and goal in a 100x100 randomly generated grid in which 130 random obstacles are created.
In figure 3.23 can be seen that some obstacles, portrayed as green squares, are overlapping because as stated
before they are generated randomly.

Figure 3.23: Random generated comparison grid

The eight possible actions for the ADP algorithms and the A* algorithm are the same and are displayed in figure
3.24.

Figure 3.24: Possible actions

The reward function of the ADP algorithms is defined by rewards, penalties and the euclidean distance to the
goal: √

(x +∆xacti on −xg oal )2 + (y +∆yacti on − yg oal )2, (3.55)

where x and y are the coordinates of the current state.

The action that leads to a state with an obstacle receives a penalty (positive value) and a reward for reaching
the goal (negative value). It is recalled that all problems in this research are minimization problems meaning
that a path through states with the lowest values (all rewards that can be earned from that state to the goal)
is optimal. If there are no obstacles, the action that brings the agent the closest to the goal will get the lowest
reward. When a state has an obstacle, the value of the action that leads to that state will be much higher than
action that lead to states without obstacles. The same holds for actions that lead to the goal state. The penal-
ties and rewards also influence the paths found by the ADP algorithms. If the penalty is low in comparison
with the euclidean distance, the algorithm will not try to go around the obstacle but go straight through it. If
the penalty is too high, the algorithms will not be able to create paths close to an obstacle. In order words,
the value of the penalties influences the paths found by the ADP algorithm but the obstacles will remain soft
obstacles. In contrary to the ADP algorithms, the A* algorithm used in this research assumes the obstacles are
hard constraints meaning no paths through them are possible.

Earlier it was explained how the A* algorithm works and it was stated that the A* paths are the optimal solution.
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The policy found by the ADP algorithms determine at which state, which next state is chosen resulting in a
path. To compare the routes created by ADP algorithms with the A*, the total rewards hypothetically earned
by following the A* path are summed and compared with the summed rewards for the policies found by Sarsa
and Q-learning. For each value of ε [0.01,0.1,0.2,0.5] 4 different learning rates [0.2,0.4,0.6,0.8] are used to show
the influence of the learning rate on convergence with a constant exploration probability. The data generated
in this experiment will be analyzed by using boxplots in which the median is indicated with the red horizontal
lines and the outliers with red crosses. The reward of reaching the goal is the same for both scenarios and is
equal to -9000. The reward is chosen to be a high value to speed up convergence. The penalty for visiting an
obstacle state in both scenarios is 60.

3.3.3. Scenario I

In the first scenario a short path has to be created. The path created by the A* algorithm is shown in figure
3.25. The total accumulated reward for the A* path in the first scenario is -8949 with a simulation time of 1.2
seconds.

Figure 3.25: A* path scenario I

The results of the simulations for Sarsa are shown in figure 3.26 and for Q-learning in figure 3.27. The simu-
lation time of Sarsa (table 3.9a) and Q-learning (table 3.9b) are also displayed, to be able to identify the best
algorithm based on accuracy and simulation time.

The objective of this experiment is to find an algorithm that produces results close to the optimal solution
provided by the A* algorithm indicated in figures 3.26 and 3.27. In the two figures it can be seen that increasing
ε, the probability of an exploration step, leads to more spread in the results for Sarsa as well as Q-learning. The
results for both algorithms for ε = 0.5 are substantially worse in comparison with the other values for ε and
the spread is higher. It will therefore not be analyzed further. Note that the sub-figures in figures 3.26 and 3.27
have different scales, therefore in figure 3.28 the results for Sarsa and Q-learning for ε = 0.01, 0.1, 0.2 will be
displayed on the same scale to better compare the results.

From figure 3.28 it can be deduced that the performance of Sarsa and Q-learning for ε= 0.01 are comparable,
however Q-learning uses a shorter calculation time period to produce a slightly better result. The difference
between Sarsa and Q-learning starts to show for ε = 0.1 and ε = 0.2. In figure 3.28c and 3.28d the results
for α = 0.2 and α = 0.4 are comparable however for α = 0.6 and α = 0.8 the performance of Sarsa decreases
substantially.
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(a) ε= 0.01 (b) ε= 0.1

(c) ε= 0.2 (d) ε= 0.5

Figure 3.26: Comparing ε Sarsa scenario I
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(a) ε= 0.01 (b) ε= 0.1

(c) ε= 0.2 (d) ε= 0.5

Figure 3.27: Comparing ε Q-learning scenario I
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(a) Sarsa ε= 0.01 (b) Q-learning ε= 0.01

(c) Sarsa ε= 0.1 (d) Q-learning ε= 0.1

(e) Sarsa ε= 0.2 (f) Q-learning ε= 0.2

Figure 3.28: Comparing Sarsa and Q-learning scenario I
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ε α time(s) / (100 simulations)

0.01 0.2 13
0.01 0.4 13
0.01 0.6 14
0.01 0.8 15
0.1 0.2 28
0.1 0.4 42
0.1 0.6 87
0.1 0.8 169
0.2 0.2 62
0.2 0.4 109
0.2 0.6 218
0.2 0.8 374
0.5 0.2 732
0.5 0.4 1472
0.5 0.6 3091
0.5 0.8 5924

(a) Sarsa

ε α time(s) / (100 simulations)

0.01 0.2 9
0.01 0.4 10
0.01 0.6 11
0.01 0.8 11
0.1 0.2 10
0.1 0.4 10
0.1 0.6 10
0.1 0.8 10
0.2 0.2 11
0.2 0.4 10
0.2 0.6 11
0.2 0.8 11
0.5 0.2 12
0.5 0.4 13
0.5 0.6 13
0.5 0.8 14

(b) Q-learning

Table 3.9: Scenario I simulation time

In figure 3.28f it can be seen that the results of Q-learning for ε = 0.2 are comparable to the other exploration
rates for Q-learning but the spread of the boxplot is slightly higher. The results for Sarsa keep on deteriorating
in comparison with the other exploration rates and all results of Q-learning. Comparing the algorithm with
respect to simulation time, it can be deduced from tables 3.9a and 3.9b that for ε= 0.01, it is slightly higher for
Sarsa (13-15 seconds) compared to Q-learning (9-11 seconds). For ε = 0.1, 0.2 the simulation time of Sarsa is
multiple times higher than for Q-learning.
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3.3.4. Scenario II

To compare the results between Sarsa and Q-learning for a longer path, a second scenario is used. For the
second scenario the results are not tested for ε= 0.5 because in scenario I it could be clearly seen that having
a higher exploration probability produces worse results for both Sarsa and Q-learning in comparison with the
lower exploration probabilities (ε = 0.01, 0.1, 0.2). Also as stated earlier the results for ε = 0.2 in comparison
with ε= 0.01, 0.1 had a slightly higher spread and longer simulation time and is therefore not tested in scenario
II. Learning rate α= 0.8 is also not tested in the second scenario because it could be concluded from scenario
I that the performance is substantially worse than for learning rate 0.2, 0.4 and 0.6 in respect to accumulated
rewards and simulation time.

The trajectories made by Sarsa and Q-learning will again be compared with the A* algorithm solution shown
in figure 3.29. The total accumulated rewards for the A* path in the second scenario is -8794 with a simulation
time of 1.4 seconds.

Figure 3.29: A* path scenario II

ε α time (s) / (100 simulations)

0.01 0.2 211
0.01 0.4 161
0.01 0.6 232
0.1 0.2 593
0.1 0.4 4563
0.1 0.6 20504

(a) Sarsa

ε α time (s) / (100 simulations)

0.01 0.2 125
0.01 0.4 98
0.01 0.6 89
0.1 0.2 126
0.1 0.4 100
0.1 0.6 95

(b) Q-learning

Table 3.10: Scenario II simulation time
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(a) Sarsa ε= 0.01 (b) ε= 0.1

(c) ε= 0.01 (d) ε= 0.1

Figure 3.30: Sarsa and Q-learning scenario II
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(a) Sarsa ε= 0.01 (b) Q-learning ε= 0.01

(c) Sarsa ε= 0.1 (d) Q-learning ε= 0.1

Figure 3.31: Sarsa and Q-learning scenario II adjusted scale
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The results of the simulation for Sarsa and Q-learning are shown in figure 3.30. Note that the subfigures have
different scales. To better compare the results of the two algorithms the values are also shown on the same
scale in figure 3.31. From it can be deduced that like in scenario I, Sarsa performs worse than Q-learning. Not
only the spread of Sarsa is higher for all learning rates and exploration probabilities but also the simulation
time is multiple times higher.
When analyzing the results of Q-learning, it can be seen that the simulation time, shown in table 3.10b, for
ε= 0.01 is lower for all learning rates than for ε= 0.1. This can be explained by the fact that ε= 0.01 means less
exploration steps which in turn results in faster convergence.

Analyzing the differences between the results of α = 0.2 and α = 0.4 for ε = 0.01 and ε = 0.1 for Q-learning
taking into account the generation time, the best results for both ε= 0.01 and ε= 0.1 are achieved for learning
rate α= 0.4. Although the results for ε= 0.01 are better for environments with small obstacles, an exploration
probability has to be chosen that can cope with the large obstacles defined in section 2.2.1. Therefore ε = 0.1
is chosen to create the target trajectories in the trajectory planner defined in chapter 2.

When the performance of Q-learning with ε= 0.1 andα= 0.4 is compared with A* it can be seen in figure 3.31d
that the paths created by Q-learning are spread while A* finds the optimal path. It is however recalled from
chapter 2 that the trajectory generated by the Q-learning algorithm is a target trajectory which will be used by
the dynamic model to make a 3D path. It therefore does not have to be exactly equal to the optimal solution
found by the A* algorithm but can have a spread like shown in figure 3.31d. Comparing the simulation times
in table 3.10b it can be seen that they are comparable, with 1.4 second for the A* and an average of 1 second
for ε= 0.1 and α= 0.4.

From the results of the experiment it was concluded that the Q-learning algorithm with exploration probability
ε= 0.1 and learning rateα= 0.4 gives the best results of the tested algorithms when creating trajectories. In the
next chapter it will be explained how the Q-learning algorithm is used to create trajectories in the trajectory
planner introduced in chapter 2.
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4
Model Specifications

4.1. Target Trajectory Generation

In section 3.2 several route synthesis algorithms have been explained. From the experiment in section 3.3 it
was concluded that of the algorithms that were tested, Q-learning created the most optimal trajectories and in
the shortest amount of time. Therefore, Q-learning is chosen to create the horizontal target trajectories for the
model. The pseudocode from section 3.2 is repeated in algorithm 8.

Algorithm 8: Q-learning (Sutton and Barto, 1998)

Initialize Q(s, a) arbitrarily
Repeat (for each episode):

Initialize s
Repeat for (each step of episode):

Choose a from s using policy derived from Q (e.g., ε− g r eed y)
Take action a, observe reward, r and next state, s′
Q(s, a) ←Q(s, a)+α[r +γmin

a′ Q(s′, a′)−Q(s, a)]

s ← s′;
until s is terminal

In each state for each action, a separate value Q(s, a) is calculated. Q-learning starts by initializing the value
field in which the values Q(s, a) are determined in each state for every action. The initial value field is set equal
to 0 for all Q(s, a). Starting in state s, the ’agent’ of the algorithm receives a reward by taking a certain action
a and moving to a specific next state. The reward function in this model is created by using the euclidean
distance between the current state to the goal state:√

(x +∆xacti on −xg oal )2 + (y +∆yacti on − yg oal )2, (4.1)

where x and y are the coordinates of the current state.
The potential next states are defined by the possible actions. The model employed here in has 8 possible
actions, portrayed in figure 4.1.

Penalties are given to actions that lead to obstacles and rewards for actions that lead to the goal state. The
obstacles in the model are the 100 clusters, explained in section 2.2.1 in which it is assumed that the whole
population of The Netherlands reside. The magnitude of the value for all obstacles states influences the gen-
erated trajectories. To make these states ’unattractive’ for the Q-learning agent, the value for all the obstacle
states is a high positive value. The obstacles are considered soft constraint because, although the magnitude
of the penalty makes the obstacles more or less ’unattractive’, the obstacles do not become impenetrable. The
value of the reward is a large negative number.
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Figure 4.1: Possible actions ADP model

In the system architecture in figure 2.1 in chapter 2 it can be seen that the trajectories generated with Q-
learning will be the target trajectories which will be used by the dynamic model to create smoothed routes.
In section 2.2.1 it was stated that the resolution of the map is 0.01 km2 meaning that a step between for exam-
ple state (1,1) and (1,2) in reality is 100 meters. The trajectories have to be created fast in emergency situations.
For aircraft maneuvers there is no need to create a route with a precision of 100 meters and therefore the step-
size used is 10 which is equal to a kilometer in reality.

Trajectories are generated to all the runways in the footprint. First a direct route is generated to the runway. If
the trajectory satisfies the flight path constraint [γmi n , γmax ] a 3D trajectory is made by the dynamic model.
If the required flight path angle is too steep, the trajectory has to be created in two parts. The first segment is
generated between the aircraft position and an energy dissipation sector. In these sectors, explained in section
2.2.3, the aircraft can dissipate excess speed and altitude. The second segment of the trajectory is created from
the energy dissipation sector to the chosen reachable runway. An example of a route is shown in figure 4.2. It
can be seen that the target trajectory is not generated to the runway but to the target point which is explained
in section 2.2.2.

Figure 4.2: Example 2 segments trajectory

This process of creating trajectories is done for every reachable airport, which are all the airports in the foot-
print circle, defined in section 2.1.

54



4.2. Penalty Value

The value of the penalty given to actions that lead to obstacles, influences the generated trajectories. In figure
4.3 three different trajectories generated by the Q-learning algorithm and one by the A* algorithm are shown.
The three Q-learning trajectories are generated by using different values for the penalty. The trajectory created
with penalty=0 does not circumvent the obstacles because there is no penalty for visiting a obstacle state.
When the penalty has a value of 60, the trajectory generated avoids the singular obstacles but creates paths
through the cluster of obstacles. If a penalty of 6000 is used a trajectory is generated which, as can be seen in
figure 4.3, avoids the cluster of obstacles completely following the A* path.

Figure 4.3: Influence of penalties on trajectories

As stated in section 2.2.2, the trajectories generated must be a compromise between population avoidance and
shortest path. In figure 4.3 can be seen that a value for the penalty that satisfies this condition is 60, therefore
this value is used for the penalties of the model.
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5
Results

In this chapter the trajectories generated by the emergency trajectory planner are shown for a scenario in
which an aircraft looses all thrust when flying over the IJsselmeer. The random chosen initial aircraft position
and the corresponding footprint are indicated in figure 5.1. The Q-learning trajectories are benchmarked us-
ing the A* algorithm, which as noted in section 3.3 generates the shortest paths and uses obstacles as hard
constraints.

As stated in chapter 3, the target trajectories made by Q-learning depend on multiple factors. Even with pre-
determined values for the exploration probability ε and learning rate α the routes will be different every time.
For several reachable airports, the Q-learning algorithm will create 5 trajectories between the same start and
goal state. For each Q-learning trajectory and A* trajectory the dynamic model will make the resulting route.
The length of the ground track of the resulting routes created with the Q-learning target trajectories will be
compared with the length of the ground track of the benchmark created with the A* target trajectories.

For the 3D trajectory of the 5 trajectories created, only the most optimal is shown. The trajectories are gener-
ated until the target point indicated in figure 2.6 at which the aircraft should be stabilized on the glide slope.
This trajectories are shown for several airports. It must, however, be noted that the A* algorithm cannot gen-
erate trajectories to all the runways due to the fact that some target points are located in obstacles. On these
routes the Q-learning trajectories cannot be compared and are therefore not generated. Even though the gen-
erated trajectories are not shown for all airports and runways, all runways will be ranked. The plots of all the
trajectories generated can be found in appendix A.1. Firstly the generated trajectories to the reachable airports
in the horizontal plane are discussed followed by the trajectories in the vertical plane. The chapter ends with
the ranking of the trajectories.
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Figure 5.1: Map with footprint

5.1. Horizontal Trajectories

In figure 5.2a and figure 5.2b, respectively, the target trajectories and the smoothed resulting trajectories to
runway 25 at Woensdrecht airbase are displayed. In figure 5.2a, the five trajectories generated by the Q-
learning algorithm are shown. As can be seen, all trajectories are different and for this specific route have
path lengths varying between 103% and 108% of the A* trajectory. For each route from the initial position to
the reachable airport, indicated with the orange line, these 5 trajectories are generated. In the next figures
however, only the most optimal Q-learning trajectories are shown and compared with the A* trajectories.

(a) Target trajectories
(b) Smoothed trajectories

Figure 5.2: Woensdrecht route
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The airports can be sorted into two categories. The ones that are surrounded by population clusters and the
airports that are not surrounded. The trajectories to the latter will be discussed first.

In this scenario, Q-learning trajectories to runways that are not surrounded by population clusters vary in
length between 94% and 112% of the A* trajectories. The fact that the A* algorithm creates shorter paths is
in agreement with the theory introduced in section 3.3. It must, however, also be noted that even though the
target trajectory of the A* algorithm circumvents the obstacles, the dynamic model trajectory may not.
This can be explained by the fact that the A* algorithm, to circumvent an obstacle, has to create routes some-
times right past the borders of the obstacle. The dynamic model creates a path in such a way that it fits the
target trajectory optimally with a smooth line. If then as indicated in figure 5.3a two consecutive steps in the
A* target trajectory make a 45 degree angle at one of the vertices of an obstacle, the resulting path shown in
figure 5.3b will be generated over an obstacle.

(a) Target trajectory (b) Smoothed trajectory

Figure 5.3: Volkel route

The result that Q-learning can create a shorter trajectory is due to the fact that, as noted in section 4.1, it can
create trajectories through obstacles. The Q-learning algorithm balances between a longer route resulting in a
higher summed distance cost or a shorter route but receiving penalties. An example of this is shown in figure
5.4a in which can be seen that the Q-learning trajectory to runway 21 at Kempen airport is generated through
the outskirt of an obstacle while the A* algorithm circumvents all obstacles.

(a) Target trajectory (b) Smoothed trajectory

Figure 5.4: Kempen route

The horizontal track length of the Q-learning trajectories to airports that are surrounded by population clus-
ters, however, vary between 55% and 74% compared to the A* algorithm. In the target trajectories generated
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between the aircraft initial position and airports of Rotterdam, Schiphol and Gilze Rijen shown in respectively
figures 5.5a, 5.5c and 5.5e and the pertaining smoothed trajectory shown in figures 5.5b, 5.5d and 5.5f it can
be seen that the presence of the hard constraints, earlier mentioned in this chapter, result in longer A* target
trajectories compared with the Q-learning trajectories. The airports are surrounded by clusters of obstacles,
which the A* algorithm has to circumvent. The Q-learning algorithm however, can create trajectories through
the obstacles creating shorter routes.

(a) Rotterdam target trajectory (b) Rotterdam smoothed trajectory

(c) Schiphol target trajectory
(d) Schiphol smoothed trajectory

(e) Gilze Rijen target trajectory (f) Gilze Rijen smoothed trajectory

Figure 5.5: Airport routes
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5.2. Vertical Trajectories

The trajectory to runway 25 at Woensdrecht airbase has a descent angle which satisfies the flight path angle
constraint defined in section 2.2.2 and therefore the trajectory between the initial aircraft position and the
airport is a direct route. In figure 5.6a the 3D trajectory of the Woensdrecht route is displayed. In this figure,
the black line is the 3D trajectory while the blue line indicates the ground track.
In the vertical trajectory, shown in figure 5.6b, it can be seen that the trajectory starts at an altitude of 10 km
and ends at the target point at which the aircraft must be stabilized on the glide slope, indicated in figure 2.6.
The trajectory is feasible because it satisfies all the constraints.

Another runway to which a direct route can be made from the initial aircraft position is, runway 02 at Gilze
Rijen airbase. The target trajectory for this route is displayed in figure 5.5e and resulting smoothed trajectory
in figure 5.5f. The 3D and vertical trajectory for this route are shown in respectively figures 5.6c and 5.6d.

(a) Woensdrecht 3D trajectory (b) Woensdrecht vertical trajectory

(c) Gilze Rijen 3D trajectory (d) Gilze Rijen vertical trajectory

Figure 5.6: Direct routes

A direct Q-learning trajectory between the initial position and the target point of runway 06 at Rotterdam air-
port is unfeasible because the required angle of descent, resulting from the smoothed horizontal and vertical
distance, is too steep and does not satisfy the descent angle constraint. The trajectories are therefore generated
in two segments. In figures 5.5a and 5.5b it can be seen that the first segment is a trajectory from the initial
aircraft position until the energy dissipation sector. The second segment is between the energy dissipation
sector and the target point of the reachable airport. These two segments can also be seen in figure 5.7a and the
corresponding vertical plane in figure 5.7b. Between the two segments, an altitude difference of 4 kilometers
is indicated. This vertical distance has to be dissipated in the energy dissipation sector.
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If the initial position is closer to a reachable airport, more altitude difference has to be dissipated in one of the
energy dissipation sectors. In figure 5.5c and figure 5.5d respectively the target trajectory and the smoothed
trajectory to runway 06 (Kaagbaan) at Schiphol airport are shown. It can be seen that the trajectory is divided in
two segments. From the initial position a trajectory is generated to the dissipation sector. The second segment
is generated between the dissipation sector and the airport. These two segments can also be seen in the 3D
trajectory in figure 5.8a and the vertical plane in figure 5.8b. This airport is closer to the initial aircraft position
than the airport of Rotterdam. This can also be deduced from the bigger altitude difference compared to figure
5.7b that has to be dissipated in order to create a feasible trajectory.

(a) 3D trajectory
(b) Vertical trajectory

Figure 5.7: Rotterdam route

(a) 3D trajectory
(b) Vertical trajectory

Figure 5.8: Schiphol route
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5.3. Ranking

After the trajectories are generated by the emergency trajectory planner, they are ranked. In section 2.4 it is
explained that this is done using equation 5.1 which is adapted from Atkins et al. (2006):

U =∑
i

Ci ·wi =C1 · r1

r1,max
+C2 · rw

rw,max
+C3 ·qI +C4 · (

d

dmax
)+C5 ·qs +C6 ·q f , (5.1)

where rl is the runway length, rw is the runway width, qI instrument approach quality, distance d from the
footprint boundary, surface quality qs and facility availability measure q f . The values of rl ,rw and d are nor-
malized [0.0 1.0]. The weighting factors have to be determined by the respective experts; this could be airlines,
air traffic controllers or pilots. in this research the weighting factors determined by Atkins et al. (2006) are used
which are set to {C1,C2,C3,C4,C5,C6}= {0.15,0.15,0.15,0.15,0.1,0.1}.

The value of U determines the rank of each created trajectory. The values of rl ,rw and d are normalized and are
different for each initial conditions. The values for this situation are rlmax = 3800, rwmax = 60, dmax = 139.25.
The values of qI , qs are fixed and depend on the facilities at the airport. In this research the values of qI , qs

determined by Atkins et al. (2006) are used and are listed in figure 5.9.

Figure 5.9: Quality measures for runway utility computation (Atkins et al., 2006)

The ranked runways are shown in table 5.1. From the table it can be deduced that the runways of Schiphol have
the first 6 positions in the rank. This is due to the fact that it has the longest runways, it is, after Lelystad, the
furthest away from the footprint boundary and it has the highest quality measures. The pilots can choose to
land on one of the runways of Schiphol if they choose to follow ranking, however a situation can occur in which
Schiphol closes its runway even for emergencies. The pilots can then choose between one of the 18 remaining
options. Depending on the problem with the aircraft, either an airport with better facilities might be chosen to
repair the malfunctioning parts of the aircraft or the nearest airport. By giving a ranking of runways and also
notifying where this ranking is based on, gives the pilot the opportunity to bring the emergency situation to a
good end.
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Rank Airport Runway rl rw ql qs q f d (km) U
1 Schiphol Polderbaan 3800 60 1 1 1 131 0.79
2 Schiphol Kaagbaan 3500 45 1 1 1 131 0.74
3 Schiphol Buitenveldertbaan 3450 45 1 1 1 131 0.74
4 Schiphol Aalsmeerderbaan 3400 45 1 1 1 131 0.74
5 Schiphol Zwanenburgbaan 3300 45 1 1 1 131 0.74
6 Schiphol Oostbaan 2015 45 1 1 1 131 0.68
7 Leeuwarden 06/24 2957 50 1 1 0.25 80.66 0.60
8 Rotterdam 06/24 2200 45 1 1 0.375 86.17 0.58
9 Volkel 06L/24R 3024 45 1 1 0.25 61.31 0.57
10 Woensdrecht 07/25 2440 45 1 1 0.75 33.65 0.57
11 Leeuwarden 09/27 1999 50 1 1 0.25 80.66 0.57
12 Gilze Rijen 10/28 2779 45 1 1 0.25 58.26 0.56
13 Eindhoven 03/21 3000 45 1 1 0.25 43.89 0.55
14 Groningen 05/23 2500 45 1 1 0.375 50.56 0.55
15 De Kooy 03/21 1275 30 1 1 0.25 118.29 0.53
16 Volkel 06R/24L 3027 23 1 1 0.25 61.31 0.52
17 Kempen 03/21 2750 45 1 1 0.25 20.40 0.52
18 Lelystad 05/23 1250 30 1 0.5 0.25 139.25 0.50
19 Enschede 05/23 2987 45 1 0.2 0.25 44.64 0.47
20 Lt. Gen. Best 06/24 2988 45 1 0.2 0.25 43.83 0.47
21 Gilze Rijen 02/20 1996 30 1 0.8 0.25 58.26 0.47
22 Groningen 01/19 1500 45 1 0.5 0.375 50.56 0.46
23 Deelen 02/20 2400 50 0.5 0.2 0.25 92.74 0.44
24 Teuge 08/26 1199 27 1 0.2 0 96.67 0.39

Table 5.1: Ranked runways
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6
Conclusions & Recommendations

6.1. Conclusions

The objective of this research was:

To develop an emergency trajectory planner that can generate routes taking into account loss of life.

The examination of literature on this subject led to the formulation of the following research question:

How can an emergency trajectory planner generate gliding trajectories using Approximate Dynamic Program-
ming to safely land a transport aircraft with total loss of thrust?

When the emergency situation of an aircraft starts in which it looses all thrust, a footprint is generated. Within
this footprint of which the diameter is determined by the maximum straight glide distance, all runways are
identified. To each runway a path has to be created. In robotics, Approximate Dynamic Programming is used
to create paths. By moving around, the robot explores the environment and tries to create a path through
it. The reward function gives penalties when obstacles are encountered and a reward when the goal state is
found. The approximate dynamic programming algorithms that were discussed in chapter 3 were Sarsa, Q-
learning and their variants with eligibility traces Sarsa λ and Q-λ. By using eligibility traces the algorithm is
multiple times slower because at every step it has to update the trace for every state in the value function. If the
environment is unknown the use of these traces can speed up finding the optimal solution which compensates
for the longer processing time. In this research however trajectories have to be generated in a short amount of
time in a known environment making Sarsa λ and Q-λ unsuitable for the emergency trajectory planner.

The remaining ADP algorithms, Sarsa and Q-learning were compared with each other in two test scenarios
using the A* algorithm as the benchmark. The A* algorithm was chosen as the benchmark because the trajec-
tories generated give the optimal route while avoiding all obstacles if certain conditions are met, which were
defined in section 3.3.1.
These two scenarios were set in the same environment consisting out of multiple small obstacles. In theory,
Sarsa and Q-learning have a probability of 1 of finding the optimal policy, however this condition consists of
visiting all states an unlimited amount of times. This is not very practical and therefore to converge the al-
gorithm to a solution a stopping criterion was implemented. To calculate the value function and its optimal
policy an ε-greedy policy was used. The two variables that have a direct influence on the probability of finding
an optimal solution are learning rateα and exploration probability ε. These two variables were tested for Sarsa
and Q-learning for a range of values to determine which algorithm produces the best results. It was concluded
that Q-learning produced the best results, however by using an ε-greedy policy to explore the environment
and a stopping condition to converge, every trajectory generated for the same route is different. The simula-
tion time of Q-learning and A* in the two scenarios were comparable.
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In chapter 5 the trajectories generated by the emergency trajectory planner from the initial aircraft position to
the reachable airports for a scenario in which the aircraft looses all trust were analyzed and compared with the
A* algorithm trajectories. From the results it could be concluded that the Q-learning algorithm creates shorter
trajectories to airports which are surrounded by obstacle clusters than the A* trajectories. As stated in section
4.2, Q-learning can balance between flying over a populated area and receive penalties, effectively increasing
the risk of loss of life on ground, or flying a longer route around the obstacle, effectively increasing the risk of
loosing control of the aircraft by having to be airborne for a longer period of time. The A* algorithm avoids all
obstacles and therefore has to generate a path around the population clusters, resulting in longer trajectories.

On routes without population clusters the Q-learning trajectories for this specific scenario varied between 94%
and 112% compared with the A* trajectories. The in comparison shorter trajectories are explained by the fact
that the Q-learning trajectories can be generated through obstacles, as stated before. The longer paths are due
to the fact that generated Q-learning trajectories are not optimal in comparison with the A* trajectories. It must
however, also be noted that although the target trajectories of the A* algorithm do not go through obstacles the
smoothed paths created by the dynamic model are in fact able to do the opposite. This is because the target
trajectories do not take into account flight dynamics when avoiding obstacles. The smoothed trajectory based
on the target trajectory therefore can be generated through obstacles. In contrary to the two test scenarios, the
simulation time of Q-learning for generating trajectories to the reachable runways was multiple times higher
for all trajectories in comparison with the A* algorithm.

Although approximate dynamic programming is a valuable algorithm for path planning in robotics, it proves
less suitable to create trajectories on line in emergency situations. While it successfully generated trajectories
to the reachable runways, the time the algorithm needs to create these trajectories is too long to be able to
implement it in emergency situations. By using a stopping criterion to converge the value function, optimality
of the results is not guaranteed which is an undesirable property in emergency situations. Also by not taking
into account flight dynamics when generating the trajectory, obstacles might not be avoided optimally.

6.2. Recommendations

Derived from the conclusions and drawbacks found in this research, the following points can be addressed to
improve the performance of the emergency trajectory planner:

• Explore the possibility of reconfiguring the A* function to include soft constraints. By doing so the prob-
lem of having to generate long trajectories when encountering obstacle clusters can be solved.

• Investigate the possibility of taking into account heading angle and flight dynamics when generating
target trajectories.

• Add an element to the utility function which ranks the airports to account for trajectories generated over
populated areas. Airports that can only be reached by going through obstacles have a higher risk of loss
of life on ground and should therefore be ranked lower.

• Investigate the possibility of creating obstacles to represent bad weather areas resulting in trajectories
circumventing areas with bad weather.

• Explore other ways of dissipating energy. If an aircraft is flying over land and in the area no energy
dissipation sectors can be found it must loose altitude and speed using an alternative way.
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A
Appendix

A.1. Trajectory results

(a) Target trajectory (b) Smoothed trajectory

(c) 3D trajectory (d) Vertical trajectory

Figure A.1: Schiphol route
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(a) Target trajectory (b) Smoothed trajectory

Figure A.2: Rotterdam horizontal route

(a) 3D trajectory
(b) Vertical trajectory

Figure A.3: Rotterdam vertical route

(a) Target trajectory (b) Smoothed trajectory

Figure A.4: Volkel horizontal route
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(a) 3D trajectory (b) Vertical trajectory

Figure A.5: Volkel vertical route

(a) Target trajectory (b) Smoothed trajectory

Figure A.6: Kempen horizontal route

(a) 3D trajectory (b) Vertical trajectory

Figure A.7: Kempen vertical route
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(a) Target trajectory (b) Smoothed trajectory

Figure A.8: Gilze Rijen horizontal route

(a) 3D trajectory (b) Vertical trajectory

Figure A.9: Gilze Rijen vertical route

(a) Target trajectory (b) Smoothed trajectory

Figure A.10: Woensdrecht horizontal route
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(a) 3D trajectory (b) Vertical trajectory

Figure A.11: Woensdrecht vertical route

A.2. Airports

A.2.1. Schiphol (EHAM)

Runway Length
rl [m]

Width
rw [m]

Runway
surface
(qS ) [-]

Instrument
approach
(qI ) [-]

Airport
facilities
(q f ) [-]

Polderbaan 3800 60 1 1 1
Kaagbaan 3500 45 1 1 1
Buitenveldertbaan 3450 45 1 1 1
Aalsmeerbaan 3400 45 1 1 1
Zwanenburgbaan 3300 45 1 1 1
Oostbaan 2014 45 1 1 1

Table A.1: Schiphol Airport runways

A.2.2. Teuge Airport (EHTE)

Runway Length
rl [m]

Width
rw [m]

Runway
surface
(qS ) [-]

Instrument
approach
(qI ) [-]

Airport
facilities
(q f ) [-]

08/26 1199 27 1 0.2 0

Table A.2: Teuge Airport runway

A.2.3. Maastricht Aachen Airport (EHBK)

Runway Length
rl [m]

Width
rw [m]

Runway
surface
(qS ) [-]

Instrument
approach
(qI ) [-]

Airport
facilities
(q f ) [-]

03/21 2750 45 1 1 0.25

Table A.3: Maastricht Aachen Airport runway
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A.2.4. Kempen Airport (EHBD)

Runway Length
rl [m]

Width
rw [m]

Runway
surface
(qS ) [-]

Instrument
approach
(qI ) [-]

Airport
facilities
(q f ) [-]

03/21 1200 23 1 0.2 0

Table A.4: Kempen Airport runway

A.2.5. De Kooy Airfield (EHKD)

Runway Length
rl [m]

Width
rw [m]

Runway
surface
(qS ) [-]

Instrument
approach
(qI ) [-]

Airport
facilities
(q f ) [-]

03/21 1275 30 1 1 0.25

Table A.5: De Kooy Airfield runway

A.2.6. Eindhoven Airport (EHEH)

Runway Length
rl [m]

Width
rw [m]

Runway
surface
(qS ) [-]

Instrument
approach
(qI ) [-]

Airport
facilities
(q f ) [-]

03/21 3000 45 1 1 0.25

Table A.6: Eindhoven Airport runway

A.2.7. Enschede Airport Twente (EHTW)

Runway Length
rl [m]

Width
rw [m]

Runway
surface
(qS ) [-]

Instrument
approach
(qI ) [-]

Airport
facilities
(q f ) [-]

05/23 2987 45 1 0.2 0.25

Table A.7: Enschede Airport Twente runway

A.2.8. Groningen Airport Eelde (EHGG)

Runway Length
rl [m]

Width
rw [m]

Runway
surface
(qS ) [-]

Instrument
approach
(qI ) [-]

Airport
facilities
(q f ) [-]

05/23 2500 45 1 1 0.375
01/19 1500 45 1 0.5 0.375

Table A.8: Groningen Airport Eelde runways
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A.2.9. Lelystad Airport (EHLE)

Runway Length
rl [m]

Width
rw [m]

Runway
surface
(qS ) [-]

Instrument
approach
(qI ) [-]

Airport
facilities
(q f ) [-]

05/23 1250 30 1 0.5 0.25

Table A.9: Lelystad Airport runway

A.2.10. Rotterdam The Hague Airport (EHRD)

Runway Length
rl [m]

Width
rw [m]

Runway
surface
(qS ) [-]

Instrument
approach
(qI ) [-]

Airport
facilities
(q f ) [-]

06/24 2200 45 1 1 0.375

Table A.10: Rotterdam The Hague Airport runway

A.2.11. Deelen Air Base (EHDL)

Runway Length
rl [m]

Width
rw [m]

Runway
surface
(qS ) [-]

Instrument
approach
(qI ) [-]

Airport
facilities
(q f ) [-]

02/20 2400 50 0.5 0.2 0.25

Table A.11: Deelen Air Base runway

A.2.12. Gilze-Rijen Air Base (EHGR)

Runway Length
rl [m]

Width
rw [m]

Runway
surface
(qS ) [-]

Instrument
approach
(qI ) [-]

Airport
facilities
(q f ) [-]

10/28 2779 45 1 1 0.25
02/20 1996 30 1 0.8 0.25

Table A.12: Gilze-Rijen Air Base Runways

A.2.13. Leeuwarden Air Base (EHLW)

Runway Length
rl [m]

Width
rw [m]

Runway
surface
(qS ) [-]

Instrument
approach
(qI ) [-]

Airport
facilities
(q f ) [-]

06/24 2957 50 1 1 0.25
09/27 1999 50 1 1 0.25

Table A.13: Leeuwarden Air Base runways
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A.2.14. Volkel Air Base (EHVK)

Runway Length
rl [m]

Width
rw [m]

Runway
surface
(qS ) [-]

Instrument
approach
(qI ) [-]

Airport
facilities
(q f ) [-]

06L/24R 3024 45 1 1 0.25
06R/24L 3027 23 1 1 0.25

Table A.14: Volkel Air Base runways

A.2.15. Lieutenant General Best Barracks (EHDP)

Runway Length
rl [m]

Width
rw [m]

Runway
surface
(qS ) [-]

Instrument
approach
(qI ) [-]

Airport
facilities
(q f ) [-]

06/24 2988 45 1 0.2 0.25

Table A.15: Lieutenant General Best Barracks runway

A.2.16. Woensdrecht Airbase (EHWO)

Runway Length
rl [m]

Width
rw [m]

Runway
surface
(qS ) [-]

Instrument
approach
(qI ) [-]

Airport
facilities
(q f ) [-]

07/25 2440 45 1 1 0.75

Table A.16: Woensdrecht Airbase runway

A.3. Atmospheric Parameters

Parameter Equation

Air Temperature (°K ) TI S A = TI S A0 −6.5 h
1000

Static Pressure ( N
m2 ) P = P0(1−0.065

( h
288.15

)5.2561
Pressure Ratio PR = P

P0

Air Density
( kg

m3 ) ρ = P
287.04·TI S A

Density Ratio δ= ρ
ρ0

TI S A,0 = 288.15°K
P0 = 101325 N

m2

ρ0 = 1.225 kg
m3

Table A.17: Atmospheric parameters
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