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Statistical Analysis of the Power Sum of Multiple 
Correlated Log-Normal Components 

U 

Aysel 

Abstract-A statistical method is presented for the analysis of 
the power sum of multiple correlated log-normal random compo- 
nents. The results are compared with those of Schwartz and Yeh 
and the Monte Carlo simulation. The effect of correlation on the 
mean and the variance of the combined multiple correlated log- 
normal components is also investigated. The presented method 
allows quick and accurate calculations for various system perfor- 
mance parameters of radio networks for high-capacity cellular 
telephony, two-way paging, packet radio, mobile data networks, 
and radar detection systems. 

I. INTRODUCTION 

ULTIPATH with log-normal statistics is important in M many areas of radar and communication systems. In 
some of these areas of interest, such as shadowing in mobile 
cellular radio systems, these log-normal components may be 
correlated, causing further complication in the analysis. 

For the analysis of the above systems one needs to determine 
the statistics of the power sum of multipath signals in terms of 
individual means and variances of the log-normal components. 
To this end, a number of approximations have been developed 
in addition to the widespread use of the Monte Carlo simu- 
lation [ 11-[3]. These approximations have some limitations 
while the Monte Carlo simulation, though it is more accurate, 
requires extensive computer time. 

The power sum of a finite number of uncorrelated log- 
normal random variables can be approximated, at least as 
a first order, by another log-normal probability distribution 
[4], [5]. This seems to be a good approximation and a 
close agreement has been observed with the results of the 
Monte Carlo simulation in the range of 0.1 to 99 percent of the 
cumulative distribution function [2]. With the above assump- 
tion, Schwartz and Yeh developed a recursive procedure to 
obtain approximations of the mean and variance of the power 
sum of a number of uncorrelated log-normal variables based 
on exact expressions for the mean and variance of the power 
sum of two uncorrelated log-normal random variables [2]. 

This paper presents an extension to the method of Schwartz 
and Yeh [2] for the case of correlated log-normal components. 
Exact analytical formulas are provided for calculating the 
mean and the variance of the power sum of multiple corre- 
lated log-normal components, in contrast with the recursive 
procedure of Schwartz and Yeh to obtain approximations to 
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the mean and variance of the power sum of more than two 
uncorrelated random variables. 

11. THEORY 

Assume that we want to determine the mean and variance 
of the power sum of a finite number of variables of the 
form exp(y2) where yz are normally distributed. It is clear 
that exp( y2) has a log-normal probability distribution. The 
logarithm of the power sum, Sk, of k log-normally distributed 
variables of the form exp(y,) may be written as 

Sk = In ( e..) = ln(eSk-l+ eyk) = s k - 1 +  1n( l+  euk 

k 

2 = 1  

(1) 

where 

wk = yk - S k - 1 .  

Note that (1) lends itself to an iterative procedure by allowing 
one to find the power sum of k log-normal components in 
terms of the power sum of k - 1 components. 

For the sake of convenience, the power sum in (1) is ex- 
pressed in natural logarithms, though it is generally measured 
in decibels. Note that a log-normal component x may be 
written as when it is measured in decibels and as 
exp(y) when y is expressed in natural logarithms. Then, the 
relationship between y and x simply becomes 

(2) 

y = ax (3) 

where a: = ln10/10 = 0.23026. Similarly, when the mean 
m,, and standard deviation, oz, of x are given in decibels they 
should be multiplied by a in order to find the corresponding 
values of the mean and standard deviation of y. 

Here, we will be interested only in the mean and variance of 
Sk. By using the last term in (l), the mean value of Sk. E(Sk), 
may be written as 

mS, = E ( s k )  = m S , - ,  f Gl('Wi, 1 m W h )  (4) 

where mean value and variance of wk are found from ( 2 )  as 
follows: 

I 
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p , e , y  is defined as the correlation coefficient between x and y :  

(7) 
E ( [ x  - mA[y - m y ] )  

P X , Y  = 
g x g y  

and 

Gl(gwr ,m,,) = E [ l n ( l +  e w k ) ] .  (8) 

An analytical expression for (8) is given by (Al) in 
Appendix A. 

The variance of s k  is defined by 

os", = E(s2)  - m:k. (9) 

m 
U 

is given by (A2). Calculation of the last term in (10) is 
presented in Appendix B. Fig. 1. Mean and variance of the power sum of six log-normal uncorrelated 

components, each having a mean value of 0 dB, as a function of component 
variance. Use of (4), (B4), (B6), and (10) leads to 

To determine the mean and variance of the power sum of 
a number of correlated log-normal variables, one needs to 
express the correlation coefficient between S k - 1  and y k  in 
terms of the correlation coefficients between the individual 
components yz. For this purpose, replacing x by s k - 1  from 
(1) and y by y k  in (7), one gets 

- g S k - 2  G3 ( G U  1 m Z 0 k - J  

P S h - 1 , Y A  - P s A - l , Y A  ~ + P W k - l , Y r .  
a s k - 1  g W k - l o S k - 1  

(13) 

Similarly, substituting W k - 1  from (2) for x and y k  for y into 
(7) leads to 

Inserting (14) into (13) and rearranging, one obtains 

One can easily generalize (15) to show that 

where i varies between 2 and k - 1. The last two formulas 
can be used to determine the correlation coefficients between 
s, and ?Jk which are necessary in order to find the mean and 
the variance of the sum of I% correlated log-normal variables 
in terms of the correlation coefficients between the individual 
components yz. 

111. RESULTS 

The methodology presented above can be used to find the 
mean and the variance of the power sum of a number of 
correlated log-normal components. For the sake of simplicity, 
in the results to be presented, the components are all assumed 
to have identical means and variances and the correlation 
coefficients between individual components are all the same. 
However, all kinds of combinations of these parameters can 
be accommodated. 

Fig. 1 compares our results with those of Schwartz and Yeh 
and the Monte Carlo simulation for a decibel spread ranging 
from 2 to 14 dB of six uncorrelated log-normal variables, 
all having 0 dB means [2]. The number of terms in the 
summations in (Al)-(A3) are taken 40 even though the series 
are observed to converge more rapidly for smaller variance 
values. Fig. 1 shows that the computed results for the mean 
value of the power sum of six uncorrelated variables agree 
very closely with those of Monte Carlo and Schwartz and 
Yeh [2]. As for the variance of the sum, our results agree 
very closely with the others for the values of the component 
variances, gZ, smaller than 8 dB. For larger values of oz 
our results agree better with the Monte Carlo simulation than 
those of Schwartz and Yeh. The difference between our results 
and those of Schwarz and Yeh may be attributed to the fact 
that Schwartz and Yeh use polynomial approximations to G1, 
G2, and G3 defined by (Al)-(A3) in contrast with exact 
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VARIANCE calculations carried out in this paper. These approximations are 0.9 

_ _ _ _ _ _ _ _ - - - - - - -  reported to differ about 1 percent from the exact calculations 
directly from (A1)-(A3) [2]. 

Fig. 2 shows the variation of mean and the variance of the 

respectively, for k ranging from 2 to 12. The input variables 
are characterized by myk = 0 dB and oYk = 6 dB for IC = 1 
to 12. Similarly, correlation coefficients between individual 

One can easily observe that increasing correlation between the 
individual components causes a considerable decrease in the 
mean but increases the variance of the sum signal. Note that, 

simply shifts the mean curve shown in Fig. 2. Fig. 3 shows 

power sum of k log-normal components, given by (4) and (12) 0.8 

components are all assumed to be equal to 0, 0.4, and 0.8. 0.7 - - 

& m -  

1 
by virtue of (4), for nonzero mean values of the input variables 0.6 - 

NUMBER OF COMPONENTS NUMBER OF COMPONENTS 

Fig. 2. Mean and variance of the power sum of up to twelve log-normal cor- 
related components, each having a 0-dB mean and a 6-dB component variance, 
for various values of the correlation coefficients between components. 

Fig. 3. Mean and variance of the power sum of up to twelve-log-normal cor- 
related components, each having 0-dB mean and a 12-dB component variance, 
for various values of the correlation coefficients between components. 
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tool in solving some propagation problems with log-normal 
statistics. 

The conditional expected value in (B2) may be written as [6] 

O S k - 1  
E [ S k - l I W k ]  = m s k - 1  + P s k - 1 , w k  - (wk - m w k ) .  (B3) 

OWL 

APPENDIX A 
ANALYTICAL EXPRESSIONS FOR G1,  G2 AND G3 Inserting (B3) into (B2) yields 

The expressions presented below are taken from Schwartz E [ ~ ~ - ~  In(1 + e w k ) ]  = msk-lGl(O,k,mwk) 
and Yeh [2] with some simplifications and the correction of O S k - 1  

the sign of the second term in (Al): + P S k - - 1 , W k  - G3(OWk > m w k )  

00 

034) 

where GI  is given by (8) and (Al). (A3) provides an analytical 
+ Ck[F(O. m, k )  + F(O,  -m, k ) ]  (Ai) expression for G3 which is defined as 

k = l  
G3(Cwk, m w k )  = E[(wk - m w k )  ln(1 + e w k ) ] .  (B5) 

m 0 m2 

G ~ ( ~ ,  m) = (m2  + 0 2 ) ~ ( - )  + (m + 1 ~ 4 ) -  e-s 
0 

By virtue of (2) and (7), the correlation coefficient between 
sk-1 and wk may be expressed in terms of the correlation 
coefficient between S k - 1  and Y k  as follows: 

G 
00 

+ 2 Ck(m - k o 2 ) ~ ( c ,  m, I C )  

(B6) 
k = l  - Psk-liYk‘Yk - O s k - l  

P s k - l , W k  - 
0w k 

00 

f Bk-l[F(Q,  m, k )  + F(0,  -m, k ) ]  (A2) 
k=2 
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