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Receding Horizon Cooperative Platoon
Trajectory Planning on Corridors with
Dynamic Traffic Signal

Meiqi Liu', Serge Hoogendoorn', and Meng Wang'

Abstract

In this paper, a trajectory control approach using model predictive control is proposed for cooperative (automated) vehicles.
This control approach optimizes accelerations of the controlled connected and automated vehicle (CAV) platoon along a cor-
ridor with signalized intersections. The objectives of the proposed approach are to maximize the throughput first and opti-
mize comfort, travel delay, and fuel consumption simultaneously after that. The throughput is determined according to the
maximal number of CAVs that can pass the intersection during the green phase. Safety is included by penalizing smaller gaps
between CAVs in the running cost. The red phase is taken into account as a virtual vehicle at the stop-line during the red
time, thus the safe gap penalty with the virtual vehicle causes the first-stopping vehicle to decelerate or even stop facing the
red phase. The acceleration and speed are constrained within the upper and lower bounds. The proposed approach is flexible
in dealing with platoon merging, splitting, stopping, and queue-discharging characteristics at signalized intersections. Finally,
the proposed control approach is verified by simulation under a baseline scenario and four scenarios, which consider signal
settings and the anticipation of the red phase. The simulation results demonstrate the benefits of the proposed control
approach on fuel savings, compared with the state-of-art approach which used the virtual vehicle term without anticipation.
The adjustments of signal parameters in Scenario 3 and Scenario 4 demonstrate the applicability of the control approach

under actuated signal control.

Although a considerable amount of work has been done
to mitigate urban congestion, traffic delays are still urgent
problems on urban roads (/). In addition, the deceleration
and acceleration maneuvers of traditional vehicles in the
vicinity of signalized intersections produce high levels of
emissions (2). The current advances in connected and auto-
mated vehicle (CAV) technology have the potential to
operate vehicles in an efficient, safe, and environmentally
friendly way (3). CAVs can exchange information under
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communication, which provides possibilities for anticipa-
tion and cooperative driving (4). Thus, numerous research
efforts have been conducted to improve traffic operations
by using CAV technologies at signalized intersections (5).
Current literature on CAYV platooning on urban roads
can be categorized into four directions, that is, driver assis-
tant systems, cooperative vehicle intersection control algo-
rithms, CAV trajectory optimization, and the integrated
optimization of traffic signals and vehicle trajectories.
Driver assistant systems, such as GLOSA (Green
Light Optimized Speed Advisory) (6-8) and Eco-
Approach and Departure systems (9-/1), are able to

provide speed advice to drivers at signalized intersections
for eco-driving. The purpose of these systems was to
operate vehicles in such a way that vehicles arrived at the
stop bar in green phases without stopping by calculating
the advisory speed based on pre-defined rules. Therefore,
the travel time and the fuel consumption were reduced at
signalized intersections for the single-subject vehicle.
Although further applications of actuated signal plans,
market penetration rates, and the extension to multiple
intersections were studied (6, 10, 11), the traffic and vehi-
cle dynamics models were usually oversimplified, making
the results less convincing. Furthermore, in reality driv-
ers may not comply with the advisory speed and may not
control the vehicle speed perfectly as suggested, thus the
effects of these systems were required to be validated in
field experiments. The empirical validation was only
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tested in few studies, considering the partial automation
(9) or the adaptive signal control (/2). In addition, these
systems were designed only for the individual vehicle
benefits, rather than the benefits of the platoon or the
traffic flow.

A cooperative vehicle intersection is a “signal-free”
intersection which enables the CAVs to communicate
with each other and thereby pass the intersection coop-
eratively without collision (/3). Although these intersec-
tion control algorithms had the potential to improve the
traffic operations of CAVs at a typical four-arm intersec-
tion (/4-17) or along a corridor (/8), driver/user accep-
tance in relation to safety perception and potential
conflicts of pedestrians and bicyclists have been
neglected, which questions the applicability of this line of
research in reality.

With respect to the CAV trajectory optimization by
controlling speeds or acceleration rates at fixed-timing
intersections, some CAV trajectory control approaches
at isolated intersections only applied simple objective
functions to optimize energy economy, ride comfort, or
both (19, 20). These control algorithms used terminal
costs to represent the red phase, assuming that the termi-
nal conditions (time and position) were known at an iso-
lated intersection. However, terminal costs are confined
to be applicable at isolated intersections, because it is dif-
ficult and suboptimal to combine intersections along an
arterial using terminal costs. Several instantaneous fuel
consumption, emission models, or both (2/-23) were
adopted in these control approaches to minimize the fuel
use, or to validate the reduction of fuel consumption and
emission by simulation. More sophisticated systems on
corridors with multiple pre-timed intersections were
designed for an individual vehicle considering multiple
criteria (24-29). The key in the design was supposed to
make vehicles stop facing the red phase. There are three
ways to achieve this performance: using a virtual vehicle,
tracking the target speed, and constraining the position.
The first approach applied a virtually preceding vehicle
at the stop bar representing the red phase. Together with
the safe gap requirement, the followers behind the virtual
vehicle were able to stop to keep the safe gap between
the virtual vehicle and the followers. The control
approach in Asadi and Vahidi (24) considered the red
phase in constraints by introducing a virtual vehicle in
front, but the signal information was implemented with
no prediction. The other approach aimed to track the
piecewise target speed (including desired deceleration
rates/speeds) facing the red phase (25-28). To track the
pre-defined target speed would produce large decelera-
tions once the vehicle was recognized to miss the green
phase, and then accelerate dramatically at the beginning
of the green phase. Therefore, more attention should be
paid to design the target speed in an optimal way, and

relieve computational burden when tracking the piece-
wise target speed cost term. Another approach was to
regard the red phase as a position constraint that the
stopping vehicle could not pass (29). However, the work
in Liu et al. (29) did not track the preceding vehicles in
desired gaps. Therefore, elaborate work on tuning cost
weights was necessary to make a trade-off between maxi-
mizing speeds and minimizing fuel consumption.
Otherwise, the vehicles might stop far away from the
intersection to save fuel. A parsimonious shooting heur-
istic algorithm was proposed subject to constraints of
vehicle arrivals, vehicle mechanical limits, traffic lights,
and car-following safety. The vehicle trajectory was
decomposed into a few analytically solvable sections for
a simple constructive heuristic. Based on this algorithm,
an optimization framework was proposed, optimizing
the travel time, a surrogate safety measure, and fuel con-
sumption simultaneously (30, 31).

There were also research interests focusing on the inte-
grated optimization of adaptive traffic signals and vehicle
trajectories in a unified framework (32-34). The platoons
were designed to decelerate but not stop when approach-
ing the intersection during the red phase. However, these
control algorithms were designed to optimize simple
objective functions of the platoon leader in the vicinity of
an isolated intersection for relieving computational load.

From the discussion above, it can be concluded that
most current approaches only optimize the trajectories
of an individual vehicle using simple objective functions
of a few criteria. In addition, it is evident that the exist-
ing optimization-based control algorithms under traffic
signals mostly focus on design for pre-timing signals,
and the current way to represent the red phase using pie-
cewise target speed term may result in computational
issues. The previous work in Liu et al. (29) was designed
for an arterial by optimizing a comprehensive objective
function, considering throughput, ride comfort, travel
delay, and fuel savings. However, the previous control
system was open-loop based on feedforward optimal
control, and thereby was restricted to a fixed-timing sig-
nal plan. One advantage of closed-loop control systems
over open-loop systems is that the use of feedback allows
the system to be insensitive to both external disturbances
and internal variations in system parameters (35), such
as changes in signal settings. Although the control
approaches allowed for system feedback in other work
(19, 24, 25, 28), they did not take advantage of it and
were thereby confined to pre-timing signals. The reason
is that signal information in these approaches is an input
when tracking the pre-defined target speed, which
excludes signal changes within the system. To include the
adaptive signal plan, a closed-loop system is developed
to overcome the limitations of open-loop systems. The
feedback at each time step in the closed-loop can replan
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the trajectory under actuated or semi-actuated signal
plans. In addition, the previous work in Liu et al. (29)
required elaborate work on tuning cost weights to avoid
stopping away from the stop-line. An improvement to
address this problem is to transform the red phase posi-
tion constraint to a penalty term in the running cost,
which helps tune the cost weights under the workings of
both the safe following and red phase terms.

In this paper, a model predictive control (MPC)
framework is proposed for urban corridors under traffic
signals to overcome the aforementioned limitations of
platoon trajectory control approaches. The proposed
MPC framework is efficient on computational time using
an iterative Pontryagin maximum principle (iPMP)
approach (36). An optimal platoon trajectory control
algorithm is presented by optimizing accelerations of the
overall controlled CAV platoon. The control algorithm
determines the optimal throughput first, and then opti-
mizes multi-criteria including ride comfort (by minimiz-
ing accelerations), average travel delay (by maximizing
vehicle speeds), safe space gap, and fuel consumption
rates, subject to admissible constraints on acceleration
and speed. Safety requirements are incorporated by sti-
mulating the inter-vehicle distances larger than the mini-
mum safe gap as a penalty term in the running cost. The
red phases are represented by introducing virtual vehicles
at the stop bars during the red phases, thus the first-
stopping vehicles can avoid departure in red time using
the safe gap penalty with the virtual vehicles. The red
phase is implemented with anticipation by updating the
cost terms in the running cost at the beginning of the
current signal cycle. The proposed control approach is
flexible in accounting for platoon dynamics of merging,
splitting, stopping, and queue discharging along a corri-
dor with multiple intersections in an oversaturated traffic
flow. The proposed trajectory control approach is not
restricted to fixed signal timing. It also works under the
actuated signal plan by updating the signal parameters in
the closed-loop, which reveals the flexibility of the con-
trol approach under different signal control approaches.
Finally, the performance of the proposed control algo-
rithm is verified by simulation using four scenarios and a
baseline scenario, which take the signal settings and the
anticipation time of the red phase into account.

The remainder of the paper is organized as follows:
the following section introduces the control formulation
for longitudinal driving task, followed by the experiment
design and analysis of the simulation results. We con-
clude the study in the final section.

Control Formulation

The longitudinal platoon control problem is formulated
in this section, including control problem, control

objectives and constraints, system dynamics, controller
formulization, running cost specification, derivation of
the optimal control input and solution approach.

Control Problem

To demonstrate the workings of the proposed algorithm
a 100% CAYV environment and pre-timed signal control
are considered. It is assumed that signal phasing and tim-
ing information is available for the platoon controller
under 12V communication, and CAVs can communicate
with each other and be controlled via accelerations. The
actuator lag and the sensor delay are not considered.
Merging behaviors from side streets or adjacent lanes are
not taken into account.

The statement of the control problem can be described
as a CAV platoon traveling on the corridor with multiple
intersections where downstream CAVs are queuing
before the stop-lines. The platoon trajectory control sys-
tem will be activated if the platoon leader reaches the
control zone (e.g., 200m upstream of the stop-line at the
upcoming intersection). The control objective is to deter-
mine the accelerations of the CAV platoon and CAVs in
the queue to fulfill control objectives and constraints.
The maximal throughput is pre-determined, and will be
detailed in the forthcoming subsection.

Control Objectives

The control design is expected to fulfill (a trade-off
between) the following control objectives, including:

(1) To maximize the throughputs
(remaining) green phases

(2) To maximize the ride comfort (by minimizing
accelerations)

(3) To minimize the travel delay (by maximizing
vehicle speeds)

(4) To minimize the fuel consumption

(5) To maintain the safe gap with the preceding
vehicle

(6) To decelerate or even stop confronting the red
phase if unable to pass the intersection

during the

The throughput is optimized first by determining the
maximal number of vehicles that are able to pass the
intersection during the green phase. The reason for that
is to confirm the first-stopping vehicle facing the red
phase, and then the red phase term of the sixth objective
will be applied to the first-stopping vehicle.

System Dynamics Model

To describe the longitudinal dynamics model, a second-
order model is proposed in this subsection. The control
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input variable u is the acceleration, uf{?). i (1<i<N)
denotes the vehicle sequence number on a single lane,
and N is the total vehicle number in the controlled pla-
toon. State variables x are considered as the longitudinal
position, x{?), and the speed, v,(¢), of the controlled vehi-
cle i. The control and state variables can be defined as:
u= (ul,...,ui...,uN)T (1)

X = (xl,...,x[...,xN)T (2)

The longitudinal dynamics model is described by the
following ordinary differential equation:

d_d/x0)) _
axi = E (V,(l)) = f(Xi,lli) (4)
f(x;,u;) = Ax; + Bu; (5)

=10 oo ]

Controller Formulization and Running Cost
Specification

where

If g; (veh) denotes the maximal number of vehicles able
to pass the jth intersection, then the cost function J of the
control system can be formulated as the following:

T,
minJ (x,u,1,¢;) = minj L(x,u,t,q;) + G(x(T,))dt
u.g; wg Jo '
()

subject to

(1) the system dynamics model of Equation 4

(2) the initial condition: x(0) = x,

(3) the constraints on state and control variables:
x(1) €X,u(r) €U, te [0, T}]

where L denotes the running cost and G denotes the ter-
minal cost at the end of the prediction horizon T,
Although the terminal cost function has an influence on
the controller stability and performance, a longer predic-
tion horizon can compensate this impact of G at the cost
of computational load (37). The terminal cost G (=0)
and an appropriate prediction horizon are chosen in this
work to guarantee the controller performance.
Noteworthy is that the maximal throughput ¢; can be
pre-determined before the final optimal solution. The
value of g; can be optimized beforehand based on the

optimal position trajectory x{¢) when removing the red
phase penalty in the control objectives. In other words,
the last vehicle that can depart the jth intersection during
the green phase is pre-determined as the g;th vehicle.
Here, the first vehicle unable to pass behind the g;th vehi-
cle is defined as the first-stopping vehicle (i = ¢; + 1) at
the jth intersection.

In this control design, the running cost of vehicle 7, L;
(a constituent of L), is defined as follows (the time ¢ is
omitted to simplify equations):

2
1(X, u, aq]) Bluz BZVI B3 E—
+ B4(x1 1 — — Vilmin — S0 — li)z (7)
/ 2
N
+ Bsfeco (s, vi) + &M
lelr - xq,- +1
N
Lxutqj ZLIX“qu (8)

i=

Here, /; denotes the length of vehicle i, f,,;, denotes the
minimum safe car-following time gap, and s, is the mini-
mum space gap at standstill conditions. Turning vehicles
to leave intersections can be included in the control
approach by setting different values of 7, for different
turning movements. To represent the red phase, a virtual
standstill Vehicle is introduced in the last term of the run-
ning cost. v, (=0) and x’V are the speed and the posi-
tion of the virtual vehicle at the jth intersection,
respectively. B, Bo, B3, B4, Bs, Bs are cost weights.

The first cost term in the running cost is designed to
maximize ride comfort by minimizing accelerations. The
second cost term in the running cost is to maximize
speeds to minimize travel delay. The third cost term is to
track the preceding vehicle and consider the safety as a
large penalty if the distance to the predecessor is short.
The fourth cost term implies that the gap is stimulated to
follow the desired time gap, #mi,. The fifth cost term rep-
resents the minimization of fuel consumption. The last
cost term is designed only for the first-stopping vehicle at
the jth intersection (i = ¢; + 1) during the red phase.
This term renders the stopping vehicles stay in front of
the stop-line using the safe gap penalty with the virtual
vehicle.

In the fifth term, f.., is the instantaneous fuel con-
sumption rate (ml/s). Detailed parameter values can be
found in Kamal et al. (23). Although f.., is optimized to
approach zero accelerations and speeds, other criteria in
the running cost trade off with the fuel consumption cost
to generate optimal trajectories in the vicinity of signa-
lized intersections. For typical vehicles on a flat road, f..,
(ml/s) can be estimated as
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Jeco =
{bo + byv(t) + byv?(1) + b3v3(t) + u(t)(co + crv(t) + cv?(t))  u(t)>0
by + blv(t) + bzvz(t) + b3V3(t) u(t) <0
©)

It should be noted that the running cost in Equation 7
is a piecewise function according to the vehicle sequence
in the platoon. The running cost is categorized into three
modes for better illustration, that is, the leading mode,
the following mode, and the first-stopping mode.
Leading mode is designed for the platoon leader, thus
the third and fourth (safe following and desired time
gap) cost terms vanish owing to no preceding vehicle
ahead. Following mode is used for the following vehicles,
so the sixth (virtual vehicle) term is removed. First-stop-
ping mode is used for the first-stopping vehicle, which
engages in avoiding collision with the virtual vehicle and
anticipating signals facing the red phase, so the fourth
(desired time gap) term is unnecessary.

This switch of the running cost under three modes can
be achieved by updating cost weights B; and B4 (leading
mode), B4 (first-stopping mode), and B¢ (following
mode). Assuming the signal cycle starts from the green
phase, all cost weights can remain unchanged within the
cycle. This is beneficial to apply the proposed control
approach under an actuated signal plan because the red
and green phase lengths are flexible during a signal cycle.
In addition, the red phase refers to the red phase with
anticipation, which will be illustrated in the “Solution
Approach” subsection.

Derivation of the Optimal Control Input

Hereafter, the control problem is solved based on
Pontryagin maximum principle. Without providing too
much detail, the Hamiltonian H is defined as follows (7 is
again omitted):

I_Ii(xs u, As Z, %) = Li(Xa u,fz, q]) + Aifi(X’ u, t)

(vie1 — Vi)2
X1 — X — I
+ By(Xi1 — Xi — Vitmin — S0 — 1)’

— 2
+ Bsfeco (i, vi) + Béw

xlvir —Xg + 1

_ 2
= Biu” — Byvi + B3

+ )\’iv,- + )\1214,

(10)

where N denotes the co-state of the system:

N (1) )
NG =] 11
@ ()‘2(0 ()
Thus, the optimal control law can be obtained accord-
ing to the necessary condition for the optimal control law

using Hamiltonian. Therefore, the optimal control law
can be described as:

N
= 2,
i N, + Bs (cn +cvi t+ czvlz)

2B,

)\é + Bs (co + cyv; + czviz) =0

Ny + Bs(co + cvi + ev7) <0
(12)

To simplify the piecewise feature of the instantaneous

fuel consumption model f.,, the Heaviside function / is
introduced:

o-{3 25 oy

In Equation 13, the Heaviside function value is zero
for negative and zero arguments (n<0), and holds for
one under positive arguments (n>0). The co-state
dynamics are thereby derived as:

_d)\ll _ % _ B (Vl—l _vl) B
dr ox; 3 (x171 — X — 11)2 2
284()51—1 — X; — Vilmin — S0 — lz) 4 B6 ( vir — Vg + 1)2
vir — Xq; + l)
(14)
d _ o Viel — Vi
_Uh o g, VTV
dr ovi P2 = 2P Xiop —xi— 1
- 284tmin(xi—1 — X — Vilmin — S0 — lz)
+ Bs (bl + 2byv; + 3b3vi2 + wih(u;)(c; + Zsz[)) (15)
g
B ir Tl
x]vir —Xg + 1

Controller Constraints

The control problem should respect some constraints on
control and state variables. Admissible acceleration is
restricted between the maximum acceleration, a,,,, and
the minimum acceleration, a,;,. Speed should be lower
than the limit speed, v;,.x, but nonnegative.

Amin < ui(t) < Gmax (16)

0 =<v;(¢) < vinax (17)

Solution Approach

An iPMP approach is applied to solve this control prob-
lem, referring to Hoogendoorn et al. (36) and Wang
et al. (38) for details. The continuous-time control prob-
lem is discretized in time within the prediction horizon in
relation to the control and co-state variables. The iPMP
approach solves the state and co-state dynamics forward
and backward in time, respectively, and then updates the
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|
|
|
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|
|
|
|
|
|
|
|
|
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first time step from optimal
control

Update the system state

inish the simulation
horizon

Figure I. lllustration of the solution approach.

co-state dynamic with a weight factor. The updated co-
state will be imported to the next iteration as an input.
The optimization converges if the error between the state
and co-state dynamics is smaller than the pre-defined
threshold, then the iteration stops. The illustration of the
solution approach is depicted in Figure 1.

The MPC framework is applied, which solves the con-
trol problem in a shorter horizon than the optimal con-
trol framework in our previous work (29). This shorter
horizon of the MPC framework results in an efficient
computational time. The MPC framework only selects
the first time step of the optimal solution in the iPMP
algorithm. The constraints on control and state variables
are implemented on restricting control variables based
on system dynamics.

Platoon dynamics of merging, splitting, stopping, and
queue discharging along a corridor are achieved by
switching three modes of the running cost (updating the
values of cost weights), which is included within the
MPC closed-loop at every time step. In the presence of
signal anticipation, the red phase can be anticipated by
implementing the virtual vehicle term as early as possi-
ble, that is, at the beginning of the current signal cycle
under the pre-timing signals, or at the moment when the
platoon controller receives the updated signal plan under
actuated signals. The MPC framework allows for system
feedback, that is, signal changes, thus actuated signal set-
tings can also be incorporated in the MPC closed-loop.
In addition to signal anticipation, the signal settings (the
green and red time) can also be updated in the MPC
closed-loop by switching the cost weights in response to
the actuated signals. Therefore, this approach can also
be applied under the actuated signal control approach.

Simulation Results and Analysis

This section verifies the platoon performances of this
control algorithm under four scenarios, considering the
signal settings and the anticipation time of the red phase.
A baseline scenario is also presented for comparison.

Experiment Design

To test the behavior of the platoons resulting from the
proposed control approach, trajectories on a corridor
with two signalized intersections are simulated, taking
into account the signal settings, the lane length between
two adjacent intersections, the speed limit, and the num-
bers of vehicles in the controlled platoon and in the
queue. Four scenarios and a baseline scenario are
designed to verify the characteristics of platoon splitting,
merging, decelerating, accelerating, stopping, and queue
discharging. The control effects on the fuel savings are
revealed by comparing the total fuel consumptions of all
controlled vehicles within the simulation horizon.
Hereafter, the intersection in the upstream direction on
the arterial is referred as the upstream intersection, and
the intersection in the downstream direction is consid-
ered as the downstream intersection.

Two pre-timed signal settings are designed to test the
workings of the red phase term, that is, the opposite and
overlapped signal settings, as shown in Figure 2. The
length of the effective green phase is 30 s in both settings,
whereas the effective red phase is 30 s and 20s in opposite
and overlapped signal settings, respectively. Therefore,
the simulation horizons are 90 s and 80 s separately in dif-
ferent signal settings. The prediction horizon is selected
to be 10s, because the influence of the zero terminal cost
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(a)
Position x(7)
Downstream

intersection

Upstream
intersection

(b)
Position x(?)
Downstream

intersection

Upstream
intersection

Figure 2. Design of signal settings; (a) opposite signal setting, (b) overlapped signal setting.

is negligible with respect to 5s and larger prediction hori-
zon (37).

In reality, the communication ranges of 12V and V2V
are about 200 m, thus the control zone starts from 200 m
away from the stop bar in the upstream direction at the
upstream intersection. The longitudinal position of the
stop-line at the upstream intersection is defined as 0. The
lane section length between two adjacent intersections is
designed as 800m, thus the longitudinal position of the
stop-line at the downstream intersection is 800.

To test the performances taking signal settings and
the anticipation time of the red phase into account, four
scenarios and a baseline scenario are designed. These sce-
narios are appropriate to verify the feasibility of the pla-
toon trajectory control approach in relation to the
applications on an arterial with intersections. The char-
acteristics of platoon splitting, merging, decelerating,
accelerating, stopping, and queue discharging in all the
scenarios provide insights into the effectiveness of the
control approach. The benefits on fuel savings are
explored in all scenarios. Similar settings (e.g., the num-
ber of controlled vehicles, vehicle queues, the number of
multiple intersections, and the signal timing plans) can
be implemented easily in the same way. The cost weights
are tuned in Scenario 1 and then are applied in other sce-
narios. The parameter values in the simulation are
detailed in Table 1. The choices for the parameter values
mostly come from previous work (29). In our experiment
settings, the time step is 1s, which means delays under
1 s have no effect on the optimal trajectories.

The baseline scenario is presented under the opposite
signal setting without anticipating the red phase. The
anticipation of the red phase under pre-timed signal con-
trol is removed, thus the virtual vehicle term is added just
at the beginning of the red phase. The objective of this
baseline scenario is to obtain insights of the validity of
the red phase (virtual vehicle) term, which is similar to
the application in previous work (24).

In the forthcoming four scenarios, the anticipation
time of the red phase is implemented at the beginning of

the current signal cycle. Anticipating the red indication
before the start of the red phase is supposed to outper-
form the bascline scenario where no anticipation exits
(e.g., saving more fuel). Scenario 1 is simulated under
opposite and pre-timed signal plan with anticipating the
red phase. The comparison between the baseline scenario
(no anticipation) and Scenario 1 (anticipation from the
beginning of the current signal cycle) can explore the
benefits of anticipating the red phase in the proposed
control approach. Scenario 2 is designed under over-
lapped and pre-timed signal settings, which can prove
the workings of the adjustment in signal settings under
pre-timed signal control. In Scenario 3, the actuated sig-
nal is included in the MPC closed-loop. The length of
green phases increases 5s whereas the red windows
decrease 5s adaptively based on the overlapped signal
settings. Scenario 4 updates the signal plan based on the
initial overlapped signal setting according to the oversa-
turated traffic flow. The lengths of the red (and green)
phases in sequence are 15s and 18s (17s and 205s) at the
downstream intersection, and the counterparts are 18s
(27 s and 255s) at the upstream intersection. The last two
scenarios aim to investigate the workings of the proposed
control approach under the actuated signal plan. It is
assumed that the platoon controller receives the actuated
signal plan after the first prediction horizon, that is, 10s
after the beginning of the signal cycle.

Platoon Performance

The aforementioned scenarios are simulated to evaluate
control effects based on trajectory analysis, as depicted in
Figures 3-7. It is obvious that the safe gap and the red
phase penalty work, and the controller constraints are
satisfied. The vehicle numbers in the legend represent the
vehicle sequence of the platoon on a single lane. The hor-
izontal red dashed lines in these figures show the red sig-
nal indication at intersections. The longitudinal positions
of the stop-line at the upstream and downstream intersec-
tions are 0 and 800, respectively. The initial conditions at
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Table I. Parameter and Coefficient Values in the Experiment

Notation Parameter/coefficient Value Unit
na time step | s

na prediction horizon 10 s

na the effective green phase 30 s

na the effective red phase 20, 30 s

na initial speed 0,15 m/s
na initial space gap in the nonstatic platoon 35 m
na initial space gap in vehicle queues 5 m
na the range of the control zone at the upstream intersection 200 m
na the number of total controlled vehicles 25 veh
na vehicle queues at the upstream intersection 3 veh
na the number of vehicles on the lane section between two intersections 8 veh
Y the position of the stop-lines at intersections 0, 800 m

I; length of every controlled vehicle 3 m
trnin minimum safe car-following time gap 2 s

So minimum space gap at standstill conditions 2 m
Vinax limit speed on the urban corridor 20 m/s
Ornax allowable maximum acceleration 2 m/s?
Armin allowable minimum acceleration -5 m/s?
By cost weight | na
B2 cost weight | na
B3 cost weight | na
B4 cost weight | na
Bs cost weight 0,5 na
Be cost weight 5 na

Note: na = not applicable.
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Figure 3. Optimal trajectories of baseline scenario: (a) acceleration and (b) longitudinal position.

the beginning of the simulation are as follows: the first
eight vehicles are set with initial speed (15m/s) on the
lane section between two adjacent intersections, after that

three vehicles stop (O0m/s) at the upstream intersection,
and the last 14 vehicles are traveling (15m/s) from 200 m
upstream direction of the upstream intersection (-200 m).
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Figure 5. Optimal trajectories of Scenario 2: (a) acceleration and (b) longitudinal position.

The maximal throughputs are determined first when
removing the red phase penalty, as discussed in the previ-
ous section. To be noted, the iPMP approach is more
efficient on computational time, compared with the sol-
ver used in Liu et al. (29) based on the optimal control
framework, in spite of similar experiments. The remain-
der of this section analyzes the platoon performances

and spacing gap in each scenario. The advantages of the
proposed control approach are discussed in comparison
with the baseline scenario.

Tuning Cost Weights. First, the cost weights are tuned to
gain insights of optimal trajectories based on Scenario 1.
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Figure 7. Optimal trajectories of Scenario 4: (a) acceleration and (b) longitudinal position.

Considering B; =1 as a baseline, the cost weight of
speed, B, the cost weight of safe gap term, B3, and the
cost weight of the desired gap, B4, keep the same order
with the cost weight of acceleration By, thus B, = B3 =
B4+ = B; = 1. Bigger values of the fuel consumption cost
weight, Bs, will result in lower accelerations and speeds,

so the maximal throughput cannot be obtained via this
overweighed Bs. The biggest value of Bs (=9) is selected
to avoid unnecessary deceleration. Smaller values of vir-
tual vehicle cost weight B¢ are unable to act as the red
phase, whereas vehicles will decelerate and stop near the
initial position, that is, the known position at the start of



334

Transportation Research Record 2674(12)

the simulation time, if B¢ is too large. The appropriate
value of the red phase cost weight, B¢ (=5), is chosen to
optimize the vehicles stopping just in front of the stop-
line. These values of all cost weights are selected in
Scenario 1 and then applied in all scenarios.

Analysis of Baseline Scenario. The baseline scenario repre-
sents the situation that no anticipation of the red phase
is provided under the opposite signal setting using virtual
vehicle term, as shown in Figure 3. The total fuel con-
sumptions of all vehicles within the simulation horizon
are 1888.3 ml (0.0606 ml/m) in this baseline scenario. The
vehicles in the queue at the upstream intersection (vehicle
9-11) start from 0 speed, whereas other vehicles begin
with the initial speed of 15m/s. The first 12 vehicles are
able to pass the downstream intersection, and vehicles 9—
20 leave the upstream intersection. These vehicles depart
the intersections with accelerating to the limit speed v ax,
so the maximal throughput can be guaranteed.

Although the red phase is not anticipated, the vehicles
are able to stop in front of the stop-line but with drastic
decelerations at the beginning of the red phase (i.e., for
vehicle 21 at the upstream intersection at 30s and for
vehicle 13 at the downstream intersection at 60s).
Without the prevision of red phases, the passing vehicles
(e.g., vehicles 1-8) are optimized to decelerate during the
red phase and then accelerate suddenly at the beginning
of the green phase, which causes more fuel consumption.
In addition, the stops during the red phase cannot be
avoided if the vehicles have to catch the next green
phase. To be noted, vehicle 9 decelerates during 38s to
43 s to keep the safe gap when merging with the preced-
ing platoon. The same holds for vehicle 12 during 10—
13s.

Analysis of Scenario |. Scenario 1 is simulated under the
opposite signal setting but with anticipating the red phase
at the beginning of the current signal cycle. The total fuel
consumption of all vehicles is 1854.9ml (0.0579 ml/m) in
Scenario 1, which is smaller than the counterpart in the
baseline scenario. As shown in Figure 4, the trajectories
in Scenario 1 are similar to the baseline scenario, but the
fluctuations of accelerations and decelerations are much
smoother, especially for the first-stopping vehicles (vehi-
cles 13 and 21). The decelerations of vehicles 9 and 12
remain the same to keep the safe gap with the preceding
vehicles while merging (during 38-43s and during 10—
13s separately). Owing to the anticipation of the red
phase, the first-stopping vehicles (vehicles 13 and 21)
react more predictively to the red phase and approach
the stop-line more slowly in comparison with the baseline
scenario, as can be seen in the longitudinal position subfi-
gures Figures 3b and 4b.

The differences in trajectory performances between
the baseline scenario and Scenario 1 prove the benefits
of anticipating the red phase in the proposed control
approach. The sharp decelerations and stops facing the
red phase are avoidable, and more fuel savings are veri-
fied in Scenario 1.

Analysis of Scenario 2. In Scenario 2, the overlapped signal
setting is presented, as depicted in Figure 5. The total
fuel consumption of all vehicles is 1736.2ml (0.0550 ml/
m) in Scenario 2. Although the trajectory performances
in Scenario 2 keep the same features as in Scenario 1
apart from the signal setting, Scenario 2 validates the
flexible characteristic of the control approach in relation
to changes in signal settings under pre-timed signal plan.

Analysis of Scenario 3. Scenario 3 explores the potential to
implement the proposed approach under the actuated
signal plan. The initial signal plan is the same as the
overlapped signal settings. However, the signal plan is
updated in the MPC closed-loop after the first prediction
horizon (10s) in the signal cycle. The lengths of green
phases change with an increase of 5s, and the lengths of
red phases vary with a decrease of 5s. The total fuel con-
sumption of all vehicles is 1879.2ml (0.0550 ml/m) in
Scenario 3. The optimal trajectories depicted in Figure 6
prove the feasibility of the control approach in relation
to application in actuated or adaptive signal plans.

Anadlysis of Scenario 4. Scenario 4 provides more insights
for the proposed control approach being applied with
the actuated signal approach under the oversaturated
traffic flow. The initial signal plan is the overlapped sig-
nal settings, and then signal parameters are adjusted to
accommodate changes in the traffic flow, that is, red time
of 15s, green time of 17, red time of 18 s, and green time
of 20s in sequence at the downstream intersection; green
time of 27s, red time of 18s, and green time of 25s in
sequence at the upstream intersection. The total fuel con-
sumption of all vehicles is 1885.1ml (0.0592ml/m) in
Scenario 4. The optimal trajectories in Figure 7 further
validate the workings under actuated signals.

Analysis of Spacing Gap. The spacing gaps of all controlled
vehicles can be categorized into four groups, that is, the
splitting gaps, the stopping gaps, the following gaps, and
the merging/catching gaps. The splitting gaps aim to
reflect the increases in gaps resulted from the red indica-
tion, that is, the gaps between the first-stopping vehicles
and the immediately preceding vehicles. For other stop-
ping vehicles behind the first-stopping vehicles, the stop-
ping gaps can describe the gaps between two adjacent
stopping vehicles. Table 2 details the vehicle sequence
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Table 2. Vehicles Sequence Number Considering Splitting Gaps and Stopping Gaps

Intersection no. Vehicle type Scenario | Scenario 2 Scenario 3 Scenario 4

Downstream intersection First-stopping vehicle VI3 Vi2 Vi2 V9
Splitting gap VI2, VI3 VI, VI2 VI, VI2 V8, V9
Stopping gaps V13 to V20 V12 to V20 V12 to V22 V9 to VI8

Upstream intersection First-stopping vehicle V21 V21 V23 VI9
Splitting gap V20, V21 V20, V21 V22,V23 VI8, VI9
Stopping gaps V21| to V25 V21| to V25 V23 to V25 V19 to V25

number (represented by V) in relation to the first-
stopping vehicles, the splitting gaps, and the stopping
gaps under four scenarios at two intersections. The fol-
lowing gaps account for gaps between vehicles that can
pass the downstream intersection during the first green
phase. The merging or catching gaps are proposed to
capture declines in spacing owing to the signal settings
and the initial position settings, namely, the gaps between
vehicles 8 and 9 and between vehicles 11 and 12. The dif-
ferences between the merging gaps and the catching gaps
are whether the gaps drop into the following gaps within
the horizon. It is noted that the merging/catching gap
and the splitting gap may occur on a certain vehicle
sequentially under different signal phases, for example,
in Scenario 2, Scenario 3, and Scenario 4.

To explore the performance of spacing, the gaps
between two adjacent vehicles under four scenarios are
illustrated in Figure 8. The vertical ordinate of the spac-
ing subfigures is presented compactly by way of logarith-
mic scale. The four spacing gap categories are depicted
in different colors and line types. It can be concluded
that the spacing gaps are in accordance with the system
design, because the space gaps satisfy the safe require-
ment over the simulation horizon in all scenarios, and
the spacing gaps fluctuate with changes in splitting and
merging performances and signal changes.

There are general characters in all scenarios. The ini-
tial space gaps are 5m for queuing vehicles at the stand-
still condition, and 35m for the nonstatic vehicles. The
maximal following gap is 45 m, which is calculated using
VmaxImin T So + /. Taking into account the speed con-
straint which limits the controlled speeds being equal to
or lower than the maximal speed, the following and stop-
ping gaps cannot exceed the maximal following gap
(45m). The stopping gaps of stopping vehicles decline
during the red phases at the upstream and downstream
intersections, as the two declined trends of dashed lines
in subfigures a—d of Figure 8. The depths of the declines
in stopping gaps vary under different scenarios as a
result of various red phase lengths. Longer red phase
lengths, such as under pre-timing signals in Scenario 1
and 2, give rise to deeper drops. In addition, the merging

gaps between vehicles 8 and 9 increase slightly at the
beginning of the horizon in all scenarios, because vehicle
9 needs acceleration to pass the upstream intersection
from the stationary condition whereas vehicle 8 is mov-
ing forward.

Taking Scenario 1 as example, the merging gaps
between vehicles 8 and 9 and between 11 and 12 fall
below the maximal following gap (45m), which means
vehicles 9 and 12 merge with the predecessors into pla-
tooning. As shown in the subfigure (a) of Figure 8, the
splitting gap between vehicles 12 and 13 rises when vehi-
cle 13 confronts the red indication at the downstream
intersection. Vehicle 21 decelerates facing the red phase at
the upstream intersection, resulting in the splitting gap,
and then accelerates to catch up with the vehicles in front
during the subsequent green phase, causing the catching
gap. The same explanation holds for other scenarios.

Conclusions and Future Work

In this study, a flexible CAYV trajectory control approach
is proposed on arterials with signalized intersections
based on the MPC framework. The throughput is first
maximized during the green phase, and multiple criteria
of ride comfort, travel delay, and fuel consumption are
optimized after that, subject to linear constraints on
acceleration and speed. The safe following requirement is
formulated as a penalty in the running cost to regulate
vehicles following at a safe gap to the predecessors. The
red phase is represented by keeping the safe gap with a
standstill virtual vehicle at the stop bar, and it can also
be anticipated by the first-stopping vehicle since the
beginning of the signal cycle. The control approach is
flexible in incorporating platoon merging, splitting, stop-
ping, and queue-discharging characteristics. Simulation
under four scenarios verified the performance of the
approach.

The simulation results show that the red phase term
with anticipation works better than the case where no
anticipation is provided. The performance of the control
approach also demonstrates its flexibility in relation to
application in different settings, that is, changes in signal
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Figure 8. Spacing gap under four scenarios: (a) Scenario |, (b) Scenario 2, (c) Scenario 3, and (d) Scenario 4.

parameters under pre-timed signal plan and actuated sig-

nal plan.

Further research should aim to incorporate the adap-
tive signal control and the trajectory control in a unified

framework.
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