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Abstract—Surveillance and monitoring are highly critical in
many application scenarios like wildlife conservation, restricted
areas such as nuclear spillover, and border security. Moreover,
in these scenarios, intrusions do not happen frequently thus,
conventional surveillance is overkill and expensive that also
requires extensive human involvement which can be arduous,
expensive, and inefficient. To address these issues we propose
an end-to-end smart acoustic surveillance solution for intrusion
detection using a simple low-cost system called Balls for Walls
(B4W). The objective is to create a network of sensors that could
also be remotely launched. The nodes responsible for surveillance
employ audio sensors which are packaged within hard balls thus
allowing the launch of these sensors from a distance of over
500 m. We use microphones for detecting human activity inferred
through sensing the sound of footsteps against background noise.
We evaluate the systems across five different terrain types. We
propose a novel, low complexity detection algorithm called SEED
which leverages signal energy and shape to distinguish humans
from ambient noise. B4/W offers a maximum detection rate of
98.3% on dry leaves and a low false alarm rate of 0.9%. The
system is energy efficient to last a maximum of 170 days and it is
orientation agnostic. The proposed system has been extensively
tested across varying terrains and ambient signal scenarios to
demonstrate its efficacy.

Index Terms—Wireless Sensor Networks, Localization, Surveil-
lance, Intruder Detection, Acoustic Sensors, Edge Computing

I. INTRODUCTION

Chernobyl and surrounding areas till date have restricted
human access in large, dangerous, radioactive hot-spots caused
by a major nuclear disaster of unprecedented scale. The orig-
inal 30km radius exclusion zone has been modified and now
covers an extensive 4300sq. km [1]. Numerous species from
elephants to rhinos are under constant attack from poachers.
The nomadic nature of these herds of animals combined with
the vast open nature of wildlife sanctuaries necessitates a
more innovative solution to alert authorities upon possible
poacher [2], [3]. Further, the porous nature of international
borders often creates disputes because of human or drug
trafficking. These scenarios demonstrate a critical need for a
system for detecting human presence in harsh or restricted
areas to either safeguard humans themselves or animals from
them. As an alternative to traditional walls or fencing, we
propose a completely smart system in order to sense-detect-
communicate based on small sensor nodes which fence an area
virtually. However, in order to do this, there is an inherent
set of challenges that need to be addressed. These systems
rely on planned pre-deployed sensor nodes and the system
may involve placing wearable devices on targets [4]. This is
difficult to achieve when physically going to the restricted
areas (like a nuclear-spill zone) is not possible and the sensors
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Fig. 1: Conceptual overview of B4W system: balls with
acoustic sensors are launched and localized to form a virtual
fence; will be camouflaged in actual deployment.

must only be deployed from a distance and possibly self-
organize to form a barrier. Further, any system relying on
the use of radar or cameras for sensing necessitates planned
manual deployment and lacks reconfigurability which makes
the sensor network static and prohibits ad-hoc deployment [5],
[6]. These sensor networks require additional maintenance and
consume significant power [2], [7]. Lastly, solutions based on
drones, static surveillance sensor towers, and mobile nodes
draw the attention of the intruders [8], [9] and may suffer from
short operational times. Even satellite camera-based methods
may not always work in areas requiring constant vigilance
especially if the intruder is camouflaged or when there is low
visibility [10]. These challenges raise an important question
about the design of a wireless sensor system for virtual
sensing of restricted areas that is remotely deployable, low-
power, and requires zero maintenance.

To overcome the above challenges, we present a compre-
hensive end-to-end solution called Balls for Walls (B4W) that
aims to solve the problem of intruder detection. Our proposed
system employs miniaturized, low power sensor nodes that are
packaged into small camouflaging (golf-sized) balls that can
be remotely deployed across the surveillance area. These balls
form a virtual digital fence as shown in Fig. 1. The system
incorporates a novel localization algorithm, combining image
processing and accelerometer data to estimate the launch
angles and the time of flight, thus, effectively determining
the final resting position of the balls post-deployment. Three
acoustic sensors (microphones oriented 120° apart) housed
inside each ball are activated after deployment and using our
novel detection algorithm send wireless alerts to a gateway.

Features and Contributions. 0 We present a complete
system that leverages miniaturized, low cost, low power design
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Fig. 2: Block diagram of acoustic sensor in ball.
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Fig. 3: Orientation of the sensor node with (a) 1 mic above
mid-plane (worst case) and (b) 3 mics in mid plane (best case).

consisting of three microphones to detect human presence. To
the best of our knowledge, B4W is the first WSN system to
present an end-to-end solution for stealthy intruder detection
using easily camouflaged acoustic sensors. B4W has all the
modules embedded enabling it to act as a virtual fence
(Sec. II). a We provide a simple but efficient methodology for
remote deployment and localization of the sensors. We avoid
using GPS because of the cost, size, and power requirements,
and for deployment in a possible GPS denied environments.
We further demonstrate the capability of locating the sensors
when deployed remotely (Sec. IV). o A new low-complexity
intruder detection algorithm, SEED, is developed for human
intrusion detection on our specially designed low-power sen-
sor balls which are orientation agnostic (Sec. III). We also
optimize the energy usage so that the lifetime of each ball
can last up to 6 months (Sec. II). o We present a thorough
evaluation of multiple sources of noise and collect real-world
data. We deployed five balls and tested the B4W system
thoroughly including the detection and wireless capabilities of
B4W when the balls are subject to different terrain depending
on deployment (Sec. V).

II. SENSOR SYSTEM DESIGN

Acoustic detection. The choice of using acoustic sensors in
the system design is motivated by several factors. Compared to
other sensors like cameras, radar, or PIR motion sensors, mi-
crophones are relatively orientation agnostic and consume low
power. Additionally, microphones can function when packaged
inside a ball which in turn is needed for the launch and remote
deployment strategy. The cost of using acoustic sensors is
lower than other image-based modalities. An important system
consideration is that it must be possible to keep most of the
electronics in sleep mode when there are no detected intruders
present. The sensing and detection modules are thus triggered
only when the average is above a certain threshold.

Orientation-agnostic sensing. The sensor node is designed
to have three microphones placed 120° apart as a conscious
design choice given the spherical nature of the node. The
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Fig. 4: Block diagram of the power management unit.

design philosophy is to make the sensor node orientation
agnostic implying that irrespective of the ball orientation after
landing, at least one out of the three microphones would be
facing the air and not the ground. The availability of three
microphones is also leveraged by the classification algorithm
to strengthen its detection accuracy by combining the different
inputs provided by the three microphone channels.

Central processing board. The central processing board
houses an SoC - nRF52840 based on ARM Cortex M4 micro-
controller with integrated Bluetooth Low Energy (BLE) radio,
a 3-axis accelerometer, and a LoRa modem. The accelerometer
chosen was H3LIS100DL because of its high sensitivity and
low power functionality. The three microphone boards are
interfaced to the central processing board’s ADC channels
via flexible FPC cables to enable easy positioning within the
sensor node ball. As seen in Fig. 4, the power management unit
contains a DC-DC buck converter LTC3246, a Schottky diode,
and four MOSFETs which act as switches to independently
power and control any of the three microphone boards or
the accelerometer. This design allows control over the power
consumption of the device by cutting power to different mic
boards or peripherals based on requirement resulting in re-
duced power wastage. After detecting an intruder, it transmits
an alert message to a remote base station using the low power
long-range LoRa modem.

Microphone sensor boards. Each microphone board consists
of a MEMS microphone sensor as well as a filter-amplifier
block. We perform hardware filtering and amplification re-
ducing the processing required by the microcontroller. We
choose ICS-40618, a MEMS-based microphone with a differ-
ential non-inverting analog output. It has —38 dBV sensitivity
(differential) and an extended frequency response from 50 Hz
to 20kHz which can detect all relevant intrusion sources.
The design of the gain stage (and by extension, the micro-
phone) board depends on the fundamental frequency ranges
of different audio sources present in a real-world setting.
These frequencies would be key in determining the desired
bandwidth of the gain stage. To investigate this, multiple audio
samples were recorded both for ambient noise as well as
human intrusion scenarios with activities like talking, walking,
etc. The audio for human footsteps, identified as a key factor
for human presence, was further collected for different terrains.
The key insight was that different terrains and topographies
will result in different audio signatures. We derived the Fast
Fourier Transform (FFT) of the recorded time series audio
sequences. Fig. 5 shows the frequency range chart for the
different sounds considered. This formed the basis for the
design of the filter and amplifier blocks as well as for the
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Fundamental frequency range for common intrusion and environmental sources
| Lower f(Hz) Higher f(Hz)

Wind howling 600 1000 -

Bird chirping | 1000 | 2000 —_

Insect buzzing 2000 3500 I
Vehicle movement | 200 | 1000 —

Footsteps on concrete/tar | 500 | 700 B

Footsteps on stone/gravel 200 | 300 |#

Footsteps on grass | 150 | 250 |4

Footsteps on (dry) soil I 150 | 300 [

Footsteps on (dry) leaves 500 1000 B

Human voice 150 | 500 |-

1000 2000

Frequency (Hz)

Fig. 5: Measured f(Hz) ranges for common intrusion sources

3000

TABLE I: Measured Channel Activity Detection(CAD) suc-
cess (for one symbol duration) with varying Spreading Fac-
tors(SF) for 5m separation between nodes

LoRa SF SF7 SF8 SF9 SF10
CAD success 100% 100% | 97.2% | 92.5%

SF11
100%

SF12
100%

audio detection algorithm. From Fig. 5 it can be noted that the
frequency of interest lies between 200 Hz to 1kHz. Hence, the
-3 dB bandwidth of the gain stage was designed to be greater
than 10kHz. Therefore, we also set the sampling rate of ADC
channels to 10 kHz. The gain stage required to have high input
impedance, high gain, high -3 dB bandwidth, and low current
consumption. Op-Amp MIC862 was chosen as the amplifier
due to its low supply current of only 31 A and gain bandwidth
of 3MHz. A DC blocking capacitor is used to isolate the gain
stage from the DC offset of the microphone output.

LoRa for communication. LoRa is employed to establish a
long-distance link from each node to the base station (located
at a faraway distance). The central board has an RFM95W
LoRa modem which allows a maximum link budget of 164
dB and the module can be controlled via SPI interface. Two
important parameters that must be configured are spreading
factors and the bandwidth. The only requirement that the
system imposes is to select different values for these two
parameters for adjacent nodes in the network during deploy-
ment. Selecting a single frequency can lead to interference
issues if many neighboring nodes detect an intruder. We
use the Channel Activity Detection (CAD) mechanism of
LoRa to prevent potential collisions when simultaneous packet
transmissions occur at adjacent nodes after intruder detection.
Standard CAD in LoRa is usually implemented with 4 symbol
time but we use one symbol to reduce waiting time and can
therefore transmit faster with a smaller contention window.
If two nearby nodes want to simultaneously transmit, one
of them will get delayed due to CAD thereby avoiding an
imminent collision. Table I shows the percentage of successful
CAD measured with our scheme of one symbol duration. The
higher success rate of CAD for our scenario is because two
nodes that detect the same intruder must be physically close
to each other. Therefore, RF power would be high leading
to a higher percentage of detection even if a single symbol
CAD is executed. After detecting an intruder, each node waits
for a random period between [0 10] symbol times before
sending a LoRa frame to reduce the collision probability. After
this random time, it executes CAD for one symbol period.
If it finds that there is an ongoing transmission, it waits till

= Top view  Bottom view
,\4&»
&7
. §
=
(a) B __..
c Accelerometer LoRa
1 py ‘—}!, E A sl
@ L .
./~ “ 7 \\Q Mic boards
©) (©

Fig. 6: (a) Packed (b) Open (c) Components of B4W node.

TABLE II: Measured current consumption of the various
modules and estimated lifetime for different scenarios

System State Current
System startup 19.25 mA
Ball Launched 5.5mA
Sleep; accelerometer disabled; waiting for intrusion 0.4 mA
Intrusion detection and processing 24mA
LoRa Transmission(event based) 8-10mA
Deployment Scenario System lifetime
Single mic board enabled at a time 170 days
Only 2 mic boards enabled simultaneously 135 days
All 3 mic boards enabled all the time 102 days

the completion of the current transmission, thereby avoiding
potential collisions. The node that sends later due to waiting
also includes the total time it waited after detection within the
LoRa frame so that the gateway can identify that the same
intruder was captured by more than one node at the same
time showing high temporal correlation and indicating higher
confidence in the detected event.

Design of the enclosure. The remote launching and deploy-
ment of the sensor nodes in inaccessible regions require an
innovative approach in enclosure design. This is to ensure
proper sensing and functionality after landing. The application
necessitates a novel packaging solution that is small in size,
can sustain impact during deployment, and safeguard the em-
bedded hardware from environmental damage. It must also not
impede radio performance while still providing air exposure to
the microphone inputs. Considering the component dimensions
and packaging requirements, a ball with a diameter of 70 mm
with a symmetrical arrangement of depressions on its surface
was selected for packaging. The dimpled balls when moving
through air experience more lift and less drag thus, flying
farther than smooth balls. Figure 6(c) shows the sensor node
with its components. The central processing board is connected
to the three microphone boards using three FPC cables, each
being 120° apart to provide 360° coverage for a single node
as seen in Fig. 6(b). Three holes on the periphery of the ball
provide air exposure for the microphones. The sensor boards
are fixed inside the ball using screws to avoid displacement.
Figure 6(a) shows a packaged sensor node with the two
hemispheres arrested together.

Energy Optimization. The sensor nodes are powered by
a 3.7V 2000 mAh battery and are deployed remotely in
inaccessible terrains. There is, therefore, a need to maximize
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their lifetime to keep the virtual fence active and without
gaps. The system employs an onboard comparator before
the audio signal is fed to the MCU for sampling. The role
of the comparator is to check the analog signal value and
generate an interrupt to wake up the MCU only if the signal
amplitude exceeds a predefined threshold which is set above
the noise floor ensuring that the MCU is not powered unless
the actual computing necessitates it. This results in power
saving. Table II shows the measured current consumption of
each component in the node. We calculate that the CPU and
ADC are running for 400 ms after an event is detected by
the comparator and assume the frequency of intrusion to be
limited to one per day. When no intrusion occurs, the MCU is
in sleep mode. The average current consumption is 0.45 mA(1
mic enabled at a time). When an intrusion occurs, the CPU and
ADC are running. The total current consumption is 2.4 mA
(1 mic enabled at a time). Using these measurements, the
lifetime is estimated to be 170 days. The system lifetime will
reduce to 102 days in the worst-case scenario when all three
microphones are enabled.

III. DETECTION ALGORITHM

Signal energy detection. The system uses signal amplitude as
a critical metric to detect signs of intrusion. To characterize po-
tential high amplitude ambient noise that the sensor nodes may
encounter (ex: birds, insects, animals, wind) the sound pressure
level of various sources of interest was captured(Fig. 7). The
noise sources were all located more than 5 m while the human
sources were located at 5m from the nodes. The energy
detected in the captured signal is used as a feature by the
classification algorithm.

Signal Shape Characterization. Signal energy detection,
however, will only work when the ambient noise sources are
located much farther away than the intruders, i.e., SNR is high.
Therefore, there is a need to use spectral features of the signal
for preventing large false positives when animals or birds come
near the balls. Fig. 8 shows an example of the shape of two
captured audio signals belonging to the two classes [intruder,
noise]: an intruder walking on dry leaves (forest floor) in the
presence of ambient jungle noise and a bird chirping. Both

of the sources are located at Sm from the node. It shows
signal shape to be useful for differentiating noise and intruder
audio. We are inspired by a speech classification algorithm-
Time Encoded Signal Processing and Recognition(TESPAR)
that leverages zero-crossings points of the audio signal to
achieve mean random-word intelligibility score of 97.9% [11].
Shape Encoded Energy Detection(SEED). We propose a
simple yet novel algorithm for our nodes which combines
energy information (amplitude) and the spectral information
(size of zero crossing intervals) of the audio signal. This
low complexity algorithm ensures a high intrusion detection
accuracy and with reduced false detection. The audio signal
is divided into epochs of 2s intervals and fed as input to the
algorithm. The node checks the orientation of the ball and
selects mic channel m to sample based on the number of
mics above the midplane to obtain signal V,,,. The sum of
the values of the positive (or negative) peaks of the signals
is used to get a voltage value called V),. This value signifies
the energy contained in the signal. Next, it is compared to a
reference threshold V;;, to see if the signal contains a possible
event. V4, is based on the environment where the system is
deployed and is influenced by the noise floor in that region.
The input signal is hardware filtered and DC offset removed.
Hence, the sum of positive peaks (not DC offset) is calculated.
If the resultant does not exceed the preset threshold then the
system classifies it as noise. However, if V,, does exceed the
Vin value then the signal is further processed to ensure that a
real event is not dropped. We count the samples between two
successive zero crossings in an epoch array D. The D values
effectively represent the widths of different epochs present
between any two successive zero crossings. Then we find
the distribution of D values. The frequency of occurrence of
D values is calculated for the entire input signal and stored
in an Z array. The successful distinction of human intruders
from ambient noise depends on the on the Z array values. We
create a training database by collecting multiple audio samples
and constructing signal archetypes for both audio classes
(human intruder and ambient noise). These signal archetypes
are created by averaging the Z arrays of different signals from
the same audio source. Once Z is found, it is compared with
the archetypes stored in the training database using the K-
nearest neighbour (KNN) machine learning technique, which
uses the Manhattan distance between Z arrays to classify the
signal. The prediction is chosen as the class with the least
distance to the test signal. This process is carried out by the
sensor node for each mic m that is considered active. The
final classification decision is made after the majority voting
between the different mic channels in the node. The training
database is used to set the noise threshold value V;; in the
sensor node based on the noise.

IV. REMOTE DEPLOYMENT AND LOCALIZATION

We propose a novel approach to remotely deploy these
sensor nodes using a launcher and subsequently perform local-
ization to create a virtual barrier. Our localization algorithm
is agnostic to the launch mechanism used. It is essential to
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Algorithm 1: SEED algorithm for intrusion detection

Result: Prediction value where 0O is no detection and 1
is intrusion
1 Prediction = -1;
2 Check orientation of sensor node to select mic channel
m where m = [1,3] and obtain V,,;
3 Obtain V,, = )" ifori > 0in Vj,;
4 if V, >V, then

5 Calculate Z array = [frequency for each zero
crossing D value];
6 Calculate Manhattan Distance d,, (noise) and dj,

(human) of Z for all training archetype ;

7 Apply KNN algorithm to select archetype from
each class with the least distance;

8 if d; < do then

9 ‘ Set Prediction,, = 1; Human detected by mic;
10 else

1 | Set Prediction,, = 0; Noise detected by mic;
12 else

13 ‘ Set Prediction,, = 0; Noise detected by mic;
14 Repeat to obtain Prediction,,V selected m;

15 if Majority Prediction,, = I then

16 | Prediction = 1;

17 else

18 | Prediction = 0;
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Fig. 9: Projectile: launch trajectory and localization

estimate the deployed node’s final resting position in a no-
network zone for successful localization.

Estimation of first landing location. Any object that is
thrown or launched moves along a curved path under the
gravitational pull and the physics of this projectile motion
is exploited by our algorithm. The horizontal component of
velocity of the ball is constant and is given by, v, = v, cosf
where, v, is the launch velocity and 6 is the launch angle.
The equations for time of flight (¢) and carry distance x are:
t = 20esind gpg x = M, respectively. The first landing
location of the ball can thus, be estimated if the parameters,
initial velocity, launch angle and time of flight are known. If
a ball cannon is used for launching it is possible to configure
the initial velocity of the ball while the angle of the launch can
be controlled by changing the angle of the cannon. However,
if the balls are launched manually then it is important to
measure these basic quantities with reliable accuracy. We

Algorithm 2: Proposed image processing algorithm for
angle of launch and heading

Result: Launch angle, Heading angle
1 Extract frames from each 240 fps video;
2 Create HSV color mask for color thresholding of
frame based on ball color;
3 Subtract background by element wise (pixel wise)
subtraction of consecutive color threshold frames;
if Valuepize;=0 then
‘ Signify stationery objects of frame (suppressed);
else
‘ Signify movement between consecutive frames;
Apply Hough circle transform to detect circles in
frame;
9 if Circle detected in frame then
10 ‘ Store Centre(x,y) and Radius(r) of detected circle;
11 else
12 | Discard frame;
13 if Centre(x,y) lies in Region of Interest(Rol) then
14 Ball present in expected (pre-defined) region of
interest, calculate angle;
15 else
16 ‘ Detected circle is outlier, discard the frame;
17 Plot centre(x,y) of circles from 8 frames and find best
fit linear regression;
18 Calculate angle from slope of obtained line;

® 9 S A

calculate the carry distance (distance between first landing and
launch location) by finding the launch angle and time of flight.
Further, we estimate the heading direction angle in which the
ball was launched. Two orthogonal high frame-rate cameras,
GoPro Hero 3, are used to capture the initial trajectory of
the launched balls accurately. The side camera is used to
calculate the launch angle while the back camera is used to
calculate the angle of heading. We propose a novel image
processing (algorithm 2) to this end. The Region-of-Interest
based thresholding step makes the algorithm robust, devoid
of any outliers, and also avoids fish-eye distortion. Fig. 9
shows the plots of detected center points for both cameras.
We observe that eight detected center points (eight frames) are
sufficient to accurately calculate the angles. The accelerometer
embedded inside the sensor node is used to determine the time
of flight. The acceleration values in X, Y, and Z are read every
20ms and their quadratic mean is calculated. Figure 9 shows
the accelerometer data received after the launch of a sensor
node. From this, we can calculate the time of flight using T’
= (Spike 2 packet no. - Spike 1 packet no.) x 20 ms.
Estimation of final resting location. We observe that the
acceleration value becomes constant after the ball comes to
rest (at 8.5s) in Fig. 9. Therefore, we can calculate the rolling
/ bouncing time duration after its first contact with the ground.
Rolling time calibration is done to estimate the rolling distance
of the ball with reasonable accuracy. From the first landing
location and rolling distance we can estimate the final resting
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Fig. 11: (a) Distribution of ball orientation after deployment;
(b) CDF of the localization estimation results

location of the nodes. If the landing terrain data is available
along with the rolling time, the location estimation can further
incorporate this information for even non-uniform terrain. This
makes the algorithm robust and enables the remote deployment
of our sensor nodes even from a large distance.

V. EXPERIMENT SETUP AND EVALUATION

Data were collected from four different ambient noise
sources: wind, insects, bird chirps, and animal motion (cows,
dogs, and cats) and of audio which signalled human presence:
a person talking, running, jogging, and walking. Further, data
was also collected for varying numbers of people walking
(intruders could only be walking/running to cross the virtual
fence). We also varied the distance of the human source from
the sensor between 1 m to Sm. Lastly, audio data was also
collected for a person walking on different terrains shown in
Fig. 10. A total of 1000 2 second recordings were collected
for both audio classes. All of the audio of the second class
was randomly interleaved with the noise audio samples to
result in various background noises sources being intermixed
to simulate real life scenarios. A tennis ball cannon is used
to set the launch angle of the balls and other parameters
like the elevation angle and launch speed are controlled. The
localization experiments are carried out in an open field with
low elevation. 5 sensor balls are launched 20 times to 500 m
and the orientation and location data are collected each time.
The LoRa transmission characteristics of nodes when they are
covered by various terrain and on surface are studied. The
impact of the capture effect resulting from the simultaneous
transmission of two nodes is also analyzed.

Deployment: Ball orientation. We evaluated the distribu-
tion of node orientation after deployment. Five nodes were
launched 20 times to obtain the distribution as shown in
Fig. 11(a). It can be observed that 68% of the times at least
2 microphones were above (or in) the middle plane after

(c) Stone terrain
Fig. 10: Experimental setup for testing intrusion detection across varying terrain

(d) Concrete terrain (e) Soil terrain

TABLE III: Comparison of SEED with Energy detection (ED)
and standard TESPAR (T) for all terrains and noise sources.

SEED 1 N ED I N T I N
I 93.3 6.7 I 92.3 7.7 I 90.1 9.9
N 6.9 93.1 N 382 | 61.8 N | 46.8 | 53.2

launching providing an opportunity to use signals from one
of the two channels, increasing the detection probability.
Deployment: Localization accuracy. The cumulative distri-
bution of localization accuracy after deployment is shown in
Fig. 11(b). We observe that the final resting location of the
ball is estimated within a reasonable accuracy of 2.4 m even
in the worst case and within 1 m for 70% of the cases.
Intruder detection: The performance metrics considered are

Detection rate (DR) = TPZ% , False Alarm Rate (FAR) =
%ﬁm} The DR, FAR, and confusion matrix are obtained

after performing 10-fold cross-validation on the data-set. (I)
Intruder activity. The performance of the detection algorithm
is tested for different intrusion activities (talking, running,
jogging, or walking). Fig.12(a) shows the performance metrics
when one person performs these activities at a distance of 1 m.
(IT) Number of people. The next intrusion scenario considered
a different number of people walking next to the sensor node.
Fig.12(b) shows the results with 1 to 5 people. (III) Terrain
type. We evaluated the performance for five different terrains
shown in Fig. 12(c). We observe that for all five scenarios the
DR is 85% or above. The FAR is also always below 10%.
(IV) Distance from node. We evaluated the accuracy of the
system when the intruder is at varying distances from the
node. This result is presented in Fig. 13. (V) Comparison.
Table III shows the confusion matrix for SEED compared to
energy detection and TESPAR. SEED outperforms the others
in terms of both DR and FAR. TERPAR has high FAR due to
the encoding of signals without energy consideration. SEED
solves this issue (low FAR) while maintaining low complexity.
LoRa: (I) Link with varying terrain. The LoRa RSSI values
were evaluated for different terrains completely occluding the
nodes. The gateway was located at a distance of 250 m from
the nodes. Fig. 14 shows that a sufficient communication link
could be maintained for all scenarios. (II) Capture effect. The
LoRa paradigm developed to prevent frame collisions when
multiple balls transmit using CAD and capture effect(Sec.II)
was evaluated. Fig. 15 shows the results of this experiment for
two adjacent nodes and are congruent with those expected in
[12]. With power difference and delay (when CAD fails) we
see that at least one of the transmissions reaches the gateway.
These results provide the confidence in B4W using LoRa with
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Fig. 12: Intruder detection performance with varying (a) intruder activity, (b) number of intruders and (c) terrains.
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Fig. 14: LoRa characteristics with varying transmit power and
SFs for nodes under different terrain occluding them

minimal required coordination amongst the nodes.
VI. CONCLUSION

We developed an intruder detection system called Balls
for Walls (B4W) to address many use-cases such as securing
wildlife from poachers, finding inadvertent entry into danger-
ous areas and border security. We designed a miniaturized
acoustic sensing system embedded inside rigid balls. We
proposed a novel, low complexity algorithm called SEED and
optimized the system for a long lifetime. We presented a
remote deployment algorithm which utilized image processing
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Fig. 15: PRR for simultaneous LoRa transmissions by 2 adja-
cent nodes 3 m apart with varying time delay of transmission

ferent terrains. We also studied the effect of various terrain
obstructions on the transmission characteristics of nodes.
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