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Abstract

This thesis investigates methods to enhance the robustness of space object cataloguing pipelines, focusing
on tracklet correlation and orbit estimation using angular measurements from short observation arcs. The
cataloguing robustness is defined as achieving high true positive and negative rates for tracklet correlation to
allow for the build-up of an accurate object catalogue. The study addresses the main research question: How
can the robustness of the cataloguing pipeline be improved when applying orbit estimation methods to the
full angle set of short observation arcs?

A baseline tracklet correlation approach, based on the Boundary Value Problem (BVP) within the Admis-
sible Region framework, is implemented. This method uses angular observations and hypothesized ranges to
estimate an object’s state, with correlations evaluated via a cost function based on the Mahalanobis distance.
Classical IOD methods are employed to investigate their application toward validation of tracklet correla-
tion when reconsidering the full angle set. The considered methods include the angles-only Gauss method, a
multiple angles least-squares Gauss approach, Gooding’s method, as well as a Batch Least Squares (BLS) orbit
determination (OD) method. The BVP and I0D methods consider two-body dynamics, and the BLS Earth’s
zonal harmonics and third body effects from the Sun and Moon. Simulated measurements are derived from
Two Line Element sets (TLE) for initial reference states for LEO, MEO, and GEO objects, propagated with the
SGP4 model accounting for Earth’s atmospheric drag, zonal harmonics and third body Sun and Moon effects,
providing the test data.

Results show that the BVP method performs best for GEO, achieving ~90% true positive rates with rea-
sonable uncertainty gating. For LEO and MEOQ, higher thresholds and cost-function minima are required due
to greater observation complexity and force-model discrepancy. Gooding’s method, making use of a Lambert
solver, demonstrated robust performance across multiple orbital revolutions, while Gauss’ methods were less
effective for large time gaps. Additionally, BLS struggled with sparse data and large time steps, offering limited
state refinement despite higher computational expense.

The findings suggest gating based on chi-squared distribution thresholds for GEO and higher magnitudes
for LEO and MEO to optimize true negative rates. While the BVP method provides sufficient accuracy for re-
observation scenarios, classical IOD methods and BLS exhibit limitations under sparse tracklet conditions.
This work highlights challenges in cataloguing lower-altitude objects, for ground-based optical observations,
and suggests the application of the BVP method on lower altitudes requires inclusion of force models for the
primary perturbations.






Nomenclature

Abbreviations
Abbreviation Definition
AR Admissible Region
ART Airbus Robotic Telescope
AU Astronomical Unit
BFGS Broyden-Fletcher-Goldfarb-Shannon
BLS Batch-Least-Squares
BVP Boundary Value Problem
CAR Constrained Admissible Region
ECEF Earth-Centred-Earth-Fixed
ECI Earth-Centred-Inertial
FP False Positive
FN False Negative
GEO Geostationary Orbit
HEO Highly Eccentric Earth Orbit
10D Initial Orbit Determination
IvP Initial Value Problem
L-BFGS-B Low-memory, bounded BFGS
LEO Low Earth Orbit
MCC Matthews Correlation Coefficient
MEO Medium Earth Orbit
oD Orbit Determination
PAR Probabilistic Admissible Region
PAR+ Possibilisitc Admissible Region
RMSE Root-Mean-Square-Error
RSO Resident Space Object
SDP4 Simplified Deep Space Perturbations model
SGP4 Simplified General Perturbations model
SPOOK SST software suite Special Perturbations Orbit determination and Orbit analysis toolKit
SSA Space Situational Awareness
SSN US Space Surveillance Network
SST Space Surveillance and Tracking
TP True Positive
TN True Negative
TLE Two Line Element set
VD Virtual Debris
VP Virtual Point
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Introduction

A key activity for supporting a long term sustainable outer space environment is the identification and track-
ing of space debris, enabling to monitor and potentially mitigate or reduce collision hazards. In 2009 two
communication satellites, the Iridium 33 and inactive Cosmos 2251, collided at an altitude of 790 km. This
was the first unintentional collision between intact objects, as of June 22 2012 about 1881 associated orbiting
fragments had been detected by the US Space Surveillance Network (SSN) [35]. The orbital perturbations
caused the debris cloud to spread globally, posing an even greater risk of collision for LEO objects with a sub-
stantial fraction expected in orbit decades after impact [33]. It is clear that monitoring space activities and
objects, warning and anticipating for potential collisions, is essential for safeguarding sustainable space ac-
tivities in near-Earth space. Within Space Situational Awareness (SSA), Space Surveillance and Tracking (SST)
isin charge of cataloguing and mapping the Space Debris population and other Resident Space Objects (RSO)
in the near Earth environment [49].

To support SST research and development, the Airbus Robotic Telescope (ART) and the SST software suite
Special Perturbations Orbit determination and Orbit analysis toolKit (SPOOK), allow for generation of real-
world and simulated sensor data, as well as RSO catalogue maintenance [10]. Around these tools, a pipeline is
being developed for cataloguing of RSOs without a priori information. This discipline is referred to as Initial
Orbit Determination (I0D).

The pipeline, setting the context in which the work is to be carried out is described as follows. Start-
ing from multiple short duration ground-based optical angle measurements, usually consisting of five angle
pairs spanning about 20 seconds, called tracklets, a comparison is performed with already catalogued ob-
jects. When a tracklet is successfully associated to a catalogued object it is used to refine the catalogued
object’s state. Alternatively, when it is not successfully correlated to an existing catalogue object, it is grouped
with other tracklets that did not correlate with catalogued objects. These tracklets are then compared with
each other as to investigate whether they originate from a common newly identified object. The angle mea-
surements obtained, however, contain noise caused by, e.g., instrument noise or atmospheric aberrations.
Together with errors introduced in the correlation models, uncertainty in correct association between track-
lets and objects is present. In certain cases, due to orbital geometries or uncertain data, tracklets may end up
being falsely associated with each other. False associations impact the overall space surveillance and track-
ing activities limiting accurate revisit observations that are necessary to acquire additional measurements
for accurate catalogue maintenance. Accordingly, it is beneficial for surveillance and tracking purposes to
minimize incorrect associations in tracklet-to-tracklet correlation and association to existing objects. In ad-
dition to robustness, the substantial quantity of angle data and the all vs. all approach to tracklet correlation
motivates the need for a low-complexity, minimum-computational-burden implementation.

1.1. Research objective & research questions

The aim of this thesis is to implement existing estimation methods and modify the cataloguing pipeline in an
effort to improve its robustness at minimum computational expense. The cataloguing robustness is defined
as the ability to capture truthful tracklet correlations. More specifically, it aims to achieve high true positive
and true negative rates for tracklet correlation.

Estimation methods of varying nature, i.e., different use and degree of information, are implemented into
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the cataloguing pipeline. A multiple angle IOD method is considered to investigate its effectiveness when
using the combined raw tracklet data spanning a larger time interval at an expected lower computational
burden. Additionally, a Batch Least Squares (BLS) orbit determination method is considered to investigate
the balance between acquired state accuracy, computational burden and sensitivity to detect correlation. A
baseline for the cataloguing pipeline is established as the boundary value method as described in [59]. The
process employing the baseline approach will be modified using the aforementioned estimation methods.
The baseline will provide a basis for comparison within the context of this thesis and facilitate reference to
other work. Performance is quantified using simulated observations according to ART’s specifications, using
truth-catalogued data to evaluate and validate the approach. Performance metrics include the time required
to obtain the state estimate, the accuracy of the estimated state, and the robustness defined by the degree of
truthful associations.

The approach will be applied to measurements from objects in different orbital regimes. This will allow
the behaviour of the method to be characterised and understood in a broader context. Altogether, this work
will address whether such an approach can provide a meaningful improvement on the cataloguing pipeline
with respect to robustness, computational burden and state estimate accuracy. To reflect the research objec-
tive, the following main research question is formulated.

How can the robustness of the cataloguing pipeline be improved when considering application of orbit
estimation methods to the full angle set of short observation arcs?

1.2. Thesis structure

The thesis starts out by presenting an overview of the relevant literature explored for the discipline of IOD, see
Chapter 2. After the literature is reviewed, a theoretical background is provided. First astrodynamic theory is
introduced together with the relations used for optical measurements in Chapter 3. Then, the necessary back-
ground theory on statistics and numerical optimization is provided in Chapter 4. This allows to introduce the
tracklet correlation approach and admissible region framework as part of the cataloguing pipeline in Chap-
ter 5. After introducing the baseline method for tracklet-correlation, the considered initial orbit determina-
tion methods and the OD batch-least squares method are described in Chapter 6. The methods introduced
in the previous chapter are verified in Chapter 7. The methodology and steps taken for measurement genera-
tion and the tracklet-correlation are described in Chapter 8. The results of the tracklet-correlation performed
with the admissible region framework as well as the effect of the estimation methods as an additional step are
presented and discussed in Chapter 9. Finally, the work is concluded in Chapter 10 and recommendations
for future work are proposed.
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The problem of IOD from angles only is to find the orbital state, which is defined by the six constraining pa-
rameters. A single optical measurement provides only two independent components, which is insufficient
to estimate a six-dimensional orbital state. Therefore, to determine the unique solution of the orbital state,
the angular measurements must be extended by the appropriate number of independent parameters. This
problem has been extensively studied and remains a topic of interest due to advancements in observation
technology that led to the acquisition of a significant amount of unclassified short observation arcs. Accord-
ingly, this chapter will outline the explored literature for this thesis. It starts out by providing an overview of
the classical methods and shows studies which have compared these methods in section 2.1. The problem of
too-short arcs is introduced together with the relevant literature aimed to address the problem in section 2.2
and section 2.3. Last, some alternative IOD methods or approaches for tracklet correlation are presented in
section 2.4.

2.1. Classical IOD Methods

Already in 1780 a method for determining the orbit from angle observations was proposed by Laplace [14].
It was originally developed for celestial objects and is, together with Gauss’ method, considered part of the
classical IOD methods. The classical methods extend the two independent angles by considering a set of
three angle pairs at different epochs, allowing to estimate the orbit from six independent parameters. While
Gauss’ method performs better for near-Earth objects, it is limited by the requirement of smaller angular
spacing (< 10°) between observations [14, 66]. Subsequent advancements like the Double r-iteration [14] and
Gooding’s method [20] have proven more robust and allow for larger separation in measurements, allowing
data spanning multiple observation nights [60].

Several comparative studies have evaluated the aforementioned IOD methods for different orbital regimes
and data conditions. Vallado, evaluated Gooding’s method, finding it robust and sensitive to the selection
of observation points, with improvements achieved by averaging orbital elements and using observations
spaced farther apart (maximum included separation of 1-2 minutes) [65]. Schaeperkoetter, evaluated Laplace,
Gauss, Double r-iteration, and Gooding on various orbits (polar, sun-synchronous, Molniya, GEO) and intro-
duced new error quantification parameters [55]. His work concluded that Laplace and Gauss showed a de-
crease in accuracy as the observation interval increased, where Laplace decreased more rapidly. Furthermore,
he observed Gooding’s method to improve in accuracy with longer observation intervals beyond 5 degrees,
about several orders of magnitude better compared to the other methods. Fadrique et al., compared Gauss
and Gooding for LEO, GEO, MEO, and HEO using simulated data [16]. The main finding was the challenge of
accurately estimating orbits with only angular measurements, especially when observation separations are
small, suggesting to collect as many observations as possible as to sample at maximum separations. Hwang
et al., compared Laplace, Gauss, Double r-iteration, and Gooding using simulated data, excluding Laplace for
real-world data comparisons [28]. Hwang et al. showed Gauss to perform best with observation time inter-
vals shorter than 10 seconds, and with increasing errors as the time interval increased. The double-r method
failed to converge for intervals shorter than 30 seconds, making it suitable only for longer intervals where its
performance was similar to that of the Gooding’s method. They concluded Gauss’ method to be most suitable
for an initial guess for OD, with Gooding and double-r exhibiting a higher failure rate when applied to real ob-
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servational data. Johnson, focused on Gauss, modified Gauss (assuming circular orbits), Double r-iteration,
and Gooding for LEO short arc observations [32]. He concluded, Gooding and double-r to be highly depen-
dent, yielding accurate results for some orbits while failing to converge for others. Johsnon also concluded
Gauss’, and Gauss’ circular method to produce reliable solutions for orbital arcs below 5 degrees. Van den
Abbeele, compared Gauss, modified Gauss, and Gooding for GEO short arc observations [68]. He concluded
that all methods are sensitive to measurement noise when considering short observation arcs. Accuracy im-
proved with increasing arc-length, finding the lower limit at 6% of the orbit. Especially Gauss’ showed to
be decreasing in accuracy for longer angle separation. Gooding’s method was found to obtain higher errors
than the circular assumed Gauss method. Miller and Freuh, compared Gooding and Gauss’ IOD methods for
simulated orbits and concluded Gooding to be more accurate in position and velocity estimates [42]. In par-
ticular, they concluded that the best case scenario for Gooding occurs when measurement spacing is greater
than five degrees, but the total span of the measurements not exceeding a quarter of the target’s orbit. For
GEO orbits with an eccentricity in the range of 0.1 to 0.3, and large measurement intervals (>550 minutes),
Gooding shows high errors in both position and velocity, however overall still lower than Gauss.

2.2. Too short arcs

When short observation arcs are considered, the classical IOD methods all show to be very sensitive to small
measurement errors, as small changes in measurement errors can result in widely different orbit estimates
[22]. For the initial value formulation methods such as Laplace’s method, this sensitivity is caused by the small
initial line-of-sight acceleration estimate which is propagated and amplified as it is inversely proportional to
the range estimate. For a boundary value formulation method, e.g. Lambert’s problem, it is dependent on
capturing the orbit’s curvature as depicted in Figure 2.1. This means that the classical methods generally
require relatively long tracklet lengths for stable state estimates. For GEO objects about 15 min was found to
be desired [16], or 5 to 10 minutes for LEO [66].

In addition to the requirement of longer tracklet lengths when using classical methods, the observation
strategy for identifying new objects is a trade-off between coverage and accuracy. High coverage, i.e. being
able to observe many different objects, suffers when longer observation is required for objects. Moreover,
orbit geometry and visibility conditions do not always allow for adequate observation time.

Figure 2.1: Short arc problem, showing sensitivity of small errors on orbit. The solid line represents the true orbit. The dotted circles
represent the error region surrounding the true object position, with the dashed lines the estimated curvatures corresponding to the
extreme case of false angle pairs. Figure is adapted from [60] and [22]

New developments took place to acquire better initial estimates from measurements that cover too little
of the object’s orbit for classical methods to obtain reasonable results. This ultimately lead to a new class
of IOD methods suitable for the incorporation of more sophisticated models and approaches. Milani et al.,
introduced the Admissible Region (AR) method for asteroids, which extends four angle measurements, i.e.
two angle pairs as well as two angle-rates, to six independent parameters by obtaining an admissible region
in range and range-rate space [41]. It used the attributable, a composition of the mean angles and angle-rates
obtained from a least squares fit to the tracklet, and constrained the admissible region in range and range-rate
by considering an asteroid contained within the solar system. It was shown to effectively constrain feasible
solutions for the extended parameters and sampled the region uniformly using triangulation. Each sample,
defined as a virtual asteroid (VA), was then used to define the expected location on the celestial sphere.

Since then, the AR method has been applied to Earth captured objects. Tommei et al., applied the AR ap-
proach to Earth-orbiting satellites by constraining the region for orbital energy and upper and lower bounds
on the range [64]. Still, the AR was uniformly using triangulation, obtaining a set of equally likely Virtual De-
bris (VD). DeMars and Jah, extended this framework and focused on the sampling of the AR [13]. Additionally,
they further constrained the AR, i.e. the Constrained Admissible Region (CAR), by including constraints on
eccentricity and semi-major axis. They assumed a two-dimensional uniform distribution, and discretized
the CAR by a Gaussian mixture model representing this distribution. It was shown to effectively represent the
feasible space of solutions and allowed to filter the region with additional observations. They showed that
the average root sum square error of the sampled region reduces with filtering. Still developments took place
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toward sampling of the complete AR toward a more representative distribution. Hussein et al., extended the
CAR method by considering measurement uncertainty and accounting for consistent orbit geometry con-
straint to the Probabilistic Admissible Region (PAR). It only samples the region which satisfies both geometry
constraints simultaneously, showing to obtain a better representation over the AR [27]. Cai et al., then also
extended the sampled region to incorporate epistemic uncertainty! through a possibility function, yielding
more reliable range and range-rate points in the Possibilistic Admissible Region (PAR+) with lower error esti-
mates compared to PAR [7].

2.3. Tracklet correlation

Instead of testing all possible samples in the admissible region as done in previous methods, Siminski et al.
aimed to only extract the best fitting virtual point reducing the number of evaluations [61]. They use previous
work of the CAR, and include an additional attributable as to express a cost function and search for the virtual
point corresponding to the optimum solution. The CAR is thus associated with a topography corresponding
to a set of attributables. This topography is expressed by the squared residuals between the measured and
modelled attributable, scaled by the measurement and modelled uncertainty given an hypothesised VP. It was
demonstrated to outperform the complete uniform sampling methods, obtaining the optimum in just a few
evaluations using a pattern search optimization method. It considered the geostationary regime and tracklets
spanning about two minutes. This allowed to correlate two tracklets based on gating the cost function and
obtain an initial orbital estimate. Around the same time, Ansalone and Curti presented a similar approach
based on space-based observations [1]. They use a genetic algorithm to search for the range and range-
rate, minimising the error between the estimated and measured angles. They compared the method against
classical methods and showed improved performance in state estimates for short arcs spanning 60 seconds.

Siminski continued to study the correlation approach, having presented the initial value method included
a boundary value method that uses the data of the attributable differently, obtaining an admissible region in
the outer ranges instead [59]. Based on an extensive study comparing both approaches, the BVP method
was found to be more robust and efficient permitting higher simplicity for implementation especially when
considering two-body dynamics [60]. The IVP approach is more complex and requires different optimization
techniques compared to BVP, having less favourable topography as the loss function contains many local min-
ima. Additionally, the representative uncertainty transformation from a measured to modelled attributable
proves to be more challenging for the IVP method. To improve this representation, Cai et al. used the Eu-
clidean distance between the estimated orbits in a non-singular canonical space using Delaunay variables
as cost function. It showed higher performance in true positive and true negative rates compared to the ap-
proach using a linearly approximated uncertainty transform in the measurement space [8]. Additionally they
developed a common ellipse method to exclude false positives for objects in the same constellation, showing
to successfully improve on the true negative rate.

Alternatively, Huang et al., aimed to improve the IOD convergence by correlating short arcs using a Lam-
bert solver and least squares fit [26]. The method assumes a GEO circular orbit, which allows the range to
be solved directly, as the orbit is then described with four degrees of freedom (semi-major axis, inclination,
right ascension of the ascending node and the true anomaly). This method assesses correlation based on the
residuals between measured and estimated measurements. The approach obtained high true positive rates
for simulated GEO tracklets of 3 minutes separated by 12h or less. Zhao et al., developed an 10D tracklet-to-
tracklet method to determine the orbital elements from two tracklets using only Gooding’s method [71]. To
enable tracklet correlation of tracklets separated by multiple nights, secular effects from the J, and luni-solar
gravitational perturbations as well as short-periodic effects due to J, and J>, are included. Correlation is
defined as a threshold on the combined root mean square between each measured tracklet and final state
estimated using Gooding. The approach showed good true positive (TP) and false positive (FP) rates. The
eccentric orbits (HEO and Molnyia) showed to perform worst, setting the performance boundaries for the
study by =89.8% TP and =4.7% FP rates. For single-threaded computation, around 1000 tracklet to tracklet
cases were performed per minute for LEO and HEO orbits while around 1500 for MEO and GEO.

2.4. Extension of IOD methods to multiple angles

Other papers investigated the effect of multiple angles and optimising angle sets. Karimi and Mortari, pro-
posed Jacobian and Least-Squares approaches to estimate the range vector using Lagrange coefficients from

L Epistemic uncertainty comes from limited knowledge rather than the random nature of a process.
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three or more angle measurements [34]. The method derives the ranges similar to Gauss’ method and allows
to solve the Lambert problem using the most orthogonal range estimates to obtain a midpoint range and
velocity vector. This method showed to increase the state accuracy by considering larger time span angles
and can handle co-planar conditions in which classical three angle pair IOD methods diverge. The method
developed will be further investigated in section 7.2. Wishnek, included angle-rates and used a least-squares
approach to solve for range and range-rate vectors, reformulating the method into a cost function optimized
via admissible region sampling [70]. It showed to be more robust for certain cases, but at a significantly higher
computational time.

2.5. Motivation

As becomes clear by the literature presented, efforts toward the short arc problem are an ongoing develop-
ment toward robust object cataloguing. The main difficulty faced is the dependency on observation strategy
and orbital geometry, denying an optimised universal approach for varying orbit regimes. The use of at-
tributables for sufficiently long tracklets in the BVP correlation method has been shown as a promising can-
didate for GEO orbits. Still, its correlation performance is dependent on a pre-defined threshold impacting
the resulting true positive and true negative rates. When extending its application outside of the GEO regime,
the threshold is expected to require tuning dictated by the observation quality associated with different or-
bital geometries [71]. In the end, the required balance between true positive and true negative rates needs
to be found as to allow for adequate cataloguing performance. As a first step towards this goal, this thesis
will investigate the impact of existing estimation methods in an effort to improve its robustness at minimum
computational expense. Essentially improvements in the true positive and true negative rates is sought, re-
gardless of a required false negative rate. The performance, in addition to the obtained true positive and
true negative rates, will be assessed in terms of the state accuracy and computational time. Further research
can then be aimed toward understanding the impact of this approach in relation to a predefined observation
strategy. Having characterised the approach’s performance in this study, subsequent work could characterise
its implications toward an efficient yet comprehensive object catalogue. For example, to which degree truth-
ful correlation limit adequate object cataloguing performance.



Astrodynamics & Measurements

The following chapter describes the fundamental theory necessary for the thesis work. It aims to consistently
introduce the concepts and terms as readily provided by textbooks [63, 9, 43] within the context of Initial
Orbit Determination. It starts of by introducing common coordinate systems necessary for use in describing
satellite orbit dynamics. Then the two body equations of motion are briefly discussed and expanded on with
discussion of perturbations. Finally, the aspects of observations and cataloguing pipeline is presented.

3.1. Coordinate system

To describe an object in position and time, consistent coordinate systems and time notations are necessary.
Additionally, the equations of motion and analyses consider an inertial system. Following the purposes of this
thesis it is convenient to start with considering the observer’s coordinate system and the required transforma-
tions necessary to arrive at a common system shared among all observations. Accordingly, an Earth-centred,
Earth-fixed (ECEF) system is considered. It consist of orthogonal axes (X, Y, Z) whose origin coincides with
Earth’s centre of mass (&). The Z-axis coincides, approximately due to Earth’s polar motion, with Earth’s angu-
lar velocity vector, wg. The X-axis then coincides with the Greenwich meridian' and equator, and the y-axis
perpendicular to the X-Z plane. Another system, the topocentric coordinate system (x, y, z), considers the
origin located on a point on the Earth’s surface. Then, the location of the point on the surface determines the
direction of the z-axis as the direction perpendicular to Earth’s surface. The orthogonal x-axis toward the East,
and the y-axis toward the North. Both of these systems provide a useful relation between the Earth-satellite-
observer as shown in fig. 3.1. The ECEF system, which is rotating w.r.t. the stars, is useful for describing the

(A P

g;._ - S

Figure 3.1: Earth-centred, Earth-fixed (ECEF) (X, Y, Z) and topocentric (x, y, z) coordinate systems with position vectors at three epochs.

observer location on Earth. However, for space objects it is more convenient to work in the Earth-centred

1The location of a great circle crossing both the North and South poles through a standardised zero point of longitude [9].



8 3. Astrodynamics & Measurements

inertial (ECI) coordinate system. This system is non-rotating w.r.t. the stars, whose reference axis is fixed to
a location in space at a fixed epoch. The ECI system (X, Y, Z) can be approximated as the ECEF system ro-
tated by an angle a, such that its X-axis aligns approximately with the vernal equinox. The vernal equinox
is defined by the intersection line of Earth’s equatorial plane and its orbital plane around the Sun, known as
the ecliptic. The point where Earth crosses the ecliptic from south to north, called the ascending node, marks
the vernal equinox. A common ECI system is the coordinate system aligned by the vernal equinox on the first
of January, 2000 (J2000.0). The relation between the ECEF and ECI system is thus determined by the angle
between the vernal equinox and Greenwich meridian, i.e. a¢. Additionally, the effects of precession, nutation
and alignment with angular velocity must be accounted for in the transformation between these axes.

3.2. Equation of motion

This section will introduce the fundamental astrodynamic relations describing the space object’s orbit. The
parameters used to describe an object’s state and its orbit are briefly outlined. The equation of motion of
point mass M, relative to a non-rotating reference frame with point mass M, as the origin, can be derived
by considering the gravitational force exerted by M, on M; [69]. The equation of motion for the restricted
two-body dynamics is derived by considering M, > M), neglecting object’s mass (¢ = GM,). Additional
perturbing accelerations can be included by adding a perturbing acceleration term a,,.

r= r—glr +ap (3.1)
The equations of motion are valid in an inertial coordinate system with bodies considered as point masses.
Perturbations on the two-body dynamics can be of gravitational and non-gravitational nature. Commonly
known are the perturbing accelerations due to non-uniform mass distribution, atmospheric drag, solar radi-
ation pressure and three-body effects. Inclusion of perturbing accelerations requires more effort in computa-
tion, as often the perturbing accelerations themselves require expensive models for accurate representation,
e.g. atmospheric density. Additionally, the geometry and object properties need to be known beforehand, e.g.
frontal area, mass and drag coefficient.

3.3. Object state parameters and simplified orbit geometry

Provided the object’s position r and velocity vector i are known, the orbit geometry can be described under
two-body dynamics by the Keplerian elements (a, e, i,Q,w,v). These elements allow for a simplified repre-
sentation of the orbit, providing insight into its shape, orientation, and the object’s position along the orbit.
The relations of the state parameters and the orbital elements are briefly introduced for later sections. For a
detailed derivation and description of the initial value solution and orbital elements, the reader is referred to
textbooks from Wakker [69] and Tapley et al. [63].

The orbital elements are derived from the position and velocity vectors as introduced in the preceding
section. The object’s position and velocity vectors at a common epoch are used to derive the six orbital ele-
ments (a, e, 1,Q,w,v) describing the orbit’s geometry. The first two elements, the semi-major axis a and the
eccentricity e determine the size and shape of the orbit. The third, fourth and fifth parameters, the right
ascension of the ascending node (, the argument of periapsis w and inclination 7, describe the orbit’s orien-
tation in space. Lastly, the true anomaly v defines the location of the object along its orbit by an angle relative
to the periapsis (or perigee for Earth-orbiting objects). An overview of the six elements is provided in fig. 3.2.

h i I h
Reference plane 7 Perigee Sen;;—irsnl})nor Semi-latus
rectum p r
Vernal Equinox + \V
F' F
Semi-major

axis a

Figure 3.2: The six orbital elements. Left the 3-dimensional schematic, right the orbital plane in the perifocal coordinate system.
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3.3.1. Initial value solution
From the equation of motion, the state at a future epoch can be estimated by integration of the state derivative
vector, defined respectively as

X= (3.2)

Two formulations exist, to estimate the state at a future epoch. An initial value solution and a boundary
value solution. The initial value solution propagates the full initial state X(#;) by single integration over a time

period At.
to+At

X(to+ A1) :X(t0)+f X(ndt 3.3)
To

The integration is commonly performed numerically, e.g. Runge-Kutta 4 or a multi step integration method

(66].

3.3.2. Lagrange coefficients
A convenient approach in obtaining the two-body dynamics constrained initial value solution can be ob-
tained by using the Lagrange coefficients. The Lagrange coefficients are derived by considering the perifocal
frame (fig. 3.2), i.e. origin centred on the orbit’s focal point F with xy-plane coinciding with the orbital plane
and x axis pointing to perigee [11]. In this frame the position and velocity vector are defined in the orbital
plane by

r=xp+yq =rcosvp+rsinvq

. oA . .. . . . (3.4)
I=xp+yq = (Fcosv—rvsinv)p+(Fsinv+rvcosv)q

Where, v is the angle between the position vector and perigee, r the distance from F to the object and [f), q, W]
the axis unit vectors, with w parallel to the angular velocity vector h. Assuming unperturbed dynamics, it can
be shown that the angular momentum is constant in this case [69]. Rewriting the equation of motion by its
anti-derivative, and since ¥ x = 0 and r x r = 0, it evaluates to

dh—i'xi'+r><i‘—() (3.5)
dt e '

This allows to evaluate the magnitude of the angular momentum, shown constant, by
h = |xo x Eo| = X0 Y0 — YoXo- (3.6)

Rewriting eq. (3.4) and substituting the obtained relations, eventually results in an expression for p and q

f)= %l‘o— %i‘g, (3.7)
q= x—;ro - %fo. (3.8)

Thus on the assumption of unperturbed motion, the position and velocity vectors at a given time can be
written as functions of p and q. Substitution of eqs. (3.7) and (3.8) into eq. (3.4) and simplifying finally yields

_ x}’o—yxor + YXo—XYo.

, 3.9
r h 0 L 3.9)
po 20RO, OV Y0, (3.10)
h h
Where the fractional terms are known as the Lagrange coefficients f, g, f and g,
r = fro+ gto, (3.11)
= fro+ gip. (3.12)

The Lagrange coefficients can be determined by exact functions or approximated by series, as will be dis-
cussed in section 6.1. The Lagrange coefficients will be used for the initial orbit determination method pre-
sented in chapter 6, allowing to determine the state vectors by linear combinations of the evaluated Lagrange
coefficients and initial state.
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3.3.3. Boundary value solution
An alternative way of determining an object’s future state, requires instead two position vectors rj, r, and
a time-of-flight #, — f;. This is referred to as the boundary value solution, or Lambert’s problem. Starting
from the initial position vector r and an initial guess for the velocity vector , the initial augmented state is
integrated similarly to the IVP solution

. _ f+AL

X(tp + A?) :X(t0)+f X(p)dt. (3.13)

o

The obtained propagated solution can then be used to correct the initial velocity vector t. This can be solved
by several numerical root-finding approaches, and is often restricted to two-body dynamics. Lambert was
the first to solve the problem of two outer position vectors and a time of flight, however several approaches
have been published since. Based on the traditional approaches (Gauss, Euler [14] etc.), Lancaster and Blan-
chard [37] and later Gooding [21] presented robust approaches. 1zzo build on the Lancaster and Blanchard
approach, comparing to Gooding’s numerical accuracy at significantly reduced computational effort. For the
detailed discussion of Izzo’s method, the reader is referred to [29, 30]. As will be discussed in section 5.3, 1zzo’s
method will be used in the admissible region BVP method.

3.3.4. Lambert’s Problem

When knowing the outer vectors r; and r; of the same object and the time-of-flight At connecting the two
vectors, a well known initial orbit determination method can be applied to estimate the full orbital state. This
approach, known as Lambert’s problem, also allows to handle multiple revolutions between the given posi-
tion vectors, specifically referred to as the multi-revolution problem. While perturbations can be included,
the following constrains itself to unperturbed two-body motion. The solution to Lambert’s problem is based
on Lambert’s theorem, which states that the time of flight between two position vectors depends only on the
sum of these radial distances, the linear distance between them and the semi-major axis of the orbit [3]. This
can be shown, starting from the integrated constant specific mechanical energy equation, by

1 $ rdr

At=— — (3.14)
VB Js-cV2r-r2/a
Here s is the semi-perimeter and c the chord given as
rn+rp+c
s:i, with c=|ry—r1y|. (3.15)

The integral equation can be written in series form, which requires to be solved numerically for the semi-
major axisz. For the purpose of Earth-captured objects, consider only elliptic orbits of finite semi-major axis.
Assuming the semi-major axis is known, then following the relation

r +r=2a, (3.16)

the focus F’ can be determined according to r; = 2a—ry and r, = 2a—r». The points where both these relations
hold true then determines the location of F’. Altogether, having two position vectors allows to obtain the
orbital plane represented by h, i and Q, assuming non-parallel vectors. Being able to numerically solve for
the semi-major axis a allows to obtain the semi-minor axis b, eccentricity e, true anomaly v and argument of
perigee w, given the focal distance FF'. For multiple revolutions it can result in two possible focii, F’ and F".
Corresponding to the two focii two different orbit paths, a long and short period, can be obtained leading to
four different orbits when including prograde or retrograde motion, as depicted in fig. 3.3. A more detailed
description of the outlined steps is provided in [18].

3.4. Measurements

As part of SST, cataloguing of new RSOs is achieved through passive optical observations. Passive obser-
vations rely on an external light source to illuminate the RSO and reflect it back to the observer. In con-
trast, active observations (e.g. laser ranging and radar) work by emitting and receiving the reflected signal
again. Active observations have the advantage that they can be used during night and day and depend less
on weather conditions. Laser ranging can only be performed under good visibility conditions and is com-
monly used to validate other measurement techniques. Though, in contrast to active observations, passive
observations require much less energy from the observer, especially for higher altitude objects. Within this
thesis, only passive optical observations are considered, according to the capabilities of ART.
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Figure 3.3: Geometry of Lambert’s Problem showing the four possible orbital solutions given the outer position vectors, number of orbital
revolutions, and time of flight. The four solutions include both prograde and retrograde motion, and the low (with focii F, F"') or high
path (with focii F, F') solution. Figure adapted from [18].

3.4.1. Measurements

When identifying new RSOs, observations are made by surveying the sky, by means of sidereal tracking. In
sidereal tracking, the background stars appear as point sources while the RSOs move at higher relative velocity
and thus appear as streaks. On the contrary, when a RSOs orbit is known, the RSO may be tracked. In tracking-
mode the RSO appears fixed on the image frame as a point source, while the background stars move relative
to the tracked RSO and appear as streaks. This distinction is depicted in fig. 3.4.

(a) RSO tracking, stars appear as streaks. (b) Sidereal tracking, stars appear as point sources.

Figure 3.4: RSO tracking vs. sidereal tracking [49].

Specifications of the telescope used are provided in appendix A. The telescope obtains angle data from
image processing, which involves plate solving and noise filtering. The object’s position consists of a pair of
angles at the corresponding time ¢, i.e.

m; = (a;,0;, t;), (3.17)

with the right ascension a € [0,27) eastward along the celestial equator from the vernal equinox, and the
declination § € [-m, ] along the hour circle positive north. These angles define the direction of the object in
the sky with respect to the observer at time ¢, represented by the unit position vector

u; -i cos(a;)cos(d;)
u; = | u; i = | sin(a;)cos(6;) | . (3.18)
u; -k sin (0;)

And conversely

a; = arctan(‘il),
u;-i

< (3.19)
6; = arcsin (u; - k).

Together, the range p and the line of sight u define the topocentric range vector of the object by p r = pu. The

geocentric range vector of the object r; is obtained in combination with the geocentric range vector of the

observer R, as shown in fig. 3.5. Showing the relation between the Earth, observer and satellite as:

ri=R;+ piu; (3.20)
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Figure 3.5: Relation of the observation position vectors.

3.4.2. Information from tracklet

N

Usually, multiple measurements m;’,

tracklet

are taken shortly after each other, and readily correlated to form a

Tj=(m;)y,, (3.21)

here N denotes the number of measurements, typically in the range of 3 to 10. The measurements are ob-
tained at time interval At = £, + ¢, + ¢, dictated by the exposure time t,, the readout time ¢, and small errors
represented by € <« t; + t,. When desired, apparent angular velocities may be obtained from the measure-
ments contained in a tracklet and their time information, to form an attributable vector

A= (ag, 8, &g, ). (3.22)

The attributable, which represents the angle information 6y and 0o of the tracklet at the middle epoch fy, is
obtained by a least squares fit to the tracklet. Where 8 can be substituted for the measured topocentric right
ascension a and declination 6. Following Maruskin’s approach [40], the least squares fit assumes the angular
motion to be modelled by

9(t)=00+90(t—t0)+%éo(t—t0)2. (3.23)

By minimising the residual normalised by the measurement uncertainty, the corresponding angles and their
rates can be found. Accordingly, the cost function is given by

J= L % 0(t;) — 0,1 (3.24)
- 20_5 = 4 1 ) .

where 6(t;) represents the model’s estimate at time ¢#; and 6; is the observed measurement at t;. The obser-
vations are taken to be symmetrically distributed around the middle observation, i = 0, with constant time
interval T (t; = ty + (T/n)i). The solution to minimize the cost function is then obtained using the normal
equations given by,

0o
A Qo =d (3.25)
0o
with the information matrix
N 1 ti— 1t %(ti—to)z
A=Y | ti-to (Gi-0)? F-1)° (3.26)
i=-n % 3(ti— 1) 3(ti—10)® (i —1p)*
and
N 0: 1
d=3) —| ti-to |. (3.27)

i==n %9 [ 1(1; - tp)?

The associated covariance expressing the measurement accuracy of the angles can be obtained by inverting
the information matrix, as will be presented later. An example of the modelled attributable from a set of angles
in a tracklet is depicted in figs. 3.6 and 3.7. The tracklets correspond to artificially generated measurements



3.4. Measurements 13

of a 100 degree longitude GEO object. The two tracklets are separated by 3 hours, each consisting of 5 angle
pairs with 20 second measurement interval.

Attributable from tracklet

—5.712 T T T T Attributable from tracklet
T T

rrrrrrrr Modelled attributable -e2n N odeliod et
® Tracklet data | | T b odlczl ed iattnbum ble
=573 1 X Middle point 1 ° racklet data
—5.713 | X Middle point B
—5.714 | 1 L
El —5.714 ,
£ . w @ e
= . =
=] e o & T -
2 -5.715F T T ®e 4 g °
E T £ 57151 b e .
2 :
8 ° =
=1 8
5.716 4 A
—5.716 - 4
—5.717 B
—5.717F B
_5.718 . . . . . . .
106.80 106.75 106.70 106.65 106.60 106.55 106.50 _5.718 L

n L L L L L L
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Right ascension [deg| Right ascension [deg]

Figure 3.6: Modelled attributable from first tracklet correspond-
ing to a GEO object, middle point indicates the angle and corre-
sponding angle-rate used in attributable.

Figure 3.7: Modelled attributable from a second tracklet corre-
sponding to the same GEO object.

The measurement model for the topocentric angle-rates are determined by the line-of-sight vector and

its derivative
pr=i-R (3.28)

From the corresponding topocentric vector components, X, y, 2, X, J, 2, the angle rates are obtained by taking
the first derivatives of the right ascension and declination

d-@q.@x-ﬂ (3.29)
_dyy dx”  x2+y2 '

N
o0y, 4o, Ao, 2ty z(xk+yy) (3.30)

Tax T ay? T az 2+ y2r?







Statistics & Numerical optimization

This chapter will introduce the notation used for the tracklet correlation approach used in the cataloguing
pipeline. It will first cover the main theory on statistics in section 4.1, based on textbook notations found in
[2, 63]. Lastly numerical optimization will be briefly introduced and elaborated on for the linear least-squares
solution, as used for tracklet processing toward attributables, and the quasi-Newton optimization method for
the correlation problem.

4.1. Statistics

The continuous probability distribution of a random (multivariate) variable is described by a density function
f(x) as the derivative of the cumulative distribution F(x)

dF(x)
ax = f(x) 4.1)

The cumulative distribution quantifies the probability that the random variable X is below a given value x,,

Flxg) = P(X < x) = f " fodx. 4.2)

In many statistical applications, the random variable X can be a vector x of multiple random variables, known
as a multivariate random variable. Its joint probability distribution is often modelled by a multivariate prob-
ability density function. The multivariate normal distribution describes the probability of a vector x of n
random variables, given its mean X and covariance matrix Cy,
— 1 1 ol ! -

f(x) = Wexp —E(X—X) X (X—X) . (43)
The measurement noise, as well as the uncertainty in a state estimate, can be described by a covariance
matrix, where the covariance is defined as the second moment about the mean

x=E[Xx] = foo xf(x)dx, (4.4)

Cx=E[x-0x-%7]. 4.5)

4.1.1. Bayesian estimation
Bayes’ theorem can be used to evaluate the posterior density that describes the probability of a variable x
given a measurement z and measurement model M,
flzlx, M) f(x, M)
x|z, M) = ——FF——. (4.6)
! f(z, M)

This applies directly to the classification of measurements to objects, i.e. for correlation purposes an object
¢; is sought which gives the maximum likelihood for a given measurement z. Assuming that all candidate
objects are equally likely and modelled with the same probability, the likelihood is proportional to

flcilz) x fxlc;) f(ci). 4.7)

15



16 4. Statistics & Numerical optimization

Here, c; represents the object, and typically its pior state is used to model the measurement z. This propor-
tionality expresses the probability of an object given a measurement as the probability distribution of the
difference between the reference z and the measured z variable

f@lz) = f(z-2). (4.8)

Assuming both the measured and object’s modelled parameters are normally distributed with their mean and
covariances (Z, z, C;, C), the probability density function of the difference of the two independent normally
distributed random variables is defined as [60, 62]

flz-2) = p —%(Z—Z)T(CZ+C2)_1(Z—Z) . (4.9)

—————————€X
27T"/2|Cz + Ci|1/2
The object ¢; corresponding to the maximum of this probability function denotes the object most likely as-
sociated to the measurement

Ci =mcaxf(z—i). (4.10)

Equivalently, the negative logarithm can be minimized

¢ =minln (27"2C,+ GoI'?) + 2~ (G, + C)) ' (2~ 2). (4.11)

This function then allows to evaluate the correlation between an object and a measurement or between two
measurements. The first term rejects objects and measurements with high uncertainties, the second term
is the Mahalanobis distance d? [38] as cited in [44]. The object that yields the smallest evaluation of this
function is then considered to be the most likely object associated with the measurement. In cases of high
uncertainty and almost equal distance d of a measurement to two different objects, it is more appropriate to
use only the second term. As the high uncertainty dominates the function in this case, it prevents the small
difference between the Mahalanobis distances from being captured and the most likely object from being
unambiguously evaluated.

4.1.2. Chi-squared distribution

When assuming the measurement errors are Gaussian distributed, and given the variance from the mean, or
reference variable, the probability that this considered measurement z is associated with Z can be assessed.
The use of the Mahalanobis distance for this assessment is motivated by its ability to account for statistical
significance, particularly when aiming to gate correlations. For example, an association threshold could be
expressed by the Euclidean distance of a random variable z from the mean and its distribution from a refer-

ence variable Z
druc =\ -2 z-2). (4.12)

This approach however does not take into account the covariance, and is in all cases for non-unity covariance
not suitable. The Mahalanobis distance, which is scaled by the uncertainty and describes a statistically mean-
ingful distance between the reference 2 normal distribution and a variable z in the same space, see fig. 4.1. It is
essentially a measure of how many standard deviations (in multivariate domain) the random variable is from
the mean of a reference normal distribution. Additionally, the squared Mahalanobis distance has the useful
property that it can be related to the multivariate normal distribution with the chi-squared distribution, as
plotted in fig. 4.2. The chi-squared distribution for a scalar random variable x is given by the function

_ 1 n/2-1_-x/2
flx,n)= W(n_x)x e for x=0, (4.13)
2
with T' a mathematical function of n, the gamma function, and n the degrees of freedom (the amount of

variables in x). If the n dimensional random variable x is normally distributed, the squared Mahalanobis
distance d? is then distributed by the chi-squared distribution y? for n degrees of freedom [2].

A’ = x-0"Cx-%) ~ y3, (4.14)

The chi-squared distribution allows to gate using a single variable, i.e., the Mahalanobis distance, that is
dependent on multiple degrees of freedom n. The Mahalanobis distance is used to determine whether the
considered random variable is statistically relevant w.r.t. a reference distribution. The cumulative density
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Figure 4.1: Qualitative plot of a bivariate Figure 4.2: Chi-squared distribution for up to n = 4 degrees of freedom. Grey re-
normal distribution with reference vari- gion for n = 4 shows the threshold for a 5% probability level.

able z and tested variables z; and zp at

equal Euclidean distances. The iso-lines

represent constant distance d to Z.

function of the chi-squared distribution then yields the probability P that the squared Mahalanobis distance
is less than a set threshold x,,
P(d* < xy) = F(xy, n). (4.15)

The threshold values are determined by inverting the above function. Numerical integration is used to deter-
mine the threshold values for corresponding probability of a n degree of freedom chi-squared distribution.
Common probability levels are tabulated in table 4.1. If for example the threshold is set to define association
of all random variables within a 5% probability (or 5% true positive rate), the squared distance d? should be
less than x,, = 0.711 for n = 4. As will be discussed in chapter 5, the Mahalanobis distance will be used to
correlate two tracklets, which is then determined by gating the distance using the desired upper bounds from
the chi-squared distribution, as tabulated in table 4.1.

Table 4.1: Gating values (x;,) for different probabilities that a given n dimensional variable is below an upper value x;, of the chi-squared
distribution [45].

Probability P(x < x,,)

0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99

0.000 0.001 0.004 0.016 2.706 3.841 5.024 6.635
0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210
0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345
0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277

B w N || S

4.1.3. Uncertainty transformation

When correlating an object ¢; to a measurement, the variables and their uncertainty must be described in
a common frame. As seen in previous section, this can be done by modelling the measurement from an
object’s state through some function Z = M(x) and thereby performing the association in the measurement
space. Corresponding to the transformed state, also normally distributed, the probability density function of
the transformed variable can be found through linear approximation of the considered model

_ _ OM(x)
M) ~MX)+J&x-X) J=—}r (4.16)
0x
using the initial mean X and covariance Cx
z=E[z] = M), (4.17)
Ci=Elz-2z-2"1=JGJ". (4.18)

This approach highlights the assumption of linear behaviour around the mean state variable. As the corre-
lation is dependent on the statistical distance to a reference variable, and thus the accuracy of the uncertainty



18 4. Statistics & Numerical optimization

representation, this can be a restrictive assumption for non-linear models M (x). If the model to transform the
state is non-linear or the initial uncertainty is high, it can result in deformation of the uncertainty in the new
space of the initial distribution. In this case, the mean may be well represented in the transformed distribu-
tion but the distribution for larger standard deviation is skewed. If the outer bounds are not well transformed,
associations may not be realistically captured. While on the contrary, if the distribution of the inner bounds
are over-estimated, a lot of false associations are more likely to occur.

Depending on the correlation approach, i.e. initial value or boundary value as will be introduced in chap-
ter 5, the uncertainty is transformed differently and results in different accuracy of the initial representation.
This will be discussed further in section 5.4.

4.2. Numerical Optimization

For orbit estimation and observation data processing numerical optimization is commonly employed, as is
the case in this work. The main objective of numerical optimization is to define an objective or function L(x)
that can be expressed by dependent variables x, which are then required to be optimized and correspond to
the optimum function evaluation L(X) [48]. Often the function is formulated such that it is minimized

mxin Lx). (4.19)

If no constraints are considered on the function L(x), and the function is continuous and differentiable in a
closed and bounded domain, a local minimizer X is said to exist if the optimality conditions are met [48]. The
two (first and second order) optimality conditions are defined by

VL(x) =0, (4.20)

AxTHx)Ax >0, H(x) = V’LX). 4.21)

Where H is the Hessian matrix and Ax the directional vector in all considered parameters in x. The directional
vector Ax follows from linear approximation of the derivatives by the second order Taylor series, i.e.

Lx+Ax) ~ LX) + (VLX) T Ax+ %AXTH(X)AX = L(Ax). (4.22)

4.2.1. Linear least squares
A method or application of optimization useful for data fitting, i.e. use of more than required data points for
a best fit, is the least squares fit. If more data points are available then required, the additional data points
can be considered as an associated fit that deviates least with the given data points. To acquire such a best
fit, the solution minimizing the sum of the squares of the deviation is sought, i.e. the least-squares fit [48]. A
solution to the least-squares fit can be obtained for a general linear system of equations (with independent
parameters) [63]

y=Ax+E€. (4.23)

Here y denotes the vector containing the observed data-points, A the design matrix, x the vector containing
the unknown parameters to be fitted and & the residuals. The vector x, is sought to obtain a minimum sum of
the squared residuals

min Lo =¢"e = (y-Ax)" (y-Ax). (4.24)

Then following the required optimality conditions, the local minimum is said to exist. Accordingly, the first
order sufficiency, also known as the normal equation, is obtained as

VIx =-AT (y-Ax)- (y-Ax)'A=0 = (ATA)x=ATy, (4.25)

where this x denotes the estimated or fitted parameters indicated as X. The second order sufficiency condi-
tion, eq. (4.21), is met for
Hx) =ATA>o0. (4.26)

If both conditions are met, the local minimum is found by the least-squares solution from eq. (4.25)

%= (ATA) " ATy (4.27)



4.2. Numerical Optimization 19

4.2.2. Quasi-newton method

As introduced, optimization is closely related with evaluation of the gradients. Based on the gradient infor-
mation used in finding the optimum solution the methods are referred to as zeroth, first or second order
methods. For the second order method, the local approximation of the cost function at the current step xy.,
eq. (4.22), is used with the first order sufficiency condition to determine the step update

VL(AX)=0 = VL+HAx=0 = Ax=-H!VL. (4.28)
The cost function is then evaluated, until desired convergence, by consecutive evaluations of
X+l =X —H VL. (4.29)

Theoretically, the second order methods provide the most efficient approach in searching for a minimizer
by using an (approximated) second order derivative of the cost function. However, as the system of equa-
tions becomes larger (i.e. multi-variable) the second order derivative (Hessian) becomes large and expensive
to compute. Quasi-Newton methods offer a robust alternative, by instead approximating the second order
derivatives from linear expansion of the first order derivative information

VLXpr1) = VLX) + HXpr1 —Xp) = H(Xpr1 —Xg) = VLXjr1) — VLXR). (4.30)
Instead, operating on its inverse avoids solving the linear system, eq. (4.28), at each step, so B=H"isused.
Xp+1 =Xk = Bro1 (VLg+1) — VL)) (4.31)
Updating the inverse Hessian matrix is achieved as
By =B+ ABy, (4.32)

where the update AB;. can be evaluated in several ways. The tracklet-to-tracklet correlation procedure for
the cataloging pipeline, as later described, uses the Broyden [5], Fletcher [17], Goldfarb [19], Shannon [58]
(BFGS) update function (as cited in [48]). The BFGS method for updating the inverse Hessian matrix updates
is derived and discussed in [46].

4.2.3. Constrained optimization
Often constraints are included in the optimization problem and used to find a bounded optimal solution.
The problem of finding a bounded optimum is noted as

n;inL(x) st. C={x;=x<xy} (4.33)

The optimality conditions for L(x) in the bounded region C are given by a boundary optimum in addition to
the first, eq. (4.20), and second order sufficiency, eq. (4.21), for local minimum. The boundary optimum is
found if

VLT Ax >0, (4.34)

i.e. there are no feasible directions Ax for which the objective function L decreases [48].






Admissible Region & the cataloguing
pipeline

This chapter will introduce the admissible region approach by derivation, and show the developed methods
for the tracklet to tracklet initial orbit determination application [64]. This application will be introduced as
how it was first developed, using the Initial Value Problem (IVP) method [60]. This will show the key steps
and aspects of the method as used for tracklet correlation and initial orbit determination. Having formed an
understanding of the developments and approach, the disadvantages and findings of comparison with the
alternative Boundary Value Problem (BVP) method are discussed. This allows to introduce and motivate the
choice for the BVP method as the cataloguing pipeline, and thereby baseline method. The baseline method
is then presented through derivation of the BVP method, and a brief example is shown.

5.1. Admissible Region

The Admissible Region (AR) approach originated from Milani et al. [41], who developed the method to restrict
the range and range-rate solution space of asteroids by constraining the asteroid within the solar-system. Fur-
ther constraints on the semimajor axis and eccentricity, i.e. the Constrained Admissible Region (CAR), were
developed by DeMars and Jah for Earth-orbiting satellites [13]. As will be clear, two methods are considered
for the admissible region. An initial value problem (IVP) method, where only the information of the initial
observation is considered for modelling. And a boundary value problem (BVP) method, in which informa-
tion of both the initial and last observation are used for modelling. Regardless, both methods require the
same information, i.e. two independent attributables A;, A,. An attributable is obtained from a tracklet, the
procedure is outlined below.

The derivation starts from the optical observations, which provide (see section 3.4.2) an attributable A =
(0,00, &g, 0p), which represents the middle angles and corresponding angular rates. The attributable is then
expressed as a line-of-sight u, eq. (3.18), and its first derivative

u—a—“ma—“é (5.1)
T da 085 '

Together with the satellite-observer-Earth relation, eq. (3.20), the velocity vector is expressed as function of
the hypothesised range p and range-rate p

=R+ pu+pu (5.2)

Substitution of egs. (3.20) and (5.2) into the the two-body energy equation

112
:ﬁ_&:_u_@’ (5.3)
2 rl 2a
yields
26 = g =p?+2RTup + f(p), 6-4)
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with
2u

(o) =ulap? +2R%ap0 +RTR+ ——— .
flp 1Y 1Y IR+ pul

(5.5)

The resulting equation is a quadratic equation in p for a given p. The roots can be solved given a constant

orbital energy € by
p12=py*\/p%-f(p)—2¢ with p,=-RTu. (5.6)

The solution for given p allows definition of the admissible region by a given constant orbital energy. When
considering Earth-captured objects, the admissible region for a given attributable A and hypothesised range
information p = [p, p]” is obtained by

Ce(p) ={p:€(p) <0}. (5.7)

In other words, all considered solutions for range and range-rate are constrained by the constant energy line
for Earth-captured orbits € < 0.

5.1.1. Constrained Admissible Region (CAR)
The admissible region can be further constrained when assuming constraints on the orbit regime such as
semi-major axis and eccentricity.

Ca(P) ={P: amin < a(p) < amax} (5.8)

Setting a value for the semi-major axis, results in an equivalent energy, as they are related through the stan-
dard gravitational parameter, 1 = —2¢/a. Using this equivalent energy, the roots for range-rate given a range
can be solved, yielding a curve of constant semi-major axis in the admissible region. Additionally, a constraint
on eccentricity can be set

Ce(p)={p:e(p) < emax}- (5.9

The derivation follows some more rigorous rewriting as presented in [13] considering as the eccentricity can
be expressed as:

2¢|h|?
e=1/1+ : (5.10)

12

Ultimately, a fourth order quartic equation is obtained depending only on the range-rate, given an attributable
and range

asp* + azp> + azp? + a1 p + ap = 0. (5.11)

Solving for the real roots of eq. (5.11) yields a constant line of eccentricity in the range - range-rate space. An
example following [13] is depicted in fig. 5.1 to illustrate the constrained region.

Example, CAR from (DeMars & Jah, 2013)

Ce

—_—C,
_—C,
—25@---—- C.NC,NCe

p [km/s]

4 6 8
p [Earth radius]

(=)
N -

Figure 5.1: Example of a CAR following [13] (@ = 10 deg, § = -2 deg, & = 15 deg/hr, 6=3 deg/hr, 0 deglat., 60deg. long., a < 50- 103 km).
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5.2. Tracklet-to-tracklet correlation

The origins of the AR method as derived by Tommei et al. [64], and the further constrained CAR Earth-
captured objects [13], considered sampling the whole region uniformly. More recently, studies focused on
sampling this region by inclusion of uncertainty and possibility. While the AR can be reduced to some de-
gree, especially for IOD purposes it is not computationally viable to discretize an infinite region of feasible
(or virtual, VP) points and assess for each sampled VP its association to a follow-up observation. Accordingly,
as suggested by Tommei et al. [64], the AR method can be extended by considering two attributables. This
allows to constrain the required six parameter IOD problem by using eight independent parameters. Siminski
investigated such approaches based on both the IVP and BVP method [59]. Both methods use two indepen-
dent attributables, of which a subset is used to model expected measurements. The expected measurements
can be compared against the true measurements to assess the likelihood of the hypothesized parameters.
Specifically, by including the measurement and modelled uncertainty a cost function can be evaluated for
a given attributable pair A;, A, given a set of hypothesized parameters p. Combined with an optimization
method, the best hypothesized parameters can be found at minimum function evaluations. The procedures
for both formulations are depicted in fig. 5.2.

. Hypothesized Estimated Modelled mea-
Observations
,,,,,,,,,,,,,, parameters __state__ surement
[052. 8, o, 52] : observed - modelled : l
VP 1 o = ] Lo, R
a1, 61,61]; P1, 01 g,g - [az,ég,ag,éz]
: e A P
Hay, 61, as,05] p1, 02 ‘ g’g — [061,51ya2y52]
BVP ! ‘ ’ ‘

N

3 observed - modelled

d1,81, d2,6,]

Figure 5.2: Overview of the steps in each approach for the tracklet correlation frame-work considered, figure adapted from Siminski et
al. [59]

5.2.1. Initial value problem method

There are generally two approaches to solve this problem using a loss function. The IVP and BVP both make
use of a discriminator to compare modelled and measured data obtained by selection of the free parameters.
Siminski [60] compared and described both of these approaches in great detail. The difference between IVP
and BVP method is in the state and discriminator used. The objective function to be minimised for given set
of attributables in the IVP method is defined as

Lvp = z-2)T(Co+Cy) Hz—-12), (5.12)

where z denotes the measured state, Z the modelled state, and C the covariance of the modelled or measured
state. The subscript indicate the corresponding attributable, where A; is acquired by a time AT earlier than
A,. The cost function is derived in section 4.1, and effectively represents the maximum likelihood of the free
parameter set given the measured angles. It represents the Mahalanobis distance from a normal distribution.

For the IVP the measured and modelled states take shape as
- T R R A a ~ 1T
7= [az,ﬁg,dg,éz] and z= [a2,52,d2,52] . (5.13)

The IVP method uses the initial attributable and propagates it to the second observation epoch to model the
second attributable and use it as discriminator. The resulting AR is in range p - range-rate p space, form-

ing the six required independent parameters [a1,81,d1,61,01,01] . Considering the CAR derived in previ-
ous sections, the free parameters p = [p1, 1] T can be sampled and used to acquire the orbital state using
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egs. (3.20) and (5.2). The state vectors and observer position then allow to model the topocentric measure-
ment angles and angle rates, Z. As for the covariance matrices, the information matrix obtained from the least
squares fit is inverted to obtain the deviations in the angles and angle rates at the middle tracklet epoch. The
covariance matrix can then be populated with the diagonal terms of the inverse

o3, 0 0 0
0 g5 0 0
C,= 0 0 U¢2i i 0 (5.14)
2
0 0 0 o 5,
Still, the covariance for the modelled state C; is required and is obtained by transformation of C,.
02z, 02(z,p)\"
Cz:( ( p))cz( ( p)) 5.15)
0z 0z

So, from two tracklets T and T> at different observation epochs attributables are derived including the angle
deviations. The IVP method then compares the modelled second attributable Ay with the measured second

attributable A, = (&5, 5 2, &2, ) ») based on the initial conditions, i.e. the first measured attributable A;.

5.3. Cataloguing pipeline / BVP

The boundary value approach uses the angles of both attributables to model the rates and evaluate the like-
lihood of association between the attributables. The cost function is defined similarly as for the IVP method,
as the squared residuals normalized by the uncertainty

Leve=@-2)" (C;+C;) ™ @-2). (5.16)
The measured and modelled states are composed as

z=(d1,01,d2,0,) and i=(&1,51,&2,52). (5.17)

This approach of using the attributables requires to extend the attributable by the outer ranges p; and pa,
forming the six independent parameters as [a1,61,@2,62, 01, 2] L Accordingly, the CAR is in the range p; -
range p, space. Then using the Earth-satellite-observer relations, the Lambert’s problem can be solved given
the two outer position vectors and the time of flight. However, to solve Lambert’s problem completely and
thus obtain the velocity vectors at both epochs i; and i, the number of completed orbital revolutions k, the
direction of flight and the correct (low or high path) solution must be known. As described in section 3.3.4, at
most four different orbits can be found, so each parameter and resulting orbit must be considered to define
the orbit most likely to correspond to the measurements. Then, similar to the IVP method, the measured
state z is modelled given the two outer states.

The covariance matrices C, and C; are derived from the covariance matrices obtained through the least
squares fit for each tracklet. These covariance matrices are computed by inverting the information matrix,
P = AL, Once the attributables for both tracklets T, T» are determined, the covariance matrices are popu-
lated with the relevant diagonal terms corresponding to the angles and angle rates.

g2 0 0 0 o5, 0 0 0

I R ¢ 4ol o5, 0
C,= 0 0 032 0 and C;= 0 U(Ziz 0 (5.18)

o 0 0 o} o 0 0 of

The deviations represent the uncertainty in the attributable, or average deviation based on the tracklet mea-
surements. The covariance of the modelled attributable z, is obtained by mapping the covariance in the
measured angles C, into the modelled angle rates covariance by linear approximation following section 4.1.3

[59].
- (Z)e(Z) 519
27 \oz) “\oz) - '
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The Jacobian (g—i) is evaluated using central finite differencing with a step size h = 1078, Each row of the

Jacobian is evaluated similarly to the first row, given by:

ai(zrpy k) - i([al + h!6lra2!52]T)py k) _i([al + h)6l)a2r62]T7p) k)
dar 2h

Altogether, the cost function can be evaluated to assess the likelihood two measured attributables are asso-
ciated. In contrast to the IVP method, the BVP method obtains separate CARs for different number of revo-
lutions. This is beneficial for optimization, as the topography often contains a single minimum for each &,
and is characterised by smooth surfaces [60]. Finding the free parameters p = [p1, p2] g minimizing the cost
function allows to assess association of the two attributables, which is determined by a threshold on the cost
function.

. (5.20)

%107 k =0, 5x20sec, 3hr, 100deg GEO
;

~ e~ Evaluation Path

Solution

o Obtained solution

25F L
T 021
25 30 35 40 45 50 55 60 65 ’

o [m] x107

Figure 5.3: Topograhy and optimization evaluation path for an example GEO case. GEO object for simulated tracklets of 5 measurements
taken at time interval of 20s with 2" noise. Revisit time of 3 hours for a 42,164 km 100 deg latitude GEO satellite. Observer located at 30
degree longitude, 40 degree latitude and 0 m altitude.

5.3.1. CAR for BVP
For the BVP approach, Schumacher et al. [56] derived the constraints in the range - range AR. The method
considers constraining the feasible range space by a maximum and minimum semi-major axis and maximum
eccentricity. Accordingly, maximum and minimum values can be set bounding the AR. This follows from the
requirement on the position vector’s magnitude to be greater than the orbit’s minimum expected perigee
rp = a(1 - e) but smaller than its expected maximum apogee r, = a(l + e)
(@min (1 = emin))? < [£1* < (@max(1 + emay)”. (5.21)

With the Earth-satellite-observer relation and squaring the terms,

a2 (1= emin)® <R-R+2R-w) p + p? < %, (1 + emay)? (5.22)

the equations for the bounding ranges are obtained by

Pmin = — (R-w) + \/ R-w?+aZ, (1-ema)*~R-R, (5.23)
Pmax = _(R'u)+\/(R'u)2+a1211ax (1+emax)2_R‘R- (5.24)

Which define the bounding rectangular box in range - range space as
CoR,w) ={p: Pmin <P < Pmax} - (5.25)
Additionally, the solution of the Lambert’s problem is bounded to a minimum and maximum number of
expected revolutions k. This is defined by assuming a circular orbit and Kepler’s third law [59]
At

_—. (5.26)
P(amin/max)

Kmin/max =
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Here At is the time between tracklets, P the orbital period and a the minimum or maximum semi-major axis.
The initial guess p* is based on the assumption of a circular orbit given each k, and time interval between
tracklets A¢

p*=—R-w)+\/(R-w?+a(k2—R-R. (5.27)

It should be noted that this method only works for non-zero values of k. Alternatively, a stable initial guess is
to set the average semi-major axis of the corresponding bounds. For large range of semi-major axis bounds
however, such as the MEO regime, a low initial guess for the ranges was seen to yield better convergence and
stability using the minimum semi-major axis.

5.3.2. Optimization

The cost function can be minimized given the Lambert’s solver parameters, number of orbital half-revolutions,
direction of flight and low or high path solution if multiple exist (see section 3.3.4). This effectively means
there can be multiple minima per correlation case. Each minimizer is acquired by utilizing the Broyden-
Fletcher-Goldfarb-Shannon (BFGS) quasi-Newton method, as considered for the BVP method when pre-
sented by Siminski [60]. The BFGS allows for fast convergence given a topography close to quadratic, and
is well-suited for multi-variable optimization. The limitations of this method however is shared with all other
quasi-Newton methods in that it uses dense matrices for the inverse Hessian update that are expensive to
store and manipulate [46]. Often this method is implemented by simplifying the matrix representation, lim-
iting memory usage, accordingly L-BFGS-B [6], a limited-memory bounded quasi-Newton method is consid-
ered in this work. In addition, the Powell zero-order line search method is considered for flat topography,
where the quasi-Newton method is expected to struggle given an approximate gradient. By searching di-
rectly along adaptive directions without relying on gradient information, the line-search method is expected
to maintain robust performance and convergence, thereby equipping the pipeline with a robust fallback op-
timization method.

5.4. Uncertainty transformation

As introduced in section 4.1.3, the uncertainty transform is required for adequate comparison and differs
per approach. Comparison of the two formulations, IVP and BVP, and their uncertainty transforms showed
the transform of the boundary value method to be more accurately maintained [60]. An inaccurately trans-
formed sample point can negatively affect estimation performance; for example, a point with high statistical
significance could be misrepresented after transformation, resulting in an unrealistic distance. This, in turn,
impacts the gating performance based on the Mahalanobis distance, as the theoretical distribution becomes
distorted. The boundary value method transforms the uncertainty using only the measured angles and mod-
elled angular rates, the uncertainty of the modelled angular rates is negligible compared to the angle noise
and therefore better represented by a normal distribution. This in turn allows for more straightforward cal-
ibration with the theoretical chi-squared distribution for gating. As for the initial value method it requires
more effort for transforming the initial uncertainty to the second tracklet epoch and uses the relatively large
uncertainties in the angular-rates.

To overcome this issue for the initial value problem, either alternative transformation methods or different
comparison spaces can be implemented to reduce this effect. For example DeMars and Jah implemented a
Gaussian mixture model and showed that it captured the skewed uncertainty transform more accurately,
leading to more truthful correlation [13]. Alternatively, it is possible to choose a different comparison space
in which the transformation behaves (more) linearly. Cai et al. showed improvement in the performance by
comparing the orbital states in non-singular canonical space and produced an increase in the true positive
rate compared to a linearly approximated uncertainty transform in the measurement space [8].

In addition, the topography for the initial value problem method includes many local minima corre-
sponding to the feasible number of orbital revolutions k [61]. This requires segmenting the local minima as
separate domains, resulting in a less straight-forward minimization approach. The boundary value method
obtains separate topography, considering the orbital revolutions in separate minimization problems [59].

While the boundary value method is less straight-forward when including perturbations, and expected to
be less computationally efficient for perturbed motion, it was concluded in [60] that in most cases two-body
dynamics allowed for sufficiently accurate estimates. This behaviour motivates the use of the boundary value
method approach.
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5.4.1. Lambert Solver

As mentioned, the BVP method relies on finding the correct hypothesized ranges, which together with the an-
gle measurements form the position vectors. It compares the modelled and measured angle-rates, of which
the latter is achieved through the full estimated states from a Lambert solver’s velocity vectors. The inputs of
the Lambert solver are thus two outer-position vectors r; and r, and the time-of-flight between the position
vectors 7. Given this information, the Lambert solver solves for the corresponding velocity vectors f; and
I, obtaining the full states. Additionally, as shown in section 3.3.4, there can be multiple solutions to Lam-
bert’s problem depending on the provided position vectors and time-of-flight. Accordingly, modern Lambert
solvers allow to consider all possible answers and allow to handle multiple revolutions given the flight direc-
tion and the path type.

For the implementation of the BVP method, the Lambert solver of Izzo [30] is considered, obtained through
Garrido ’s Python implementation [18]. This implementation shows comparable accuracy at shorter evalua-
tion times to Gooding’s Lambert solver [21, 30, 18]. Modern Lambert solvers solve the time-of-flight equation
using iterative schemes, typically iterating over a universal variable that describes the orbit geometry cor-
responding to the provided Lambert parameters, such as the time of flight, direction of motion (prograde
or retrograde), solution type (high or low path), number of complete revolutions, and position vectors. The
Lambert solver implementation of 1zzo introduces a new Lambert invariant variable ¢, a transformation of
Gooding’s variable x. Following the derivation, the time-of-flight function

1 Y + Hyey T
1-x* | /1= 22|

is solved using a Householder iterative scheme to find the corresponding roots x. This formulation, similar
to that shown in section 3.3.4, presents the time of flight as function of the problems’ geometry s, ¢ and
r1 + r2. Where the variables y, A and y are auxiliary variables that partially contribute to obtaining the single
time of flight function that is valid for both elliptic and hyperbolic orbits and are only dependent on the
problem geometry. Additionally, multiple orbital revolutions are accounted for given the true number of
orbital revolutions 7ey.

Izzo solves aforementioned time of flight function specifically for a transformed variable ¢,

—x+/Ly) (5.28)

= Lax (5.29)

log(1+x) for nEey=0
é‘ —
log(1¥f) for ngey>0,

with the time-of-flight as 7 = log(T). The corresponding time-of-flight function can then be solved for ap-
propriate input conditions, as shown in fig. 5.4 for the more easily interpreted untransformed variable. The
figures show, for LEO, MEO and GEO orbits, the solution obtained for the iterative variable x given an orbital
period of about 1 day, the corresponding outer position vectors and number of completed orbital revolutions.
The LEO case considers retrograde motion, while MEO and GEO consider prograde motion. Consequently,
each plot shows the two remaining possible solutions: the low or high path.

LEO NORAD-47268 i MEO NORAD-00702
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Figure 5.4: Untransformed Time-of-flight T for multiple revolutions and orbit geometry A against x. Here showing different objects with
around 1 day revisited observation. Figure adapted from poliastro’s Python library [53].






Estimation Methods

The aim of this chapter is to provide the derivation of the (initial) orbit determination methods used for the
modification of the cataloguing pipeline in addition to the aforementioned AR boundary value method. First,
the three angles-only Gauss classical IOD method is derived as it is the basis for the multiple angles only Least-
squares method (L) as will be described after. Second, the multi-revolutions three-angles Gooding method
is described. Lastly, an orbit determination method is introduced known as the Batch Least Squares (BLS)
method. Both the L, and BLS method will be used to test their implication on correlation for tracklets.

6.1. Gauss angles-only
The classical method following the BVP formulation, Gauss, assumes that the satellite’s orbit lies in a plane
with the center of the Earth for unperturbed two-body motion. The derivation here, follows the approach
from Curtis [12]. As will be seen later for the multiple angles least squares method (Ly), it is very similar to
Gauss’ method in the way that it uses the Lagrange coefficients. Accordingly, both methods’ accuracy depend
on the method used to determine the Lagrange coefficients f and g. Gauss’ technique provides a robust way
of estimating orbits using closely separated observations, less than 10° [66]. It starts with the assumption that
the three position vectors corresponding to the observations lie in the same plane, and thus can be written as
linear combinations of each other

C1r1 + Corp + 313 = 0. (6.1)

Using the Lagrange coefficients f and g, introduced in section 3.3.2, we can express the outer position vectors
as a combination of the mid-point position and velocity vector

r;=firo+give,i=1,3. (6.2)
Together with the cross product of r; and r, with eq. (6.1),
I] XI3:C] =Ty X¥3:—Cp I} XI3:C3 =TI XI2-—C2, (6.3)

and letting ¢, = —1 to simplify the system of equations, the coefficients can be solved for:

o = ry % (f3ro + g3V2) _ 83 (6.4)
(ira+g1vo) x (fsra +g3v2)  f183— f381 ’
(firz + g1v2) x 12 —81 6.5)

c3= = )
ST (it giva) x (fara + gava)  fig3— a1

If we know the mid-point velocity and position vectors we can determine the Lagrange coefficients and vice-
versa. Naturally, at this point we do not yet know either. Accordingly we may determine f and g by their
series form. Written out up to the fourth-order we have

_q_u2_ u_3_ u-u’ 4 5
f=1 2Ti3 6Ti— "3 1, 7O
u

g =Ti— %13 - 511+ 01, i=1,3

(6.6)
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wheret; =t;—tp, u= r% and O(7°) denotes the truncated higher order terms. Substituting the terms of the

2
series (only the first two are known), it is thus possible to approximate ¢; and c3 without mid-point position
and velocity vectors by

T uts((r3—11)% - 12
a= & ~ 2 3(Ts=n 3)=(a1+a1uu) (6.7)
fHigs-fzg 13-T1 6(13—11)
- uty ((13=711)% - 12
c3= I - (s =77 - 7)) = (a3 + asu ). (6.8)
f18 - f38 T3—T1 6(13—11)

Given the (approximated) coefficients c;, we may acquire the slant ranges p; by rewriting eq. (6.1) with
r;=p;u;+R;, (6.9)

with R; the observer location, p; the slant range and u; the measured unit position vector at the jth epoch.
This yields

c(prur +Ry) +c2(p2uz +Ry) + c3(p3us + R3) =0, (6.10)
Rewriting to obtain

C1p1Uy + C202U2 + C303U3 = —c1R; — 2Ry — c3R3, (6.11)

allows to write the equation in matrix form

101 -0
[u1 u ug] C202 Z[Rl R2 R3] —C2. (6.12)
303 —C3

Solving this equation for the slant-ranges p; we need to invert the unit-vector matrix. Let L= [u; u» u3]?,
then

C1P1 —a
C202 :L_l [Rl Rz R3] —C2|. (6.13)
c303 —C3

With egs. (6.7) and (6.8) and recalling ¢, = —1, obtains

c1p1 —(ay + a1y u)
—p2| =M 1 (6.14)
C3P3 —(as + agyu)

where M = L71[R; R, R3], a size [3x3] matrix. Letting each element of M be denoted by M;; for the jth
row and j™ column, we can evaluate p, with the previous results of ¢;, c3 and remembering we set ¢, = —1.
Accordingly, we obtain

P2 = Mpic1 — Maz + Mascs. (6.15)

This can be written in a more convenient form by considering the separate terms in the coefficients c;, c3 and
deﬁning di = Myiay — Moy + Masas and dp = Moy ayy, + Moz asy,

p2=dy+dru. (6.16)
The mid-point range r, can be determined by rewriting eq. (6.16) with
r22 :p§+2p2p2-R2+R§ (6.17)
and defining C = p, - Ry, to obtain
—r2+(d? +2Cdy +R3) +2u(Cdy + dydy) + d3u* = 0. (6.18)

Finally, substituting u = r% and multiplying with —rg yields
2

r8 —(d? +2Cdy + R3) 1S —2u(Cdy + dydy) 13 — pds = 0. (6.19)

The appropriate roots of the 8 order equation in r, allow to estimate r, and update u for the Lagrange co-
efficients f and g. Then all three position vectors are determined with the coefficients c¢; and solving the
full matrix equation. The acquired position vectors from the preceding steps can be considered the 'conven-
tional’ solution of Gauss’ angles-only method.
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6.1.1. Refined Gauss
The result obtained by Gauss, i.e. the three position vectors rj,ry,r3, may be refined by determining the
middle velocity vector through a Lambert solver. The steps associated with this refinement will be referred
to as refined Gauss’. Starting from the three position vectors and the previously described middle velocity
vector, the Lagrange coefficients f and g are reevaluated. Here, either the series coefficients or the function
coefficients can be used. The series coefficients can be reevaluated with an additional derivative term
y = OHerd (6.20)
)

As shown by the series in eq. (6.6), f and g can now be approximated by three terms. Accordingly, the coeffi-
cients ¢; and c3 are approximated with higher accuracy and are used to update the initial result of Gauss.

Alternatively, Prussing and Conway ([39] as cited in [50]), showed the exact expressions for the Lagrange
coefficients can be used instead, avoiding the smaller convergence region associated with the series coeffi-
cients. The exact functions of f and g however, only allow to determine a more exact f and g when compared
to the truncated series solution. This is because it uses the initial orbit as obtained by the series approximated
Lagrange coefficients [50]. The functions for the Lagrange coefficients can be determined using the universal
formulation of Kepler’s equation, as is considered in this work. The universal variables allows to use com-
mon universal elements independent of orbit type. Thus when estimating the object’s position, its trajectory
following Kepler’s equation, does not require separate approaches for hyperbolic or parabolic trajectories.

7(2
f=1- e (ax?)
! (6.21)
§=T;i— L)(363 (067(2)
VE

where y denotes the universal anomaly, a the reciprocal of the semimajor axis a, ¢, and c3 the Stumpff func-
tions and p the standard gravitational parameter. The Stumpff functions are defined by

VEsingz o)

WP
c2(2) = %—7 (z<0) (z=ay?) (6.22)
§ (z=0)

I—C(;S\/E (z>0)
c3(z)={ SVZl (;0) (z=ay?) (6.23)
3 (2=0)

The refined Gauss solution is obtained by repeating either the series or function procedure until the range
estimates converge.

6.1.2. Gooding

Gooding’s method uses three lines of sight and their epochs to acquire the estimated orbital elements. The
initial assumptions of p; and p3 are updated using Newton-Raphson iteration, which continues until con-
vergence. Specifically, Gooding makes use of an auxiliary plane perpendicular to the middle line-of-sight,
1. The origin of this plane is defined by the point where 1, intersects the auxiliary plane, when extended to
an appropriate magnitude. The estimate of the middle position vector, r,, then describes the point (f, g) on
this plane, see fig. 6.1. Note that the coordinates f and g are arbitrary quantities used to describe a location
on the auxiliary plane, and are not related to the Lagrange coefficients. This estimate is acquired through
the outer states (at #; and f3) obtained by solving Lambert’s problem, provided the initial assumptions are
accurate (e.g. p1,p3 number of completed orbital revolutions & flight direction). The coordinates are de-
fined such that g = 0 and f > 0. The coordinates are thus the target function. The target functions are used
to determine the appropriate increments, Ap; and Aps, for the initial range estimates, p; and p3, using the
Newton-Raphson procedure:

o o
& &

i oan
dp1  0p3 §

Ax=-J® fx) — [ﬁg;]?
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Figure 6.1: Error plane used in Gooding for the target functions [20].

Since g = 0 the increments are defined as:

— 1 Jg
Ap1=—3ro or (a_m)f

0p1 Op3  Op3 Op) (6.25)

0py dp3  Op3 0p1

The partial derivatives are computed numerically, and these numerical estimates have been found to be suf-
ficiently accurate for the angles-only problem, as noted by [20]. Gooding uses the central difference scheme,
preventing bias arising with a one-sided increment. While this requires two additional evaluations, it then
also allows to evaluate the second-order derivatives, e.g. f "= fx+h,y)+ f(x=h,y)-2f(x,y)/h? and
the complete set if extended to five evaluations (fxy, fyx). This results in Newton-Raphson achieving higher-
order convergence, as the method utilizes more accurate derivative estimates. The convergence is assessed
by the ratio of f to the calculated magnitude of the position vector p,, which Gooding defined adequately
converged if it reached € < 107!2. Using Lambert’s problem instead of a linear approximate model provides
greater flexibility for usable angle data. Hence, in contrast to Gauss angles-only and the Double r-iteration
method, this approach allows to use a combination of optical observations from different revolutions as well.
It can therefore be used to determine initial orbits using tracklets from different observation nights.

6.2. Multiple observations
Karimi and Mortari [34] proposed a least-squares approach L, with n = 3 number of angle measurements.
This extends Gauss’ approach to n number of angles, where the Earth-satellite-observer identities are repre-
sented for each epoch i as

l‘l'ZRi+pilll', i=12,..,n. (6.26)

Similarly, the assumption of co-planar position vectors allow to rewrite the middle vector as combination of
the outer vectors
r;i=ciri1+dir;1, i=23,..,n—1. (6.27)

Where for convenience ¢ and d are used to represent the coefficients ¢; and c3 as used in section 6.1. Follow-
ing the derivation from section 6.1, the coefficients c and d are generalised by
_ 8i+1

fi-18i+1— fi+18i-1

Cj (6.28)
_ 8i-1

fi-18i+1— fir18i-1
Similar to Gauss, if the Lagrange coefficients are known the position and velocity vector at an epoch i can be
determined as functions of its neighbouring vectors

di =

(6.29)

r; = Citi-1 — diTiy1, (6.30)
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i =- fin )rH—( i Fisi (6.31)
fi-18i+1— fir18i-1 fi-18i+1— fir18i-1
The Lagrange coefficients can be evaluated by their series based on the observation time difference 7; =
t; — tj_1, following eq. (6.6). Alternatively, the universal exact Lagrange equations can be used, see eq. (6.21).
Karimi and Mortari [34] showed Gauss’ three angles method to perform worse compared to L,, refined
Gauss (using exact Lagrange functions) and Double r-iteration due to the approximate Lagrange coefficients
used. In general for the exact Lagrange coefficient methods larger time interval yielded lower relative error.
For L, more observations yielded lower relative error resulting in higher accuracy compared to Double r-
iteration and refined Gauss while also having almost the same run time. Additionally it showed that different
sets of angles did not influence the relative error. In general, the more measurements that are used the higher
the accuracy is obtained. Additionally, up to a certain point, a longer time interval is desired between mea-
surements. It should be noted however, that the L, method utilizing multiple angles was compared against
Gauss, refined Gauss and Double r-iteration that employed only the first three angles, rather than using three
angles equally distributed in time.

6.2.1. Ln solution

The solution, i.e. a set of ranges corresponding to the angle observations, can be obtained by setting up a
system of equations. This system of equations is based on the requirement of the Earth-satellite-observer
relations eq. (6.26) and the derived co-planar relations eq. (6.27). Satisfying both relations implies

Cipi—1Ui—1—piwi+dipir1uiv1 =R — (¢iRi—1 + d;iR;41). (6.32)

Where, when written in matrix form, the left side ranges are denoted by a [n x 1] column vector p. The re-
maining parameters and line-of-sight unit vectors are given as [3(n —2) x n] size matrix M and the right hand
side as a [n x 1] column vector &. Thus, given n = 3 number of measurements, (n —2) vectorial identities can
be written in matrix form

Mp =& (6.33)
Which, given the full form takes shape as
p1]  [¢1]
CoUy —Uu d2u3 0 0 0 P2 cfg
0 C3U —Uus d3u4 0 0 P3 53
0 0 CaU3 —Uy d4u5 0 Pa| = 54 . (634)
. . . . . . . P5 s
0 (] (] 0 0 ... dpu,||: :
Pn én

Which can be solved for p using a least squares approach, for which the solution is obtained by
p=M"™)'M"¢. (6.35)

Once the range vector, p, is found the radii, through eq. (6.26), are used to evaluate the orbital elements.
The most orthogonal range vectors are used for a Lambert solver. Alternatively, the states can be obtained
when using the Lagrange coefficients to determine the mid epoch velocity vectors, as done for Gauss’ three
angle approach. The latter approach is taken in this work, an overview of the implementation is presented in
algorithm 1. The full code can be found in appendix B.
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Algorithm 1 Implementation of L, method

Require: los= {ug,uy,...,u,}, obs_time= {fy, f1,..., I}, sens_loc= {Rg,Ry,...,R,}, tol=1e-8, k_max=500

taul, tau3 — obs_time
f1, g1, £3, g3 = 1, taul, 1, tau3
rho = zeros(n, 1)

while (delta > tol)and (k < k_max) do
k=k+1
r_vec <« sens_loc + rho * los
rl_vec, r2_vec, r3_vec = r_vec[:-2], r_vec[1l:-1], r_vec[2:]
v2_vec < rl_vec, r3_vec, f1, gl, £3, g3
alpha = 2 / norm(r2_vec) - norm(v2_vec)**2 / GM

forO0 to n-2do
x1 «— universal_kepler(taul, r2_vec, v2_vec, alpha)
x3 «— universal_kepler(tau3, r2_vec, v2_vec, alpha)
f1, gl — Lagrange_universal(xl, taul, r2_vec, alpha)
£3, g3 — Lagrange_universal(x3, tau3, r2_vec, alpha)
end for

ck, dk —f1, gi, £3, g3
M, Xi < construct_matrices(ck, dk, sens_loc, los)
rho = lstsq(M, Xi)

delta = abs(rho - rho_prev)
rho_prev = rho

end while

r_vec <« sens_loc + rho * los

rl_vec, r2_vec, r3_vec = r_vec[:-2], r_vec[1l:-1], r_vec[2:]
v2_vec = (-f3*rl_vec + fl*r3_vec)/(f1xg3 - £3xgl)

6.3. Batch Least Squares

The batch least squares is based on two primary equations [63]. The propagation of the state using a state
transition matrix

X( t) = (I)(tr tk)xky (636)

and the observation-state relationship
y=Hxj +€. (6.37)

Here, y is the observation deviation vector, H the mapping matrix and £ the random vector. For the state prop-
agation matrix, x(f) is the state deviation vector, ®(t, t) the state transition matrix and xj the state estimate.
Then given these relations, the state x is sought that maximizes the probability of obtaining the observations
y. By assuming the measurements are linearly independent and distributed by a Gaussian probability den-
sity function, the state can be found using maximum likelihood estimation and Bayesian estimation. Given
observations y the maximum likelihood estimate X maximizing the conditional density function

f&ly) (6.38)

is sought. Assuming all density functions to be Gaussian and all observations to be independent, the condi-
tional density function can be rewritten as

fxly) = M. (6.39)
fy
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Where the first term term in the numerator, the likelihood of observing y, given the state x, is given by

1 1 -
fylx) = COERITE exp (—5 (y- Hx)TR ! (y- HX)), (6.40)

assuming the measurement noise € =y — Hx follows a Gaussian distribution with zero mean and covariance
R. The prior distribution of the state vector x, the second term in the numerator, is given by

f(x):;exp —l(x—X)TP_l(x—)'() , (6.41)
(27‘[)"/2|P|1/2 2

and is assumed to be Gaussian with mean X and covariance matrix P. For the denominator, its density func-
tion is defined as

fy= f fylx) fx)dx. (6.42)
Substitution of egs. (6.40) to (6.42) into eq. (6.39) yields the full form of the conditional density function
T - T e _
L= (2n)”+l’/2|1P|1/2|R\1/2 €xp (_% [(Y_ Hx)' R~ (y- Hx)+x-%" P! (X—X)]) ﬁ (6.43)
The maximum likelihood estimate is obtained by minimizing the negative logarithm of the terms dependent
on x given by
InL=-1/2((y- Hx) R (y- Hx) + -0 P~ x-%)|. (6.44)
Then following the first and second order optimality conditions, the minimizer or maximum likelihood esti-

mate X is given by .
x=(H'"R'H+P') (H'R'y+P'x). (6.45)

6.3.1. Linearisation

The dynamics and the measurements involve significant non-linear relationships, complicating the direct
application of linear estimation techniques. To facilitate the estimation process, the non-linear relationships
are linearised around a nominal trajectory or state. The non-linear equations of motion can be denoted as

X(1) = F(1,X(1)), (6.46)

Y=GX(n) +¢, (6.47)

where X(1) is the state vector, Y the observations, and F (£,X(#)) and G (X(#)) the non-linear system dynamics
and measurement model respectively. Linearisation of egs. (6.46) and (6.47) about a nominal trajectory Xy (?)
yields the linearised equations of motion as

x(1) = A(0)x(1),

y=Hx; +¢, (6.48)
where x(f) = X(f) — X (#) represents the deviation from the nominal trajectory. The matrices
_ | 0F () 7 | _0G
A—[m and H_[ax_(t) . (649)

are the Jacobian matrices of the system dynamics and measurement model. For a batch of / observations
the state deviation vector X at a reference time #; can be found following eq. (6.45). Given an initial con-
dition x(#y), an a priori estimate Xy, the covariance matrix P, the estimated state deviation %X, vector can be
determined as follows

(H'R H+PyH%o = H R 'y + Py '%o. (6.50)

Where the terms can be accumulated over a batch of I measurements, forming the normal equations,

1
H'R'H=Y [H:®(t;, t0)]" R Hi0(1;, 1), (6.51)

i=1

!
H'R 'y= Y [H;®(, 10)]" R Yy, (6.52)
i=1
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to be solved for each batch iteration, obtaining %. This state deviation estimate is used to adjust the a priori
estimate X for each batch iteration
X0)n = Xo)n-1 — Ko)n-1- (6.53)

Where the state transition matrix and reference trajectory are determined by integration toward the current
observation time:
D(t, 1) = A()D(t, t) with initial condition ®(tj_1, ;) =1, (6.54)

x=F(x,t) with initial condition x(#;_;). (6.55)

The observation state matrix H; is given by the observation state relationships G(x;, #;), i.e. the measurement

model,
- 0G(x;, t;)
i = _ (6.56)
ox

Defining A = HTR'H+ 1561, N= HTR’ly and Xy = 0, eq. (6.50) is expressed as
A%o=N. (6.57)

Solving this equation obtains %Xy, the minimum value of the performance index, eq. (6.44), more commonly
written as

!
J(x) = (ko —%0) " P (ko — %) + ) &] R} '¢;. (6.58)
i=1
Here
£;=y;— HiXg (6.59)
is the best estimate of the observation error, which is used for convergence assessment of the root mean

square error

RMSE = (6.60)

with €; a p dimensional vector and [ x p the total number of measurements, in this case 2 x [ right ascension
declination observations.



Verification

This chapter presents the implementation of the estimation methods as to verify their functionality. It aims
to provide the context of the method’s implementations and prevent the likelihood of unintended behaviour.
This allows to study the methods further beyond the mathematical operations towards application on the
cataloguing pipeline as will be presented in later chapters.

7.1. Gauss

The three angle Gauss IOD method implementation follows Curtis’ [12] implementation and is also verified
against the provided example problem. The example problems consider a ground based observer provid-
ing three measurements about two minutes apart. As shown in table 7.1, the implementation yields nearly
identical solutions, confirming its accuracy and verifying its correctness.

Table 7.1: Verification data of IOD methods.

Method X, [km] Y, [km] Z, [km] Xz [km/s] Y, [km/s] Z, [km/s]
Gauss [12, p. 287] Expected 5659.032954266604 6533.744381518980  3270.154452175442 -3.8797048599380 5.1156458729787 -2.23970272593060
Obtained 5659.032954266600 6533.744381518974  3270.154452175444 -3.8797048599381 5.1156458729785 -2.23970272593052

3.63797881x 10712 5.45696821 x 10712 —1.81898940x 1012 1.30562228 x 10™*  2.69118061x 1013 -8.30446822 x 1074

refined-Gauss [12, p. 287]  Expected 5662.04164 6537.94991 3269.0483619037582  -3.8854231883209 5.1214081725294 -2.24339546572440
Obtained 5662.04164 6537.94991 3269.0483619037577  -3.8854231883207 5.1214081725296 -2.24339546572445
0.00000000 x 10°°  0.00000000 x 10°°  4.54747351 x 10713  —2.26485497 x 10" -2.15827356x 1013 4.75175455 x 10~

7.2. Ln Gauss angles

Karimi and Mortari’s multiple angles method using the least squares approach is verified with the results ob-
tained from [34]. As the paper uses generated measurements with normal distributed random noise, slight
variation in results is expected. Nevertheless, comparison with the verified Gauss and refined-Gauss allows
to compare the method’s behaviour as well. The measurements are generated using the same procedure by
considering two-body dynamics only. The procedure involves propagating the initial state for 1 hour for a
desired number of consecutive measurements and time interval, representing the tracklet. The correspond-
ing states are converted to topocentric right ascension and declination for a given ground-based observer
location. Normally distributed noise with standard deviation of 5 arcseconds is added to simulate true mea-
surements.

The two described scenarios by Karimi and Mortari [34] are used for verification. The first scenario is a
co-planar observation of a LEO object (a=7780 km, e=0.1, i=0 deg, Q=0 deg, w=0 deg, v=0 deg initial state) at
0 degree inclination observed at 0 degree longitude, latitude and altitude. The second scenario considers an
inclined LEO orbit (a=7800 km, e=0.1, =45 deg, =345 deg, w=15 deg, v=0 initial state). For both scenarios
50 second interval measurements are considered. The obtained relative position errors, evaluation times and
differences with Karimi and Mortari’s implementation are tabulated in table 7.2.

37
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Table 7.2: Results compared with L, method [34]. For the implemented method measurements are generated with random noise.

Scenario I - co planar observation

Relative position error [%]

Evaluation time [ms]

n Implemented Karimi& Mortari Delta [%] Implemented Karimi & Mortari Delta [%]
3 11.10 - - 28 - -

4 0.001 0.030 -95.53 34 28 21.43

5 0.003 0.023 -74.86 38 30 26.67

6 0.019 0.020 71.05 40 32 25.00

Scenario II - inclined orbit

3 0.068 0.06 12.55 17 26 -34.62
4 0.005 0.030 -84.97 20 30 -33.33
5 0.005 0.023 -79.91 39 32 21.88

6 0.002 0.020 -90.48 49 34 44.12

The results show large differences in obtained accuracy as well as evaluation times. Remarkably, the
implemented results show lower residuals and higher computational time when compared to Karimi and
Mortari’s implementation, which could be explained by a different approach for refining the Lagrange coef-
ficients. Apart from the coplanar case, the behaviour is largely the same for both implementations. For the
co-planar observation, the three angles show indeed to not be able to properly solve for the ranges, requir-
ing an additional equation to solve the system. Accordingly, for more than three measurements the method
is able to solve the system and provide adequate range estimates. As for the inclined orbit, the relative er-
rors show a slight decrease with increasing number of measurements rn. This behaviour is not shared on the
co-planar case however.

The implemented method for the least-squares approach to Gauss’ angles only method are applied for
varying measurement noise, time interval and number of measurements (figs. 7.1, 7.3 and 7.5) similarly as
described by Karimi and Mortari, see figs. 7.2, 7.4 and 7.6 [34]. The behaviour is largely within the same order
of magnitude, and shows an increase in accuracy for increased time-interval. The least-squares approach
also shows to obtain the same solution as for the three angles Gauss approach. When extending to more
measurements however, the behaviour is reflected less accurately, as observed in fig. 7.5. Additionally, the
extension to more measurements seem to indicate an advantage of multiple angles over the three angles
Gauss, while this is true for the co-planar case, comparison with Gauss only includes the first three angles. In
this comparison, Gauss considers only a fraction of the arc spanned by the multiple angles approach.
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Figure 7.1: Sensitivity to noise obtained after implementation. Plot igure 7.2: Sensitivity to noise obtained from [34]

shows average results of 2000 runs with simulated noise.
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Figure 7.5: Effect of number of measurements. Plot shows average Figure 7.6: Effect of number of measurements [34].
results of 2000 runs with simulated noise.

In order to more fairly present the relative performance of the least-squares approach, the most orthogo-
nal triplet covering the full arc is selected for Gauss. This means that if the least-squares approach uses five
measurements, Gauss is applied to the first, third and fifth measurements. When extended to more angles in
this way, the implemented method shows that the additional angles are not effectively used, as depicted in
fig. 7.7. In general, the least squares approach gives approximately the same error as Gauss.
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angles approach.
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From both figs. 7.7 and 7.8 it becomes clear that when comparing the least-squares approach with Gauss
three angles using orthogonally spaced measurements the difference in accuracy becomes negligible. More-
over, the shorter time span of the angles show to affect the accuracy more compared to Gauss. While there
seems to be a region for longer time intervals where the least-squares approach benefits from the full angle-
set, it is not consistent over the full time intervals. The computational time of the least-squares method is
also less favourable as it scales with the number of measurements considered, even showing for three angles
the same accuracy is obtained at higher computational cost, see fig. 7.8.

7.3. Gooding

Gooding’s three angles only method is implemented from Orekit [47], it uses a Lambert solver implementa-
tion following Battin’s approach. This method iterates over the semi-latus rectum to solve the time-of-flight
equation in a universal approach [3, 18]. The implementation has been verified against the example pre-
sented in the work of Gooding [20]. This example, taken in reference to Herrick’s work [24], considers three
observations of the minor planet 683 Lanzia.

Table 7.3: Verification of Gooding’s implementation by Orekit [47].

Parameter Expected solution [AU] Obtained solution [AU] Difference [AU]

o1 2.3991972 2.3991973 7.4080e-08
P2 2.563703947213 2.563703947212 4.4498e-13
03 2.824544 2.824545 2.5145e-07

Note that the current implementation (Orekit 12.2 [47]) turns out to be very sensitive to the initial guess.
Gooding [20] introduced the method and showed that it successfully converges to the solution with an initial
guess of 5.9 in both domains. However, with the included implementation it was seen to converge to the
correct answer only when the initial guess was essentially equal to the true solution. However, as Gooding’s
method is implemented to use initial range estimates from the tracklet correlation, the current implementa-
tion is still included and is considered to be performing adequately.

While no significant effort has been made to investigate the implementation further, it is believed that
the dependency is largely due to the fact that Orekit’s Gooding implementation relies on Lancaster and Blan-
chard’s [37] implementation of the Lambert solver [23]. Gooding’s IOD method is presented instead, with
his own implementation of the Lambert solver using a bi-linear initial guess and Halley’s iteration procedure
to solve for the free parameter in the time of flight equation [21, 18]. The Lancaster and Blanchard method
uses an arbitrary initial guess based on fixed values and solves for the free parameter using a secant iteration
procedure. The arbitrary initial guess for the root-solving procedure is thought to cause increased sensitivity
for the initial range estimates compared to a bi-linear initial guess.
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7.4. Batch Least Squares

To showcase the implementation of the batch least squares estimator, a LEO and GEO orbit case are shown.
For both cases only two-body dynamics is included, and the same diagonal covariance, with 103 km and
10? m/s standard deviation. For GEO a three day time span is considered, while for LEO a one day time-
span is set. Over this time-span continuous measurements with 60 second time interval are generated with
2 arcseconds Gaussian white noise added to the true measurements. The observer is positioned at -6.627736
deglon., 38.215828 deg lat. and 583.47 m altitude.
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Figure 7.9: Batch least squares applied to continuous measurements of a LEO (7.9a) and GEO (7.9b) object for 1 and 3 days with 60 second

interval under unperturbed dynamics. Initial state at 00:42:05.91: a=7858.39 km, €=0.0027, i=73.8977 deg, 2=293.3976 deg, w=110.2098
deg & v=-85.5763 deg for LEO and a=42164 km, e=0, i=0 deg, Q=0 deg, w=0 deg & v=10 deg at 2024-07-06 00:14:12.00 for GEO.

For both runs as depicted in fig. 7.9, the batch least squares properly filters out the noise for two-body dy-
namics modelled measurements, estimating 1.9897 and 1.9961 arcseconds standard deviation on the residu-

als and obtaining within a meter accuracy estimates. The residuals are presented in fig. 7.10.
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Figure 7.10: Angle residuals between true measurements and modelled measurements for both LEO (7.10a) and GEO (7.10b). The red
dotted lines indicate + 1o and + 30.






Methodology

This chapter describes the methodology and steps taken to derive the results as presented in chapter 9. The
aim is to provide a clear overview of the approach taken with the methods previously described to clearly get
an idea of how the results are acquired. The simulated measurements and observation are described first
along with the assumptions and methods used for visibility constraints. Second, the object population and
measurements acquired are shown. Finally, the set-up used for the simulations and analyses is presented to
provide context of the runtime performance later discussed.

8.1. Observations & Measurement simulation

Using an external space object catalogue as the reference for initial states, artificial objects are modelled for
state propagation. The corresponding measurements are extracted from the propagated states based on a
realistic measurement configuration in accordance with ART. Conditions for visibility are defined, based on
which generated measurements are excluded. In the end, a dataset of measurements is obtained simulating
a realistic optical observation scenario. The outline of the primary steps for the measurement simulation
process is presented in fig. 8.1, each step is explained hereafter.

4) Extract Mea-
1) Definition 2) Load and 3) Measurement & ) Extract Mea
. . Propagate TLEs . surements
Object population, . Observation Setup .
) . SGP4 propagation Interpolation &
regime, size and type

© Visibility constraints . .
for three nights Y attributable fitting

Figure 8.1: Overview of methodology for measurement simulation

8.1.1. Object population
Space-track.org’s database and accompanying Application Programming Interface (API) are used to construct
object populations by extracting two-line element set (TLE) for objects within the desired orbital regime.
Specifically, space-track’s query builder is used on its 'tle’ class which provide historical TLEs for a given time
period. The API allows to filter the TLEs based on its contained data, such as orbital elements at epoch,
object type, norad id, TLE epoch, etc. Accordingly, three separate populations were loaded to represent the
LEO, MEO and GEO regimes. Due to the implementation of the measurement generation, 2000 TLEs were
extracted and sorted in chronological order on TLE epoch between the 14" and 15" of July 2024. The TLEs are
required to be sorted before extraction to limit entries, accordingly the TLE epoch was selected as to prevent
sorting on properties that could impact the distribution such as orbital elements or time since launch.
Considering the tracklet-to-tracklet correlation approach, around 50 objects per regime, and two tracklets
per night for three observation nights were aimed to be included as to limit excessive run-time. Additionally,
the initial reference states of the objects - consisting of payloads, debris, and rocket bodies - are aimed to
be distributed similarly to the object type distributions as reported in [15]. The definitions of the considered
LEO, MEO, and GEO regimes follow those provided in the same report. Table 8.1 provides an overview of the
objects used as a reference for the simulated measurements. However, the current approach to generating
the object population is rather inefficient and has resulted in a relatively small MEO population, primarily
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Table 8.1: Object population and orbital regimes.

No. of objects

Orbital regime payload debris rocket body Altitude, km Inclination, deg
LEO 18 (46.15%) 20 (51.28%) 1 (2.56%) (0, 2000] [0, 180]

MEO 13 (566.52%) 8 (34.78%) 2 (8.70%) (2000, 31570] [0, 180]

GEO 51(92.73%) 0 (0.00%) 4 (7.27%) [35586, 35986] <25

due to data handling difficulties rather than physical constraints. This is primarily due to the posteriori fil-
tering of extracted measurements based on the visibility constraints. A large number of objects is considered
per regime in order to filter down toward the desired object populations, which does not guarantee the de-
sired object population when insufficiently suitable objects were considered before filtering. Nevertheless,
the object types are reflected quite well with respect to [15], which shows 48% payloads, 48% debris & 5%
rocket bodies for LEO, similarly 12%, 83% & 4% for MEO and 88%, 5% & 7% for GEO. The distribution is not
seen to impact the results much, but still could provide meaningful discrepancies between active payloads
whose orbits are often less eccentric. Regardless, this approach was seen to more realistically reflect the sce-
nario compared to focusing on active payloads. An overview of the orbital elements of the reference TLE are

presented in fig. 8.2.
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Figure 8.2: Distribution of the simulated object regimes. Object types according to table 8.1.
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8.1.2. Object state propagation

The loaded TLEs provide the initial state of the artificial objects contained within the orbital regime popu-
lation. The TLE represents the mean orbital elements at the corresponding epoch and contains information
such as the initial state and the B* coefficient representing the object’s response to atmospheric drag. This
TLE descriptor provides the necessary information to obtain the object ephemeris by state propagation using
the simplified perturbation models, SGP4/SDP4, which are often used in conjunction with the standardized
TLE state description.

For the simplified perturbation models the Python sgp4 package is used [52], which is a wrapper around
David Vallado’s SGP4 implementation [67]. The propagation model accounts for both near earth, that is,
objects with a period smaller than 225 minutes, and deep space objects with an orbital period greater than 225
minutes and thus contains SGP4 and SDP4, of which the merged model is commonly referred to as SGP4 [67].
Vallado [67] mentioned improvements have been made to the code since development but considered the
fundamental theory as documented in [25] to be unchanged since. Hoots et al. [25] describes the following
perturbations as part of the combined SGP4 model: Earth’s atmospheric drag, third-body Sun and Moon and
resonance effects of Earth’s zonal harmonics.

This SGP4 model provides a robust and efficient method for perturbed measurement simulation, and
allows to compare results with the two-body dynamics estimation methods. As a consequence, for propa-
gation of several days, the simplified dynamics are expected to lead to state errors more dominant than the
reported TLE error for MEO and GEO around a kilometer position error at epoch [51]. The TLEs are therefore
propagated for a maximum of three nights, in order to prevent largely erroneous orbits while still being able
to study the effect of large revisit times. Ideally, the historical TLEs should be reconsidered as often as avail-
able (instead of propagation of one initial TLE at epoch) for multiple observation nights to assure minimum
discrepancy. Nevertheless, considering the restricting two-body dynamics used in the estimation method
for correlation and initial orbit determination it is considered to describe the orbit dynamics with sufficient
accuracy to study the approach’s effectiveness on measurements for perturbed objects.

8.1.3. Measurement & Observation setup

For each object a truth ephemeris is generated containing the states for three consecutive nights at a 10 sec-
ond interval, starting the 14t of July 2024. Given ART'’s location, 38.215828° latitude, -6.627736° longitude
and 583.47 meter altitude at epoch, the topocentric right ascension and declination are determined. With
a predefined visibility constraints (as discussed in section 8.1.4) and measurement configuration the ideal,
zero-noise measurements are extracted from the truth ephemeris through interpolation toward the desired
observation epochs.

Two tracklets per object are aimed to be extracted for a single observation night. For LEO and MEO the
tracklets are assumed to be successfully re-observed within the same night after 5 and 20 minutes respec-
tively. Extraction of measurements for the GEO regime is implemented such that it reflects an observation
strategy preventing observations at the same orbital location for consecutive nights, as this has been shown
to degrade performance, given the Lambert solver is sensitive to revisit-times on half or full revolutions (i.e. 0
or 180 degree angle separation), see fig. 8.3 [60]. As this is seen a feasible strategy to implement in practice, it
has also been included here.

The distribution of measurements for GEO is achieved by an observation strategy that alternates observ-
ing the GEO regime by half a night. This means, when the observation starts at the beginning of sundown it
will re-observe the same objects half a night later, the next night, it will start observing at the middle of the
night and then re-observe at the end of the night. The night is thus divided into four parts, over an interval of
three nights the GEO band is observed alternating by shifting a quarter night for the observations. The differ-
ence between extraction at the start of the visible part instead of distributed extraction over several nights is
shown in fig. 8.4.

The measurement configuration is defined by the tracklet composition, i.e. the number of measurements
and the time interval of observation. The tracklet lengths are determined based on typical tracklet lengths
from the ART telescope, dictated by the exposure and readout time of the sensor. Accordingly the number
of measurements contained within a tracklet / and the measurement interval At are set 5, 11, 11 and 2, 4, 7
seconds for LEO, MEO and GEO orbits respectively. This means short arcs of 8 to 70 seconds are observed.

8.1.4. Visibility
The observations are simulated assuming idealized conditions and ideal objects. This means that no limita-
tions for the optical sensor are considered in terms of visibility, e.g. small or faint objects or bright background
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Figure 8.4: Topocentric right ascension and declination of measurements distributed for three nights.

stars. It is thus assumed that all objects are adequately bright for passive optical observation while still re-
specting the dynamics as characterized by their respective reference TLE objects. Aberrations, atmospheric
effects and sensor noise is represented by adding zero-mean Gaussian noise of 2 arc seconds standard devia-
tion to the simulated true measurements, a typical value seen for ART [54]. As for the geometric visibility, an
object’s visibility is defined by nautical twilight, or maximum Sun elevation of -12°, maximum object eleva-
tion of 30° and requires the object to be outside Earth’s shadow. The shadow function, which determines if an
object is within Earth’s shadow cone, considers the intersections of the line spanning between the object’s and
Sun’s centre, and Earth’s spherical surface. Where the coordinate system is defined relative to the observed
object. With the location of the Sun and Earth relative to the object the intersection between the connecting
line and Earth’s spherical surface is found according to [4]. The approach computes the intersections as the
line-distance from the object between the Sun and the object. The first intersection’s distance is denoted by
x) and if existent, the second by x,. Figure 8.5 shows two cases where the object is said to be within Earth’s
shadow cone.

If the intersections are positioned such that the Earth is in between the object and sun,

1 if >0 & <TIo-s,
M= X1 X2 o-S (8.1)
0 else,

the object is said to be in Earth’s shadow (IT = 1).
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8.2. Computational set-up

The tracklet-to-tracklet correlation approach requires testing all feasible combinations of measurements.
Following the outlined procedure for the measurement simulation, 115, 78 and 248 attributables were ob-
tained for LEO, MEO and GEO. This means n (n — 1) /2 cases are considered for correlation, i.e. 6555, 3003 &
30628 respectively. To try and minimize the run-time of the complete correlation process, parallelization is
applied across all available threads. This parallelization is achieved through Joblib, a Python package opti-
mized for efficient task parallelization and caching [31]. The correlation simulation is conducted on a Win-
dows 10 64-bit machine equipped with an AMD Ryzen 7 3700X 8-Core processor (16 threads) at a 3.6 GHz
base clock speed and 16 GB of random-access memory. Regardless, the implementation of the correlation
procedure in Python can be found in appendix B or on github. com/casruks/I0D_T2T.git.

8.2.1. Optimization

All considered optimization methods are obtained from Scipy’s (v1.14.1) optimization library [57]. As men-
tioned in section 5.3, the BFGS, L-BFGS-B and Powell method are considered. It should be noted however
that for the larger population sizes considered the parallel iterative scheme lead to memory leaks under the
current implementation for the BFGS optimization method. It was observed that iterative calls to the BFGS
method with the required gradient tolerance led to memory leaks in successive correlation cases. Without
success it was tested under several conditions to clear memory after each consecutive correlation case. This
meant the BFGS methods could not successfully obtain the desired results over a larger population of ob-
jects. This further motivated to investigate the performance of the zeroth order as well as the low-memory
bounded quasi-Newton method. Scipy’s (v1.14.1) minimization functionality is used for optimization with
the conditions as tabulated in table 8.2.

Table 8.2: Tolerance levels and iteration limits set for the optimization methods used. xtol controls the precision in the solution’s
position, ftol the tolerance in function value, and gtol the gradient tolerance [57].

Method xtol ftol gtol Maximum Iterations
Powell 107% 107* N/A 2000
L-BFGS-B N/A 107* 1077 2000

As for the quasi-Newton method, the first-order gradient is estimated using finite differences since the
cost function is non-analytical due to its dependency on the Lambert solver. The forward differencing uses
a default relative step size. This relative step size aligns with SciPy’s implementation, which is based on the
square root of the machine’s precision. In this case, it is approximately ~ (2.2204-10716)°-%_ The difference
between central differencing and forward differencing was found to be negligible in terms of accuracy, see
fig. 8.6, therefore the default forward differencing is chosen. Initial guess and solution are highlighted by pg
and p;.
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Results

This chapter presents the results obtained using the methodology described in the previous chapter. First
the baseline correlation results are presented, where a comparison of the object populations for each regime
is presented for both the Powell and L-BFGS-B optimization methods. The results are characterized by the
cost-function distributions, correlation accuracy and root-mean square error between the true and estimated
states. Lastly, from the BVP results, for a select gate value, the impact of an additional initial orbit estimation
method and BLS OD method on aforementioned characteristics is presented.

9.1. BVP T2T

The BVP correlation method is outlined in section 5.3, its performance is directly affected by the measure-
ment uncertainty, optimization performance and the uncertainty transformation. Accordingly, the estima-
tion errors are dependent on the observation strategy, measurement quality, attributable fitting, Lambert
solver and numerical optimization. The overall performance and primary contribution of the BVP is affected
by the ability of the cost-function to correctly capture and represent the likelihood of association. If the ob-
servation strategy and measurements provide sufficient information for a suiting attributable fit and the cost-
function precisely captures the correlation likelihood, the admissible region can efficiently be sampled and
the true range solution will coincide with the obtained minimizer. This can be illustrated in fig. 9.1, where the
impact of measurement noise on the topography is shown. In case the measurements contain larger noise
values, the minimum becomes less distinct and the region around the solution flatter, as seen in fig. 9.1. This
makes it more challenging for optimization methods to find a precise solution, often resulting in an estimate
with larger state errors.
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Figure 9.1: Effect on measurement noise on topography, shown for 0.5", 5" and 20" random noise. Object considered is modelled under

two-body dynamics. Reference state used of [41523.434, 7321.702, 0, -0.534, 3.028, 0.] (km, km/s) at 2024-07-06 00:14:12.000, for 11
measurements in tracklet with interval of 7 seconds.
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9.1.1. Correlation

Having obtained a group of attributables, all attributables are evaluated against each other for correlation.
Each correlation procedure obtains the ranges minimizing the cost function, which together with the corre-
sponding minimum cost value and estimated state r and i form the solution. The complete set of minima,
in relation to the distribution, indicates the likelihood of attributable correlation. The resulting distributions

for each regime and optimization method are shown in figs. 9.2 and 9.3.
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Figure 9.2: Distributions of the minimum cost function obtained using Powell’s line search optimization method.
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Figure 9.3: Distributions of the minimum cost function obtained using low memory BFGS optimization method.

In addition to the logj-scale cost values and frequency, the relation to the time-of-flight is plotted as
well, where the transparent markers aim to show the regions of higher frequency. The distinct bands for
the time-of-flight are visible around integer days time-of-flight, corresponding to the observation strategy
and nautical twilight. In both plots, the true uncorrelated and correlated measurements are marked, showing
there is a clear distinction between the correlated and uncorrelated minimum cost function value irrespective
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of orbital regime. As for the cost function distribution (right), it should be noted that the observed peaks in
the distributions should be interpreted with care due to the logarithmic scale of the cost function and the bin
widths.

While the distinction between correlated and uncorrelated cost values is clear in all orbital regimes, the
LEO and MEO regimes show a flatter distribution at orders of magnitude higher cost function values. This
seems to indicate an altitude dependency, showing the impact the relative orbital coverage or feasible revisit
time has on correlation performance. In an effort to identify the sensitivity or relation of orbital regime on the
cost function values, the eccentricity, inclination, completed orbital revolutions, mean motion and relative
tracklet length are shown in fig. 9.4. From the data obtained, the relationship between the cost function and
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Figure 9.4: Orbital and observation parameters against obtained cost function minimum for true correlations.

the orbital regime remains unclear, possibly due to the interdependence of the parameters. Changes in one
orbital parameter are accompanied by variations in others, preventing the isolation of their individual effects.
The minimum cost functions for varying orbital elements (fig. 9.4) seem to indicate a decrease in the lower
cost values for increasing eccentricity, inclination and revisit time relative to the orbital period (nrev). The
number of revolutions between observations indicate, as also seen in figs. 9.2 and 9.3, the difficulty in small
angle separation, and also showing an increase in cost-function when more number of revolutions are taken
between observations. Thus, higher cost functions are observed for objects with lower semi-major axes, or
equivalently, for higher mean motion, and more completed orbital revolutions between observation nights.

Still, the relation remains unclear as longer tracklets, which are expected to benefit correlation, do not
show a clear advantage in terms of lower obtained cost functions. This can be observed for the lower alti-
tude MEO population in fig. 9.4, showing a relatively long tracklet lengths at higher cost function minima.
Additionally, a significant difference in cost function for marginal increase in tracklet length is seen between
the GEO and LEO population. It may be explained because of the cost function scaling with uncertainty, in
which the angles with larger deviations contribute less to the cost value, and smaller deviation angles are am-
plified. It seems, given the assumed observation strategy and measurements, the lower altitude objects pose
a challenge for the BVP to capture accurate estimates. Whereas GEO objects are typically re-observed within
two orbital-revolutions, in the order of 10 revolutions between observations are common for LEO and (low
altitude) MEO objects. Furthermore, at lower altitudes, the primary perturbation of Earth’s atmospheric drag
and zonal harmonics are observed to result in a more pronounced force-model discrepancy when compared
to GEO. This behaviour is also reflected for the higher MEO objects, see the plot of nrev versus cost function
in fig. 9.4, where the cost function minima obtained are similar to the GEO cost function minima for the same
1-2 orbital revolutions. Given the sparsity of the data and the interdependence of the shape, orientation and
location parameters, further investigation is recommended through sensitivity analysis. This analysis should
isolate the impact of orbital parameters and observation strategies.

9.1.2. Gating

Having obtained the distribution of the minimum cost function, a threshold can be set for the corresponding
correlation status. As described in section 4.1, the theoretical distribution of the Mahalanobis distance is
chi-squared. Thus given the degrees of freedom, in this case four, an upper bound or threshold can be set
for which the corresponding fraction of the total population should lie. Previous plots such as fig. 9.2 and



9.1. BVP T2T 53

fig. 9.3, must be interpreted with care, as the cost function and bins are in logo scale, seeming to indicate
a significant number of occurrences with high cost functions. This effect is however, exaggerated due to
the non-linear bin widths covering exponentially larger ranges of cost values, making it seem like there is a
concentrated distribution at high-cost function values. While the number of cases with cost function values
spanning several orders of magnitude is greater than for the expected < 102 values, the distribution in reality
shows a flatter tail. This can be illustrated when adjusting the frequencies by the bin width w;, and total
number of occurrences N, obtaining the relative frequency as

f

= — 9.1
fr Wyt N 9.1
Accordingly, the higher absolute frequencies observed at the larger bin widths are scaled down to equally
compare with the frequency of the lower bin widths. fig. 9.5 shows the relative distributions for the L-BFGS-B

method applied to the GEO population.
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Figure 9.5: Relative frequency distribution for more truthful interpretation of the cost function distribution. Note that the relative fre-
quency and cost function values in a) are plotted in log-scale. In b) the cost-function is linear and relative to the distribution truncated
at L(p,k) = 20.

The corresponding distribution more accurately represents the large number of occurrences at lower cost-
function values. However, it does not precisely represent the chi-squared distribution, especially for the LEO
and MEO regimes as can be seen in fig. 9.6. Accordingly, when defining the theoretical upper-bound contain-
ing 95% of the true correlations the true positive rates are not directly reflected in the same quantities, see
table 9.1.

Table 9.1: True positive rates obtained for 95% chi-squared theoretical gate: 9.488.

Method Regime True positive rate [%]

Powell LEO 11.56
L-BFGS-B LEO 14.29
Powell MEO 20.69
L-BFGS-B  MEO 23.28
Powell GEO 91.92
L-BFGS-B  GEO 90.48

The discrepancy with the theoretical chi-squared distribution is expected to be primarily due to the mea-
surement noise of 2 arcseconds. Siminski showed the impact of measurement noise and modelled noise on
the distribution, where for increasing noise levels the distribution skews to the left as observed in fig. 9.5b
[60]. To see the impact of the gate, the true positive and false negative are plotted against variable threshold
in fig. 9.7. Here, the impact of setting a low threshold reflects the large true negative rate, and consequently
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Figure 9.6: Cost function-value distribution for LEO and MEO, showing the discrepancy between a theoretical chi-squared and obtained

distribution.
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Figure 9.7: Effect of gating on the true positive and true negative correlations for different optimization methods.

low false positive rates as shown by the red curves across all regimes. As the gate is increased, more cases are
determined correlated, showing the increase in true positives accompanied with a decreased true negative
rate. As before, a clear difference in the cost function values is observed between LEO, MEO and GEO.

To represent the correlation performance more clearly the balanced Matthews correlation coefficient
(MCC) is used. The MCC captures the correlation performance by combining the true and false positives
and true and false negatives into a single number, namely

MCC

TP-TN -FP-FN

9.2)

V(TP +FP)(TP + FN)(TN + FP)(IN + EN)

It is defined between 1 and -1, where 1 indicates a perfectly accurate prediction, 0 no better than random
guessing and -1 total disagreement between the predicted and true tracklet associations. The plot (fig. 9.8)
provides a similar representation as the true positive and true negative plots, in where the maximum pre-
diction accuracy is achieved at the crossover point of maximum TN and TP. Thus for maximum prediction

accuracy, i.e. maximum true negative and true positive rates, the corresponding gates are best selected for
the correlation gating.
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The maximum accuracy gates found are tabulated in table 9.2. The distributions share large similarities
between optimization methods, minor difference are seen in maximum obtained accuracies where L-BFGS-
B shows to obtain higher MCC accuracy for LEO altitude regime. As for the GEO regime, this difference is less
evident, and both methods obtain a closer gate and maximum accuracy.

Table 9.2: Obtained gates for maximum Matthews correlation coefficient.

Method Regime Gate [log;o] MCC accuracy [%]

Powell LEO 6.2262 76.60
L-BFGS-B LEO 6.2065 79.82
Powell MEO 5.4855 66.32
L-BFGS-B MEO 5.4768 62.73
Powell GEO 1.1567 91.56
L-BFGS-B GEO 1.1567 89.91

While the gate for the maximum prediction accuracy maximizes true rates, it is more sensible from a the-
oretical approach to gate on more conservative values. For example around the same sigma, or cost-function,
value of GEO in the order of 10. Given the current results, this lower gate obtains less false positives and con-
sequently more true negatives and less true positives. The benefit of a more sensible distance gating can be
illustrated by showing the number of cross-correlations obtained. The cross-correlations are identified when
for example measurement A to B as well as B to C are estimated correlated and thus consist in a common
group containing measurement A, B and C. The impact of gating on the number of cross-correlated groups
can be shown in fig. 9.9. Here, the impact of a too high gate is shown by obtaining a single group containing
all considered measurements. When the threshold is sufficiently high, each measurement pair is correlated
and thus estimated part of the same object. On the other hand, if the gate is too low, it shows to not be able
to correlate outside of the considered pairs such as those for larger revisit days or more difficult geometry
obtaining higher cost function minima. Accordingly, it correlates only the pairs and obtains a large number
of groups, erroneously estimating larger number of unique objects. Somewhere in between these cases is the
optimal gate, in which the unique number of objects is estimated most accurately, with the false positive rate
at a manageable level to not cross-correlate every other pair with each other. These considerations are espe-
cially valuable for orbit determination, in which grouped measurements could be used for orbit refinement.
This choice however depends on the sensitivity of the following processing step to false positives. Regardless,
as the distributions are not reflecting the theoretical chi-square distribution, there needs to be a better un-
derstanding on the impact of the orbital regimes on the distribution to allow for gating without a priori, or
truth-information.
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9.1.3. Estimation accuracy

The estimation accuracy of each true correlation is expressed by the root mean square error between the
obtained estimate and true state. The distributions are shown in fig. 9.10 as well as function of the angular
separation between observations in fig. 9.11.
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Figure 9.10: The root mean square error in the states obtained for each true correlation for LEO, MEO and GEO regime.

As can be seen in fig. 9.10, virtually no differences are observed between optimization methods, highlight-
ing the dependence of the cost-function representation on performance. Accordingly, latter plot is presented
for L-BFGS-B only and the full plots can be found in appendix C. A large fraction of the correlated cases
obtain significant estimation errors, in accordance with the obtained cost function values. Again, the GEO
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regime shows relatively less cases with excessive errors compared to LEO and MEO. The concentration of 15
- 25 km and 0 - 2 m/s rmse for GEO is in accordance with the results of [60], highlighting the discrepancy
between two-body and SGP4 dynamics. This discrepancy is the difference in force models used between the
estimation method using two-body dynamics and the SGP4 model used to simulate measurements. As SGP4
accounts for Earth’s zonal harmonics, Earth’s atmospheric drag and third body effects of the Sun and Moon
in addition to the two-body dynamics used only in the estimation methods. As the primary perturbation, the
Earth’s atmospheric drag, is not included, the lower altitude objects reflect significant state errors for a larger
group of correlation cases, see fig. 9.10. For the GEO objects, fewer cases show large outliers of state errors,
due to aless critical force model discrepancy given the orbital period and revisit times. However, the obtained
distribution shows more outliers, i.e. a fraction of GEO state errors above 100 km and 50 m/s, compared to
the work of Siminski [60].

The relation with angle separation (fig. 9.11) is again visible for the GEO regime, where increased angular
separation allows for better estimates in the states. And small angle separations lead to difficulties and larger
errors due to the plane uncertainty of Lambert’s solver. A similar trend can be observed to a lesser extent for
the LEO and MEO regimes, where mostly the lower band of errors decreases for increasing angle separation.

9.1.4. Run-time performance

The run time of each population is presented in fig. 9.12 and the average run-time is compared for each orbit
regime and optimization method in table 9.3. The largest impact on the run-time is expected to be the num-
ber of optimization iterations required for the feasible Lambert parameters, such as orbital half revolutions,
flight direction and low or high path for multiple solutions. This would explain why for GEO objects the av-
erage run-time is lower compared to the LEO and MEO populations, as it is defined on a smaller semi-major
axis interval. Additionally, the initial guess is based on the semi-major axis bounds and maximum eccen-
tricity, for which GEO obtains a relatively precise initial guess in most cases. For MEO the semi-major axis
interval is the largest and thus allows for potentially high number of iterations required due to a bad initial
guess. The average run-time of LEO is the largest, however, and seems to decrease for corresponding MEO
and GEO regime. It is less clear what the exact cause is for the longer runtimes in LEO, one possibility is the
denser orbital population in LEO, which may lead to more feasible solutions that require additional compu-
tational effort to resolve, unlike other regimes where solutions can be more readily dismissed. The difference
in computational time for Powell and L-BFGS-B regimes is primarily explained with the coverage, i.e. the
number of cases that converged. For the simulation the global minimum cost function is sought for multiple
discrete optimizations, where each feasible condition is tried and the overall best parameters are stored with
corresponding cost function value. Whereas Powell would obtain no feasible numeric value, L-BFGS-B would
obtain a numeric value and thus cover more cases. Itis expected that this discrepancy can be tuned, such that
the L-BFGS-B method breaks off at an earlier stage for uncorrelated cases. Currently this is not included as to
allow to obtain the full distribution of numeric values for both correlated and uncorrelated cases. In the case
for GEO orbits, the initial guess was typically closer to the minimum and topography is better behaved. This
shows the computational time to be closer and actually better for the quasi-Newton method, benefiting from
the topography. Additionally, for the more difficult regimes Powell’s zeroth-order method is seen to be more
efficient.

Table 9.3: Comparison of Methods and Orbits

Method Orbit Coverage [%] Average Ct. time [s] No. of cases

Powell LEO 77.24 3.11 6555
L-BFGS-B LEO 89.38 6.69 6555
Powell MEO 90.91 2.21 3003
L-BFGS-B MEO 99.90 4.42 3003
Powell GEO 59.01 0.70 30628

L-BFGS-B GEO 60.52 0.53 30628
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Figure 9.11: The root mean square error against angle separation for each true correlation. The dotted line shows the median value of
the whole correlated population.

9.2. 10D validation step

Having obtained the estimated correlations, the classical initial orbit determination methods are applied to
investigate their effectiveness on validating or reducing false positives. The data used for this is the batch of
correlation cases that fall below the threshold set for maximum accuracy as shown in previous section. The
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Figure 9.12: Distribution of the run-time per correlation case.

maximum accuracy gate is set for the sake of analysis, in which a more noticeable number of false positives is
obtained and the effect of the following approaches may be studied to reduce false positives. Each correlation
case consists of two tracklets, whose complete set is now considered for initial orbit determination based on
three angles. As the tracklets are too short, the IOD methods are not applied to the individual tracklets but
instead to the angles contained in the combined correlated tracklet, with the aim to increase orbital coverage.
For Gauss and Gooding the first and last angles of the first tracklets are used and the last angles of the second
tracklet. For L, Gauss, the full angle set is used. The steps included in this approach are depicted in fig. 9.18.

10D
Observations BVP COI;I]:ICIZUOII ii Tracklet grouping Gauss, Ln Gauss
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Figure 9.18: Overview of the procedure for the IOD validation step, where j denotes the number of state estimates obtained depending
on a three angle only j = 1 or L, Gauss method j = N-2.

The number of pairs estimated to be correlated by the BVP method is 868, 182 & 1153 for LEO, MEO and
GEO respectively. Of these estimations, still 732, 109, 855 are falsely estimated. To reduce this false positive
rate, the IOD methods are applied to the same number of cases to investigate any relation between the results
obtained by the BVP and 10D methods. And investigate whether re-considering the full angle-set shows any
benefit in rejecting false positives.

For all IOD methods the solution is compared to the initial estimate obtained by the BVP correlation
method. Specifically, the results obtained using the L-BFGS-B optimization method are used. The compari-
son is performed on the Keplerian elements, as the state estimates do not correspond on epoch denying di-
rect state comparison. This way the difference in estimated orbital shape, eq. (9.3), and orientation, egs. (9.4)
and (9.5), of the estimated orbits are compared. Latter is done with the angular momentum vectors and
longitude of periapsis, the sum of the right ascension of the ascending node and argument of perigee. The
estimated true anomaly, or the argument of latitude are not considered for comparison as the epoch of the
estimated states do not directly correspond. Accordingly, the semi-major axis

P1 p2
Aa=|—— - , (9.3)
1-ef 1-¢é5
the orbital plane orientation
AB;, = arccos h; - hy, 9.4)
and the longitude of periapsis
Ad =1(Q1 +w1) — (Q2+w2)|, (9.5)

are compared (figs. 9.22, 9.23 and 9.25). For the batch least squares instead the final obtained root-mean-
square on the measured and modelled angle is taken as reference.

While already presented in previous section, the state estimate accuracy for the estimated correlations
is again presented in the same format as will be shown for the IOD and OD methods. The same values are
shown, however the state errors are shown for only the gated data set, whereas the state errors shown for BVP
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Figure 9.19: State estimate accuracy for BVP gated measurements, rmse between true (SGP4) and estimated states.

in previous section contain the full set of cases. To interpret the accuracy obtained from the BVP method, the
median error are taken for the true correlations. While the distributions do not show a left skewed distribution
and the median thus does not always reflect the distribution well, for cases that show skewed distributions it
is still seen to more accurately reflect the relative performance of the methods.

The accuracy for each method is compared to the accuracy obtained from the BVP correlation method.
table 9.4 presents the median values obtained for each method on the subset of estimated correlations, as
well as the coverage. The coverage is determined by the fraction of cases obtaining a solution, indicating to
which degree the method is applicable to the considered observation conditions.

Table 9.4: Median RMSE, converged cases (Cvg.) and computational time (Ct.) for each method and regime between true states (SGP4)
and true positive estimated states.

Method LEO MEO GEO

Cvg. [%] r[km] v[m/s] Ct[s] Cvg.[%] rkm] v[m/s] Ct[s] Cvg.[%] rkm] v[m/s] Ct.[s]
Gauss 11.64 3.92 18.45 3.0 17.03 646.81 116.84 44.0 9.37 4948.32 378.93 60.0
L, Gauss 8.29 4.9 20.4 29.0 8.79 8579.67 1859.2  289.0 0.69 19259.39 183296 117.0
Gooding 95.97 70.6  4055.87 2.0 96.70 95.06 1167.45 2.0 100 89.5 9.16 2.0
BVP - 5749 354.71 - - 68.91 145.33 - - 43.63 6.26 -

The comparison in accuracy helps interpret the difference in results shown between BVP and 10D meth-
ods in following sections. Large differences in orbital parameters can be concluded to indicate a worse result
in general, as the BVP method shows to return overall a better estimate. Nevertheless, the main goal for the
estimate comparison is toward validation purposes of the obtained BVP correlation, ideally rejecting false
positives. Each method is briefly discussed for state accuracy and validation of BVP results in the following
subsections.

9.2.1. Gauss

As shown in table 9.4, Gauss and L;, Gauss perform remarkably well for LEO compared to other methods,
with L, Gauss showing slightly higher errors. When looking at the distribution corresponding to the state
accuracy, a concentration of true correlations is found below order 2 magnitude errors for LEO (see figs. 9.20
and 9.21). On all other regimes it obtains significant state errors, where again the three angle classical Gauss
outperforms the L, Gauss approach. The seemingly high performance at LEO is mainly attributed due to the
small number of cases being handled by Gauss. The cases that it is able to estimate for are however accurate
and explain the low median error. For both the Gauss and L, Gauss this highlights their limitation on single
revolution measurements and consequently revisit time. A large number of cases are characterized by large
time-steps, relative to the estimated orbital motion 7 oc V1/a3. Between the tracklets the semi-major axis for
the universal anomaly
2 2
x=ar/g, « P (9.6)
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Figure 9.20: State estimate accuracy for Gauss on BVP gated measurements, rmse between true (SGP4) and estimated states. For false
correlations, the true state is taken to be the state of the object with the corresponding middle epoch measurement.

computation becomes too large and denies any universal anomaly solution. Accordingly, in both approaches
it is only able to handle single revolution observations with sufficient revisit-time between the tracklets, and
thus handles only a few number of cases. The majority of the cases it can handle are within the same night
and show large differences in elements to the BVP estimates. The average run-time for both implementations
is typically below one second, where the three angle Gauss method is shown to obtain the solution faster
compared to the L, Gauss approach in most cases.

For both the Gauss and the L,, Gauss approach (see figs. 9.20 to 9.23) there is overall a distinction visi-
ble between true positives and false positives when looking at their respective median values. However, in
addition to the limited application of Gauss toward single night observation, there is no clear indication on
elements to reject false positives and allow to validate results with added information. As for L,, Gauss, the
estimate obtaining the smallest difference in semi-latus rectum between BVP and L, Gauss is taken from the
total number of range estimates. Still, as also seen in section 7.2, it does not benefit from the full angle set, as
it does not add meaningfully toward the available information to rule out false positives and thereby increase
accuracy. As for the L, Gauss method, larger errors are primarily seen due to the short angle separations for
each range estimate triplet.
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Figure 9.21: State estimate accuracy for L, Gauss on BVP gated measurements, rmse between true (SGP4) and estimated states. For false
correlations, the true state is taken to be the state of the object with the corresponding observation epoch measurement.

For all regimes, the semi-major axis and longitude of periapsis show significantly different estimates, es-
pecially for LEO and MEO considering the difference relative to the typical altitudes. For the orbital plane
orientation, the differences are more contained for the correlated cases in which GEO shows higher differ-
ences compared to the lower altitude objects. This could perhaps reflect Gauss’ ability to reflect the orbital
plane orientation relatively well, i.e. position and velocity directions, as also concluded by Schaeperkoetter
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in an investigation on I0OD methods on LEO orbits [55]. For Gauss, the resulting population contains 26, 18,
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Figure 9.22: Difference in Keplerian elements between Gauss and BVP estimates.
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Figure 9.23: Difference in Keplerian elements between L, Gauss and BVP estimates.

93 positives and 75, 13, 15 negatives for LEO, MEO, GEO respectively. For L, Gauss, 24, 15, 6 positives and
48, 1, 2 negatives for LEO, MEO, GEO are obtained. The resulting dataset of the correlation estimates is thus
significantly reduced due to the inability to handle multi-revolutions. In addition, Gauss’ method does not
prove useful for validation of the correlation results, as there is no clear relation for the correlated estimate
differences allowing to reject false positives.

9.2.2. Gooding

Unlike Gauss’ method, Gooding is able to handle multi-revolutions due to the usage of a Lamberts solver.
Accordingly, the estimated results from the BVP method are directly supplied as inputs for Gooding’s method.
As Gooding relies on three angle pairs, with sensitivity on the initial guess of the outer ranges [65], the three
most orthogonal angles are set. The initial range guess is defined by the estimate obtained from the BVP
correlation as well as the flight direction and number of orbital revolutions.

Furthermore, as the nature of Gooding is based on three angles instead of the outer ranges as input, the
orbital elements are still required to compare the estimated states in general sense. Before the differences
are investigated however, it is observed that Gooding shows better accuracy for the position estimates com-
pared to Gauss. Noticeable for Gooding is the large error in the velocity estimates especially for lower altitude
regimes, consistent with the observations from Miller and Frueh [42].

While the median errors presented in table 9.4 seem to indicate better performance for Gauss for LEO, it
is primarily due to the larger number of cases handled. Gooding is known to show reduced performance for
smaller angle separation, with increased accuracy when angular separation is increased above 5 degrees up to
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Figure 9.24: State estimate accuracy for Gooding on BVP gated measurements, rmse between true (SGP4) and estimated states. Dashed
lines indicate median values. For false correlations, the true state is taken to be the state of the object with the corresponding middle
epoch measurement.

90 degree angle separation [55, 42]. On the other hand, Gauss is seen to decrease performance for larger angle
separations. This can be attributed to the use of refined Lagrange coefficients and a linear approximation on
states with shorter time gaps. In contrast, Gooding uses an iterative boundary-value approach with Lambert’s
solver, which accommodates multiple revolutions and requires observation geometry outside the full and
half revolutions. For all regimes Gooding’s method is able to obtain a solution within one second, with typical
run-times in the order of milliseconds. It shows to obtain the solution faster compared to Gauss and also
remains constant for all regimes.

With the exception of a few false positives in the LEO and MEO populations, the same population is re-
turned as by the BVP method. Thus, in contrast to Gauss, a large part of the population considered is handled
due to Gooding’s ability to handle multiple orbital revolutions with a Lambert solver. Gooding handled all
GEO correlations, and 95.97 % and 96.70 % of the correlation cases for LEO and MEO respectively. For LEO
and MEQO, the cases it did not obtain consist of a large majority of false positives, 34 of the 35 solutions it did
not obtain are false positives for LEO, for MEO all 6 solutions it did not obtain are false positives.

Whereas Gauss showed increasing differences for higher altitudes, Gooding shows the differences to de-
cline for higher altitudes. Still, no clear relation or behaviour is seen that could be used for direct rejection of
false positives. As it is able to handle more cases, due to multi-revolutions, it is more usable than Gauss, but
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Figure 9.25: Difference in Keplerian elements between Gooding and BVP estimates.

regardless does not add more information when using the most orthogonal angles in a combined correlated
set. Additionally, the Lambert solver used in Gooding is based on an older implementation and could there-
fore also be expected to at best obtain the same order of accuracy at higher computational burden, when
purely comparing on the Lambert solver [18].
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9.2.3. Alternative validation for IOD

As shown in the previous section, in a practical setting the correlation may be validated by comparing the
obtained orbit estimate of the BVP correlation with the IOD method. However, the primary limitation is
the assumption that the two estimates are not consistent in their errors when identifying false correlations.
This approach cannot exclude cases where large, consistent state errors between the BVP and IOD methods
falsely indicate a correct correlation. Therefore, an alternative approach is to use the obtained state estimate
to model the measurements not used by the IOD method and compare by the root mean square error be-
tween the measured and modelled angles. The comparison with the modelled measurements from the state
estimate then takes into account the accuracy of the state in addition to the consistency between methods.
The steps involved in this approach are outlined in fig. 9.26.

Observations Correlation Tracklet grouping Three angles I.OD Modelle.d ob-
N . Gauss & Gooding servations
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Figure 9.26: Alternative validation method for three angles only IOD methods.

As the method relies on validation of correlation by comparing against measurements, the multiple angles
L, Gauss method is not applicable and would return by definition zero root-mean-square due to the use of
each measured line of sight for the system of equations. Accordingly, the alternative approach are applied
only for three angle only IOD methods Gauss and Gooding. The results are presented in figs. 9.27 and 9.28.
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Figure 9.27: Alternative I0OD step after BVP correlation for Gauss’ three angle method. Dashed lines indicate respective median values.
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Figure 9.28: Alternative IOD step after BVP correlation for Gooding's three angle method. Dashed lines indicate respective median values.

From the distributions, the distinction between true and false positives remains, although more consis-
tently and concisely captured by the RMSE. The medians and distributions show, similarly to the previous
validation approach, a greater distinction between true and false positives for Gauss compared to Gooding in
terms of accuracy, difference and RMSE values. Accordingly, similar behaviour to that shown in the previous
section is observed when the IOD methods are used to validate the correlation results. This behaviour shows
that the results obtained with the IOD methods applied to a correlated set of tracklets do not provide the nec-
essary information to validate and reject false positives. Therefore, the procedure is again a balance between
true positives and true negatives and it is best to rely on the BVP correlation results and use a fair uncertainty
distance at around 10 maximum.

9.3. BLS validation step

For the orbit determination step, the batch least squares implementation is used. To estimate the residuals
it includes third body and J2 harmonics as only perturbations. The BLS considers a maximum of 100 iter-
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ations or a difference of less than 10~ in consecutive RMS for convergence. The method is applied to each
correlated pair as well as to each group of measurements that are estimated to be cross-correlated. Unlike the
10D step, the BLS aims to refine the state estimates obtained by finding the deviation vector and measure-
ment noise. As is typical for orbit determination methods, it is able to use the complete data of all collected
measurements that are estimated to correspond to the same object. Cross-correlation of measurements is
defined as a chained-correlation outside of the pair-wise correlations. Thus if a correlation is expected from
the BVP step between A and B, and measurement B and C as well, the complete cross-correlated group then
consists of A, B and C. If the cost function and selected threshold reflect the correlation accurately, the same
number of groups as unique space-objects should be found.

First, BLS is applied to cross-correlated groups, with the gate value set differently from the IOD steps and
the pairwise BLS approach. As shown in section 9.1.2, gating in the order of 10° o for the maximum correla-
tion accuracy for LEO and MEO yields large false cross-correlated groups. Therefore, the maximum accuracy
gate for GEO is set for all regimes to reflect a more realistic uncertainty distance. The gate is considered from
the L-BFGS-B method, where the maximum accuracy was found for GEO at 14.3465 (~ 101'16). The correla-
tion rates for all regimes at this threshold are tabulated in table 9.5.

Table 9.5: Correlation rates for each regime at the specified threshold.

Regime FNR% FPR% TPR% TNR%

LEO 85.71 0.02 14.29 99.98
MEO 75.00 0.00 25.00 100.00
GEO 5.40 4.69 94.60 95.31

The more conservative gating reflects a high true negative rate, obtaining for MEO a 0% false positive rate.
The results of the orbit determination applied to the groups are depicted in fig. 9.29. The true correlation is
marked red if the group contains measurements originating from the same unique object, and thus contain
no measurements of other objects that are false cross-correlations. From the obtained refined initial state es-
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Figure 9.29: BLS applied on grouped cross-correlated measurements for each regime. Measurements are generated based on SGP4
dynamics, BLS includes J2 harmonics and Sun-Moon third body effects.

timate, the BLS does not handle the grouped batch of measurements correctly, despite the high true negative
rate. It shows extremely high RMS values for the measurement angles obtained after reaching the maximum
number of iterations. Performance of the BLS seems to be limited by the force model and non-linearity of
the measurements more than the impact on false positives, as seen in the population of MEO with 100% true
negatives. It appears that the measurements are too sparse for the grouped orbit determination method to be
refined, preventing it from properly yielding lower state error. The median runtime for each grouped batch is
0.66, 2.36 and 3.34 s for LEO, MEO and GEO respectively.

As an alternative to the grouped approach, the BLS method is also applied to each estimated correlated
pair. This reduces the number of sparsely distributed measurements within a single batch for the OD method.
For this approach, the gate at maximum accuracy is used as is done similarly to the IOD steps to investigate
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the effect on false positives. This means the correlation rates are such that the true positive and negatives are
maximum for each regime, but as consequence contain significantly more false positives. The obtained state
errors between the refined initial state from the BLS and the true simulated states are plotted in fig. 9.30 Still
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Figure 9.30: BLS applied on correlated measurement pairs for each regime. Measurements are generated based on SGP4 dynamics, BLS
includes J2 harmonics and Sun-Moon third body effects.

large errors are seen, and similarly to the IOD steps, no clear false positive rejection values are shown. While
the state error are significantly lower compared to the grouped refinement, for GEO the median rmse is still
in the same order as obtained from the BVP method and thus does not show any refinement in estimates.
The lower error are believed to be due to the higher occurrence of smaller time-gaps in-between tracklets
correlated, and thus the BLS converges more often. The computational time of this pair-wise approach using
the BLS algorithm is significantly more expensive compared to the IOD methods, see fig. 9.31. Due to the
larger number of run-cases, i.e. each pair, the median run-times are significantly higher compared to the
grouped approach; 8.81, 3.12 and 0.73 s for LEO, MEO and GEO respectively.
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Figure 9.31: Median computational time for the pair-wise BLS approach.

Overall, the validation step is not considered a fruitful approach toward validation of the tracklet correla-
tion results obtained by the BVP method. This is primarily due to the inability of the methods to properly use
the information contained in the tracklets. It shows that the attributable approach for the too-short arcs is the
best approach for initial orbit determination compared to an multiple angles approach. Gooding’s method
was seen to be the most promising candidate for validation of tracklet correlation results. Primarily due to
its relatively good accuracy for the required computational time. The BLS implementation did not properly
handle the correlated measurements, which is expected due to the force model discrepancy and sparsely dis-
tributed measurements. The impact of the correlation accuracy on the orbit determination process remains
unclear. Additional work is required to investigate the impact and required estimation accuracy on the orbit
determination process, investigating the impact of measurement sparsity and higher force model fidelity for
the estimation method. Common among all methods is the inability to reject false positives, or outliers, by ex-
tracting more information when reconsidering the raw tracklet angles. Reducing the false positives was only
achieved at the cost of lower true positives, and thus requires the same procedure as is already performed
during tracklet correlation.
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Conclusion and recommendations

The main goal of this thesis was to explore the potential of existing estimation methods and modify the cat-
aloguing pipeline so as to improve its robustness while minimizing the associated computational expense.
The cataloguing robustness is defined as the ability to capture truthful tracklet correlations for the catalogue
build-up of newly identified or re-observed space-objects. In particular, by achieving high true positive and
true negative rates for tracklet correlation. This thesis therefore provides an answer to the main research
question:

“How can the robustness of the cataloguing pipeline be improved when considering application of orbit
estimation methods to the full angle set of short observation arcs?”

To provide an answer to the main research question, a baseline tracklet correlation approach is implemented.
The approach developed by Siminski [60] is included, referred to as the Boundary Value Problem (BVP) for-
mulation within the Admissible Region (AR) framework. This correlation method estimates an object’s state
using angular observations of right ascension a and declination § at two epochs, t; and t,, derived in this
work from an optical ground-based sensor with noise of around 2 arcseconds. By fitting these angular mea-
surements to a quadratic curve, mean angles and angle-rates are determined, forming an attributable. To es-
timate the object’s six-parameter state (r and i), hypothesized ranges p; and p, are combined with the outer
mean angles, creating a measurement vector [a;,01,01, @2,02, p2]. The admissible region in p;-p; is sam-
pled, and a Lambert solver derives the corresponding velocity vectors, yielding the object’s state at #; and f,.
A cost-function based on the Mahalanobis distance evaluates the quality of hypothesized ranges, minimized
through numerical optimization to identify the best range estimates. The correlation between measurements
is judged using this minimum cost-function value, with thresholds set for desired true positive rates.

To validate the correlation process and enhance cataloguing robustness, multiple initial orbit determina-
tion (IOD) methods were evaluated using full tracklet data. The multiple angles-only Gauss method, pro-
posed by Karimi and Mortari, employs a least-squares approach to estimate ranges for all measurement
epochs, utilizing the entire tracklet [34]. Its implementation was verified against the published results and
compared to Gauss’ three-angle method, which when compared to the most-orthogonal three angles in
Gauss, demonstrated similar accuracy at higher computational effort.

Gooding’s three-angle method, using a Lambert solver for multi-revolution orbits, was also tested, along
with a Batch Least Squares (BLS) orbit determination method to investigate the balance between acquired
state accuracy, computational burden and sensitivity to detect correlation. These methods were applied to
results from the BVP correlation method and compared on estimation accuracy, orbital element differences,
root-mean-square on the filtered angles as well as computational time.

Simulated measurements were generated from reference TLEs for LEO, MEO, and GEO objects, propa-
gated over three observation nights with the SGP4 model, accounting for drag, J> harmonics, and third-body
effects. Observations, based on Airbus’ Robotic Telescope (ART), included visibility constraints and noise of
2 arcseconds, capturing tracklets between 8 to 70 seconds length for LEO and GEO.

The impact on false negative and positive rates on the tracklet-correlation is studied by correlating the
complete set of tracklet pairs, obtaining 7 (n—1) /2 total number of combinations. To optimize run-time,
the process was parallelized for both numerical optimization with Powell’s zeroth order line-search and a
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quasi-Newton method. The evaluations times for each correlation case are 0.58-7 seconds on average. In
general there was negligible difference in obtained results for the two considered optimization methods. The
correlation procedure was seen to work best for GEO, where the cost-function reflects the theoretical chi-
squared distribution best. At a 95% certainty threshold, a true positive rate of around 90% was observed.
The maximum estimation accuracy, i.e., the maximum true positive and true negative rates, for GEO was
achieved at reasonable uncertainty gating of 14.34 . For LEO and MEO, higher Mahalanobis distances and
cost-function thresholds in the order of 108 were required for their respective maximum accuracies. At lower
altitudes, higher minima of the cost function are observed, along with a generally wider distribution. The
results for lower altitude orbits highlights the challenging regimes for restricting observations. Whereas GEO
objects were typically re-observed within 1 day for a maximum of 1 completed revolutions, the lower altitude
objects completed about 10 times more orbital revolutions in between observations. Additionally, the force-
model discrepancy in the estimation methods is more significant for lower altitudes when compared to GEO
objects. Regardless, for all regimes, the estimation accuracy improved with greater angular separation, and a
clear distinction was found for the median cost minimum between true and false correlations.

When employing classical IOD methods for validation of the correlation results, Gauss’ three-angle method
is not seen as a suitable method, as it was seen to handle only a small fraction of the considered measurement
pairs. The estimated correlations it was able to handle are for a large part for same-night observations, high-
lighting the limited applicability of Gauss to zero orbital revolutions. The Ln Gauss method, similar to Gauss’s
three angles, struggled with large time gaps and semi-major axis. Overall, as shown in the comparison of the
two implementations, the Gauss three angle approach showed better accuracy in state estimation for shorter
run times compared to the Ln Gauss implementation.

Gooding’s method, which uses a Lambert solver, is able to handle multiple orbital revolutions and re-
turned an estimate for all cases, except for some (primarily false) correlations at LEO and MEO. Noticeably,
Gooding obtained high residuals in the velocity vector but lower median residual in position vector for LEO
and MEO. Gooding’s accuracy increased with larger angular separation and consistently delivered solutions
faster than Gauss in the order of a couple milliseconds.

The Batch Least Squares (BLS) orbit determination method was applied to both the cross-correlated
tracklets, consisting of larger groups of correlated measurements, and pair-wise correlated tracklets. The
BLS showed to not properly handle the grouped batch of measurements, despite the use of a high true neg-
ative population. Essentially no refinement in the states was observed and convergence was not achieved.
The large time-steps, and data sparsity between the tracklets seem to prevent the BLS method from refining
the orbital states. The run-time for the BLS method is also more expensive in comparison to the classical IOD
methods, showing median run time of 0.68 s (LEO), 1.53 s (MEO) and 3.43 s (GEO).

In the pairwise BLS application, the method achieved lower residuals compared to the grouped approach,
most likely due to the smaller time gaps between tracklets. In accordance to the initial estimate accuracies
obtained by the BVP method, the accuracy in the BLS pair-wise approach decreased in magnitude for higher
altitudes. Still, the residuals in the GEO regime remained comparable, but worse for LEO and MEOQ, to those
from the BVP method, showing no refinement. Furthermore, the method lacked clear rejection criteria for
false positives, and the obtained RMS values on angle measurements did not provide for a clear validation
metric. The pair-wise approach showed median run-times of 8.59 s (LEO), 1.42 s (MEO), and 0.72 s (GEO).

Concluding, the estimation methods did not show a clear relation for false positive rejection and con-
sequent improvement in robustness of the cataloguing pipeline when applied to the obtained results from
the tracklet-to-tracklet correlation procedure. The BVP method demonstrates reasonable performance for
re-observation outside full orbital revolutions and for sufficiently small revisit times relative to the mean mo-
tion. The best approach involves gating for a high true positive rate near the upper bounds of the chi-squared
distribution. Lower uncertainty distances, well within the order of 10 o, are recommended to exclude large
numbers of false positives and to avoid false cross-correlations. The impact of the obtained state and corre-
lation accuracy on the BLS orbit determination method was not found due to the inability of the BLS imple-
mentation to handle the sparse tracklet data in both grouped cross-correlated measurements and a pair-wise
approach.

10.1. Recommendations

Based on the findings in this work, some recommendations are given for future research. First of all, low-
altitude objects remain a challenge for ground-based optical observations. While the use of radar capabilities
at these altitudes may offer a more pragmatic approach, further investigation of the BVP method applied
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to these regimes in combination with optical ground-based observations is recommended to confirm the
dependency on perturbed motion through inclusion of force models in BVP as to obtain higher accuracy
initial estimates and distributions for gating closer to the theoretical distribution.

Second, a deeper understanding of the OD method’s role in tracklet correlation is necessary. As observed
for the considered IOD and OD methods, the validation methodology is not an appropriate means of effi-
ciently enhancing the robustness of the cataloguing pipeline. Regardless, the obtained accuracy of the BVP
method and initial guess, as well as the data sparsity should be characterized for the required initial state
accuracy on orbit determination. Further work could assess how initial states derived from the correlation
method influence an higher-fidelity force-model orbit determination. This may perhaps motivate the use of
perturbed force models, at higher expense, to adequately handle lower altitude objects. Additionally, study-
ing the impact of false positives on a higher fidelity force model orbit determination may help clarify the
trade-off between the maximum accuracy true positive rate and accompanying increased false positive rate.

Third, further characterization of the BVP method is recommended through a sensitivity analysis isolating
the impact of orbital elements on the estimation accuracy. This approach would enhance the understanding
of BVP’s behaviour under controlled conditions and aid observation strategy design, such as to avoid full or
half revolutions and apply off-sets for consecutive night observations.

Practical enhancements for simulations and data handling should also be considered. The current simu-
lated measurement populations are limited in size, primarily due the use of a rough initial implementation.
Future work should focus on a more efficient approach to simulating measurements for larger population
sizes. The larger and more diverse datasets could potentially provide more clarity on the obtained accu-
racy and cost-function distributions. The current implementation of the BVP method showed problems for
the quasi-Newton optimization method when trying to handle about a large number of correlation cases
(>30.000). Therefore, future work should also aim to resolve the memory leak occurring when using the BFGS
optimization method. Additionally, the implementation can be significantly more efficient for large mea-
surement correlations when programming for parallelized computations on GPUs to leverage more threads
efficiently. Lastly, expanding the research to include real optical measurements is also crucial to validate the
performance of the tracklet correlation approach in a real-world application.

By addressing these recommendations, future research can improve the robustness and applicability of
the tracklet-correlation method explored in this work, particularly for lower-altitude regimes and large-scale
optical tracking.






Table A.1: Airbus Robotic Telescope (ART) specifications [36].

ART specifications

Location Extremadura, Spain

(Lat., Long., Alt.) (38.21607°, -6.62778°, 570 m)

Tracking types Surveillance, tracking

Tasking methods Scheduler!

Data format FITS, CCSDS TDM

Accuracy (1-0) < 0.5 arcsec

Parameter ASA H8 ASA H400
Aperture diameter [mm] 200 400

Focal length [mm] (f-ratio) 590 (2.95) 960 (2.4)

Camera FLI ML11002 Moravian C5-150M
Detector type CCD, Interline CMOS, Back-illuminated
Shutter Global Rolling

Detector size [px] 4008x%x2672 14208%x 10656

Pixel size [um] 9.00 3.76

Pixel scale ["/px] 3.15 0.80

Field of view [deg] 3.50x2.34 3.18x2.39

Filters Clear, UBVRI and empty Empty and BVRI
Sensor peak QE [%] 50 ~ 90

Typical readout time full <10s <03s

frame
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Figure A.1: ART’s two-telescope configuration in June 2023. Image obtained from [36].



Code

The following code can also be found on github. com/casruks/I0OD_T2T.git.

B.1. Ln Gauss implementation

import numpy as np

from scipy.linalg import 1lstsq

from Constants_and_fuctions.constants import mu
import time

def Lagrange_ceff_universal(a, x_i, rn, tau_i, GM):
20

From (Curtis, 2013), 3rd edition, algorithm D.15 Equation 3.69.

39

phi = a*xx_i**2
c2, c3 = findc2c3(phi)

fi = 1 - x_i#**2/rn*c2
gi = tau_i - 1/np.sqrt(GM)*x_i#**3%*c3
return fi, gi

def Kepler_U(dt, rn, v_rad, a, GM):
err = le-8
k_max = 500

x = np.sqrt (GM) *abs (a)*dt

k =0
ratio = 1

while (abs(ratio) > err) and k < k_max:
k += 1
c2, c3 = findc2c3(a*xx**x2)

F = rn*v_rad/np.sqrt (GM)*x#**2*c2 + (1 - a*rn)#*x#**x3*c3 + rn*x - np.sqrt(GM)*dt
dFdx = rn*v_rad/np.sqrt (GM)*x*(1 - a*x**x2%xc3) + (1 - a*rn)*x*x2%c2 + rn

ratio = F/dFdx
x -= ratio

if k > k_max:
print (’Max iterations used for universal anomaly (k={k}).?’)
return x

def karimi_exact(tnp, pos_obs_nd, losnp, tol=1e-8, it_max=500):
start_time = time.time ()

1 = len(tnp)

t_ = (tnp - tnpl[O0])
t_diff = np.diff (t_)
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taul ,tau3 = np.array([-t_diff[:-1],t_diff[1:]])

f1 = £3 = 1
gl,g3 = taul, tau3

# non-zero initial guess

# fg = f1xg3 - f3x*gl

# c_k, d_k = g3/fg, -gl/fg
fg_in = f1, g1, £f3, g3

# MO, Xi0 = D_M(c_k, d_k, pos_obs_nd, losnp)
# rhoO, _resi,_rnk,_s = 1stsq(MO,Xi0) #Gauss n angles

# zero initial guess
rho0 = np.zeros((1l,1))

# refine Gauss n angles

rho, f1_ i, f3_i, gi_i, g3_i = refine_ranges(rho0, pos_obs_nd, losnp, taul, tau3,
fg_in, tol, it_max)

r_vec = np.array(pos_obs_nd).reshape((1,3)) + rho.reshape(l,1)*losnp

# Determine mid-point velocity vectors

routerl_vec, rmid_vec, router3_vec = r_vecl[:-2], r_vec[1:-1], r_vec[2:]

f1, £3, gi, g3 = f1_i.reshape(l-2,1), f3_i.reshape(l-2,1), gil_i.reshape(l-2,1),
g3_i.reshape(1-2,1)

vmid2_vec = (-f3*routerl_vec + flxrouter3_vec)/(fl*g3 - £3*gl)

comp_time = time.time() - start_time

return r_vec, comp_time, vmid2_vec

refine_ranges (rho, pos_obs_nd, los, taul, tau3, fg_in, gtol, it_max):
1 = len(rho)

f1, g1, £3, g3 = fg_in

# Initial (un-refined) solution
r_vec = pos_obs_nd + rho.reshape((1l,1))x*1los

# Determine initial mid-point velocity vectors. {rl, r2, r3} -> v2 etc
routerl_vec, rmid_vec, router3_vec = r_vecl[:-2], r_vec[1:-1], r_vec[2:]

# Set remaining intial values for refinement

k =0

diff = 10

rho_prev = rho

ri_i, r2_i, r3_i = routerl_vec, rmid_vec, router3_vec

f1_i, gi_i, £3_i, g3_i = np.array([f1]*(1-2)), gi, np.array([£f3]*(1-2)), g3

while np.all(diff > gtol) and (k < it_max):
K = 1

# Reshape to allow matrix operation for variable tracklet length, 1
rq_shape = rl_i.shape

gl_i = np.broadcast_to(gl_il[:, np.newaxis], rq_shape)

f1_i = np.broadcast_to(f1_i[:, np.newaxis], rq_shape)

g3_i = np.broadcast_to(g3_il:, np.newaxis], rq_shape)

f3_i = np.broadcast_to(f3_i[:, np.newaxis], rq_shape)

# Update middle vectors with new lagrange coefficients
vmid2_vec = (-f3_i*rl_i + f1_i*r3_1i)/(f1_ixg3_i - £3_ixgl_i)

rn = np.linalg.norm(r2_i, axis=1)

v_rad = np.sum(vmid2_vec*r2_i, axis=1) / rn
vi = np.linalg.norm(vmid2_vec, axis=1) # mid
a = 2/rn - vn**x2 / mu

# Determine universal anomalies for each triplet

x1 = [Kepler_U(taul_, rn_, vrad_, a_, mu) for taul_, rn_, vrad_, a_ in zip(taul
, rn, v_rad, a)l
x3 = [Kepler_U(tau3_, rn_, vrad_, a_, mu) for tau3_, rn_, vrad_, a_ in zip(tau3

, rn, v_rad, a)l
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# Determine Lagrang

# Update lagrange c
# Uses first elemen

# f1_i = [array([O.
f1_i = (f1_i[:,0] +
gl_i = (gil_i[:,0] +
£3_i = (£f3_i[:,0] +
g3_1i (g3_il[:,0] +

fg = f1_i*g3_i - £3
c_k, d_k = g3_i/fg,

# Set up design mat

rho, _resi, _rnk, _
# Quantify converge
diff = abs(rho - rh

# Compute updated v
r_vec = np.array(po
ri_i, r2_i, r3_i =

rho_prev = rho

if k > it_max:

return rho, f1_i, £3_i,

# Design matrix
def D_M(cl1l,c3,pos_obs,los):
n = len(los)

A_e,B_e = [],I[]

for i in range(n-2):
A = np.zeros((3,n))
losl1,1l0s2,10s3 = 1lo
A[O,i] ,A[1,i] ,A[2,i
A[O,i+1] ,A[1,i+1],A
A[0,i+2] ,A[1,i+2],4A

B = pos_obs[i+1] -

append (A)

A_e.
B_e.append (B)

A_e = np.vstack(A_e)
B_e = np.hstack(B_e)

return A_e,B_e

e coefficients for each triplet

fgl = np.array([Lagrange_ceff_universal(a_, x1_, rn_, taul_, mu)
rn_, taul_ in zip(a,
)

fg3 = np.array([Lagrange_ceff_universal(a_, x3_, rn_, tau3_, mu)

rn_, tau3_ in zip(a,
)

oefficients (same as in Gauss 3 angles)

ts of fg etc. out of simplicity, all elements

for
x1,

for
x3,

are

allow for matrix mult.:

99903824, 0.99903824, 0.99903824])]

fgil:,01) / 2
fgil:,1]) / 2
fg3[:,01) / 2
fg3l[:,11) / 2
_ixgl_i
-gl_i/fg

rix and solve for updated ranges

M, Xi = D_M(c_k, d_k, pos_obs_nd, los)

s = lstsq(M, Xi)

nce
o_prev)

ectors, extract outer and middle

s_obs_nd) .reshape((1,3)) + rho.reshape(l,1)*1los

r_vec[:-2], r_vec[1l:-1], r_vec[2:]

gl_i, g3_i
s[i:i+3]
] = c1[i]l*los1
[2,i+1] = -los2

[2,i+2] = c3[i]*1los3

cl[i]l*pos_obs[i] - c3[i]l*pos_obs[i+2]

a_, x1_,
rn, taul)]

a_, x3_,
rn, tau3)]

same to

print (’Gauss (n>=3) refinement executed with max iterations (k={k}).?’)

B.2. Parallel tracklet-to-tracklet correlation set-up

iimport ast

| import time

| import numpy as np

| import pandas as pd
‘from tqdm import tqdm

| from pathlib import Path
\

from datetime import datetime
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from astropy.time import Time
from joblib import Parallel, delayed

from IOD_methods.BVP_AR import BVP, BVP_initial_val
from Constants_and_fuctions.constants import Re

method = ’L-BFGS-B’ # or ’Powell’
regime_names = [’LE0’, ’MEO’, °GEO0’]
regimes = [ ’LEO_measurement_file.txt’,

MEO_measurement_file.txt’,
’GE0_measurement_file.txt’]

bounds = [(Re, Re + 2000e3, 0.25), # LEO
(Re + 2000e3, Re + 31570e3, 0.25), # MEO
(Re + 35586e3, Re + 35986e3, 1e-2)] # GEO

ident = ’run_id’
report_path = f’Data/T2T_results/report_{identl}.txt’

def T2T_processing(i, objl, all_data):

sig_thetal, sig_thetadotl = obj1[’SIG’], obj1[’SIGD’]
Attrl = obj1[’ATTR’]

R1 = obj1[’0BS’]

Rdotl = obj1[’0BS_V’]

fid_1 = obj1[’NORAD ID’]

result_list = []

for j in range(i + 1, len(all_data)):
obj2 = all_data.iloc[j]
try:
epochl, epoch2 = obj1[’EPOCH (UTC)’], obj2[’EPOCH (UTC)’]
tof = abs((epochl - epoch2).to_value(’sec?’))

sig_theta2, sig_thetadot2 = obj2[’SIG’], obj2[’SIGD’]

# Construct covariance matrices

cov_z = np.diag([sig_thetal, sig_thetal, sig_theta2, sig_theta2])

cov_z_dot = np.diag([sig_thetadotl, sig_thetadotl, sig_thetadot2,
sig_thetadot2])

# Combine attributes and observational data
Attr = Attrl + obj2[’ATTR’]

R = np.hstack((R1, obj2[’0BS’]))

Rdot = np.hstack ((Rdotl, obj2[’0BS_V’]))

# Boundary value problem (BVP) initialization

pO, k_range, uvec = BVP_initial_val(Attr, tof, R, a_min, a_max)
args = (k_range, Attr, R, Rdot, uvec, cov_z, cov_z_dot, tof, epochl,
epoch2)

result, comp_time, k, path, prograde = BVP(p0O, args, method=method,
plot=(False,))

fid_2 = obj2[’NORAD ID’]

result_list.append((fid_1, fid_2, np.loglO(result[’fun’]), tuple(result
[’x?]), k, path, prograde,
tof/(24%3600), comp_time,
result[’nit’]))

except as e:
fid_2 = obj2[’NORAD ID’]
print (f"Error processing pair ({i}, {j}): {e}")
result_list.append((fid_1, fid_2, np.nan, np.nan, np.nan, np.nan, np.
nan, np.nan, np.nan, np.nan

))
return result_list

for i, regime in enumerate(regimes):
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1st = []

regime_time = time.time ()

start_stamp = datetime.now().strftime(’%Y-%m-%d %H:%M:%S?)
all = pd.read_csv(regime, delimiter=’,?)

all[?EPOCH (UTC)’] = all[’EPOCH (UTC)’].apply(lambda el: Time(el))

all[’0BS’] = all[’0BS’].apply(lambda el: np.array(ast.literal_eval(el)))

all[’0BS_V’] = all[’0BS_V’].apply(lambda el: np.array(ast.literal_eval(el)))

all[’ATTR’] = all[’ATTR’].apply(lambda el: ast.literal_eval(el) if isinstance(el,
str) else el)

a_min, a_max, e_max = bounds[i]

results = Parallel(n_jobs=-1) (delayed(T2T_processing) (i, objl, all) for i, objl in
tqdm(all.iterrows (), total=len(alll[’
ATTR?1)))

# result output

T2T_RES = [item for sublist in results for item in sublist]

OUTPUT_T2T = pd.DataFrame (T2T_RES, columns=[’0BJ_1’, ’0BJ_2’, ’L(P,K)’, ’P’, ’K’,
PATH’, °PROG’, ®TOF’, °CT’, °IT’])

OUTPUT_T2T.to_csv(f"Data/T2T _results/{regime_names[i]}/T2TBVP_{method}_{ident}_{
datetime.now () .strftime (?%H?)}_{
regime_names [i]}.txt", index=False)

# report
is_new_file = not Path(report_path).exists ()

with open(report_path, ’a’) as file:
if is_mnew_file:
file.write(£"{’=>%80}\n")
file.write (£f"{’METHOD:’:<10} {method:<15} | {’START TIME:’:<12} {
start_stamp}\n")
file.write(£"{’=’%80}\n\n")
file.write(£f"{’REGIME’:<20}{°TOTAL TIME [S]’:<20}{’END TIME’:<30}\n")
file.write(£"{’->%80}\n")

end_time = datetime.now().strftime(’%Y-%m-%d %H:%M:%S?)
total_time = time.time() - regime_time
file.write(f"{regime_names[i]:<20}{total_time:>20.5f}{end_time:>30}\n")

if i == len(regimes) - 1:
file.write(£"{’=>%80}\n")
file.write(f"{’END’:<18} {method:<15} | {’COMPLETED ON:’:<14} {datetime.no
() .strftime (?%Y-%m-%d %H:%M:%S
’)F\n")
file.write(£f"{’=2*80}\n\n")

b

w

B.3. BVP implementation and accompanying functions

import time

import gc

import numpy as np

from lamberthub import izzo02015, goodingl990

from scipy.optimize import minimize

from scipy.optimize._numdiff import approx_derivative
import matplotlib.pyplot as plt

from Constants_and_fuctions.constants import mu

ACCEPTABLE_ERRORS = {"No feasible solution, try lower M!", "No feasible solution, try
lower M",
"Failed to converge", "Number of revolutions must be equal or
greater than zero!"}

def unitvec(nrads):
ra, dec = nrads
rhoh = np.array([[np.cos(dec)*np.cos(ra)l,
[np.cos(dec)*np.sin(ra)],
[np.sin(dec)]])
return rhoh
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def rmse(est, true):

est = np.array(est)

true = np.array(true)

N = len(est)

diff = est - true

rss_sum = O.

for ii in range(N):
rss = np.dot(diff[ii], diff[ii])
rss_sum += rss

rmse = np.sqrt(rss_sum/N)

return rmse

def BVP(pO:1list, args:tuple, method:str=>BFGS’, plot:tuple=(False,), Sol:tuple=None):
start_time = time.time ()
(k_range, Attr, R, R_dot, uvec, cov_z, cov_z_dot, tof, epochl, epoch2) = args

result = {’fun’: np.inf, ’x’: [0, O], ’nit’: np.nan}
k_res = np.nan

res_path = []

LOWP = None

pr = None
jac = None
found_solution = False

for prograde in [True, False]:
for path in [True, Falsel:

for k in k_range:

evaluation_path_ = []
def callback(xk):
if plot[0]:

evaluation_path_.append(np.copy(xk))

if method.lower () in (’bfgs’, ’l-bfgs-Db’):
options = {’ftol’:1le-4, ’gtol’:1le-7, ’disp’: False, ’cl’: le-5, ’c2
’: 1le-4, ’maxiter’:
20007
jac = ’2-point’

if method.lower () == ’l-bfgs-b’:
options = {’ftol’: le-4, ’maxiter’: 2000, ’gtol’:le-7, ’>disp’:
Falsel}

else:
if method.lower () == ’nelder-mead’:
options = {’xatol’: le-4, ’fatol’: le-4, ’disp’: Falsel}
else:
options = {’disp’: False}

opt_args = (k, tof, Attr, R, R_dot, uvec, cov_z, cov_z_dot, prograde,
path)
try:
result_ = minimize(Cost_fnc, p0, args=opt_args, method=method, jac=
jac, options=options,
callback=callback)

if (result_[’fun’] < result[’fun’]) and np.isfinite(result_[’fun’])

k_res = k

result = result_.copy()
LOWP = path

pr = prograde

found_solution = True
if plot[0]:
res_path = evaluation_path_

del result_
gc.collect ()

except as e:
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def

if str(e) in ACCEPTABLE_ERRORS:
continue
else:
print (f"Optimization error for k={k} (kmax:{k_range[-11}),
prograde={prograde}
, path={path}: {el}"
)

continue
comp_time = time.time() - start_time

if not found_solution:

print (£"No solution ({k % k_range[-1]1}) ..")
if plot[0]:

# Load figure style for report

plt.rcParams[’text.usetex’] = True

style_path = "Style and Plots/paper.mplstyle"

plt.style.use(style_path)

a_min, a_max, e_max = plot[1:]

args += (Sol,a_min,a_max,e_max, LOWP, comp_time, pr)
plot_topography(p0, k_res, result, res_path, args)
plot_jacobian(result, k_res, args, pO)

plt.show ()

del k_range, Attr, R, R_dot, uvec, cov_z, cov_z_dot, tof, epochl, epoch2
gc.collect ()

return result, comp_time, k_res, LOWP, pr
Cost_fnc(p:np.ndarray, k:float, tof:float, Attr:np.ndarray, R:np.ndarray, R_dot:np.
ndarray, uvec:np.ndarray, cov_z:np.ndarray,

cov_zdot :np.ndarray, prograde:bool, low_path:bool):

# Extract attributable

z = Attr[:2] + Attr[4:6] #[al, d1, a2, d2]
zdot = Attr[2:4] + Attr[6:] #[adl, dd1, ad2, dd2]
ul, u2 = uvec[:3], uvec[3:]

los_vec = np.hstack((p[0] * ul, p[1] * u2))
r = R + los_vec

try: # Handle allowed errors lambert solver
rdot_1, rdot_2 = izzo02015(mu, r[:3].flatten(), r[3:].flatten(), tof, M=k,
prograde=prograde, low_path=
low_path,
maxiter=35, atol=1e-5, rtol=1e-7)
except as e:
exc_str = str(e)
if exc_str in ACCEPTABLE_ERRORS: # Skip non-converging solution for k (or M)
orbital revolutions.
return np.nan #return nan to stop optimizing, but must be a better way to
break optimizing process
else:
print (’Lambert solver raised a ValueError:’, exc_str) # Print all other
value errors

# Model attributable from orbit
los_rate = np.hstack((rdot_1, rdot_2)) - R_dot
zdot_hat = rates(los_vec, los_rate)

# Transform covariance to modelled rates
J = Jacobian(p, k, z, R, R_dot, tof, prograde, low_path)
cov_zdot_hat = np.dot(J, np.dot(cov_z, J.T))

# Evaluate terms of cost function, and return

delta_zdot = zdot - zdot_hat #[4 x 1]
sum_cov = cov_zdot + cov_zdot_hat #[4 x 4]
L = np.dot(delta_zdot.T, np.dot(np.linalg.inv(sum_cov), delta_zdot)) #[1 x 1]

return L
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def Jacobian(p, k, z, R, R_dot, tof, prograde, low_path):

39

Jacobian function to map the least-squares fit angle rates with C_zdot toward
C_zdot_hat.

*! h: absolute step-size of finite differencing, arbitrarily chosen based on
trial.

def z_hat(z):
u = np.hstack((unitvec(z[:2]).flatten(), unitvec(z[2:]).flatten()))
los = np.hstack((p[0] * ul[:3], p[1] * ul[3:]1))
r = R + los

rdotl, rdot2 = izz02015(mu, r[:3], r[3:], tof, M=k, prograde=prograde, low_path
=low_path, maxiter=35, atol=1le-5,
rtol=1e-7)

losrate = np.hstack((rdotl, rdot2)) - R_dot

return rates(los, losrate)

J = approx_derivative(z_hat, z, method=’3-point’)
return J

def rates(xyz, xyz_dot):

radec_dot = np.zeros(4)

for i in range(2):
lw = 3 * i
up = 3 * i + 3
X, ¥y, z = xyz[lw:up]
xdot, ydot, zdot = xyz_dot[lw:up]

Xy_sq = X k%2 + y**2
XyzZ_sq = Xy_sq + z**2

ra_dot = (x * ydot - y * xdot) / xy_sq

dec_dot = (-z * (x * xdot + y * ydot) + zdot * xy_sq) / (mp.sqrt(xy_sq) *
Xyz_sq)

radec_dot [i*2] = ra_dot

radec_dot [i*2 + 1] = dec_dot

return radec_dot #[alphadotl, deltadotl, alphadot2, deltadot2]

def BVP_initial_val(Attr, tof, R, a_min, a_max):

k_range = k_int(a_min, a_max, tof)

# Unit vectors for line of sights
ul = unitvec (Attr[:2]).flatten ()
u2 = unitvec (Attr[4:6]).flatten()
uvec = np.hstack((ul, u2))

# Calculate R_dot_ul, R_dot_u2, Rsql, and Rsq2
R1, R2 = R[:3], R[3:]

R_dot_ul = np.dot(R1l, ul)

Rsql = np.dot(R1, R1)

R_dot_u2 = np.dot(R2, u2)

Rsq2 = np.dot(R2, R2)

# Assume circular orbit and determine initial guess
kO = k_range[int(len(k_range)/4)]

if kO != 0:

a0 = ((tof*x2 *x mu) / (4*np.pi**2 * kO*x2))*x(1/3)
else:

a0 = a_min

with np.errstate(invalid=’ignore’):
rho01 = - R_dot_ul + np.sqrt(R_dot_ul#*x2 + a0**x2 - Rsql)
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rho02 = - R_dot_u2 + np.sqrt(R_dot_u2*x2 + a0*+x2 - Rsq2)
return [rhoO1, rho0O2], k_range, uvec
def plot_jacobian(result, k_res, args, pO_int, num_points=100):
(k_range, Attr, R, R_dot, uvec, cov_z, cov_z_dot, tof, epochl, epoch2, Sol, a_min,
a_max, e_max, low_path, comp_time, prograde) = args
# Extract true solution values
x1_true, x2_true = Sol
ri_true = x1_truel[:3]
r2_true = x2_truel[:3]
rhol_true = np.linalg.norm(ril_true - R[:3])
rho2_true = np.linalg.norm(r2_true - R[3:])
p0 = [rhol_true, rho2_true]
pO_true = pO
fig, axs = plt.subplots(len(p0), 1 , figsize=(6,5), sharex=True)
labels = [r’($\rho_1%, $\rho_{2 s0l}$) [m]l’, r’($\rho_{1 sol}$, $\rho_2$) [m]’]
for res in range(len(p0)):
variable_range = np.linspace(pO[res]*0.1, pO[res]*2, num_points)
jacobian_values = np.zeros(num_points)
jacobian_values2p = np.zeros(num_points)
Lvals = np.zeros(num_points)
original_value = pOl[res]
for i, value in enumerate(variable_range):
pO[res] = value
jac = approx_derivative(Cost_fnc, p0O, method=’2-point’, args=(k_res, tof,
Attr, R, R_dot, uvec, cov_z,
cov_z_dot,
jac_2p = approx_derivative(Cost_fnc, pO, method=’3-point’, args=(k_res, tof

, Attr, R, R_dot, uvec, cov_z,

cov_z_dot,

jacobian_values[i] = jac[res]
jacobian_values2p[i] = jac_2plres]
Lvals[i] = Cost_fnc(p0, k_res, tof, Attr, R, R_dot, uvec, cov_z, cov_z_dot,
prograde, low_path)
pOlres] = original_value
ax_left = axs[res]
linel, = ax_left.plot(variable_range, (jacobian_values), color=’r’, label=’fwd.
”)
line2, = ax_left.plot(variable_range, (jacobian_values2p), color=’b’, linestyle

=’dashed’, label=’cent.’)
ax_left.set_ylabel(r’$\frac{\partial}{\partial \rho} \ L(\mathbf{p},k)$’)
ax_left.tick_params (axis=’y’)

ax_right = ax_left.twinx ()

line3, = ax_right.plot(variable_range, Lvals, color=’k’, label=r’$L (\mathbf{pl},

k)$’)
ax_right.set_ylabel(r’$\log_{10} \ L(\mathbf{p}_s,k)$’)
ax_right.tick_params (axis=’y’)
ax_right.set_yscale(’log?’)

ax_left.set_xlabel(labels[res])
ax_left.set_ylim(-1, 1)
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vlinel = ax_left.axvline(x=pO_truel[res], color=’k’, linestyle=’dashed’, label=r
’Solution $\mathbf{pl}_s$’)
vline2 = ax_left.axvline(x=pO_int[res], color=’k’, linestyle=’dotted’, label=r’
$\mathbf{p}_0$’)
lines_left, labels_left = ax_left.get_legend_handles_labels ()
lines_right, labels_right = ax_right.get_legend_handles_labels()
fig.legend(lines_left +lines_right , labels_left +labels_right +[’Solution’, °’
Initial guess’], ncol=2, loc=’upper
left?,
bbox_to_anchor=(0.12, 0.89))
axs[0] .set_title(r’Jacobian and Cost Function along $\rho_1$ and $\rho_2$°)
plt.subplots_adjust (hspace=0.35)
from datetime import datetime
timestamp = datetime.now().strftime ("/m)d_J%H%LM%LS")
fig.savefig(£"BVP_run_{timestamp}_jacobian.pdf", bbox_inches="tight")
def plot_topography(pO, k_res, result, eval_points, args, save=False):

import pandas as pd
(k_range, Attr, R, R_dot, uvec, cov_z, cov_z_dot, tof, epochl, epoch2, Sol, a_min,
a_max, e_max, low_path, comp_time,

prograde) = args
if len(eval_points) != 0:
rhol = [rho[0] for rho in eval_points]
rho2 = [rho[1] for rho in eval_points]
else:

rhol = [p0O[0]]
rho?2 [po[1]1]

R1, R2 = R[:3], R[3:]
ul, u2 = uvecl[:3], uvec[3:]

R_dot_ul = np.dot(R1l, ul)
Rsql = np.dot(R1, R1)
R_dot_u2 = np.dot(R2, u2)
Rsq2 = np.dot(R2, R2)

with np.errstate(invalid=’ignore’):

rho_minl = - R_dot_ul + np.sqrt(R_dot_ul#*x2 + a_min**2 * (1 - e_max)**2 - Rsql)
rho_maxl = - R_dot_ul + np.sqrt(R_dot_ul**2 + a_max#**2 * (1 + e_max)**2 - Rsql)
rho_min2 = - R_dot_u2 + np.sqrt(R_dot_u2*x2 + a_min**2 * (1 - e_max)**2 - Rsq2)
rho_max2 = - R_dot_u2 + np.sqrt(R_dot_u2#*2 + a_max**2 *x (1 + e_max)#**2 - Rsq2)

if Sol is None:
A1, Bl = rho_min1%0.9, rho_max1%*1.05
A2, B2 = rho_min2*0.9, rho_max2x*1.05

else:
x1_true, x2_true = Sol
ri_true = x1_truel[:3]
r2_true = x2_truel[:3]
rhol_true = np.linalg.norm(ri_true - R1)
rho2_true = np.linalg.norm(r2_true - R2)
margin_factor = 0.5
A1 = rhol_true * (1 - margin_factor)
Bl = rhol_true * (1 + margin_factor)
A2 = rho2_true * (1 - margin_factor)
B2 = rho2_true * (1 + margin_factor)

x_range = B1 - A1l

y_range = B2 - A2

max_range = max(x_range, y_range)
x_mid = (A1 + B1) / 2

y_mid = (A2 + B2) / 2

Al = x_mid - max_range / 2
Bl = x_mid + max_range / 2
A2 = y_mid - max_range / 2
B2 = y_mid + max_range / 2
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X = np.linspace(Al, B1, 100)

Y = np.linspace (A2, B2, 100)

Z = np.zeros((len(X), len(Y)))

for i in range(len(X)):

for j in range(len(Y)):
Z[i, j] = (np.logl0(Cost_fnc([X[i], Y[j]], k_res, tof, Attr, R, R_dot, uvec

, cov_z, cov_z_dot, prograde,
low_path)))

fig, ax = plt.subplots()

contour_filled = ax.contourf(X, Y, Z, levels=100, cmap="gray")

cbar fig.colorbar (contour_filled)
cbar.ax.set_ylabel (r"$\log_{10}L (\mathbf{
ax.plot (([p0[0]] + rhol), ([pO[1]] + rho2

label=’Evaluation Path’,
scatter (p0[0], pO[1],

zorder=9

ax. color=’r’, marke

if Sol != None:

ri_true x1_truel[:3]
r2_true x2_truel[:3]
rdotl_true x1_true[3:]

rdot2_true x2_true[3:]

rhol_true = np.linalg.norm(rl_true -
rho2_true = np.linalg.norm(r2_true -
ax.scatter (rhol_true, rho2_true, s=16
los_vec = np.hstack((rhol[-1] * ul, r
r = R + los_vec
rdot_1, rdot_2 = izzo02015(mu, r[:3].f
maxiter=35,
output = {
"Metric": ["Epoch", "Obtained RHO
"Time taken [s]:", "K
"EPOCH 1": [epochl.iso, f"{result
f"{rmse(rdot_1, rdotil_
f"{k_res:.4f}",
f"{np.logl0(Cost_=£fnc (
"EPOCH 2": [epoch2.iso, f"{result
f"{rmse (rdot_2, rdot2_
}
output_df = pd.DataFrame (output)

print Coutput_df)

f"{str(prograde)}",

z},
),

k)$", rotation=-90, va="bottom")
’r’, linestyle=’--’, marker=’o’,
markerfacecolor=’none’, markersize=4,

0)

r=’x’, s=16, label=’Start Point’, zorder=
91)

R1)

R2)

, color=’gold’, marker=(6, 2, 0), label=’

Solution’, zorder=100)
ho2[-1] * u2))
latten(), r[3:].flatten(), tof, M=k_res,

prograde=prograde,
low_path,
atol=1e-5, rtol=1e-7)

low_path=

[km]", "TRUE RHO [km]l", "

RMSE V [m/s]",

"RMSE P [km]",
"REL_ERR RHO [%]
n
(REV):", "PROGRADE:", "LOW PATH:",
(obtained)",
(true)"],
[’x°][0]*1e-3:.4f}", f"{rhol_truexle-3:.4f
v, £"{rmse(r[:3], ril_true)*le-
3:.4f}",
true):.4f}", £"{100*(rho1[-1] rhol_true
)/rhol_true:.4f}",
f"{comp_time:.4f}",
f"{str(low_path)}", £"{np.
loglO0(result [’ fun
’1) L 4f ),
k_res, tof,
R, R_dot, uvec,
cov_z, cov_z_dot,
prograde, low_path)
Y:.4f}"],
[’x°][1]*1e-3:.4f}", f"{rho2_truexle-3:.4f
v, £f'"{rmse(r[3:], r2_true)*le-
3:.4f}",
true):.4f}", £"{100*(rho2[-1] rho2_true
)/rho2_true:.4f}",

>
nn

"LOG10
"L0OG10

[rhol_true, rho2_truel, Attr,

nn nn nn nn
> s
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output_df.to_clipboard(index=False, sep=’\t’)

ax.scatter(rhol[-1], rho2[-1], color=’r’, marker=’d’, facecolors=’none’, s=25,

label=’0btained solution’, zorder=99)

plt.xlabel(r’$\rho_1$ [m]’)

plt.ylabel(r’$\rho_2% [m]’)

A1, B1, A2, B2 = [None if np.isnan(x) or np.isinf(x) else x for x in [Al, B1, A2,

B2] ]

plt.xlim (A1, B1)

plt.ylim(A2, B2)

plt.legend(loc=’upper left’)

if Sol != None:
from datetime import datetime
timestamp = datetime.now().strftime ("/m/d_%H/M/S")
for ¢ in contour_filled.collections: #to prevent white discontinuous rendered

lines in pdf
c.set_rasterized(True)

fig.savefig(£f"BVP_run_{timestampl}.pdf", bbox_inches="tight")

plt.show ()

def k_int(a_min, a_max, tof):

290

Determine interval of orbital half-revolutions.
290

twopi = 2*np.pi

P_max twopi * np.sqrt(a_max**3 / mu)

P_min twopi * np.sqrt(a_min**3 / mu)

k_min, k_max = (tof / P_max), (tof / P_min)
step = 0.5
k_range = np.arange ((np.floor(k_min*2)/2), (np.floor(k_max*2)/2) + step, step)

if len(k_range) == 0:
k_range = np.array([0])

return k_range
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Figure C.1: The relative frequency of the obtained minimum cost function values obtained in comparison to the theoretical chi-squared
distribution for each optimization method and orbital regime.
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