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Abstract

For real-world problems even the most complex machine learning models can only achieve a
certain accuracy. This makes it important to understand why a specific prediction is made. Expla-
nations can provide human decision support by allowing human experts to assess the reasoning
of the model as well as the correctness. Specifically, in this thesis, we consider the problem of pre-
dicting violations on inland ships in the Netherlands to help inspectors in the Dutch government
deciding which ship to inspect. The main contribution is determining confidence in a prediction
separately from probability and using this confidence estimation for deciding which prediction of
violation to select as well as to explain.

With the limited number of inspectors and a large number of inland ships in the Netherlands,
the global performance on all ships is less relevant. Instead, deciding the most qualitative predic-
tions is more useful. Therefore, a measure of model confidence is determined to improve upon the
traditional ranking based on probability. In the evaluation of this approach, no significant differ-
ence is found between the ranking based on probability for complex ensemble models. However,
for simpler, more interpretable models, there is a significant improvement in using model confi-
dence to re-rank.

The determination of confidence is further used to create explanations from the context of con-
fidence. The goal of these explanations is to help an inspector in deciding whether to inspect an
inland ship. This novel explanation approach justifies the confidence in a prediction by express-
ing features contributing towards the confidence. We perform a human-grounded user study
evaluation to identify the task effectiveness, perceived usefulness and user trust compared to the ex-
planations from the traditional context of probability. The results of the user study suggest the
explanations of the confidence to be particularly useful for problems with a lower accuracy.

Thesis committee:
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Chapter 1

Introduction

In recent years machine learning models are increasingly used in real-world situations. Simple
models are predicting whether mail is spam and complex models tag photo images for easier
search. The models are increasingly used by people who have no knowledge about the inner
working of these models. While simple models can be made understandable with some text and
visualizations, for complex models, their behaviour is difficult to understand. Even the maker
of these models can have difficulty in understanding the output of these models. In real-world
situations, it can be useful, even necessary, to understand why a certain prediction is made [1,
24, 31]. For example, a machine learning model used as an additional tool for a human-decision
problem can incorporate explanations to assess the reasoning for a model and show the limitations
of the prediction.

1.1 Inspecting inland ships

In this study, we specifically look at the real-world problem of inspecting inland ships in the
Netherlands in cooperation with the Human Environment and Transport Inspectorate of the Dutch
government, in Dutch "Inspectie Leefomgeving en Transport" (ILT).

Inspectors working for the inspectorate have to decide which inland ships they inspect. With
the limited number of inland ship inspectors and at least 5.000 inland ships with a Dutch flag, this
decision focuses on the ships most likely to be in violation. Currently, this decision is based on
human expertise together with an application for retrieving information about a ship available to
the inspectorate. The IDlab, a group of data analysts within the inspectorate, is currently working
on a system predicting violations on inland ships. The long-term goal is to provide the prediction
of violations in real-time to the inspectors as an additional aid. However, even the best perform-
ing models have a relatively modest predictive performance. Only showing the prediction can,
therefore, quickly erode trust in the system, as a large number of predictions will be incorrect.
Providing additional explanations of the predictions might help the inspectors in deciding which
ship to inspect.

This thesis contains two main parts: (1) ranking evaluation with the inclusion of confidence
on several machine learning models and datasets and (2) a human-grounded evaluation on the
usefulness of explanations for inland ship violations from the context of confidence.

1.2 Confidence versus probability

With the advent of machine learning models present in everyday life, it is important to understand
the limitations or uncertainty of these models and their predictions. The limitation of the model
is often expressed with a probability. For these probabilistic models, a probability distribution is
estimated, upon which classification is determined [66].
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Model confidence, as described in this study, tries to determine the quality of this probability
distribution estimation. Confidence is determined by expressing the prediction as a range with
certain guarantees on error rate instead of the single point prediction of probability. A good il-
lustration of the difference between the probability and confidence is expressed by the model
predicting the outcome of the US 2020 presidential elections by The Economist [72]. This model
predicts a 97% probability of a candidate winning the election. However, besides this single point
prediction, a range of predictions in the number of electoral votes is also given. This range ex-
presses 95% confidence the true outcome will lay within this range (259-415), with an average
point prediction (356). Model confidence can be determined by looking at the size of this range; a
smaller range gives more confidence in the average point prediction being correct. In this thesis,
we use the Conformal Prediction framework, which uses conformity between instances, to predict
these ranges with the use of prediction sets.

1.3 Ranking with confidence

Given that the number of inland ships in the Netherlands always vastly exceeds the number of
inspectors, the overall accuracy of the model is less important than selecting the ships most likely
to be in violation. The selection of the most qualitative predictions of violations is, therefore,
an important contribution of this thesis. To achieve this selection the problem is modelled as a
ranking problem.

The goal of ranking for the specific problem of violations on inland ships is sorting a list of
predictions of violations in such a way that the violating ships are more likely at the top of the list,
while non-violating ships are lower on the list.

The ranking of predictions in previous research focuses almost exclusively on information
retrieval problems, such as ranking with document and query pairs or recommender systems
[94, 98, 59, 16]. Evaluation of these approaches is therefore done with specialized datasets in
information retrieval. In this research, several traditional binary classification datasets are used,
as well as the real-world dataset of violations on inland ships in the Netherlands. A primary
contribution is a novel approach of ranking with the inclusion of the estimated model confidence
based on conformity. For the evaluation of this approach, the baseline of sorting based on the
probability is used.

1.4 Explaining complex models with model confidence

The accuracy of machine learning models for real-world problems can be low, as is the case for the
real-world problem of predicting violations on inland ships in the Netherlands. Even with high
accuracy, just providing the prediction does not guarantee trust in the system. Therefore, in the
field of eXplainable Artificial Intelligence (XAI), a large number of approaches are discussed to
explain the model or justify the output of these models [26, 31].

With the determination of a measure of model confidence, the second part of this thesis looks
at using this additional measure to explain the predictions of violations on inland ships from the
novel context of confidence. Instead of justifying the probability determined by a Random Forest
model, the confidence as determined by the Conformal Prediction framework is justified. For both
the context of probability as well as confidence, the SHAP framework justifies the predictions by
determining feature contributions.

With the numerous approaches of explaining predictions of complex models, evaluation to
determine the quality of these explanations becomes more important [53, 24]. Evaluations of
explanations are difficult due to the human-centred nature of providing explanations. A main
contribution of this thesis is a human-grounded evaluation of the explanation from the context
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of confidence. For this evaluation, a user study is performed where participants are shown ex-
planations for both the context of probability as well as confidence. Participants have to decide
whether or not to inspect the ship based on the prediction and explanation given. During the user
study the task effectiveness, perceived usefulness and user trust is used to evaluate the quality of the
explanation from the two contexts.

1.5 Overview

Next, the research context is laid out in Chapter 2. The problem we want to solve is described
together with the requirements for the specific approach. From the context and requirements, the
research questions are defined. Finally, the datasets used to answer these questions are discussed.

In Chapter 3, a literature review is given with two main parts. The first part looks at research
determining the confidence of a prediction separately from probability. Also, research into the use
cases of this confidence in several applications is discussed. The second part of the literature re-
view gives an overview of the topic of eXplainable Artificial Intelligence (XAI) with an overview
of the different approaches to create explanations as well as techniques for evaluating the expla-
nations.

In Chapter 4, the Conformal Prediction framework is used to determine the confidence of
individual prediction, together with two experiments to determine the behaviour of this approach
and whether model confidence would be useful in the ranking of instances.

In Chapter 5, the model confidence is used to rank the predictions for several datasets and
classifiers. The correlation with the confidence of the model and the error rate of this model is also
determined.

In Chapter 6 and 7, confidence is used as a new context for explaining the complex random
forest model predicting violations in inland ships in the Netherlands. Chapter 6 contains an in-
troduction into the workings of the SHAP explanation framework, together with a data analysis
comparing the SHAP values between the context of confidence and probability. In Chapter 7, the
contexts are evaluated by a human-grounded evaluation via a user study.

Finally, in Chapter 8, a summary of all the work is given together with the limitations, future
works and conclusions.
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Chapter 2

Research context and framework

In this chapter, the research context is first described, followed by the research questions as well
as the research framework used to formulate and answer these questions.

2.1 Research context

The main contribution for this research is evaluating the usefulness of incorporating model con-
fidence into ranking predictions and explanations for these predictions. Ranking is used to select
the prediction the system is most confident in and evaluate the model confidence. To evaluate
the explanations based on the model confidence a user study is performing together with the ID-
Lab of the Human Environment and Transport Inspectorate of the Dutch government, in Dutch
"Inspectie Leefomgeving en Transport" (ILT).

2.1.1 Inspecting inland ships

The inspectorate has the task of performing inspections on inland ships. There are several criteria
checked; working conditions of the crew, correct documentation of the ship, storage safety, etc.
The inspectorate does keep a risk assessment related to violations for ships it has inspected in the
last three years. However, a large number of inland boats have no estimation about the potential
of such violations. For these ships, inspections are performed based on the expert opinion of the
inspectors of the inspectorate. The goal of the IDLab is to use data available related to these ships
to help the inspectors with the decision on which ship to inspect.

At the moment, the inspectorate uses the tool InspectieVIEW. This system allows the inspector
to log inspections. Inspectors can log basic information about the ship, whether a violation took
place and action taken to resolve the non-compliance. Most importantly, inspectors can write
some additional information about the inspection with the use of a simple text box. Therefore,
this system is not a pro-active system; it just provides information. The accuracy of inspectors
finding violating ships is currently below 40%.

This research is built upon prior research of the IDLab. In this prior research, Random Forest
Tree models were used to predict if ’unknown’ inland boats passing through the Netherlands
would violate the law. This pro-active system can therefore advise inspectors on which ship to
inspect and is no longer deciding based on their expert opinion.

The limited number of inspectors cannot inspect all ships. Therefore, it has to be determined
which ship to inspect. Or more general, a selection has to be made in the test instances. Further-
more, this model is rather complex, and the inspectors are not able to fully understand why the
prediction is as it is. Although a decision tree is relatively easy to explain, the large number of
trees necessary in the Random Forest model reduces the understandability of the model. Making
this complex model understandable to inspectors without any background into computer science
is not straightforward. However, the explanation can aid the inspector in understanding which
information the model bases its decision on and help the inspector in the decision-making process.
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2.1.2 Motivation

There are two primary motivations for the determining of model confidence for the problems of
ranking and explaining the predictions of the real world-problem of violations on inland ships in
the Netherlands.

• Firstly, previous research found specific approaches of determining confidence separately
from probability improved the ranking for the problem of document ranking in information
retrieval [94, 98], the ranking of recommendations [16, 59] and ranking in an online learning
setting [39]. More details on these studies can be found in the related work in Section 3.1.3.
However, instead of determining model confidence based on variation in the probability
distribution, we use the conformity between instances, which has the same guarantees in er-
ror rate [77]. Additional benefits in this approach are the possibility to determine how new
instances conform to the training data and contrastive information about the class not ulti-
mately predicted. A motivation is determining whether this approach in estimating model
confidence improves the ranking similarly to previous research in traditional classification
problems.

• Secondly, previous research found the displaying of confidence in explaining predictions
improved user satisfaction and user agreement [61, 60]. However, explaining the reasoning
behind the confidence estimation is not performed. This, while numerous approaches exist
for the explaining of complex models [26, 31]. For classification models, this means explain-
ing the probability distributions estimated. More details on the research into confidence
displays and techniques explaining complex models can be found in Section 3.2 and 3.3.

For this study, we will use explanation techniques on the determination of model confidence.
This creates another context from which to explain the prediction of violation on inland
ships. We want to determine whether this other context improves the explanation from the
traditional context of probability.

2.2 Preliminaries

Before moving towards the requirements of this research some preliminary definitions are de-
scribed.

2.2.1 Probability versus model confidence

With the advent of machine learning models present in everyday life, it is important to under-
stand the limitations or uncertainty of these models and their predictions. The limitation of the
model is often expressed as with a probability. In the next sections, a brief distinction between this
probability and model confidence is described.

Using machine learning models ranging from simple models like linear regression to more
complex models like neural networks have been used extensively for classification problems.
These models almost always are probabilistic, meaning that the output of the model is the prob-
ability of a certain class P(y|x). The probability of an instance belonging to a specific class is de-
termined with a probability distribution. These probabilistic models are used in practice because
realistic decision making often necessitates recognizing uncertainty. With the incorporation of this
probability, uncertainty can be measured, for example, the chance of rain in a weather forecast. In
this study, we look only at binary classification problems, making the probability distributions
in this study Bernoulli distributions. Model confidence uses these determined probability distri-
butions and tries to determine the quality of these distributions. Or, in other words, it tries to
determine how confident the model is in the correctness of the probability distribution. There
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are several approaches for this determination of this confidence. Examples are prediction interval
determination and conformal prediction. In section 3.1, a review of these approaches is given.

2.2.2 Interpretable models versus post-hoc justification

The field of eXplainable Artificial Intelligence (XAI) researches techniques for making complex
machine learning models understandable towards the maker of the model as well as to a potential
user of the model. There are two main distinguishable groups of approaches.

Interpretable models. These are explanations for models which are intrinsically understand-
able. Simple visualizations of the model can explain why a prediction was made. Examples of
these models are linear models or decision trees. Research of explanation of these model look at
the best approach to make the model understandable to the user.

Post-hoc justification For more complex models, it is not possible to easily understand why a
prediction is made. Post-hoc justification techniques do not try to explain the model itself. Instead,
it tries to justify the predictions by the model.

Model-agnostic versus model-specific

For both the determination of model confidence as the creation of an explanation model-agnostic
or model-specific approaches exist [77, 6]. Model-agnostic approaches work on any classifier,
as these approaches see this classifier or model as a black box. These approaches work based
on the input and output of such a black-box model, not the structure or properties of a specific
model. Model-specific approaches instead do leverage additional information about the model.
For example, a model-specific approach could look at the paths of the individual decision trees in
a tree ensemble to decide a confidence score or explanation.

Global versus local explanations

The final distinction between approaches is local versus global explanations or interpretation [53,
6]. Global explanations propose to explain the global working of a certain model. An example of
a global explanation is the general feature importances to make a prediction. Local explanations
propose to explain individual predictions or smaller subsets of predictions. An example of a local
explanation is the features most contributing to an individual probability prediction.

2.3 Requirements

For the overall selection and explanation of the overall research a number of requirements can be
defined.

Predicting violations. The predicting of violations on inland ships has the following attributes:

• Binary classification. There are several categories of violations on inland ships. However, due
to the limited amount of information available the problem is reduced to a binary classifica-
tion problem; in violation or not in violation

• Data sparsity. As data is obtained from several sources, not all having the same ships avail-
able, for a lot of inland ships data is missing. This makes the combined dataset sparse.

• High dimensional. With the combining of several sources, the dimensionality of the data is
high, with 252 features for each instance.
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Selecting predictions. A selection on ships the model is most confident in has to be made.

• Model-agnostic. There are several classification problems researched in the inspectorate. The
selecting of most confident predictions should work on any machine learning problem.

• Combinations. Model confidence should not be the only criteria in selecting ships. The quality
of the prediction should be combined with other factors such as predicted probability.

• Improve accuracy. The selection of ships should increase the relative performance of the pre-
dictions compared to the overall performance of the system.

Explaining predictions. The prediction of violation has to be explained.

• Justifying the results. The difficulty of this particular problem requires complex models to
achieve the best performance. In order to explain the model to novice users, the predictions
should be justified, instead of explaining the model itself.

• Model-agnostic. There are several classification problems researched in the inspectorate. The
creation of an explanation should not be specific to a model.

• Local explanations. The decision on boarding a ship means the explanation should be tailored
to the specific ship, not a global explanation of the model.

To summarize; the system must perform binary classification on highly dimensional and sparse
data. A selection in predictions should be model-agnostic, allow for multiple measures of quality
and improve relative performance. Explaining the system must justify individual predictions in a
way that is model-agnostic.

2.4 Research framework

Given the research context and requirements, the main research question of this thesis is as fol-
lows:

How can we predict the confidence of a complex model to select predictions and provide inspectors with
local model-agnostic explanations of this confidence?

In order to answer the main research question, four additional research questions are formulated.
The determination of confidence is often conflated in research with a number of different def-

initions. Confidence is often used interchangeably with probability. Other definitions would be
risk, uncertainty or reliability. The first research question is therefore:

How can we predict the confidence score separately from class probability?

In order to answer this question, relevant literature is reviewed, looking at different approaches
defining this notion of model confidence. It was decided to use the Conformal Prediction frame-
work to determine local model-agnostic predictions of confidence and credibility.
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Due to the limited number of inspectors and a large number of inland ships in the Netherlands
the overall performance of the model on the whole test data is less important than the relative
performance of a selection of the test set. A simple approach of deciding which ships to inspect
is sorting the predictions by probability and only taking the most probable instances according to
the model. With the determination of model confidence for individual predictions, sorting can be
based on this measure. In order to determine the usefulness of the additional quality measure, the
problem of selecting ships to inspect is modelled as a ranking problem. This created the second
research question:

Can model confidence predictions improve the ranking of predictions?

This question is answered with an evaluation of a number of different approaches to rank
the predictions of violations. These approaches are compared to the baseline of sorting based on
probability. The ranking is also evaluated for several other datasets to test the general usefulness
of the inclusion of model confidence.
With an improvement found in using model confidence in sorting the predictions of violations of
inland ships, the second focus of this thesis is using this model confidence to explain individual
predictions. This created the third research question:

How can confidence prediction be used to generate model-agnostic local explanations?

In order to answer this question, a literature review was performed in the field of eXplainable
Artificial Intelligence (XAI). From this review, the SHAP framework is selected for this particular
problem. The model-agnostic Kernel-SHAP is used to approximate a random forest model with
a linear model. This simple interpretable model creates local explanations with feature contri-
butions. Data analysis is performed to determine how the model confidence determined by the
Conformal Prediction framework differs from the probability of the base machine learning model.

The explanations based on confidence need to be evaluated. The goal of these explanations is
helping the inspectors in their decision whether or not to inspect a ship. In order to evaluate this,
the final research question is as follows:

How are explanation based on confidence received by users?

A user study is performed to answer this question. To evaluate the quality of the explanations,
a human-grounded approach of evaluation is used. The reason for this approach is to make the
results generalize to other problems as well as making it possible to include more people in the
study.

2.5 Datasets used

A number of experiments with additional measures of confidence and credibility are performed with
several different datasets. These are the dataset of violations of inland ships as well as the popular
machine learning datasets churn, adult and spambase.

2.5.1 Inland ships

The data set used in this research comes from previous research done by the Human Environ-
ment and Transport Inspectorate. In this previous research data from multiple sources within the
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Dutch government was collected and combined to help inspectors in choosing which ship to in-
spect. This data consists of a total of 274 variables for 7214 inspections. Inspection data of the
inspectorate was used to link separate databases together; for example, the European Number of
Identification (ENI number) and the registration for the Chamber of Commerce to link ships and
companies. Next, a brief overview of the different datasets is described.

Basic features of the ship A number of the variables of the dataset contains basic information
about a ship. This is, for example, the type of ship, when it was built, the size of the ship, in which
country was it built, etc.

Previous behaviour and the cargo of the ship Information about the previous behaviour of the
ships is also included in the dataset, as well as variables describing the cargo on the ship. The
historical location of a given ship is also contained. An example of variables describing the cargo
is whether it is labelled as dangerous.

Fuel information Based on the fuel pass used by ships in the Netherlands, there is a lot of infor-
mation about the fuel history of the ship. Examples of such a variable are the locations and time
the ships were filled up or the amount of fuel.

Information about the owner of the ship A number of variables in the final dataset are related
to the owner of the ship, as well as the previous owners. These give information about the certifi-
cates the owner has, but also how many ships the owner has and how many times those were in
violation. Other variables describe how long the company has been active, what its main activity
is and other activities of the company.

Historic information of the inspectorate An important dataset used was the historical data of
the inspectorate. This data was used to derive feature on the ships such as the number of previous
violations, when was the ship last inspected and what kind of violations previously took place on
the ship.

Aggregated features With all the different information sources of inspection, aggregated fea-
tures were also determined for the individual inspection instances. An example of such an aggre-
gated feature is the number of previous violations on a ship. In this case, all previous inspections
of the ship in question are used to determine this feature. Other examples are the average time
the ship takes to fuel or the time between the inspection in question and the previous inspection.

Preprocessing of the data

Based on all the variables already collected, the preprocessing for this research will limit itself to
feature selection. The main reason as to why feature selection is performed in this research is to get
a better understanding of the model and the data. This understanding is useful for the subsequent
part of the creation of explanations. Feature selection, and more specifically, feature importance is
closely related to popular explanation methods [73, 78].

Feature selection means determining which features contribute the most to the prediction of a
machine learning model. This can be done either automatically or through manual inspection on
the different features [65]. Feature selection is a useful strategy for a number of goals; reducing
the complexity of a model for high-dimensional data, improving the generalizability of the model,
improving the performance of the model or making the model and data more interpretable [50].
In order to determine which feature contributes the most to the predictions, many approaches
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have been developed. Most machine learning framework such as Scikit-Learn has built-in feature
importance scores for a large number of machine learning models, for example.

In Random Forest models and decision trees in general, every node in the tree contains a
condition where samples are split based on a single feature value. The goal is to get samples with
similar values of that specific feature to end up in the same set, where all instances contain the
same class label. The condition is determined based on the impurity, which in the case of a default
random forest model is the Gini impurity (or entropy) [13]. During the training of a model it is
possible to keep track of how much each feature contributes toward decreasing this Gini entropy.
This is the technique Scikit-Learn uses to calculate feature importances. This means that there is
no additional step of calculation needed to determine the feature importances when using this
technique. A drawback of this approach to determining feature importance is that it tends to
favour predictor variables that are continuous or categorical with a large number of levels [5].

There are also other more advanced techniques to estimate the feature importances, an exam-
ple being permutation accuracy importance. The permutation accuracy importance looks at the
effects of shuffling a single variable in the overall accuracy of the model. This makes it model-
agnostic and relatively efficient. A significant drawback of this approach is that it tends to over-
estimate the importance of correlated predictors [84]. There is a large correlation between the
different features in the dataset of this project, so it was chosen not to use this approach. Instead,
it was chosen to use a drop-out procedure to remove bias in the estimation of feature importances.
This procedure drops a single variable and looks at the effect this has on the performance of the
overall model. The reason for choosing this method is that it was found to be unbiased in the
selection of features [83]. And, while this technique is computationally inefficient due to having
to retrain the model for each dropped feature, due to the relatively small dataset of this project,
this is not a problem.

Using the drop-out technique, 22 features were determined to have no impact on the perfor-
mance of the Random Forest model. To speed up the evaluations in this thesis, these features were
not used, resulting in a total of 252 features.

2.5.2 Other datasets

Besides the inland ship dataset looking at a real-world problem, this section uses three additional
datasets across all the different evaluations. The reason is twofold; firstly, to evaluate the gener-
alizability of the results. Secondly, the traditional machine learning have nice properties, such as
less noise, strong i.i.d. assumption etc. No preprocessing was performed in these datasets.

Adult dataset The first tradition machine learning dataset is the adult dataset from Kohavi et al.
[41]. This multivariate dataset contains 14 features for 48842 instances. The goal is to determine
based on 1994 US Census data like age, education and race to determine if the person makes over
50K a year, making it a binary classification problem.

Churn dataset A similar dataset to the adult dataset is the churn dataset [11]. The multivari-
ate dataset contains 20 features for 5000 instances. The goal is to predict whether the customer
churned based on telephony account features like the monthly charges, years on the contract and
age of the customer.

Spambase dataset The final dataset is the spambase dataset [33]. The multivariate dataset con-
tains 57 features for 4601 instances. No categorical data is contained in this dataset. The goal of
this dataset is to predict if an email is spam.
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Chapter 3

Related work

This chapter surveys relevant literature for the two main topics of this thesis. One goal of this
literature review is describing the current approaches in determining the confidence of predic-
tions and describing the current situations in which these are used. With this understanding, the
confidence determination will be used in selection and ranking problems for traditional machine
learning problems. The second goal is reviewing the topic of eXplainable Artificial Intelligence
(XAI). The different types of approaches are reviewed in order to determine which approach is
most suitable for explaining the predicted confidence. Evaluation methods are also described to
determine how to evaluate this new explanation approach.

3.1 Model confidence

In order to determine the validity of a prediction made by a machine learning model, an important
notion is the confidence in its prediction. The definition of confidence is sometimes conflated with
the probability given by such a model. This is not unreasonable, as the probability of a prediction
does incorporate the notion of uncertainty. However, in this review, the notion of confidence can
most easily be described as a quality measure of the prediction. We do not expect a model to
determine the true probabilities of a problem perfectly. This can be due to the model being simple
to be understandable or due to limitations of the dataset. Instead of answering the question of
How probable is an event?, the question we try to answer is How confident are you in the prediction?.
Note that the prediction in the case of a probabilistic model is the probability.

The current research into quantifying or estimating confidence (also called uncertainty, relia-
bility or risk in some papers) there are two main approaches described in this chapter. The first
approach is using the variance of predictions as a measure of confidence expressed with a confi-
dence interval. The second approach is the Conformal Prediction framework, which looks at how
well test samples conform to the training data and determine a confidence score based on this
conformity.

3.1.1 Confidence intervals

A concept used to quantify the uncertainty of the predictions from this difference in data distri-
bution is confidence intervals. There have been numerous approaches for estimating these confi-
dence intervals for different machine learning models [79]. These intervals are an estimation on
the interval in which data points will lay with a certain probability. In other words, confidence
intervals cover new observations with high guaranteed probability. This differs from the standard
probabilistic machine learning approach; instead of the mean of the probability distribution, a
range of the probability is determined. For example, 95% confidence intervals will guarantee with
at least 95% probability the true probability will lay in the ranges determined. This does not mean
that for a single prediction and range there is a 95% probability.

The interval computed from a given sample either contains the true probability, or it does
not. Instead, the level of confidence is associated with the method of calculating the interval.
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The confidence coefficient is simply the proportion of samples of a given size that are expected
to contain the true probability. Meaning that for a 95% confidence interval, if many samples are
collected and the confidence interval computed, 95% of these intervals contain the true probability.

A 100% confidence interval can trivially be determined by simply including the whole proba-
bility space. However, there is no use for this interval. The goal and evaluation for the prediction
of these intervals is making the intervals as small as possible while still guaranteeing the percent-
age of observations laying within the interval.

Intervals are easily calculated for simple linear regression models. However, for more complex
models, such as Random Forest, more complex methods have been proposed to estimate these
intervals. Next, three of such approaches is given.

Quantile Regression Forest. A popular method for estimating the confidence interval in a Ran-
dom Forest model is the Quantile Regression Forests [63]. In this study, the aim was to determine
if the random forest can give information on the conditional distribution of the response value.

As the name suggests, Quantile Regression Forest uses the concept of quantile regression in
a random forest model. While standard regression tries to estimate the conditional mean of a
response variable given a certain input, quantile regression looks at keeping more information
about the conditional distribution of the model. An example of such information could be the
dispersion of observations around the predicted value.

Normally, a random forest model only keeps the conditional mean in the leaves of the different
trees [13]. In the proposed Quantile Regression Forest, the value of all the different observations
in this leaf node are kept, not just their mean. This is done in order to assess the conditional
distribution [63]. Using this distribution, it is trivial to determine the confidence interval; the
range between the preferred percentiles of the distribution of the response variables in the leaves.
The width of the confidence interval gives the variation of new observations around the predicted
values. The smaller the width, the more confident the model is in its prediction.

Monte Carlo estimation. In another study, a different method was proposed to determine the
confidence intervals of the Random Forest model according to a Monte Carlo approach [17]. This
means that a number of random forest models are parameterized by resampling the dataset. In
these models, the mean and variance of the prediction across all tree levels for each observation
are kept, not the whole distribution. For each of the models, a hold out sample is kept and used
to approximate the confidence interval of the overall system.

Jackknife estimation. A study by Wager et al. [91] looked at noise when trying to estimate the
confidence intervals. Monte Carlo bias was found to be the prominent factor in confidence inter-
vals getting too large. In this particular study, the Jackknife and Infinitesimal Jackknife estimators
were used to estimate the confidence interval by estimating the variance of the distribution in the
leaves of the random forest tree. The basic idea of the jackknife is to omit one observation and
recompute the estimate using the remaining observations, commonly called the leave-one-out ap-
proach.

3.1.2 Conformal Prediction

Besides the use of confidence intervals, there is another approach to estimate model confidence;
measuring conformity to determine a confidence level. A conformity measure tries to indicate
how typical a given data sample is. The basic idea of this measure is defined in a paper by Shafer
et al. [77]. Separate confidence levels are determined for individual samples based on this con-
formity measure, with the only assumption being that the training and test samples are drawn
independently from the same distribution. These confidence levels have the same guarantees as
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the confidence intervals discussed earlier. To determine the conformity one uses each class label
as the prediction of the new sample. For each of the labels one looks at how well the new sample
conforms to the training data. In other words, it estimates how typical the test sample is compared
to the other samples from the training set.

For each of the labels assigned to the individual sample, a p-value indicating this conformity
is determined . The label with the highest p-value is the predicted label for the individual sam-
ple or a prediction set containing all labels having a p-value above a certain significance level is
returned. The second highest p-value gives the probability of another label being the actual label.
So the confidence of the prediction can be defined as one minus the second-largest p-value among
the potential labels [64]. The most difficult part of the conformity framework is the determination
of the p-value for each of the class labels. This determination can be done with the use of model-
agnostic or model-specific non-conformity functions. These functions determine the p-value for
individual samples. The model-agnostic functions do not rely on any structure of the underlying
model; these only look at the input and output. A comparison of these functions was performed
by Johansson et al. [34].

Non-conformity function for Random Forest models

A number of different model-specific non-conformity functions for a random forest classifier have
been proposed, with a couple of examples being [23, 92, 9]. A study by Bhattacharyya looked at
evaluating these different functions with each other [9].

Four different non-conformity functions were compared, with the first being a function based
on the proportion of the trees in the ensemble that votes for the actual true class, as defined in
[23]. The non-conformity score is simply one minus the proportion of trees that vote for the actual
class label. This measure of conformity (and therefore confidence) still looks at the variance of the
predictions. However, the main difference compared to previously discussed methods is that the
variance is now determined between the different weak learners in the ensemble method. This
is different from the variance estimations discussed earlier, as they looked at the variance of the
predictions when using different sub-samples of training data.

The second function works on a proximity basis, as defined in [92]. This is a measure of close-
ness of samples in the meta-space and can therefore be seen as a k-nearest neighbour-based non-
conformity function. The neighbours, in this case, are the different samples in the training data.
The non-conformity scores are defined as the ratio of the sum of k-nearest neighbour distances in
the label space with samples of the same class to the sum of k-nearest neighbour distances with
samples of the other classes [92]. The main idea behind this function is that the nearer to the sam-
ples of a certain class the test sample is, the higher the chance of the test sample belonging to this
particular class. The distance between samples is calculated as the agreement between the trees
in the ensemble. The agreement is expressed by how many times the path in a weak learner is the
same for two samples [92]. The other two functions are slight alterations of this second function,
focused on class imbalance and data sparsity.

3.1.3 Use cases for confidence score

In the previous section two main approaches for the determination of confidence were laid out. In
this section, research into the current use cases for this confidence score is discussed.

Confidence-weighted online learning

The concept of confidence in the field of online learning has been actively studied in recent years.
Online learning algorithms are unique in the fact that they operate on a single instance at a time,
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updating the rules or weights each iteration. These updates are simple, fast and make few assump-
tions about the underlying data. These algorithms are popular in the field of Natural Language
Processing (NLP) due to the fact that these algorithms can process its input piece-by-piece in a
serial fashion. This means that there is no need to have the whole input from the start in order
to start processing. Due to similarity in concept between this single-instance learning and the
bagging method of ensemble learning methods studies related to confidence in the field of online
learning is discussed in this section.

The use of confidence as a weight in these kinds of algorithms was proposed by Dredze et
al. [25]. In this study parameter confidence information was added to a linear online learning
algorithm. This parameter confidence information is determined by modelling a diagonal Gaus-
sian distribution. The standard deviation of this distribution represents the confidence of the mean
parameter value. This distribution is used as memory for the NLP task in order to determine com-
monality of features, as the confidence of the weight of the features being correct increases with
more samples of this feature. These estimates of confidence are then used to influence parameter
updates. Instead of equally updating every feature weight for the features present in an instance,
the update favours changing more low-confidence weights than high-confidence ones. This up-
dating of the weights and the determination of the distribution is modelled as an optimization
problem.

The implementation of the confidence-weighted linear classifier was improved in the follow-
ing year by the same researchers [19]. The rule that the distribution over the parameter vector is
updated each round causes aggressive updates in the original paper. This can cause over-fitting
when the data is not linearly separable. The new proposed algorithm differs in the fact that it
makes decoupled updates of the mean and confidence parameters of the distribution and softens
the hard constraint of CW related to when to update.

These algorithms are used in research to solve a large number of problems. Examples are the
classification of phishing emails [8], the detecting of malicious URLs [57] and text categorization
[18].

A study by Khalid et al. [39] used the confidence-weighted classifier concept in a bipartite
ranking algorithm. In a traditional bipartite ranking problem, instances come from only two cat-
egories, positive or negative. The goal is to learn from these samples a ranking function that
ranks future positive instances higher than negative ones. In this study, an online bipartite rank-
ing function is adapted with the updating of the ranking function being done with a confidence
weighted learning approach from [93]. This also uses the variance of the Gaussian distribution of
each feature as a metric for confidence and updates the ranking algorithm more aggressively for
low confidence instances.

Information retrieval

In the field of information retrieval, a primary topic is the retrieving of the most relevant doc-
uments for a user’s information needs. To effectively decide which documents to retrieve and
which are most useful, the probability ranking principle is most often used. This principle tries to
rank the documents in decreasing order of relevance, assuming that this maximizes the effective-
ness of the system.

In a study by Wang et al. a method for ranking of documents based on a mean-variance
paradigm was proposed [94]. Instead of relying only on the mean relevancy probability estimated
based on the estimation of the relevancy of the documents in the ranking, it is assumed that the
estimation of the relevancy of the individual documents has their own probability distributions.
From these distributions the variance in the estimation can be determined. This is in the paper
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described as the risk of the prediction made. An evaluation was done with a number of risk lev-
els. In other words, weighing the variance higher or lower when determining the overall ranking.
Metrics used for evaluation of the ranking the commonly used normalized discounted cumula-
tive gain, precision and Mean Reciprocal Rank. The proposed method was compared against
a user-based, item-based and Probabilistic Latent Semantic Analysis. The user-based and item-
based rankers are based on collaborative filtering. It was found that the proposed ranking method
based on the mean-variance paradigm outperformed the other basic rankers. A possible expla-
nation given for this improvement was the fact that the proposed method looks at correlations
between documents, similarly to conformity measures discussed before.

A study by Zuccon et al. [98] built upon the proposed method by Wang et al. [94] with three
main differences; Firstly, the relevancy probability is not estimated by a point-wise estimator, it is
determined by taking the mean of the probability distribution. Secondly, instead of substituting
the variance in the estimations obtained for a document with the variance of the scores of the
documents already ranked, it is again taken directly from the probability distribution of the single
document. And finally, instead of approximating covariance between the relevance distributions
of documents in terms of the correlation between documents features, the covariance is computed
between distributions associated with different documents.

A similar evaluation was done when compared to the study by Wang et al. [94], and similar
improvements were found when compared to traditional ranking algorithms. However, the per-
formance of the two ranking algorithms based on the mean-variance paradigm was not compared
directly against each other.

Recommender systems

The effect of including a measure of confidence has also been used to improve the performance of
recommender systems in recent years. A study by Mazurowski [59] looked at a number of mea-
sures for defining confidence for a collaborative filtering recommender system. The following
measures representing confidence were compared; the number of ratings by the user, the number
of ratings for the particular item, the variance in ratings for the particular rating and three mea-
sures which look at the variation in the predicted rating when trained on different training data
via the RESAMPLE method, similarly to [91]. All these measures can be used for all the different
approaches of collaborative filtering, as they do not rely on any specific part of the algorithm.

Determining the confidence of a recommendation system was proposed in a study by Cleger-
Tamayo et al. [16] to improve the ranking of the recommendations made for a movie recommen-
dation system. It uses new input features taken from the original collaborative filtering model;
the entropy of the ratings of a given movie, the average rating of neighbours and the number of
neighbours that did not rate the particular item. The entropy looks at how concentrated the differ-
ent rating are for a particular item. A separate model for determining the confidence in a certain
rating was proposed; a decision tree. The binary determination of confidence was evaluated with
a ranking problem.
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3.2 Confidence displays

Over the years, there have been numerous studies looking at using confidence displays for help-
ing users of different computer systems understanding and trusting the system. People with no
background in machine learning or other prediction models would and are using these powerful
tools in numerous decision processes. Examples are the severe weather predictions, polls of gov-
ernment elections or recommendation systems. For a lot of people using these models without
any background in statistical modelling or machine learning these models are a black-box. This
can lead to users not trusting the output of the system or overly relying on this output without
understanding the limitations of the predictions made. In this section, studies are discussed which
look at displaying the confidence of a system to a user and evaluate the effects.

A study by McNee et al. [61] showed the confidence of a recommendation from a recom-
mender system of movies. For recommendation systems, collaborative filtering is the default
method for making these kinds of recommendations. The idea behind collaborative filtering is
having users rate items and predict the rating of that item for a new user based on the similarity
between the users. A drawback of this method is the sparsity of ratings for obscure items. As the
prediction is based only on these ratings and no meta information of the item itself, an item with
only a few ratings is going to result in a risky recommendation. The simple metric of the num-
ber of ratings of an item is used as a confidence score [61]. This confidence score was presented
alongside the recommendations made for a number of tasks in an A/B test. This evaluation was
task-based where users were asked to perform three movie selection tasks in different risk sce-
narios. The selection was logged in order to see if users’ behaviour changed when the confidence
score was shown. After each task, a number of questions were asked related to user satisfaction
and acceptance. In the experiment, it was found that adding the confidence display increased the
user satisfaction overall. Similarly, the showing of confidence scores altered the users’ behaviour.
In the risk-averse scenarios, users were more likely to avoid low confidence predictions while in
the risk-seeking scenarios users were more likely to choose predictions with low confidence.

A training phase was also presented to a certain number of users. When measuring user sat-
isfaction between users trained in the confidence display and users just are shown the confidence
displays without any explanation, mixed results were found. For new users of the system, user
satisfaction increased when trained in the confidence display, while it decreased for experienced
users. The possible explanation given for this result is that the training phase could plant a seed of
doubt by increasing the awareness of the experienced users that the recommendations have vary-
ing amounts of accuracy [61].

The effect of a confidence display for a system aiding a human expert in a decision process was
also evaluated in a study by McGuirl and Sarter [60]. The human experts in this case are fighter
pilot using a system based on a neural network which predicts icing situations. The metric for the
confidence used is the probability of the binary classifier, which is categorized into three groups
(low, variable, high). Similarly to the previous study, an A/B test was performed with only half
of the participants in the experiment being shown the confidence display. The behaviour of the
pilots was again logged, and a survey was held in order to determine user satisfaction and trust.

Pilots who were shown the confidence display were more likely to comply with the decision
made by the system predicting icing events and perform mitigation techniques when it predicted
an icing event [60].

We found only one study looking at evaluating the interpretation of confidence intervals [32].
In this study, a single bound of the interval was presented to participants of a user study and com-
pared to the traditional approach of showing the mean percentage. An example of this approach
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would be "At least 60% confident", this being the lower bound of the confidence interval instead
of the single probability score of "73% confident".

The studies laid out in this section have shown that using confidence display can lead to users
trusting the system and being more satisfied with the predictions. It could also increase the overall
performance of a task when a system is used as a decision aid. This while the metrics used for
the confidence prediction is in both case quite basic. Therefore, more comprehensive measures of
confidence, as laid out in section 3.1, is a worthwhile direction for further research specifically for
systems with user interaction.

3.3 Explainable Artificial Intelligence

A major topic of recent interest in the field of artificially intelligent systems is the notion of ex-
plaining the decisions, recommendations, prediction or action made by this system. As discussed
earlier, these kinds of systems are commonly used by people without any background in the un-
derlying working of the system. Examples are the recommendation systems for music or movies,
product recommendation by Amazon or severe weather forecasts. Most of these systems suffer
from opacity, meaning that it is difficult to get an understanding into their internal workings, es-
pecially for systems with deep learning methods. Furthermore, while the output of probabilistic
models offers clear, direct, numerical probabilities of events, for example 30% chance of rain, if
only this probability is shown the value undergoes interpretation into a subjective sense or feeling
and influences how people act upon these events [29]. How probabilities change over time or be-
tween instances also influences the subjective interpretation of the probabilities [58]. The concept
of Explainable Artificial Intelligence (XAI) proposes to move to more transparent AI. The concept
is used in a number of techniques to produce more explainable models without impacting the
performance of the predictions made.

Explanations for decisions made by AI systems first appeared in the context of rigid rule-
based expert systems, such as decision trees [1]. The aim was to show the decisions based on the
rules created by the system. An example of such an explanation framework was given in 1983 by
Swartout et al. [86]. The explanations generated with this technique can be seen as intrinsic in
the rule-based models. For example, the rule-based model of a decision tree can be explained by
following the path in the tree for a particular instance.

In the machine learning community, the concept of explanations started with simple visualiza-
tions to assist the designers of this model in understanding the behaviour of the system. Recent
examples of these visualization techniques are proposed for convolutional neural networks by
Zeiler and Fergus [97] and recurrent neural networks by Karpathy et al. [37]. While useful for
machine learning experts, for users of such systems without the background knowledge it is not
useful additional information.

Motivation for explanations The explanations for different problems have a number of motiva-
tions, often specific to the problem at hand.

A common motivation is assessing the reasoning of the model [24, 2]. The reasoning can show
models focused on spurious relationships in the training data or other incorrect reasoning for
a given prediction. With these information improvements for the model can be determined to
improve the reasoning of the model. The reasoning of the model can be used as additional decision
support to determine the accuracy of the prediction and whether or not to follow it [53, 24].

Using explanations to inform the human decision-maker is another motivation in the creation of
explanations [24, 2]. This can give additional insights into the specific problem.
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Human decision-makers without a background in machine learning are less likely to trust
predictions of a complex model, even if the accuracy is high. Giving explanations to these users is
often motivated by increasing user trust in the model to increase user acceptance [24, 30, 56].

The motivation for creating explanations gaining more interest in recent years is assessing biases
[2, 26]. The data used to train models is gathered and created by humans, and human biases and
prejudices can find its way into the models themselves [62, 30]. Explanations can give insight into
the biases of the model.

FIGURE 3.1: Overview of a selection of methods in the field of XAI

To explain complex models to people other than the machine learning experts, a survey by Bi-
ran et al. defined two main approaches; prediction interpretation and justifications or interpretation of
models [10]. These definitions are the same in concept to transparency and post-hoc interpretability
laid out in a survey by Lipton [53]. Only post-hoc techniques will be used in this thesis. How-
ever, as many of these techniques use interpretable models as an approximation, a brief summary
of these techniques is given. Further distinctions between the approaches are model-specific or
model-agnostic and local or global explanations. In the preliminaries of the research context a
brief definition was given of these distinctions. In the following section, these distinctions are fur-
ther explained and examples of these techniques are given. A partial overview of these different
approaches is given in Figure 3.1.

3.3.1 Interpretable models

The concept of intrinsic interpretability of a model requires the design of the model to be easily
interpretable [31, 53, 26]. The strictest definition laid out by Lipton [53] argues the model is in-
terpretable if a person can contemplate the entire model at once. This requires the model to be
sufficiently simple. A way a person can contemplate the entire model would be by taking all the
input data and calculating the prediction by hand. This defines a model interpretable when it
is simulatable. Another definition of an interpretable model is a model that "can be readily pre-
sented to the user with visual or textual artefacts" [73]. An example of such a model is the rigid
rule-based decision systems discussed in the previous section. Other models generally assumed
to be interpretable by design are linear models, decision trees, Bayesian Belief networks.

It should be noted that these models will not always result in intrinsically interpretable models
[53]. The size of the model with high dimensional data may increase to not be reasonable to
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perform inference (simulate). This definition of reasonable is subjective and may depend on the
specific problem. High dimensional linear models or decision trees with a high number of leaves
could for example be less interpretable than compact and shallow neural networks.

More complex, but still intrinsically interpretable, models were also proposed in recent years.
An example is a feature selection and extraction approach using an easily interpretable logical
formula for selection and grouping of features for the extraction [40].

3.3.2 Post-hoc justification

The concept of prediction justification or post-hoc interpretation tries to interpret the models in
such a way it is understandable to the user. Here one tries to explain the complex model not
by explaining how a model works; instead, we justify the predictions made. This justification
requires a second model to provide the explanation of the existing model. A justification can
for example be the determination of features which have the highest contribution to a certain
prediction. There are model-specific and model-agnostic methods for the determination of these
feature contributions proposed over the years [75, 7]. Other examples of these kinds of methods
are explanations by example, evidence as an explanation, text explanations or visual explanations.

Explanation by example is one way to explain collaborative filtering techniques for recommen-
dation systems [87]. This is most often in the form of "Because you like x, you also might like y"
or "Similar users like this song".

Evidence as an explanation is for example used in text classification tasks. The proposed method
by Lei et al. [49] is a good example of such an explanation technique. Here a small part of the
overall text document classified is selected as being the most relevant in the prediction made and
shown to the user as justification for the particular prediction.

A study by Krause et al. [44] proposed a visual explanation approach to explain to users how
the system came to a certain decision. This was done, amongst other techniques, by showing
the confidence (called uncertainty in the paper) of the system. One of the goals for showing this
confidence is determining the weaknesses of the system for certain predictions. The user can then
decide if the prediction is correct.

When looking at explanations for Random Forest models post-hoc approaches for the gener-
ation of explanations are most often used. Reason being that tree ensemble models are not easily
interpretable due to the variance reduction through the aggregation of the intrinsic interpretable
models. In the random forest model, this aggregation is the averaging of the different weak learn-
ers, removing the rule-based structure of the individual decision trees.

Model approximation

A popular post-hoc technique is approximating the complex model. To justify the predictions
of a complex model, an intrinsically interpretable model is trained to approximate the results of
the complex model. This means that the interpretable model is not trained on the ground truth
of the training data. Instead, it tries to predict (approximate) the output of the complex model.
The main assumption of this approach is that as long as the interpretable model is sufficiently
close, the statistical properties of the complex model will be reflected in the interpretable model
[26]. Evaluation of these techniques are therefore often the accuracy of the interpretable model in
predicting the output of the complex model. However, a higher accuracy of the approximation
often means a reduction in the interpretability of the simple model [6]. A distinction between
model approximation techniques is global approaches and local approaches.

Global approximation For global approaches, the interpretable model tries to approximate the
entire complex model. An approach for global approximation is for example a single decision
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tree as the interpretable model approximation. The first use of a single decision tree as the inter-
pretable model approximation was proposed by Craven [20], with other studies building on top
of this approach [45, 12, 35]. These studies and approaches focus on the approximation of a neural
network. However, it should be noted that these techniques only use the input and output of the
neural network in order to approximate this network. This means these techniques can be used
with any probabilistic model and can be seen as a model-agnostic approach. A recent example of
a model-specific global approximation specifically for tree ensembles is inTrees by Deng [22]. The
inTrees method works by extracting the rules that govern the splits in each of the weak learners.
These rules are then processed by first removing the duplicates, measuring how long a rule is
and pruning rules to their simplest form. The final step is combining these different rules into a
simple set of if/then rules. These rules are easily interpretable and can be used as an approximate
predictive model.

Local approximations Even when a global approximation focuses solely on achieving the high-
est accuracy in predicting the outcome of the complex model, this accuracy will never be 100%,
and the complexity of the simple model will likely be high. Local approximation approaches were
a response to this, with the assumptions that even complex models will show interpretable be-
haviour locally [73]. Locally in this sense means local in the feature space of a certain instance in
the data. Instead of trying to capture the behaviour of the whole model, only the behaviour close
by the instance is approximated.

One of the most popular implementations of this approach is called LIME by Ribeiro et al. [73].
The important part of the proposed method is the simple model does not try to approximate the
complex model globally; instead, it approximates a model locally for a given instance. This makes
the approximations locally more faithful to the complex model. The interpretable model used in
the study is a linear classifier, which gives decision boundaries for features.

3.3.3 Feature contributions

With the approximation of complex models, we still do not have an explanation, only an approx-
imate interpretable model. This does, however, make it possible to use explanation techniques of
intrinsically interpretable models. One of the most popular approaches is showing feature con-
tributions. In linear models, this is as simple as the weights assigned to a certain feature or the
position in the tree in the case of a decision tree. Feature contribution determination for complex
models does not require simple model approximation. There are global and local approaches for
these determinations as well.

Global feature contribution determination for complex models are for example accuracy-based
importance calculation for Random Forest models [13]. This approach keeps out-of-bag samples
not used in the construction of the tree ensemble. The accuracy of these samples is calculated. This
is followed by permuting the values of a single feature while keeping all other features values the
same, after which the accuracy is determined again with this permutated feature. The main idea
behind this permuting is that due to the randomness of the variable, the feature has no predictive
power anymore. The feature permutation with the most impact on the accuracy gets the highest
contribution score. This approach is model-agnostic, due to the fact that the determination is
solely based on the accuracy of a complex model. There are also model-specific approaches for
feature contribution determination. For example, importance determination based on the Gini
impurity is specific to Random Forest models.

Local feature contribution approaches try to determine for a single prediction made, which
feature contributed most for the specific prediction. Similarly to the local model approximation,
the locality of instances is based on the location in the feature space. Based on this location, the
behaviour of the complex model can differ, and cause the feature contribution to change. Similarly
to the global permutation approaches, permutation or drop-out is used. However, now this is only
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done on a single local instance or a couple of closest neighbours in the feature space. The drop-out
approach instead removes a feature from these instances in order to determine the impact of this
particular feature on the local prediction(s).

SHAP

A framework taking this approach even further is SHapley Additive exPlanations (SHAP) [56].
SHAP uses Shapley values for model feature influence scoring. Shapley values were originally
proposed by Shapley in the field of game theory [78] and are a way for assigning payouts to play-
ers depending on their contribution to the total payout. The payout in this case is the prediction
(probability), and the players are the different features of a given instance. The Shapley value is the
average marginal contribution of a feature value across all possible coalitions. This means going
through all possible features possibilities and look at the prediction made in order to determine
the average feature influence. This approach is different from the basic drop-out or permutation
approaches discussed before, as with this exhaustive approach all possible permutations or drop-
out of features is calculated. In the basic approaches only a single feature is permuted or dropped
out, with all other features remaining the same, losing possible interaction between features [85].
This exhausting approach guarantees consistency and local accuracy, something that is not the
case for LIME [56]. However, a drawback is that SHAP is extremely slow for data with a large
number of permutations. To improve efficiency, a number of approximations of the exhaustive
approach were also proposed [56].

Random Forest specific feature contributions

With feature contributions being such a common way to explain predictions, a large number of
methods to estimate these contributions have been proposed specifically for random forest mod-
els. A study by Palczewska et al. [67] detailed a three techniques to find patterns in the random
forest’s use of available features. The first technique is simply using the feature contribution me-
dian for each class. This is used as the standard level for each class. For a test sample, you look
at the voting of the different trees and determine if the feature contribution is similar to the stan-
dard level of a certain class. The second clustering method looks at similar points and looks at
the already known standard level feature contributions of these instances. The last method uses
log-likelihood to cluster the point in a way to minimize the Euclidean distance.

Another study by Tolomei et al. [88] looked at determining the effort to change the predic-
tion label for a certain instance in order to determine the feature contribution. This method goes
through all the different paths of the ensemble and looks at how much a feature has to change in
order to flip the decision made. While in the worst case computationally this is an NP-hard prob-
lem, in practice, it was found to be practical in the problem of determining low or high quality
advertisements. This is achieved by limiting the search space through pre-computing a number
of typical transformations likely to change the label of a given instance and by setting a limit on
the number of permutations allowed for a given instance.

Prediction interpretation or justification by use of feature contributions is possible without any
additional models when using a random forest model, as feature importance can be estimated
with most implementations of the model in R [89] or Python [27]. These are global approaches
towards the determination of which feature is most important for the complex model.
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3.4 Evaluation of explanations

After defining explanations and interpretability, evaluation of these techniques is an important
aspect. How do you evaluate an explanation’s quality? Requirements of good explanations are
often varied and differ across frameworks. Another difficulty is that these requirements often
cannot be quantified directly. Together with the partially subjective nature of explanations make
evaluating explanations difficult. Examples of requirements for good explanation are truthful,
transparent and understandable.

A study by Doshi et al. [24] proposed a taxonomy for different approaches to the evaluation
of explanations. In the taxonomy laid out three main approaches for evaluating interpretability:
application-grounded, human-grounded, and functionally-grounded.

Application-grounded evaluation involves conducting human experiments within a real ap-
plication [24]. This way of evaluating is particularly popular in the human-computer interaction
and visualization communities. The main focus here is confirming that the system does indeed
succeed in the task at hand. In other words, evaluation is done on the quality of an explanation
in the context of its end-task. An example could be working with doctors on diagnosing patients
with a particular disease. Here the whole system is built and tested with doctors. However, for
the explanations of the complex models on real-world datasets, the evaluations are limited due to
the difficulty of performing such an evaluation [1].

Human-grounded evaluation is about conducting simpler human-subject experiments that
maintain the essence of the target application [24]. Here it is not necessary that the target commu-
nity is participating in the evaluation. A larger pool of people can therefore be included in these
kinds of evaluations. So instead of determining the quality of an explanation in a certain context,
more concrete tasks are evaluated where the quality of the explanation can be inferred from this
smaller task. An example would be a binary choice between two explanations where a user has
to select the best explanation. A common approach is forward simulation, where the goal is to eval-
uate how well participants can prediction the output of a model [24, 46]. In such a simulation,
the input and the explanation are given, while the participant is asked to predict the output. This
is compared against the true output of the model to evaluate how interpretable the explanation
makes the model. Finally, another common approach is the identification of (in)correct behaviour.
In this case, the input, output and explanation are shown to a participant and is asked whether
they agree with the prediction. An example of such an evaluation is given in the paper on LIME
by Ribeiro [73].

Functionally-grounded evaluation requires no human experiments; instead, it uses some for-
mal definition of interpretability as a proxy for explanation quality [24]. This is most appropriate
for models already tested according to other evaluation techniques, such as the previous two in
this taxonomy. The largest challenge is selecting the proxy which is most suitable. After this proxy
is chosen, the problem can be best seen as an optimization problem. Examples laid out in the pa-
per are improving the accuracy of the model. If the model is already found to be interpretable,
improving the accuracy would improve the quality of explanations. Another example is evaluat-
ing the decision path length of a decision tree. A decision tree is deemed interpretable; therefore,
evaluating an explanation of the decision tree can be determining the length of the decision path
and finding a way to reduce this length.

3.4.1 Evaluation metrics as proxy

Given that most of the high-level requirements of explanation cannot be measured directly, sim-
pler evaluation metrics are used as proxies. An improvement in the proxy is assumed to also
improve on the high-level requirements of explanations. These proxy metrics can be measured
quantitatively.

For this review, two groups of metrics are discussed; objective metrics and subjective metrics.
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Objective metrics Objective metrics are all measures not dependent on perceived or subjective
measures. Examples of these metrics are task effectiveness or task efficiency. Task effectiveness is a
measure of accuracy in performing a particular task. Most often it measures if an explanation
helps in increasing the accuracy of human-decision task. In the case of inland ship inspector, the
task is deciding whether or not to inspect a ship based on the likelihood of a violation. Correctly
deciding to inspect a ship where a violation is present can be measured objectively. An example
of evaluating the accuracy of the human expert’s decision was performed by McGuirl and Sarter
[60].

Task efficiency determines whether an explanation helps with performing the task more effi-
cient. Looking at the time it takes to perform the task with the explanation is a common measure
of this metric.

An example of such an evaluation is by Schmidt & Beissmann [76]. Information transfer rate
is used as an evaluation metric as a proxy for understandability of the model. The crowd-sourced
experiment asks participants to replicate model predictions and measures the time it takes to com-
plete a task. The specific task in this experiment was replicating the prediction made by a machine
learning model. Empirical evidence determined that the proposed metric robustly differentiates
between interpretability of the different models.

Subjective metrics Subjective metrics are based on the opinion of the user or participant of the
experiment. A common evaluation technique, both for human-grounded evaluation as well as
application-grounded evaluation, is reviewing the explanation with end-users subjective feed-
back. When looking at subjective markings such as understandability of an explanation, proxies
have been proposed to measure the interpretability instead [47, 71]. Other studies looked at eval-
uating the quality of explanations with the proxy of user self-reported trust in the explanation
[69].

3.4.2 Human-grounded evaluation of SHAP

With the popularity of SHAP and the newly defined taxonomy for the evaluation of explanation
techniques, Weerts et al. defined a human-grounded evaluation for SHAP explanations for Alert
Processing [95]. In the evaluation users were asked to perform simplified alert processing tasks,
with and without the explanations generated by SHAP. The evaluation metrics defined were task
effectiveness, task efficiency and mental efficiency. There were two experimental designs for the
evaluation of explanations given.

For both experiments, there was no significant improvements found in the three metrics when
comparing against giving no explanation. Based on a survey held after participating in the exper-
iments, it was found that the explanation did change the reasoning applied by our participants.
The leading source of evidence was the model’s confidence score in both experiments.

3.5 Research gaps

Conformal Prediction for ranking Based on the literature discussed a number of research gaps
are found, bridging the gaps of using the Conformal Prediction framework for traditional machine
learning problems and the information retrieval problem of ranking.

The Conformal Prediction framework is most often evaluated in terms of efficiency while still
achieving the guaranteed error-rate. This means reducing the size of the prediction sets as much
as possible. However, evaluating the relative performance of the informative predictions sets for
binary classification only is, to our knowledge, not researched. Increase in relative performance
compared to the global performance of the system indicates how the model confidence can be
used to select and therefore rank instances.
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The notion of confidence expressed by conformity is not yet used to rank predictions of tradi-
tional machine learning methods. In general, the ranking of predictions of classification models is
most often sorting on the probability.

The notion of confidence is used for a number of information retrieval ranking problems. How-
ever, these approaches, such as collaborative filtering, are not used for traditional classification
problems. The structure of the datasets for these specific problems most often differ from those
used in more traditional classification methods, such as the ones used in this thesis. A goal for this
thesis is therefore a novel ranking approach incorporating confidence which is compatible with
any probabilistic classification problem.

Confidence displays A number of studies laid out in this review evaluated the use of confidence
displays. These confidence displays are either based on basic metrics to express confidence sep-
arately from probability or even uses probability as confidence. The use of conformity to express
confidence in an explanation is not yet researched. Furthermore, the confidence displays in the
studies discussed do not explain or justify this confidence. Instead, only the impact of showing
the score or value itself is evaluated.

Explaining of confidence As discussed in Section 3.3, giving the probability as an explanation
by itself is not enough. Therefore, a large number of explanation methods are proposed, with a
few of those laid out in this chapter. Particularly, we looked at techniques justifying the probabil-
ity by determining the features contributing most towards this probability. The most contributing
features can be seen as evidence supporting the prediction. To our knowledge, these techniques
are not yet used in the context of confidence. This is the case for both confidence expressed by
the variation as well as confidence expressed by conformity. Simplified; the explanation meth-
ods currently are used to explain the mean of the probability distribution and are not looking at
explaining the range or the variation of the prediction.
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Chapter 4

Predicting model confidence

In this section we define model confidence and the methodology for determining this model con-
fidence to answer the first research question:

How do you predict the confidence score separately from class probability?

The definition of model confidence is determined in Section 4.1, together with an example show-
ing the intuition for this metric. In Section 4.2 the working of the Conformal Prediction framework
is described, together with which features were used in this thesis. This includes the basics such
as the non-conformity function and prediction sets, together with the desirable properties of the
confidence determined.

Finally, we perform two experiments to determine the behaviour of confidence in relation to
the accuracy of the conformal prediction. The main contribution of the first experiment is deter-
mining if using the confidence in a prediction can help in selecting instances with higher accuracy.
If this is the case, it could help in the ranking of instances as well. By selecting based on the
separation of the p-values by the significance level, only high confident instances are tested. An-
other contribution is evaluating if the model confidence determined is reliable for the real-world
problem of violations on inland ships. This is achieved by checking if the guaranteed error-rate is
met.

In a second experiment, the meta-conformity approach is evaluated. The contribution of this
experiment is determining whether the predictions by the Conformal Prediction outperform the
predictions of the base model.

4.1 Definition of model confidence

Before going into the methods used to define model confidence, it is useful first to describe the
idea behind this metric and why it was chosen to look at in this research. As discussed in the
literature review in Section 3.1, this concept of confidence is defined in numerous ways. In this
research, model confidence tries to answer the following question:

How confident is the model in its output?

In the case of probabilistic models, this output would be the probability itself. The question we
try to answer is "How confident is the model in its probability?". This can, therefore, be seen as an
additional quality measure for a single prediction by the model.

To illustrate the core idea behind this approach, let us imagine a simple Logistic Regression
model trying to solve a binary classification problem. This simple model is shown in Figure 4.1.
In this example each instance in the data consists of only two features to easily represent them in
2D space. A simple Logistic Regression model determines probabilities for each instance with the
sigmoid function. The function maps any real value into another value between 0 and 1. In order
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FIGURE 4.1: Simplified model

to classify the instances, the model creates a decision boundary D to maximize the accuracy on
the training data consisting of only two labels. This results in the following; for a given instance
pi, the probability is determined by d(D, pi). This means that if an instance is further away from
the decision boundary, the probability for the predicted label is higher.

In the example shown in Figure 4.1 there are also three new instances shown which we want
to classify. If we look at the probability as a function of d(D, pi), we find that the probability of the
new instance 1 is higher than the probability of instance 2. Even though in the training data an
incorrectly labelled instance is similar to instance 1. The new instance 2 only has the same labelled
training instances in its neighbourhood. However, it got a lower probability due to being close
to the decision boundary. Another problem can be seen when looking at the third instance; this
instance is assigned label 2. There are however no representative instances in the training data, so
none of the nearest neighbours are of label 2. This means that the decision boundary in this space
could be incorrect. To illustrate; the dotted line is also a valid decision boundary with the same
accuracy as D. This alternative decision boundary is just as valid.

This indicates that only looking at d(D, pi), which is based on the probabilities of a given
instance, does not mean that we can be confident that the classification is correct. In this research
we not only look at the probability of a given instance, but also define the confidence of the model
for that given instance.

For the determination of this confidence, most research summarized in Section 3.1 looks at
the relationship between the instance which has to be classified and the instances in the training
data. When looking at prediction intervals in this simplified example, this approach looks at the
effect of permuting the training data. These permutations have obviously an effect on the decision
boundary in this example, and therefore the probability of a given test instance. If this probability
changes drastically when slightly changing the training data, the model confidence is low for that
given instance. This approach therefore looks at solving the problem of the third instance in Figure
4.1, where a different decision boundary in a part of the feature space low on instances could cause
incorrect determination of probability.

When looking at the confidence of the model for the given instances in this example, useful
additional information is the similarity of test instances and the instances in the training data. In
concept, this is how the Conformal Prediction framework determines the confidence in a certain
prediction. However, this framework looks in the probability space of a given model, instead
of the feature space shown in this simplified example. More details as to how this works are
described in Section 4.2. To determine the confidence of a certain classification one can look at the
three nearest neighbours for the three instances in the example of the simple Logistic Regression
model, as shown in Figure 4.2
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FIGURE 4.2: Simplified model with conformal prediction

For the new instance 1 in Figure 4.2, one of the nearest neighbours is classified differently than
the instance itself, and the distance to the neighbours is not large. This could lead to a decrease
in the confidence of the model for this given instance. For the second instance the neighbours are
all classified the same, and the distance between the new instance and its neighbours is small. So
while the probability is low for the instance, the model can be confident that this probability is
determined correctly. The third new instance has the nearest neighbours the farthest away, and
one neighbour is classified differently. Although the probability for instance 2 and 3 is close, as
d(D, p2) & d(D, p3) are similar, the confidence in these predictions is low when looking at the
nearest neighbors of an instance.

Probability is purely determined by the model’s configuration and the features of an instance
that has to be classified. To determine the model confidence of a prediction, additionally, the
instances in the training data are used.

4.2 Conformal Prediction Framework

There are many machine learning algorithms proposed in order to deal with high-dimensional
data problems. These algorithms perform well in a number of different situations when looking
at measures such as accuracy, false positives, false negatives or the area under the receiver oper-
ating characteristic curve. Furthermore, these algorithms do not require any parametric statistical
assumption about the training data. However, in traditional parametric statistics, a well-studied
area is confidence estimation. The Conformal Prediction framework tries to bring this research
and developments in the field of parametric statistics to the field of machine learning.

The central concept behind conformal predictors is as follows; for a new instance the "strangeness"
to the training data is determined with the use of a (non-)conformity function. The goal of this
measure is to determine how well this new instance conforms to the training data. This measure
is then converted into p-values, which allows us to make not only predictions, but also estimate
the confidence in a prediction.

A traditional example of a use case for this confidence is in the medical field. Here it is impor-
tant to measure the risk of a misclassification (meaning misdiagnosis) and allow only a low risk
of error.

Based on this short and simplified introduction one may think the conformal framework is
just a k-nearest neighbour algorithm; however, there are significant differences. In this section,
a summary is given of the workings of the conformal framework as well as what part of the
framework is used in this research.



Chapter 4. Predicting model confidence 28

4.2.1 Assumptions

In this section the basics of the Conformal Prediction Framework are described. Let’s assume a
certain setting where there is a training dataset and we want to predict a new instance in the same
instance space I. This results in a training set of i1,...,in ∈ I with a test instance of in+1 or t. In this
setting, the training set is not a set but a sequence. In the Conformal Prediction Framework there
are only a few assumptions. The first assumption is the randomness assumption, meaning that it
is assumed that all instances (i1,...,in + 1) are from the same independent probability distribution
P on I. With this first assumption, the second assumption follows naturally; as the instances
are taken from the same probability distribution, any permutation of the training sequence is
exchangeable with the original training sequence. These assumptions can mean the instances in
the training data as well as the new instance are independent and identically distributed (i.i.d.
assumption). These assumptions are not unique to the Conformal Prediction framework and are
used in most machine learning algorithms.

4.2.2 Prediction sets

Another aspect of the Conformal Prediction Framework is the use of prediction sets. This means
that the output for a single instance is not a single class, instead, it returns a set of classes as
its prediction. To illustrate, lets assume a machine learning model trying to classify with 5 pos-
sible classes c1, ..., c5 ∈ C. The traditional model will return one of these classes based on the
arg max P(ci), where P(ci) returns the probability for ci. The prediction set in the Conformal Pre-
diction Framework will return all classes above a threshold based on a certain significance level
ε ∈ [0, 1] as a set. The determination of this ε is a compromise between validity and efficiency of
the overall predictor. If you set ε to 0, all classes are returned in the set. This results in the predic-
tion always being valid, as the correct class will always be contained in the set. This is however
a trivial solutions and is non-informative. Efficiency determines if the returned set is as small as
possible while still guaranteeing a given error-rate. This guarantee has to be imposed to not only
return the trivial case of ∅. This trivial case is always returned when ε = 1. The set of predictions
is also called the prediction region where, similarly to confidence interval techniques discussed in
Section 3.1.1, the region of possible outcomes is determined with a certain guaranteed probability.

4.2.3 Conformal predictions

As mentioned in the introduction of this section, this framework works with the notion of "strangeness"
or (non)conformity. This (non)conformity measure is a function A(I, t) mapping any sequence of
instances i1, ..., in to another sequence of real numbers αt

1, ..., αt
n that is the same for all possible per-

mutations φ() of the original sequence. The instances i1, ..., in as well as t can be any object; in the
case of classification it is often represented as ((X1, y1), ..., (Xn, yn)) and (Xn+1, yn+1) respectively,
where X represents the feature values and y the label of an instance.

Here at
1 represents how well the test instance t conforms to i1.

A((i1, ..., in), t) = (αt
1, ..., αt

n+1) = A((iφ(1), ..., iφ(n)), iφ(n+1)) = (αt
φ(1), ..., αt

φ(n+1))

With these conformity values p-values for t can be determined as follows:

pt =
|{i = 1, ..., n + 1|αt

i ≥ αt
n+1}|

n + 1
The p-values represent the proportion of ai’s which are at least as large as the αn+1 representing

the test instance. This results in a value between 1/(n + 1) and 1. A p-value of 1/(n + 1) is
achieved when αn+1 is the largest value. This means that the instance t is very non-conforming.
While a p-value closer to 1 means conforming instances.
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TABLE 4.1: Summary of the different notation throughout this section

Symbol Definition Description

i1 = (x1, y1) ∈ I Data instance
An individual instance of f features
in instance space I. I \ t are the
training instances.

P(i1) = P(y1|x1) Probability
The output of the base model. Ex-
pression of probability of y1 given
X1.

A(I \ t, t) Conformity of individual
instance

Mapping the conformity between
∀i ∈ I \ t and t

αt
r

Conformity between two
instances

Expression of the conformity be-
tween the test instance t and train
instance r

pt p-value for test instance t Expressing the A(I \ t, t) as a single
value for t

Γε(I) Prediction set
Output of the Conformal Predictor.
Returns all Xt and y ∈ Y combina-
tions with pt above a certain ε

con f ((xt, y0
t )) = 1− p1

t
Confidence of conformal
prediction

The confidence in the prediction
y = 0. A set of predictions with
95% confidence will at least be 95%
accurate.

cred((xt, y0
t )) = p0

t
Credibility of conformal
prediction

The credibility in the prediction y =
0 for t.

The conformal predictor with significance level ε be Γε uses these p-values to make a predic-
tion:

Γε(I) = {t|pt > ε}

In words, the conformal predictor returns at the significance level ε the set of possible predictions.
With the definition of Γε with pt > ε it tries to determine conformity, but using ≤ would result in
a non-conformity function. In the Conformal Prediction framework a measure of non-conformity
is most often used instead of a conformity measure. This is because of A being easily expressed
as a distance function, similarly to the nearest neighbour example in Section 4.1. Such a distance
measures non-conformity, where the higher distance increases the strangeness or nonconformity.

Hypothesis testing

This conformal predictor performs a similar task as Hypothesis testing. Hypothesis testing is
proof by contradiction and starts with the assumption that a Hypothesis H0 is true. H0 in con-
formal prediction is most often that for the data sequence I ∪ t the randomness assumption still
holds. The alternative hypothesis Ha is that I ∪ t is not random. In other words, H0 is the case that
test instance t conforms to the training data, while Ha is the case that t does not conform.

In simple notation this is expressed as follows:

• The test example t is assigned a possible label yn+1: (Xn+1, yn+1)

• Hypothesis Test:

1. H0: The data sequence I ∪ t is generated independently from the same distribution and
is therefore random.
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2. Ha: The data sequence I ∪ t is not random.

Where the decision is based on the p-values is done as follows:

• For a significance level ε:

1. Reject H0 if pt ≤ ε

2. Do not reject H0 if pt > ε

The p-value is the probability, assuming that H0 is true, of obtaining another p-value in the
test statistic at least as contradictory to H0 as the value calculated from the available training data.
This is distinctly different than the probability of a certain label or H0 being true. Furthermore,
the p-values for all possible labels do not need to sum to 1. This hypothesis testing is done for all
possible assignments of labels to t and results in p-values for each label for each instance.

With this principled approach to obtaining predictions the confidence and credibility of a cer-
tain prediction can be clearly defined with guarantees in accuracy. The confidence tries to express
how often a prediction is correct, instead of predicting the individual probability of an instance.
With a set of predictions with at least 95% confidence, this measure guarantees that 95% of the
predictions are correct, even if we cannot assert a full-fledged 95% probability for each prediction
when we make it. To avoid overconfidence for the instances that are unusual, credibility is defined
as the largest ε for which the prediction set is empty (Γε(I) = ∅). This overconfidence occur when
for a single instance all p-values are low; while having a high confidence, due to the low p-value
of the class not predicted, the conformity to the class predicted is also low.

In the case of a binary classification problem these additional metrics are determined as fol-
lows:

• Determine p0
n+1 and p1

n+1 for the possible labels [0,1] for Xn+1 of test instance t

• If p0
n+1 < p1

n+1, predict label 1 with the confidence 1− p0
n+1 and credibility p1

n+1

• Else predict label 0 with the confidence 1− p1
n+1 and credibility p0

n+1

For classification with more than two classes the predicted label is the assignment of label and
instance which results in the highest p-value. The credibility is this p-value and the confidence
in the prediction is 1 minus the second largest p-value. The ideal case is max(p0, p1) ≈ 1 and
min(p0, p1) ≈ 0. This results in both a high credibility and confidence for the given instance. An
instance has a low credibility, meaning all p-values are low, implies that the training data is not
random (biased) or the instance is not representative of the training set [90].

To conclude these last few sections; the Conformal Prediction framework looks at determining
(non-)conformity between test instances and the training sequence. It returns prediction sets with
a certain significance level. This set is determined with hypothesis testing based on p-values
expressing the (non-)conformity of a certain instance and label assignment combination. These
p-values can be used to predict in a classification problem and obtain valid prediction regions,
confidence and credibility. To make this even more clear we provide an example of this overall
approach:

• For test sample (X, y) with 5 possible labels the following p-values are determined: py=0 =
0.2, py=1 = 0.1, py=2 = 0.8, py=3 = 0.6, py=4 = 0.9.

• Γ0.85 = {4}, with a confidence of 0.2

• Γ0.75 = {4, 2}, with a confidence of 0.4
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• Γ0.55 = {4, 2, 3}, with a confidence of 0.8

• Γ0.15 = {4, 2, 3, 0}, with a confidence of 0.9

This example shows the compromise between validity and efficiency. The most efficient and
non-trivial set is {4}. However, due to the large p-value of y = 2 the confidence, representing the
validity, in the prediction is low. If you want to be 80% confident the correct label is contained in
the prediction set it makes three outcomes possible: {4, 2, 3}. This larger validity comes at the cost
of a larger prediction set (less efficient).

4.2.4 Non-conformity function

The most important aspect of the Conformal Prediction framework is the determination of the
non-conformity function A defined in Section 4.2.3. This function determines the p-values, which
are the essential parts for making a prediction as well as determine the prediction set, credibility
and confidence.

This determination can be any function expressing the strangeness or nonconformity of a given
sample to the training data. There are model-agnostic functions as well as model-specific func-
tions possible. The model-agnostic approaches work on any machine learning or data mining
algorithm working with probability. In the case of classification model-agnostic functions looks
only at the probability outputs P() of the model and the original data as input to determine αi.
Three examples of such functions are:

• Inverse probability: αi = 1− P(yi|xi)

• Margin: αi = 0.5−
P(yi |xi)−maxyj 6=yi

P(yj|xi)

2

• Nearest neighbours: αi =
minj 6=i&yi=yj

d(xi ,xj)

minj 6=i&yi 6=yj
d(xi ,xj)

, where d is the Euclidean distance

Here the first two functions are based on the output of the underlying model while the third
example looks at the original input data. This third example is the one shown in Section 4.1.

The model-specific functions use additional specific information from the underlying algo-
rithm to determine αi. An example would be the non-conformity function of TCM-RF [92]. This
function uses the notion of identical paths in the forest in order to determine non-conformity:

αi =
K

∑
j=1

prox¬yi
ij /

K

∑
j=1

proxyi
ij

Here prox(i, j) represents the percentage of trees having identical paths for sample i and j. K
expresses the number of nearest neighbours to incorporate for determining the non-conformity
score.

4.2.5 Transductive versus Inductive

There are a large number of approaches developed for this conformity framework–methods like
bagging of conformal predictors or bootstrapping [68][52]. The largest divide between different
approaches is however if the predictor is transductive or inductive. All predictors discussed up to
this point have been of the transductive type, where there is no general hypothesis about unseen
data. Instead, we generate a new hypothesis based on all training data for the new instance.
This makes the algorithms extremely inefficient with large datasets as for each test instance and
label combination the p-values for the whole dataset has to be determined. For this problem an
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inductive conformal predictor has been proposed [90]. In this method the training data of size n
is split into a proper training set of size t and a calibration set of size c, where c = n− t.

The classification rule is then determined with the proper training set using the underlying
machine learning algorithm once. For each new instance only αt+1, ..., αt+c are determined and
used in determining the approximate p-values. If the dataset is truly random, this approximation
is the exact p-value [77].

4.3 Experimental design

For the evaluation of the Conformal Prediction framework, specifically model confidence, the
existing Python library nonconformist version 2.1.0 is used [51]. The advantage of this library is the
compatibility with the popular scikit-learn library [70]. All the different machine learning models
inside the scikit-learn library are therefore compatible. Version 0.23 of scikit-learn was used during
these experiments.

The nonconformist library allows for both transductive and inductive predictors, as well as
more complex conformal predictors like bootstrapped predictors. More importantly, the library
allows defining any non-conformity function. Model-agnostic non-conformity functions can be
defined with a standard format of parameters, allowing the conformal predictor to work on
any classifier. Model-specific functions require custom parameters passing to provide additional
model-specific data to the function. For all evaluations of the Conformal Prediction framework
the model-agnostic margin error non-conformity function was chosen, due to the performance of
this function compared to other model-agnostic functions [36].

For the different experiments in this chapter a number of the classifiers are used. The focus
in this chapter will be on tree ensembles techniques, namely Random Forest and XGBoost. These
classifiers are chosen due to their performance on the specific problem of violation on inland ships.
Other simpler models used during evaluation are Logistic Regression, Quadratic Discriminant Anal-
ysis, k-nearest neighbours and Naive Bayes. Additional results with the other datasets and classifiers
are presented in Appendix A.

First, the behaviour of the conformal predictor across significance levels is determined. Sec-
ondly, a short experiment is performed to determine the performance of the conformal prediction,
which is compared to the base model’s prediction.

4.3.1 Experiment 1: prediction set across significance levels

In this experiment the behaviour of the Conformal Prediction framework is evaluated when look-
ing at different significance levels. Different types of prediction sets, with different confidence
levels, are compared to determine the impact of the confidence measure on the accuracy across
significance levels. The datasets in this experiment are used for binary classification problems.

The goal of this experiment is twofold; firstly, confirming the guaranteed error-rate of the
Conformal Prediction Framework. Meeting the guarantee on the different datasets in this study
confirms the i.i.d assumption of the different datasets. Secondly, a selection based on instances
with higher confidence is made with the use of the significance level. Measuring the accuracy can
indicate the usefulness of model confidence in selecting predictions. This experiment, in combi-
nation with Section 4.2, answers the first research question of this chapter:

How do you predict the confidence score separately from class probability?

The prediction is made with the Conformal Prediction framework and evaluated by selecting
based on the significance level separating the p-values in the binary problems. To our knowledge,
evaluating this subset of instances in the test set is not yet performed. It can indicate if selecting
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based on confident predictions result in higher accuracy compared to the global performance of
the model.

When looking at binary classification problems, only four possible prediction sets can be deter-
mined by the Conformal Prediction framework. The set either contains neither class, it contains
only one class or it contains both classes, resulting in four possible predictions sets.

∅, {0}, {1}, {0, 1}

The sets containing no class or both classes are non-informative as these are the trivial cases
discussed in Section 4.2.2. Classification in these non-informative situations is still possible and is
determined by the largest p-value, while one minus the other p-value determines the confidence.
However, this removes the guarantee of validity. The other two cases of only containing a single
class in the prediction set are informative. The difference between the trivial cases is the p-values
for a given instance of the two classes are separated by the significance level and are likely further
apart in general. Informative efficiency is achieved in the two cases of a set containing only a single
class [34]. The Conformal Prediction framework has guarantees about validity. Specifically, at
significance level ε, the probability of the true class label not being contained in the prediction set
is 1-ε [77]. In other words, the error rate is bound. This is only guaranteed if the i.d.d. assumption
described in Section 4.2.1 holds.

As the i.d.d. assumption is not easily tested for the inland ship dataset, the validity of the
results are evaluated. This evaluation of the conformal prediction sets is inspired by the evaluation
performed by Johansson et al. [34].

In a cross-validation setting the accuracy of the conformal prediction is evaluated. The accu-
racy is determined only for the instances where there is either a single class prediction set or a
prediction set with both classes. In the case of a prediction set containing both classes it as always
correct and the ytrue is therefore the same as ypred in this evaluation. For the single class instances
the error rate is determined to get to an overall accuracy score of the conformal predictor at differ-
ent significance levels. The evaluation is described in more detail in Algorithm 1

Algorithm 1 Evaluating prediction sets

x ← dataset containing instances x1, ..., xn
y← labels for x containing y1, ..., yn
cv← k-fold cross-validation
S← set of significance levels from 0 to 1 with step-size 0.01
for all fi ∈ cv do

for all ε ∈ S do
split (x, y) in training and test set.
cl f .fit(xtrain,ytrain)
res← icp.predict(xtest,ytest)
icp.fit(cl f )
set← icp.predict(xtest,ytest) at significance ε
drop all ∅ from set
calculate accuracy for set with res

In this evaluation the margin probability function is used as a non-conformity measure. The
reason for choosing this function is the model-agnostic property of this particular function. The
performance can therefore be tested on any datasets and classifiers. Inductive Conformal Predic-
tion is used with 20% of the training data being used as the calibration set. This is to speed up the
evaluation steps across the different datasets.
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Besides testing the validity of the resulting prediction sets, this experiment additionally evalu-
ates the relative performance of the informative prediction set over the overall performance of the
model. In binary classification problems this is particularly interesting, as there does not exist a
prediction set larger than one which is still somewhat informative. By evaluating the accuracy of
the subset, the usefulness of confidence in selecting instances is tested. This approach is unique,
as traditionally confidence is only used with the inclusion of the non-informative prediction set to
achieve the guaranteed error rate.

4.3.2 Experiment 2: Meta conformity approach

Before evaluating the additional confidence information in a ranking problem, an important step
is determining which classification to ultimately use. There are two possibilities; the prediction
of the original machine learning model or the prediction of the conformal predictor. This sepa-
ration of classifying using the original model and confidence determination using the conformal
framework was proposed by Smirnov [82][81].

FIGURE 4.3: Two possible predictions compared in meta approach

For the prediction of the original machine learning model, the most probable class is chosen
as label for a given instance. The Conformal Prediction framework takes the probabilities and
determines the p-values based on the inverse probability function. The highest p-value determines
the label when predicting with the Conformal Prediction framework. In this experiment a short
evaluation comparing the meta-approach and the conformal prediction (CP) for the particular
datasets and classifiers is performed. The area under the Receiver Operating Characteristic curve
is used as an evaluation metric. In order to determine if the difference between the two approaches
is significant, an independent Student’s t-test is used.
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4.4 Results

In this section we describe the results of the two experiments in this chapter. The experiments de-
termine the behaviour of the conformal prediction across significance levels and the performance
of the two prediction approaches.

4.4.1 Prediction sets on binary classification

When looking at the type of prediction sets across significance levels, the behaviour is generally
the same across all datasets and classifiers. At significance level 0, all prediction sets contain both
classes. These trivial cases start decreasing when increasing the significance level. The same oc-
curs for the trivial efficient case of the empty prediction set close to significance level 1. Here these
instances increase when approaching this significance level. The number of informative predic-
tion sets, the ones only containing a single class, are zero at significance level 0 and 1. The number
of these informative prediction sets across significance levels represents a bell curve. These predic-
tion sets across significance levels are expected behaviour; prediction sets with two classes mean
that both p-values are higher than the significance level, which is more likely with lower signifi-
cance levels. With the empty prediction set, both p-values are below the significance level, which
is more likely at the higher significance levels. The informative prediction sets means a single
p-value is above the significance level, and the other below it. This results in the bell curve with
a certain maximum. In Figure 4.4 this behaviour is shown for two combinations of classifier and
dataset.

(A) Random Forest and inland ship dataset (B) XGBoost and churn dataset

FIGURE 4.4: Number of prediction sets of a certain type across significance levels

With these different prediction sets across significance levels, the accuracy is also plotted. As
mentioned before, the error rate is bound with the Conformal Prediction framework. The guar-
antee of error-rate or accuracy can be evaluated by determining the accuracy of the instances
containing only a single class in the prediction set together with all instances with a prediction set
containing both classes. For these latter instances the prediction is always correct, as the correct
class is always contained within the prediction set. This situation is plotted as the orange line in
Figure 4.5, with the red dotted line representing the bound of the error rate. From this it can be
seen that for these two combinations the guarantee of validity is met. This is the common evalua-
tion of the Conformal Prediction framework to determine if the guarantees are met.

For this experiment, additionally, the accuracy of predicting based on the highest p-value is plot-
ted. This evaluates the global accuracy of the conformal predictions.
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The accuracy is no longer guaranteed in this case. In Figure 4.5, it can be seen that the accu-
racy drops significantly for all significance levels where two class prediction sets occur. These two
class prediction sets mostly occur for lower significance levels. This is expected, as in the orig-
inal situation these prediction sets were always deemed correct, resulting in 100% accuracy for
these instances. By selecting the class with the highest p-value in these prediction sets, incorrect
classifications are possible. This results in the accuracy close to significance level 0 becoming the
accuracy of the base model. A selection of instances in the test set is made when moving towards
a significance level of 1, excluding based on the credibility of the prediction.

Uniquely, the usefulness of confidence in selecting instances is tested by evaluating the perfor-
mance of the informative prediction sets across significance levels.

As with the previous determination of accuracy based on the highest p-value, this only im-
pacts the performance when looking at significance levels where two class prediction sets occur.
The difference is that in this case the instances with two class sets are excluded. These single
class instances (informative sets) are the predictions with higher confidence compared to these
excluded instances. In the case of the two class prediction set both p-values are larger than the
significance level. The confidence of a prediction is 1 minus the second largest p-value. Together
with the single class instances having a p-value below the significance level, this means a higher
confidence. The resulting accuracy for only these instances with higher confidence is improved
when looking at the overall accuracy of the conformal prediction.

(A) Random Forest and ship dataset (B) XGBoost and churn dataset

FIGURE 4.5: Accuracy across significance levels

An observation from the resulting accuracy is that the guaranteed performance of the Con-
formal Prediction framework is not always met when looking at the inland ship database. This
guarantee is only met when the accuracy of both the single and two class predictions is above the
red dotted line representing the error rate. This is most likely caused by the noise in the data, as
well as the i.i.d. assumption not always being met. For example, a ship can be inspected several
times, resulting in dependency between these instances. Another reason for the i.i.d. assumption
not holding could be the fact that an owner can have multiple ships, also creating a dependency
between the instances. For the other ’clean’ machine learning datasets, the guarantee is met [77].
All resulting plots of the different combinations of classifier and dataset are contained in Appendix
A.1.

To conclude, this section looked at the prediction sets behaviour across different significance
levels. The guaranteed error-rate was largely met when looking at the inland ship dataset and the
Random Forest base model. It also showed the increase in accuracy when looking at predictions
with a high confidence compared to all predictions based on the highest p-value.
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4.4.2 Meta-Conformal classification

As mentioned in the experimental design, a short evaluation comparing the meta-approach and
the conformal prediction (CP) for the particular datasets and classifiers is performed. The area
under the Receiver Operating Characteristic curve (AUC) is used as an evaluation metric. In
order to determine if the difference between the two approaches is significant, an independent
Student’s t-test was performed. The resulting metrics are shown in Table 4.2.

TABLE 4.2: Comparing the performance of the conformal prediction and the base
model

Dataset Classifier AUC CP AUC Meta t-value p-value
ship knn 0.5472 0.5585 4.1313 0.000117339005012
ship rf 0.6605 0.7016 19.2769 6.75088607247962E-27
ship xgb 0.6650 0.7133 20.2868 5.08739016174619E-28
ship lr 0.5680 0.5531 -4.0563 0.000150736137687
ship qda 0.5499 0.5500 0.0156 0.987605778544881
ship nb 0.4918 0.5338 7.0393 2.51763120616029E-09
churn knn 0.7537 0.7872 13.4582 1.72102459645182E-19
churn rf 0.8294 0.8417 7.0687 2.24745826975125E-09
churn xgb 0.8066 0.8113 2.2320 0.029489385684369
churn lr 0.8260 0.8407 9.1993 6.22957726897507E-13
churn qda 0.7051 0.6712 -0.8345 0.407445464352508
churn nb 0.7992 0.8204 7.9656 6.99565772531347E-11
adult knn 0.6366 0.6609 19.2726 6.82553765394818E-27
adult rf 0.7591 0.9154 161.1019 1.3130743179194E-78
adult xgb 0.7968 0.9013 100.5639 8.81659705918814E-67
adult lr 0.6400 0.6096 -2.3671 0.021287563843755
adult qda 0.8576 0.8698 14.6883 3.34561745547866E-21
adult nb 0.6855 0.8340 108.5290 1.0845974193001E-68
spambase knn 0.8157 0.8643 18.7403 2.77757550049706E-26
spambase rf 0.9449 0.9847 28.7081 5.63942398571053E-36
spambase xgb 0.9609 0.9845 18.2811 9.54149056667351E-26
spambase lr 0.8860 0.9649 35.7735 3.1786405682527E-41
spambase qda 0.8964 0.9110 1.4530 0.15161661414028
spambase nb 0.9295 0.9441 7.7888 1.38470645802578E-10

The results indicate that the labelling of a given test instance can best be performed by the orig-
inal classification algorithm based on the highest probability. For the large majority of the tested
combinations of datasets and classifiers the meta-approach outperforms the conformal prediction
based on p-values, for most of the combinations significantly (p < 0.05). With these observations it
can be concluded that with a simple model-agnostic non-conformity function, the Conformal Pre-
diction framework is in most cases not able to outperform the base model when looking at overall
performance. Only in a select number of situations with basic machine learning models, like Lo-
gistic Regression or Quadratic Discriminant Analysis, the conformal prediction outperforms the
base model. Based on these results it was decided to use the meta-conformity approach in further
research, meaning that the prediction function of the original machine learning classifier is used
to evaluate the performance of the overall model as well as the determination of correlation and
ranking of the test instances.
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4.5 Conclusions

In this chapter we have described an approach to answer the first research question:

How do you predict the confidence score separately from class probability?

Confidence expressed with conformity To determine the confidence in a prediction separately
from the class probability, the notion of conformity to the training data is used. The workings of
the Conformal Prediction framework is described, together with an evaluation of the behaviour of
this framework across different significance levels. The goal is to determine if selecting an instance
in the test set based on higher confidence can improve the accuracy compared to the accuracy of
the overall test set. To our knowledge, this is not evaluated before and can indicate the usefulness
of confidence in selecting instances. The highly confident instances are determined to be the ones
where the significance level separates the two p-values in the binary classification problem. An
increase in accuracy is found when looking at predictions with a high confidence compared to all
predictions based on the highest p-value.

The guaranteed error-rate was largely met when looking at the inland ship dataset and the
different classifiers. In the folds not achieving the guaranteed error-rate, violations of the i.i.d.
assumption are the most likely culprits. The assumption could be violated because ships can be
inspected multiple times, making these inspections not independent. This is similarly the case
for ships of the same owner. However, the error-rate was met when looking at the average over
the folds in the cross-validation, indicating that the confidence predictions are sufficiently reliable
overall for the specific problem of prediction violations on inland ships.

Finally, a short evaluation of the meta-conformity approach shows that using the predictions
of the base model results in the best performance across a number of datasets and classifiers. The
Conformal Prediction framework is therefore only used to determine the confidence in the predic-
tions of the base model.
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Chapter 5

Ranking with model confidence

In the previous chapter model confidence is determined using a measure of conformity. This con-
fidence is evaluated by selecting highly confident instances and determining the accuracy of these
instances in relation to the overall performance. Based on the improvement found in the previous
chapter, in this chapter we use the obtained confidence from the Conformal Prediction framework
to rank instances for multiple traditional machine learning problems as well as the real-world
problem of violations on inland ships, answering the second research question:

Can model confidence predictions improve the ranking of predictions?

First, correlation is determined between the error-rate and the measure of probability, confidence,
credibility and different combinations of these measures. The goal is to determine how to include
the additional confidence measure in the ranking of the instances. This is followed by a second
experiment where we perform ranking with several classifiers and datasets. The ranking based
on individual measures is performed to gain insight into the behaviour of these values. With the
correlations found in the first experiment, the approach for incorporating confidence in the ranking
based on probability is determined and performed.

5.1 Taxonomy Ranking algorithms

The topic of ranking is a fundamental problem in the field of Information Retrieval. Many Infor-
mation Retrieval problems are by nature ranking problems, such as document retrieval, collabora-
tive filtering, key term extraction and sentiment analysis [54]. For each of these specific problems,
the ranking problem is optimized. In general, there are three main groups of approaches can be
defined; pointwise, pairwise and listwise.

Pointwise. With an existing implementation of a machine learning model, like the inland ship
model, the most straightforward approach is using the model directly for the ranking problem as
well. In this case it is assumed the model can precisely predict the true probability of a certain event
or class, which for ranking is most often the relevancy of documents. Ranking the instances based
on the true probability would result in the optimal ranking. This is the basis of the Probability
Ranking Principle (PRP) [74]:

"If a reference retrieval system’s response to each request is a ranking of the documents in the collection
in order of decreasing probability of relevance to the user who submitted the request, where the probabilities
are estimated as accurately as possible on the basis of whatever data have been made available to the system
for this purpose, the overall effectiveness of the system to its user will be the best that is obtainable on the
basis of those data."

The request of the user in the case of a traditional classification is the single question the pre-
diction tries to answer. In the situation of inland ships, the request would be returning violating
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ships, and the optimal ordering would mean all true violating ships having a higher probability
of violation than ships not in violation.

Pairwise. In the real world, it is however not often possible to predict the true probability of an
event. Furthermore, to achieve a good ranking it is not necessary to know the exact probability,
only that one instance is more probable than the other. This idea is expressed in the pairwise
approach, where the focus is on the relative order between two instances. The ranking problem
is reduced to a classification problem on two instances. The classification problem is deciding for
each pair which instance is more probable than the other. The optimal ranking is achieved in this
case when the classification accuracy is 100%.

Listwise. Listwise approaches take the idea of the pairwise approach one step further. Instead
of determining the order of only a pair of instances, the listwise approach tries to find an optimal
order of the whole list of instances. There are two main sub-techniques for this approach. The first
is optimizing the ordering of instances based on direct measures such as Normalized Discounted
Cumulative Gain (NDCG) or Mean Average Precision (MAP). The other sub-technique focuses on
minimizing a loss function specific to the ranking problem we want to solve.

5.2 Experimental design

For the evaluation of ranking with confidence measures from the Conformal Prediction frame-
work, the existing Python library nonconformist version 2.1.0 is used [51]. The advantage of this
library is the compatibility with the popular scikit-learn library [70]. All the different machine
learning models inside the scikit-learn library are therefore compatible. Version 0.23 of scikit-learn
was used during these experiments. For all evaluations of the Conformal Prediction framework
the model-agnostic margin error non-conformity function was chosen, due to the performance of
this function compared to other model-agnostic functions [36].

For the different experiments in this chapter a number of the classifiers are used. The focus
in this chapter will be on tree ensembles techniques, namely Random Forest and XGBoost. These
classifiers are chosen due to their performance on the specific problem of violation on inland ships.
Other simpler models used during evaluation are Logistic Regression, k-nearest neighbours and Naive
Bayes. Additional results with the other datasets and classifiers are presented in Appendix A.

First, the correlation between different measures and the error of the classification is calcu-
lated. Secondly, a ranking experiment incorporating the additional measures from the Conformal
Prediction framework is performed on both individual measures as well as a combination of these
measures.

5.2.1 Experiment 1: Correlation between error and additional metrics

With the use of the Conformal Prediction framework two additional measures of quality are de-
termined for a given prediction; credibility and confidence. This is in addition to the probability given
by the base machine learning model. Before incorporating the additional information in the rank-
ing of the different instances, determining which combination of these values correlates strongest
with the accuracy of the predictions can hint at the optimal combination. If the correlation be-
tween a measure and the prediction error is strong, this could improve the selecting or sorting
of instances. This experiment is therefore an initial step to answer the second research question
of this chapter. The score used in ranking will be based on the strongest correlation between the
score assigned to an instance and the prediction error, as we cannot manually inspect all different
combinations of measures and their performance in the ranking.
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To determine if these values correlate with the performance of the base model, this section will
describe the correlation between the error-rate and different combinations of the three available
values as well as several combinations of these values. Strong correlation, negative in the case of
the error-rate and positive in the case of accuracy, would indicate the usefulness of these values
when ranking a list of predictions.

A number of different combinations of probability, confidence and credibility are evaluated. The
first three are the most basic combinations where the additional measures of the Conformal Pre-
diction are multiplied with the probability of the base model. The reasoning behind these combi-
nations is the assignment of extra weights to the instances with both high probability and model
confidence. By multiplying the instances with both low probability and either confidence or cred-
ibility are assigned a lower score. Another combination tested is the difference between the two
p-values obtained by the Conformal prediction framework. The lower p-value is retrieved by 1
minus the confidence.

The Pearson correlation is used to determine the correlation between the error of the pre-
dictions and the different measures and their combinations. Pearson correlation is suitable for
quantitative variables, including dichotomous variables. The model either classifies correctly or
incorrectly, making the performance on an individual prediction a dichotomous variable. This is
compared against the quantitative variable of either probability, credibility, confidence and combina-
tions of these values. This correlation is used instead of the Spearman’s rank correlation or the
Kendall tau correlation. The reason being the binary labels of the problems in this thesis. This re-
sults in many ties, meaning there are only two average ranks when looking at the Spearman’s rank
correlation. A similar problem occurs for the Kendall tau correlation, where the optimal ordering
cannot be determined; all positive instances can be randomly sorted and the ranking would still
be just as optimal.

5.2.2 Experiment 2: Pointwise ranking with confidence measures

The second experiment of this chapter is defined to answer the second research question of this
study:

Can model confidence predictions improve the ranking of predictions?

Different ranking problems are evaluated to determine if there is an improvement when incorpo-
rating model confidence.

Pointwise ranking with confidence measures

With the notion of model confidence clearly defined in the Conformal Prediction framework, this
experiment will look at the effect of using this additional information for the ranking of the in-
stances in a test set.

The problem is modelled as a ranking problem where different orderings of the test instances
are evaluated. The sorting is achieved by assigning a numerical score to each instance. For the
baseline of this evaluation this score is simply the probability predicted by the base machine learn-
ing model. As discussed before, if the probabilities determined are as accurate as possible, the
sorting with these probabilities will give the optimal solution. However, in the real world these
estimations are never 100% accurate. The sorting will therefore also not be optimal. With the
inclusion of additional quality measure evaluation on the ranking is performed on a number of
classifiers and datasets.

The ranking approach in this evaluation is pointwise as the score used for sorting the instances
is determined based on the individual instances [54]. The assumption in this evaluation is that the
ground truth of a violation translates to the ground truth of relevancy, the term often used in
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ranking problems. A ship is only relevant to the inspector if there is a violation taking place.
Instead of looking at the accuracy, where both the classification of violating and non-violating
ships are evaluated, the metric of precision@k is used. This metric looks at different top k of a list
and determines the precision for these k instances.

The reason for selecting a pointwise approach is twofold. Firstly, these classification problems
are solved with probabilistic models, making the adaption to ranking with probabilities straight-
forward. Secondly, the problems in this thesis have binary labels and the two classes are balanced
in all the datasets, making this particular problem a bipartite ranking problem [4][3][43]. For this
specific problem, it is found that a good binary class probability estimation results in a good per-
forming bipartite ranking [66]. The classifiers used in this study all learn by estimating the prob-
ability distributions and classifying by thresholding at 0.5. Meanwhile, for pairwise and listwise
approaches, optimizing is difficult due to the large number of ties between instances; all positive
instances can be shuffled with each other without any impact on the ranking performance, and
the same is the case for negative instances. This results in half of the pairs being ties, while for
the listwise approach a large number of optimal rankings exist. However, to confirm this intu-
ition, a quick evaluation of these approaches was performed and compared against the pointwise
approach laid out in this thesis. Here it is found that the pointwise approach does significantly
outperform the pairwise and listwise approach. The results can be found in Appendix A.3.

Firstly, the ranking with confidence or credibility is compared against the ranking of probabil-
ity in order to understand what the measures mean when sorting the test instances. With this
understanding, an experiment re-ranking based on the model confidence is performed. For this
re-ranking the results of the first experiment in this chapter are used. Based on the correlations
found in this first experiment the re-ranking will be based on a multiplication of the probability
and confidence, as it contained the highest overall correlation when looking at the different clas-
sifier and dataset combinations. As discussed in section 4.2, the confidence measures the quality
of a prediction. For this experiment it is proposed to incorporate this measure into the existing
ranking based on probability. Evaluation is done by determining the precision@k for the ranked
list. The goal of re-ranking is visualized in Figure 5.1. Instead of relying on a single score to rank
the predictions, the confidence is used to re-rank the probability ranking.

When looking at confidence and probability of single predictions, four quadrants can be de-
fined in the outcome space of the overall system. When ranking based on a single measure in-
stances in two quadrants are moved to the top of the list. In Figure 5.1 this is illustrated with the
colored boxes, which relate to the instances in Figure 5.3.

By combining the confidence in a prediction with the probability the goal is to move highly
confident and probable predictions to the top of the list.

FIGURE 5.1: Outcome space of probability and confidence

To incorporating the confidence measure into the existing probability ranking, we will look at
multiplying the confidence with existing probability:
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P(y|x) ∗ (1−min(px)),

By multiplying, instances in the quadrant of high probability and high confidence are moved up
the list and instances with only one of these two measure being substantial moved down com-
pared to instances with a higher combination of probability and confidence.

FIGURE 5.2: Increase weight highly confident and probable instances

5.3 Results

5.3.1 Correlation between error and additional metrics

In Table 5.1 these correlations are determined for the inland ship dataset with two tree ensemble
classifiers; Random Forest and XGBoost. In Appendix A.2 the same results are given for the other
machine learning datasets with the same classifiers.

The resulting correlation coefficients indicate that in certain situation the additional measures
provided by the Conformal Prediction framework on individual predictions of a machine learning
model can result in higher correlation with the error of the machine learning model. Between the
basic metrics of probability, confidence and credibility, the probability is in most cases the strongest
correlated metric with the error rate when using tree ensemble techniques. However, there are a
number of instances of datasets and classifiers where the other metrics have a stronger correlation.
When looking at the single metrics, the probability determined by a Random Forest model was al-
ways strongest correlated with the error, while for the XGBoost model credibility was strongest
correlated with the error for 3 of the 4 datasets used in this chapter. XGBoost uses Gradient Boost-
ing, which means the trees are built one tree at the time in an additive manner; the shortcomings of
previous weak learners are used to create a better tree. With noisy data and no parameter tuning,
this can result in slight overfitting. Recall that the credibility expresses overconfidence.

For the simpler machine learning models, the confidence measure is in a number of instances
stronger correlated with the error. Recall that confidence tries to determine the quality of pre-
dictions, and in the case of the Conformal Prediction framework this is expressed with the prob-
ability of a correct prediction. With an accurate prediction of the probability of an event (class
label in classification), this says more than confidence [77]. However, as these simple models can
be less accurate in determining the probability of an event, the confidence correlates more strongly
with error in certain cases. Combining the additional measures with the probability of the base
model does give the strongest correlation in most dataset and classifier combination for at least
one combination of these measures. Even when probability correlates more with error than credibil-
ity and confidence, combining these additional measures with the probability results in even higher
correlation with the error of the predictions.
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TABLE 5.1: The Pearson correlation between different measures and the error on the
inland ships dataset

Metric Random Forest XGBoost
Correlation Coeff p-value Correlation Coeff p-value

Conf -0.104 2.98E-2 -0.048 0.21
Cred -0.133 3.03E-2 -0.200 2.81E-6
Prob -0.196 1.64E-5 -0.168 6.42E-4
Prob*Conf -0.165 3.33E-4 -0.140 2.17E-2
Prob*Cred -0.163 2.47E-4 -0.203 3.06E-6
Prob*Conf*Cred -0.186 1.37E-4 -0.205 3.75E-6
Prob*(Conf+Cred) -0.196 3.07E-5 -0.197 3.07E-6
Prob*(Conf^2+Cred) -0.196 2.25E-5 -0.191 9.79E-5
Cred-(1-Conf) -0.189 6.38E-5 -0.204 3.06E-6
Prob*(Cred-(1-Conf)) -0.192 5.30E-5 -0.205 2.36E-6

With the correlations found for the different classifier and dataset combinations, the multipli-
cation of probability and confidence is found to be the strongest correlated with the error-rate of the
base model. While not being the highest correlated in all situation, the correlation is robust.

5.3.2 Pointwise ranking with confidence measures

In this section the results of using model confidence to rank test instances of a classification prob-
lem are given. Firstly, it is described how individual measures perform when using these to rank
the predictions. This is followed by using the confidence as an additional measure to re-rank the
baseline of ranking based on the probability.

Probability versus confidence sorting In Figure 5.3 the ranking performance of the random for-
est classifier on the inland ship dataset is given for sorting based on probability versus confidence.
The ranking performance was determined with 5-fold cross-validation repeated 4 times. This ap-
proach was chosen due to the large variation in performance when using smaller test sets, as is
the case with 10-fold cross-validation.

FIGURE 5.3: Precision@k on the inland ship dataset and RF classifier
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The ranking performance when ranking based on confidence is significantly (p < 0.05) lower
than with the baseline of probability. This is not unexpected, as the confidence score only looks
at the quality of the prediction. For example, a prediction with only 0.51 probability can be non-
conformal to the class not predicted, giving a high confidence to the prediction and resulting in
the model being confident that the probability of 0.51 is correct. However, This still means that
the other class is almost just as probable. When sorting based on the confidence measure alone,
precision@k metric already approaches the precision performance on the whole test set at k = 50,
with some fluctuation and large variation when k < 30 due to the limited number of instances.
This indicates an even distribution of confident predictions over the whole probability space.

Probability versus credibility The same evaluation is performed with the credibility deter-
mined by the Conformal Prediction framework. Recall that credibility measures the conformity of
the instance to the training instances with the same predicted class [77]. In Figure 5.4 the ranking
performance of the random forest classifier on the inland ship dataset is given for sorting based
on probability versus credibility. Using credibility to rank the test instances resulted in an im-
provement in precision@k with k between 1 and 15, significantly so (p < 0.1). With k > 20 the
precision@k is lower when sorting by credibility versus probability. This confirms the results of
the meta-approach evaluation, where the conformal prediction based on the highest p-value has
a lower performance than the prediction of the base model.

FIGURE 5.4: Precision@k on the inland ship dataset and RF classifier

Using confidence to re-rank

The final results describe using confidence in combination with the existing ranking based on
probability to re-rank the baseline. Based on the correlations found in the first experiment in this
chapter, multiplying the probability with the confidence was used to re-rank the instances. All
the resulting precision@k with k = {5, 10, 25, 50} are described in Appendix A.4. In Figure 5.5 a
selection of combinations of classifier and datasets are plotted in their entirety.
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(A) Random Forest and inland ship dataset (B) Logistic regression and churn dataset

(C) Naive Bayes and churn dataset (D) 11 nearest neighbours and adult dataset

FIGURE 5.5: Precision@k for different combinations of dataset and classifiers

The resulting precision@k indicates that, for complex models and datasets used in this eval-
uation, the addition of confidence in the ranking of the predictions in most situations does not
improve ranking. However, for the simpler models included in this study, the inclusion of confi-
dence in the ranking did give a significant improvement (p < 0.05) in most situations.

5.4 Conclusion

In this chapter we have introduced a novel pointwise approach of incorporating confidence mea-
sures based on conformity into existing probability based rankings. Confidence estimation tries to
answer a different question, which can most easily be expressed as the quality of the prediction.

In order to determine the usefulness of this additional information, the following research
question is answered:

Can model confidence predictions improve the ranking of predictions?

Incorporating confidence in pointwise ranking The baseline is pointwise ranking with proba-
bility, and this is compared with ranking by both confidence and credibility. These measures on
their own do not improve ranking over ranking with probability.

Therefore, using the additional measures to re-rank the instances ranked by probability is pro-
posed. Based on the correlation found between different combinations of the three measures and
the error rate for a number of classifiers and datasets, the multiplication of probability and confi-
dence is used to rank the instances.
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Using the confidence measure to re-rank the list sorted by probability does not improve the
ranking when looking at complex tree ensemble methods and the datasets used during this ex-
periment. However, for simpler interpretable models, the addition of confidence does improve the
ranking of predictions.

The reason behind this difference in performance between the re-ranking and the original
ranking can be explained with the Probability Ranking Principle. This principle says that if the
probabilities are as accurate as can be with the available data, ranking based on these probabilities
is optimal. The complex tree ensemble models in this thesis perform better when looking at tradi-
tional evaluation metrics of classification problems. This indicates that these complex models are
able to more accurately determine the true probabilities contained in the data used in this thesis.
Therefore, the ranking with these probabilities is closer to the optimal ranking. The additional
confidence measures do not improve the ranking in these cases. If the tree ensemble models were
not able to accurately determine the probabilities from another dataset, the addition of confidence
could improve the ranking of instances.

For the more interpretable models in this experiment the approximations of the probabilities
are more rudimentary. Therefore the additional measure of confidence did significantly improve
the ranking for most combinations of classifier and dataset, with a higher precision at the top of
the sorted list.
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Chapter 6

Explanations based on confidence

The overall goal for the problem of violations on inland ships in the Netherlands is supporting
inspectors in deciding which ship to inspect. The real-world data for this problem is noisy and
imperfect, resulting in a model with a relatively modest predictive performance. The goal of the
thesis is using confidence to improve the human-decision support of the system in two ways. The
first way is described in the previous two chapters; determining reliable confidence metrics and
ranking based on this confidence of the model. This allows for a selection of predictions with
a higher precision. The second way is discussed in the next two chapters; explaining from the
context of confidence instead of the traditional context of probability.

There are a large number of explanation frameworks developed over recent years. These
frameworks try to explain the output of a machine learning model, which in most cases for classi-
fication is probability. In this chapter not only the probability of the base model is explained, but
also the confidence in the prediction, as determined in Chapter 4. For this study it was chosen to
use SHapley Additive exPlanations (SHAP), an additive feature attribution method.

The reason for choosing this framework is the model-agnostic approach with desirable prop-
erties; local accuracy and consistency (6.1.2). SHAP approximates the Shapley value, a concept from
cooperative game theory, in order to determine feature contributions.

The goal of this chapter is answering the following research question:

How can confidence prediction be used to generate model-agnostic local explanations?

First, a summary of the workings of the SHAP framework is described. This is followed by adapt-
ing the SHAP framework to determine the feature contributions of model confidence alongside
the probability of the prediction.

Finally, an exploratory data analysis is performed comparing the feature contributions be-
tween the context of probability and the context of confidence. The goal is determining if the feature
contributions, and therefore the explanations, differ enough between the contexts to be separately
evaluated in a user study and determine how they differ between the contexts.

6.1 SHapley Additive exPlanations

SHAP uses Shapley values for model feature influence scoring. Shapley values were initially pro-
posed by Shapley in the field of game theory [78]. Shapley values are a way for assigning payouts
to players depending on their contribution to the total payout. The payout in this case is the pre-
diction (probability) and the players are the different features of a given instance. The Shapley
value is the average marginal contribution of a feature value across all possible combination of
features. This means going through all possible features possibilities and look at the prediction
made to determine the average feature influence. This exhaustive approach guarantees consis-
tency and local accuracy, something that is not the case for LIME [56]. However, a drawback is
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that calculating these Shapley values based on all possible permutations is extremely computa-
tionally expensive.

6.1.1 The Shapley Value

Shapley value was proposed decades ago in the field of game theory [78]. The Shapley value is the
average marginal contribution of a player across all possible coalitions of players in a cooperative
game. With these marginal contributions, the goal is to determine how each player contributes
to the outcome of the game, commonly called the payout. The Shapley value is determined as
follows:

φi(v) = ∑
S⊆N\{i}

|S|!(n− |S| − 1)!
n!

(v(S ∪ {i})− v(S))

where N is the total set of n players with S being a subset of players in N. The function v(S)
determines the expected payout of the players in S can obtain by working together. v(S ∪ {i})−
v(S)) represents the influence of including player i in the game. This formula can be explained
as follows; the players enter a room in random order. All players in the room participate in the
game. The Shapley value of a player is the average change in the payout that the coalition already
in the room receives when the player joins the other players for all possible combinations.

The Shapley value is a unique solution and has many desirable properties, like efficiency, sym-
metry, additivity and null player.

Efficiency The sum of all Shapley values of individual players equals the total payout of the
cooperative game:

∑
i∈N

φi(v) = v(N)

Symmetry The contributions of two players j and k should be the same if they contribute equally
to all possible coalitions.

∀S ∈ N : v(S ∪ {j}) = v(S ∪ {k}) ∧ j, k /∈ S⇒ φj = φk

Additivity When combining payouts the respective Shapley values can also be combined to
determine the overall Shapley values.

v(S1) + v(S2) = v(S3)⇒ φS1 + φS2 = φS3

Null player When a player does not influence the payout, the Shapley value is zero.

∀S ∈ N : v(S ∪ {i}) = v(S)⇒ φi = 0

The Shapley value is the only solution with these desirable properties, as was demonstrated by
Young [96].

6.1.2 SHAP value

The concept behind the determination of the Shapley value can be translated to a more general
machine learning problem as a unified measure of feature importance. Instead of determining
the payoff for all different coalitions of players, the influence of a feature is determined by look-
ing at the outcome of the model for all different combinations of features. The function v() for
determining the SHAP values expresses the influence of a feature on the difference between the
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expected prediction and the prediction of an individual prediction when conditioning on that fea-
ture. While not the first using Shapely values in the determination of feature contributions, SHAP
by Lundberg & Lee is a popular study and implementation of the concept [56]. In this study the
approach of determining Shapley values is compared with other model-agnostic local explanation
techniques which all approximate a complex model with a linear model, with binary values rep-
resenting if a feature is included in the output. The binary values therefore represent the coalition
of features. The study describes these specific approaches as additive feature attribution methods.
The linear model in all these techniques is used to determine feature contributions:

f (x) = β0 + β1x1 + β2x2 + .... + βnxn

For a linear model shown above, the determination of feature contribution is simply

φi( f ) = βixi − E(βixi)

where E(βixi) is the average (expected) effect of feature i over the whole dataset.

Compared against other additive feature attribution methods

A total of four additive feature attribution methods are compared against the Shapley values,
including LIME [73]. The definition of the Shapley value shows that there is only one possible
additive feature attribution method with local accuracy and consistency. This result implies that
methods not approximating Shapley values violate local accuracy or consistency.

The local accuracy looks at how close the linear model approximates the base model locally,
meaning that the approximation could be less accurate when looking globally. Local accuracy is
defined as follows:

f (x) = g(x′) = φ0 + ∑
j∈N

φjx′j

In this equation x = hx(x′), with hx converts binary values into the original inputs. The binary
values represent if the local approximation uses the feature value in the original input space.

In this definition of local accuracy, if φ0 is set to the expected average output of f (x) and all x′j
to 1, the definition is the same as the efficiency property of the Shapley value.

Consistency means that if a model changes so that the marginal contribution (β) of a feature
value increases or stays the same, the Shapley value also increases or stays the same. This consis-
tency property can be defined as follows; for any two models f and f ′ that satisfy:

f ′(z′)− f ′(z′\i) ≤ f (z′)− f (z′\i)

for all inputs z′ ∈ {0, 1}N :

φi( f ′, x) ≤ φi( f , x)

Consistency is a more generalized property, from which the properties symmetry, additivity and
null player of the Shapley value can be determined [56].

The proof of a unique solution indicates that both LIME and other generalized additive fea-
ture attribution models do not have the desirable properties when not approximating Shapley
values. This does not mean these approaches cannot have these properties, as can be seen in the
KernelSHAP definition discussed in Section 6.1.3.
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6.1.3 Approximation method

To calculate the SHAP values exactly is challenging. For all of the possible coalitions, which are
factorial in the number of features, the expected prediction with and without the coalition of fea-
tures has to be calculated, which is exponential in the number of features, resulting in O(N! ∗ 2N).
This makes this exhaustive exact approach untenable for large datasets.

Therefore, approximations of the Shapley values are proposed. In the original study on SHAP
the model-agnostic KernelSHAP technique is proposed [56], together with a number of model-
specific approximations. In a later follow-up study a model-specific approach to tree ensembles is
proposed [55].

KernelSHAP

The proposed KernelSHAP approach is an adaptation of the LIME method by Ribeiro [73]. Recall
from the literature survey that LIME is a technique for locally approximating a complex model
with an interpretable model. The explanations are generated by the following:

ξ = arg min
g∈G

L( f , g, Πx) + Ω(g)

where g is a model in the class of interpretable models G. f is the complex model with f (x) given
the probability of a certain event. Πx(z) is a distance measure between x and z in order to define
when another instance is local. Finally Ω(g) determines the complexity of the interpretable model
g. For a linear model this can be the number of non-zero weights or the depth of the tree in the
case of a decision tree. Finally, let L( f , g, Πx) be a measure of how unfaithful g is in approximating
f in the locality defined by Πx. This represents the local accuracy or local fidelity of the interpretable
model.

In order to ensure both interpretability and local accuracy, the function L has to be minimized,
while not increasing the complexity Ω(g) too much. Making the decision on which interpretable
linear model to use is a trade-off between faithfulness to the original model (local accuracy) and
interpretability of the approximate linear model.

Based on the ability to set the parameters of the loss function, this approach is not guaranteed
to produce Shapley values, the unique solution with the desirable properties. However, with
certain forms, the Shapley values can be approximated:

Ω(g) = 0,

Πx(z) =
M− 1(

M
|z|

)
|z|(M− |z|)

,

L( f , g, Πx) = ∑
z∈Z

( fx(z)− g(z))2Πx(z)

where |z| is the number of non-zero elements in z and M the number of input features.

For the KernelSHAP approach a linear approximation model is used for g(z). Together with
the loss function L being a squared loss function, it is possible to approximate the SHAP values
with linear regression. Together with the properties of LIME, this allows regression-based, model-
agnostic estimation of SHAP values with the properties of local accuracy and consistency.
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6.1.4 SHAP Interaction values

As discussed in section 3.3.3, a benefit of SHAP values is that the contribution of a feature is
determined not only based on the individual feature value, but by coalitions of features. This
means that features can interact, where globally SHAP values of a feature is not an exact linear
relation. In other words, two instances with the same feature value for a single feature can have
different SHAP values for this single feature. To determine the interaction between features, the
Shapley interaction index determines which features interact most with a single feature:

φi,j = ∑
S⊆\{i,j}

|S|!(n− |S| − 2)!
2(n− 1)!

δi,j(S),

where i 6= j and:

δi,j(S) = fx(S ∪ {i, j})− fx(S ∪ {i})− fx(S ∪ {j}) + fx(S)

By removing the effect of the two single features, the influence of the features interacting is de-
termined. This is done, as with the calculation of the original Shapley values, for all possible
coalitions of features.

6.1.5 Types of explanations

The Shapley value of a feature is not the difference between the predicted value after removing
the feature during training. Instead, given the current set of feature values, the contribution of
a feature value to the difference between the actual prediction and the mean prediction is the
estimated Shapley value. This definition allows for contrastive explanations that compare the
prediction with the average prediction.

Furthermore, features contributing to a decrease of the probability or confidence can be de-
fined, not only features contributing positively to the prediction. This can be beneficial in a human
decision support system, like the one for the inspectors of inland ships. As the model is not 100%
accurate, a number of predictions are incorrect. Determining features lowering the outcome of the
model could be useful information when the user disagrees with the prediction made.

6.2 Implementation of SHAP

The techniques proposed for SHAP are incorporated in a Python library by Lundberg [56][55].
This implementation has the option to determine for a single instance the Shapley value as "forces".
Here the values can either be positive or negative. The value represents how much influence
(force) a given feature has on increasing or decreasing the output of the model from the baseline
score. This baseline score is the average output over all the different instances. As discussed be-
fore, the output for probabilistic classification models is the probability of the instance belonging
the to predicted class. The SHAP library version 0.35.0 is used during this study [80].
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FIGURE 6.1: Overview of the determination of two feature contributions

The SHAP framework was adapted to not only look at this probability output, but also deter-
mine the Shapely values for the confidence score determined by the Conformal Prediction frame-
work. This requires to define a custom function in the nonconformist library returning the con-
fidence of an individual prediction for the Inductive Conformal Predictor, which was wrapped
to passed on to the SHAP framework. An overview of the pipeline of this approach is given in
Figure 6.1.

As the SHAP framework has to work on both the base machine learning model and the Confor-
mal Prediction model, the model agnostic approach KernelSHAP is used to determine the SHAP
values for both the probability and the confidence of an individual prediction. The base model
used is a random forest model, and the Conformal Prediction framework uses the model-agnostic
margin non-conformity function. These contributions are used to explain the answer of two dif-
ferent questions: "What is the probability of a violation?" and "How confident are we in the prediction of
violation being correct?". The answer is simply the output of either the base model or the Confor-
mal Prediction framework, a single value in both cases. The approach in explaining the answer
for both questions is the same; the contributions explain which information contributes to the
probability or confidence of a prediction.

Before comparing the explanations of the two unique contexts concerning user trust with a
user study, an exploratory review of these contributions is done. The goal is determining the
difference between the two contexts of explanations. For a total of 250 ships in the inland ship
dataset the Shapley values are determined for the 252 features, resulting in 63000 SHAP values for
each context. The 250 instances were selected with k-means clustering, which additionally assigns
a weight representing how many instances a single instance represents in the test set.

Basic metrics such as average SHAP value and distribution is determined to get a general idea
about the difference of SHAP values between contexts. The features with the greatest difference
between context are defined. Global feature importance using the SHAP framework is also calcu-
lated to see if there is a difference in the global influence of a single feature. The SHAP values for
individual predictions are also compared with two examples, as well as with a combination plot
of all the SHAP values. Finally, a number of dependency plots are made. These show the relation
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between the feature value and SHAP value and give insight into the behaviour of these values in
both contexts. In the following section the resulting plots and metrics are given for the inland ship
dataset. In Appendix B the same plots and metrics are given for the churn dataset.

6.3 Exploration SHAP values between two contexts

To compare the difference in SHAP values, a number of visualizations and metrics are used. First,
the absolute SHAP values are averaged between the two contexts of probability and confidence.
This is also done when removing all SHAP values of zero (null players). The SHAP values of 0
mean that the feature is not contributing to the given prediction. The number of non-contributing
features between the two contexts is also given. The results are given in Table 6.1.

TABLE 6.1: Difference in SHAP values between the context of probability and con-
fidence. This is done for all values and all non-zero values. The number of zero

instances is also given.

Context Average absolute SHAP value Without 0 # instances of 0
Probability 6.94E-4 2.97E-3 48291
Confidence 1.40E-3 6.81E-3 50004

The absolute SHAP values explaining the confidence of the Conformal Prediction framework
are, on average, around two times as large compared to those explaining the probability of the
base model. This means that features are contributing a larger amount to the overall output of
confidence. This happens while a larger number of SHAP values are zero, meaning the feature
has no impact on the individual prediction. To see whether this is the cause for both positive and
negative SHAP values, the SHAP values are plotted in a histogram in Figure 6.2 for both cases in
Table 6.1. From the figure it can be concluded that when explaining the confidence for the inland
ship dataset, the SHAP values are larger for both negative and positive features globally.

(A) SHAP values between two contexts (B) SHAP values minus zero instances

FIGURE 6.2: Difference in SHAP values between two contexts

Difference between SHAP values

Besides the difference in the size of the SHAP value, it is interesting to determine the most sig-
nificant difference between SHAP values for a given feature. In Figure 6.3 the average difference
between the two contexts is given. The negative difference means that the SHAP values are lower
in the context of confidence compared to the context of probability and a positive difference means
an increase in the SHAP values.
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(A) Decreased SHAP values (B) Increased SHAP values

FIGURE 6.3: Difference of SHAP values between the two contexts

The overall difference in SHAP values strongly relates to the difference in global feature im-
portance, however, the correlation is not necessarily positive for an individual feature. An overall
positive difference does mean the feature contributes more to an increase in the model output.
When looking at the inland ship dataset, the unique identifiers of the ship’s owner contribute to a
larger output in the context of confidence. At the same time, information about fuelling does have
a more considerable negative impact on the confidence. In the following section the global feature
importances between contexts is given.

Global feature importance

To determine the global feature importance with the SHAP framework, a summary plot of the
two contexts is given in Figure 6.4. The summary plot combines feature importance with feature
effects. The points represent a Shapley value for a feature and instance combination, with the
colour representing the value of the feature from low (blue) to high (red). The features are ordered
according to their importance.

The features importances between the two approaches differ when averaging over the 250
instances. The reason for the reduction in the number of instances is the large computational
time as the number of combinations increases exponentially with the number of instances. The
behaviour of individual features and their SHAP values between the contexts is mostly the same.
Meaning that a positive correlation between a feature value and its SHAP value in the context
of probability also means a positive correlation in the context of confidence. This indicates that the
importance of the feature globally differs between the two approaches, but the relation between
the feature value and SHAP value does not.

When looking at the feature importances between contexts on the inland ship dataset, the fea-
tures on fuelling (s_Vol, max_Vol and avg_Vol) and identifiers of the owner of the ship (KvK.nummer_eig
and Hoofd_RVV_expl) are contributing more to the determination of confidence compared to the
probability. These were also the features which differ most between the two contexts. The dif-
ferences were both negative and positive, however, this does not mean the contribution of the
feature is not increased. Recall that confidence is determined by looking at the conformity in the
probability space of a test instance to the training data. Fuel information and the identifiers of the
owners are therefore useful features to determine similarity or conformity between instances.

Individual predictions

As mentioned before, the SHAP values are determined for explaining individual (local) predic-
tions. An example of these SHAP values for an individual prediction is given in Figure 6.5. In this
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(A) Probability feature contribution (B) Confidence feature contribution

FIGURE 6.4: Summary plot of the most important features

figure force plots are given. Each block represents a SHAP value in this plot, where the width of
the block represents how large the SHAP value is.

The two plots represent different contexts to explain. The top plot shows how individual
features contribute to the decrease or increase in the base model output compared to the aver-
age prediction output. The lower plot does the same for the output of the Conformal Prediction
framework. These individual plots are represented in Figure 6.4 with a point for each feature.

FIGURE 6.5: SHAP values of a single prediction of the RF on the inland ship dataset.
The plot above is from the context of probability, the lower one from the context of

confidence

The two plots also indicate the difference in feature influence between the two contexts. While
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a positive contributing feature in one context will not negatively contribute in the other context,
how much a feature influences the increase or decrease from the average prediction does differ
between the two contexts. In both contexts many are contributing, however small, to the overall
prediction. This is caused by the definition of ξ, where all features are tested.

Combining individual predictions

These individual plots can also be combined into a single plot to get a more general overview of
the difference between the two contexts. The values shown in the individual plots are rotated 90
degrees and put beside each other in Figure 6.6, sorted by the output of the model.

The resulting plots are harder to distinguish than the individual ones, however, several ob-
servations can be made. Firstly, the features negatively contributing to the prediction are more
dominant when looking at model confidence compared to the probability. This could help in de-
ciding to disagree with the prediction of the model, with information making it clear why the
confidence is low. The overall size of the SHAP values in the context of confidence is larger, as
found before. In this case, this results in a higher average prediction, as well as more "variation".
This kind of variation is caused by sizeable opposing SHAP values, meaning that a larger number
of features have large SHAP values.

(A) Probability feature contribution of all individual pre-
diction

(B) Confidence feature contribution of all individual pre-
diction

FIGURE 6.6: Force plot of all individual predictions

Interaction between features

Finally, we look at a number of feature dependency plots comparing the two contexts. Depen-
dency plots plot the feature value against the SHAP value for all instances to determine the be-
haviour of a given feature. If there is a perfect line in such a plot, there is no interaction with other
features. When there are feature values with different SHAP values, there is an interaction with
other features. This means that a combination or coalition of feature values influence the overall
contribution of the individual features. In Figure 6.7, the dependency plot of the Tonnage feature
is given for both contexts. This feature was selected due to the relative similar global importance
in both contexts as well as being a large continuous feature.
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(A) Probability context (B) Confidence context

FIGURE 6.7: Relationship of the Tonnage feature value and SHAP value. The most
interacting feature Nev1_SAB_expl_2 is represented with colour

When ignoring the colour of the plot initially, we see there is almost no correlation between
the feature values and SHAP values. This means the interaction with other features largely deter-
mines the SHAP value. The SHAP framework has the build-in function to determine interaction
values. The most interacting feature in both contexts, Nev1_SAB_expl_2, is plotted with colours.
This feature represents if the second activity of the owner of the ship is the transport on water. To
determine whether the interaction between the two features contributes to the difference in SHAP
values, separation of instances based on the additional colour should be possible. Therefore, the
interaction is not that strong when looking at the context of probability. However, in the context
of confidence, these two features do interact; if Nev1_SAB_expl_2 is 1, the SHAP value of Tonnage is
pushed towards 0 more than when it is 0.

(A) Probability context (B) Confidence context

FIGURE 6.8: Relationship of the datumNumeriek feature value and SHAP value

In Figure 6.8 the same plot is given for the feature datumNumeriek. Here a stronger relation
between the feature value and SHAP value is found. There is still interaction between features,
however, between the two contexts, the most interacting feature is different. The interactions
are in both contexts not strong enough to separate the instances and explain the difference in
SHAP values for similar feature values. The difference is likely caused by a large number of
smaller interactions, making the exact determination of the difference between context difficult.
However, we do see that the interaction between features differs between context, allowing in
some cases to increase the interaction. Also, notice that the relation between feature values and
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SHAP values remains mostly the same between contexts, as was found when looking at global
feature importances.

6.4 Conclusion

The goal of this chapter is answering the third research question:

How can confidence prediction be used to generate model-agnostic local explanations?

In this chapter we proposed to use the SHAP framework to explain two different contexts; prob-
ability and confidence. The SHAP framework allows for determining feature contribution for any
output of a model, with the desirable proprieties of efficiency, symmetry, additivity and null player by
approximating Shapley values. The definition of a Shapley value proves that only when approxi-
mating Shapley values, an additive feature attribution method has these desirable properties. The
SHAP values allow for model-agnostic explanations for individual instances. The SHAP values
for an individual instance show how much a particular feature "forces" the output of a model from
the average output of the model, which can be in both a positive and negative direction.

For this research a novel approach for explaining model confidence is proposed. The SHAP
framework is adapted to determine not only the feature contributions towards probability, but
also the confidence in the classification.

These contributions are used to explain the answer of two different questions: "What is the
probability of a violation?" and "How confident are we in the prediction of violation being correct?". The
answer is the output of either the base model in the case of probability or the Conformal Prediction
framework in the case of confidence, a single value in both cases. The approach for explaining the
answer for both questions is the same otherwise; the contributions explain which information
contributes to the probability or confidence of a prediction.

Exploratory data analysis is performed to determine the difference in SHAP values between
the contexts of probability and confidence. The SHAP values between contexts differ both locally
and globally. For the inland ship dataset, the SHAP values are larger when explaining confidence
and a larger number of features contribute to the confidence prediction. There is a difference in
global feature importance between the context of probability and confidence, however, the behaviour
between feature value and SHAP value remains largely the same. This means that if globally a fea-
ture value is positively correlated with the SHAP value of this feature in the context of probability,
the correlation is also positive in the context of confidence. The slope and the linear relationship of
the feature and SHAP value do slightly differ between the contexts. Locally, this causes the other
features having the highest absolute SHAP value between the contexts. This is caused in part by
the difference in the interaction between features, meaning that certain features have a different
impact on the SHAP value of another feature in one context compared the other. An example
would be that while the contribution of the weight of a ship being 3000 kilograms in one context
does not depend on the fact that the inspection takes place in the weekend, in the other context
this does increase or decrease the contribution of the weight of the ship.

With these results, it is found that the feature contributions of individual instances, and there-
fore the explanations, differ significantly between the contexts. This difference is mostly in the
magnitude of a contribution due in part to different interactions between features.
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Chapter 7

A human-grounded evaluation of
confidence based explanations

In the previous chapter a novel approach of explaining from confidence was proposed; adapting
the SHAP framework such that explanations from the context of confidence are determined with
feature contributions. In the data analysis a significant difference between the context of confidence
and the context of probability was found when looking at feature contributions. In this chapter
we evaluate how this difference is received and perceived by users. The goal of the evaluation is
answering the final research question:

How are explanation based on confidence received by users?

This is achieved with a human-grounded evaluation, which takes the form of a user study where
the two contexts of explanations are compared for the real-world problem of inspecting inland
ships in the Netherlands. The explanations from the context of probability serve as a baseline upon
which to compare the confidence based explanations. Task effectiveness, perceived usefulness and
user trust are used as evaluation metrics, which are tested with three corresponding hypotheses.
Additional analysis is performed by determining the usefulness of individual features, feedback
by the participants, the time taken to complete the tasks as well as separating the results based on
the prediction and the correctness of this prediction.

7.1 Evaluating explanations

The topic of explanation methods making complex machine learning predictions more interpretable
has become increasingly popular in recent years. However, evaluating the usefulness of these
kinds of explanations has not been done thoroughly [24]. The few studies that do look more
closely at evaluating these kinds of explanations use confidence and probability often interchange-
ably. The focus for this evaluation is, therefore, looking at the impact of separating these terms and
explaining them separately, answering the question: What is the impact of explaining model confidence
instead of probability?

For this study, a model-agnostic approach has been chosen because the focus of the experiment
is on evaluating explanations for the confidence values determined by the Conformal Prediction
framework against explanations for the probabilities of the base model. This means that expla-
nations will try to increase the interpretability of two different machine learning models. In this
work, a human-grounded evaluation to determine the usefulness of explaining a complex ma-
chine learning model from the perspective of confidence instead of probability is described.
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7.2 A human-grounded evaluation

As discussed in the literature review in Chapter 3, human-grounded evaluation is about conduct-
ing simpler human-subject experiments that maintain the essence of the target application [24].
Here the target community does not need to be participating in the evaluation. A larger pool
of people can therefore be included in these kinds of evaluations. So instead of determining the
quality of an explanation in a certain context, more concrete tasks are evaluated where the quality
of the explanation can be inferred from this smaller task.

7.2.1 Research hypotheses

To evaluate the impact of explaining model confidence, a number of hypotheses are formulated.
These look at the impact the two different explanations have on the task performance for inspec-
tion decisions. The task performance is evaluated by the metrics of explanation effectiveness, expla-
nation usefulness and user trust.

Explanation effectiveness

Explanation effectiveness examines the impact of the explanation on the effectiveness of the human
decision task. When looking at the decision on whether to inspect a certain ship, explanation
effectiveness can be defined simply as the accuracy of the decisions made. If an explanation is
effective, it will help the user make better decisions, as an effective explanation helps the user
evaluate the quality of the prediction. By assessing this quality with the explanation the user
can disregard incorrect predictions. The two different explanations have different model outputs
as well as different feature contributions. Explanations based on confidence of the model in a
certain prediction could more closely resemble human intuition and increase the explanation ef-
fectiveness. This could be the case as the explanation based on confidence presents how confident
the model is in a certain prediction, instead of giving the probability of the most likely outcome.
When the model indicates to be less confident in its prediction, it could lead the user to assess
the model’s prediction more closely. Additionally, the fact that the feature contributions between
the two different explanation methods are not the same could help the user toward more essential
features for determining if they trust this particular prediction.

Hypothesis 1. Explanations based on confidence of a prediction increase explanation effectiveness of a
ship inspection decision compared to the explanation based on the probability of the prediction.

Explanation usefulness

Explanation usefulness examines how the explanation is used in the overall decision made by the
human decision-maker. Both explanation approaches reveal features that are important for the
decision or confidence of that decision. This allows the experts to determine if the connection
between these features and the overall decision makes sense. By determining which part(s) of the
explanation contributed towards the overall decision on whether to inspect the ship, it can be de-
termined if the explanation is used in the decision-making process. Furthermore, this information
could also help determine the features the user finds important in the decision-making process.
This could help in follow-up work in feature selection in the overall system.

Hypothesis 2. Explanations based on confidence of a prediction increase explanation usefulness com-
pared to the explanation based on the probability of the prediction.
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User trust

User trust examines how confident the user is in using the model or its predictions. This is an
important metric for evaluating the explanations: a system which looks to aid a human decision
process should have the trust of the user. Otherwise, the user could simply ignore the system
altogether.

Transparency of the explanation is sometimes linked with user trust, with some prior studies
finding that transparency of the system increased the user trust in the system [53]. The reasoning
is that if a user can understand why the model made a certain prediction, the user can be more
confident in the prediction being correct (or not).

Hypothesis 3. Explanations based on confidence of a prediction increase user trust compared to the ex-
planation based on the probability of the prediction.

These hypotheses are tested with a user experiment where users have to decide if they want
to inspect a certain ship based on either an explanation based on confidence or probability. The
procedure of this experiment is laid out in the next section.

7.3 User study

The main goal of the experiment is to compare explanations based on the same explanation frame-
work and interface, but with different outcomes which need to be explained. The participants of
the study are experts working for the inspectorate, and therefore only a limited number of par-
ticipants are available. This resulted in choosing a within-subject design for this experiment. A
within subject design means that every participant is subjected to all different conditions of the
independent variables. For this experiment that means showing every participant explanations
based on the probability as well as explanations based on confidence. The different value that has
to be explained is the only independent variable in this experiment consisting of two levels. The
dependent variables are measured in the form of answered questions by the participants of the
study.

FIGURE 7.1: Overview of the structure of the user study

The experiment is taken in an online setting. Participants are asked to go to a website and sign
in using their mail address and provide some demographic information: age, sex and profession.
This is followed by a number of tasks to perform, with a final feedback page. As not all inspectors
are proficient in English, the experiment is performed in Dutch. It was predicted that at least 25
people are necessary to participate in the study to determine significant results. This is determined
by a two-sample one-sided test in power analysis. The analysis is described in Appendix C.5, both
ad-hoc and post-hoc.
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7.3.1 Inspection Task

The task the participant is asked to perform is deciding whether to inspect a certain inland ship
based on the information provided with the explanation. This explanation looks the same but
is from the two contexts discussed before. Besides the decision as to whether to inspect a ship,
the participant can select which information is useful and if they trust in having made the correct
decision. This task keeps the essence of the target application, however is simplified towards a
binary choice whether to inspect a certain ship.

For each explanation based on confidence, the prediction of the base model is provided, fol-
lowed by the confidence score of the Conformal Prediction framework. A plot showing the con-
tribution of different features towards this confidence score is shown. This plot shows all features
contributing to the prediction by SHAP values. With this specific problem a large number of fea-
tures result in a large number of small contributions towards the prediction. It is not feasible to
show all these contributions, as the amount of information that can be represented in an explana-
tion is limited [24]. Therefore the ten features with the highest absolute SHAP value are selected
with their feature value shown below the force plot.

FIGURE 7.2: Interface of an explanation from the perspective of confidence

The explanations based on probability also show the prediction of the base model, followed by
the probability of this base model. A plot showing the contribution of different features towards
this probability score is shown, as well as the values of these features. Below the explanation four
questions are asked to test the three hypotheses. These questions are shown in Figure 7.3.
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FIGURE 7.3: Questions asked in each task

7.3.2 Task ordering

A participant is shown a total of 20 ships which were previously inspected. One context is ran-
domly selected for the first 10 tasks, with the 10 other tasks being presented from the other context.
The ordering of the ships is based on the ordering in the test set, with the first ship assigned to
a given participant being random. By not assigning a random ship each of the 20 instances we
increase the coverage over both levels of the independent variable and the different ships. This is
necessary due to the limited number of participants in the experiment. The reason for not alter-
nating between the contexts is to avoid confusions as to which context is used, as the interface is
almost identical.

FIGURE 7.4: Procedure for a participant. P is an explanation based on probability, C
is based on confidence and r is the random id of the first ship

The ordering makes it not possible for a participant to see a ship explained from both probabil-
ity and confidence. By assigning the first ship r randomly to a participant, there are no groups of
participants in this experiment. Grouping a limited number of participants could result in noise
caused by the difference between individual participants.

7.3.3 Experiment details

Model used

For this experiment a random forest model was trained on the inland ship dataset provided by
IDlab, explained in more detail in Section 2.5. The Conformal Prediction framework is fitted
on this base model, with the non-conformity function based on the margin probability with a
k-nearest neighbour normalization. The non-conformity function looks at the number of votes in
the random forest as its distance measure. More details on these models are given in Section 6.2.

The performance of this classifier on this dataset is shown in Table 7.1
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TABLE 7.1: Performance of the base model on the test set. Performed with 10-fold
cross-validation

Accuracy AUC Precision
0.66 0.71 0.67

Instances used

With the relatively low performance of the classifier on the inland dataset, the ships included in
this experiment are decided by ranking the instances in the test set. On the test set sorting based
on both the probability and confidence are performed. The top 30 ships from the test set are taken,
for which the accuracy is 66% and the precision is 70%. Instances are classified either way, not
only the positive predicted classes were taken. Half of the ships are predicted to be in violation.
This is therefore slightly different than the ranking performed in Chapter 5, where the focus was
on positive instances (violations) only.

KernelSHAP was performed on both the probability and confidence values of these instances.
Two explanations were generated for each ship; one explaining the probability of the random
forest model, one explaining the confidence from the Conformal Prediction framework on top of
the random forest model.

Participants

As discussed before, this experiment is modelled as a human-grounded evaluation. This allows
the inclusion of other people besides the target user to participate in the user study. The larger
pool of people in the context of evaluating the model predicting inland ships are people in the
inspectorate who are somewhat knowledgeable on the issue of the inspections, but are not inspec-
tors of inland ships. Examples are maritime inspectors or people from the IDlab who work on this
specific problem. From the inspectorate 31 people participated in this experiment. These were
all employees of the Inspectorate. A total of 12 inspectors participated who are specialized in the
inspection of inland ships. A total of 7 inspectors from other fields, like maritime, participated as
well. The other 12 participants are employees of the IDLab, which all have some knowledge about
the problem setting of inspecting inland ships. The participants were not required to provide de-
mographic information, however, most did (26). The average age of the participants is 45 years,
with 81.8% males and 18.2% females.

Quality assurances

To get qualitative results of this user study, two checks are put in place. The first is a short ex-
planation of probability and confidence before the respective tasks. Most of the participants have
no knowledge of machine learning, without a basic understanding of the difference between the
two contexts. A short introduction is therefore given with an example, along with two questions
to test if the participant understands the explanation from a particular context. The second check
is an additional random question in 10% of all tasks. This is a simple test of having to select the
right box (Please select "boat" from the list). With this question we test if people are participating
seriously and not just click through. Answering the question incorrectly is logged. Luckily, none
of the participants in this small study answered this question incorrectly.
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7.3.4 Results

In this section the methods and results of the experiment are discussed. This is achieved by deter-
mining if the hypotheses in Section 7.2.1 hold.

For all the hypothesis tests for Hypothesis 2 & 3 both a two-sample independent t-test and a Mann
Whitney U Test is used. The t-test is chosen due to the large sample size and independent nature
of the self-reported perceived usefulness and user trust. Likert scale values are ordinal values, not
continuous values, and can therefore not be normally distributed. However, the t-test can still be
used in hypothesis testing for Likert scale values [21]. When manually inspecting the histogram
of the resulting perceived usefulness and user trust, a bell shape does indicate the distribution to
be somewhat normally distributed. Parametric tests, such as t-test, are robust against non-normal
distributions when the sample size is large enough due to the Central limit theorem, provided the
distribution is truly normal [21]. With participants providing each 10 samples for each group, the
sample size of a single group is 310. To be sure potential non-normality of the results does not
influence the hypothesis testing, the nonparametric Mann Whitney U Test is also performed. The
rejection of the null hypothesis for both hypothesis tests is the same for all situations, with similar
p-values in most situations.

Hypothesis 1: Explanation effectiveness

To evaluate the explanation effectiveness, the decision of the participants of the experiment is
compared with the true labels of the instances. The decision of the participants can be seen as a
classifier, and metrics such as accuracy and precision can be determined. First, the performance
for each completed task was compared between the context of confidence and probability. However,
as the tasks for individual ships were not completed the same amount of times, difficult instances
completed more than the average amount of completions could give biased results. Therefore the
accuracy in the user decisions was also determined by first averaging the accuracy for each ship.
The resulting accuracy with these two approaches is given in Table 7.2.

TABLE 7.2: The accuracy of human decisions comparing confidence and probability
explanations

Probability Confidence p-value
Global explanation 58.3% 59.1% 0.43
Average per ship 57.9% 61.9% 0.54

When averaging over all instances, there is a small difference in task accuracy between the
context of probability and the context of confidence. The improvement in accuracy is greater when
first averaging the instances per ship. The difference between the two contexts in both cases is
not significant: p = 0.43 & p = 0.54. The Mann Whitney U test is performed for the accuracy
without first averaging per ship. This is due to the discrete nature of the accuracy distribution,
as an individual sample is a binary value expressing whether the participant made the correct
decision. A Student’s t-Test for related samples is performed when first averaging over all ships.
The Student’s t-Test was used as the accuracy was deemed to be normally distributed based on
the Quantile-Quantile plots in Figure C.1.

We fail to reject the null hypothesis at a significance level of 0.05.

It should be noted that the human task accuracy is lower than the accuracy of the model itself. This
means that the accuracy of the ultimate decision of the participant to inspect would be higher if
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they simply always agreed with the prediction made by the model. This same result was found in
several user studies by Poursabzi-Sangdeh et al. [71].

Comparing correctly and incorrectly labelled instances Another distinction can be made in the
results, looking at the tasks with an incorrectly predicted class and tasks with a correctly predicted
class. These results can determine if participants are able to determine if the model is correct in
the case of correctly predicted classes. The results for these instances are shown in Table 7.3. In
the case of incorrectly labelled instances, the accuracy can indicate if the participants are able to
determine that the prediction is incorrect. The resulting accuracy for these instances is shown in
Table 7.4.

TABLE 7.3: The accuracy of human decisions for tasks with correctly labelled in-
stances

Probability Confidence p-value
Global explanation 74.0% 76.1% 0.32
Average per ship 71.1% 76.5% 0.43

TABLE 7.4: The accuracy of human decisions for tasks with incorrectly labelled in-
stances

Probability Confidence p-value
Global explanation 28.0% 26.5% 0.42
Average per ship 29.1% 27.9% 0.89

The resulting accuracy is higher in the context of confidence for correct predictions, meaning
that the participants agree more with the prediction made in this context. The improvement in
accuracy is found for both the average over all the tasks and the average per ship. When the
model made an incorrect prediction, the task accuracy is lower in the context of confidence. This is
caused by the same reason as for the correct instances; a higher agreement with the prediction.

The difference in both cases is not significant for all four situations. The Mann Whitney U test
is performed in the case of averaging over all samples, while a Student’s t-Test for related samples
is performed when first averaging over all ships.

The increase in agreement (75.6% vs 73.3%) results in the small improvement in accuracy in
the context of confidence. In Appendix C the agreement in multiple situations is described.

The task effectiveness was not included in the ad-hoc power analysis in Appendix C.5, due to the
nature of the distributions expressing the accuracy. However, with the results averaged per ship
a post-hoc analysis was performed to determine the number of participants it would require to
determine the improvement in task effectiveness found when using explanations from the context of
confidence. From the results in Appendix C.5 it is found 196 participants are the minimum number
required with the mean and standard deviation found.

Hypothesis 2: Explanation usefulness

Hypothesis 2 in this experiment is evaluated by asking the participant their perceived usefulness
of the explanation. This is done for each task according to a 5 point Likert scale. In Figure 7.5
the distribution of perceived usefulness of all the explanations is plotted. We want to determine
whether explaining from the context of confidence results in a more perceived useful explanation.

As mentioned before, both a two-sample independent t-test and a Mann Whitney U test is
used. The nonparametric hypothesis test results are given in Appendix C.



Chapter 7. A human-grounded evaluation of confidence based explanations 68

TABLE 7.5: Results for Hypothesis 2

Probability Confidence p-value
Mean Std Mean Std

All explanations 3.11 1.05 3.06 1.15 0.37
Positive explanations 3.11 1.12 2.86 1.16 0.08
Negative explanations 3.11 0.98 3.18 1.11 0.62
Correct explanations 3.19 1.04 2.90 1.15 0.01
Incorrect explanations 2.96 1.07 3.26 1.11 0.04

(A) Perceived usefulness of all tasks performed (B) Average usefulness per ship

FIGURE 7.5: Perceived usefulness comparison between the two contexts

Figure 7.5a shows the perceived usefulness of all individual tasks performed. The tasks are
separated by context. The difference in perceived usefulness differs only slightly; with a slight
reduction in the perceived usefulness in the context of confidence, however, not significantly so
(p = 0.37). In the context of confidence, there is a large percentage of no perceived usefulness when
compared against the context of probability. This results in a higher standard deviation in the
context of confidence.

In Figure 7.5b the perceived usefulness when first averaging by ship is shown. By doing so,
the effect of certain ship tasks being performed more often is removed. The same decrease in
perceived usefulness in the context of confidence was found.

(A) Prediction of violation (B) Prediction of no violation

FIGURE 7.6: Perceived usefulness of explanations separated by the prediction out-
come
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To determine if there is a difference in the perceived usefulness when looking at prediction, the
results are separated by the binary prediction of violation or no violation (Figure 7.6). The perceived
usefulness of the explanations of violations is improved, not significantly (p = 0.08), when explain-
ing from probability. For explanations of no violations the average perceived usefulness is slightly
improved in the context of confidence, also not significant (p = 0.62), with higher variability.

(A) Explanations of correct predictions (B) Incorrect predictions

FIGURE 7.7: Perceived usefulness of explanations separated by the correctness of a
prediction

The same evaluations are performed by separating based on the correctness of the predictions.
Recall that the accuracy for the 30 ships is only 67%, so for a number of explanations the predic-
tions are incorrect. The resulting perceived usefulness is significantly improved when explaining
the context of probability when the prediction is correct (p < 0.05). The opposite results are found
when the prediction is incorrect; the perceived usefulness for explanations from the context of
confidence is significantly higher (p < 0.05).

Usefulness of features For each task a participant can select which information is useful for
them in making their decision on whether or not to inspect a ship. The resulting self-reported
useful features are given in Figure 7.8, along with the number of times the feature was shown
in the experiment. In Appendix C this figure is represented as the percentage of times shown
in Figure C.2. Each participant completes 10 tasks of either context, each showing 10 features
most influencing the prediction. The number of features shown in either context is therefore the
same. Comparing the total amount of selected features in the experiments is 579 (22.4%) in the
context of probability versus 516 (20.9%) in the context of confidence. Two features are most useful
in both contexts; The amount of time since the last inspection (laatstAlgemeen) and the type of ship
(soortBeroepsvaartuig). These features were shown most often in the context of probability.
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(A) Explanations of probability (B) Explanations of confidence

FIGURE 7.8: Features reported to be useful

In Section 6.3, it is determined that for the problem of violations on inland ships, the context
of confidence is influenced more by the fuel and owner information compared to the context of
probability. This is also found when looking at the number of times these features were shown
in this user study. The usefulness, as reported by the participants, for the fuel information is
low compared to the number of times used to explain the prediction. The information about the
owner is more useful to the participants of the experiment. These features are rarely shown in
the context of probability, while being reported to be useful. Looking at the relationship between
the perceived usefulness of features and the number of times the feature was shown, the features
most often shown in the context of probability are also most useful to the participants for the
two most useful features. The results suggest that the context of probability could more closely
conform to human intuition of this problem. To further this conclusion, in Figure 7.9 a histogram
is plotted showing how often each feature in the top 10 of most influencing features is useful to the
participant. In the context of probability the two most influencing features are more often reported
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to be useful, in the context of confidence, less influencing features in the top 10 are reported to
be useful more often compared to the context of probability. For both contexts it is still the case
that the features important for the model prediction, are in a lot of instances not important in the
decision of the human expert. In other words, the importance of features does not align with the
human intuition on the problem.

FIGURE 7.9: Most influencing features reported useful by participants

To conclude, we fail to reject the null hypothesis when looking at all 30 ships.

This means there is no significant difference in perceived usefulness between the context of proba-
bility and confidence. Also, when separating based on the label of the prediction, the null hypothesis
is not rejected in both situations.

However, when separating based on the correctness of the prediction, the null hypothesis
is rejected in both situations.

The perceived usefulness in the case of correct predictions is significantly higher when explaining
probability, while the explanations of confidence result in significantly higher perceived usefulness
when the prediction is incorrect. A possible explanation is in the determination of the confidence;
the Conformal Prediction framework predicts the confidence by looking at the smaller p-value.
This p-value belongs to the label not predicted. However, in the case of incorrect predictions,
this is the correct label of the instance. When looking at the usefulness of individual features,
it is found that two features are most useful in both contexts. The confidence context justifies
predictions more often with fuel and owner information, with the owner information being useful
to the participants.

Hypothesis 3: User trust

Hypothesis 3 in this experiment is evaluated by asking the participant the trust they have in mak-
ing the correct decision. This is done for each task according to a 5 point Likert scale. We want
to determine whether explaining from the context of confidence results the user trusting the expla-
nation more in a certain context. The null hypothesis is tested with a two-sample independent
t-test and a Mann Whitney U Test. There is no difference in the rejection of the null hypothesis
between the two tests. The nonparametric hypothesis results are given in Appendix C. In Figure
7.5 a histogram of all self-reported user trust in each of the tasks is given.
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TABLE 7.6: Results for Hypothesis 3

Probability Confidence p-value
Mean Std Mean Std

All explanations 2.80 1.13 2.81 1.23 0.91
Positive explanations 2.80 1.21 2.69 1.19 0.44
Negative explanations 2.80 1.06 2.92 1.26 0.37
Correct explanations 2.81 1.13 2.78 1.21 0.85
Incorrect explanations 2.78 1.14 2.86 1.27 0.66

(A) User trust of all tasks performed (B) Average user trust per ship

FIGURE 7.10: Perceived usefulness comparison between the two contexts

We fail to reject the null hypothesis at a significance level of 0.05.

Figure 7.10a shows user trust of all individual tasks performed. The tasks are separated by con-
text. There is no significant difference in average user trust between contexts when looking at all
explanations (p = 0.91). In the context of confidence, a larger number of users have either no trust
or total trust when compared against the context of probability. This results in a higher standard
deviation in the context of confidence. In Figure 7.10b the user trust is first averaged by ship. By
doing so, the effect of certain ship tasks being performed more is removed. The same increase in
standard deviation is found and no significant difference between the two contexts.

To determine if there is a difference in user trust between prediction outcome, the results are
separated by the binary prediction of violation or no violation (Figure 7.11). User trust in the expla-
nations of violation predictions is higher, not significantly (p = 0.44), when looking at the probabil-
ity. For explanations of no violation predictions the average user trust is slightly improved, though
not significantly (p = 0.37).
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(A) Prediction of violation (B) Prediction of no violation

FIGURE 7.11: User trust of explanations separated by the prediction outcome

User trust is also evaluated when the prediction is correct, and when it is incorrect. The re-
sults are normalized, as the number of instances differs between the two contexts of probability
and confidence. For both correct and incorrect predictions no significant difference in the user trust
is found between the contexts (p = 0.85 & p = 0.66). The slight difference does mirror the re-
sults found in the perceived usefulness, where for explanations of incorrect predictions do have a
higher user trust in the context of model confidence.

(A) Explanations of correct predictions (B) Incorrect predictions

FIGURE 7.12: User trust in explanations separated by the correctness of a prediction

With the resulting perceived usefulness, the context of confidence is perceived significantly less
useful when the model is correct while significantly more useful when the model is incorrect.
However, the resulting user trust indicates the participants were not more trusting of the decision
made, even with an increase in perceived usefulness.

Results on individual inspection tasks

In the previous sections the resulting task effectiveness, perceived usefulness and user trust are shown.
Next, we will look at how the difference in context impacts the individual inspection tasks. To
achieve this, the results of the individual tasks are presented in Table 7.7. Here the tasks are sorted
first by the true label, meaning whether or not the ship is actually in violation and then by the
predicted label. This is followed by an average of all the different evaluation metrics per context.

From these results, the Pearson correlation between the different evaluation metrics is deter-
mined. Specifically, the difference of an evaluation metric between the two contexts is compared
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TABLE 7.7: Results for individual inspection tasks

# y_true y_pred Effectiveness Usefulness Trust
Probability Confidence Prob Conf Prob Conf

1 0 0 60,00% 63,00% 2.9 2.25 2.8 1.75
4 0 0 50,00% 60,00% 3.5 3.4 3.25 3.1
6 0 0 71,00% 90,00% 2.14 2.9 2.29 3.0
10 0 0 100,00% 90,00% 3.78 3.3 3.2 3.4
13 0 0 100,00% 88,00% 3.67 3.75 3.1 4.25
14 0 0 91,00% 100,00% 3.36 3.83 2.6 3.5
24 0 0 75,00% 60,00% 2.88 3.0 3.13 2.7
29 0 0 56,00% 83,00% 2.67 2.5 2.33 2.25
30 0 0 33,00% 80,00% 3.22 2.7 3.0 2.2
2 0 1 22,00% 11,00% 3.33 3.67 3.0 3.33
17 0 1 21,00% 60,00% 2.43 2.8 2.79 2.6
23 0 1 33,00% 30,00% 3.22 2.9 2.67 2.2
27 0 1 50,00% 17,00% 2.5 2.83 3.25 2.42
3 1 1 89,00% 67,00% 3.22 2.11 3.0 2.22
5 1 1 56,00% 50,00% 2.89 2.3 2.6 2.5
7 1 1 0,00% 80,00% 2.33 2.8 2.0 2.6
8 1 1 29,00% 70,00% 3.29 3.0 2.86 3.0
9 1 1 86,00% 60,00% 2.86 2.8 2.57 2.8
11 1 1 100,00% 82,00% 3.75 2.45 3.25 2.82
15 1 1 100,00% 70,00% 3.3 3.7 2.7 3.2
16 1 1 100,00% 100,00% 3.92 3.83 3.17 3.67
18 1 1 92,00% 67,00% 3.67 3.17 2.92 3.0
19 1 1 92,00% 84,00% 3.08 2.67 2.67 2.67
28 1 1 44,00% 92,00% 2.44 2.75 2.33 2.42
12 1 0 20,00% 33,00% 3.2 3.78 3.1 3.7
20 1 0 20,00% 25,00% 3.1 4.0 2.7 3.5
21 1 0 11,00% 11,00% 2.56 3.89 2.22 3.33
22 1 0 25,00% 10,00% 2.75 2.7 2.25 2.1
25 1 0 12,00% 45,00% 2.88 2.73 2.75 2.91
26 1 0 75,00% 37,00% 3.88 3.55 3.13 2.82

with the difference of another evaluation metrics. The goal is to determine whether a difference in
a metric between contexts translates into the same difference for another metric between the con-
texts. The correlation between the subjective metrics of perceived usefulness and user trust is found
to be strong (t = 0.68 & p = 4.0e− 5). This indicates that if the explanation is perceived useful,
the user has more trust in having made the right decision. Together with results of hypothesis 2
and 3, this suggests that a significant increase in the perceived usefulness of a certain context found
for a specific situation is not enough to increase the user trust significantly.

The correlation is also determined between these subjective metrics and the objective metric
of task effectiveness. There is no correlation between the perceived usefulness (t = 0.23 & p = 0.21)
or user trust (t = 0.15 & p = 0.43) and task effectiveness. This indicates that an explanation deemed
useful or increasing the user trust does not correlate with higher task effectiveness.
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Written reflections of the participants

After the performing of the 20 tasks participants were able to provide feedback about the experi-
ment. Participants were given some pointers about the kind of feedback we wish to receive via a
presentation before the experiment took place. This was about the understanding of the explana-
tion and the features shown in relation to the current working of the inspectors.

Based on manual inspection of the feedback, it is clear that the features are often not directly
translatable to the decision of whether to inspect a ship. A selected of the feedback is described
next. The original feedback is all in Dutch and is translated into English.

"Fuel variables are difficult to interpret, even more so when for example the total amount of times fuelled
up a certain hour are shown, without the total times of other hours."

A participant noted that the fuel information in the context of confidence does not help him in mak-
ing the decision, even more so if only a single feature is shown.

"I do not see a relation between the prediction and the factors influencing this prediction."

Another participant noted that he could not see any relation between the features shown and the
decision on whether to inspect a ship. This further confirms that the feature importance of the
model does not align with the human-intuition of the problem.

"Some of the ships I recognized from the features shown, this influenced my decision."

An inspector of inland ships noted that sometimes a feature was useful, insofar the feature made
it possible to determine the ship in question. Based on previous knowledge he could make an
informed decision. Other feedback is more on possible improvements in the presentation of fea-
tures. For example, the location coordinates should be presented on a map, features encoded are
sometimes shown multiple times and only the feature value is not enough; instead, if the feature
value is high or low is more useful information. The difference in confidence and probability is
largely understood, however, it in itself did not influence the decision. Only the difference in
features shown was determinant of the decision, according to the written feedback. With all the
written feedback, we conclude that in general there is still much improvement to be had in ex-
plaining the predictions of violations on inland ships. Participants mentioned that the features
shown did not adequately explain the reasoning for a certain prediction.

7.4 Conclusion

The goal of this chapter was answering the last research question:

How are explanations based on confidence received by users?

This is achieved with a human grounded evaluation of the explanations in two different contexts.
A user study is performed on the real-world problem of predicting violations on inland ships. A
within-subject design is used, allowing participants to test both contexts.

The user experiment yielded several interesting results. Firstly, the results suggest an increase
in task effectiveness when explaining confidence compared to explaining probability, however not
significantly. The cause of this increase is a larger agreement between the participants’ decision
and the prediction of the base model. In a post-hoc power analysis the number of participants
required to determine significance is estimated.
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No significant difference in user trust is found between the explanations based on probability
and the explanations based on confidence. This was the case for all situations evaluated in this
study.

There also is no significant difference between the two contexts when looking at the overall
perceived usefulness across all tasks. However, significant improvements can be found when sepa-
rating the explanations by the correctness of the prediction; explanations of probability result in
higher perceived usefulness for correct explanations while explanations of confidence improve the
perceived usefulness for incorrect explanations. The features selected to be useful in the context
of probability is slightly higher, with the most selected features also being higher in the top 10 of
features. However, for both contexts the features important for the prediction often does not align
with human-intuition of the problem.

The self-reported usefulness of specific features is also determined. The features reported to
be useful is slightly higher in the context of probability and the most useful features, as reported
by the participants, is more often most influencing the prediction of the base model. Explana-
tions of confidence show more often fuel information and owner information. These features are
also perceived to be useful information by the participants, however, these are not present in the
explanations based on probability.

Based on the resulting evaluation metrics of the individual task, a strong correlation is de-
termined between the perceived usefulness and user trust. So, while a number of situations lead
to significant difference in the perceived usefulness, this is not enough to change the user trust sig-
nificantly also. Both the subjective metrics are not correlated with the objective metric of task
effectiveness, suggesting that participants’ perceived usefulness and trust in their decision does not
translate to a difference in task effectiveness.



77

Chapter 8

Conclusions

8.1 Summary

In this thesis we have looked at an approach using model confidence to select and interpret the
predictions made by complex machine learning models. The goal was answering the following
research question:

How can we predict confidence of a complex model to select predictions and provide inspectors with local
model-agnostic explanations of this confidence?

In the first part of this thesis, the confidence in a prediction of any machine learning model is de-
termined using the Conformal Prediction framework. The base machine learning model is trained
in such a way that only the features of the test instance are needed to determine the probability of
a class. The Conformal Prediction framework, additionally, looks at how much the test instance
conforms to the training data in the probability space, to determine the quality measure of confi-
dence. The behaviour of this confidence across different significance levels is shown. It is found
that selecting the instances with high confidence improves performance relative to the global per-
formance of the model. Furthermore, the class prediction of the Conformal Prediction framework
was evaluated against the classification of the base model. The predictions by the base machine
learning model were found to outperform the classification by the Conformal Prediction frame-
work.

After the initial experiments with confidence, the problem of selecting predictions was modelled
as a ranking problem. By determining the precision at the top of the list of predictions, the useful-
ness of including model confidence is evaluated. The baseline in the experiment is the sorting by
the probability determined by the base machine learning model. Using the confidence measure
to re-rank the ranking based on probability does not improve ranking when looking at complex
tree ensemble methods. However, for simpler machine learning models the addition of confi-
dence does improve the ranking of predictions. As the complex models are able to determine
the true probabilities more accurately, the ranking with these probabilities is closer to the optimal
ranking. The additional confidence measures do not improve the ranking in these cases. In the
simpler models the approximations of the probabilities are more rudimentary, therefore an addi-
tional measure of confidence can improve the ranking.

In the second part of this thesis, an approach to explaining the context of confidence is described
and evaluated. The explanation approach chosen is the SHAP framework, which determines
feature contributions to justify the confidence estimation of an individual prediction. The SHAP
framework is the only additive feature attribution method with the desirable property of local
accuracy and consistency.

A user study is performed to determine whether explaining from the context of confidence
results in higher quality explanations. These explanations are compared against the traditional
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approach of explaining the probability of a prediction. We have compared the task effectiveness,
perceived usefulness and user trust. In a few situations significant differences between the two con-
texts are found.

The task effectiveness in the context of confidence is slightly higher than the context of proba-
bility. The reason for this increase is the increased agreement in the prediction by the user. This
results in a higher accuracy in the instances where the model is correct, and a lower accuracy for
the instances where the model is incorrect. The overall accuracy in both contexts was lower than
the accuracy of the model itself, meaning that always agreeing with the model would result in a
higher accuracy. A post-hoc analysis is performed to determine the additional number of partic-
ipants necessary to confirm that the improvement is significant. The perceived usefulness in the
context of confidence is significantly higher when the model is incorrect, while when correct the
perceived usefulness is higher in the context of probability. The same results were found when
looking at users’ trust, however, for this metric not significantly so.

8.2 Contributions and recommendations

Two main contributions are made in this thesis, from which a number of general recommendations
are made:

• A novel approach for bipartite ranking on any machine learning dataset by incorporating
confidence expressed by conformity. Improvements in the ranking are found for simpler
machine learning models. Therefore, when choosing simpler machine learning models due
to the increased transparency, the inclusion of confidence in the ranking of the instances
could be worthwhile.

• A novel explanation approach from the context of confidence. An increase in agreement
with the explanations is found compared against the traditional context of probability. Cur-
rently, inland ship inspectors find violations less than half of the time, while the accuracy
of the model used is higher than 65%. A higher agreement in this particular case therefore
improved the task effectiveness, though not significantly. More generally, explanations from
the context of confidence can be useful when the machine learning model outperforms the
user in making a prediction. Perceived usefulness of explanations from the context of confi-
dence is also significantly improved for the instances the model is incorrect. The context of
confidence can therefore be particularly useful when the accuracy of the base model is not
high.

8.3 Conclusion

With the availability of vast amounts of data nowadays, using machine learning in support of
human-decision problems is increasingly popular. An enormous amount of models are available,
where the performance is most often measured with the accuracy in the prediction. However,
not for every problem this is the most important metric of evaluation. For some problems, the
global accuracy or precision is not as important. Instead, the relative performance of a selection
of instances is most important. This is problem is a fundamental one in the field of Information
Retrieval. However, for other problem settings, such as the inspections of inland ships, ranking
based on more than just sorting by probability is not commonly done. By determining the quality
of a prediction as the model confidence, an improvement in precision is found in a number of sit-
uations over the basic sorting based on probability. The improvement is most often found for the
simpler interpretable models. Using these models is preferred over complex models when overall
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accuracy is similar, due to the decrease in computational complexity and increase in interpretabil-
ity.

For noisy and sparse real-world data, complex models often have the highest overall perfor-
mance. These complex machine learning models are being used for more and more real-world
applications, with people using these models having little understanding of the inner workings
or reasoning of the model. This makes explaining either the models themselves or the output of
these models a topic with increased interest. Only simpler interpretable models can themselves
be easily explained. Therefore, justifying the output of a complex model is a more common ap-
proach for complex models, where the output is a probability. By determining the confidence in
the correctness of the predictions, another context or output for explaining the prediction is pos-
sible. Evaluating explanations is challenging and not researched extensively. One may assume
that showing features contributing to an output is fundamentally useful. However, as shown in
this thesis, this is certainly not always the case, with features important for a complex model not
aligning with the human intuition of the problem. Explaining from the context of confidence did
result in certain benefits over explaining the standard probability.

By explaining from the context of confidence, the results indicate a potential higher agreement
with the prediction results in an improvement in the task effectiveness for the human decision on
inspecting inland ships in the Netherlands. When the model made an incorrect prediction, the
explanation from the context of confidence was perceived to be more useful. Using confidence to
explain prediction can therefore be useful when the overall accuracy of the model is not high. The
increase perceived usefulness for these situations did not lead to an increase in user trust.

8.4 Limitations and Future Work

In the next section several limitations of this work are described, together with possible future
directions for research.

Conformal Prediction

Due to only looking at binary classification problems, the behaviour of confidence in the Confor-
mal Prediction framework for multi-class situations is not tested. Prediction sets of size 1 are less
likely to occur for problems with many labels, resulting in either selecting only a small number of
instances (having a high rejection rate [81]) or having more prediction of multiple labels. Regres-
sion problems are also compatible with the Conformal Prediction framework, and researching if
the conclusions found in this thesis holds for these problems could be interesting.

For the evaluation of the confidence and prediction of the Conformal Prediction framework
for a large number of classifiers and datasets, a model-agnostic non-conformity function is used.
It would be interesting to evaluate the behaviour of the additional metrics with model-specific
non-conformity functions.

Ranking with confidence

To limit the size of the thesis, not all combinations of probability, credibility and confidence was
evaluated as a ranking problem. When looking at the correlation between these combinations
and the error rate in a number of situations, different combinations are strongest correlated. In
this thesis it is found that the inclusion of the quality measure of confidence helps most for sim-
pler models. However, between combinations the best performing differs between classifiers and
between datasets.

Furthermore, the absence of an improvement in ranking when looking at the ensemble meth-
ods and datasets used during this research does not mean the inclusion of confidence cannot
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improve ranking when using these ensemble models. Future research could look into datasets
where these models are not able to determine the true probabilities as accurately. Re-ranking with
confidence could improve ranking in these instances.

Evaluation explanation

The results found in the user study suggest that while the explanation based on different contexts
are different, in so far that the features shown are different, the user perception is in most situa-
tions not significantly different. A possible reason for this is specific to the problem of violations
on inland ships; the features, in general, do not conform to the human intuition of the inspec-
tors. Based on the written and oral feedback, inspectors decide based on more subjective markers
or specific situations not captured in the features. Another possible reason for the small differ-
ence between the two contexts would be the similarity in the user interface. With the same user
interface, it could cause the difference in the contexts to be unclear and result in the perceived
usefulness or user trust to be the same. In follow up research, it would be interesting to see if
more differentiating interfaces specific to the confidence determined by the Conformal Prediction
framework would improve the results more significantly.

A specific use case for the Conformal Prediction framework in relation to explaining complex
models is using the non-conformity function in prototyping. As discussed in the literature review,
this is an approach in the field of XAI where similar instances in the training data are used to
justify the prediction of the test instance. In current research, this is most often based on some
measure of similarity based on the features of the instances. However, with the Conformal Predic-
tion framework it would be possible to determine similarity in the probability space of the model.
An example would be showing instances in the training data which results in the highest number
of identical paths in the individual decision trees in a random forest model. Similarly, it would
be interesting to research if the conformity measure can be used in conjunction with case-based
reasoning explanation approaches. Case-based reasoning means using old experiences to under-
stand and solve new problems. This approach determines similar instances already seen by the
model to adapt to the new test instance [42]. This technique is used in the field of XAI to justify
complex models, an example being [48]. The retrieval of similar instance can in this method also
be tested with the non-conformity measures.

A limitation of the evaluation of the explanation method is the determining of useful features
and how this relates to human intuition. In the user study participants were asked to select the
features they found useful. However, in general, the features were not selected often. To better
determine if the features most important to the model are also most useful for the user, a follow-up
study could look at determining more generally the features deemed useful by the users. Instead
of asking users whether the features important for the model are useful, users can select from
the whole list features one time, which features are important for them in making their decision.
Determining how this perceived usefulness correlates with the feature importances of the model
could give valuable insights into the perceived quality of explanation. These insights into the
human intuition of the problem could be used in a feedback loop to the model. An example of
such a feedback loop based on the human in the loop approach specifically for explanations of
complex models is presented in [28].
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Appendix A

Determining confidence

A.1 Prediction set behaviour

In this section additional plots of the behaviour of the Conformal Prediction framework on differ-
ent combinations of datasets and classifiers is given.

A.1.1 Inland dataset

(A) Size of different types of prediction sets (B) Accuracy of different types of prediction sets

FIGURE A.1: Random Forest model

(A) Size of different types of prediction sets (B) Accuracy of different types of prediction sets

FIGURE A.2: XGBoost model
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(A) Size of different types of prediction sets (B) Accuracy of different types of prediction sets

FIGURE A.3: k-nearest neighbor model

(A) Size of different types of prediction sets (B) Accuracy of different types of prediction sets

FIGURE A.4: Logistic regression model

(A) Size of different types of prediction sets (B) Accuracy of different types of prediction sets

FIGURE A.5: Quadratic discriminant analysis model
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(A) Size of different types of prediction sets (B) Accuracy of different types of prediction sets

FIGURE A.6: Naive Bayes model

A.1.2 Churn dataset

(A) Size of different types of prediction sets (B) Accuracy of different types of prediction sets

FIGURE A.7: Random Forest model

(A) Size of different types of prediction sets (B) Accuracy of different types of prediction sets

FIGURE A.8: XGBoost model
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(A) Size of different types of prediction sets (B) Accuracy of different types of prediction sets

FIGURE A.9: k-nearest neighbor model

(A) Size of different types of prediction sets (B) Accuracy of different types of prediction sets

FIGURE A.10: Logistic regression model

(A) Size of different types of prediction sets (B) Accuracy of different types of prediction sets

FIGURE A.11: Quadratic discriminant analysis model
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(A) Size of different types of prediction sets (B) Accuracy of different types of prediction sets

FIGURE A.12: Naive Bayes model

A.1.3 Adult dataset

(A) Size of different types of prediction sets (B) Accuracy of different types of prediction sets

FIGURE A.13: Random Forest model

(A) Size of different types of prediction sets (B) Accuracy of different types of prediction sets

FIGURE A.14: XGBoost model
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(A) Size of different types of prediction sets (B) Accuracy of different types of prediction sets

FIGURE A.15: k-nearest neighbor model

(A) Size of different types of prediction sets (B) Accuracy of different types of prediction sets

FIGURE A.16: Logistic regression model

(A) Size of different types of prediction sets (B) Accuracy of different types of prediction sets

FIGURE A.17: Quadratic discriminant analysis model



Appendix A. Determining confidence 93

(A) Size of different types of prediction sets (B) Accuracy of different types of prediction sets

FIGURE A.18: Naive Bayes model

A.1.4 Spambase dataset

(A) Size of different types of prediction sets (B) Accuracy of different types of prediction sets

FIGURE A.19: Random Forest model

(A) Size of different types of prediction sets (B) Accuracy of different types of prediction sets

FIGURE A.20: XGBoost model
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(A) Size of different types of prediction sets (B) Accuracy of different types of prediction sets

FIGURE A.21: k-nearest neighbor model

(A) Size of different types of prediction sets (B) Accuracy of different types of prediction sets

FIGURE A.22: Logistic regression model

(A) Size of different types of prediction sets (B) Accuracy of different types of prediction sets

FIGURE A.23: Quadratic discriminant analysis model
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A.2 Correlation between error and metrics

TABLE A.1: The correlation between different measures and the error of individual
predictions with the churn dataset

Metric Random Forest XGBoost
Correlation Coeff p-value Correlation Coeff p-value

Conf -0.335 2.43E-14 -0.322 4.20e-144
Cred -0.030 0.30 -0.275 4.47e-09
Prob -0.377 2.84E-22 -0.275 4.46e-111
Prob*Conf -0.377 9.04E-21 -0.337 1.09e-166
Prob*Cred -0.148 6.11E-3 -0.289 2.39e-10
Prob*Conf*Cred -0.202 7.81E-6 -0.314 1.83e-12
Prob*(Conf+Cred) -0.318 1.74E-14 -0.333 5.77e-15
Prob*(Conf^2+Cred) -0.330 2.67E-16 -0.349 1.23e-16
Cred-(1-Conf) -0.193 1.83E-5 -0.328 4.58e-14
Prob*(Cred-(1-Conf)) -0.233 5.21E-8 -0.330 2.64e-14

TABLE A.2: The correlation between different measures and the error of individual
predictions with the adult dataset

Metric Random Forest XGBoost
Correlation Coeff p-value Correlation Coeff p-value

Conf -1.61e-01 9.26e-18 -1.38e-01 3.30e-11
Cred -2.97e-01 2.56e-60 -3.85e-01 2.80e-107
Prob -4.38e-01 5.72e-135 -3.37e-01 7.04e-74
Prob*Conf -3.84e-01 1.52e-99 -3.29e-01 4.88e-69
Prob*Cred -3.33e-01 3.34e-77 -3.92e-01 1.06e-111
Prob*Conf*Cred -3.48e-01 5.50e-84 -4.01e-01 1.19e-116
Prob*(Conf+Cred) -4.02e-01 3.31e-112 -4.22e-01 9.96e-132
Prob*(Conf^2+Cred) -4.00e-01 8.09e-111 -4.22e-01 7.15e-132
Cred-(1-Conf) -3.62e-01 7.24e-91 -4.05e-01 9.76e-120
Prob*(Cred-(1-Conf)) -3.60e-01 8.98e-90 -4.07e-01 1.44e-120

TABLE A.3: The correlation between different measures and the error of individual
predictions with the spambase dataset

Metric Random Forest XGBoost
Correlation Coeff p-value Correlation Coeff p-value

Conf -0.185 0.03 -0.089 0.228
Cred -0.214 7.52e-05 -2.77e-01 2.35e-05
Prob -3.835e-01 1.60e-08 -4.01e-01 5.58e-12
Prob*Conf -3.631e-01 1.76e-08 -3.81e-01 2.41e-11
Prob*Cred -0.231 2.89e-05 -2.81e-01 1.98e-05
Prob*Conf*Cred -2.395e-01 1.18e-04 -2.82e-01 2.08e-05
Prob*(Conf+Cred) -3.032e-01 4.74e-06 -3.33e-01 1.73e-07
Prob*(Conf^2+Cred) -3.081e-01 2.28e-06 -3.34e-01 1.89e-07
Cred-(1-Conf) -2.491e-01 8.76e-05 -2.83e-01 2.07e-05
Prob*(Cred-(1-Conf)) -2.494e-01 6.82e-05 -2.84e-01 1.95e-05
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A.3 Comparison pairwise, listwise and pointwise approach

In this thesis a novel pointwise approach is proposed incorporating confidence in the ranking for
a number of problems. As a baseline probability estimation by a number of machine learning
models is used, where we sort by the probability predicted. In this section this baseline is com-
pared against pairwise and listwise ranking approach to determine if this is indeed the strongest
baseline. For the pairwise approaches the LightGBM ranking model is used as well as the XG-
Boost model [38][15]. For the listwise approach only the XGBoost model is used. For both the
pairwise and listwise approach using XGBoost MAP is used to optimize. The XGBoost model
uses LambdaMART for both approaches [14].

(A) Random Forest versus GBM ranker (B) Random Forest versus XGBoost pairwise

(C) Random Forest versus XGBoost listwise (D) XGBoost versus XGBoost pairwise

FIGURE A.24: Comparing the pairwise and listwise approaches against the point-
wise approach on the inland ship dataset

From the resulting precision@k it is found that the pointwise approach outperform the pair-
wise and listwise ranking approaches when using the best performing classification models with
their underlying probability distribution estimation for this pointwise approach. The reason of
these results is most likely due to the fact that the problems in this thesis are all bipartite ranking
problems.
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(A) Random Forest versus GBM ranker (B) Random Forest versus XGBoost pairwise

(C) Random Forest versus XGBoost listwise (D) XGBoost versus XGBoost pairwise

FIGURE A.25: Comparing the pairwise and listwise approaches against the point-
wise approach on the churn dataset

A.4 Confidence reranking

Dataset Classifier Prec@5 Prec@10
Prob Prob*Conf p Prob Prob*Conf p

Ship rf 80.8% 72.8% 1.1E-3 80.3% 76.9% 3.5E-2
xgb 83.6% 74.8% 6.6E-4 81.0% 72.3% 6.8E-6
knn 65.6% 65.6% 1 66.3% 68.5% 0.26
lr 54.2% 53.5% 0.83 57.3% 53.0% 4.2E-2
nb 47.4% 56.0% 2.8E-3 46.9% 53.5% 2.7E-3

churn rf 82.7% 81.6% 0.57 85.1% 83.5% 0.25
xgb 89.3% 87.4% 0.34 87.4% 86.6% 0.56
knn 82.0% 79.8% 0.35 80.1% 79.6% 0.77
lr 89.0% 89.5% 0.73 85.5% 88.3% 2.0E-2
nb 77.8% 81.0% 0.18 81.2% 82.0% 0.64

adult rf 100% 100% nan 100% 100% nan
xgb 100% 100% nan 100% 100% nan
knn 99.0% 99.6% 0.31 98.4% 99.4% 3.1E-2
lr 100% 99.6% 0.15 100% 99.3% 1.8E-2
nb 97.2% 99.4% 5.1E-3 97.6% 99.2% 3.8E-3
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Dataset Classifier Prec@25 Prec@50
Prob Prob*Conf p Prob Prob*Conf p

Ship rf 80.1% 77.8% 0.1 77.4% 76.1% 7.8E-2
xgb 79.4% 71.3% 1.1E-11 77.4% 69.9% 1.9E-16
knn 65.4% 67.8% 4.5E-2 60.7% 62.3% 5.7E-2
lr 58.0% 50.6% 1.5E-6 52.6% 48.7% 1.3E-4
nb 47.3% 53.0% 4.3E-5 47.3% 52.1% 3.8E-7

churn rf 85.8% 85.9% 0.96 84.8% 85.6% 0.15
xgb 82.0% 84.8% 4.7E-3 78.8% 80.8% 3.1E-3
knn 79.6% 79.5% 0.91 78.1% 78.9% 0.27
lr 84.2% 87.0% 8.5E-4 82.4% 83.8% 2.9E-2
nb 76.0% 81.1% 1.2E-5 73.3% 79.7% 2.5E-12

adult rf 100% 100% nan 100% 100% nan
xgb 100% 100% nan 100% 100% nan
knn 98.4% 99.4% 4.2E-3 98.5% 99.3% 1.9E-4
lr 99.6% 98.6% 2.4E-3 96.8% 96.8% 0.90
nb 97.1% 99.1% 9.2E-8 97.4% 99.0% 1.5E-9



99

Appendix B

Explaining based on confidence with the
churn dataset

B.1 Difference in SHAP values on churn dataset

TABLE B.1: Difference in SHAP values between the context of probability and confi-
dence

Context Average absolute SHAP value Without 0 # instances of 0
Probability 3.86E-3 8.33E-3 6951
Confidence 3.14E-3 8.87E-3 5309

(A) SHAP values between two contexts (B) SHAP values minus zero instances

FIGURE B.1: Difference in SHAP values between two contexts on churn dataset
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(A) Decreased SHAP values (B) Increased SHAP values

FIGURE B.2: Difference of SHAP values between the two contexts on churn dataset

B.2 Global feature importances

(A) Probability feature contribution (B) Confidence feature contribution

FIGURE B.3: Summary plot of the most important features
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B.3 Single prediction forces

FIGURE B.4: SHAP values of an single prediction of the RF on the churn dataset. The
plot above is from the context of probability, the lower one from the context of confidence

(A) Probability feature contribution of all individual pre-
diction

(B) Confidence feature contribution of all individual pre-
diction

FIGURE B.5: Force plot of all individual predictions

B.4 Interaction values

(A) Probability context (B) Confidence context

FIGURE B.6: Relationship of the tenure feature value and SHAP value
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(A) Probability context (B) Confidence context

FIGURE B.7: Relationship of the contract feature value and SHAP value
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Appendix C

Additional results user study

C.1 Agreement between participant and prediction

Based on the results of the user study it is possible to implicitly determine the agreement between
the model and the participants of the study. While not directly asking participants whether they
agree, it is possible to determine to not follow the prediction of violation. In Table C.1 the percent-
age of times participants followed the predictions of the model is given.

TABLE C.1: Agreement in a number of situations

Probability Confidence
All explanations 73.3% 75.6%
Positive explanations 74.5% 74.2%
Negative explanations 72.2% 76.1%
Correct explanations 74.0% 76.1%
Incorrect explanations 72.0% 73.4%

C.2 QQ plots accuracy of both contexts

In Figure C.1 the quantile-quantile plot of the two contexts in the user study is given. This plot
serves as a graphical tool to help assessing whether the accuracy found came from a normal dis-
tribution. The quantiles of the accuracy is plotted against the quantiles of a normal distribution. If
both quantiles came from the same distribution, there should be a strong linear relation (a straight
line).

(A) Probability (B) Confidence

FIGURE C.1: QQ plots between both contexts
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C.3 Nonparametric hypothesis tests

TABLE C.2: Results for Hypothesis 2 with Mann Whitney U test

Probability Confidence p-value
Mean Std Mean Std

All explanations 3.11 1.05 3.06 1.15 0.28
Positive explanations 3.11 1.12 2.86 1.16 0.08
Negative explanations 3.11 0.98 3.18 1.11 0.55
Correct explanations 3.19 1.04 2.90 1.15 0.01
Incorrect explanations 2.96 1.07 3.26 1.11 0.03

TABLE C.3: Results for Hypothesis 3 with Mann Whitney U test

Probability Confidence p-value
Mean Std Mean Std

All explanations 2.80 1.13 2.81 1.23 0.37
Positive explanations 2.80 1.21 2.69 1.19 0.44
Negative explanations 2.80 1.06 2.92 1.26 0.37
Correct explanations 2.81 1.13 2.78 1.21 0.24
Incorrect explanations 2.78 1.14 2.86 1.27 0.21
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C.4 Usefulness features

(A) Explanations of probability (B) Explanations of confidence

FIGURE C.2: Percentage of times features reported to be useful
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FIGURE C.3: Comparing the reported usefulness of features
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FIGURE C.4: Comparing the reported usefulness of features expressed in percentage
of time shown
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C.5 Power analysis

With the resulting difference between the two context not being significant for the perceived
usefulness and user trust post-hoc power analysis was performed to determine the sample size
needed to get significant results with a given degree of confidence. It allows to determine the
probability of detecting an effect of a given size with a given level of confidence, under sample
size constraints. In other words, it is the probability of rejecting the null hypothesis when it is in
fact false.

Ad hoc Power analysis was performed before the experiment based on guesses of the difference
between the mean of the two contexts and the standard deviation expected, with a two sample one
sided test to determine whether the mean of context of probability P is different from the mean of
context of confidence C. With the hypotheses being:

H0 : µP = µC,

H1 : µP 6= µC

The ratio between the two contexts is κ = nC
nP

.

To determine the expected sample size needed the following function is used:

nP = (σ2
P + σ2

C/κ)(
z1−α + z1−β

µP − µC
),

with z being the inverse of the cumulative distribution function, α being the Type I error and
β the Type I I error and power being 1− β. As the amount of task from a single context is equal in
the user study κ = 1 and nP = nC.

Before the user study it was assumed that the difference in the mean for both the perceived use-
fulness and user trust would be 0.25, with σP = 1 and σC = 1.2. The difference in the standard
deviation was assumed due to the larger variation in features deemed useful in the context of
confidence.

With 1− β = 0.8 and α = 0.05, nP = nC = 242 was determined to be the necessary num-
ber of tasks completed for significant difference between the two contexts. As each participant
performed 20 tasks, the predicted minimum number of participants was 25.

For the determination of sample size only the perceived usefulness and user trust was used
to determine the minimum number of participants, this is due to the difficulty of determining
significance for task effectiveness with the limited number of available participants.

This is due to the distribution compared in the power analysis being a discrete binary distri-
butions when not averaging per ship. Together with the low accuracy of the model predicting
violations, the standard deviated was expected to be high.

Post hoc The actual difference between µP and µC is smaller than predicted. Therefore power
analysis was performed again on the actual values to determine the sample size needed to deter-
mine significance.

For the perceived usefulness the actual values are µP = 3.11, µC = 3.026, σP = 1.05 and
σC = 1.15. This results in nP = nC = 2129, meaning a minimum of 213 participants is needed to
determine significance. For the user trust the actual values are µP = 2.80, µC = 2.81, σP = 1.13
and σC = 1.23. This results in nP = nC = 145151, meaning a minimum of 14515 participants is
needed to determine significance.
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Task effectiveness Task effectiveness was not included in the ad hoc power analysis. However,
after finding no significant difference between the two contexts in task effectiveness, post hoc analy-
sis was performed to determine the number of participants necessary to confirm the improvement
found when using explanations from the context of confidence.

When looking at the accuracy of individual instances µP = 0.583, µC = 0.591, σP = 0.493 and
σC = 0.491. This results in nP = nC = 46333, meaning a minimum of 2317 participants is needed to
determine significance. This was not unexpected, and the reason task effectiveness wasn’t included
in the ad hoc power analysis.

In the post hoc analysis, the power analysis is also performed on the average task effectiveness
per ship. The task effectiveness found is µP = 0.579, µC = 0.619, σP = 0.232 and σC = 0.252. This
resulted in nP = nC = 391, meaning 391 ships. The minimum number of participants necessary
to determine significance would be 196.
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C.6 Time taken between contexts

While not hypothesised, the time taken of a single task is kept track off. This is to see if one of the
contexts results in quicker completion of the tasks. In Figure C.5 a histogram representing the time
taken of tasks is shown. Outliers are removed by only looking at quantile 0.1 to 0.9. This removes
tasks where the participant took a break or the task were completed in less than 15 seconds.

FIGURE C.5: Time taken to complete a single task

TABLE C.4: Time taken between contexts

Probability Confidence p-value
Mean Std Mean Std

All explanations 0.97 0.47 0.90 0.36 0.08

Looking at the average time taken between context there is a slight improvement when looking
at confidence, however not significantly (p = 0.08). This is caused by a larger number of tasks
performed in under half a minute. The reason could be be twofold. Firstly, inspectors notice
features which cause the identification of the ship. The decision can therefore quickly be made.
Secondly, the features explaining confidence were on average less useful. Less selecting of features
can speed up task completion. The most tasks with explanations of probability are completed
between 30 second and 1 minute, however, certain task are completed in more than 2 minutes.
When looking at confidence the spread is larger when looking at most tasks (between 20 second
and 1.5 minutes). However no task is completed in more than 2 minutes.
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