\ L

Detecting Climate Patterns

A Bayesian Neural Network Approach

J I Arens /

%
TUDelft

Detecting climate
DAllerns

A Bayesian neural network approach

by
J.T. Arens

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Tuesday April 26 at 2 PM.

Student number: 4206231

Project duration: July, 2020 — April, 2022

Thesis committee: Dr. Riccardo Riva, TU Delft, supervisor
Dr. Marco Loog TU Delft,
Dr. Franziska Glassmeier TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft

http://repository.tudelft.nl/

Contents

1 Paper: Detecting climate patterns through a Bayesian neural network approach 1

2 Supplementary Materials 19

Preface

In front of you, you find my MSc thesis, which describes the work that was done to end my time at
Geoscience and Remote Sensing at Delft University of Technology. | have decided to write this thesis
work in paper format, following the guidelines for the Science Advances journal, which has been a fun
challenge. | hope it reads smoother than the process to get here.

The work here can only be presented due to Riccardo Riva and Marco Loog, both of whom helped a
lot through critical feedback, guidance and support on the project. | would also like to thank Franziska
Glassmeier for the feedback she provided during our assessment meetings. Sandra Verhagen also
deserves a spot here, for her support throughout the trials and tribulations that has been my masters.
Lastly, | would like to thank all my friends and family, just for being who they are.

In loving memory,
Riet & Anton de Reuver
Jullie zijn nu voor eeuwig samen

1

Paper: Detecting climate patterns
through a Bayesian neural network
approach

Detecting climate patterns through a Bayesian neural
network approach

Jesse T. Arens, Riccardo E.M. Riva, Marco Loog & Fransizka Glassmeier

Machine learning is becoming an increasingly important tool for climate scientists, but
hampered by lacking uncertainty quantification. Here, a machine learning approach for
detecting patterns indicating a changing climate is combined with probabilistic modelling
to retrieve uncertainty values. We train neural networks on climate model simulations
of temperature and precipitation under historical and future scenarios. We find that
the resulting so-called Bayesian neural network (BNN) has similar predictive strength
to an Artificial neural network (ANN), with a post-year 2000 mean absolute error of
9.00 years for temperature, but over-fits less. The BNN is able to recognise temperature
change starting in 1994, which is 14 years later than the ANN. Our analysis shows that
uncertainties in found climate patterns are much higher than the patterns themselves,
limiting their value for further use. This work demonstrates that BNNs are a suitable tool

for quantifying uncertainties of patterns indicating a changing climate.

INTRODUCTION

The Earth’s climate can be described through
General Circulation Models (GCMs). These cli-
mate models attempt to encapsulate the physical
processes and feedbacks influencing climate and
predict what effect anthropogenic activity has on it.
However, as climate science suffers from an 'uncer-
tainty monster’ (1), projections of GCMs for future
climate remain uncertain and this uncertainty will
not necessarily improve quickly (2). For example,
the range of the expected response to a doubling
of CO, between different GCMs has increased the
past decade and a large spread between GCMs
remains present for mean absolute temperature
simulations (3). While improvements are cer-
tainly made in most aspects of climate modelling,
most notably in the uncertainty caused by cloud
feedback processes, improvements of GCM skill
remain modest (4). One of the main reasons for
the slow progress lies in the complex feedback
mechanisms which have been discovered over
time. While individual uncertainties on many of
these feedback mechanisms have decreased, new
mechanisms have been found at the same time
and the uncertainty of some of these feedback
processes have proven difficult to reduce. The
expectation is that for substantial reductions in

projection uncertainty we would have to wait for
observations that can undoubtedly be attributed to
the Earth’s response to anthropogenic forcing (2).
In general, as models can only be validated with
present and past observations, a model cannot
be guaranteed to perform well in the future (5),
especially as for climate models the future will be
one in a regime with greenhouse gas concentra-
tions unlike observed before. This does not mean
that we should not attempt to improve GCMs, on
the contrary. While improvements on projection
uncertainty might be slow, the latest generation of
GCMs “have a similar or even slightly higher skill
in reproducing observed large-scale mean surface
temperature and precipitation patterns” (Bock
et al, 2020, p22, (3)), which indicates that these
climate models might be capturing the physical
processes better than previously the case.

In order to improve GCMs and achieve more
certain climate projections, there is a desire to
understand why the projections remain uncertain.
Most notable improvements in understanding
climate projection uncertainties have happened
through the use of model intercomparison, which
has been done for at least three decades (6).
Combining GCMs into multi-model ensembles
increases the skill, reliability and consistency of

forecasts (7). The fifth phase of the Coupled Model
Intercomparison Project (8), which aggregates
most GCMs into an ensemble and provides outputs
of experiment runs, has become the de facto source
for multi-model climate sensitivity analysis the
last decade and is the scientific basis of the Fifth
Assessment Report of the Intergovernmental Panel
on Climate Change (9). With the recent availability
of the sixth phase of the Coupled Model Intercom-
parison Project (10), accompanied by improved
model evaluation tools (11), new opportunities
arise in model intercomparison and tackling the
uncertainties.

Uncertainty in climate projections can be split
between so-called scenario uncertainty, modelling
uncertainty and internal climate variability (12).
First of all, scenario uncertainty corresponds to the
evolution amount of CO;-equivalent concentrations
in the future and is the most difficult to reduce. As
the true emission scenario is greatly dependent
on how humankind addresses climate change,
scenarios such as the representative concentration
pathways (RCPs) have been developed to be able
to assess the impacts of different possibilities
in climate action (13-15). Secondly, modelling
uncertainty refers to the mismatch between GCM
representation of the Earth and the truth. Differ-
ent models provide different results to the same
radiative forcing given, because they depend on
assumptions that have to be made. Studies into
reducing model uncertainty often pertain to biases
and uncertainty within the model ensemble on
how the climate changes under forcing, which is
also known as the climate sensitivity. Climate
sensitivity remains difficult to constrain (16) and
so causes a significant source for the range of
outcomes between individual GCMs, resulting in
higher uncertainty for multi-model ensembles. A
promising approach in tackling the uncertainties
caused by climate sensitivity is through emer-
gent constraints (11) and weighing individual
models in ensembles based on independence and
skill (17, 18). Finally, internal climate variability
refers to fluctuations in the Earth’s climate which
happen regardless of any radiative forcing of the
climate. These can be well-described phenomena,
such as the El Nifio - Southern Oscillation or
Madden-Julian Oscillation, but there are also inter-
nal variability phenomena which remain unknown.
Climate response to anthropogenic forcing will

be most easy to detect in regions with a relatively
small internal variability (19). Observations of a
changing climate in such regions will likely be the
first to become significant enough to be attributed
to anthropogenic climate change. Through iden-
tification of the effects of internal variability on
climate projections, one could isolate the forced
climate response. Internal climate variability is
often considered to be a noise within the climate
models, however, as it proves difficult to disentan-
gle from model errors (20). In order to properly
attribute climate change, our knowledge of internal
variability needs to increase.

One of the tools used for the analysis of cli-
mate data, is machine learning. Machine learning
is becoming an increasingly important tool in
Earth system science, due to bigger data avail-
ability (21, 22) and due to improvements and new
developments in techniques for interpretable and
explainable machine learning (23). Whereas a
traditional neural network is often considered a
black box, these interpretation techniques make
it possible to quantify and visualise what aspects
of the data it uses for its predictions. Application
of machine learning techniques in Earth system
science brings its own challenges and possibilities,
as beautifully described by Reichstein et al. (24).

An interesting new approach was introduced
by Barnes et al. (25), where they use an artificial
neural network (ANN) to identify climate patterns,
i.e. locations on Earth that can reliably indicate
a changing climate. There is a lack of labelled
datasets of climate patterns, making it difficult if
not impossible to train a neural network to predict
climate patterns. Instead, they opt to approach
these climate patterns as something the network
needs to recognise in order to perform a different
prediction task, which has sufficient labelled data.
Barnes et al. showcased their approach by training
an ANN to predict the year of maps generated from
CMIP5 climate model outputs from 1920 up to
2100, obtained by combining the CMIP5 histor-
ical and Representative Concentration Pathway
of 8.5W /m? (RCP8.5) experiments (14). After
training their neural network, they extracted the
information encapsulated by the model parameters.
They claimed their method shows the potential for
machine learning to identify climate change signals
from internal variability noise. They assumed the
ANN weights can be used to infer which regions

show a a better signal-to-noise ratio when it comes
to forced climate response than other regions.
These regions could be useful in attributing ob-
served climate change to anthropogenic forcing.
Validation of their approach to extract forced cli-
mate patterns occurred through inference that the
ANN performs well on the testing subset as well as
on observational datasets. Like most deep learning
models (26), uncertainty was not accounted for
and therefore the extracted network weights miss
important uncertainty information.

Here, we propose a combination of the approach
used by Barnes et al. with a Bayesian technique to
attribute uncertainties to neural network weights.
The resulting model is called a Bayesian neural net-
work (BNN) and works similar to an ANN, with the
exception that scalar variables for network weights
and prediction results are replaced with probability
distributions. Variational inference is used for
training these distribution functions (27). In this
study, we aim to proof the feasibility of a Bayesian
neural network for identifying climate patterns and
assess the applicability of the approach as part of
the toolbox used for evaluating climate models and
its uncertainties. In order to make this assessment
of the Bayesian neural network, we identify a
control network through reproduction of the ANN
described by Barnes et al.

" D
Modelling model output Since we apply a

neural network model on input data gen-
erated through output from climate models
and therefore the word 'model’ can be con-
fusing, we will use the word 'CMIP5’ when
talking about the properties of the climate
model ensemble, ‘climate model output’ or
‘CMIP5 model output’ when talking about
the near-surface air temperature and pre-
cipitation datasets that have been gener-
ated by the CMIP5 ensemble. These CMIP5
output datasets are the input for the neural
networks, which will be indicated by 'neu-
ral network’ when talking about the con-
ceptin general or by their specific type. We
will be using 'ANN’ for an artificial neural
network and the model created by it and
'BNN’ for a Bayesian neural network and
the model created by it.

RESULTS

Training a Bayesian neural network

We create annual-mean maps on a global 4° by
4° grid through interpolation of near-surface air
temperature and precipitation output products
from CMIP5 (see Materials and Methods). For
temperature, outputs from 23 out of the 29 used
CMIP5 models are used for training and for pre-
cipitation outputs from 18 out of 22 used CMIP5
models are used. The outputs from the other CMIP5
models are used as testing subset for validation
of the neural networks. We feed the maps into a
Bayesian neural network, with two hidden layers
of 10 variational units each, and train it to predict
the year of origin of the maps. This prediction is
represented by a probability distribution (Fig. 1).
The so-called reconstruction term, defined here
by the mean squared error between prediction
and truth, is a measure of how much the neural
network’s prediction deviates from the truth on
average and equals to 0.114 and 0.234 for temper-
ature and precipitation, respectively. It is relevant
to note that the network is not only optimized
for reconstruction, but also for minimization of
the mismatch between the estimated and true
posterior distribution on the weights, which is
computed through a Kullback-Leibler divergence
term, resulting in a total loss of 0.366 and 2.453
for temperature and precipitation, respectively.
Besides the BNN, an ANN has also been set-up
using a similar architecture of two hidden layers of
10 units each. This ANN is trained and tested on
identical CMIP5 model output subsets and used for
comparison with the BNN on its predictive qualities.

Predictive qualities of the Bayesian neural network

Predictive qualities of both the ANN and BNN are
represented using scatter plots between true and
predicted year (Fig. 2). In order to approximate the
expected value of BNN output, averaging is applied
to a Monte Carlo sampling of 10,000 predicted
output years for each given input map. The results
for near-surface air temperature show that the
BNN is able to recognise the patterns that indicate
a changing climate (28), on average starting from
1994 onwards. After 1997, the BNN is able to cap-
ture the changing climate in all CMIP5 temperature
models used for testing. For precipitation, this 'year
of climate change recognition’ has an average of
2009 and after 2032 for all models used for testing.

A) Artificial neural network architecture

_ 5 year estimate
(e.g. 1995)

Map of 1994 temperature
h grid cell =
1 unit in the input layer

Input First Second Output
Layer Hidden Hidden Layer
Laver Layer

B) Bayesian neural network architecture

For estima-
tion of year,
we drawa
sample of
each weight
“% and then
find a year.

(eg. 1995
for first

- sampling,
Map of 1994 temperature etc).

Each I =

Fach gri =
1 unitin the input layer

Input First Second Output

Layer Hidden Hidden Layer

Layer Layer

Figure 1: Neural network architectures. (A) Ar-
chitecture of the artificial neural network, which has
two hidden layers of 10 units each. (B) Architecture
of the Bayesian neural network, which has the same
amount of hidden layers and units, but replaces the
hidden layer weights and output year with distri-
bution functions. Furthermore, the Artificial neu-
ral network uses a hyperbolic tangent as activation
function, whereas the Bayesian neural network uses
a leaky-ReLu activation function.

Compared to the ANN control run, the BNN is able
to accurately make its predictions an average of
14 years later for temperature and 2 years later
for precipitation. The BNN and shows a bigger
predictive error for training and a slightly higher
predictive error for testing than the ANN, but does
have a smaller relative difference between training
and testing error compared to the ANN, with the
testing error being 2.18x and 1.75x the size of
the training error for the ANN, compared to 1.25x
and 1.53x for the BNN, for air temperature and
precipitation respectively. A neural network that
perfectly represents the complete data space would
result in both errors being equal, i.e. the testing
error being 1 x of the magnitude of training error.

We tested the robustness of the BNN by running

different modes of operation. The prediction re-
sults can be found in the Supplementary Materials
(Figs S1 - S3). Firstly, roughly the same results were
found when using different subsets of CMIP5 mod-
els for training and testing. Secondly, as explained
by Barnes et al,, it might be feasible that the neural
network uses the global mean of the input maps to
make its predictions instead of the climate patterns
we are interested in. Therefore, like Barnes et
al, we removed the global mean from the input
maps to test if the network really relies on spatial
patterns, which provided similar but slightly worse
results to our original experiments, indicating that
even though the BNN also relies on global mean,
it mainly relies on the spatial patterns of interest.
Finally, by changing the amount of hidden layers
and units in these layers, a few different model
architectures have been tested. While the network
performs significantly worse for an architecture
with two hidden layers of 100 units each, within
the margins of a few extra layers and a range
between 1 and 100 units in a layer, results seem to
be consistent. There are only minimal changes in
predictive quality in the range between 1 and 50
units, all together indicating that a BNN is a robust
model for this particular data.

Finding climate change indicator patterns

For assessment of the climate patterns found
through training a neural network, we create
indicator maps of the weights of the trained BNN
and ANN networks (Fig. 3). In order to make
this visualisation, a different neural network of
only 1 hidden layer with 1 single unit has been
used. This allows the neural network weights to
be mapped onto the input grid in a one-on-one
fashion. More sophisticated techniques for map-
ping weight values of complexer neural networks
onto their inputs do exist, but implementation
of such techniques lies beyond the scope of our
work. For near-surface air temperature, both the
ANN and BNN indicator maps show roughly similar
patterns of higher or lower weight values, with the
exception of a much higher weight in the regions
of South Central and East China. The magnitude of
the weight differs greatly due to different neural
network architectures, as well as the sign of the
weights for the precipitation maps. However, our
main interest lies in the regions of relatively higher
magnitudes, regardless of whether the weight is

A)

Near-surface air temperature

o
21004
2080 g
P
2060 "
5 2040 y
o
>
- 2020 4 .
o .
S 20001 ooyl
T - ¥
& 1980 . RY
1960 * >
’
1940 ¥
| Post Year 2000
1920 Mean Absolute Error
1900 - Training: 3.96
Testing: 8.63
T T T T T T T T T T T
1900 1920 1940 1960 19802000 20202040 2060 20802100
actual year
Near-surface air temperature
21004
2080+
2060 1
5 2040
@
ES
- 20204
]
5]]
= 2000 e
& 1980)
AR
1960 e
- -ﬁ'.
o2,
1940 X Xa et
1920 4 . Post Year 2000
Mean Absolute Error
1900 Training: 7.18
Testing: 9.00
T T T T T T T T T T T
1900 1920 1940 1960 19802000 20202040 2060 20802100
actual year

Precipitation
.
b
21004 .
2
2080 - L3
- Al
2060 4 ‘..' .
.
5 20404 [
o -
o 2020 2 “
E . O o?.
S 2000 | .. . 3 bo
g "o of, %2,
& 1980 245 "
“e
1960 il
o
1940 4 WS 450
1920 1 LS] Post Year 2000
Mean Absolute Error
1900 Training: 11.46
Testing: 20.09
T r T T T T r r T T T
1900 1920 1940 1960 1980 20002020 2040 2060 2080 2100
actual year
Precipitation
P
21004
2080 4 po
2060 . 3
"
5 2040 A o
g s &
2020 1 .o 2
B ", o)
o 4 . 25 it
g 2000 ~ BT oL bt} -f.
2 | o
a 1980 e
(%)
e Ve
1960 + e} A - .
.
i o
1940 £ AR
4 . Post Year 2000
1920 . Mean Absolute Error
1900 4 Training: 13.28
Testing: 20.31

T T T T T T T T T T T
1900 1920 1940 1960 1980 20002020 2040 2060 2080 2100
actual year

Figure 2: Prediction results for near-surface air temperature and precipitation. Predicted year versus
actual input map year for both testing for (A) An artificial neural network fed with CMIP5 near-surface air
temperature maps. (B) An artificial neural network fed with CMIP5 precipitation maps. (C) A Bayesian
neural network fed with CMIP5 near-surface air temperature maps. (D) A Bayesian neural network fed
with CMIP5 precipitation maps. Training results are shown in grey, testing results are shown in colors,
each representing one climate model’s simulation. A 1:1 line, indicating a perfect prediction, is plotted in
black. Predictive post-year 2000 mean absolute errors are printed in the lower right corner of the figure
and indicate how well the model performs on the second half of the time series.

positive or negative. The correlation between these
maps is moderate with a value of r = 0.44 and
found to be statistically significant based on a two-
tailed p-value for testing non-correlation, based
on common threshold p < 0.05. This indicates
that both the control network and the Bayesian
neural network have been trained on some of the
same spatial patterns. When comparing the weight
mean with the weight variance map, we find that

the magnitude of the variance is generally bigger
than that of the mean, but there is strong spatial
variability in this. Over all grid cells, the average
weight variance is 3.54 times the average absolute
value of the weight mean, which means there is
indeed a high level of uncertainty in the found
patterns. For precipitation, results concerning
weight mean and variance of the BNN are better
but comparable to those of the near-surface air

A) B)

CMIP5 temperature: weight for 1 hidden unit
>

CMIP5 temperature: weight mean for 1 hidden unit

0
CMIP5 temperature: weight variance for 1 hidden unit

1200 180° 1200 6o o

600 1200 180° 1200 _gor o 60°

R

-0006 -0004 -0002 0000 0002 0004 0.006

1200 180° -120° 600 o o 60°

0 6 1200 g 1200 600 O

D)

CMIP5 precipitation: weight for 1 hidden unit

CMIP5 precipitation: weight mean for 1 hidden unit
. .

F)

CMIP5 precipitation: weight variance for 1 hidden unit

o e 120r 180 1200 00 o

-0.0004 -0.0003 -0.0002 -00001 00000 00001 00002 00003 0.0004

fo° 1200 180 _1200 g0 o o e 1200 18" 1200 e o

Figure 3: Indicator maps of patterns of change in near-surface air temperature and precipitation.
Maps are derived from weights of neural networks with 1 hidden unit. (A and D) Weight maps derived
from the ANN control network. (B-C and E-F) Weight maps derived from the Bayesian neural network.
Weight mean p (B and E) and variance o2 (C and F) of the posterior distribution.

temperature, with the average weight variance
being 2.34 times the average absolute weight mean.
Compared to the ANN, found climate patterns are
again quite similar, with a correlation of r = —0.62
and p < 0.05. The found precipitation patterns are
also roughly similar, but the ANN shows stronger
patterns at both poles than the BNN does. Again,
due to the architectural difference between the
neural networks, weight sign and magnitude does
differ between ANN and BNN.

DISCUSSION

We have shown that a Bayesian neural network
(BNN) is a viable method for recognition of spa-
tial patterns indicating a changing climate. The
technique works similarly to the artificial neural
network (ANN) set-up introduced by Barnes et
al, but enhances it by allowing for uncertainty
attribution on both the neural network weights and
prediction. Results for near-surface air tempera-
ture show that the BNN provides a smaller relative
error between testing and training data than the
ANN. This indicates that the BNN is less likely to
over-fit. For precipitation this relative error is
also in favour of the BNN, but the difference is less

profound. The predictive results show comparable
errors on the testing datasets for both the BNN and
ANN, indicating they are roughly equally capable of
performing correct predictions on data it was not
trained on.

A downside to the Bayesian neural network
is the complexity of the technique. As a minor
result of this, the computational resources required
are significantly higher. As the network tries to
optimize for both the reconstruction loss and
the Kullback-Leibler divergence, it requires more
trainable parameters and computation steps than a
standard ANN, resulting in it being computationally
expensive. For near-surface air temperature, the
average CPU processing time required for training
on our system was 2398 seconds for the BNN
compared to 1075 seconds for the ANN. For pre-
cipitation we found an average CPU time required
of 2293 seconds for the BNN versus 678 seconds
for the ANN. Due to the BNN requiring Monte
Carlo sampling for computing the predictions,
we find the total CPU time required to produce
the plots of Fig.2 increases to 10808 seconds for
temperature and 10218 seconds for precipitation,
whereas the computation time for MLP predictions

are near-instant. This extra computational cost is
merely an annoyance for the smaller datasets used
here, but could pose a limitation for more data-rich
experiments. The main drawback of complexity of
the technique comes forward in its implementation.
As the BNN comes with more parameters to opti-
mise, we found it more difficult to choose the right
combination of settings. Settings such as a different
prior and posterior on the weights and a higher or
lower relative KL-weighting can have a big impact
on the performance of the network. For example,
a factor 10 difference in KL-weighting can result
in a partial or even complete failure of the BNN to
make accurate predictions. These come additional
to the choice of activation function, optimization
algorithm or loss function, which both a BNN and
ANN have, but we found are more intuitive to
optimize for the ANN. A thorough understanding
of Bayesian modelling will help ensuring easier
implementation of this technique, but in general
for machine learning, reproducibility remains an
issue (29). In our study, we have also struggled
with reproducibility of the original experiment as
published by Barnes et al.

Reproducibility issues can occur in each step of
the modelling process. It starts with findable and
accessible datasets and even though the CMIP5
output data has been developed with accessibility
in mind (30), we found neither to be guaranteed.
There are several data archives that provide the
output data. We used the archive of the Earth
System Grid Federation, which can be accessed
through different gateways. For most CMIP5 mod-
els the climate model output data was available
here, but some climate model output products
had to be retrieved elsewhere because the desired
output product was missing.

Feeding data into a neural network almost
always requires some preprocessing. In order to
make proper predictions, each input of the neural
network needs to have the same dimensions, i.e.
number of pixels. For CMIP5, the climate models
work on differing spatial and temporal resolutions
and therefore an annual mean value had to be
calculated, as well as regridding to a global 4° by
4°. An error in data formatting or processing can
result in failing of the neural network, as it did for
us. Such problems can be difficult to solve since
it is often difficult to identify the cause of a failing
network.

Finally, as stated before, a neural network comes
with a lot of adjustable hyperparameters. While
we found our Bayesian neural network to be
relatively robust to certain changes in the input
data or neural network architecture, there are
also seemingly minor changes that can cause the
network to malfunction. Bayesian neural networks
have more of these hyperparameters that need to
be optimized, complicating the applicability of the
technique by those who have limited knowledge of
what each hyperparameter changes to the network.

Holistically seen, there is alot that can complicate
reproducibility or replicability of complex tech-
niques such as the one proposed, even when data
and information about processing and algorithms
used are available. With the relatively complex
datasets used in geosciences and climate mod-
elling, we think reproducibility should be a core
component throughout the whole modelling chain,
as it can be difficult for each step in the chain. We
recommend applying the FAIR data principle: Find-
able, Accessible, Interoperable and Reusable (31).
All required information concerning data accessi-
bility, retrieval and processing is provided in the
Supplementary Materials (text S1, table S1 and S2).
An effort has been made to make documentation of
used code accessible and understandable through
extensive comments in docstrings, through splitting
of the code between function and script files and
through availability of required toolboxes and their
used version numbers through the Supplementary
Materials (text S2, table S3).

The climate change indicator pattern maps of
Fig. 3 are created with a neural network architec-
ture with only one hidden unit, which allows the
relevance of each grid cell of the neural network’s
input to be visualised through the weights. There-
fore, the network allows for a simpler modelling
of the CMIP5 data and we expect it might not be
able to capture the patterns in the data as well
as a complexer neural network. We find that the
more complex neural network model of 2 hidden
layers with 10 units outperform the simpler neural
network models in terms of predictive accuracy for
near-surface air temperature. For precipitation,
we find the simpler neural network to outperform
the more complex network. Similarly, we find
that the Bayesian neural network with the simpler
architecture outperforms the ANN in the case of

precipitation, whereas the ANN performs better
for near-surface air temperature, which indicates
that neither model is strictly superior for all CMIP5
data (Fig.S4). This balance between ANN and BNN
predictions on precipitation does shift compared
to the same balance for the complexer neural
networks, with particularly the BNN and ANN hav-
ing similar predictive performance on the testing
dataset for the complex network architecture, but
the BNN performing better than the ANN for the
simpler neural network architecture, based on both
training and testing errors. For near-surface air
temperature, this shift in balance is reversed, with
the BNN under-performing the ANN in all cases, but
significantly less so for the complex neural network
architecture.

When looking at the maps procured by Fig.3,
we find that both model types can uncover similar
climate patterns in their weights, but the BNN can
also indicate how certain it is of those mean weight
values. Note that due to inner model working
differences, it is not possible to directly compare
magnitude of the weights of the ANN with those of
the BNN. Due to the initialisation of the weights,
also the sign of the weights can be reversed between
both ANN and BNN. The main interest lies in the
relative magnitude of the weights. When looking
into the Bayesian neural network and the resulting
uncertainties, small weight uncertainty in com-
parison to the mean of the weight would provide
strong evidence that this method of uncovering
climate patterns is reliable. Due to the nature of the
prediction task, the neural network will give more
importance to locations with a higher reliability of
a signal found to be caused by a changing climate.
Therefore, we do not expect clear patterns in the
weight variance maps from the BNNs, which is
reflected in the resulting maps of Fig.3. Noteworthy
is the magnitude of the variance of the weights in
comparison to that of the mean of the weights. The
range of variances depicted in Fig.3-C and 3-F are
a factor 3x higher than the mean for near-surface
air temperature and 2x higher for precipitation.
We think that if the magnitude of the weight mean
would have been at least the same or a higher value
than the variance, useful information could have
been extracted from the found climate patterns.
With these results, however, we can conclude
that the usability of the found climate patterns
for further application is limited. We have not

investigated whether this relatively high variance
is caused by the data or by the neural network
architecture of only one hidden unit, as this was
not the scope of our work. However, it is feasible
that a more complex Bayesian neural network, such
as those used for Fig.2, would be able to capture
the data better, resulting in in more precise weight
distributions and therefore more certainty in found
climate patterns.

Techniques for computing the relevance of an
input node throughout such a more complex,
multi-node and multi-layer neural network do
exist, but were not applied in this study. We would
recommend further research into combining a
Bayesian neural network with these so-called
‘explainable Al’ techniques. A promising technique
is Layer-Wise Relevance Propagation (32), which
allows for calculating the relevance of nodes of a
trained neural network and mapping this relevance
back onto the input layer. The result is a type of
heatmap, indicating which pixels of an input image
are relevant for the neural network to make its pre-
dictions. Combinations of Layer-Wise Relevance
Propagation (LRP) with a Bayesian approach have
been attempted (33). However, these techniques
are used for neural networks tasked with classi-
fication and therefore require some alteration for
application to a regression task as posed in this
paper. Some strategies have been proposed for
this (34, 35), but not in combination with a Bayesian
neural network.

When looking at uncertainty attribution of
feature relevance metrics, a few alternatives to
Bayesian neural networks exist. For example, Labe
and Barnes (2021) combine their ANN architecture
and LRP on a large ensemble dataset from the
CESM1 climate model and identify uncertainty
in their feature relevance heatmaps through a
threshold (36). This threshold is found by a shuf-
fling approach for generating random data and
computing relevance based on the random data.
This allows them to define a threshold value where
output values of LRP are not likely to be found with
random data, resulting in a masked relevance map
showing only those locations above the thresh-
old. Feature relevance uncertainty can also be
found through the use of Monte-Carlo Dropout
sampling (37). This technique uses dropout as a
Bayesian approximation to find predictive uncer-

tainty and then uses this together with Monte Carlo
sampling on LRP outputs to find feature relevance
uncertainty. A big difference between these two
alternatives and a Bayesian neural network is that
both techniques use a normal ANN to optimize
for prediction and only afterwards attempt to
attribute some uncertainty to the found weights,
whereas a Bayesian neural network incorporates
uncertainty as a core component of its training
algorithm. These alternatives are possibly easier to
implement for existing neural networks, as you do
not need to change their configuration, but might
perform worse in computing the uncertainty of the
weights as they are not optimized for finding said
uncertainty. We would recommend a comparison
study between these techniques to evaluate their
performance.

To conclude, Bayesian neural networks can be a
useful and robust tool for uncovering uncertainty
in the weights of neural networks. In the field of
climate science, this uncertainty could be used to
quantify the importance of climate patterns found
through neural networks. Our results indicate that
a Bayesian neural network is less likely to over-fit
than an ANN and the Bayesian neural network
can generalize almost as well as an ANN can. The
resulting posterior on the weights for a simple
Bayesian neural network shows a high uncertainty
for most of the uncovered climate patterns, limiting
their further use. More research in combining a
Bayesian neural network with feature relevance
techniques is recommended.

MATERIALS AND METHODS

Climate model ensemble

Neural network training and validation is per-
formed with products from the Coupled Model
Intercomparison Project phase 5 (CMIP5), which
is a community effort “meant to provide a frame-
work for coordinated climate change experiments”
(Taylor et al,, 2007, p1, (38)). They contain a set of
model simulations which is run by specific climate
models, allowing for easier intercomparison. In this
study, long-term experiment results from the so-
called historical experiment have been combined
with those based on greenhouse gas concentrations
derived from the RCP8.5 scenario. The historical
experiments run from 1850 to 2005, after which
the RCP8.5 experiments continue for 2006 - 2100.

Some individual models provide extensions on
their runs, e.g. historical experiments running
till 2011 or RCP8.5 experiments continuing past
2100. These extensions have not been included
in this study. The near-surface air temperature,
abbreviated as tas in CMIP5 runs, describes the
temperature in Kelvin at the so-called 2 metre
height. This is the height above the geoid corre-
sponding to a height 2 metres above the surface.
For oceans this would correspond to 2 metres, for
land this depends on the average land height over
a grid cell. The precipitation, abbreviated as pr and
also called precipitation flux, describes the amount
of precipitation over time at the surface height in
kgm~—2s~1, for both liquid and solid phases and
from all types of clouds. Retrieval of CMIP5 output
data for all used models, for both near-surface
air temperature and precipitation, has mainly
been through the archive of the Earth System Grid
Federation. More information concerning data re-
trieval can be found in the Supplementary Materials.

Climate modelling groups provide data for
monthly mean atmospheric variables, split be-
tween the historical and RCP8.5 experiments. The
spatial resolution of these models can differ. As the
desired input format for our neural networks are
yearly-mean, global 4° by 4° maps, processing has
been done using the Climate Data Operators com-
mand line toolbox (39). In order to select the correct
years for concatenation of both experiments, we
use functions -selyear to select 1920 — 2005 from
the historical data and 2006 — 2100 from the RCP8.5
data and -mergetime to merge both files based
on their timestamps. Afterwards, -yearmonmean
and -remapcon are used to compute a yearly mean
based on the monthly data and remap the data to
a 90 cells longitude by 45 cells latitude grid, which
corresponds to 4° by 4°. The remapping algorithm
used (40) is first-order conservative, which means
that global average temperature and precipitation
values remain constant. The resulting data that
is used as input for the neural networks consist
of 180 yearly-mean maps per climate model, each
consisting of 4050 input units. For the near-surface
air temperature, 29 different climate models are
used, of which 80% (23 models) are used for train-
ing and the remaining 20% (6 models) for testing,
resulting in 16.912.800 data points for training and
4.228.200 data point for testing. For precipitation,

22 different climate models are used, resulting in
18 models with a total of 12.830.400 data points for
training and 4 models with a total of 3.207.600 data
points for testing.

Artificial neural networks

Artificial neural network modelling is performed
using the Tensorflow (41) and Keras (42) APIs,
which allow for easier model building by providing
functions that perform most of the complex math
for neural networks. An artificial neural network,
in the form used here also called a multi-layer
perceptron, is simply a set of weighted equations,
which are optimized to make predictions. An ANN
consists of an input layer vector al%, an output
layer y and L hidden layers, indexed by [. Each
layer consists out of n units (also called nodes or
neurons), which can vary per layer. In order to
correctly model the data, a neural network needs
to be trained. Training happens through a repeated
cycle in which the weights of the equations between
each nodes are updated. A single training cycle
consists of three phases: forward propagation to
compute the prediction with the current weights,
backward propagation in which the first derivative
of the loss £, that is the mismatch between truth
and prediction, is computed to identify in which
direction a change of the weights would reduce the
loss and finally a weight update phase, in which
the weights are changed slightly to improve the
ANN model’s predictive accuracy. Often, a specific
optimizer algorithm is used to determine exactly
which weights are updated and by how much.

In forward propagation, nodes are densely con-
nected with each other, meaning that every node’s
value in layer [— 1 is used to compute the value of
every node in the next layer . For each node, the
value is propagated forward using a linear propaga-
tion term,

A = g lgl=1 4 pl0, (1)

where z[! is an intermediate value after the linear
propagation term, w! are the weights between the
current node and all nodes in the previous layer,
al'~1] the values of the nodes in the previous layer
and bl a bias term. The linear term is followed by a
non-linear activation function,

all = gl (211), (2)

10

where g[” is the activation function for layer [, re-
sulting in a value of the node al’l. Note that this is
a vectorized equation and so the value at a specific
node is the summation of the forward propagation
from each individual node in the previous layer con-
nected to this specific node. The non-linear activa-
tion function can vary per hidden layer and needs
to be chosen based on the type of prediction to be
made. For a regression task, the function for com-
puting the output layer typically does not have a
non-linear activation. We use a hyperbolic tangent,
that is

i o)

e* —e”
= T

a (=) RO Rp—

(3)
as activation function between input layer and hid-
den layers. Furthermore, no activation function be-
tween the last hidden layer and the output layer is
used. When in training, the model is initialised with
zero bias and random weights using the Glorot Uni-
form distribution (43), denoted by

V6 V6

U |- , .
Vnll + plH107 /Ml 4 pli+1]

w ~

(4)

After initialisation, the input maps are propa-
gated forward through the neural network. The
resulting output y is used to evaluate the loss
function £. For the ANN we use the mean square
error loss,

1N
L= NZ(%‘ —4:)7, (5)
i=1
where N is the total number of input samples used
for training and ¢ the index of each specific sample.
As the loss is minimized, the division by the con-
stant NV presented here is not computed in our im-
plementation. Multicollinearity, which is the occur-
rence of dependencies among the input variables
of a model, is a common problem with regression
models. For the CMIP5 datasets used, this could
manifest through spatial correlation across the grid
points and might result in a neural network that
relies on only a few grid cells to make its predic-
tions. As we desire a model that finds large scale cli-
mate patterns, a L2-norm regularization is applied
to the weights on the input units. This norm, also
called ridge regression, is implemented by adding a
penalty to the loss function, based on the magnitude

of the weights. This reduces the chance of a few very
big weights dominating the neural network. The L2-
norm is defined as

(w2
L2 = AT oar

(6)

where ridge parameter) is a chosen constant which
determines how strongly the weights are regulated,
W denotes all weights between the input layer
and the first hidden layer and is normalized by the
total amount of these weights, which corresponds
to nl9n!! as the nodes are densely connected. The
resulting loss function,

Z(yz -

can resolve the issues caused by multicollinearity.
The chosen ridge parameter A\ depends on the
severity of the multicollinearity. We have exper-
imented with different values for A and based on
predictive testing error performance, the values
used are A = 10* for near-surface air temperature
and \ = 107 for precipitation. These values are the
same as used by Barnes et al. and so we confirm
their choice, based on our own results.

S (w2

~\2
y'L) +>\ 2n[0]n[1])

(7)

After evaluation of the loss function, the neural
network’s weights and biases are updated in order
to minimize the loss. This is done by changing them,
often with a predefined step size, in the direction
that corresponds to the biggest reduction in loss
function. In order to find this direction, a process
called back-propagation is used, in which the gradi-
ent of the loss function is evaluated on each weight
and bias term. We consider it outside the scope of
this paper to discuss how these gradients are com-
puted. When the gradient is known, the weights are
updated by a small step in the direction opposite of
the gradient,

oL

owll’

wl — wlh — o

(8)
where step size « is a constant influencing how

much you update the weight. Similarly, the bias is
also updated based on its gradient and step size, as

oL
—a—=

U [
b« b R0

9)

11

If « is too big, it might become difficult to find a
minimum loss, whereas if « is too small it can take
very long to approach the minimum. The compu-
tation of the gradient through back-propagation,
weight update and choice of « is often performed
by a so-called optimizer algorithm which has
lower computational costs due to making certain
approximations and usually converges faster to a
minimum loss. From a wide range of optimizer
algorithms and their hyperparameters applied on
training the ANNs, we found the AdaDelta optimizer
algorithm (44) with a learning rate of &« = 0.001 to
perform well for the experiment with two hidden
layers of 10 units each. For the experiment used
for making the weight maps of Fig. 3, with a neural
network model of only one hidden layer with
one hidden unit, we found the Adam optimizer
algorithm (45) with an exponentially decaying
learning rate, where the initial learning rate of
a = 0.1 is multiplied by 0.98 every 100 training
batch updates, to provide good performance. A
batch is the amount of input samples that are
considered in a single gradient computation phase.
We have used a common default batch size of 32,
which means that 32 input samples are considered
for each weight update. A full iteration over the
entire input data provided is called an epoch and
the total amount of epochs for training has been
set to a value of 2000. Both the AdaDelta and Adam
optimizer algorithms allow for such a batch-based
computation of the gradient. This means that the
gradient for all samples in the dataset is estimated
by taking a randomly selected subset of the data,
which allows for reduced computational costs in
the back-propagation and weight update phases,
but comes with a drawback of slower convergence
to the true minimum loss as it does not consider all
gradient information at the same time.

Bayesian modelling and neural networks

A Bayesian neural network is structured very
similarly to that of the ANN explained above, with
structures of hidden layers, units, forward and
backward propagation functions and optimizer
algorithms. However, a Bayesian neural network
can be seen as a superimposition of a probabilistic
model onto a conventional neural networks such
as an ANN (46) and this causes a fundamental
difference in the set-up and training process of the
neural network model.

The process used in Bayesian statistics is one
of updating your belief based on new evidence
presented, while simultaneously taking in account
prior knowledge about the event taking place. The
backbone for this process is Bayes’ theorem. Bayes’
theorem describes how evidence E can be used to
update your belief on the hypothesis H. This is ex-
pressed in the posterior probability P(H|E), which
describes how probable it is that the hypothesis H
is true given the observed evidence E. Bayes’ theo-
rem can be expressed as

P(E|H) - P(H)

P(H|E) = == g,

(10)
where P(E|H) is the likelihood or probability of ob-
serving the evidence given the hypothesis is true,
P(H) is the prior probability and describes the
probability of the hypothesis before the new data £
is observed and P(FE) is the probability of the evi-
dence happening regardless of hypothesis and also
called the marginal likelihood. This marginal likeli-
hood can also be expressed as
P(E)=P(E|H)-P(H)+P(E|-H)-P(-H), (11)
where - H isthelogic negation meaningnot H. This
expression includes the hypothesis but is easier to
compute and more intuitive to reason with. In the
case of a probabilistic model, we are interested in
the distributions on the weights w based on pre-
sented data D and rewrite Bayes’ theorem into

p(D|w)p(w)
S P(DIw)p(w)dw'”

where the denominator, often called the normal-
ization constant or evidence integral, is equated to
evidence p(D) and generally easier to calculate than
the evidence itself. This evidence integral can be
derived from the fact that the sum over all possible
hypotheses should be equal to 1. In this equation,
the prior distribution p(w) corresponds to the
initialisation of the weights. Based on observed
data, we can compute the probability density of the
likelihood p(D|w) of the data to be represented by
the model. If one knows the normalization constant,
the posterior distribution p(w|D) could be used
to update the models’ posterior distribution on
the weights. This process of updating your model

p(w|D) = (12)

12

based on provided data is called Bayesian inference.
Even though this might sound simple in theory, in
practice solving the marginal likelihood through
the integral presented in Eq. 12 is often intractable,
meaning that it could be solved but it would not
be possible to do so efficiently and would take too
many resources to solve. A workaround is found
through methods that can be used to approximate
the posterior probability.

The approximation method used in the BNN is
called variational inference. With this technique,
we assume the true posterior p(w|D) to be approx-
imated by a variational posterior ¢(w|f), where 6
is a set of parameters that are to be optimized in
order to make the best approximation for the true
posterior. Variational inference is considered faster
and easier to apply on large datasets than the al-
ternative, Markov chain Monte Carlo (MCMC) sam-
pling (47). Finding these optimal parameters of g is
done through the use of the Kullback-Leibler diver-
gence (KL-divergence). For two distributions with
densities f(x) and g(x), one can express the KL-
divergence Dy 1 between these distributions as

)= [fa log

For our model with distributions introduced in
Eq. 12, the KL-divergence between ¢(w|f) and
p(w|D) can be simplified and written as
Dk rlg(w|0)||p(w|D)] = log p(D)
+ Dici[q(w]0)][p(w)
- IEq(w|9 [10gp(D|’LU)]

DKL Hg dx (13)

(14)

Finding the best variational posterior then equates
to finding an an optimal parameter set § which min-
imizes the KL-divergence, as denoted by

0" = argmin D [g(w|0)|[p(w]D)], (15)

where the log p(D)-term can be ignored as the data
can be considered constant. For neural network
modelling, this minimization problem is introduced
in the form of a loss function,

L(0|D) = Dxg(w]0)||p(w)]
- Eq(w\@) [lng(D‘w)]

The KL-divergence term between variational pos-
terior and prior in this equation is called the com-

(16)

plexity cost, as it incentivises the variational poste-
rior to be close to an often relatively simple prior.
The second term is often called the likelihood cost
or reconstruction term, as it forces the variational
posterior to have a high likelihood with the data, in
other words to reconstruct or model the input data
well. Note that the complexity cost is completely in-
dependent of data and therefore Eq.16 describes a
trade-off between modelling the complexity of the
data and keeping close to the simplicity prior. In lit-
erature and implementations for variational infer-
ence, one often will encounter the idea of 'maximiz-
ing the Evidence Lower Bound (ELBO)’ This ELBO
can be easily derived from Eq. 14 using the prop-
erty that KL-divergence between two distributions
is nonnegative. The resulting inequality,

log p(D) = Eq(uwjo) [log P(D|w)]=Dk[q(w|6)||p(w)],

(17)
results in a right-hand side being a "lower bound on
the log-evidence’ and maximizing this is equivalent
to minimizing the loss function of Eq. 16.

With the provided knowledge on variational in-
ference, a probabilistic model can be superimposed
onto a neural network. The approximated KL-
divergence between each weight’s true and varia-
tional posterior, Dg 1 [q(w]0)||p(w|D)], is added as
a penalty term to the loss of the neural network and
6 can be updated through gradient descent, using a
technique called Bayes by Backprop (27). The term
'Bayes by Backprop’ refers to applying and optimiz-
ing a Bayesian probability model through backprop-
agation on a neural network. Blundell et al. (27)
show that the loss function can be approximated
through Monte Carlo sampling of the variational
posterior and in the limit can be considered an in-
tegral,

LoD~ [fwo)aw, (s)
where f(w,0) is a function based on Eq.16 and de-
fined by

f(w,0) =logg(w|0) —logp(w)p(Dlw). (19)

Through Proposition 1 of Blundell et al, they
show that, for a variational Gaussian posterior, this
loss function can be used to compute gradients in
the neural network and subsequently be optimized
through normal backpropagation. The approach

13

they use for this is based on a scaling and shift-
ing of a unit Gaussian into the variational Gaus-
sian. The standard deviation ¢ is parameterised by
o = log(1 + exp(p)), resulting in o = (y, p) and a
posterior sample of the weights being computed by
means of a draw from a unit Gaussian ¢ ~ A(0, 1)
through w = p+log(1+exp(p)) oe. With f(w, 0) as
defined by Eq. 18, the gradient with respect to the
mean can be calculated by

_0f(w,0) Of(w,0)
B = ow o

(20)
and the gradient with respect to the standard devi-
ation parameter p can be calculated with

of(w,0)
dp

A = of (w,0) €
P w1+ exp(—p)

These gradients are remarkably similar to the gradi-
ents found through backpropagation of an ANN. The
term W is equivalent to the ANN gradients and
so in order to find the optimal mean and standard
deviation for the weights, only a scaling and shifting
of the normal gradients need to be computed. The
eventual update phase on the posterior,

(21)

B = alN, (22)

pp—al, (23)

is also similar to that of the ANN in Eq.8, just for
two parameters instead of one. The learning rate
« and whole backpropagation process can also be
optimized using the exact same optimization algo-
rithms, which is one of the main strengths of this
Bayes by Backprop method. For a more detailed
discussion on the Bayes by Backprop method, we
would like to kindly refer you to the introductory
paper by Blundell et al (27).

Bayesian neural network modelling is performed
using the Tensorflow Probability package (48), sup-
plemented with the aforementioned Tensorflow
and Keras API's. Weights in the neural network
are not represented by draws from a initialisa-
tion distribution, but by a prior weight distribution
p(w). Choice of the prior can have significant im-
pact om the performance of a Bayesian neural net-
work. While use of a unit Gaussian distrubution,
p(w) = M(0,1), or similar isotropic Gaussian distri-
butions with a different mean and variance are the

standard for BNN priors, improvements might exist
in the form of distributions with heavier tail, such
as the Laplace or Student’s t distributions (49). An-
other option is to learn the prior by training several
iterations of an ANN and using the found distribu-
tion on the weights as prior for the BNN. We have
tested these different options and based on an ex-
pected predictive log-likelihood scoring statistic, a
Laplace distribution as described by

). @

1
= 55 XP (
found through training an ANN, provided the best
results. A Laplace distribution was fitted to the
weights of each individual ANN layer and then used
as the prior for the corresponding layer in the BNN.
For near-surface air temperature, the prior distribu-
tions used are

|z — p
b

p(z; p, b)

p(w®) = Laplace(—7 x 107°,2.8 x 1071),

p(w) = Laplace(—6.5 x 1073, 3.8) and

p(w?) = Laplace(1.2 x 1071, 1.4)

for the three corresponding layers of the BNN. For
precipitation, the prior distributions used are
p(w!®) = Laplace(—2.2 x 107°,1.8 x 1071),
p(w'l) = Laplace(—4 x 1072,2.5) and

p(w?) = Laplace(—2.4 x 1072,8.8 x 107}).

For the 1-unit neural networks used to create Fig.3,
a Student’s t prior distribution performed better

than the Laplace distributions used for the com-
plexer networks. The Student’s t prior is defined by

_D@HY/) oy e
(25)

where v denotes the degrees of freedom, I is the
gamma function and y = (z — u)/6 a function for
shifting the location y and scale 6 of the distribu-
tion. The used prior distributions used are

p(y;v, 1, 0)

p(w) = T(2,-8.3 x 107°,1.3 x 10~%) and
p(w) =T(2,—4.1 x 107°,1.3 x 107?)

for near-surface air temperature and precipitation,
respectively.

14

Besides a prior, weights are also assigned a vari-
ational posterior ¢(w|6) to approximate the poste-
rior distribution on the weights through training of
0. We assume the posterior to be independent be-
tween weights and of a Gaussian distribution, so
6 = (u,0). For this specific choice of distributions,
Tensorflow Probability does not provide built-in so-
lutions for computing the KL-divergence between
variational posterior and prior Dxr[q(w|0)||p(w)],
meaning the approximation introduced in Eq.18 has
to be used instead of the complexity cost term of Eq.
16. The BNN is implemented with the reconstruc-
tion term being embodied by the mean square er-
ror, identical to that of the ANN, as it can be shown
that this is equivalent to minimizing the likelihood
for this specific regression problem.

In training, identical batch sizes and epochs to
those of the ANN have been used. A different
non-linear activation function has been used for
the BNN, as the leaky Rectified Linear Unit (leaky-
RELU), denoted by

gl = {

performed better than the hyperbolic tangent of
Eq. 3. The Adam optimizer algorithm has been used
for all BNN models, with a fixed learning rate of
o 0.001 for the experiments with two hidden
layers of 10 units each and an exponentially decay-
ing learning rate for the experiments with a neural
network model of only one hidden layer with one
hidden unit, identical to the ANN implementation
for these simpler neural network architectures. No
ridge regression is applied, as a BNN’s prior on
the weights already yields L2-regularisation (27).
Finally, when using batches smaller than the total
amount of data points for training, Tensorflow
automatically corrects the loss by normalizing for
the batch size. However, this only happens for the
reconstruction term and not for the complexity
term. A weighting for the complexity term can be
added to prevent it from becoming relatively more
important than the reconstruction term. What
weight is applied on the KL-divergence penalty in
the loss term can be tuned by the user, depending
on desired balance between reconstruction versus
complexity. Based mostly on predictive test error
and on expected predictive log-likelihood, we have
found a scaling factor of 10~* for temperature
and 10~2 for precipitation to provide good results

]
0.01z1

if 2l >0

otherwise. (26)

for the multi-layered 10 unit by 10 unit neural
networks. For the BNN architecture of one hidden
layer with 1 hidden unit, the scaling factor for
near-surface air temperature chosen was 1/4050,
based on the input size of 4050 nodes, while for
precipitation we found an optimal scaling of 10~

Additional statistics
Predictive test scoring is computed based on the
mean absolute error between prediction y; and
truth y;, defined by

N
1 .
SMAE = N ; |9: — vil, (27)

for each map ¢ out of the total of NV maps used for
testing. While the testing error can be used as an
approximation for the generalization error, it does
not take into account the quality of the found pos-
terior uncertainties. A proper scoring rule that pro-
vides a trade-off between the predictive skill and the
posterior found is the predictive log-likelihood (49).
This scoring rule is computed as the average predic-
tive log-likelihood, computed with a predictive pos-
terior distribution, found through Monte-Carlo sam-
pling of BNN predictions on the testing dataset, and
the true years given by the testing dataset. It is de-
fined by

M
1 .

Se= 7 > Ua(@i), i), (28)
i=1

where / is the log-likelihood between the predictive

posterior distribution ¢(¢;) and truth value y;,

with M as the amount of sampled predictions to

compute the average over.

For quantification of the year at which the
trained neural networks are able to recognise
patterns indicating a changing climate, we use the
method proposed by Mora et al. (28), which com-
putes which years predicted by the neural network
exceeds the bounds of historical variability in a
specified baseline period. They state a baseline
period of 20 years is sufficient and there is only
small difference between the year found for the first
few consecutive years outside the bounds and the
year found when considering all subsequent years
to lie outside the bounds of historical variability.
Therefore, we have defined a baseline period from
1920 - 1940, evaluated the years predicted by the

15

test set from that period and defined the 'year of
changing climate recognition’ to be the first year
after 1940 for which all subsequent years the
neural network predicts a later year than the latest
predicted year in the baseline period. In order to
get a more robust answer, we computed the year
of changing climate recognition for 25 iterations
of training the neural networks. Other statistics
presented in figures and text, such as the required
runtime and the predictive errors, have also been
compared with the statistics found through 25
iterations in order to validate for robustness.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available after
the references and notes.

Text S1. Extra information on data retrieval and
processing

Text S2. More specifics on neural network
implementation and accessibility

Fig. S1. Predictive results of neural networks with
different subsets of training and testing data.

Fig. S2. Predictive results of neural networks where the
global mean is removed.

Fig. S3. Predictive results of neural networks with
altered architectures.

Fig. S4. Predictive results of neural networks with 1 layer
and 1 hidden unit, used for finding indicator patterns.
Table S1. Properties of CMIP5 model output products for
near-surface air temperature, including retrieval
locations.

Table S2. Properties of CMIP5 model output product for
precipitation, including retrieval locations.

Table S3. Information on used programmes and
packages.

DATA AND MATERIAL AVAILABILITY

Information on how to use the provided code or retrieve
CMIPS5 data is provided through the Supplementary
Materials. All data and code used in this paper and
required to validate our conclusions can be found online
through Github athttps://github.com/jessearens/
Bayesian-climate-patterns.

REFERENCES

1. J.A. Curry and PJ. Webster, Climate science and the
uncertainty monster, Bulletin of the American
Meteorological Society 92,1667 (2011).

2. A.J. Watson, Certainty and uncertainty in climate
change predictions: What use are climate models?,

10.

11.

Environmental and Resource Economics 39, 37
(2008).

. L. Bock, A. Lauer, M. Schlund, M. Barreiro,

N. Bellouin, C. Jones, G. A. Meehl, V. Predoi, M.].
Roberts, and V. Eyring, Quantifying Progress Across
Different CMIP Phases With the ESMValTool, Journal
of Geophysical Research: Atmospheres 125,1 (2020).

. V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors,

C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.L
Gomis, M. Huang, K. Leitzell, E. Lonnoy,].B.R.
Matthews, T.K. Maycock, T. Waterfield, O. Yelekgi,

R. Yu, and B. Zhou, Climate Change 2021: The
Physical Science Basis. Contribution of Working Group
I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change
(Cambridge University Press, Cambridge, United
Kingdom, 2021).

. N. Oreskes, K. Shrader-Frechette, and K. Belitz,

Verification, validation, and confirmation of
numerical models in the earth sciences, Science 263,
641 (1994).

. R.D. Cess, G.L. Potter,].P. Blanchet, G.]. Boer, S.J. Ghan,

].T. Kiehl, H. Le Treut, X.-Z. Liang,].E.B. Mitchell,].-].
Morcrette, D.A. Randall, M.R. Riches, E. Roeckner,
U. Schlese, A. Slingo, K.E. Taylor, W.M. Washington,
R.T. Wetherald, and I. Yagai, Interpretation of
Cloud-Climate Feedback as Produced by 14
Atmospheric General Circulation Models, Science
245,513 (1989).

. C. Tebaldi and R. Knutti, The use of the multi-model

ensemble in probabilistic climate projections,
Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences
365,2053 (2007).

. K.E. Taylor, R.]. Stouffer, and G.A. Meehl, An overview

of CMIP5 and the experiment design, Bulletin of the
American Meteorological Society 93, 485 (2012).

. TE Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K.

Allen,]. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M.
Midgley, Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on
Climate Change (Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA,
2013).

V. Eyring, S. Bony, G.A. Meehl, C.A. Senior, B. Stevens,
R.J. Stouffer, and K.E. Taylor, Overview of the Coupled
Model Intercomparison Project Phase 6 (CMIP6)
experimental design and organization, Geoscientific
Model Development 9, 1937 (2016).

V. Eyring, PM. Cox, G.M. Flato, PJ. Gleckler,
G. Abramowitz, P. Caldwell, W.D. Collins, B.K. Gier,

16

12.

13.

14.

15.

16.

17.

18.

A.D. Hall, EM. Hoffman, G.C. Hurtt, A. Jahn, C.D. Jones,
S.A. Klein,].P. Krasting, L. Kwiatkowski, R. Lorenz,

E. Maloney, G.A. Meehl, A.G. Pendergrass, R. Pincus,
A.C. Ruane,].L. Russell, B.M. Sanderson, B.D. Santer,
S.C. Sherwood, L.R. Simpson, R.J. Stouffer, and M.S.
Williamson, Taking climate model evaluation to the
next level, Nature Climate Change 9, 102 (2019).

E. Hawkins and R. Sutton, The potential to narrow
uncertainty in regional climate predictions, Bulletin
of the American Meteorological Society 90, 1095
(2009).

N. Nakicenovic and Rob Swart, Emission Scenarios,
(Intergovernmental Panel on Climate Change)
Cambridge University Press 1,570 (2000).

D.P. van Vuuren,]. Edmonds, M. Kainuma, K. Riahi,
A. Thomson, K. Hibbard, G.C. Hurtt, T. Kram, V. Krey,
J-F. Lamarque, T. Masui, M. Meinshausen,

N. Nakicenovic, S.J. Smith, and S.K. Rose, The
representative concentration pathways: An
overview, Climatic Change 109, 5 (2011).

K. Riahi, D.P. van Vuuren, E. Kriegler, B.C. Edmonds,
J.and O’Neill, S. Fujimori, N. Bauer, K. Calvin,

R. Dellink, O. Fricko, W. Lutz, A. Popp, J.C. Cuaresma,
S. KC, M. Leimbach, L. Jiang, T. Kram, S. Rao,

J. Emmerling, K. Ebi, T. Hasegawa, P. Havlik,

F. Humpendder, L.A. Da Silva, S. Smith, E. Stehfest,

V. Bosetti,]. Eom, D. Gernaat, T. Masui,]. Rogelj,

]. Strefler, L. Drouet, V. Krey, G. Luderer, M. Harmsen,
K. Takahashi, L. Baumstark,].C. Doelman,

M. Kainuma, Z. Klimont, G. Marangoni,

H. Lotze-Campen, M. Obersteiner, A. Tabeau, and

M. Tavoni, The Shared Socioeconomic Pathways and
their energy, land use, and greenhouse gas
emissions implications: An overview, Global
Environmental Change 42, 153 (2017).

R. Knutti and G.C. Hegerl, The equilibrium sensitivity
of the Earth’s temperature to radiation changes,
Nature Geoscience 1, 735 (2008).

B.M. Sanderson, M. Wehner, and R. Knutti, Skill and
independence weighting for multi-model
assessments, Geoscientific Model Development 10,
2379 (2017).

P.G. Sansom, D.B. Stephenson, and TJ. Bracegirdle,
On Constraining Projections of Future Climate Using
Observations and Simulations From Multiple
Climate Models, Journal of the American Statistical
Association (2021).

. D.WJ. Thompson, E.A. Barnes, C. Deser, W.E. Foust,

and A.S. Phillips, Quantifying the role of internal
climate variability in future climate trends, Journal
of Climate 28, 6443 (2015).

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

J.E. Kay, C. Deser, A. Phillips, A. Mai, C. Hannay,

G. Strand, J. M. Arblaster, S.C. Bates, G. Danabasoglu,
J. Edwards, M. Holland, P. Kushner, J-F. Lamarque,
D. Lawrence, K. Lindsay, A. Middleton, E. Munoz,

R. Neale, K. Oleson, L. Polvani, and M. Vertenstein,
The community earth system model (CESM) large
ensemble project : A community resource for
studying climate change in the presence of internal
climate variability, Bulletin of the American
Meteorological Society 96, 1333 (2015).

N. Jones, How machine learning could help to
improve climate forecasts, Nature 548, 379 (2017).

A. Karpatne, 1. Ebert-Uphoff, S. Ravela, H.A. Babaie,

and V. Kumar, Machine Learning for the Geosciences:

Challenges and Opportunities, [EEE Transactions on
Knowledge and Data Engineering 31, 1544 (2019).

A. McGovern, R. Lagerquist, D.J. Gagne, G.E.
Jergensen, K.L. Elmore, C.R. Homeyer, and T. Smith,
Making the black box more transparent:
Understanding the physical implications of machine
learning, Bulletin of the American Meteorological
Society 100, 2175 (2019).

M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung,

J. Denzler, N. Carvalhais, and Prabhat, Deep learning
and process understanding for data-driven Earth
system science, Nature 566, 195 (2019).

E. A. Barnes,].W. Hurrell, I. Ebert-Uphoff,

C. Anderson, and D. Anderson, Viewing Forced
Climate Patterns Through an Al Lens, Geophysical
Research Letters 46, 13389 (2019).

Y. Gal, Uncertainty in Deep Learning, Ph.D. thesis,
University of Cambridge (2016).

C. Blundell,]. Cornebise, K. Kavukcuoglu, and

D. Wierstra, Weight uncertainty in neural networks,
Proceedings of the 32nd International Conference on
Machine Learning, ICML 2015 37,1613 (2015).

C. Mora, A.G. Frazier, RJ. Longman, R.S. Dacks, M.M.
Walton, E.J. Tong,].J. Sanchez, L.R. Kaiser, Y.O.
Stender,].M. Anderson, C.M. Ambrosino,

I. Fernandez-Silva, L.M. Giuseffi, and T.W.
Giambelluca, The projected timing of climate
departure from recent variability, Nature 502, 183
(2013).

M. Hutson, Artificial intelligence faces
reproducibility crisis Unpublished code and
sensitivity to training conditions make many claims
hard to verify, Science 359, 725 (2018).

D.N. Williams, R. Ananthakrishnan, D. E. Bernholdt,
S. Bharathi, D. Brown, M. Chen, A. L. Chervenak,

L. Cinquini, R. Drach, L. T. Foster, P. Fox, D. Fraser,

J. Garcia, S. Hankin, P. Jones, D. E. Middleton,

17

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

J. Schwidder, R. Schweitzer, R. Schuler, A. Shoshani,
F. Siebenlist, A. Sim, W. G. Strand, M. Su, and

N. Wilhelmi, The earth system grid: Enabling access
to multimodel climate simulation data, Bulletin of
the American Meteorological Society 90, 195 (2009).

M.D. Wilkinson, M. Dumontier, I].]. Aalbersberg,

G. Appleton, M. Axton, A. Baak, N. Blomberg,].W.
Boiten, P.E. da Silva Santos, L.B.and Bourne,

]J. Bouwman, A.]. Brookes, T. Clark, M. Crosas, I. Dillo,
0. Dumon, S. Edmunds, C.T. Evelo, R. Finkers,

A. Gonzalez-Beltran, A.].G. Gray, P. Groth, C. Goble, J.S.
Grethe,]. Heringa, P.A.C. t Hoen, R. Hooft, T. Kuhn,

R. Kok, J. Kok, S.J. Lusher, M.E. Martone, A. Mons, A.L.
Packer, B. Persson, P. Rocca-Serra, M. Roos, R. van
Schaik, S.A. Sansone, E. Schultes, T. Sengstag,

T. Slater, G. Strawn, M.A. Swertz, M. Thompson, J. Van
Der Lei, E. Van Mulligen,]. Velterop, A. Waagmeester,
P. Wittenburg, K. Wolstencroft, J. Zhao, and B. Mons,
Comment: The FAIR Guiding Principles for scientific
data management and stewardship, Scientific Data
3,1 (2016).

S. Bach, A. Binder, G. Montavon, F. Klauschen, K.R.
Miiller, and W. Samek, On pixel-wise explanations for
non-linear classifier decisions by layer-wise
relevance propagation, PLoS ONE 10, 1 (2015).

K. Bykov, M.M.-C. Hohne, K.-R. Miiller, S. Nakajima,
and M. Kloft, How Much Can I Trust You? -
Quantifying Uncertainties in Explaining Neural
Networks, arXiv Preprint, vl (2020).

B.A. Toms, E.A. Barnes, and 1. Ebert-Uphoff,
Physically Interpretable Neural Networks for the
Geosciences: Applications to Earth System
Variability, Journal of Advances in Modeling Earth
Systems 12 (2020).

E.A. Barnes, B.A. Toms,].W. Hurrell, I. Ebert-Uphoff,
C. Anderson, and D. Anderson, Indicator Patterns of
Forced Change Learned by an Artificial Neural
Network, Journal of Advances in Modeling Earth
Systems 12,1 (2020).

Z.M. Labe and E.A. Barnes, Detecting climate signals
using explainable Al with single-forcing large
ensembles, ESSOAr pp. 1-40 (2021).

K. Fabi and J. Schneider, On Feature Relevance
Uncertainty: A Monte Carlo Dropout Sampling
Approach, ArXiv Preprint, v1 (2020).

K. Taylor, S.r Ronald, and G. Meehl, A summary of the
cmip5 experiment design, PCDMI Rep. 4 (2007).

U. Schulzweida, CDO User Guide (2019).

P.W. Jones, First- and second-order conservative
remapping schemes for grids in spherical
coordinates, Monthly Weather Review 127, 2204
(1999).

41.

42.

43.

44,

45.

46.

47.

48.

49.

M. Abadji, P. Agarwal, A.and Barham, E. Brevdo,

Z. Chen, C. Citro, G.S. Corrado, A. Davis, . Dean,

M. Devin, S. Ghemawat, 1. Goodfellow, A. Harp,

G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,

M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore,
D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,

V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,

M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
TensorFlow: Large-scale machine learning on
heterogeneous systems (2015). Software available
from tensorflow.org.

F. Chollet et al,, Keras (2015). Software available
from Keras.io.

X. Glorot and Y. Bengio, Understanding the difficulty
of training deep feedforward neural networks,
Journal of Machine Learning Research 9, 249 (2010).

M.D. Zeiler, Adadelta: An adaptive learning rate
method, ArXiv Preprint, v1 (2012).

D.P. Kingma and J. Ba, Adam: A method for stochastic
optimization, ArXiv Preprint, v9 (2017).

V. Mullachery, A. Khera, and A. Husain, Bayesian
Neural Networks, CoRR (2018).

D.M. Blei, A. Kucukelbir, and J.D. McAuliffe,
Variational Inference: A Review for Statisticians,
Journal of the American Statistical Association 112,
859 (2017).

J.V. Dillon, I. Langmore, D. Tran, E. Brevdo,
S. Vasudevan, D. Moore, B. Patton, A. Alemi,
M. Hoffman, and R.A. Saurous, TensorFlow
Distributions, ArXiv Preprint, vl (2017).

V. Fortuin, A. Garriga-Alonso, S.W. Ober, F. Wenzel,
G. Ratsch, R.E. Turner, M. van der Wilk, and

L. Aitchison, Bayesian Neural Network Priors
Revisited, ArXiv Preprint, v3 pp. 1-17 (2021).

18

Supplementary Materials

Supplementary Texts

Text S1: Extra information on data retrieval and processing

CMIP5 output data is retrieved through the Earth System Grid Federation. We found the archives pro-
vided by the Department of Energy/Lawrence Livermore National Laboratory (DOE/LLNL) to be the
most complete and easiest access to the data. They can be accessed through their CMIP5 node. The
easiest way to download is through Globus Connect on your personal device. In order to do this, you
need an account at DOE/LLNL and an account at Globus. Unfortunately, not all used CMIP5 data was
accessible through the DOE/LLNL node at Globus. Supplementary Tables S1 and S2 provide informa-
tion about which climate models have been included in this study and where they have been retrieved.

Data processing is performed using Climate Data Operators (CDO). CDO is a command-line tool
allowing for operations on geospatial datasets. With the used datasets as provided in Tables S1 and
S2, there were a few problems in computing the 4° by 4° global grid, annual mean maps. Combin-
ing of historical with rcp8.5 experiments for GFDL-CM3, GFDL-ESM2G and GFDL-ESM-2M resulted
in two different parameters for monthly average temperature. In the end, besides a warning, this
posed no problems. The precipitation model for HadGEM2-ES contained a double month at the end
of the rcp8.5 dataset, which was solved by specifically selecting only up till the first entry. Further-
more, HadGEM2-ES also posed a problem with the historical experiment running a month shorter
than the other models, whereas the rcp8.5 experiment started a month earlier. This was solved
by selecting 2005 as the start year for the rcp8.5 experiment’s processing, which was possible be-
cause no other experiments had 2005 in their rcp8.5 data. Similarly, NorESM1-ME had extended
historical data, resulting in double months when merging the historical with rcp8.5 experiment. This
was solved by explicitly selecting only up to and in including 2005 as data for the historical experi-
ments. The CDO shell script and output .npz files are available through the Github repository found
athttps://github.com/jessearens/Bayesian-climate-patterns.

Text S2: More specifics on neural network implementation

Neural network implementation is mainly performed using python with the Tensorflow and Tensorflow
Probability packages. The code can be found on Github throughhttps://github.com/jessearens/
Bayesian-climate-patterns. Required packages to run the code and their version types are pro-
vided in Table S3. The repository is split into two folders: Core and Tests, with the first containing
the main functions and scripts to produce the main results presented in this thesis. The latter contains
supplementary scripts used for finding optimal hyper-parameters and testing results on robustness.
Detailed code description is provided for the Core code and is meant to provide sufficient information
for replicability and reproducibility of the main experiment.

19

https://esgf-node.llnl.gov/search/cmip5/
https://esgf-node.llnl.gov/user/add/?next=http://esgf-node.llnl.gov/projects/esgf-llnl/
https://app.globus.org/
https://github.com/jessearens/Bayesian-climate-patterns
https://github.com/jessearens/Bayesian-climate-patterns
https://github.com/jessearens/Bayesian-climate-patterns

20

2. Supplementary Materials

Supplementary Figures

A)

Near-surface air temperature

B)

Near-surface air temperature

Near-surface air temperature

2100 2100 2100 2
2080 2080 2080
2060 2060 2060
5 2040 5 2040 5 2040
g 13 g 3 d
5 2020 = 2020 q 5 2020 o’
g £ " g
£ 2000 £ 2000 3 & v £ 2000 -
H H s 2 i A
5 1980 5 1980 5 & 1980
1960 1960 1960 -
1940 1940 X RR 1940
Post Year 2000 Post Year 2000 LS Post Year 2t
1920 Mean Absolute Error 1920 Mean Absolute Error 1920 N N Mean Absolute Error
1900 Training: 7.94 1900 Training: 7.35 1900 Taining: 7.01
Testing: 1653 Testing: 8.12 Testing: 15.48
1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100 1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100 1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100
actual year actual year actual year

Near-surface air temperature

E)

Near-surface air temperature

Near-surface air temperature

2100 2100 2100
2080 2080 2080
2060 2060 2060
5 2040 5 2040 5 2040
g g g
S 3 2
< 2020 2 2020 < 2020 8
B g g L5 -
S 2000 S 2000 . £ 2000 h 3
g 2 5 2 ;
& 1080 £ 1980 & 1980 . 3
1960 1960 1960
1940 1940 % 1940
Post Year 2000 Post Year 2000 Post Year 2000
1920 S e Mean Absolute Error 1920 . Mean Absolute Error 1920 Mean Absolute Error
1500 2 T Taming 714 1500 raning 1011 1900 Taining: 897
st e at Testing 2183 Testing: 2089 Testing, 11.38

1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100

1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100

1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100

actual year actual year actual year
Precipitation Precipitation Precipitation
2100 E 2100 2100
2080 2080 2080
2060 4 2060 5 v 2060 .
5 2000 . i 5 2040 . 5 2000 o
2 I oA 2 . 2 o J
2 2020 o < 2020 : : 2 2020 .
3 . - g 3
g 2000 e ite e 4 g 2000 S 2000 o e tns
2 syt Bt & 2 3 0
£ 1080 £ 1980 £ 1080 -~
5 5 5
1960 -y 1960 1960
1940 % 1940 1940 -
Post Year 2000 Post Year 2000 Post Year 2000
1920 Mean Absolute Error 1920 Mean Absolute Error 1920 Mean Absolute Error
1900 Training: 12.67 1900 Training: 12.95 1900 Training: 13.00
Testing. 16,44 Testing. 24.47 Testing. 14 49

1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100

1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100

1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100

actual year actual year actual year
Precipitation Precipitation Precipitation
3
. i
2100 .. 2100 .. 2100
2080 ¥ 2080 2080 p
S
2060 b . 2060 . 2060
5 2040 i i 2040 . 5 2040
S A 2 .3 S
3 2020 £ < 2020 .) 3 2020
g g .. 2
S 2000 e g 2000 . 3] S 2000
H o H PRTNY : T
£ 1980 4 £ 1980 A £ 1980
1960 ¥ 1960 1960
1940) - 1940 B 1940
Post Year 2000 Post Year 2000
1920 Mean Absolute Error 920 Mean Absolute Error 1920 N Mean Absolute Error
1900 Training: 11.77 1900 Training: 12.75 1900 Training: 11.38
Testing: 16,31 Testing: 11.17 Testing: 35.00

1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100
actual year

1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100
actual year

1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100
actual year

Figure S1: Prediction results of a Bayesian neural network trained on near-surface air temperature and precipitation
input maps, for different subsets of training and testing data. Predicted year versus actual input map year for both testing
and training for (A-F) Bayesian neural networks trained on CMIP5 near-surface air temperature maps and for (G-L) Bayesian
neural networks trained on CMIP5 precipitation maps. Training results are shown in grey, testing results are shown in colors,
each representing one climate model’s simulation. A 1:1 line is plotted in black. Predictive post-year 2000 mean absolute errors
are printed in the lower right corner of the figure and indicate how well the model performs on the second half of the time series.

21

Near-surface air temperature Precipitation
PR
o &,
. .
2100 q opaa 2100 o3,
3
2080 A R~ 2080 A -~
.
2060 - A 2060 - 3 -
N ot . . .
5 20404 - , L~ T 20404 E ~.
1 e e v .
o 2020 i C e o 20201 - ~
S 2000 o, il + £ 2000 .. T :
B - <O ¥ T e 120 Yhe
o 1980 4 e S 1980 4 PO
o e
1960 1 Lo 1960 i}
"V b -
1940 4 % ,‘..:.. ie 1940 4 s e .
1920 4 Ay, el LU Post Year 2000 1920 4 e Post Year 2000
: PP AT O Mean Absolute Error Mean Absolute Error
1900 A P I Training: 8.58 1900 - Training: 13.07
,,:..:' St Testing: 18 45 Testing: 21.34
— T e —— — T T T —— —
1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100 1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100
actual year actual year

Figure S2: Prediction results of a Bayesian neural network trained on near-surface air temperature and precipitation
input maps, with global mean removed. Predicted year versus actual input map year for both testing and training for (A) a
Bayesian neural network fed with CMIP5 near-surface air temperature maps and (B) a Bayesian neural network fed with CMIP5
precipitation maps. The global mean value has been removed from all maps. Training results are shown in grey, testing results
are shown in colors, each representing one climate model’s simulation. A 1:1 line is plotted in black. Predictive post-year 2000
mean absolute errors are printed in the lower right corner of the figure and indicate how well the model performs on the second
half of the time series.

22

2. Supplementary Materials

A)

Near-surface air temperature

B)

Near-surface air temperature

Near-surface air temperature

2100 2100 2100
2080 2080 2080
2060 2060 2060
& 2040 5 2040 4 & 2040
g 2 ¢ S
3 2020 3 2020 3 2020
£ £ £
£ 2000 Z 2000 S 2000 -
£ 1080 el £ 1080 g ¥ £ 1080 gy
1960 1960 1960
1940 1940 S 1940
Post Year 2000 L St Post Year 2000 - Post Year 2000
1920 Mean Absolute Error 1920 4 Mean Absolute Error 1920 K Mean Absolute Error
1900 Training: 8.97 1900 Training: 802 1900 Taining: 762
Testing' 1055 Testing: 10.11 Testing' 1013
1900 1920 1940 1950 1980 2000 2020 2040 2060 2080 2100 1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100 1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100
actual year tual year
Near-surface air temperature Near-surface air temperature Near-surface air temperature
2100 2100 2100
2080 2080 2080
2060 2060 2060
5 2040 5 2040 5 2040
H H 3 H
g g g
3 2020 3 2020 . 2 2020
2 3]
§ 2000 . S 2000 g 2000 N ,
£ 1080 3 & 1080 & 1080 P
1960 1960 Tid 1960
1940 s 1940 " 1940
"o Post Year 2000 Post Year 2000 . v Post Year 2000
1920 B Mean Absolute Error 1920 Mean Absolute Error 1920 Mean Absolute Error
1900 Taining: 791 1900 Taining: 14.91 1900 Taining: 22.84
Testing: 8,13 Testing 15.95 Testing: 28.01

1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100

1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100

1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100

actual year actual year actual year
Precipitation Precipitation Precipitation
2100 2100 2100
2080 2080 2080
2060 ..' % 2060 2060
& 2040 A 5 2040 & 2040
g . g g
> N > P s > e,
2 2020 o 5 . = 2020 3 2020 .
B g B
< 2000 £ 2000 }.*‘ < 2000 ¥
3 3 Ser s 2
& 1080 £ 1980 7 & 1080
1960 . 1960 v 1960 .
1940 7 ol 1940 Ry 1940 ot
1920 ° Post Year 2000 1920 Post Year 2000 1920 Post Year
Mean Absolute Error Mean Absolute Error Mean Absolute Error
1900 Training: 12.11 1900 Trining: 12.77 1900 Training: 11.52
Testing. 22.04 Testing: 16.06 Testing: 17.58

1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100

1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100

1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100

actual year actual year actual year
Precipitation Precipitation Precipitation
2100 2100 2100 .
2080 2080 2080 3
2060 2060 2060 o
R
5 2040 5 2040 5 2040
3 2 S
5 2020 03 < 2020 5 2020
£ £ £
£ 2000 £ 2000 £ 2000 L
5 3 -
3 3 B .
& 1980 & 1980 & 1980 -
1960 1960 1960 SR
£A
1940 1940 1940 e, o
Post Year 2000 Post Year 2000 Year 2000
1020 Mean Absolute Error 920 Mean Absolute Error 1020 Mean Absolute Error
1900 Training: 12.95 1900 Training: 15.02 1900 Training: 23.87
Testing: 19.77 Testing: 20.06 Testing: 27.65
1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100 1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100 1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100

actual year

actual year

actual year

Figure S3: Prediction results of a Bayesian neural network trained on near-surface air temperature and precipitation
input maps, for different architectures of the neural networks. Predicted year versus actual input map year for both testing
and training for (A-F) a Bayesian neural network fed with CMIP5 near-surface air temperature maps and (G-L) a Bayesian neural
network fed with CMIP5 precipitation maps. Different neural network architectures used are: (A and G) 3 layers of 10 units each,
(B and H) 4 layers of 10 units each, (C and I) 2 layers of 5 units each, (D and J) 2 layers of 20 units each, (E and K) 2 layers
of 50 units each and finally (F and L) 2 layers of 100 units each. Training results are shown in gray, testing results are shown in
colors, each representing one climate model’s simulation. A 1:1 line is plotted in black. Predictive post-year 2000 mean absolute
errors are printed in the lower right corner of the figure and indicate how well the model performs on the second half of the time
series.

23

Near-surface air temperature Precipitation
s,
2100 4 2100 4
.
2080 - 2080 - K
2060+ 2060 4
s
§ 2040 4 y © 2040 4 .
@ . o .
= . > .
32 20204 . 3 20204 -
. . . g
£ 20001 . o g < 20001 L e .
@ el W o’ 51 L]
5 1980 1 PR “ 5 1980 g
.
1960 | 5 v 1960 | Wk) S
. e, e
1940 + b . 1940 +
] Post Year 2000] Post Year 2000
1920 Mean Absolute Error 1920 Mean Absolute Error
1900 Training: 7.22 1900 - Training: 18.53
Testing: 10.20 Testing: 22.72
T T
1900 1920 1940 1960 19802000 20202040 2060 20802100 1900 1920 1940 1960 198020002020 2040 2060 2080 2100
actual year actual year
Near-surface air temperature Precipitation
21004 21004
2080+ 2080 4
2060 4 2060 4
© 2040 4 T 2040 4
@ o H
> — >
- 2020 - 2020
g 2000 | C Y- -l - g 2000 |
5 [\ Ly s 5
2 N g
& 1980 » & 1980
1960 - a 1960 -
1940 + ‘.ﬂ 1940 4
Nyt
o
] r) Post Year 2000] Post Year 2000
1920 " cf Mean Absolute Error 1920 Mean Absolute Error
1900 Training: 12.20 1900 Training: 14.08
Testing: 13.73 Testing: 18.83
T T
1900 1920 1940 1960 19802000 20202040 206020802100 1900 1920 1940 1960 1980 20002020 2040 2060 2080 2100
actual year actual year

Figure S4: Prediction results for near-surface air temperature and precipitation. Predicted year versus actual input map
year for both testing for (A) An 1-unit artificial neural network fed with CMIP5 near-surface air temperature maps. (B) An 1-unit
artificial neural network fed with CMIP5 precipitation maps. (C) An 1-unit Bayesian neural network fed with CMIP5 near-surface
air temperature maps. (D) An 1-unit Bayesian neural network fed with CMIP5 precipitation maps. Training results are shown
in grey, testing results are shown in colors, each representing one climate model’'s simulation. A 1:1 line, indicating a perfect
prediction, is plotted in black. Predictive post-year 2000 mean absolute errors are printed in the lower right corner of the figure
and indicate how well the model performs on the second half of the time series.

24 2. Supplementary Materials

Supplementary Tables

Table S1: Properties of CMIP5 model output products for near-surface air temperature, including retrieval locations.

Name Modeling center Retrieved from Extra information

ACCESS1-0 CSIRO and BOM ESGF (DOE/LLNL) -

ACCESS1-3 CSIRO and BOM ESGF (DOE/LLNL) -

CCsSM4 NCAR ESGF (DOE/LLNL) RCP8.5 forcing through
Earth System Grid

CESM1-BGC CESM-Contributors ESGF (DOE/LLNL) -

CMCC-CMS CMCC CMCC data services | -

CNRM-CM5 CNRM & CERFACS ESGF (DOE/LLNL) two versions avail-
able, we used versions
v20110901 (historical)
and v20110930 (rcp8.5)

CSIRO-Mk3-6-0 CSIRO & QCCCE ESGF (DOE/LLNL) -

CanESM2 CCCma CCCma esmHistorical and esm-
RCP8.5 versions

GFDL-CM3 NOAA-GFDL ESGF (DOE/LLNL) -

GFDL-ESM2G NOAA-GFDL ESGF (DOE/LLNL) -

GFDL-ESM2M NOAA-GFDL NOAA-GFDL data esmHistorical and
esmRCP8.5 versions,
v20110601 -

GISS-E2-H-CC NASA GISS ESGF (DOE/LLNL) rcp8.5 forcing through
NASA NCCS data ser-
vices, v20160512

GISS-E2-H NASA GISS ESGF (DOE/LLNL) -

GISS-E2-R-CC NASA GISS ESGF (DOE/LLNL) rcp8.5 forcing through
NASA NCCS data ser-
vices, v20160512

GISS-E2-R NASA GISS ESGF (DOE/LLNL) -

HadGEM2-AO METRI KMA ESGF (DOE/LLNL) -

HadGEM2-CC Met Office Hadley Centre ESGF (DOE/LLNL) -

HadGEM2-ES Met Office Hadley Centre ESGF (DOE/LLNL) -

inmcm4 INM ESGF (DOE/LLNL) -

IPSL-CM5A-LR IPSL ESGF (DOE/LLNL) -

IPSL-CM5A-MR IPSL ESGF (DOE/LLNL) -

MIROC-ESM-CHEM | JAMSTEC & CCSR-NIES | ESGF (DOE/LLNL) -

MIROC-ESM JAMSTEC & CCSR-NIES | ESGF (DOE/LLNL) -

MIROC5 JAMSTEC & NIES & AORI | ESGF (DOE/LLNL) -

MPI-ESM-MR MPI-M ESGF (DOE/LLNL) -

MRI-CGCM3 MRI ESGF (DOE/LLNL) historical forcing through
Woods Hole Oceano-
graphic Institution,
v20110831

NorESM1-M NCC ESGF (DOE/LLNL) -

NorESM1-ME NCC ESGF (DOE/LLNL) -

https://www.earthsystemgrid.org/dataset/cmip5.output1.NCAR.CCSM4.rcp85.mon.atmos.Amon.r1i1p1.html?df=true
https://www.cmcc.it/data-services-and-products/data-list
http://climate-modelling.canada.ca/climatemodeldata/cgcm4/CanESM2/historical/mon/atmos/index.shtml
ftp://nomads.gfdl.noaa.gov/CMIP5/output1/NOAA-GFDL/GFDL-ESM2M/
https://ds.nccs.nasa.gov/thredds/idd/cmip5.html
https://ds.nccs.nasa.gov/thredds/idd/cmip5.html
https://ds.nccs.nasa.gov/thredds/idd/cmip5.html
https://ds.nccs.nasa.gov/thredds/idd/cmip5.html
http://cmip5.whoi.edu:8080/data/CMIP5/output1/MRI/MRI-CGCM3/historical/mon/atmos/Amon/r1i1p1/
http://cmip5.whoi.edu:8080/data/CMIP5/output1/MRI/MRI-CGCM3/historical/mon/atmos/Amon/r1i1p1/

25

Table S2: Properties of CMIP5 model output product for precipitation, including retrieval locations.

Name Modeling center Retrieved from Extra information

ACCESS1-0 CSIRO & BOM ESGF (DOE/LLNL) -

ACCESS1-3 CSIRO & BOM ESGF (DOE/LLNL) -

CMCC-CMS CMCC CMCC data services | -

CNRM-CM5 CNRM & CERFACS ESGF (DOE/LLNL) two versions avail-
able, we used versions
v20110901 (historical)
and v20110930 (rcp8.5)

CSIRO-Mk3-6-0 CSIRO & QCCCE ESGF (DOE/LLNL) -

CanESM2 CCCma CCCma esmHistorical and esm-
RCP8.5 versions

GFDL-CM3 NOAA-GFDL ESGF (DOE/LLNL) -

GFDL-ESM2G NOAA-GFDL ESGF (DOE/LLNL) -

GFDL-ESM2M NOAA-GFDL NOAA-GFDL data esmHistorical and
esmRCP8.5 versions,
v20110601

GISS-E2-H-CC NASA GISS ESGF (DOE/LLNL) rcp8.5 forcing through
NASA NCCS data ser-
vices, v20160512

GISS-E2-H NASA GISS ESGF (DOE/LLNL) -

GISS-E2-R-CC NASA GISS ESGF (DOE/LLNL) rcp8.5 forcing through
NASA NCCS data ser-
vices, v20160512

GISS-E2-R NASA GISS ESGF (DOE/LLNL) -

HadGEM2-CC Met Office Hadley Centre ESGF (DOE/LLNL) -

HadGEM2-ES Met Office Hadley Centre ESGF (DOE/LLNL) -

inmcm4 INM ESGF (DOE/LLNL) -

MIROC-ESM-CHEM | JAMSTEC & CCSR-NIES | ESGF (DOE/LLNL) -

MIROC-ESM JAMSTEC & CCSR-NIES | ESGF (DOE/LLNL) -

MIROC5 JAMSTEC & NIES & AORI | ESGF (DOE/LLNL) -

MRI-CGCM3 MRI ESGF (DOE/LLNL) historical forcing through
Woods Hole Oceano-
graphic Institution,
v20110831

NorESM1-M NCC ESGF (DOE/LLNL) -

NorESM1-ME NCC ESGF (DOE/LLNL) -

Table S3: Information on used programmes and packages.

Name Version | Project location

CUDA Toolkit 11.0 https://developer.nvidia.com/cuda-toolkit-archive
CuDNN SDK 8.1.0 https://developer.nvidia.com/cudnn
Climate Data Operators 1.9.9rc1 | https://code.mpimet.mpg.de/projects/cdo
Generic Mapping Tools 6.1.1 https://www.generic-mapping-tools.org/
Python 3.8.10 https://www.python.org

- matplotlib 3.4.3 https://matplotlib.org/

- netCDF4 1.5.8 http://unidata.github.io/netcdfd-python/
- numpy 1.20.3 https://numpy.org/

- pygmt 0.21 https://www.pygmt.org/

- scipy 1.7.3 https://scipy.org/

- TensorFlow 2.8.0 https://www.tensorflow.org/

- TensorFlow GPU support | 2.6.0 https://www.tensorflow.org/install/gpu

- TensorFlow Probability 0.13.0 https://www.tensorflow.org/probability/

https://www.cmcc.it/data-services-and-products/data-list
http://climate-modelling.canada.ca/climatemodeldata/cgcm4/CanESM2/historical/mon/atmos/index.shtml
ftp://nomads.gfdl.noaa.gov/CMIP5/output1/
https://ds.nccs.nasa.gov/thredds/idd/cmip5.html
https://ds.nccs.nasa.gov/thredds/idd/cmip5.html
https://ds.nccs.nasa.gov/thredds/idd/cmip5.html
https://ds.nccs.nasa.gov/thredds/idd/cmip5.html
http://cmip5.whoi.edu:8080/data/CMIP5/output1/MRI/MRI-CGCM3/historical/mon/atmos/Amon/r1i1p1/
http://cmip5.whoi.edu:8080/data/CMIP5/output1/MRI/MRI-CGCM3/historical/mon/atmos/Amon/r1i1p1/
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cudnn
https://code.mpimet.mpg.de/projects/cdo
https://www.generic-mapping-tools.org/
https://www.python.org
https://matplotlib.org/
http://unidata.github.io/netcdf4-python/
https://numpy.org/
https://www.pygmt.org/
https://scipy.org/
https://www.tensorflow.org/
https://www.tensorflow.org/install/gpu
https://www.tensorflow.org/probability/

	Paper: Detecting climate patterns through a Bayesian neural network approach
	Supplementary Materials

