<]
TUDelft

Delft University of Technology

ANANKE: a Q-Learning-Based Portfolio Scheduler for Complex Industrial Workflows

Ma, Shenjun; llyushkin, Alexey; Stegehuis, Alexander; losup, Alexandru

DOI
10.1109/ICAC.2017.21

Publication date
2017

Document Version
Accepted author manuscript

Published in
14th IEEE Int'l Conference on Autonomic Computing (ICAC)

Citation (APA)

Ma, S., llyushkin, A., Stegehuis, A., & losup, A. (2017). ANANKE: a Q-Learning-Based Portfolio Scheduler
for Complex Industrial Workflows. In 14th IEEE Int'l Conference on Autonomic Computing (ICAC) (pp. 227-
232) https://doi.org/10.1109/ICAC.2017.21

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/ICAC.2017.21
https://doi.org/10.1109/ICAC.2017.21

ANANKE: a Q-Learning-Based Portfolio Scheduler
for Complex Industrial Workflows

Alexey Ilyushkin
TU Delft, the Netherlands
a.s.ilyushkin @ tudelft.nl

Shenjun Ma
TU Delft, the Netherlands
s.ma@tudelft.nl

Abstract—Complex workflows that process sensor data are
useful for industrial infrastructure management and diagnosis.
Although running such workflows in clouds promises reduced op-
erational costs, there are still numerous scheduling challenges to
overcome. Such complex workflows are dynamic, exhibit periodic
patterns, and combine diverse task groupings and requirements.
In this work, we propose ANANKE, a scheduling system ad-
dressing these challenges. Our approach extends the state-of-the-
art in portfolio scheduling for datacenters with a reinforcement-
learning technique, and proposes various scheduling policies for
managing complex workflows. Portfolio scheduling addresses the
dynamic aspect of the workload. Q-learning, allows our approach
to adapt to the periodic patterns of the workload, and to tune
the other configuration parameters. The proposed policies are
heuristics that guide the provisioning process, and map workflow
tasks to the provisioned cloud resources. Through real-world
experiments based on real and synthetic industrial workloads, we
analyze and compare our prototype implementation of ANANKE
with a system without portfolio scheduling (baseline) and with a
system equipped with a standard portfolio scheduler. Overall, our
experimental results give evidence that a learning-based portfolio
scheduler can perform better and consume fewer resources than
state-of-the-art alternatives, in particular for workloads with
uniform arrival patterns.

I. INTRODUCTION

Many companies are currently deploying or migrating parts
of their IT services to cloud environments. To take advantage
of key features of cloud computing such as reduced operational
costs and flexibility, the companies should effectively manage
their increasingly sophisticated workloads. For example, the
management of large industrial infrastructures of companies
such as Shell involves the usage of complex workflows designed
to analyze real-time sensor data [1]. Although the management
of workflows and resources has been studied for decades [2]-[4],
previous works have mostly focused on scientific workloads [5]—
[7] which differ from the industrial applications. Moreover,
historically, approaches which are proven to be beneficial
for processing scientific workloads have rarely been proven
to perform well, or have been even adopted, in production
environments [8]. In contrast to the previous body of work, we
focus on production industrial workloads comprised of complex
workflows, and propose ANANKE, a system for cloud resource
management and dynamic scheduling (RM&S) of complex
workflows that balances performance and cost.

Compared to scientific workloads, production workloads
are more often have detailed and complex requirements. For
example, production workloads may utilize different types of
task groupings (bags-of-tasks, sub-workflows) with predefined
deadlines and specific performance requirements. Production
workloads often demonstrate notable recurrent patterns as some
tasks could run periodically e g when new data is acquired

alexander.stegehuis @shell.com

Alexander Stegehuis
Shell, the Netherlands

Alexandru Tosup
VU Amsterdam and TU Delft
a.iosup@vu.nl

from sensors. Moreover, new workloads and processing re-
quirements evolve over time. Such requirements translate into a
rich set of Service Level Objectives (SLOs), which the RM&S
system must meet while trying to reduce the operational costs.

To fulfill dynamic SLOs and save costs, dynamic scheduling
techniques, such as portfolio scheduling [9] could be applied. A
portfolio scheduler utilizes a set of policies, each designed for a
specific scheduling problem. The policies are selected dynami-
cally, based on user-defined rules and a feedback mechanism. By
combining many policies, the portfolio scheduler can become
more flexible and adapt to dynamic workload better than its
constituent policies. Previous studies indicate that no single
scheduler is able to address the needs of diverse workloads [10],
[11], and, in contrast, that a portfolio scheduler performs well
without external (in particular, manual) tuning [12].

Although portfolio schedulers are promising for the context
of complex workflows, previous approaches [13] lack by
design the ability to use historical knowledge in their selection.
While portfolio schedulers work well for workloads without
pronounced patterns [12], they may not deliver good results for
industrial applications that focus on processing real-time sensor
data. Thus, to take advantage of historical information, about
both the system and the workload, a research question arises:
How to integrate learning techniques into portfolio scheduling
to schedule complex industrial workflows?

To answer this research question, we design a novel cloud-
aware portfolio scheduler integrating a reinforcement-learning
technique, Q-learning [14]. We explore the strengths and
limitations of a Q-learning-based portfolio scheduler managing
diverse industrial workflows and cloud resources. Thus, in this
work, our main contribution is threefold:

1) Starting from four main requirements (Section III-A),
we design ANANKE (Section III-B). The result is an
RM&S architecture that integrates into a portfolio sched-
uler a reinforcement-learning technique, Q-learning (Sec-
tion III-C) .

2) We build a prototype of ANANKE. The key conceptual
contribution of this design is the selection and design
of scheduling policies equipped by the portfolio (Sec-
tion III-D). The prototype is now part of the production
environment at Shell, and evolves from the existing
Chronos system [1].

3) We evaluate ANANKE through real-world experiments
(Section IV). Using the cloud-like experimental environ-
ment DAS-5 [15] and workloads derived from a real
industrial workflow, we analyze ANANKE’s performance,
and elasticity. We also compare ANANKE with a baseline
system and with a portfolio-scheduling-only approach.

II. SYSTEM MODEL

We define here the system model used in this work. This
model is common in practice, and is used by the Chronos
system in the “Smart Connect” project at Shell [1].

A. Workload: Periodic Workflows with Deadlines

In our model, a workload is a set of jobs, where each job
is structured as a workflow of several rasks with precedence
constraints. Each workflow is aimed for processing sensor data
and has three chained tasks: first, the workflow selects the
Sformula for calculations from a set predefined by engineers and
reads the related raw sensor data from the database. Second,
it performs calculations by applying the formula to the raw
sensor data. Third, the workflow writes the results back to the
database and sends the completion signal.

Workflows in our model are complex due to deadline
constraints and periodical arrivals, not due to task concurrency.
Because such workflows are designed to process real-time raw
sensor data, they have strict requirements for the execution
time. Each workflow should be completed before its assigned
deadline. The workflows which can not accomplish that are
considered expired. Morcover, cach workflow is executed
periodically, as sensors continuously sample new data and
the system needs to update the database at runtime. The chain
nature of the workflow means that it does not have parallel
parts, and thus requires only a single processing resource (e.g.,
a CPU core or a thread) for its execution.

B. Processing Sensor Data in Practice: Three-Tier Architecture

In practice, infrastructure monitoring systems commonly
use a tree-tier architecture. The three-tier architecture, which
depicted in Figure 1, consists of a master node (label 1
in the figure), client nodes (2), and a database (3). Raw
sensor data is collected form the monitored facilities and
stored in the database. Engineers add to the system a set of
workflows for processing sensor data. These workflows are
placed in the workflow bucket, which is maintained by the
workload manager (b). The client manager (c) controls the set
of client nodes and monitors their statuses. At the heart of the
architecture, the scheduler (a) makes allocation and provisioning
decisions. The scheduler selects appropriate workflows from the
workload manager and, through the client manager, allocates
them to the client nodes.

Every client node reads raw data from the database,
performs certain calculations specified in the assigned workflow
task, and writes the results back to the database. This model,
however, can also be applied for processing other workflow
types (e.g., fork-join) with tasks running in parallel. It will
require an addition of a separate workflow partitioner which will
convert parallel parts into a set of independent chain workflows
before their addition to the workflow bucket.

C. Infrastructure: Cloud-Computing Resources

We model the infrastructure as an infrastructure-as-a-service
(IaaS) cloud, either public or private. (The Chronos system is
currently deployed in a private cloud.) In this work, we assume
that all resources are homogeneous. In contrast to typical
cloud resource models, our model uses the computing thread
instead of complete VMs as the smallest working unit. Per-
thread management enables fine-grained control over resources,
allowing the system to perform coarse-grained vertical and

‘—b Information = ===—=of » Command
System Model
ﬁ) (b) Master I\'ode“1)
{'b) Master -
N ' I'm Workload _\1auage‘1
O\ Workload vAllocation
T—— Info i("omm(/_rgis
orkloac a2)
Ouery Results Scheduler g
. "t{) livif;s?m.‘e iProvisioning
Query - . n;.;mon Commands
------- nfo o
. {c)
J:)Me ’-.l Client Manager Workflow Info
QHED [Monitoring _ \—— i Provisioning
0 Info Uo]]]f\fzo“ i ('onnmm:is
pa—— ——) \Somnia P
Industrial Data ot Nodes = {2}
Infrastructure : Client Nodes
Results

Figure 1: Three-tier architecture for processing workflows.

fine-grained horizontal scaling. In our model, vertical scaling
changes the number of active threads within a node, whereas
horizontal scaling changes the number of active nodes.

The resources for our experiments are only on-demand
instances. In public clouds such as Amazon AWS [16], instances
take some time to fully boot up [17]. However, to have better
control over the emulated environment, we use in practice
preallocated nodes (zero-time booting) and do not consider
node booting times. Because cloud-based cost models can be
diverse and likely to change over time, as indicated by the
current on-demand/spot/reserved models of Amazon, and the
new pricing of lambda (serverless) computation of Amazon
and Google, similarly to our older work [10] we use the total
running time of all the active instances to represent the actual
resource cost and not the charged cost.

III. ANANKE REQUIREMENTS AND DESIGN
We present here the design of our ANANKE system.
A. Architectural Requirements and Design Goals
The key requirements (design goals) for ANANKE are:

R1: The designed system must match the model proposed in
Section II. This allows the new system to be backward
compatible with the system currently in operation, and
enables adoption in practice.

The system must implement clastic functionality, e.g., it
must be able to automatically adjust allocated resources
based on demand changes.

The system should use portfolio scheduling, which shows
promise in managing mixed complex workloads [12].
The system should integrate Q-learning into the portfolio
scheduler, to benefit from the historical information about
the recurrent variability of the processed workloads.

R2

R3:

R4

The last two design goals are expected to improve application
performance and increase resource utilization, and constitute
the main conceptual contribution of this work.

B. Architecture Overview

ANANKE extends the Chronos system with the components
and concepts needed to achieve R2—4. Matching the model (R1),
ANANKE is also structured as a three-tier architecture. We
further present the design of the ANANKE master and client
nodes, focusing on the new aspects.

‘ ———— Information

- Master Node —
Monitoring fonitoring
Info i . Info
v Provisioning Commands_Workflows v

| l Client Node
* (b)

{c :l
Thread Manager | Workflow Manager (buckef)‘ﬁ
Add Rmno‘e i

Hor kflows
T/ne(lrls ;

a) Zor .
Theads Tlueid Pool\ (2 Workflow
States States
.o

"le engine with workflows

------ » Command ‘

Calculation | [Calculation | [Calculation | Engine Pool
Engine Engine Engine PR Feedback
Type 1 Type 2 Type 3
X T
) Data Results 3
e Database
—

Figure 2: Components of the client node.

1) Master Node: The master node consists of three major
components: a scheduler, a workload manager, and a client
manager. Figure 1 depicts these components, and their com-
munication pathways. Addressing R3-4 the scheduler (compo-
nent (a) in Figure 1) is a Q-learning-based portfolio scheduler
equipped with a set of policies: a Q-learning policy and other,
simpler, threshold-based heuristic policies. As detailed later, in
Section III-C, the scheduler hides the complexity of selecting
the right policy, by autonomously managing its set of policies
and by taking decisions periodically.

The master also uses two managers. The workload man-
ager (b) maintains the bucket of workflows, collects the
information about the workflow performance, and updates the
status of every workflow. The workload manager uses the
response and waiting time of a workflow, and the fraction of
completed/expired workflows, as key performance indicators.
The client manager (c) is designed to communicate with all
client nodes, collecting continuously per-client resource utiliza-
tion metrics, and sending to clients when needed commands
(actions) and tasks ready to be allocated.

2) Client Nodes: Figure 2 depicts the three components of
the client node: a thread pool, a thread manager, and a workflow
manager. The thread pool (component (a) in Figure 2) maintains
a set of threads (smallest working units, see Section II-C).
Each thread continuously fetches workflows from the workflow
manager and calls an external calculation engine from the
engine pool. Each client node can execute multiple threads
in parallel. At each moment, a thread executes only a single
workflow. We use the number of active threads as the key
metric to represent resource utilization. The thread manager (b)
receives provisioning commands from the master node, and
adds or removes threads from the pool. It also reports the
resource utilization (the CPU load, and the ratio of busy vs. total
number of threads) back to the master node, and continuously
terminates idle threads. The workflow manager (c) maintains a
bucket of workflows allocated to the client node. The workflow
manager tracks workflow states and monitors the performance.
It also computes the performance metrics and reports them
back to the master node. We define two metrics: the number
of workflows stored in the bucket normalized by the size of
the bucket and the average completion time for the last five
executed workflows.

I

* "T:“! Allocation Conmnands ..".I"l
Workload ™ S Q learning based™-*
Manager e e e uuu[.ttu] portfolio scheduler

i (Dt
:HID_ :Suml];mun —
Data
‘rerrzzrzrzza Evaluator
Workflows e Data
:Suml]:ﬂluu Datal Jt Unhity !
| function_ ||

Svstem Status
Application
Perfomance

Score
- Decision
L{c) = Maker \
T i

Provisioning Comimands

Client
Manager

CPU . :
Load # Threads .
i —# [nformation Traiming Data
Client Nodes |I =+ Command @ Periodic Operation

Figure 3: Architecture of a Q-learning-based portfolio scheduler,
part of the master node. Data generated by each simulation is
used as training data, to fill the decision table.

C. The Q-Learning-Based Portfolio Scheduler

We design an (elastic) Q-learning-based portfolio scheduler
for complex industrial workflows in clouds (R3-4).

1) Adding a Portfolio Scheduler to the Architecture: The
scheduler component in the master node is based on a portfolio
scheduler. Figure 3 depicts the main components of our design.
The portfolio scheduler consists of a policy Simulator, an
Evaluator, and a Decision Maker. The portfolio scheduler
is equipped with a set of policies; we describe our design
of the portfolio in Section III-D. Periodically, the portfolio
scheduler considers its constituent policies in simulation and
selects from them the most promising policy. The selection is
done by the Decision Maker, which uses the utility estimated
by the Evaluator to rank descendingly the policies, then selects
the best-ranked policy. This mechanism is versatile: different
utility functions have been used to focus on performance [13],
risk [18], and multi-criteria optimization [12].

2) Designing a Q-Learning-Based Approach: Inspired by
the work proposed by Padala et al. [19], we design non-trivially
a provisioning policy based on Q-learning. We define the state
s, at moment ¢ as s; = (uy,vy,y;), where wu, is the resource
configuration (the total number of threads), v; is the resource
utilization, and y; is the application performance. We define the
action the scheduler can take as a; = (m, a), where m specifies
the number of threads to be scaled and a € {up,down, none} is
the action that grows, shrinks, and does nothing to change the
provisioned resources, respectively. The reward function for the
Q-learning policy is user-defined and used by the Q-learning
algorithm to calculate the reward (the value) for the current
state-action pair. In ANANKE, we design the reward function
to balance workflow performance and resource usage based on
previous study [19]. Specifically, for every moment of time ¢
we define the reward function as:

’(t) = f(s/u (]’L) X g(sh H’L)v (1)
where f(s;,a;) calculates the score due to workflow per-
formance and g(s;,a;) represents the score due to resource
utilization. Higher scores indicating better user-experienced
performance and resource utilization which are preferred. We
define the concave functions f(s¢, a;) and g(s¢,a:) as:

f(st,at) = sgn(l — yp) x ellfy'l7 2)
g(se, a) = el mmarvor), 3)

where y; is the normalized application performance according
to the SLO, u; is the number of threads, v; is the ratio of busy
to total number of threads (so, normalized by u;), and p; is the
average CPU load across clients. We use sgn function to turn
f(st,a4) to a negative value if the SLO is not meet (y; exceeds
1). If y; is less than 1, f(st,as) is inversely proportional to y;
and the lower value of y; is preferable.

3) Integrating Q-Learning into the Portfolio Scheduler: All
learning techniques use a learning/training process. To train
the Q-learning policy within a portfolio scheduler, the master
node uses a simulation-based approach depicted in Figure 3.
Our design supports online training through a mechanism that
feeds back simulation data into a decision (learning) table. The
values of this table are used by our Q-learning policy to make
the decisions. To use the feedback from other policies as well,
our Q-learning-based portfolio scheduler trains its decision
table with information from all the policies, and from both real
(applied decisions and real effects) and simulated (estimated
decisions and effects) environments. Therefore, this method
allows to generate and use more training data in a shorter time,
albeit at the possible cost of accuracy (for simulated effects).

D. The Configuration of Policy Combinations

ANANKE is designed for workflow allocation and resource
provisioning. However, it is not convenient to define these
two behaviors in a single policy. For this reason, ANANKE
maintains a policy pool (a portfolio) consisting of combinations
of allocation and provisioning policies. An allocation policy
contains a workflow-selection policy, which selects the workflow
to schedule next, and a client-selection policy, which maps
the selected workflows to client-nodes. The provisioning
policy decides on adding and/or removing of the resources.
A composite-policy is a triplet comprised of a provisioning, a
workflow-selection, and a client-selection policies. At runtime,
the portfolio scheduler selects from the pool a single combi-
nation of policies, as the active composite-policy. We design
a portfolio comprised of all the unique composite policies
(triplets) resulting from the policies described as following:

1) Provisioning Policies: Provisioning policies can vary
significantly in how aggressively they change the resources.
We select four significantly different provisioning policies and
adapt them for using threads as the smallest computing unit.
The On-Demand All (ODA) [12] policy always ensures that the
system has enough idle resources for waiting workflows. The
On-Demand Balance (ODB) [12] policy just ensures that the
system has enough resources, whether busy or idle. The Average
Queued Time Policy (AQTP) [20] only considers the demands
of a subset of the waiting workflows. Our Q-learning [21]
policy provides a trade-off between the other policies, by
learning from the decisions made by them.

2) Allocation: Workflow-Selection Policies: Which work-
flow to select next for execution is a typical question in multi-
workflow scheduling systems. For our portfolio, we choose four
policies for selecting workflows from the waiting bucket: Last-
Come First-Served (LCFES), Shortest Waiting time First (SWF),
Closest to the Deadline First (CDF), and the Shortest Execution
time First (SEF) policies. In particular, time-to-deadline is often
used in real-time systems.

3) Allocation: Client-Selection Policies: To map workflows
to available resources, we select four client-selection policies
for our portfolio: Lowest CPU Ultilisation First (LUF'), Highest
number of Idle Threads First (HITF), Lowest workflow Waiting-
Time First (LWTF), and Smallest number of Waiting-Workflows
First (SWWF).

IV. EXPERIMENTAL EVALUATION

We summarize our experimental setup and representative
evaluation results. (Full details in our technical report [21].)

A. Experimental Setup

We create 4 synthetic workloads with periodic or uniform
arrival patterns, matching the behavior of production workloads;
we include dynamic arrival patterns (e.g., ED . 5x in Figure 4)
and sratic arrival patterns, (e.g., PA3). We conduct real-world
experiments on the DAS-5 multi-cluster system, configured as
a cloud environment using the existing DAS-5 capabilities [15],
with up to 350 threads (5 nodes).

To quantify the user-oriented performance, we use through-
put, the workflow waiting time, and the expiration rate. To
evaluate the resource utilization we use the number of active
(used) threads. A lower number of used threads in the system
leads to piece-wise linearly lower operational costs.

To evaluate elasticity, we adopt the metrics and comparison
approaches introduced in 2017 by the SPEC Cloud Group [11].
The clasticity metrics arc based on the analysis of discrete
supply and demand curves. The supply is the current number
of threads. The demand is the current number of running
workflows and waiting workflows which near the deadlines [21].

To analyze ANANKE’s elasticity, we implement it and also
a set of baselines with diverse elasticity capabilities:

1) ANK-VH (full ANANKE): Vertical and horizontal auto-
scaling by the Q-learning-based portfolio scheduler.

2) ANK-V (partial ANANKE): Only vertical auto-scaling by
the Q-learning-based portfolio scheduler.

3) PS(-VR) (standard portfolio scheduling): Vertical auto-
scaling by the standard portfolio scheduler, and (PS) no
autoscaling or (PS—VR) horizontal auto-scaling by the
React policy [22]. React is a top-performing auto-scaler
for horizontal elasticity and workflows [11].

4) NoPS (Chronos): Only vertical auto-scaling, by a
threshold-based scaling policy.

5) Static (common in the industry): No auto-scaling, using
only a fixed amount of client nodes.

B. Scheduler Impact on Workflow Performance

The main finding of the workflow performance evaluation
can be summarized as follows: compared with the standard
portfolio scheduler, which may be adopted easily by the
industry, under static workloads, the Q-learning-based portfolio
scheduler leads to better user-oriented metrics.

We conduct comparison experiments between ANANKE
(ANK-V), the system with a standard portfolio scheduler (P S),
and the system without a portfolio scheduler (NoP S). We report
here only the expiration rate and the workflow response time
as both the Q-learning-based portfolio scheduler (ANK-V) and
the standard portfolio scheduler (PS) have very low expiration
rates, much lower than the system without a portfolio scheduler.

E }:{} Lower value is better |FD““€‘

+ Standard PS (PS) |
Q-learning-based PS tl_:}T__’_I?-\{}

Standard PS (PS)
(Q-Learning-based PS {ANK-V)

2.0
W = o lue _ _
6§ | Lowstvalueisbetter) (TR ~ Standard PS (PS)
&5 1.5 g Q-learning-based PS (ANK-V)||
=0
2 1.0 Lo
g 5 175 e
23 sl1s0) 100
275 0.5/1:30 0.95
BE “[125 0.90
Lg 00Leai 0.85
g oo 8
— 100 . Taal S PSS =]
g | | PA3J ‘ Sundard PS (FS) o "
= 80 s i 1 (-Learning-based PS (ANK-V) ‘|
Z lth by . 1
EE of [AR]
i | IR i AL |
E FATINTL Uk R AE R J
FF 00 e i AR RAR (1T
<o o200 | I i h i
= i '
:

\ i i
180 450 510 570 630
Wall clock time (s)

I|
0] 120

Figure 4: The normalized response time of the Q-learning-
based portfolio scheduler (ANK-V) and of the standard portfolio
scheduler (P S). Workload: (top pair of plots) dynamic (ED . 5x),
and (bottom pair of plots) static (PA3).

Notably, the NoPS has 1-5.5% of expired workflows under
different workloads, while the system with a portfolio scheduler
only has 0-1% of expired workflows. Though the portfolio
scheduler configurations have a few expired workflows with
the ED . 5x workload, the average response time of the expired
workflows are very close to the deadline. NoP S system fails to
achieve deadlines for expired workflows for all the workloads,
while both ANK-V and PS can fulfill the deadline-constrained
SLOs. Overall, we cannot observe a significant difference
between ANK-V and PS in the expiration rate and in the
response time degradation.

Figure 4 depicts a deeper analysis of the performance.
For this, we compare the normalized workflow waiting times
achieved by ANK-V and PS. We normalize the workflow
waiting time by the workflow execution time and calculate
its cumulative average value; lower values indicate a better
user-experienced performance. Figure 4 shows the performance
of our schedulers and of PS, for static (PA3) and dynamic
(ED.5x) workloads, and correlated sub-plots depicting the
arrival of workflows. ANK-V reduces the normalized waiting

time by 5-20% compared with PS, with a static workload.

However, a similar performance improvement does not appear
with the dynamic workload—the standard portfolio scheduler
even performs slightly better, reducing the normalized waiting
time by 0-8.3%. Because static workloads exhibit strong
recurring patterns, ANK-V can make more precise scheduling

decisions based on the information about previous workloads
and system statuses. The results indicate that the learning
technique can help the portfolio scheduler make better decisions,
for workloads with strong recurring patterns.

C. Evaluation of Elasticity and Resource Utilization

The main finding of this evaluation is: The Q-learning-based
portfolio scheduler shows better elasticity results compared with
the threshold-based auto-scaler common in today’s practice
(NoPS). Our horizontally and vertically elastic approach
(ANK-VH) can save from 24% to 36% resources with at most
1.4% throughput degradation (see technical report [21]).

Ideally, the supply should follow the envelope of the demand.
We analyze the supply and demand curves for each auto-scaler
under different workloads and find evidence that (see [21]): The
Q-learning-based portfolio scheduler which uses only vertical
scaling (ANK-V) performs better with dynamic workloads. The
Q-learning-based portfolio with both horizontal and vertical
scaling (ANK—-VH) beats all the others when the workload is
static. PS— (VR) often under-provisions and may cause serious
performance degradation. NoP S and Static, on the contrary,
significantly over-provision the resources and guarantee good
user-experienced performance at the cost of many idle resources.
However, according to the requirements, good performance for
users with high resource costs is not our goal.

V. RELATED WORK

We survey in this section a large body of related work.
Relative to it, our work provides the first comprehensive
study and real-world experimental evaluation of learning-based
portfolio scheduling for managing tasks and resources.

Work on applying reinforcement learning: Closest to our
work, Tesauro et al. [23] present a hybrid approach combining
reinforcement-learning and queuing models for resource allo-
cation. Their RL policy trains offline, while a queuing model
policy controls the system. Our work uses online training, by
taking advantage of the dynamic portfolio scheduling. Padala
et al. [19] use reinforcement-learning to learn the behavior
of applications and design a Q-learning solution to perform
vertical scaling of VMs. While we use portfolio scheduling,
scale finer-grained resources (threads vs. VMs), and take both
horizontal and vertical scaling into account. Bu et al. [24] use
reinforcement-learning to change the configuration of VMs and
resident applications, whereas we utilize portfolio scheduling
and address both resource allocation and workload scheduling
problems.

Work on portfolio scheduling: Although the general tech-
nique emerged in finance over 50 years ago [9], portfolio
scheduling has been adopted in cloud computing only in the
past 5 years [13], [25]. Our current work extends a standard
portfolio scheduler to support reinforcement learning and to
the complex industrial workloads. Closest to our work, Kefeng
et al. [12], [25] build a standard portfolio scheduler (without
reinforcement learning) equipped only with threshold-based
policies and only focus on scientific bags-of-tasks; and van
Beek et al. [18] focus on different optimization metrics (for
risk management) and workloads (business-critical, VM-based
vs. job-based).

Work on general workflow-scheduling: This body of work
includes thousands of different approaches and domains. Several

scaling policics [26]—[28] take deadline constraints as their main
SLO. In contrast, our work considers complex workflows, deals
with resource provisioning, and presents real-word experimental
results.

Work on auto-scaling in cloud-like settings: Marshall
et al. [20] present many resource provisioning policies. We
embed some of their policies as part of the portfolio used
by ANANKE for auto-scaling, and in general extend their
work through the Q-learning and portfolio scheduling structure.
Ilyushkin et al. [11] propose a comparative study of a set of
auto-scaling algorithms. We use their system- and user-oriented
metrics to assess the performance of our auto-scaling approach,
but consider different workloads.

VI. CONCLUSIONS AND FUTURE WORK

Dynamic scheduling of complex industrial workflows is
beneficial for companies migrating to clouds, but challenging.
SLOs specific for complex industrial workflows are rarely
addressed. Designing new scheduling policy is risky and
ephemeral. In contrast, current state-of-the-art approaches using
portfolio scheduling are promising, but do not take into account
periodic effects that are common in workloads. To fill this gap,
we have explored in this work the integration of a learning
technique into a cloud-aware portfolio scheduler.

We have designed ANANKE, an architecture for RM&S
that uses cloud resources for its operation and Q-learning
as a learning technique. We further designed and selected
various threshold-based heuristics as scheduling policies for
the portfolio scheduler. We have implemented ANANKE as a
prototype of the production environment at Shell, and conducted
real-world experiments. We have also compared ANANKE with
its state-of-the-art and state-of-practice alternatives, using real-
world experiments and industry-derived workloads.

Our results show that the usage of the Q-learning policy in
the portfolio scheduler allows getting better performance results
from a user’s perspective, improve the resource utilization,
decrease operational costs in commercial IaaS clouds, and
achieve good elasticity results for relatively static workloads.
For highly dynamic workloads, the addition of Q-learning into a
portfolio scheduler is less beneficial. In all our results, dynamic
portfolio scheduling outperforms traditional static scheduling.

We are extending our work to better understand the
interplay Q-learning/portfolio. We further plan to consider other
reinforcement-learning techniques, such as error-driven learning
and temporal difference learning. We are also focusing on an
extended set of workloads and SLOs, and experiments at larger
scale.

ACKNOWLEDGMENTS

We thank our industry hosts, at Shell and CGI, and our
academic hosts, at VU Amsterdam and TU Delft. Our work is
supported by the Dutch STW/NWO personal grants Veni @large
(11881) and Vidi MagnaData (14826), by the Dutch national
program COMMIT and its funded project COMMissioner, and
by the Dutch KIEM project KIESA.

REFERENCES

[11 G. Baird er al., “Upgraded online protection and prediction systems im-
prove machinery health monitoring,” Asset Management & Maintenance
Journal, vol. 27, no. 2, p. 16, 2014.

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

)

L. Yu and D. Thain, “Resource management for elastic cloud workflows,
in CCGrid, 2012, pp. 775-780.

S. Abrishami, M. Naghibzadeh, and D. H. J. Epema, “Deadline-
constrained workflow scheduling algorithms for infrastructure as a
service clouds,” Future Generation Comp. Syst., vol. 29, no. 1, pp.
158-169, 2013.

L. Liu ef al., “A survey on workflow management and scheduling in
cloud computing,” in CCGrid, 2014, pp. 837-846.

R. Cushing et al., “Prediction-based auto-scaling of scientific workflows,”
in (MGC, 2011, p. 1.

A. Ilyushkin and D. H. J. Epema, “Towards a realistic scheduler for
mixed workloads with workflows,” in CCGrid, 2015, pp. 753-756.

Y. Ahn and Y. Kim, “Auto-scaling of virtual resources for scientific
workflows on hybrid clouds,” in HPDC, 2014, pp. 47-52.

D. Klusacek and S. Té6th, “On interactions among scheduling policies:
Finding efficient queue setup using high-resolution simulations,” in
Euro-Par, 2014, pp. 138-149.

B. A. Huberman, R. M. Lukose, and T. Hogg, “An economics approach
to hard computational problems,” Science, vol. 275(5296), 1997.

D. Villegas et al., “An analysis of provisioning and allocation policies
for infrastructure-as-a-service clouds,” in CCGrid, 2012, pp. 612-619.
A. Tlyushkin er al., “An experimental performance evaluation of
autoscaling algorithms for complex workflows,” in ACM/SPEC ICPE,
2017.

K. Deng et al., “Exploring portfolio scheduling for long-term execution
of scientific workloads in iaas clouds,” in SC, 2013, pp. 55:1-55:12.

O. Shai, E. Shmueli, and D. G. Feitelson, “Heuristics for resource
matching in intel’s compute farm,” in JSSPP, 2013, pp. 116-135.

C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279-292, 1992.

H. E. Bal er al, “A medium-scale distributed system for computer

science research: Infrastructure for the long term,” IEEE Computer,
vol. 49, no. 5, pp. 54-63, 2016.

“Amazon web services (AWS),” https://aws.amazon.com.

A. Tosup er al., “Performance analysis of cloud computing services

for many-tasks scientific computing,” IEEE TPDS, vol. 22, no. 6, pp.
931-945, 2011.

V. van Beek er al., “Self-expressive management of business-critical
workloads in virtualized datacenters,” IEEE Computer, vol. 48, no. 7,
pp. 46-54, 2015.

P. Padala er al., “Scaling of cloud applications using machine learning,’
VMware Technical Journal, 2014.

P. Marshall, H. M. Tufo, and K. Keahey, “Provisioning policies for
elastic computing environments,” in I/PDPS, 2012, pp. 1085-1094.

S. Ma et al., “Ananke: a Q-Learning-Based Portfolio Scheduler for
Complex Industrial Workflows: Extended Technical Report,” TU Delft,
Tech. Rep., DS-2017-001.

T. C. Chieu er al., “Dynamic scaling of web applications in a virtualized
cloud computing environment,” in /CEBE, 2009, pp. 281-286.

G. Tesauro er al, “A hybrid reinforcement learning approach to
autonomic resource allocation,” in ICAC, 2006, pp. 65-73.

X. Bu, J. Rao, and C. Xu, “Coordinated self-configuration of virtual
machines and appliances using a model-free learning approach,” IEEE
Trans. Parallel Distrib. Syst., vol. 24, no. 4, pp. 681-690, 2013.

K. Deng et al., “A periodic portfolio scheduler for scientific computing
in the data center,” in JSSPP, 2013, pp. 156-176.

M. Malawski et al., “Cost- and deadline-constrained provisioning for
scientific workflow ensembles in iaas clouds,” in SC, 2012, p. 22.

3

M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet
application deadlines in cloud workflows,” in SC, 2011, pp. 49:1-49:12.
J. Shi et al., “Elastic resource provisioning for scientific workflow
scheduling in cloud under budget and deadline constraints,” Cluster
Comp., vol. 19(1), pp. 167-182, 2016.

