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1 | Introduction

1.1 Background

Currently, the largest sailing catamaran, ’Hemisphere’, is 44m and has a displacement of 300t. For this
research, the concept design is an aluminium catamaran of 100m with a displacement of 3000t, making
this yacht a unique project in a new field. The scope of this research will be the global structure design.
First, the global loads will be examined. Next, the structure will be designed and analysed to keep the
responses within certain limits. Finally, the analysed responses of the structure can be used to optimise
the global structural design.

Vessel specification

Table 1.1: Dimensions of catamaran

Length overall Loa 104.75 m
Length waterline Lwl 99.49 m
Beam overall Boa 32.5 m
Beam waterline float Bwl 8.16 m
Float centerline seperation s 23.25 m
Draught canoe Tc 4.39 m
Displacement (DWL) ∆ 3000 t
Block coefficient Cb 0.41 -
Max. speed V 20 kts

Material properties:

Table 1.2: Material properties

Material: Young’s modulus (E): Poisson ratio (ν): Tensile yield stress: Density:
[GPa] [MPa] [kg/m3]

Aluminium alloy 70 0.33 215 2660
5083-H321[3]

Shear modulus:
G =

E

2(ν + 1)
(1.1)

1.2 Report outline

In chapter 2 the problem definition is given. This chapter also states the research questions. chapter 3
closely examines the global loads applied to the sailing catamaran. First, the still water loads are
examined, then the wave-induced loads for two cases and finally, the sail loads. A method for defining
the longitudinal bending moment and shear force distribution in head seas is developed. The pitch
connecting moment in quartering seas is also accurately determined. The next chapter analyses the
loads and their responses. An analytical method is used to define the responses. This analytical method
is compared to a finite element analysis to check the accuracy of the model. When the responses of the
loads are known the pitch connecting moment is found to be most dominant.
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2 | Problem definition

2.1 Global structural design

An architect draws a new vessel design to a customer’s demand in the superyacht industry. This new
vessel should withstand all loads applied to it over its lifetime. So a naval architect has to design the
global structural design within the available space for the structural elements. To start the design process
of this global structural design, the global loads applied to a vessel should be known. Classification
societies have made guidelines which prescribe the loads a specific type of vessel needs to withstand.
However, the classification societies determine the magnitude of these loads based on data of predecessors
of similar types of vessels. This is great for vessels similar to previously built vessels as it simplifies the
process. However, for progressive vessels or vessels of a different scale, this deterministic approach could
result in very conservative or underestimating load cases due to extrapolating. Determining these loads
with a more physical approach, using first principles, gives insight into how (in)correct the load cases
by class societies are. Once the load cases are determined, this needs to translate into the response
of the global structural design. For a catamaran, the transverse structure is of great importance. A
beam element idealisation of this transverse structure could simplify and speed up the response analysis.
This is very useful in the concept phase of the global structural design, as the consequences of making
adjustments to the overall design if required are still relatively small. To improve the global structural
design of a catamaran in the concept design phase, this research will focus on answering the research
question listed in the next section.

2.2 Research questions

How valuable is an analytical method in the concept design phase to derive strength and
stiffness criteria for structural members based on the global loads acting on a large sailing
catamaran?

• Which global loads are dominant on large sailing catamarans?

– Which global loads are acting on large sailing catamarans?

∗ Which global loads are acting on large non-sailing catamarans
∗ Which additional loads are created by the sails and the rigging.

• How can the currently used global structure analysis methods for monohulls be adapted for cata-
marans?

– Which methods for processing the global loads are used for sailing monohulls?

– Which methods for processing the global loads are currently used for non-sailing catamarans?

• How valuable is a beam element idealisation for analysing the global response on a sailing cata-
maran?

– How can the conceptual design be idealised for analysis?

3



3 | Loads

This chapter takes a closer look at the global loads applied to the sailing catamaran. To be able to
continue in the design process once the first dimensions are decided, it is essential to have actual strength
and stiffness data. With this data, the actual hull structure can be designed sufficiently strong and
stiff. To get the strength and stiffness data, first, the applied loads acting on the vessel are determined.
This research is limited to the global structural design, so only the global loads are considered in this
chapter. The total global load acting on a sailing vessel results from the summation of the individual
loads shown below. The wave-induced loads are analysed for head seas and quartering seas as these are
the most critical conditions for the longitudinal and transverse structure, respectively.

1. Still water loads

2. Wave-induced loads

• Head seas

• Quartering seas

3. Rigging/sailing loads

These global loads result in various forces and moments. Not all forces and moments are equally
important. In large monohull design, the longitudinal strength is of importance; for multi-hull vessels,
the transverse strength is just as important[8]. The forces and moments that are of importance for
catamaran designs are shown in Figure 3.1 and given below:

• Mx Moment around x (transverse bending)

• My Moment around y (longitudinal bending )

• Mz Moment around z (prying)

• Mp Pitch connecting torsional moment

• Ql Vertical shear force on longitudinal hull girder

• Qt Vertical shear force on the transverse structure

Figure 3.1: Overview of crucial moments and (shear)forces for catamaran design, where the arrows
indicate the positive direction of the respective moment or shear force
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These moments and forces result from different laws of physics and can be computed according to these
laws, called the first principles. However, these first principles become very computationally expensive
to solve for some loads. This is due to the statistical estimation of sea wave properties and the resulting
forces. For this reason, classification societies have guidelines to determine the moments and forces
resulting from the most critical load cases. The results from the following classification societies are
analyzed: American Bureau of Shipping (ABS), Bureau Veritas (BV), Det Norske Veritas (DNV) and
Lloyd’s Register (LR). In addition, the guidelines by the International Organization for Standardization
(ISO) are also analysed. In this chapter, the different load cases are inspected individually and it is
shown in what forces and moments they result. For each load, the first principles are reviewed, which
are then compared to the classification rules.

3.1 Still water loads

The still water loads are a result of the hydrostatic pressure in flat water on the hull and the gravitational
force on the mass distribution of the vessel. The buoyancy force and the gravitational force are equal
in size and counteract each other, which makes the vessel float. However, these forces are not acting
in the same places, resulting in internal force and moment distributions. For monohull design, the still
water load results in a longitudinal bending moment, My, and a longitudinal shear force distribution,
Ql, see Figure 3.1. For a multihull design, the still water load can also result in a transverse bending
moment, Mx, and a transverse shear force Qt[8] [13].

3.1.1 First principles
The loads can be determined with Archimedes’ principle, which states that the net force on the sub-
merged body is directed vertically and equal to the weight of the liquid that is displaced by the body.
The displaced volume is a function of the weight of the vessel. The weight distribution of a vessel
results in a total weight and a centre of gravity, which results in an equilibrium position of the struc-
ture. In this equilibrium position, the distributed weight of the structure and the displaced fluid by the
submerged volume balance each other out. This results in hydrostatic loads. Because the catamaran
is assumed symmetrical, the torsional moment Mp can be neglected for this load case. Asymmetrical
loading and/or placement of tanks could result in these torsional moments. In that case, an additional
load case for asymmetrical loading could be implemented.

Method

For defining the moments and forces, both hulls will be modelled as beams. Each beam has an up-
ward force distribution as a result of the displacement of water, buoyancy, and a downward-facing force
distribution as a result of gravitational forces on the mass. The cross deck can also be assumed as
one or multiple beams with a force distribution for the mass. The buoyancy distribution together with
the mass distribution results in a net load. By integrating this net load the shear force is determined.
Integrating the shear force results in the bending moment.
When the exact hull shape is known more exact results can be acquired because the buoyancy distri-
bution can be accurately determined. Commercial software is available which can easily determine the
cross-sectional areas for a certain hull shape. The software places the vessel in the water on the design
waterline. The cross-sectional areas of the vessel, below the waterline, can now easily be computed
together with the required centre of gravity. When the design waterline is known this can also be done
by hand. These sectional areas are used to determine the buoyancy distribution.

Result

To determine the still water loads of the subjected vessel, the hull shape is loaded into Autohydro
software by Autoship. The software determines the cross-sectional areas and the centre of gravity for
the ship when it is placed on the design waterline, see Figure 3.2.
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Figure 3.2: The buoyancy distribution of the vessel placed on the design waterline.

A simplified mass distribution has been assumed, see Figure 3.3. The three free-standing masts have
an assumed weight of 30t each. Furthermore, the weight is divided into three equal parts, the two hulls
and the cross deck are assumed equal in weight. The mass of the cross structure is constant over the
distance of the cross structure. The mass of the hulls is assumed a second-order polynomial. The centre
of gravity should be equal to the CoG determined by placing the vessel on the design waterline. This
shaped the polynomial which resulted in the weight distribution shown in Figure 3.3.
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Figure 3.3: The estimated weight distribution of sailing catamaran

This weight distribution together with the cross-sectional area results in a net load over the length.
Integrating this net load over the length results in the shear force distribution. Integrating the shear
force results in the bending moment distribution. The still water shear force distribution is shown in
Figure 3.4a and the bending moment distribution in Figure 3.4b. The shear force and bending moment
at both ends should be equal to zero. Which is a good check to see whether the estimated weight
distribution has the right COG and size. As can be seen in Figure 3.4b, the subject vessel will have
a positive (hogging) bending moment in still water, see Figure 3.1 for the determination of positive
directions.
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Figure 3.4: Still water load case result

3.1.2 Class based guidelines
The classification societies expect the still water load to be determined according to the first principles,
with the method explained in subsection 3.1.1. The mentioned software can be used to ease this process.
The classification societies do however demand different still water moments and forces from varying
loading conditions. Some classification societies provide methods to estimate the still water loads early
on in the design process. ABS, Lloyd’s Register and ISO do not provide any additional methods, so are
not mentioned below.

Bureau Veritas

BV requires the longitudinal distribution of still water bending moments and shear forces for two loading
conditions, 100% (full) capacity and 10% (light) capacity. If the information required for the full still
water load calculation is not available, the still water bending moment and shear forces may be taken
from Equation 3.1 as a guideline for preliminary assessment only. These values are accepted during
the concept design phase. BV assumes that the vessel is in hogging conditions for this preliminary
assessment. For multihull designs, no transverse bending moments or shear forces are considered.
The preliminary rules Figure 3.3 for determining the longitudinal bending moment and shear force
distribution are given below:

My,SW,H = 0, 8My,w Ql,SW = 0, 8Ql,w (3.1)

[4]

Where:
My,w : Wave induced moment around Y in head seas, see Equation 3.9
Ql,w : Wave induced shear force on longitudinal hull girder in head seas, see Equation 3.10

DNV

The most unfavourable still water conditions are required by DNV. If the information required for the
still water load calculation is not available, the still water longitudinal bending moment for hogging can
be assumed with Equation 3.2. Sagging conditions can be assumed zero.

My,SW,H = 0.5∆L (3.2)

The resulting shear force distribution is not treated individually and is calculated from the longitudinal
bending moment with the following equation:

Ql,SW =
My,SW,H

0.25L
(3.3)

The transverse bending moment, Mx, is also required and is assumed to be:

Mx,SW = 4.91∆
(
0.5s− 0.4B0.88

)
(3.4)
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3.1.3 Comparison
The method to determine the still water loads based on first principles requires the hull shape or a
buoyancy distribution as well as a mass distribution. The class societies propose simplified methods to
get an early estimation of the still water design loads early in the design process when no hull shape is
known. These methods are schematically drawn in Figure 3.5.

Hull shape known?

Follow the class rules for 
es�ma�on of s�ll water loads

Determine cross sec�onal areas

Define mass distribu�on

Determine buoyance distribu�on

Net load

Shear force

Bending moment

No

Integrate

Integrate

Yes

Figure 3.5: Method for defining the still water bending moment

The different methods both determine still water bending moments (SWBM) and shear force distribu-
tions. These results are plotted in Figure 3.6. From the results, it can be seen that the estimation of
the bending moment by Bureau Veritas is conservative but relatively useful as the maximum bending
moment is 25% larger than the result based on first principles. The estimation made by the DNV
rules is not useful as the maximum bending moment is 147% larger than the maximum SWBM for the
concerning hull shape. The still water shear force results are shown in Figure 3.6a. The BV positive
estimate is 19% larger than the maximum calculated value while the negative estimate is 2% smaller
than the absolute minimum value, however, the distribution is off. The distribution used by BV assumes
a maximum and minimum shear from 0.3L to 0.7L aft, while the minimum shear value occurs outside
this region at 0.75L. The DNV estimate is 197% larger than the maximum value and 146% larger than
the minimum value. This makes the DNV estimation not realistic for this vessel.

(a) Shear force distribution Ql,s (b) Bending moment distribution My,s

Figure 3.6: Still water load case results comparison

8



3.2 Wave-induced loads - head seas

When a vessel is sailing at sea it will encounter waves. These waves result in fluctuating pressures on
the hull. This changes the buoyancy force resulting in varying moments and loads. These loads are
dependent on the shape and direction of the waves. In this section, the vessel in head seas is covered.
For designing a vessel, a maximum wave load is determined. This wave load is the most critical wave
load the vessel is expected to encounter during its lifetime, based on statistics. The sea’s surface appears
to be composed of random waves of various lengths. These waves can be described statistically for short
periods (around 3 hours), which results in wave spectra. The long-term description of the sea surface
is a combination of many wave spectra combined in one scatter diagram.
This critical wave load can be found with full-scale experiments, with model testing and scaling factors
or with numerical methods. However, full-scale experiments are impossible as no ship resembles the
design vessel of this research. Model tests could be useful but are expensive and time-consuming, which
is not desirable in the concept design phase.
In this section, the wave-induced loads resulting from head seas are determined. The first principles are
analyzed and then a method for determining the load based on the first principles is proposed. This
method uses a static wave which requires a certain wave height which is examined next. In the second
subsection, the load is determined according to the guidelines of the classification societies. The result
of the static wave method is then compared with the results from the class societies.

3.2.1 First principles
The largest wave loads are a result of the most critical waves. Each moment or shear force reaches
its highest value for different ship motions as a result of different waves. To obtain these values the
vessel’s hydrodynamics are of importance. To describe all fluid-structure interactions between the
waves and the vessel the governing equations of the motion of the vessel, the governing equations
of the waves alone and the interaction condition need to be solved. For short periods of time, for
example, one wave or a measured sea state, Computation Fluid Dynamics (CFD) can be used for
defining the wave-induced loads using Reynolds Averaged Navier Stokes (RANS) equations. This is
computationally expensive and requires more actual time than the modelled time span[13]. This makes
it impossible to use these full velocity potential equations to find the maximum load of the vessel
during the whole lifespan of the vessel. Instead, an approximation of the interactions is made that only
looks in the longitudinal direction. This strip theory was first designed for monohulls but was later
adapted for catamarans [9][18][11]. A potential flow theory is developed for catamarans to also include
the transverse direction[14][5][21]. When the vessel’s hydrodynamics are known from a strip theory or
potential flow theory, they can be converted to Response Amplitude Operators (RAO), which give a
linear relationship between the wave spectrum and the response of the vessel. The resulting response
spectrum shows the movements of the vessel, which can be translated to pressure distributions over the
hull. The most severe pressure distribution results in the load case. The above methods are time and
computational expensive and are based on the exact hull design and mass distributions. This makes
these methods not ideal for early on in the design process.
In this research, the wave-induced load will be determined by applying a static wave to the hull. This
wave will result in a pressure distribution over the hull resulting in a load case. This wave’s height
and length are crucial and determined in the next section. The load case for the vessel in head seas is
determined as well.

3.2.2 Static wave load
In order to find the maximum moments and resulting stresses, the critical wave conditions need to
be determined. The sea surface can be assumed stationary for short-term descriptions of the sea,
ranging from 20 minutes to 3-6 hours. A wave spectrum can describe the stationary surface with two
environmental parameters: the significant wave height and the peak period. However, the sea cannot be
described as a stationary process for long-term descriptions of the sea. For the long-term description,
scatter diagrams are available of multiple areas, which show a joint probability distribution of the wave
height and the peak period. The fatigue limit state can be based directly on these scatter diagrams[7].
The critical wave conditions are different for each moment and shear force. The longitudinal bending
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moment, My, and vertical shear on the longitudinal hull girder, Ql, are most critical in head seas with a
wavelength around the ship’s length. The maximum wave height is limited for each wavelength. Miche
(1944) has theoretically shown that the wave steepness of a harmonic wave is finite. The maximum
wave height is determined by the speed of the crest, which cannot be larger than the speed of the wave
without breaking. This results in the following upper limit:

Hmax ≈ 0.142L tanh

(
2πd

L

)
(3.5)

Where:
Hmax : max. wave height
L : wavelength
d : depth

In deep water, the maximum wave height is thus equal to 0.14L. However, this is the physical maximum
wave height and is a wave height that will never be met, especially for larger wavelengths. Therefore, the
largest wave height that will be used for the analysis is statistically determined. The irregular surface
of the sea can be divided into many regular waves with different amplitudes, frequencies and directions
that together form the irregular surface. This rough surface can be converted into a wave spectrum.
Different sea states result in different wave spectra. For this design, a sea state of 7 is selected. This
is a severe sea state with a probability of occurrence of 6.1% in the Northern Atlantic[16]. The higher
sea states 8 and 9 have a probability of < 1.25%. However, the ship will avoid these most severe sea
states. For each of these sea states, the most probable significant wave height H1/3 and peak period
Tp are given, see Table 3.1. Also, the most critical combination, which has a much lower probability, is
presented[16][1].
The wave heights are given for two wavelengths: head seas and quartering seas. In head seas, the most
critical situation is waves of the same length as the vessel, so 100m. In beam seas, the most critical
condition is unclear as most loads in beam seas result from roll motion, which is not taken into account
by a static wave. For catamarans, quartering sea conditions are critical as they result in the pitch
connecting moment, Mp.The most critical wavelength in quartering seas occurs when the wave troughs
go through the diagonal tips while the wave crest goes through the other diagonal tips, see Figure 3.7.

LWQ =
2Lwls√
L2
wl + s2

= 45.29m (3.6)

Sea state H1/3 Tp H for L=100m H for L=45.3m
6 most critical 6m 9.8s 5.44m 2.49m
7 average 7.5m 15s 3.67m 1.39m
7 most critical 9m 11.8s 6.54m 2.65m
8 average 11.5m 16.4s 4.79m 1.79m
8 most critical 14m 14.2s 7.55m 2.89m
9 average 14m 20s 4.00m 1.47m
9 most critical 16m 15.7s 7.22m 2.71m

Table 3.1: Wave heights for waves with lengths of 100m and 45.3m. Sea states according to NATO
STANAG 4194.[16]
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Figure 3.7: The most critical wavelength for quartering sea waves [4]

Figure 3.8: Bretschneider wave spectra of different sea states 1Bureau Veritas NR500 rules are limited
to a length of 100m

A Bretschneider wave spectrum, also called the modified two-parameter Pierson-Moskowitz wave spec-
trum, can be computed with the specific wave heights and peak periods. The energy density spectra
are converted to spectra of amplitude over wave frequency. The deep-water dispersion relations can
relate a particular wave frequency to a wavelength. The wave spectra are plotted together with the
physical maximum wave amplitude and the wave amplitude according to Bureau Veritas NR500[4], see
Figure 3.8.
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The different wave spectra in Figure 3.8show that the average significant wave height and peak period
of a certain sea state result in lower wave heights than the most critical combination of a lower sea
state. The most critical values of the sea states converge to one point, and the spectra of the average
values of different sea states combine to one point as well for smaller wavelengths. The wave height
of Bureau Veritas is higher than the sea state spectra at smaller lengths. However, at lengths of 50m
and larger, the given design wave height is almost equal to the most critical sea state 6, as can be
seen in Figure 3.8. This is most likely because Bureau Veritas estimates that yachts will not encounter
these severe sea states of 7 or larger, as yachts will always avoid these extreme storm conditions. Sea
state 8 is typical for most hurricanes and is used as the general criterion for U.S. navy ships[20]. The
common rule of practice with a wave steepness of 1:20 is lower than the design wave height given by
Bureau Veritas at lower lengths and also seems low compared to the shown sea states. However, at a
wavelength of 100m, it almost equals the wave height provided by Bureau Veritas. A wave steepness
of 1:15 seems to follow the wave height given by Bureau Veritas much better at lower wavelengths
and is more conservative at larger wavelengths. The wave height probability histogram of area 43,
the Northern Pacific, Figure 3.9 shows that the conservative wave steepness of 1:15 includes the most
unlikely waves. In contrast, the wave steepness of 1:20 does not include these waves, especially at the
critical wavelengths. For this research, the conservative wave steepness of 1:15 will be used. This results
in the design wave parameters as given in Table 3.2.

Figure 3.9: Wave height probability histogram of area 43, Northern Pacific

Table 3.2: Design wave parameters

Wave direction Wavelength Wave height
Head seas 100m 6.66m
Quartering/oblique seas 45.44m 3.03m

Static wave results

As shown above, the most critical conditions in head seas occur when the wavelengths are around the
vessels’ waterline length. In head seas, the static waves, with the parameters shown in Table 3.3, are
subjected to the hull. The method to define the shear force and bending moment distributions resulting
from this wave is equal to the procedure for defining the still water wave load, see subsection 3.1.1. This
method integrates the net load once to obtain the shear force distribution and once more to get the
bending moment distribution. The crest of the wave is shifted by a few meters, see the phase column in
Table 3.3, to keep the trim of the vessel at zero degrees. The head sea shear force for sagging is shown
in Figure 3.10b and the head sea longitudinal bending moment for sagging in Figure 3.10c, the hogging
conditions are shown in Figure 3.11. When the vessel is on top of a wave crest in head sea conditions,
a positive vertical bending moment, My, results in a so-called ’hogging’ condition. When the vessel is
in a wave trough, the vertical bending moment is negative and results in a ’sagging’ condition.
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Table 3.3: Head sea static wave parameters
Resulting motion: Wavelength: Wave height: Phase: Angle of attack:
Sagging 99.49 6.63 22◦ 0◦

Hogging 99.49 6.63 190◦ 0◦
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Figure 3.10: Head sea sagging conditions
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Figure 3.11: Head sea hogging conditions
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3.2.3 Class based guidelines
The class societies use a deterministic approach to determine the loads. They provide approximate
formulas for the wave longitudinal bending moment, My,w and shear force distribution, Ql,w. The
IACS (International Association of Classification Societies) has not yet standardized these formulas for
large catamarans. This results in various formulas for this vessel type from the different class societies.
Before the classification societies had rules for large catamarans, the U.S. Ship Structure Committee
assembled a report (1971) with very conservative rules for the critical loads of large catamarans and
other twin-hulled ships[19].

ABS

ABS provides equations for the wave bending moments in both sagging and hogging conditions[2].

My,ws = −110C1L
2
wl2Bwl (Cb + 0.7)× 10−3(kNm) Sagging Moment

My,wh = 190C1L
2
wl2BwlCb × 10−3(kNm) Hogging Moment

(3.7)

Where:
C1 = 0.044 · L+ 3.75

Wave-induced longitudinal positive and negative shear force distribution:

Qy,wp = +30F1C1Lwl2Bwl (Cb + 0.7)× 10−2(kN)

Qy,wn = −30F2C1Lwl2Bwl (Cb + 0.7)× 10−2(kN)
(3.8)

Where:
F1 & F2 : distribution factors

The method is followed and Equation 3.7 is filled in. This results in the bending moments shown in
Figure 3.12b. The sagging bending moment is significantly larger than the hogging bending moment
due to the +0.7 element in Equation 3.7. When the still water bending moment is added, the sagging
moment will reduce while the hogging moment increases. The shear force is determined according to
Equation 3.8 and shown in Figure 3.12a.

(a) Shear force, Ql,w (b) Bending moment, My,w

Figure 3.12: wave-induced loads in head seas, according to the American Bureau of Shipping
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Bureau Veritas

According to NR500 by BV, the global wave loads are defined in head sea conditions with the following
equations. There is a correction factor for sailing catamarans of plus 30% and the loads are doubled to
get a total load of both semi-hulls.

My,w = 0.20nHWL2
WLBWLCB · 1.3 · 2(kNm) (3.9)

Ql,w = 0.65 n HWLWLBWLCB · 1.3 · 2(kN) (3.10)

Where:
n : Navigation coefficient (=1 for unrestricted vessels)
HW : Wave height, in m
LWl : Wavelength, in m
BWL : Maximum breath at waterline of one float, in m
CB : Total block coefficient

HW = 0.625 (118− 0.36 LW) LW10−3 (3.11)

The load is applied from 0.3LWL to 0.7LWL, which results in a ’square’ distribution, seeFigure 3.13.
The hull girder loads outside this region are overlooked and considered equal to zero. The overall
bending moment induced by still water and wave loads is in hogging the summation of My,w and My,s,
while in sagging it is only the negative value of My,w. The results are given in Figure 3.13.

(a) Shear force, Ql (b) Bending moment, My

Figure 3.13: wave-induced loads in head seas according to Bureau Veritas

DNV

The maximum longitudinal bending moment for twin-hull vessels is given by DNV for hogging and
sagging conditions. This maximum value is distributed over the length with a distribution factor
between one and zero.

My,w,max =0.19CwL
2
wl (2Bwl + k2Btn)CB(kNm) in hogging

0.14CwL
2
wl (2Bwl + k3Btn) (CB + 0.7) (kNm) in sagging

(3.12)

k2 = 1− z − 0.5T

0.5T + 2CW
, minimum 0

k3 = 1− z − 0.5T

0.5T + 2.5CW
, minimum 0

(3.13)
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Where:
Cw : wave coefficient
z : height in m from canoe line to wet deck

For unrestricted service:
CW = 0.08Lwl for Lwl ≤ 100 m

= 6 + 0.02Lwl for Lwl > 100 m
(3.14)

The shear force distribution over the longitudinal hull girder is approximated by the following equation
and distributed with a distribution factor.

Ql,w,max =
My,w,max

0.25Lwl
(3.15)

The wave bending moment and shear force distribution are shown for the concerning vesselFigure 3.14.

(a) Shear force, Ql,w (b) Bending moment, My,w

Figure 3.14: Wave-induced loads in head seas according to Det Norske Veritas

ISO

The rules by ISO are for small craft multihulls (ISO 12215-7:2020). For small craft, the global loads
are of less importance. This is why these rules do not provide equations for longitudinal bending and
shear.

Lloyd’s Register

The ’Special service craft’ rules provide specific regulations for catamarans and other multihulls like
SWATHs. Both equations for the wave bending moment and wave shear force include the still water
effects, which is why the still water loads are not summed.
Wave bending moment distribution for sagging and hogging:

My,w = FfDfMM(kNm) (3.16)

Ff = −1.0 for sagging moment
= 1.0 for hogging moment

(3.17)

MM = Sf ×Gf × Ef × CWP × L2
R.5× 2Bwl(kNm) (3.18)

Ef = 0.125 for sagging moment
= 0.2 for hogging moment

(3.19)
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Where:
Df : distribution factor over the length
Sf : cargo factor (passenger = 1.1)
Gf : service group factor
CWP : waterplane area coefficient (taken not less than 0.5)
LR : Rule length

Wave shear force distribution, both positive and negative:

Ql,w =
3KfMM

LR
(kN) (3.20)

Where:
Kf : shear force distribution factor over the length

For the concerning vessel, the wave bending moment is shown in Figure 3.15.

(a) Shear force, Ql,w (b) Bending moment, My,w

Figure 3.15: Wave-induced loads in head seas, according to Lloyd’s Register
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3.2.4 Comparison
As seen in the previous section, all class societies make use of different parameters to form the same
load cases. However, the parameters can be grouped into different categories and then it can be seen
that almost all societies use at least one parameter per category, see Table 3.4. The category type of
cargo is however only used by Lloyd’s Register. Looking at the physical meaning of the loads, this
category is not necessary to include, and is probably added for other reasons, like economic risks. ABS,
BV and DNV implement the length for determining the shear force distribution and use the length
square to determine the longitudinal bending moment. They also include a wave height/coefficient that
is also partially based on the length. Lloyd’s Register does not do so but implements the length to the
power 1.5 and 2.5 for the shear force and bending moment, respectively. DNV has a special rule for
calculating My,w for twin hulls. Bureau Veritas uses the waterline beam of only one hull. The other
Classification Societies use the waterline beam of both hulls and DNV even includes the cross structure
with a factor for the effect of cross structure immersion in hogging and sagging waves. Bureau Veritas
applies a penalty for sailing catamarans resulting in a 30% increase in the bending moment and the
longitudinal shear force. The variations of the maximum shear force and longitudinal bending moment
are mainly a result of the different constants used by class societies because the used parameters do not
vary much.

Table 3.4: Comparison of parameters used by different class societies for calculating the global loads
in head seas, M tells the parameter is used for the bending moment, Q2 tells the parameter is used
quadratically for the shear force distribution

Parameter: ABS BV DNV LR
Length Q M2 Q M2 Q M2 Q1.5 M2.5

Beam waterline (both floats) Q M Q M Q M Q M
Additional beam Q M

Block coefficient Q M Q M Q M

Area/navigation factor Q M Q M
Wave height/coefficient Q M Q M Q M

Cargo Q M

Figure 3.16: Wave-induced vertical shear force in head seas determined according to multiple class
societies as well as the static wave approach
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The results for the shear force distribution in head seas are shown in Figure 3.16. The most significant
difference in maximum shear is between the result from ABS, which is underestimating, and the result
from DNV, which is very conservative. The difference is around a factor 3. The envelope of the static
wave shows that the shear force is zero in the centre. This only holds for both maximum conditions
that are considered. When the wave peak shifts over the length of the hull the maximum shear value
also shifts over the length of the hull. The envelope of the static wave method can be extended by
drawing a line from both tops. Bureau Veritas also uses a relatively simple distribution envelope. The
other Classification Societies have a more varying envelope. The rules of BV from 2016 still do have a
relatively similar envelope compared to the other Classification Societies. However, this is simplified in
the ’new’ rules from 2020.
The results for the longitudinal bending moments in head seas are shown in Figure 3.17. The results
from ABS and BV are similar and follow the maximum bending moment determined by the static wave
method. The maximum results from DNV and LR are around a factor 2/3 larger than the result from
the static wave method. The envelopes of the classification societies increase the length over which the
maximum bending moment is applied. The static wave method has only considered two extreme cases.
Shifting these cases would results in a broader envelope, but would not increase maximum values.

Figure 3.17: Wave-induced longitudinal bending moments in head seas according to multiple class
societies as well as the static wave approach
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3.3 Wave-induced loads - Quartering seas

In this section, the wave-induced loads resulting from quartering waves are determined. The quartering
waves will not only act in the longitudinal direction but also in the transverse direction. First, the
determination of the load according to the static wave method is shown. Then the results of the class
societies are given and compared with the results from the static wave method.

3.3.1 First principles
The static wave method is used to determine the loads based on the first principles. In subsection 3.2.2
this method is explained and the critical wavelength and wave height are determined. The sectional
areas required for the buoyancy distribution should be given separately for each demi-hull. This is not
possible in the available software. First, the full vessel is placed in the considered wave to find the phase
at which the trim and heel are minimal. These waves, shown in Table 3.5, are now applied to both
demi-hulls with the required phase shifts. The centre of buoyancy for a single hull in the same wave,

Table 3.5: Quartering sea static wave parameters

Situation: Wavelength: Wave height: Phase: Angle of attack: Trim: Heel:
1 45.3 3.03 95◦ 76.85◦(stbd beam) 0.22◦fwd 0.77◦stbd
2 45.3 3.03 -79◦ 76.85◦(stbd beam) 0.23◦fwd 0.02◦port

with equal trim and heel, can now be computed. This needs to be done for both sides. Combining
both centres of buoyancy with the centre of gravity results in a torsional moment, see Figure 3.18. The
forces are shown in Table 3.6 and it can be seen that both situations result in almost equal forces. This
is expected and a result of the symmetry. The errors are a result of rounding errors in the software,
which also resulted in the slight heel and trim of the vessel. When the longitudinal centre of gravity
(LCG) is taken as the rotation axis, the arm is 7.9m, resulting in a pitch connecting moment, Mp of
7.9 · 1462 · 9.81 = 109001kNm.

Figure 3.18: Buoyancy forces in quartering sea wave together with gravitational force result in a torsional
pitch connecting moment, Mp

Table 3.6: Quartering sea static wave resultant forces

Situation Hull Buoyancy force Location FB Gravitational force Location Fg

1 PS 1462 m3 45 1462 t 53 m
1 SB 1462 m3 60.8 1462 t 53 m
2 PS 1462 m3 60.7 1462 t 53 m
2 SB 1462 m3 44.9 1462 t 53 m
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3.3.2 Class based guidelines
The different class societies have made guidelines to determine the transverse loads: the transverse
bending moment, Mx, the transverse vertical shear, Qt, and the pitch connecting moment, Mp.

ABS

Transverse loading of catamarans:

Mx,w = 2.5∆s (1 + avert) (kNm) (3.21)

Where:
avert : max. vertical acceleration, not larger than 7g’s

Pitch connecting moment:
Mp,w = 1.25∆L (1 + avert) (kNm) (3.22)

Transverse shear:
Qt,w = 2.5∆ (1 + avert) (kN) (3.23)

Vertical acceleration:

avert = 0.0078

[
12h1/3

BWL ∗ 2
+ 1.0

]
τ [50− βcg]

V 2 (BWL ∗ 2)2

∆
g′s (3.24)

Bureau Veritas

The pitch connecting moment in quartering sea resulting in transverse loading is given by:

Mp = nHwqL
2
wBwlCB (3.25)

Where:
n : Navigation coefficient (=1 for unrestricted vessels)
Hwq : Wave height quartering seas, in m
Lw : Wavelength, in m
Bwl : Maximum breath at waterline of one float, in m
CB : Total block coefficient

Hwq = 0.625 (118− 0.36 Lwq) Lwq10
−3 (3.26)

Lwq =
2Lw · s√
L2
w + s2

(3.27)

The wave bending moments and shear forces induced by the wave torque, Mx,t, will be determined by
a direct calculation with a 2D beam structure.

DNV

The total twin hull transverse bending moment, Mx, including the still water moment shall be assumed
to be the greater of:

Mx = Mx,SW

(
1 +

avert
g

)
(kNm)

Mx = Mx,SW + Fy(z − 0.5Tc)(kNm)

(3.28)

Where:
Mx,SW : still water transverse bending moment in kNm, see Equation 3.4
FY : horizontal split force on immersed hull
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FY = 3.25

(
1 + 0.0172

V√
L

)
L1.05T 1.30 (0.5BWL)

0.146

[
1− LBMAX

L
+

LBMAX

L

(
BMAX

BWL

)2.10
]
H1(kN)

(3.29)

Where:
H1 : minimum of 0.143B and HS,MAX

HS,MAX : maximum significant wave height in which the vessel is allowed to operate, in m
Bmax : maximum width of the submerged part
LBmax : length in metres where Bmax>Bwl

z : height from baseline to the neutral axis of the cross structure, in m

Pitch connecting moment

MP =
∆avertL

8
(kNm) (3.30)

Where:
avert : max. vertical acceleration, not to be taken less than 9.81 [m/s2]

avert = 6
Hsi
L

(
0.85 + 0.35

Vi√
L

)
9.81

(
m/s2

)
(3.31)

ISO

These rules are for small craft multihulls (ISO 12215-7:2020). For small craft, the global loads are of
less importance. This is why these rules do not provide equations for longitudinal bending and shear.
Pitch connecting moment:

Mp,w = k0.5DC ×∆× (9.81× kDYNM)× 0.076LDIAG(kNm) (3.32)

Where:
kDC : design category factor, for unrestricted vessels equal to 1
LDIAG : diagonal length in m
kDYNM : dynamic load factor

LDIAG =
√

LWL
2 + s2( m) (3.33)

kDYNM =
2.5× L2

WL
m0.66

LDC
that shall not be taken < 1 nor > 2 (3.34)

Where:
mLDC : mass in kg

Transverse bending moment and shear:

Mx = k0.5DC × mLDC

1000
× 9.81× k0.5DYNM × s

8
(kNm) (3.35)

Qt = 0.25× k0.5DC × mLDC

1000
× 9.81× kDYNM(kN) (3.36)
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Lloyd’s Register

The guidelines developed by LR all include a service group factor. This factor is based on the service
area of the vessel and is different in each equation. In the following guidelines, the service group factor
is already filled in for unrestricted vessels.
Transverse bending moment:

Mx = 2.5∆savert(kNm) (3.37)

Pitch connecting moment:
Mp,w = 1.25∆LRavert(kNm) (3.38)

Transverse shear:
Qt = 2.5∆avert(kN) (3.39)

Vertical acceleration in g′s, not to be taken less than 1:

avert = 1.5θBL1 (H1 + 0.084) (5− 0.1θD) Γ
2 × 10−3 (3.40)

Where:
Γ : Taylor quotient
θD : deadrise angle at lCG [degrees]
θB : running trim not to be taken less than 3 [degrees]

L1 =
LWLB

3
c

BW∆
(3.41)

H1 =
H1/3

BW
, but is not to be taken as less than 0.2 (3.42)
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3.3.3 Comparison
When the above classification guidelines are applied to the vessel specification, the results vary for each
class society and each load. The results are shown in Figure 3.19. The transverse vertical shear, Qt,
determined by both ABS and LR is relatively equal. The result from ISO is not shown as it deviates
much and skews the graph. In Table 3.7 the parameters are shown that are used for each load. In this
table, it can be seen that ABS and LR use the same parameters. The method by ISO uses very different
parameters, the length of the vessel contributes more than the displacement, which is not expected for
the transverse shear.

(a) Transverse vertical shear, Qt (b) Transverse bending moment, Mx

(c) Pitch connecting moment, Mp (d) vertical acceleration

Figure 3.19: The resulting loads for the concerned vessel according to different class societies

The transverse bending moment, Mx, determined by ABS, LR and DNV varies largely. The moment
determined by DNV is ten times smaller than the moment determined by ABS and LR. This significant
deviation could result from the different parameters used by the societies. DNV does not take the
float centreline separation or the vessel’s full beam into account for calculating the transverse bending
moment. This dimension however is crucial as a larger separation between the hulls will result in a
larger moment. Not all class societies calculate the transverse bending moment and shear force, because
they calculate these forces and moments as a result of the more critical pitch connecting moment.
This pitch connecting moment is determined by each class society. The analytical method also provides
the pitch connecting moment. Bureau Veritas uses the height of quartering waves in their approach to
determine this moment. The analytical method also uses the quartering waves’ wave height. The static
wave method complies very well with the result from Bureau Veritas. The method from ISO results in a
pitch connecting moment almost 300 times larger than the result from the static wave method and the
method by Bureau Veritas. Because the method of ISO is limited to vessels of 24m, the subject vessel is
far out of this range. Because of the significant deviation, the result from ISO is not taken into account
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and removed from Figure 3.19. The other class societies all use a simple equation that multiplies the
displacement, the length, the vertical acceleration and a constant, see Equation 3.38, Equation 3.30 and
Equation 3.22.

Mp,w = 1.25∆LRavert(kNm) (3.38)

MP =
avert
8

∆L(kNm) (3.30)

Mp,w = 1.25∆L (1 + avert) (kNm) (3.22)

Lloyd’s Register uses a vertical acceleration measured in g’s, with a minimum of 1. ABS also measures
the vertical acceleration in g’s, but the calculated acceleration is much lower which shows in Figure 3.19d.
However, in Equation 3.22 the acceleration is summed with one, which is the only difference from the
equation from LR. In order to have equal results from LR and ABS the vertical acceleration of LR
should be 1g larger than the vertical acceleration of ABS. DNV measures the acceleration in m/s2 and
divides this by 8, resulting in a value of almost 1.25. The constants used in Equation 3.22 of ABS and
Equation 3.38 of LR have an exact value of 1.25. These three class guidelines result in very similar
results for the pitch connecting moment, which is around three times larger than the result from the
static wave method and Bureau Veritas. This is because ABS, DNV and LR do not make use of the
length of the beam in their approaches and do not take the beams of the vessels or the float centre
line separation into consideration while this is a key parameter, which can be seen in the static wave
approach based on first principles.

Table 3.7: Comparison of parameters used by different class societies for calculating the global loads
in quartering seas, x tells the parameter is used for the transverse bending moment, p is used for the
pitch connecting moment, Q2 tells the parameter is used quadratically for the transverse shear force

Parameter: ABS BV DNV ISO Lloyds
Length p p2 x p x2 p3 Q2 p

Float centreline separation x p2 x p x
Max beam waterline (one float) p
Bmax x

Displacement x p Q p x1/3 p1/3 Q1/3 x p Q
Draught x
Block coefficient p

Vertical acceleration x p Q p x p Q
Max speed x

Area/navigation factor p
Wave height/length/coefficient p
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3.4 Sail loads

The subject vessel will be equipped with a DynaRig. This free-standing rig results in high local forces
and bending moments around the mast bearings. The sail set-up will be a three-masted DynaRig with
a total sail area of 3000m2. Dykstra Naval Architect has examined the bearing loads as a result of
these masts in different circumstances. When the vessel is sailing downwind, it experiences the largest
moment around the transverse axis. When the ship is in heavy sea conditions, the largest forces occur
in pure roll. However, the bearing forces remain large when the vessel is rolling as well as pitching in
wave quartering seas, as can be seen in Table 3.8.

Table 3.8: Bearing loads as a result of different conditions. The difference between the top and lower
bearing is 7m.

Fx [kN] Fx [kN] Fx [kN] My [kNm] Fy [kN] Fy [kN] Fy [kN] Mx [kNm]
top bearing lower bearing resultant resultant top lower resultant resultant

Down wind sailing 2426 -1891 535 13,237 0 0 0 0
Roll 0 0 0 0 3618 -2773 845 19,411

Roll & Pitch 1048 -797 251 5579 3185 -2444 741 17,108

Figure 3.20: Superyacht Black Pearl with a DynaRig, by Dykstra Naval Architects and Oceanco. Credit
Tom Van Oossanen

3.5 Conclusion

The classification societies provide guidelines to approximate the longitudinal bending moment and
shear force distribution in still water. The estimate by BV is acceptable. However, the estimate by
DNV is too far off. In the concept design phase, it is best to have an estimate of the boundary
distribution as a result of the hull shape. This distribution, together with the mass distribution, will
determine the actual load in still water conditions.
A static wave method is proposed to determine the load cases resulting from the waves. The method
requires a wave height to wavelength ratio that is defined at 1:15. The wave-induced loads in head seas
are determined by the class societies and using the proposed static wave method. The results from the
classification societies show significant similarities with the static wave method. This makes the static
wave method acceptable for determining the loads in head seas during the concept design phase. The sea
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state used for the static wave method has very steep waves, resulting in large forces. This compensates
for the lack of dynamic forces within the static wave method. The deterministic approaches of the class
societies use less severe sea states as they include the dynamic effects.
The transverse structure of the vessel will be critically loaded in quartering waves. The static wave
method determined the pitch connecting moment of the vessel, using the critical wavelength and height.
BV also uses the wave height and length to determine the pitch connecting moment, and the magnitude
of this moment is similar. ABS, DNV and Lloyds use a very simple equation to determine the moment
and have a result that is three times larger and very conservative. The static wave method gives a
reasonable estimation of the load in quartering seas, and the result will be used for this research. The
model used for determining the global wave loads is valuable in the concept design phase.
The sail loads are acting locally on the mast bearings. However, when the transverse structure is
analyzed, this additional load should be taken into consideration because the masts are placed in close
proximity to these structural elements.
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4 | Response

In this chapter, the responses as a result of the load cases which are defined in the last chapter are
analyzed. The response of the vessel as a result of severe head seas is researched first and focuses on
the longitudinal hull structure. The transverse structure is examined in the next section. The critical
loading condition for quartering seas are applied to the transverse structure in order to analyze it.

4.1 Head seas

The hull shape is simplified by removing all stiffeners and assuming a constant equivalent plate thickness,
see Figure 4.1. The hull section is taken at a length of 70.4m aft. Here the longitudinal bending moment
is still large and almost equal to the maximum bending as shown earlier in Figure 3.17. However, the
height of the hull is less which makes this location more critical than the centre where the height and
the stiffness of the hull are both larger. When the hull section has a constant equivalent plate thickness
of 8mm, the area moment of inertia around the indicated neutral axis, Iy, is 2.1 m4. The furthest fibre
distance from the neutral axis, z, is 3.94m. The longitudinal bending moment is set at 160,000kNm,
which follows from the combination of the bending moment calculated according to ABS, BV and the
static wave approach, see Figure 3.17. This moment is split over both demi-hulls, resulting in the
following equation for one demi-hull:

σ =
MB

2
· z/Iy = 80e6 · 3.94/2.1 = 150MPa

Making the hull out of a variating equivalent plate thickness between 15 and 8mm the area moment of
inertia, Iy, becomes 2.67 m4. The distance to the furthest fibre changes due to the changing neutral
axis and becomes 3.89m, see Figure 4.1b.

σ =
MB

2
· z/Iy = 80e6 · 3.89/2.67 = 117MPa

With these simplified hull shapes the stress as a result of the longitudinal bending moment in head
seas is below the yield stress of aluminium, see Table 1.2. This means that the hull would stay intact
in this extreme load case. The normal stress of 150MPa is 30% below the yield stress so the structure
can also accommodate for local stresses. As shown above, it is relatively easy to lower the stress even
more when required. This can be done by enlarging the plate thickness and implementing additional
stiffeners, resulting in a larger equivalent plate thickness. The demi-hull including the three decks has
an area of 3470 m2, resulting in a total area for just both plain hulls without the cross deck of 6940m2.
When executed in a constant equivalent plate thickness of 8mm aluminium the plain hulls have a weight
of 148 tons, which is 5% of the total weight.

(a) Constant plate thickness of 8 mm (b) Plate thickness: red=8mm, blue=10mm, green=15mm

Figure 4.1: Simplified hull cross-section at L=70.4m aft in colour and neutral axis in black
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4.2 Quartering seas

This section shows the response of the vessel as a result of the implied loads in a quartering sea state.
In order to go from the loads defined in chapter 3 to a response, the structure is needed. First, the
possibilities for this transverse structure are shown. Then the sail loads are evaluated to see which
loads are of importance in this response analysis. Afterwards, a criterion is determined to limit the
movement of the structure. The next subsection, subsection 4.2.1, explains the analytical beam model
and the energy approach, which results in a response. This method is validated and compared in the
follow-up subsection with a computational finite element analysis.

Transverse structure design

The cross-deck which connects both demi-hulls can be modelled as a multi-cell of torsion boxes between
the wet deck and first deck. The first and second deck are connected in four places by a shear web
(blue lines) resulting in four possible places for beam elements. Between the middle beam elements, a
torsion box can be constructed with the use of both decks. In Figure 4.2 a side view of the vessel is
given where the room for such torsion boxes and beam elements is drawn. With thicker lines, the cross
deck is drawn to make a clear difference with both demi-hulls which are also drawn.

Figure 4.2: Possibilities for global scantlings design. Green shows room for torsion boxes. Blue shows
the place for beam elements. Reds are bulkheads and decks.

Load case

In severe quartering seas, the load case subjected to the structure is combined with the wave-induced
load and the sail load. The torsional moment implied on the vessel by the quartering waves as determined
in section 3.3 is the driving load case. However, as a result of the rigging, there is a possible additional
local load applied to the beams. The fore and mizzen (aft) mast are located near the most fore and aft
beam, as can be seen in Figure 4.2. So the additional load from these masts will be applied to these
beams, if they are the strongest elements in that direction.
The resultant force forward, Fx, and the moment around the y-axis, My, see Table 3.8, will be carried
by the decks, as the beams are weak in the longitudinal direction. The transverse force, Fy, will be
carried by the beams and will result in a small addition in normal stress. The moment around the
x-axis, Mx, acts in the same plane as the bending moment resulting from the wave torsional moment.
This moment is constant over the length of the beam as it is a pure bending moment with no shear
force. Both bending moments can be added to find the maximum stress.
Because the sail load is a result of the Roll & Pitch motion, both masts will move in the same direction.
The resulting ’sail’ bending moments will have the same direction. The wave bending moment as a
result of the wave-induced torsion is opposite in direction between both beams. So on one beam, both
bending moments add up, while on the other beam they are subtracted from each other.

Stiffness criterion

Due to the large width of the vessel, the stresses in the torsion boxes can be relatively low (below the
yield stress for shear) while the deformations are large, i.e., rotation of more than 10 degrees. So the
design of the global transverse structure should not be focused on strength alone as it is also stiffness
driven. The large rotational deformation should be prevented in order to keep the other elements of
the vessel from braking. For a strength-driven design, the criterion is fairly simple as the stress should
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not exceed the yield stress including some safety factor. For this stiffness-driven design, the rotation
as a result of the torsional moment will be the criterion. The limiting factor in these vessels is often
the large windows in the superstructure as these will break instead of give. The maximum deformation
over the diagonal of a window is set at 10mm which is a limit that can still be absorbed by the window
caulking.
To determine the value of the maximum rotation, a superstructure, made for an earlier design of the
subjected vessel, is modelled relatively flexible by placing it on a much stiffer plate. This stiff plate has
been given various fixed rotation angles. So a fixed deformation is applied to the superstructure as the
superstructure has no global load carrying capacity. In Figure 4.4 it can be seen that the superstructure
is relatively flexible as the stress in the plate is much higher due to the high stiffness. To be able to
determine the deformation over the diagonals, flexible beam elements are inserted in all windows. These
beams have a Young’s modulus of 1Pa and a radius of 5mm. The aluminium in the superstructure has
a Young’s modulus of 70GPa and a variating plate thickness between 8 and 40mm. The stiff plate has
a modulus of 70e6GPa and a thickness of 10mm. The strain in the beams times their length gives the
deformation over the diagonal. In Figure 4.5 the window openings including the flexible beam elements
with their strains are shown. The most critical window opening is the window where the deformation
is the largest. For this superstructure, the critical ’window’ is the glass sliding door located aft, which
is the large opening in Figure 4.5. The next critical window opening is located on the side of the
vessel and the deformation is around 27% smaller. This shows that the order of magnitude is right for
these superstructures and not based on one outlier. The deformation of this most critical window is
plotted over the torsional rotation of the stiff plate, see Figure 4.3. A trendline is plotted as well which
shows the almost linear relation between the deformation and the rotation at this scale. To limit the
deformation at 10mm the maximum torsional rotation is limited at 0.36◦over the full beam of the plate
of 32m. This gives a maximum twist rate of 0.011 degrees per meter. The maximum rotation over the
centreline separation is 0.26◦and over the distance between both hulls 0.16◦.
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Figure 4.3: Deformation of diagonal of most critical window opening over the torsional rotation of the
full superstructure.
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Figure 4.4: Superstructure modelled in FEA on the stiff plate

Figure 4.5: Superstructure modelled in FEA shown from the AFT with large openings with high
deformations

4.2.1 Analytical model
The transverse structure will be subjected to the previously determined loads. The response will be
analytically determined with the use of beam and torsion theory. The used method is based on the
conservation of energy. The work done by the applied torsional moment equals the total work done by
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the transverse beams and torsion boxes.

UB + UT = Mp · θ (4.1)

The Euler-Bernoulli beam theory is used to analyze the transverse beams. This theory assumes that
the beam is thin and ignores the shear deformations as well as the rotational inertia. The transverse
beams are assumed to be fixed at both ends in five degrees of freedom. The beam ends are only allowed
to move in the vertical direction. When the torsional moment is applied on the assumed infinite stiff
hulls this results in a vertical force on these beams. Direct integration of a beam with the boundary
conditions as stated below and a force applied on one end results in the responses shown in the equations
below and in Figure 4.6.
Applied boundary conditions:

ν(0) = 0
θ(0) = 0
θ(B) = 0

Shear:
V (y) = F (4.2)

Bending moment:

M(y) =

∫
V (y)dy = Fy − FB

2
(4.3)

Rotation:
θ(y) =

∫
M(y)

EI
dy =

1

EI
(
1

2
Fy2 − FB

2
y) (4.4)

Displacement:

ν(y) =

∫
θ(y)dy =

1

EI
(
1

6
Fy3 − FB

4
y2) (4.5)

Figure 4.6: Response of a simple beam as a result of a vertical force applied to one end. The shear and
bending moment are a function of the force. The rotation and vertical displacements are a function of
the force over the Young’s modulus and second moment of area.

The absolute displacement over the length of the beam, B, is determined next:

|ν(B)| = | 1

EI
(
1

6
FB3 − 1

4
FB3)| = FB3

12EI

32



As the rotation is assumed small the absolute displacement is assumed equal to the length, x, times
the angle θ in radians. The maximum rotation of 0.36◦defined as the stiffness criterion lies within this
region of small angles. This makes it possible to determine the force F . The work done by this force,
UB , is determined next.

|ν(B)| = dw = x sin(θ) ≈ xθ (4.6)

F =
12EIxθ

B3
(4.7)

UB = F |ν(B)| = 12EIx2θ2

B3
(4.8)

The torque which is applied to the elements (torsion boxes and beams) is given by the following equation:

T =
GJθ

B
(4.9)

The work done by the torque is given by the following equation:

UT = Tθ =
GJθ2

B
(4.10)

Substitution of Equation 4.1 provides the angle of twist of the hulls θ:

θ =
Mp∑ 12EiIix2
i

B3 +
∑ GiJi

B

(4.11)

Where:
xi : Longitudinal distance between the centre of a crossbeam and the global centre of twist

defined below.
x∗
CT : Longitudinal distance between the datum and the centre of twist, defined below.

x∗
i : Longitudinal distance from an arbitrary datum to the neutral axis or the centre of twist

of a crossbeam, in m.

x∗
CT =

∑ 12EiIixi
∗

BBi
3∑ 12EiIi

B3
Bi

xi = x∗
i − x∗

CT

There are multiple methods to define the stiffness a certain shape has against rotation, called the torsion
constant. This torsion constant, J , required for Equation 4.11 can be calculated by summing the second
moments of area. This however, only holds for closed circular sections and is a large simplification for
other shapes. To improve the model the torsion constant of the beams is calculated according to the
equations given by Roark(1976)[22] which follows the Saint-Venant theory for open sections:

J =
1

3

∫
sect

t3 ds (4.12)

Where:
t : thickness
s : surface

The I beams have a very low torsional constant as there are no closed sections, which are much more
torsion stiff. The I beams have a maximal torsional constant of 0.0002m4 for the given dimension range
and so are negligibly small.
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Timoshenko - Ehrenfest beam theory

The Timoshenko - Ehrenfest beam theory does take into account the shear deformations. This method
is better suited for thick beams and will have the same results for thin beams as the Euler - Bernoulli
beam theory. The theory results in two relations that link the applied force and moment distribution
to the responses:

My = −EI
∂θ

∂y
and Vy = κAG

(
−θ +

∂ν

∂y

)
(4.13)

Where:
κ : Timoshenko shear coefficient, which depends on the geometry [6]

The boundary conditions remain equal to the conditions used for the Euler-Bernoulli theory. This also
results in equal shear force and bending moment distributions.
Shear:

V (y) = F

Bending moment:

M(y) =

∫
V (y)dy = Fy − FB

2

Substituting these distributions in Equation 4.13 and implementing the boundary conditions gives the
following results:

θ(y) =
Fy2

2EI
− FBy

2EI
(4.14)

ν(y) =
Fy3

6EI
− FBy2

4EI
− Fy

κAG
(4.15)

The rotation is also equal to the rotation from the Euler theory. So for these boundary conditions,
only the vertical displacement is affected by the Timoshenko theory. The final term in Equation 4.15
implements the shear deformation and is the only term that changes compared to the Euler-Bernoulli
term.

Stress in beam elements

With the angle of rotation known the individual forces and torsion moments per beam can be calculated.
The maximum normal stress can be found by dividing the maximum bending moment over the section
modulus. As can be seen from Equation 4.3 and in Figure 4.6 the bending moment is largest at both
ends. So the maximum normal stress due to bending will occur in the ends, furthest away from the
neutral axis.

MB,i = FiBi/2 (4.16)

σi = MB,i/SMi (4.17)

Where:
Bi : Length of structure i
SMi : Section modulus of structure i

The shear stress, τ , is a result of the constant shear force over the beams, shown in Figure 4.6. The
shear stress is not equal over the cross-section of these beams. This is a result of the variating thickness
over the beam as well as the first moment of area, Sx, which follows from Equation 4.18. The shear
stress is largest in the centre and much smaller in the flanges.

τ =
VySx

Ixt
(4.18)
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Where:
V (y) : Shear force
Sx : First moment of area
Ix : Second moment of area
t : Thickness

The maximum shear stress in the cross-section of an I-beam occurs in the centre. The derivation of the
equation for the maximum shear stress can be found in section A.2.

τmax =
V (y)

8I
×

[
B

b
×
(
H2 − h2

)
+ h2

]
(4.19)

The most critical point in the beams is where the combination of normal stress due to beam bending
and the shear stress combination is largest. On the neutral line where the shear stress is largest, the
normal stress is zero. In the flanges where the normal stress is largest, the shear stress is almost zero.
Where the shear web connects to the flanges there is relatively high shear stress as well as normal stress.
At the beam ends the bending moment and so the normal stress is largest. The shear stress is constant
over the length of the beam. The connection between the flange and the web at the end of the beam is
the most critical point, because of these effects. The shear stress is this critical point is determined in
section A.2 and equal to:

τcritical =
V (y)

8I
×

[
B

b
×

(
H2 − h2

)]
(4.20)

The normal stresses and shear stresses cannot be simply added as the yield criterion for shear stress is√
3 times lower than for normal stresses. The Von Mises yield criterion is used to check the combination

of these stresses. The normal stresses and shear stresses are combined in an equivalent Von Mises stress,
with the equation shown below.

σv =

√
(σ11 − σ22)

2
+ (σ22 − σ33)

2
+ (σ33 − σ11)

2
+ 6 (σ2

12 + σ2
23 + σ2

31)

2

=

√
(σn)2 + 0 + (−σn)2 + 6(τ2)

2

(4.21)

Torsion box

The cross structure has a double hull which can be modelled as a row of hollow thin-walled rectangles, as
indicated in Figure 4.2. These small torsion boxes and the indicated larger torsion box can be modelled
with the following equation for the torsion constant[22]:

K =
2tt1(a− t)2 (b− t1)

2

at+ bt1 − t2 − t21
(4.22)

Figure 4.7: Dimensions for Equation 4.22[22]

The bottom of the cross-deck is modelled as a wet deck and a dry deck with a certain height between
them. The length is divided into several squares. To maximize the torsion constant the width of the
torsion boxes, a, is kept as close as possible to the height, b, see Figure 4.7 and Equation 4.22. The
plate thickness can now be varied. The wet deck and dry deck are kept at the same plate thickness, t1,
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while the individual horizontal plates have a thickness of t · 2. The highest stress occurs as a result of
bending in the outer parts of the structure. This stress is plotted over the section area, see Figure 4.8a.
In this figure, the plate thickness of both decks, t1, is varied as well as the thickness of the vertical
members. The most optimum data points lay in the lower-left corner of the figure, where the stress is
lowest as well as the used material, measured in area. In Figure 4.8b the thickness of both decks, wet
deck and dry deck are varied separately as well. This does not result in more optimal data points as
expected from Equation 4.22. From Figure 4.8 can be concluded that it is optimal to have the vertical
members as thin as possible. This is a result of the very low torsion constant of these torsion boxes.
The individual torsion boxes absorb more energy in bending. When the distance between the centre of
twist and the torsion box increases this effect increases. Because the individual torsion boxes are loaded
by bending the vertical members do not absorb as much energy as the horizontal (deck) members.

(a) Varying plate thickness of vertical structures and
decks.

(b) Varying plate thickness of vertical structures and
both decks separately.

Figure 4.8

Bredt’s theory

The torsion constant as a result of Equation 4.22 does not include the interaction between the different
boxes. To include these interactions Bredt’s theory can be used. Bredt’s theory assumes constant stress
over the thickness. The multiple individual torsion boxes between the wet and dry deck are coupled into
one multi-cell of torsion boxes. The torsion constant for free warping, Ip, can be calculated according
to the following equation:

Ip = 4{Ω}T [S]−1{Ω} (4.23)

Where:
Ω : closed-cell area vector
S : contour matrix

When the moment applies in the centre of the multi-cell the torsion boxes do not react to bending and
only to pure torsion. Because the box shape is not circular distortion will occur. Due to the torsion,
there will be a displacement in the direction of the beam, called warping. This warping, u, is varying
over the surface, s. The torsion box (multi-cell) is assumed to have a free warping condition because
the demi-hulls where they are fixated to, have a low stiffness in the transverse direction.

u(s) =
1

G

∫
s

qi
tp(s)

ds− θ

∫
s

ρ(s)ds+ C (4.24)

Where:
qi : shear flow in cell i
tp : plate thickness
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u(s) = θ · ω(s) (4.25)

Where:
ω(s) : sectorial coordinate distribution over the surface

This sectorial coordinate distribution can be found with the equations shown below. The constant,
C, is found in a step-by-step process starting on a symmetry axis where the warping and the sectorial
coordinate distribution are known and equal to zero. The equations for a thin-walled cell and for a
multi-cell are slightly different.
Closed thin-walled cell:

ω(s) = −
∫
s

ρ(s)ds+ 2Ω

∫
s

1
tp(s)

ds∮
1

tp(s)
ds

+ C (4.26)

Multi-cell:
ω(s) = −

∫
s

ρ(s)ds+
1

θG

∫
s

qi
tp(s)

ds+ C (4.27)

The stress in the torsion box(es) is pure shear stress, no normal stresses are present due to the free
warping condition. The shear stress is a result of the shear flow, q, which goes around in each cell. On
the plane, where two cells are combined in a multi-cell, the shear flows are opposite in direction and
counteract each other, as depicted in Figure 4.9. Due to this the shear flow and so the shear stress are
largest on the outer plates.

{q} =
Mt

2
· [S]−1{Ω}
{Ω}T [S]−1{Ω}

(4.28)

Bredt’s theory assumes that the stress is equal over the thickness of the plate. The shear stress is
determined with the following equation:

τ =
q

t
(4.29)

Figure 4.9: The shear flow that goes round in each cell and counteracts at the shared planes

Effectiveness of torsion

In order to find the most effective design of the double bottom with torsion boxes, an analysis is
performed. The multicell equations determined by Bredt’s theory are used. In Figure 4.10 the results
can be seen when the height of the torsion boxes is increased. The width of the torsion boxes is kept as
close to the height to keep them as square as possible. Increasing the height and the width of the torsion
boxes results in a higher torsion constant, Ip, and a lower twist rate. The maximum shear stress is also
lowered. In Figure 4.10b the vertical line resembles the yield stress for shear. The effectiveness of the
structure is measured by the torsion constant divided by the material needed, expressed in area. Because
the area of the complete structure keeps quite constant over the change in height while the stiffness
increases significantly the effectiveness of the structure goes up for a larger height. Unfortunately, the
height of the double bottom is limited to 0.6m. At this length, the maximum stress exceeds the yield
stress for shear.
When the height of the boxes is set at the most effective value possible of 0.6m, the number of individual
boxes can still be varied. This analysis is done and the results can be seen in Figure 4.11. Changing
the number of squares results in a relatively small decrease in twist rate and shear stress. The torsion
constant shows only a small positive effect by increasing the number of squares. However, this increase
is only small while the area increases much more. As a result of this, the effectiveness of the structure
decreases with an increasing amount of cells. The most optimal situation has the least amount of cells
according to this analytical analysis.
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Figure 4.10: The multi-cell torsional element with square boxes from 10mm aluminium, variating the
height as well as the individual length to keep the cells as square as possible.
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Weight optimization

In this section, multiple configurations, based on the transverse structure design shown in Figure 4.2,
are analyzed.
The first design includes all 4 beams at 34, 49, 59 and 82m aft. The flanges have a width of 1.5m and
the total height of the beams is 3.4m. In order to comply with the stiffness criterion, the rotation over
the length of the beams, the centreline separation length, should not exceed 0.26◦. This limitation is
met by making the beams with a minimum constant plate thickness of 27mm. This thickness is not
available but is used to show the difference. The cross sections have a total area of 0.69m2.
The transverse structure can also just use the most fore and aft beam and neglect the central two. To
satisfy the criterion a minimum plate thickness of 28mm is required. This results in an area of 0.36m2

which is of course much less than using all four beams. This makes this design more effective.
The two middle bulkheads and the decks in between can however be modelled as a large torsion box
of 3.6 x 10m. Modelling both outer I-beams and the large torsion box with an equal constant plate
thickness of 22mm results in a model that satisfies the criterion. However, the area of both beams and
the box is 0.58m2.
This shows that the most effective design does not use the central bulkheads as I-beams, this is very
ineffective. Modelling these beams and the decks that lay in between, as one large torsion box is more
effective. The design that does not use torsion boxes and only focuses on the most fore and aft beam is
however the most effective. This design can be further optimised. The thickness of the shear web can
be decreased as the flanges are most important. When the shear web is given a thickness of 10mm and
both flanges a thickness of 40mm the construction becomes stiffer while the area drops to 0.3m2. This
area results in a total weight of 19 tonnes for both beams, which is 13% of the weight from the bare
hull as determined in section 4.1. To further optimize this set up the design of the flanges could vary
over the length of the beam, or the width of the ship. Because the bending moment is largest at both
ends while in the centre the bending moment is equal to zero and smaller flanges would suffice.

39



4.2.2 Finite element analysis
In this section, the beam bending theory, derived in the previous section, will be compared with a finite
element (FE) analysis. The same is done for the analytical theory of the torsion boxes. The FE analysis
of a bending I-beam will then be improved by integrating more realistic boundary conditions. A more
complex I-beam is designed that will fit in the current design of the vessel. This complex I-beam is
analyzed with the analytical method and the finite element method.

Beam bending

A single I beam with the dimensions given in Table 4.1 is examined. The beam has a vertical force
and a fixed rotation applied to one end while the other end is fully fixed. The length of the beam is
assumed equal to the centre line separation, s, of 23.25m to provide room within the hulls (4m on both
sides) for the clamping of these beams in the demi-hulls.

Table 4.1: Dimensions of I beam, see Figure 4.12

B1 1700 mm T1 30 mm
B2 1700 mm T2 30 mm
H 3400 mm b 10 mm

Figure 4.12: I beam dimensioning

The vertical displacement of this beam under the applied force is acquired from both the analytical
model and a beam element in the finite element (FE) software Strand7. The normal stress, shear stress
and Von Mises stress from the analytical model are also checked with the result from the FE analysis.
These stresses are shown in Figure A.2
In Figure 4.14a and Table 4.2 it can be seen that the normal stress, σn, complies very well with the
FE analysis. The maximum shear stress, τmax, calculated with Equation 4.18 also complies very well.
However, in Figure 4.14b it can be seen that the shear stress is not equal over the cross-section. The
shear distribution function used to calculate the shear in the most critical corners does not take into
account such a large deviation. This is due to the relatively thin shear web. The analytical method
to define the shear force distribution over the cross-section results in only a slight change between the
maximum shear stress in the centre and the shear stress in the critical point. The FE analysis shows a
larger change in shear stress, see Table 4.3. The Von Mises equivalent stress is largest near the corners
where it exceeds the 300MPa scale. With the analytical method of determining the shear stress, the
shear stress is expected too large on the top and bottom of the web. This results in a larger maximum
Von Mises stress in the corners of the web.

Table 4.2: Stress results of beam theory and finite element analysis with and without taking into account
the shear areas of the beam

Applied
force:

Max. vertical
displacement:

Max. shear
stress:

Max. normal
stress:

Euler-Bernoulli beam theory: 4661 kN 217 mm 145 MPa 287 MPa
FEA (no shear area): 4661 kN 217 mm 145 MPa 287 MPa
Timoshenko beam theory: 4661 kN 413 mm 145 MPa 287 MPa
FEA (incl. shear area): 4661 kN 342 mm 145 MPa 287 MPa
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Table 4.3: Stress results of Euler-Bernoulli beam theory and finite element analysis in the critical point
on the connection between the shear web and flange

Applied
force:

Max. vertical
displacement:

Crit. shear
stress:

Crit. normal
stress:

Max. Von Mises
stress:

Beam theory: 4661 kN 217 mm 125 MPa 282 MPa 360 MPa
FEA: 4661 kN 217 mm 72 MPa 282 MPa 314 MPa

The Euler-Bernoulli beam theory does not include the shear deformation. The FE analysis provides
an option to not take the shear areas into account, to eliminate shear deformations. The vertical
displacement and so the stiffness of the beams is identical for both models that eliminate the shear
deformations, as can be seen in Table 4.2. When the FE analysis does take the shear areas, and so
the shear deformation into account the deformation enlarges, so the structure becomes less stiff. The
Timoshenko beam theory also takes into account the shear deformation. The Timoshenko beam theory
overestimates the deformation as a result of shear. The vertical displacement is 20% larger than the
vertical displacement determined by the FE analysis as can be seen in Table 4.2 and Figure 4.13. Both
the vertical shear away from the centre as well as the shear deformation are overestimated.
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Figure 4.13: Vertical displacement over the length of beam
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(a) Normal stress (b) Shear stress

(c) Von mises stress

Figure 4.14: Stress in simple I beam

Torsion box

The results from Equation 4.23 with Bredt’s theory have been compared with the results from FEA
software Strand7. This is done for multiple multi-cells with a varying number of boxes. Each box has
dimensions of 1 by 1m and is modelled as aluminium. The free warping displacement according to
Bredt’s theory assumes constant shear stress over the thickness and is only valid for small thicknesses,
a thickness of 10mm is used in the analysis. The torsional moment of 110000kNm was applied in the
centre and was in the FE analysis distributed by a ’spider’ of solid links. The length of the multi-cell
was 1m, so the angular displacement over the length is equal to the rate of twist.
The analytical analysis resulted in the free warping displacements over the width of the multi-cell as
shown in Figure 4.15b by the dashed lines. The free warping displacement calculated by the FE analysis
is equal. The maximum shear stress, which occurs in the centre of the top and lower plate is equal
in both methods, see Figure 4.15a. The results from the FE analysis are shown in Figure 4.16. The
rotation, max. warping displacement and max. shear stress are also given in Table 4.4. In this table
it is shown that the results from the analytical model are (almost) equal to the results from the FE
analysis. The largest deviation occurs for the shear stress. This is the result of the difference in shear
stress over the thickness of the plate, which is neglected in the analytical model. The shear stress on
the centreline of the plate determined by the FE analysis is equal to the shear stress determined by
Bredt’s theory.
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Figure 4.15

Table 4.4: Results from analytical and FE analysis of multi-cells consisting of cells of 1x1m.

Rotation [deg] Max. warping disp. [m]
2-box 4-box 8-box 16-box 32-box 2-box 4-box 8-box 16-box 32-box

Analytical 8.984 3.661 1.650 0.785 0.384 26.1 40.6 47.0 49.7 51.0
FE analysis 8.980 3.659 1.648 0.784 0.383 26.1 40.6 47.0 49.7 51.0

0.0% -0.1% -0.2% -0.1% -0.2% 0.0% 0.0% 0.0% 0.0% 0.0%

Max shear stress [MPa
2-box 4-box 8-box 16-box 32-box

Analytical 2750 1528 751.8 360.2 175.9
FE analysis 2791 1544 759.3 363.8 177.6

1.5% 1.1% 1.0% 1.0% 1.0%

Figure 4.16: FEA of multi-cell with 8 torsion boxes, top = shear stress, bottom = warping displacement
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When the warping of the torsion boxes is constrained different results are expected. When the warping
is completely constrained, so no warping is allowed the shear flow does not go round in each cell. Instead,
the vertical elements are vertically loaded and deformed by shear. The top and bottom elements in the
constrained model do not absorb much energy as can be seen from the stress results in Figure 4.17.
All stress is in the vertical members. By limiting the warping the structure becomes much stiffer.
The rotation for both the constrained warping and free warping model are shown in Figure 4.18. The
rotation of the constrained warping model is 77% smaller than the model with free warping. So, the
stiffness is increased by 77% for this set-up by constraining the warping displacement.

Figure 4.17: FEA of multi-cell with 8 torsion boxes Von Mises stress, top = constrained warping,
bottom = free warping

Figure 4.18: FEA of multi-cell with 8 torsion boxes rotation, top = constrained warping, bottom = free
warping
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Optimization of the FE analysis

The flanges of the I beams are the decks that may be locally stiffened. The width of these ’flanges’ is
critical in the bending stiffness of these beams. The width of the flanges can not be equal to the width
of the whole deck. The failure mode of I beams with a large width to thickness ratios in the flanges is
local buckling of the beam flange citeIguchi2002EffectsRoot.
The bending stress in the flanges is highest near the web. The bending stresses in wide flanges decrease
over the distance from the web. This phenomenon is called shear lag or stress diffusion[17]. The
effective breadth methodology by Schade (1951) has been proven effective to model this effect. As
shown in Figure 4.19 the shear distribution over the flange is modelled with an effective breadth at
the maximum stress, σmax. The integral of the stress over the breadth is kept constant. However,
this method requires a stress distribution over the full plating which is not available. Tigkas et al.
(2011) researched the effective breadth of 29 simple structures, made of a plate with a stiffener. They
developed a uniform rule for the effective breadth depending on the maximum breadth and length of
the beam, see Equation 4.30[12]. The actual breadth, b, required in Equation 4.30, is not available. For
this problem of finding the width of the flanges, a different solution is needed.

beff
b

=
(
1− e−0.4l/b

)
(4.30)

Where:
beff : Effective breadth of the flange
b : Actual breadth of the flange
l : Length of the beam

Figure 4.19: Effective breadth definition with the actual and fictitious bending stress distributions[10]

A beam element with wide flanges is modelled in a finite element analysis with 200,000+ 3d elements
(tetra4). A vertical load is applied to the shear web on one end of the beam and a counteracting load
is applied to the other end. The rotations are fixed at the full beam end. This results in the s-curve
deflection, shown in Figure 4.20. This figure also shows the normal (compression/tension) stresses.
From Figure 4.20 can be concluded that where the moment is largest, at both beam ends, the flanges
do not contribute with unlimited width. In the previous FE analysis the normal stress over the breadth
of the flange is constant, see Figure 4.14a. The difference between both analyses is the location where
the load is applied. Applying the vertical load only to the shear web is a more realistic situation, as
the bulkheads in both demi-hulls are much stiffer in the vertical direction than the decks.
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Figure 4.20: Axial stress in I beam with boundaries applied to the shear web. 25m long, 5.5m wide,
3m high and plate thickness of 30mm

Complex beam design

In order to optimize the use of the flange, the vertical load should be applied to the flange in the best
way possible. To arrange this, the width of the flange is set to be twice the frame spacing. The load can
then be applied to the centre by the bulkhead/shear web and also on the sides by the frame. All vertical
members drawn in black in Figure 4.22 are loaded. Keeping the flange between the frame spacing gives
a flange width of 1.5m. When the thickness of the flange is above 37mm this flange width complies with
the rule established by Lambert (1968). This rule says that the width should not exceed 40 times the
thickness of the flange[15]. In order to make the flanges easier manufacturable and to prevent buckling
in the compression flange, one flange is split into two flanges and two vertical elements creating a box
structure as can be seen in Figure 4.22. The lower box-like flange lies between the dry deck and wet
deck. All sorts of connections need to pass through this section, like plumbing, electricity, etc. This is
accommodated for by openings in the vertical members. The forward beam is drawn in Figure 4.21b.
The aft beam has large additional holes in the shear web to accommodate for the sliding doors located
in the aft. The aft beam is drawn in Figure 4.21a.

(a) Drawing of aft I-beam configuration (b) Drawing of forward I-beam configura-
tion

Figure 4.21
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Figure 4.22: The complex design of the beams in black, the black and white dashed areas indicate the
holes in the shear web, in red the simplified beam is drawn, the shear web is shortened and not displayed
at scale

These complex beam designs are analyzed. The overall pitch connecting moment is equal to 110000kNm,
see section 3.3. The centre of twist lays in between both beams, resulting in a distance of 23.6m between
the beam and the centre of twist. On each of the beams, a positive or negative vertical force of 4660kN
is applied to account for the pitch connecting moment.
The complex beam design is simplified for the analytical model. Both top and lower flanges are combined
into two flanges laying in the middle of the ’box’, drawn in red in Figure 4.22. The area of the vertical
members in the flange is only compensated for by 50% as they have holes. This gives the flange a
thickness of twice the thickness in the complex design. The width of the flange in the analytical model
is 1.7m instead of the 1.5m in the complex design. The height of the I-beam is 3.4m. The yield strength
of aluminium of 215MPa is lowered by 30% to accommodate for local loads. This leaves a maximum
normal stress of 150MPa and a maximum shear stress of 87MPa, as the material in yield is

√
3 times

weaker. When the simplified flanges have a thickness of 70mm the maximum normal stress is 144MPa.
When the shear web is given a thickness of 20mm the maximum shear stress is 73MPa. For such beam,
the vertical displacement is equal to 109mm which gives a rotation of 0.13◦. These beams fulfil both
the stress and stiffness criteria.
The sail loads can be added to this analytical beam to see what the result is on the stress. The moment
is equal to 17108kNm divided by two. The maximum bending moment in the beam ends is equal to
54184kNm, so the increase by the sail load is 16%. The maximum normal stress on one side of the
beam is increased to 167MPa while it lowers on the other end. The side force, Fy, as a result of the
rigging results in another small increase in the normal force of 3MPa.
When the complex design is modelled in Strand7 with a thickness of 35mm in the complex flange
and 20mm in the shear web the results vary much from the analytical model. The results are shown in
Figure 4.23 and Figure 4.24. In these figures, the normal stress, as well as the Von Mises stress, is limited
because the application of the load on only the vertical members results in high-stress concentration.
The required cut-outs in the vertical members also result in large stress concentrations.
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Figure 4.23: FE analysis of the forward beam

Figure 4.24: FE analysis of the aft beam

4.3 Conclusion

The response of the vessel loaded in head seas condition is analyzed in the same way as for monohulls.
The cross-section of the vessel is simplified to determine the most critical stress. This is a normal
stress as a result of the longitudinal bending moment. Due to the slender and high hull shapes of both
demi-hulls, it is relatively easy to keep the stresses within their limitations.
The torsional moment as a result of the quartering waves is analysed with an analytical beam model.
The transverse structure is not only stress driven but the stiffness is also of importance to keep the
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superstructure from breaking. The maximum rotation over the centreline separation distance is 0.26◦.
The analytical beam model is compared with an FE analysis and shows equal results on the maximum
normal and shear stresses. However, the shear distribution over the shear web shows a large deviation
between the two. The analytical method results in a larger shear stress in the connection point with
the flange. This results in an overpredicted Von Mises stress in the analytical model as well as an
overpredicted deflection, when the shear deflections are taken into account.
Torsion boxes as part of a multi-cell are analysed as well and they show equal results as the FE analy-
sis. The shear stress varies only a small amount because the analytical model assumes a constant shear
stress over the thickness of the plate. From the analytical model can be concluded that the torsion
boxes are less effective than a structure that includes beams. This is a result of the large arms the
beams can have to the centre of twist.
The FE analysis is optimized by only loading the I-beam in the vertical elements. The design is also
made more complex due to required cut-outs in the shear web. These complex beams do not follow the
analytical model any longer and no predictions on the response of these complex beams can be made
without the use of FE analysis. Due to the complexity of the beams the analytical method is not useful
in the design of these beams. However the analytical method has shown value by indicating the value
of torsion boxes compared to beams.
The head sea loading condition is less complex than the quartering sea loading condition and easier
to solve. This makes the pitch connecting moment the dominant load. However for the longitudinal
hull girder design the longitudinal bending moment is dominant. The additional sail loads result in an
increase in the maximum stress in the beams of 16%.
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5 | Evaluation

5.1 Conclusion

The design of large sailing catamarans starts with determining the overall dimensions. The loads can
be determined when these are set, and a hull shape is known. This is done with the static wave method
in a particular sea state. In head seas, the class societies give a good approximation compared to the
static wave method. In quartering waves, the pitch connecting moment determined with the static wave
approach complies with one class society, BV. This society uses wave height and length to determine the
load. Other class societies do not make use of any dimension of the beam or hull separation, and these
rules have a resulting moment which is three times larger. During the concept design phase, the static
wave method is helpful as the class society might not be determined yet. Many parameters needed for
acquiring the results from the class rules are not set either. A tool that defines the load based on first
principles gives the engineer more insight into the actual problem. It might also be used next to the
rules when working on a project that lays outside or on the border of the regular scope of the rules.
The rules are still a deterministic process based on earlier builds and might give the wrong results.
The analysis of the longitudinal structure of the catamaran remains equal to the analysis of a mono-
hull. Due to a catamaran’s high and slender hulls, the longitudinal bending moment is not much of a
problem. The pitch connecting moment is the dominant load case for the transverse structure. This
torsional moment is a result of the quartering waves. In order to keep the superstructure from break-
ing, a stiffness criterion is defined by reversed engineering. The rotation of the demi-hulls is limited to
0.26◦over the centreline separation distance. An energy model is used to determine the stiffness required
to comply with this criterion. The energy model with simple beam theory is checked with FE analysis
and shows great resemblance for the torsion boxes as well as for simple beams. The shear stress is due
to the relatively narrow profile of the shear web over predicted analytically. This also results in a lower
stiffness (-20%) beam according to the Timoshenko beam theory compared to the FE analysis. Using
the beam theory, a design containing two I-beams is proposed. The design of these beams was strength
driven as the stiffness requirement was met before the maximum stress requirement.
When more complex beams are used, especially with substantial holes, the analytical beam theory is
not adequate anymore. Therefore, a more complex FE analysis of the single beam is required to find
the right stiffness of the design with holes. This stiffness should be equal to the stiffness which follows
from the energy model; Otherwise, the displacement will become too large.

5.2 Discussion

The static wave model for defining the wave-induced loads in both head and quartering seas does not
incorporate any dynamic wave elements, like slamming. For this reason, the used wave height is rather
conservative. This wave height can be lowered when dynamic effects are taken into account.
In the energy model as well as the FE analysis, the ends of the beam are fixed for the transverse dis-
placement. However, both semi-hulls will not be infinitely stiff against longitudinal torsion, as assumed
in this research. This will result in smaller bending moments at the beam ends, resulting in lower
stresses. However, this will also increase the displacement of both hulls as well as the superstructure
and make the structure less stiff. When the bending moments, as well as the resulting stresses, are
lower, the plate thickness can be brought down. This will make the structure less stiff and make the
stiffness criteria more important.
Both the analytical and FE analyses do not include a buckling analysis. The most optimal torsion boxes
are large and thin, according to the analytical theory. However, these torsion boxes are also most likely
to buckle.
The compression flanges of the I-beams are also prone to buckling. For the longitudinal structure as
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well as the transverse structure, fatigue is not taken into consideration. Because the structure is made
of aluminium, the structure might need to be larger to accommodate for fatigue. Aluminium does not
have a fatigue limit. The aluminium will eventually always fail after a number of stress cycles, even
for small stresses. However, small stress amplitudes will increase the number of cycles the material can
withstand.

5.3 Recommendations

The rules for the pitch connecting moment by some classification societies could be improved by im-
plementing the missing dimensions of the beam and float separation as the pitch connecting moment
is based on these dimensions according to first principles. Further research could also improve the
static wave method by finding and implementing a parameter for the dynamic effects of a wave, i.e.
impact loads and accelerations. This could possibly lower the assumed wave height to length ratio and
result in less conservative load cases. Where both demi-hulls are in this research assumed infinite stiff
further research can implement the actual stiffness of both hulls and find the effect of these changing
boundary conditions on the stresses and displacements. Research containing reverse engineering could
find more correct conditions on the limitations of warping. When the torsion boxes are constrained in
their warping, they become much stiffer and might become more effective against torsion than beams
at this scale.

51



A | Derivations

A.1 Timoshenko shear coefficient

The Timoshenko shear coefficient which is a parameter in the Timoshenko beam theory is developed by
Cowper (1966)[6] for various geometries. The equation for the shear coefficient of a symmetrical I-beam
is given below. The required dimensions are shown in Figure A.1.

κ =
10(1 + ν)(1 + 3m)2

(12 + 72m+ 150m2 + 90m3) + ν (11 + 66m+ 135m2 + 90m3) + 30n2 (m+m2) + 5νn2 (8m+ 9m2)
(A.1)

[6]

Where:
m = 2btF /htw
n = b/h

Figure A.1: Dimensions used for the Timoshenko shear coefficient developed by Cowper(1966)[6]
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A.2 Shear distribution I beam

The shear distribution is calculated separately for the flange and for the web. The derivation is shown
below for the flange, which has a thickness, t, which is equal to the width of the flange, B. For this
derivation horizontal and vertical symmetry are assumed. The dimensions used for this derivation can
be seen in Figure A.2b.

q =
VySx

Ix
(A.2)

τ =
q

t
(A.3)

Where:
q : Shear flow
Vy : Shear force
Sx : First moment of area
Ix : Second moment of area
t : Thickness

Sx = A · z̄ (A.4)
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)
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(A.7)

For the top of the upper flange z = H/2, so the shear stress is zero. The maximum shear stress in the
flange occurs on the lower side of the upper flange and the top side of the lower flange, as can be seen
in Figure A.2a. Here z is equal to h/2 which results in the following shear stress:

τflange,max =
Vy

2Ix

(
H2

4
− h2

4

)

(a) The shear distribution over the cross-
section of the I-beam

(b) Dimensions required for
defining the shear stress dis-
tribution in the flange

(c) Dimensions required for
defining the shear stress dis-
tribution in the web

Figure A.2

The derivation for the shear distribution of the web is slightly different because the first moment of
area of the web does also include the flange. The dimensions used for this derivation can be seen in
Figure A.2c.

Sx = A1 · z̄1 +A2 · z̄2 (A.8)
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τweb =
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(A.14)

The maximum shear stress occurs at z = 0. This results in the following maximum shear stress:

τmax =
Vy

Ix8

(
B

b
· (H2 − h2) + (h2)

)
(A.15)

The shear stress in the connection, at the end of the shear web is the most critical. The stress has the
following magnitude:

τcritical =
Vy

Ix8

(
B

b
· (H2 − h2)

)
(A.16)
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