Delft University of Technology
Master of Science Thesis in Embedded Systems

Seneca-Lite: Open-source RISC-V based
Multi-Core Neuromorphic Platform

Yashwanth Gopinath

rr{‘: Embedded
“wn] Systems

Seneca-Lite: Open-source RISC-V based
Multi-Core Neuromorphic Platform

Master of Science Thesis in Embedded Systems

Embedded Systems Group
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

In collaboration with:
IMEC, Netherlands

Yashwanth Gopinath
Student Number: 5731143

August 29 2024

Author

Yashwanth Gopinath (Y.Gopinath@student.tudelft.nl)
Title

Seneca-Lite: Open-source RISC-V based Multi-Core Neuromorphic Platform
MSc Presentation Date

August 29 2024

Graduation Committee
Thesis Advisor: Prof. Said Hamidioui, TU Delft

Supervisor: Dr. Rajendra Bishnoi, TU Delft
Supervisor: Gert-Jan Van Schaik, IMEC
External Member: Prof. Ranga Rao Venkatesha Prasad, TU Delft

mailto:Y.Gopinath@student.tudelft.nl

Abstract

Neuromorphic architectures are energy efficient architectures for executing spik-
ing neural networks. Current open-source neuromorphic hardware projects are
either experimentation platforms (RANC, ODIN) or neural network accelerat-
ors (Open-Spike, SNE), there are no direct processing platforms that support
AT and ML applications. Seneca-Lite is an open-source RISC-V based multicore
neuromorphic platform. The goal of Seneca-Lite is to enable new possibilities
for AT and ML applications and foster more collaboration in this field. The plat-
form is intended for research and academic purposes and furthering the field of
neuromorphic computing.

The Seneca-Lite platform utilizes the Ibex core, a highly parameterizable
open-source 32 bit RISC-V processor. Each core in the Seneca-Lite platform
contains a Network On Chip (NoC) router, local memories, network message
FIFOs and interconnects. The multi-core platform is designed to facilitate mes-
saging between cores via the NoC. The NoC used in Seneca-Lite is the same as
the NoC used in RANC (Reconfigurable Architecture for Neuromorphic Com-
puting). The number of cores in the system is parameterized and can be con-
trolled by the user depending on their need. Since the platform is open-source,
many of the internal parameters (Ibex parameters, FIFO parameters etc) can
be tweaked by the user as per their target application.

The completed neuromorphic platform is benchmarked for various state-of-
the-art applications and compared to other neuromorphic platforms.

v

Preface

This thesis, submitted in partial fulfillment of the requirements for the degree
of Master of Science in Computer and Embedded Systems Engineering (CESE)
at the Faculty of Electrical Engineering, Mathematics, and Computer Science
(EEMCS), Delft University of Technology, represents the culmination of re-
search conducted in collaboration with IMEC Eindhoven from September 2023
to August 2024. This industrial thesis was undertaken under the guidance of Dr.
Rajendra Bishnoi and Gert-Jan Van Schaik (IMEC), with Prof. Said Hamdioui
serving as the thesis advisor.

The primary objective of this research is to develop an open-source neur-
omorphic platform, addressing the current gap in such platforms for academic
and developmental purposes. Seneca-Lite is an innovative, RISC-V, event-
driven platform created using open-source tools and components, designed to
be lightweight and user-friendly. Additionally, it aims to reduce energy con-
sumption compared to existing neuromorphic platforms.

This research endeavor has been an immensely enriching experience, provid-
ing me with hands-on exposure to all facets of embedded systems design. I
have gained valuable insights into various computer architectures, RTL imple-
mentations of complex designs, and the integration of system-level components.
Throughout this project, I have greatly benefited from the invaluable insights
and guidance provided by Amirreza Yousefzadeh, Gert-Jan Van Schaik and Dr.
Rajendra Bishnoi, which have been instrumental in all aspects of the research.

Yashwanth Gopinath
Delft, August 2024

vi

Contents

Preface v
1 Introduction 3
2 Background 7
2.1 Spiking Neural Networks (SNNs) 7
2.1.1 Neuron Architecture 8

2.1.2 Challenges and Research Directions 9

2.2 Neuromorphic Computing 9
2.3 Ibex RISC-V Core 10
2.3.1 Benefits of Using Ibex in Neuromorphic Platforms 11

2.4 Tile Link Interconnects 12
2.4.1 TileLink Uncached Lightweight (TL-UL) 12

2.5 Survey of Open-Source NoCs 14

3 Literature Study 17
3.1 Reconfigurable Architecture for Neuromorphic Computing (RANC) 17
3.2 Seneca Neuromorphic Architecture 18
3.3 Imtel Loihi 19
3.4 ODIN Spiking Neural Network (SNN) 21

4 Proposed Seneca-Lite Architecture 23
4.1 Seneca-Lite Design Overview 23
4.1.1 Event Driven Data Flow 23

4.2 Neuromorphic Architecture 25
4.2.1 Core Level Seneca-Lite Architecture 25

4.2.2 System Level Architecture 26

5 Seneca-Lite Hardware Implementation 29
5.1 Single Core Seneca-Lite Hardware Implementation 29
5.1.1 Control Mechanism 31

5.2 Network on Chip (NoC) Router 32
5.2.1 NoC Packet Structure 33

5.3 System Level Hardware Implementation 34
5.3.1 Module Hierarchy 34

5.3.2 Top Level NoC connections 34

5.3.3 4-core architectureo 35

vii

6 Results and Discussion 39

6.1 Experimental Setup L. 39
6.2 Seneca-Lite Single Core Results 39
6.2.1 Synthesis Results 41

6.2.2 Energy Metrics00 41

6.3 System Level Results 43
6.3.1 Software Benchmark 1- Keyword Spotting Software . . . 43

6.3.2 Software Benchmark 2- Hand Gesture Recognition Software 44

6.3.3 Benchmarking Results 45

6.3.4 Comparison with state of theart 45

7 Conclusions and Future Work 49
7.1 Conclusions 49
7.2 Future Work 50
References 51

viii

List of Figures

1.1

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2
6.3
6.4

6.5
6.6

Summary of thesis contributions for Seneca-Lite

Typical SNN neuron architecture
Ibex RISC-V core [17],
TL-UL interconnect memory operations [20]
TL-UL interconnect memory operations featuring six write trans-

actions (4 full, 2 partial)[20]

High-level architecture of RANC[19]
High-level block diagram of Seneca neurmorphic core[25]
Single core design of Loihi 2 architecture[14]
Block diagram for 256 neuron ODIN neuromorphic processor [9]

Seneca-Lite design objectives
Seneca-Lite single core proposed design
Seneca-Lite 3x3 proposed architecture

Seneca-Lite single core hardware architecture
Seneca-Lite NoC router design
Psudocode for Dimension Order Routing [19]
Packet structure for the NoC hardware implementation
Module hierarchy for Seneca-Lite architecture
Seneca-Lite top level diagram for a 4-core architecture

Control Flow for the RISC-V processing cores in Seneca-Lite ar-
chitecture
Configurable Logic Blocks(CLBs) LUTSs utilisation by submod-
ules of Seneca-Lite core L.
Configurable Logic Blocks(CLBs) Registers utilisation by sub-
modules of Seneca-Lite core oL,
APS neural network Lo
Comparison of area and energy metrics for KWS benchmark
Comparison of area and energy metrics for APS benchmark . . .

ix

List of Tables

2.1

2.2

2.3

5.1
5.2

6.1
6.2

6.3
6.4
6.5

Comparison of different open-source NoCs based on topology and
routing
Comparison of different open-source NoCs based on area, scalab-
ility, energy consumption and fault tolerance.
Comparison of different open-source NoCs based on latency, design
standard, and performance over baseline.

Address ranges for single core TL-UL interface devices
Address ranges for different cores in a 4-core Seneca-Lite archi-
tecture

Seneca-Lite single core utilisation on ZCU111
Seneca-Lite single core utilisation breakdown between modules

on ZCULLIL e
Core workload distribution of KWS benchmark
Comparison of Seneca and Seneca-Lite for KWS benchmark . . .
Comparison of the results of different architectures for APS bench-
mark e

15

Chapter 1

Introduction

Neuromorphic computing represents a transformative approach to artificial in-
telligence (AI) and machine learning (ML) that emulates the human brain’s
architecture and functionality. This field has gained significant traction due to
its potential to deliver highly efficient, low-power, and fast processing solutions,
which are crucial for real-time applications in edge computing environments [28].
Unlike traditional von Neumann architectures, neuromorphic systems integrate
processing and memory storage, thereby reducing latency and energy consump-
tion. Such capabilities make neuromorphic computing ideal for applications in
the Internet of Things (IoT), autonomous vehicles, and various sensor-driven en-
vironments, where efficient processing and immediate response are paramount
[25].

Despite the advancements in neuromorphic computing, there remains a sig-
nificant research gap in the availability of a fully open-source, scalable neur-
omorphic platform. Existing platforms are either experimental or focus nar-
rowly on neural network acceleration without addressing broader system-level
challenges. The primary objective of this thesis is to design, implement, and
verify a multi-core neuromorphic processor that utilizes open-source components
and architectures. Seneca-Lite aims to be competitive in performance, energy
efficiency, and scalability when benchmarked against other neuromorphic pro-
CESsOors.

The motivation behind developing an open-source neuromorphic platform
stems from the need to accelerate access to advanced computing resources|25].
Currently, many neuromorphic platforms are either proprietary or focused on
specific aspects of neural network acceleration, limiting broader academic and
industrial collaboration. By offering an open-source solution, Seneca-Lite aims
to facilitate widespread experimentation, innovation, and adoption in the field
of neuromorphic computing. This approach can significantly enhance the de-
velopment of scalable and efficient systems for a wide array of ML and Al
applications[13].

Seneca-Lite is designed as an open-source, RISC-V based multi-core neur-
omorphic platform, optimized for efficiency and scalability. The platform lever-
ages a novel Network-on-Chip (NoC) design to enhance inter-core communica-
tion and overall system performance. The choice of RISC-V as the underlying
architecture offers several advantages, including extensibility, modularity, and a
vibrant open-source ecosystem. Seneca-Lite aims to bridge the gap in existing

technologies by providing a fully open-source, scalable neuromorphic platform
that can support diverse ML and AI applications.

4 R
Input > Seneca Lite Software Workloads Output
events events
I
4 N
Memory Seneca Lite Hardware
Weights and > > Architecture

biases

Benchmarking environment

Thesis Contributions

Figure 1.1: Summary of thesis contributions for Seneca-Lite

This thesis contributes to the field of neuromorphic computing by introducing
an efficient and flexible open-source platform, Seneca-Lite, with a novel optim-
ized router for enhanced NoC communication. In Figure 1.1, we see the software
and hardware contributions and also includes input neuromorphic events (sensor
inputs), weights and biases for the application. The key contributions include:

e Design and Hardware Implementation: Developing the multi-core archi-
tecture of Seneca-Lite.

e Verification: Implementing and verifying the design through simulations
and test cases

e Event driven dataflow: The design of multi-core system and communica-
tion network is optimised for neuromorphic data flows, suited for ML and
AT applications.

e Benchmark with End-to-End Software Workloads: Demonstrating the
practical utility of Seneca-Lite through end-to-end applications and ASIC
simulations.

The report is structured as follows:

e Chapter 2 - Background: An overview of Spiking Neural Networks
(SNN), neuromorphic computing paradigm and other relevant technologies
used in this research.

e Chapter 3 - Literature Study: A comprehensive review of existing
neuromorphic architectures and their analysis.

e Chapter 4 - Proposed Seneca-Lite Architecture: Detailed descrip-
tion of the proposed architecture and design objectives

e Chapter 5 - Seneca-Lite Hardware Implementation: Design choices
and hardware implementation steps for Seneca-Lite.

e Chapter 6 - Results and Discussion: Presentation of the software
benchmarks, synthesis results, and analysis of these outcomes.

e Chapter 7 - Conclusions and Future Work: Summarizing the find-
ings, discussing the implications, and outlining potential future research
directions.

Chapter 2

Background

In this chapter, some of the technology used in the research is explained in
detail. Each of these sections correspond to technology used in the design and
implementation chapters.

2.1 Spiking Neural Networks (SNNs)

Spiking Neural Networks (SNNs) represent a third generation of neural network
models, significantly more biologically plausible than traditional artificial neural
networks (ANNSs) or even deep neural networks (DNNs). Unlike ANNs and
DNNs, which rely on continuous activation functions and weighted sums, SNNs
introduce the concept of timing into the model, mimicking the way neurons in
the brain communicate through discrete spikes or action potentials [11, 18].

In SNNs, the basic computational unit is a spiking neuron [11]. Unlike tra-
ditional neurons that produce continuous outputs, spiking neurons emit a spike
only when their membrane potential—a value representing the neuron’s internal
state—exceeds a certain threshold. This spike is then transmitted to connected
neurons, influencing their membrane potentials.

¢ Membrane Potential: Each spiking neuron maintains a membrane po-
tential that accumulates input signals over time. Inputs from other neur-
ons arrive as spikes, which can either increase (excite) or decrease (inhibit)
the membrane potential [11]. The dynamics of the membrane potential are
often modeled using differential equations, such as the Leaky Integrate-
and-Fire (LIF) model [16], which describes how the potential decays over
time if no input is received .

e Spike Generation: When the membrane potential crosses a specific
threshold, the neuron generates a spike, which is then propagated to other
neurons. After spiking, the neuron undergoes a refractory period during
which it cannot spike again, allowing the membrane potential to reset and
preventing continuous firing [18].

e Synaptic Weights: Similar to traditional neural networks, SNNs use
synaptic weights to determine the strength of connections between neur-
ons [11]. These weights influence how much the membrane potential of a

neuron is affected by incoming spikes. Learning in SNNs involves adjust-
ing these synaptic weights, often using spike-timing-dependent plasticity
(STDP), a biologically inspired learning rule that modifies weights based
on the relative timing of spikes from pre- and post-synaptic neurons [18].

2.1.1 Neuron Architecture

X

X2

Summation function Activation function

X3 Neuron Output

Figure 2.1: Typical SNN neuron architecture

Figure 2.1 represents the basic structure of a spiking neural network (SNN)
neuron, highlighting the key components involved in processing inputs and gen-
erating outputs. Here’s a breakdown of each component of the diagram:

e Input Signals (x1,x2,...... ,xn): These are the inputs to the neuron, typic-
ally representing the spikes or action potentials received from other neur-
ons in the network. Each input corresponds to a spike event that can
either increase or decrease the neuron’s membrane potential.

e Weights (wl,w2,...,wn): Each input signal is associated with a synaptic
weight. These weights determine the strength of the connection between
the input and the neuron. The weight can be positive (excitatory) or
negative (inhibitory), influencing how the input affects the neuron’s mem-
brane potential.

e Summation Function: The summation function combines all the weighted
input signals and adds a bias (#). This bias can be seen as a threshold
that the neuron needs to surpass to produce an output. The output of
this function is the neuron’s membrane potential, which is the accumulated
signal over time.

e Activation Function (f(x)): The activation function in an SNN is typically
modeled by a function that decides whether the neuron will ”fire” (produce
a spike) based on the membrane potential. If the combined input (the
summation) exceeds a certain threshold, the neuron fires and generates an
output spike. In traditional neural networks, this might be a sigmoid or
ReLU function, but in SNNs, it’s more commonly a function that models

the spike generation process, such as the Leaky Integrate-and-Fire (LIF)
model.

e Neuron Output: If the activation function is triggered (i.e., the neuron
fires), the output is a spike that will be transmitted to other neurons in
the network. The timing of these spikes carries information, unlike in
traditional neural networks where the output is a continuous value.

2.1.2 Challenges and Research Directions

Despite their potential, SNNs face several challenges that have limited their
widespread adoption compared to traditional neural networks:

e Training Complexity: Training SNNs is more complex than training con-
ventional ANNs. The non-differentiable nature of spike generation poses
difficulties for gradient-based optimization methods like backpropagation,
which are standard in training ANNs and DNNs. Researchers have de-
veloped various approaches to overcome this, including surrogate gradient
methods, which approximate the gradient of the spiking neuron model,
and biologically inspired learning rules like STDP (spike-timing-dependent
plasticity) [23].

e Limited Tooling and Frameworks: While there are a growing number of
tools and frameworks for developing SNNs (such as NEST, BindsNET,
and SpiNNaker), they are not as widely used or widely supported as those
for traditional neural networks. This limits accessibility for researchers
and developers.

e Computational Overheads: Although SNNs are energy-efficient in hard-
ware, their simulation on conventional CPUs and GPUs can be compu-
tationally expensive due to the need to track the dynamics of membrane
potentials and spikes over time. This has spurred interest in specialized
neuromorphic hardware that can natively support SNN computations [23].

2.2 Neuromorphic Computing

Neuromorphic computing is an emerging field of technology that seeks to rep-
licate the structure and function of the human brain in silicon-based systems.
Unlike traditional computing, which relies on the von Neumann architecture
where memory and processing units are separate, neuromorphic systems integ-
rate these components, much like the brain’s neurons and synapses [13]. The
goal is to create machines that can process information more efficiently, adapt
to new situations, and learn from their environment with minimal energy con-
sumption. This approach leverages the principles of spiking neural networks
(SNNs), where information is transmitted through spikes, or discrete electrical
signals, in a manner similar to how biological neurons communicate [23, 13].
However, implementing neuromorphic computing in hardware poses signi-
ficant challenges. Omne of the primary difficulties is the need for specialized
hardware that can support the parallel, distributed processing nature of neural
networks. Traditional CPUs and GPUs, although powerful, are not optimized
for the asynchronous, event-driven operations characteristic of neuromorphic

systems. This has led to the development of neuromorphic hardware platforms
such as IBM’s TrueNorth [1], Intel’s Loihi [5], and SpiNNaker [10], which are
designed to mimic the brain’s architecture. These platforms use custom circuits
and memory structures to emulate synaptic connections and neural activity,
allowing for real-time processing of sensory data and other complex tasks.

Despite these advances, several challenges remain in the development of neur-
omorphic hardware. First, the scalability of these systems is a major concern.
As the number of neurons and synapses in a neuromorphic chip increases, so
does the complexity of managing their interactions and ensuring reliable com-
munication between them. Additionally, the power consumption and heat dis-
sipation in densely packed neuromorphic chips must be carefully managed to
prevent performance degradation. Another challenge is the lack of standardized
development tools and frameworks, which makes it difficult to design, simulate,
and optimize neuromorphic systems across different platforms. These hurdles
must be overcome to fully realize the potential of neuromorphic computing in
applications such as artificial intelligence, robotics, and autonomous systems
[13].

2.3 Ibex RISC-V Core

Ibex Core

Register File

Decode and Execute 'V___{_r_'_[feback

aoepalu Alowap ereq

Compressed Instruction

Decoder

aoepa)u| AloWwalA uonanisu|

Fi

Figure 2.2: Ibex RISC-V core [17]

The Ibex RISC-V core is a production-quality, open-source 32-bit processor
designed to meet the diverse needs of modern computing applications [17]. De-
veloped by lowRISC, the Ibex core is highly parametrizable, offering flexibility
in various configurations and making it an ideal choice for a wide range of
applications, including neuromorphic computing platforms. The core’s design
emphasizes low power consumption, scalability, and efficient performance, align-
ing well with the requirements of edge computing and Al-driven tasks [25]. A

10

high level block diagram of the Ibex RISC-V core is shown in Figure 2.2. Several
key features of the Ibex RISC-V Core can be leveraged in Seneca-Lite.

Open Source: The Ibex core is open-source, promoting transparency, col-
laboration, and innovation within the developer community. The source
code is available on GitHub, allowing for extensive customization and op-
timization [17].

Highly Parametrizable: Ibex supports the RISC-V IMAC instruction set,
which includes integer (I), multiplication and division (M), atomic (A),
and control and status register (C) operations. This flexibility allows for
tailored performance and functionality based on specific application needs.
Additionally, the core can be configured with different pipeline stages to
balance between performance and area efficiency [6].

Low Power Configurations: Ibex is designed with power efficiency in mind,
making it suitable for energy-constrained environments like edge devices
and IoT applications [17]. It incorporates techniques such as clock gating
and dynamic voltage scaling to minimize power consumption [6].

ASIC and FPGA Synthesis Support: The Ibex core supports synthesis
for both Application-Specific Integrated Circuits (ASICs) and Field- Pro-
grammable Gate Arrays (FPGAs). This versatility allows developers to
deploy the core in various hardware environments, facilitating rapid pro-
totyping and deployment [17, 22].

Successful Tape-Outs: Ibex has been successfully taped out in multiple
projects, demonstrating its reliability and readiness for production use.
These tape-outs validate the core’s design and performance in real-world
applications [22, 4].

2.3.1 Benefits of Using Ibex in Neuromorphic Platforms

Neuromorphic computing platforms aim to mimic the human brain’s efficiency
and capabilities, making low power consumption, flexibility, and scalability es-
sential. The Ibex RISC-V core meets these criteria, offering several benefits for
neuromorphic applications:

Energy Efficiency: Neuromorphic platforms require processors that can
operate with minimal power consumption. Ibex’s low power configura-
tions and energy-saving techniques make it an ideal candidate for such
applications [6], ensuring prolonged operation in power-sensitive environ-
ments.

Scalability: The ability to scale the core’s performance and area usage
through parametrization allows for the development of neuromorphic sys-
tems that can grow and adapt to increasing computational demands. This
scalability ensures that the platform can handle more complex tasks as
they arise.

Customizability: The open-source nature of Ibex allows for extensive cus-
tomization to meet the specific needs of neuromorphic applications. De-
velopers can modify the core’s functionality, optimize its performance, and
add new features to support unique processing requirements.

11

e Versatile Deployment: Support for both ASIC and FPGA synthesis allows
neuromorphic platforms to be rapidly prototyped and deployed in various
hardware environments. This flexibility accelerates development cycles
and enables quick adaptation to new technological advancements [22, 4].

The Ibex RISC-V core, with its open-source nature, high parametrizability,
low power consumption, and support for both ASIC and FPGA synthesis, is an
excellent choice for neuromorphic computing platforms. Its features align per-
fectly with the demands of energy-efficient, scalable, and secure AT applications.
By leveraging the capabilities of the Ibex core, developers can build robust and
versatile neuromorphic systems capable of advancing the state-of-the-art in Al
and machine learning.

2.4 Tile Link Interconnects

Master Slave
Initiate | |
operation] A Get
|
| | Read
| backing
memo
| D: AccessAckDatal 2
:‘/l
Complete
operation |
| |
| |
[|
| |
| |
\J \/

Figure 2.3: TL-UL interconnect memory operations [20]

TileLink is a high-performance, cache-coherent interconnect protocol used
primarily in RISC-V based systems. It is designed to facilitate communication
between processors, memory units, and various peripheral devices. TileLink
offers several key features, including support for coherent caches, efficient trans-
action processing, and scalability, making it an ideal choice for complex system-
on-chip (SoC) designs [20].

2.4.1 TileLink Uncached Lightweight (TL-UL)

TileLink Uncached Lightweight (TL-UL) is a simplified subset of the TileLink
protocol. It is designed for scenarios where full cache coherence is not required,
focusing instead on low-latency and efficient data transfer [20]. TL-UL is par-
ticularly well-suited for use in applications where power efficiency and area
optimization are critical, such as in neuromorphic computing platforms like
Seneca-Lite.

12

ininipipipigigigigipipipininininininininl

a_valid / N\ S\

ety [\ I
a_source v\ [15\
a_opcode / put-full X put-partial \ pf /[putpartial ___\

a_agor A0\ [\ | X

a_data DO\ D1 D4 /D5\ [X

asie 2\ [0 Y 2 \ [T\ | X

a_mask M3 \ [wms T N X

a_user AU4 AU5

d_valid / /S \
d_ready e Wl T\
d_source 10 \ / 11 13 [1a\ 15 X
d_opcode ACK \ / ACK \ ACK / X
d_user DUO \/ DU1 DU3 DU4 / DU5 XX
d_error /—\—

Figure 2.4: TL-UL interconnect memory operations featuring six write
transactions (4 full, 2 partial)[20]

Key Features of TL-UL [20]

e Simplified Protocol: TL-UL streamlines the standard TileLink protocol
by removing cache coherence mechanisms, which reduces complexity and
resource requirements. This simplification leads to more efficient commu-
nication in systems where cache coherence is unnecessary.

e Low Latency and High Efficiency: By focusing on uncached transactions,
TL-UL minimizes latency and maximizes data transfer efficiency. Addi-
tionally, by reducing the overhead associated with cache coherence, TL-UL
conserves energy and reduces the silicon area required for implementation.

e Scalability: TL-UL supports a scalable architecture, allowing for easy ex-
pansion as system requirements grow. This is crucial for developing neur-
omorphic systems that may need to scale up to accommodate increasing
computational demands.

e Flexibility: The protocol is highly flexible, supporting a wide range of data
widths, transaction types, and system configurations. This adaptability
ensures that TL-UL can be tailored to meet the specific needs of various
applications.

e Open Source: Like the broader TileLink protocol, TL-UL is open source,
promoting community collaboration and continuous improvement.

Figure 2.4 details the write transaction of TL-UL. All signals represented with
’a’ are the request and the signals represented with 'd’ is the response. There are
6 total operations occurring here. The memory write operations are to multiple
addresses with its corresponding acknowledgements.

13

Advantages of TL-UL in Seneca-Lite

TL-UL’s simplified protocol reduces the design complexity of the interconnect
system within Seneca-Lite. This leads to easier integration and faster develop-
ment cycles. The low-latency and efficient data transfer capabilities of TL-UL
enhance the overall performance of the Seneca-Lite platform. This is particu-
larly beneficial for real-time neuromorphic applications that require rapid data
processing and response.

By minimizing power consumption, TL-UL aligns well with the low-power re-
quirements of neuromorphic computing. TL-UL’s scalable architecture ensures
that Seneca-Lite can grow to meet increasing computational demands without
significant redesign. This scalability is essential for future-proofing the platform
against evolving Al and ML workloads.

The open-source nature of TL-UL allows for extensive customization and TL-
UL’s compatibility with existing RISC-V ecosystems facilitates seamless integ-
ration with other components and peripherals used in the Seneca-Lite platform.
This compatibility streamlines development and enhances system coherence.

The TileLink Uncached Lightweight (TL-UL) protocol offers a robust and
efficient interconnect solution for the Seneca-Lite neuromorphic platform. Its
emphasis on low latency, energy efficiency, and scalability makes it an ideal
choice for real-time, power-constrained applications. By leveraging TL-UL,
Seneca-Lite can achieve high performance and adaptability, ensuring it meets
the demands of advanced Al and ML tasks.

2.5 Survey of Open-Source NoCs

e Split Merge NoC: The Split Merge NoC features a dynamic routing
algorithm that efficiently balances load across the network by splitting
and merging data packets. This approach reduces latency and improves
throughput but can be complex to implement and may require significant
hardware resources [12].

e Hermes NoC: Hermes NoC employs a deterministic routing algorithm,
ensuring predictable and stable network performance. It is designed for
low power consumption and high reliability, making it suitable for safety-
critical applications. However, its fixed routing paths may limit flexibility
and adaptability to varying workloads[15].

e FPGA-NoC: This NoC is introduced as part of the CONNECT archi-
tecture, which is customizable and tailored for FPGAs[21]. FPGA-NoC
is tailored specifically for FPGA implementations, optimizing the use of
FPGA resources while providing flexible and high-performance commu-
nication. It supports various topologies and routing algorithms, offering
adaptability but potentially at the cost of increased complexity and power
usage|[21].

e OpenNoC: OpenNoC provides an open-source framework for building
customizable NoCs. It supports multiple topologies and routing protocols,
allowing for extensive optimization. Its open-source nature promotes col-
laboration and innovation, but it may require substantial effort to achieve
specific performance targets[24].

14

e FlooNoC: FlooNoC focuses on fault tolerance and reliability, incorporat-
ing mechanisms to handle errors and failures gracefully[7]. It is designed
to maintain performance even in the presence of hardware faults, mak-
ing it ideal for critical applications. However, the added fault tolerance
features introduce additional overhead.

¢ RANC NoC: RANC NoC is optimized for simplicity, fault tolerance,

and application independence.

It utilizes a 2D mesh topology and di-

mension order routing, ensuring low-latency and efficient communication.
Its straightforward design minimizes complexity and power consumption,
making it an excellent choice for neuromorphic systems[19].

In the above list, each Network-On-Chip (NoC) is explained in brief. They
are compared with one another for use in a neuromorphic system. These com-
parisons are detailed in Tables 2.1, 2.2 and 2.3. In Table 2.1, the comparison
is straightforward. In Table 2.2, we compare scalability, which is the measure
of how easily we can extend the NoC to a higher number of cores. Area and
energy metrics are stadard comparison. It is important to note here that RANC
NoC has high area and energy but there is energy conservation due to its spike
based approach[19]. Out of the seven NoCs compared, only the Hermes NoC
supports fault tolerance and recovery[15]. This fault recovery mechanism also
causes high latency while recovering from a fault. Similarly, FlooNoC has high

latency only under

heavy load conditions|7].

NA indicates a lack of available information.

For all three comparison tables,

NoC Technology

Network Topology

Routing

Split Merge

Simple 2D Mesh

Dimension order routing(DOR)

Hermes NoC Simple 2D Mesh Dimension order routing(DOR)
FPGANoC Simple 2D Mesh Wormbhole Routing
OpenNoC Uni-directional deflection Torus (cyclic mesh) | Hot-potato routing
FlooNoC 2D mesh (Large data channels) Dimension order routing(DOR)
RANC Simple 2D Mesh Dimension order routing(DOR)

Binary Tree Based NoC

Binary Tree

Tree traversal routing

Table 2.1: Comparison of different open-source NoCs based on topo-

logy and routing

NoC Technology Scalability | Area Energy | Fault Tolerance
Split Merge Medium High High No
Hermes NoC High Low Low Yes
FPGANoC Low Low Low No
OpenNoC High Medium | Low No
FlooNoC Low Low Low No
RANC NA High* High* No
Binary Tree Based NoC | Very Low Low Low No

Table 2.2: Comparison of different open-source NoCs

based on area,

scalability, energy consumption and fault tolerance.

15

NoC Technology Latency Design Standard | Performance

Split Merge Low Latency (High loads) NA 3X

Hermes NoC High* NA 1X

FPGANoC Low Wishbone 1X

OpenNoC Low AXI14 2X

FlooNoC Medium* AXI14 High

RANC NA Spike-based NA

Binary Tree Based NoC | Depends on level in binary tree | NA Depends on core proximity

Table 2.3: Comparison of different open-source NoCs based on latency,
design standard, and performance over baseline.

RANC NoC: The Optimal Choice for Neuromorphic Systems

The RANC NoC stands out as the best NoC for neuromorphic systems due
to its combination of simplicity and efficiency due to its spike-based design[19].
Neuromorphic systems require robust, low-latency communication to emulate
the rapid and parallel processing of the human brain. The RANC NoC’s 2D
mesh topology and dimension order routing provide the necessary performance
while maintaining low power consumption, which is crucial for energy-efficient
neuromorphic platforms.

16

Chapter 3

Literature Study

3.1 Reconfigurable Architecture for Neuromorphic
Computing (RANC)

RANC addresses the growing need for efficient and resilient Network-on-Chip
(NoC) architectures tailored for neuromorphic computing systems. Neuromorphic
systems, which are designed to mimic the structure and function of the hu-
man brain, require specialized communication architectures to handle the high-
throughput and low-latency requirements of spiking neural networks (SNNs).
Traditional NoC architectures, while effective for general-purpose computing,
often fall short in meeting the unique demands of neuromorphic workloads such
as energy efficiency, and application awareness [19].

RANC (Reconfigurable Architecture for Neuromorphic Computing) addresses
this gap by providing an ecosystem that supports both software simulation and
hardware emulation of neuromorphic architectures. It enables researchers to
prototype, modify, and optimize neuromorphic designs before committing to
expensive silicon fabrication. The ecosystem is composed of highly configurable
components that mimic the behavior of biological neurons, allowing research-
ers to experiment with different architectural configurations and evaluate their
performance in real-time.

| RANC Core)
| ! A
Core Controller — Core Core |~ —| Core
| | ¢
=
| s | I I * I g
N Block ﬁ ¢ 2
I leuron Blog @ I Core |~ Core - —| core > ‘f_
| 8 |1 coel e, | £
| | | | .
Packet
I Scheduler I — (e)
| | L1y y,
w Nl 1
F i Packet Router E ‘J_. di C?/I
== F imy Columns

Figure 3.1: High-level architecture of RANC[19]

17

Key features of the RANC architecture include:

e Open-Source: Unlike many other neuromorphic platforms, the RANC ar-
chitecture is open-source and available to all. The project is maintained
and improved constantly by the community.

e Application-Aware Components: RANC allows for the customization of
neuron behaviors, network topologies, and data flows based on the specific
requirements of an application. This feature makes RANC suitable for
a wide range of applications, from traditional SNN-based tasks to non-
neuromorphic workloads like vector-matrix multiplication (VMM).

e Scalability and Flexibility: The architecture is scalable, supporting large
networks with hundreds of thousands of neurons and synapses. It is also
highly flexible, allowing for easy modifications to core components, such
as the neuron block, core controller, and packet router, without requiring
changes to the entire system.

e Hardware Emulation: The platform includes an FPGA emulation environ-
ment, enabling hardware designers to test and validate their designs in a
realistic setting. This allows for precise evaluation of factors like resource
usage, latency, and energy consumption.

The paper presents a series of experiments that demonstrate RANC’s ability
to replicate the behavior of IBM’s TrueNorth architecture [1, 19]. Through case
studies involving the MNIST dataset and EEG data classification, the authors
show that RANC can accurately emulate TrueNorth’s performance while also
providing insights into architectural bottlenecks that could lead to inefficiencies
in certain applications [19].

One of the significant advantages of RANC is its ability to perform detailed
cycle-by-cycle analysis of neuromorphic applications. For example, the authors
illustrate how RANC can be used to optimize the mapping of VMM operations
onto neuromorphic hardware, reducing resource usage by eliminating redundant
neuron and synapse duplications that are necessary in fixed architectures like
TrueNorth [19].

3.2 Seneca Neuromorphic Architecture

The Seneca architecture is developed by IMEC. The high level diagram is shown
in Figure 3.2.

The Seneca architecture, designed for energy and area-efficient neuromorphic
processing, integrates several key components and features tailored for FPGA
environments[25]:

e Neuromorphic Cores: Seneca utilizes 8 SIMD-based Neural Processing
Elements (NPEs) designed to enhance parallel processing and maximize
computational efficiency.

e Hierarchical Memory: It features a hierarchical memory structure that
includes registers, local, and global memory, which is crucial for optimizing
data reuse and minimizing latency in data access.

18

Inst-Mem RISC-V Controller
E

Loop Controller

ADDRESS

Data Memory

PORT B {16 X n bits)
Event Generator

=
c
=)
=
S
QL
2
a
=
o
£
@
£
-
o
(2
©
e
(7]

! !
Figure 3.2: High-level block diagram of Seneca neurmorphic core[25]

e RISC-V Controller: A core component, the RISC-V processor, is respons-
ible for data pre-processing and the generation of micro-tasks. It effect-
ively manages the execution flow and task distribution across NPEs.

e Loop Controller: This controller ensures that tasks are processed in par-
allel across the NPEs, enhancing the system’s overall throughput and per-
formance.

e Energy and Area Optimization: The architecture is specifically optim-
ized for low power consumption and minimal area usage by leveraging
accelerators. This optimization is critical for applications requiring high
computational efficiency with constrained power and space.

e Design Flexibility: The Seneca architecture supports various configura-
tions and tuning of parameters to meet specific application needs, making
it versatile and adaptable.

This architecture, as illustrated in Figure 3.2, uses advanced FPGA-based
design strategies that leverage modern hardware components and software tech-
niques to achieve high performance and efficiency.

3.3 Intel Loihi

Intel’s Loihi is a neuromorphic research chip designed to mimic the human
brain’s functionality using artificial neurons and synapses, achieving high effi-
ciency in both energy use and computational power[5]. It represents a significant
advance in neuromorphic computing, aiming to provide faster processing, lower
power consumption, and on-the-fly learning capabilities that are not feasible
with traditional computing architectures.

19

Synaptic weights

Sin S e Neuron updates

Mapping to Accumulated
synapses activation

Spike Routing

Figure 3.3: Single core design of Loihi 2 architecture[14]

Key Components of Loihi

e Neuromorphic Cores: Loihi integrates 128 neuromorphic cores. Each core
is capable of implementing spiking neural networks, which are inspired by
the way neurons in the human brain communicate via spikes[5].

On-chip Learning: One of the standout features of Loihi is its ability to
learn directly on the chip without needing to be pre-trained in a data cen-
ter. This is achieved through spike-timing-dependent plasticity (STDP),
a form of synaptic adaptation that is key to learning in biological brains.

Asynchronous Design: The chip uses an asynchronous spiking mechanism
that allows it to be highly efficient, processing information only when
necessary, unlike traditional processors that continuously cycle whether
processing is needed or not.

Energy Efficiency: Loihi is designed to be extremely energy efficient, con-
suming a fraction of the power used by conventional processors performing
similar tasks. This makes it ideal for edge computing applications where
power availability is limited.

Scalability: The architecture of Loihi allows for scaling up by connecting
multiple chips to form a more extensive network of neurons and synapses,
making it suitable for complex applications requiring vast neural networks.

e Communication: It uses a mesh network that allows for high-speed com-
munication between cores and between chips, facilitating complex and
large-scale neural architectures [5, 14].

e Programmability: Despite its specialized nature, Loihi supports flexible
programming for a wide range of neuromorphic algorithms, which can be
tailored to specific tasks like sensory processing or pattern recognition.

Integration with External Systems: Loihi can interface with conventional
systems via high-speed communication links, making it versatile for in-
tegration into broader computing systems or standalone applications in
robotics, healthcare, and more.

Intel’s development of Loihi underscores a significant shift towards hardware
that can support more naturalistic forms of machine learning, akin to human
cognitive processes, potentially revolutionizing how tasks are approached in AT

20

research and applications[14]. The next generation of Loihi chips titled Loihi 2
were introduced in 2021.

3.4 ODIN Spiking Neural Network (SNIN)

The ODIN processor is designed by Charlotte Frenkel at Université catholique de
Louvain. Introduced in 2019, ODIN is a digital spiking neuromorphic processor
that integrates online learning capabilities directly onto the chip. Fabricated
using 28-nm FDSOI CMOS technology, ODIN showcases a compact design,
measuring just 0.086 mm?, and is highly energy-efficient with a minimum energy
consumption of 12.7 picojoules per synaptic operation[9].

The core of ODIN consists of a 256-neuron 64k-synapse crossbar neurosyn-
aptic core. This design enables ODIN to support spike-driven synaptic plasticity
(SDSP), which allows for adaptive learning directly on the chip. The neurons in
ODIN can emulate up to 20 different Izhikevich behaviors, making it a versatile
tool for simulating cortical spiking neurons.

ODIN’s design highlights its potential as a general-purpose experimentation
platform for bio-inspired edge computing. It’s particularly suited for applica-
tions that require efficient, low-power processing of sensory data, such as vision
or motor control. Despite its small size, ODIN can be deployed on small-scale
FPGAs, allowing for flexible usage in various computational environments|[9].

ODIN stands out not only for its technical specifications but also as the
first fully open-source neuromorphic chip at its time of publication, promoting
transparency and accessibility in neuromorphic research[8, 9].

CLK_EXT RST
e N
SCK
MOS| SPI Clock ODIN
MISO slave generator 28nm SNN
—>| Controller and global parameters bank
256-neuron 256%-synapse
memory memory @
(4kB SRAM) (32kB SRAM) <
17 — S5 9 8
ADDR 5 1 | I a = ADDR
o ¥ = g
=z Phenom. 2 €
REQ = > izhikevich LSel laeo O 7 REQ
ACK # update logic Bﬁa*é’ﬁg" E g ACK
MR w5 <g
LF ER >
update logic Ko
Event scheduler L
(rotating FIFOs)
N /

CSDN @i Ezrzd

Figure 3.4: Block diagram for 256 neuron ODIN neuromorphic pro-
cessor [9]

21

22

Chapter 4

Proposed Seneca-Lite
Architecture

This chapter discusses the design objectives of the Seneca-Lite architecture and
the choices made during its hardware implementation. Both the hardware im-
plementation and software workloads are considered while designing the archi-
tecture.

4.1

Seneca-Lite Design Overview

The Seneca-Lite is designed with some key objectives in mind, these include:

Scalable: The design should be scale with an increase in cores. This
allows support for larger ML and Al applications without compromising
functionality.

Energy/Area Efficient: Seneca-Lite is meant to be a lightweight neur-
omorphic platform. Design choices should align to make the design more
area and energy efficient.

RISC-V Based: The key processing core used in Seneca-Lite design should
use the RISC-V instruction set architecture, which is preferred due to its
flexibility [25].

Open-Source: The components used in the design should be open-source.
To ensure collaboration and experimentation, the design should be access-
ible to all.

Event Driven Architecture: Since the goal is to design a neuromorphic
platform, the architecture should adhere to event driven design subsec-
tion 4.1.1 explains the event driven data flow in detail.

4.1.1 Event Driven Data Flow

The Seneca-Lite architecture should employ an event-driven data flow to optim-
ize the processing efficiency and power consumption for neuromorphic comput-

23

Design Objectives Description

. e)
SCALABILITY Add more cores
seamlessly
- @@
'd N\
ENERGY R LCow ier:e;gé/tmthout
EFFECIENT pacting
___performance J
R s) p 2
ow area compared to
AREA EFFECIENT state-of-the-art) Seneca-
-
) - 2 Lite
RISC-V Added flexibility
~—_——— g
(\ R
OPEN-SOURCE Built from open-
source components
- @
. e)
EVENT DRIVEN Support neurqmorphlc
computing

¢ J - J \ /

Figure 4.1: Seneca-Lite design objectives

ing tasks. This methodology ensures that the system processes data only when
specific events occur, reducing unnecessary energy expenditure and latency[13].

As Seneca-Lite is a multicore platform, we can divide the data flow into two
categories, event driven data flow in a single core and event driven data flow
through the Network On Chip (NoC).

Event Driven Data Flow at Core Level

In a single-core setup, the data flow begins with input events, which are typically
sensor data or incoming signals that need processing. The core components of
this data flow include:

e Input Handling:
— Event Detection: Sensors or external interfaces detect events, trig-
gering the processing core.
— Pre-Processing: Initial data handling is performed to filter and format
the data for efficient processing.

e Core Processing:

— Task Acceptance/Forwarding: The RISC-V processor in each core
accepts the data and processes it or it forwards the packet to the
appropriate core via the NoC.

— Parallel Processing: Multiple neurosynaptic processing elements (NPEs)
execute tasks in parallel, leveraging the architecture’s inherent par-
allelism.

e Output Generation: This includes the post processing of data and it
should formatted in the expected manner.

24

Network on Chip (NoC) Neuromorphic Flow in Multi-Core Design

The NoC in Seneca-Lite is pivotal for facilitating communication between mul-
tiple cores, ensuring data can be shared and processed efficiently across the
system.

e Event Propagation: An event detected by one core can propagate through
the NoC to other cores that need to process related data.

e Routing: The NoC routing should direct data packets to the appropriate
cores. This method ensures low latency and efficient data transfer.

e Packet Creation: Data from the initiating core is encapsulated into packets
containing both the payload and routing information.

e Transmission: These packets traverse the NoC, which can manage data
flow and prevent bottlenecks.

e Aggregation: Results from multiple cores are aggregated as needed to
produce the final output. This can be done in a designated core or using
an external handler.

e Output Handling: The aggregated data is then transmitted to the desig-
nated output interfaces, completing the event-driven processing cycle.

4.2 Neuromorphic Architecture
Similar to the data flow, the architecture of the design can be divided into two
sections, core level architecture and system level architecture. The system level

architecture includes multiple single cores connected via the Network On Chip
(NoC).

4.2.1 Core Level Seneca-Lite Architecture

PROCESSING
CORE MEMORY
CORE
INTERCONNECT
TEST PROGRAMMABLE NOC
BENCH INTERFACE ROUTER
ADJACENT CORES

SENECA-LITE SINGLE CORE

Figure 4.2: Seneca-Lite single core proposed design

25

Figure 4.2 showcases the proposed architecture for a single core of Seneca-Lite.
The key components and interconnections are highlighted below:

e Processing Core: A central processing unit which is responsible for ex-
ecuting tasks and processing data. The central processing unit is also
responsible for creating packets to send to other cores.

e Memory: Local memory unit used for storing data and instructions needed
by the processing core. High-speed access and sufficient capacity to ensure
smooth data flow and processing efficiency.

e Programmable Interface: Interface to allow programmability and custom-
ization of core functionalities. It should have control over both data and
instruction memory.

e Core Interconnect: An internal interconnect system facilitating communic-
ation between the processing core, memory, and programmable interface.
High-bandwidth, low-latency connections to ensure efficient data transfer
and synchronization.

e NoC (Network on Chip) Node: Node facilitating communication with ad-
jacent cores in a multi-core system. This module should be scalable to
accommodate additional cores without significantly impacting perform-
ance.

The modules and the core interconnections are for specific purposes and
should be designed with the purpose in mind.

e Processing Core to Memory: Direct, high-speed connection to enable quick
access to stored data and instructions.

e Processing Core to Programmable Interface: Bi-directional communica-
tion to allow the core to send, receive and process messages over the NoC.
Bi-directionality is beneficial for acknowledgement of operations.

e Core Interconnect to NoC Node: Seamless integration to ensure data can
be efficiently transferred to and from adjacent cores.

Additionally, the architecture should be designed to support easy scalability,
allowing additional cores to be integrated into the NoC with minimal impact
on overall performance. Design emphasis should be on power efficiency, with
components and interconnections optimized for low power consumption without
compromising processing capabilities.

4.2.2 System Level Architecture

Seneca-Lite is a scalable and flexible platform. The number of cores in the
design depends on the requirement of the application workload. All individual
cores function as one single unit as detailed in subsection 4.2.1. The inputs and
outputs to each cores are through the Network on Chip(NoC).

26

Network On Chip (NoC)

The Network on Chip is the most critical aspect in terms of latency and power
consumption. The chosen NoC needs to be flexible, open-source and scalable
with number of cores. Figure 4.3 is an example of a 3x3 9-core Seneca-Lite
design.

Seneca Lite Single

Seneca Lite Single Seneca Lite Single

Core Core Core

Seneca Lite Single
Core

Seneca Lite Single
Core

Seneca Lite Single
Core

Seneca Lite Single
Core

Seneca Lite Single
Core

Seneca Lite Single
Core

Figure 4.3: Seneca-Lite 3x3 proposed architecture

The Network on Chip has many key components and they each have their
own set of requirements for Seneca-Lite:

NoC Nodes: Each NoC node acts as a communication hub for its corres-
ponding processing core and must support routing, data packet handling,
and inter-core communication.

Routing Algorithm: It should implement an efficient routing algorithm to
ensure low-latency communication.The algorithm should be robust, cap-
able of handling high traffic and minimizing congestion.

Data Packet Handling: Each NoC node should manage data packets, in-
cluding encapsulation, transmission, reception, and decapsulation.

Interconnect Fabric: A high-bandwidth, low-latency interconnect fabric
connecting all NoC nodes. It should support concurrent data transfers to
prevent bottlenecks.

Synchronization: Ensure proper synchronization between nodes to manage
data consistency and timing with mechanisms for clock synchronization
across the NoC.

Modular Design: The NoC should be modular, allowing easy addition of
nodes to scale the system as needed.

27

Based on the design objectives detailed in the previous sections, the com-
ponents for Seneca-Lite were selected through a comprehensive literature study.
Various options for each component were surveyed and compared. The compar-
ison analysis and the rationale behind the selection of specific components are
explained in chapter 3. The features outlined in this chapter enable Seneca-Lite
to support a wide range of Al and ML applications effectively.

28

Chapter 5

Seneca-Lite Hardware
Implementation

5.1 Single Core Seneca-Lite Hardware Implement-
ation

The Seneca Lite single core architecture is designed to efficiently handle neur-

omorphic computing tasks by integrating key components and ensuring seamless

data flow between them. This detailed explanation covers the important con-
nections and functions of each module in the design, as illustrated in Figure 5.1.

The single core architecture consists of the following primary components:

e Ibex RISC-V Core

e TileLink Uncached Lightweight (TL-UL) Crossbar (XBAR)

Memory Units (Data Memory and Instruction Memory)

NoC Interface

FIFO Buffers

e NoC Router

Each of these components plays a crucial role in ensuring the efficient opera-
tion of the Seneca Lite single core.

Ibex RISC-V Core

The Ibex core is the central processing unit responsible for executing instructions
and processing data. It is a highly parametrizable, low-power 32-bit RISC-V
processor. It is used in the IMC configuration, supports integer, multiplica-
tion and control/status instructions. The Ibex core is critical for executing the
neuromorphic algorithms and managing data processing tasks efficiently[17].

29

Ibex Instruction IF
1 MB DATA MEMORY |

Ibex Data IF
K ’—: L 1°\|32 KB INSTRUCTION
MEMORY NORTH BUS

|
REG

TLUL NOC INTERFACE }
XBAR

40 bit NOC IP

External IF <_

TLUL
REGISTERS 32 bit NOC O NOC ROUTER

P

-

K

0_NOT_EMPT' l REG

€ e SOUTHBUS

0_NOT_EMPT

WEST BUS

Seneca Lite Single Core

Figure 5.1: Seneca-Lite single core hardware architecture

TileLink Uncached Lightweight (TL-UL) Crossbar (XBAR)

The TL-UL XBAR acts as an interconnect fabric, facilitating communication
between the Ibex core, memory units, NoC interface, and other peripherals. It
supports the TL-UL protocol, which is designed for low-latency, efficient data
transfer without the need for cache coherence.

The TL-UL XBAR ensures seamless data flow between the core and other
components, reducing latency and improving overall system efficiency. Memory
Units

The memory units consist of: 1 MB Data Memory: Used for storing data
required during computation and 32 KB Instruction Memory: Stores the in-
structions to be executed by the Ibex core. The memory sizes are determined
using the minimum requirements of the software workload. The instruction
memory hold the instructions decoded from the software and the data memory
holds the weights and biases of the application.

Intra-core Devices | Base Address | Size Byte
Instruction Memory | 0x00000000 0x08000 (32KB)
Data Memory 0x100000 0x100000 (1024KB)
NoC Interface 0x200000 0X8000 (32KB)

Table 5.1: Address ranges for single core TL-UL interface devices

Table 5.1 lists the various device interfaces present for the single core Seneca-
Lite design. All TL-UL interfaces are either a host or a device interface as
described in section 2.4. The host interfaces in a single core are the external
interface, Ibex data and instruction interfaces. All the devices in Table 5.1 are
connected to all host interfaces.

NoC Interface

The NoC (Network on Chip) interface connects the single core to the broader
NoC, enabling communication with other cores in a multi-core setup. It includes

30

s | D) o
=

EAST BUS

FIFo f«——REG——

FIFO buffers and TL-UL registers.

e FIFO Buffers: These buffers are used to temporarily store data packets
before they are transmitted across the NoC. They help in managing data
flow and preventing data loss during transmission. Each FIFO has a depth
of 4 which can be changed in the top level file.

e TL-UL Registers: These registers hold the control and status information
required for TL-UL transactions, ensuring proper communication protocol
adherence.

The NoC interface, along with the FIFO buffers and TL-UL registers, ensures
reliable and efficient communication between the core and other components in
the network, facilitating scalable and flexible system design.

Connections and Data Flow

e Ibex to TL-UL XBAR: The Ibex core communicates with other compon-
ents via the TL-UL XBAR. This connection ensures that data and in-
structions can be fetched from memory and processed efficiently.

e TL-UL XBAR to Memory Units: The XBAR routes data and instruction
requests from the Ibex core to the respective memory units, ensuring that
the core has access to the necessary resources for computation.

e TL-UL XBAR to NoC Interface: The XBAR also connects to the NoC
interface, enabling the core to send and receive data packets across the
NoC. This connection is crucial for inter-core communication and data
sharing in a multi-core setup.

e NoC Interface to NoC Router: The NoC interface sends data packets to
the NoC router, which routes them to their destination within the network.
This ensures efficient communication and data transfer across the network.

The Seneca-Lite single core architecture, with its integration of the Ibex RISC-
V core, TL-UL XBAR, memory units, NoC interface, FIFO buffers, and NoC
router, is designed to efficiently handle neuromorphic computing tasks. Each
component and connection is optimized to ensure low-latency, efficient data
transfer, and scalable performance, making it an ideal choice for advanced Al
and ML applications.

5.1.1 Control Mechanism

In the Seneca-Lite architecture, maintaining configuration control from the top
level is crucial. A central component of this architecture is the Ibex processing
core, which plays a pivotal role in the single-core configuration. All instructions
intended for execution are loaded into the instruction memory, from which the
Ibex core sequentially executes each instruction. As detailed in Table 5.1 |
the Ibex core accesses the instruction memory using the base memory address
0x00000000.

During the process of loading instructions into the instruction memory, it is
imperative to place all cores into a reset mode to prevent them from executing

31

any instructions prematurely. To facilitate this, a configuration register located
at the top level is provided, which grants access to the reset control of each
individual core. By writing to the control register at address 0x600000, we can
assert control over the reset state of the cores. Writing all 1’s to this register
will place all cores into reset mode, effectively halting instruction execution.
Conversely, writing 0’s will release the cores from reset, enabling them to execute
instructions. Additionally, this mechanism allows for selective control, wherein
some cores can remain in reset mode while others are permitted to execute
instructions.

5.2 Network on Chip (NoC) Router

NoC switch of single North Bus
core
Central Bus
g N
_— EEE—
West Bus NoC Router East Bus

\ J

South Bus

Figure 5.2: Seneca-Lite NoC router design

The Network-on-Chip (NoC) router is a fundamental component in the Seneca-
Lite architecture, responsible for facilitating efficient communication between
multiple cores within the system. As the name suggests, the NoC router acts
as a central hub that directs data packets between different processing cores,
ensuring that information is transmitted accurately and efficiently across the
chip.

The primary role of the NoC router is to manage data traffic within the NoC.
In a multi-core system like Seneca-Lite, each core performs specific tasks and
needs to communicate with other cores to share data, synchronize processes, or
distribute workloads. The NoC router handles these communications by receiv-
ing data packets from one core and routing them to the appropriate destination
core.

The NoC router is connected to multiple other NoC routers, each associated
with a single core. These switches act as interfaces between the core and the
NoC, packaging data into packets that the NoC router can process. The router
uses dimension-order routing (e.g., XY routing in a 2D mesh topology) to de-
termine the most efficient path for each packet to reach its destination. This
router design is the same as the one used in RANC [19]. The psudo-code for
the routing is shown in Figure 5.3.

32

: function ROUTE(packet, core, dx, dy)
if dx < 0 then

route(packet, core.east, dx+1, dy)
else if dx > 0 then

route(packet, core.west, dx—1, dy)
else if dy < 0 then

route(packet, core.south, 0, dy+1)
else if dy > 0 then

route(packet, core.north, 0, dy—1)
10: else
11: core.accept(packet)
12: end if
13: end function

Figure 5.3: Psudocode for Dimension Order Routing [19]

e Input Buffers: These buffers temporarily store incoming data packets from
the NoC switches before they are processed by the router. This helps to
manage data flow and prevent congestion within the NoC.

e Routing Logic: The routing logic determines the best path for each data
packet based on the destination address. It ensures that packets are
routed through the network with minimal delay for 2D mesh topology
(Figure 5.3).

e Crossbar Switch: The crossbar switch connects the input and output ports
of the router, enabling the simultaneous transmission of multiple data
packets. This component is critical for maintaining high throughput in
the NoC.

e Output Buffers: Once the routing logic determines the path, the data
packets are stored in output buffers before being sent to the next NoC
router or the destination core.

In Seneca-Lite, the NoC router is crucial for maintaining the system’s per-
formance and scalability. As a neuromorphic computing platform designed for
efficient and parallel processing, Seneca-Lite relies heavily on the NoC router to
manage data-intensive tasks without compromising speed or energy efficiency.

The NoC router enables seamless communication between cores, allowing the
system to scale effectively as more cores are added. This is particularly im-
portant in neuromorphic systems, where processing elements must frequently
exchange data to simulate neural networks.

Additionally, the router’s ability to efficiently manage data traffic contributes
to the overall energy efficiency of the Seneca-Lite system. By minimizing the
distance data packets need to travel and reducing congestion, the NoC router
helps to lower power consumption, which is a critical factor in the design of
energy-efficient neuromorphic systems.

5.2.1 NoC Packet Structure

The packet structure depicted in Figure 5.4 consists of two main fields: an 8-bit
header and a 32-bit data payload.

33

{
8 bits

4 bits for dx
4 bits for dy

32 bits
Data

Figure 5.4: Packet structure for the NoC hardware implementation

e Header (8 bits): The first 8 bits of the packet are divided into two 4-bit

segments for routing as explained in Figure 5.3.

— 4 bits for dx: These bits represent the horizontal (x-axis) offset or

distance between the current core and the destination core in a net-
work. The value of dx determines the direction the packet should be
routed horizontally.

— 4 bits for dy: These bits represent the vertical (y-axis) offset or dis-

tance between the current core and the destination core. The value
of dy determines the direction the packet should be routed vertically.

e Data (32 bits): The remaining 32 bits of the packet contain the actual

data payload that needs to be delivered to the destination core. This data
can represent any kind of information that the packet is meant to carry
across the network.

The only constraint by the packet structure is the limitation of 4 bits for dx
and dy. This restricts our range of values for dx and dy to -8 to +7 and it limits
routing to 7 cores north, east and 8 cores south and west. In the design, all
TL-UL buses are 32-bit wide and to accomodate the 40 bit packet structure, we
write to temporary registers that correspond to dx and dy.

5.3 System Level Hardware Implementation

5.3.1 Module Hierarchy

In the previous sections we discussed in detail about the single core and its
functionality. The completed single core Seneca-Lite design consists of the Ibex
core, NoC interface and memory. Multiple single cores connected together form
a network of processing neuromorphic cores which form the Seneca-Lite archi-

tecture.

Figure 5.5 shows the distinction between modules and their hierarchy. Each
NoC Node consists of the Seneca-Lite core and the NoC router corresponding
to the core. The NoC node is the key module used for all interconnections in
the top level.

5.3.2 Top Level NoC connections

One of the key design objectives is ensuring scalability, which is achieved through
the top-level interconnections by allowing a customizable number of cores. The

34

NoC Single

NoC Node Core

Ibex Core

NoC
Interface

Figure 5.5: Module hierarchy for Seneca-Lite architecture

top-level file defines the architecture’s rows and columns as parameters. Based
on the workload requirements, the architecture can be tailored to any desired
number of rows and columns.

The interconnections facilitating this customization are created dynamically.
These top-level connections are established using a generate block in Verilog.
When connecting the different cores, it is crucial to properly name and categorize
them for future reference. All cores fall into one of three categories:

e Corner Case: These cores are positioned at the corners of the architecture.
Their connections are limited to only two directions, with all other router
connections being unused and inactive in these cores.

e Edge Case: These cores are located along the edges of the architecture.
They have one connection that is invalid, while the remaining three con-
nections are part of the grid, linking to other cores.

e Normal Case: These cores are situated in the middle of the architecture,
where connections from all four sides are valid.

To access these processing elements from the NoC we use the external inter-
faces that are a part of each Seneca-Lite single core.

5.3.3 4-core architecture

In the previous subsection, we discussed the customization of the number of
cores. In this section, we will explore a template architecture created for the
KeyWord Spotting (KWS) Benchmark, which is explained in detail in subsec-
tion 6.3.1.

The system consists of 2 rows and 2 columns interconnected via the NoC
(Network on Chip). All cores in this architecture are corner cases, meaning
they have only two valid NoC connections. The architecture is illustrated in

35

detail in Figure 5.6. The Seneca-Lite single core, combined with the router,
forms the NoC Node. These NoC Nodes are interconnected and are represented
in red in the figure. Several additional components are included for enhanced
functionality:

e I/0O Module: The input/output module is used for streaming in input
packets and reading the output. It is connected to the first core directly
through the NoC Router.

e External Interfaces XBAR: The external TL-UL interfaces of all the cores
are connected to a common TL-UL crossbar. The XBAR allows us to
control all device memories using one direct connection. To access each
core externally, we use the address mapping as shown in Table 5.2.

DEVICES | BASE ADDRESS | SIZE BYTE

CORE 0 0X000000 0X8000 (32KB)
CORE 1 0X100000 0X8000 (32KB)
CORE 2 0X200000 0X8000 (32KB)
CORE 3 0X300000 0X8000 (32KB)
I/O Module | 0X400000 0X8000 (32KB)

Table 5.2: Address ranges for different cores in a 4-core Seneca-Lite
architecture

e Zynq Processor: Developed by Xilinx, Zynq is a unique System on chip
that integrates ARM processing with FPGA(Field Programmable Gate
Array) fabric. Due to its high performance, versatility and flexibility. This
processor allows us complete control over the rest of the architecture.

e AXI to TL-UL interface: The Zynq processor uses the AXI(Advanced
eXtensible Interface) standard. To connect it to our system we connect
the main TL-UL host to the AXI of Zynq. The Zynq serves as the host
interface for all debugging and software tasks.

36

NoC Connections

<:ll> TL-UL Bus

ZYNQ
PROCESSOR

AXI TO TL-UL
INTERFACE

HOST

EXT_TLUL_IF

<

TLUL_IF o
<“::> Moduls

EXT_TLUL_IR SENECA SENECA
SINGLE CORE + SINGLE CORE +
ROUTER ROUTER
TL-UL
XBAR
EXT_TLUL_IF
SENECA SENECA
SINGLE CORE + SINGLE CORE +
ROUTER ROUTER
EXT_TLUL_IF
-/

37

Figure 5.6: Seneca-Lite top level diagram for a 4-core architecture

38

Chapter 6

Results and Discussion

6.1 Experimental Setup

In the Seneca-Lite architecture, the main processing cores are the Ibex RISC-V
cores. The software for each core is the set of instructions that runs on the Ibex
RISC-V cores. These cores are encapsulated with memory and interconnect
and connect to each other via the NoC (Network On Chip). The steps followed
for loading software and starting the architecture is the same. The flow starts
by temporarily loading the testbench with weights and biases. These can be
changed to any other metric used for computation as well.

If the precompiled software is not present, then we use the RISC-V Compiler
Toolchain provided by lowRISC[17]. Once we have the resulting bitfile, we can
set all the cores in reset using the configuration registers discussed in subsec-
tion 5.1.1. Once the cores are in reset, we start loading the weights, biases and
software one core at a time. Once all the cores are loaded the cores are taken
off reset and the instructions are executed.

All hardware results are obtained from post synthesis gate level simulation.
For simulation of the design, both pre- and post-synthesis was carried out us-
ing Xilinx Vivado and NCSim. Power measurement was done using Cadence
JOULES. The clock frequency used for the entire simulation was 500MHz.

6.2 Seneca-Lite Single Core Results

Seneca-Lite single core was synthesized as a single unit and both synthesis and
energy results were obtained from this experiment. Since Seneca-Lite has a NoC
as well. Each NoC router is considered as a part of its respective single core.

All performance and power results of Seneca-Lite were obtained using Ca-
dence’s toolset[2]. The RTL simulation was done using the NCSim toolchain
and Cadenca JOULES was used for average power consumption and energy
metrics for specific workloads.

FPGA related architecture and metrics were obtained using Xilinx Vivado
with Zynq UltraScale+ RFSoC ZCU111 Evaluation Kit[26] as the target plat-
form.

39

START

Load weights and biases to
testbench

NO Compile Software for each
core

YES

‘ y

={ All cores held in reset]

Y
Select core address,
weights, biases and pre-
compiled software

Y

A 4
Select data memory
Repeat for each core addresses and load weights
and biases

\ J

4
Select instruction memory
address and load pre-
compiled software

Release cores from reset
END -
and stream input events

Figure 6.1: Control Flow for the RISC-V processing cores in Seneca-

Lite architecture

40

6.2.1 Synthesis Results

The Seneca-Lite single core consists of both data and instruction memory, the
Ibex processing core, NoC interface and the NoC router and the intra-core
interconnects.

The single core area is calculated for GF-22nm FDX technology node. The
JOULES area calculations provide the single core area as:

SingleCoreArea = 0.0924mm?

The FPGA synthesis results of the Seneca-Lite single core module are listed
in Table 6.1. The breakdown between different modules is detailed in Table 6.2.
Different top level components in the single core of Seneca-Lite have their distri-
bution in different components. It is important to note that the Ibex processing
core utilises most of the resources of the single core.

CLB LUTs 3339
CLB Registers 2123
CARRYS 20
F7 Muxes 256
F8 Muxes 128
F9 Muxes 0
Block RAM Tile | 32
URAM 0
DSPs 4

Table 6.1: Seneca-Lite single core utilisation on ZCU111

Module Data Memory | Ibex Core | Inst. Memory | NoC Interface | TL-UL XBAR
CLB LUTs 92 2777 90 19 361

CLB Registers | 109 1828 109 19 58

CARRYS 0 17 0 0 3

F7 Muxes 0 256 0 0 0

F8 Muxes 0 128 0 0 0

F9 Muxes 0 0 0 0 0

Block RAM 16 0 16 0 0

DSPs 0 4 0 0 0

Table 6.2: Seneca-Lite single core utilisation breakdown between mod-
ules on ZCU111

6.2.2 Energy Metrics

For the Seneca-Lite single core, energy estimation was carried out using Cadence
JOULES. The top level component for this experiment was seneca_lite_single_core
and the estimated energy consumption is the average power consumption for the
single core. This is calculated by toggling the design lines and taking the aver-
age.

41

CLB LUTs Utilisation

mdata_memory mibex_core minstruction_memory = NoC interface m TL-UL XBAR

Figure 6.2: Configurable Logic Blocks(CLBs) LUTSs utilisa-
tion by submodules of Seneca-Lite core

CLB Registers Utilisation

m data_memory mibex_core wminstruction_memory m NoC interface = TL-UL XBAR

Figure 6.3: Configurable Logic Blocks(CLBs) Registers util-
isation by submodules of Seneca-Lite core

42

6.3 System Level Results

6.3.1 Software Benchmark 1- Keyword Spotting Software

The first benchmark used is a 3-layer Fully Connected (FC) neural network
used for keyword spotting (KWS). This software was designed to run on a single
core and is optimized for embedded systems[27]. The code integrates essential
features such as event-driven processing, interrupt handling, and neural network
computation through layers, using quantized weights for efficiency.

This software leverages event-driven data flow to process neural network lay-
ers, making it suitable for neuromorphic architectures like SENECA[27]. This
makes the software a desirable benchmark for the Seneca-Lite platform as well.
The focus is on efficient handling of input events, layer-wise computation, and
optimized memory usage to deliver high performance in constrained environ-
ments.

The software is designed to operate on a 3-layer fully connected neural net-
work. The first layer processes input events, and the second and third layers
continue to propagate and transform these inputs using weights and biases.
Quantization of weights is used to optimize the performance and reduce the
memory footprint, which is crucial in embedded systems[27].

Functionality and Workflow

e Event Processing: The system processes input events through the mes-
saging interface. These events are typically neuron activations from the
previous layer in a neural network. The address and value of each event
are extracted and used to update the neuron values in the first layer by
multiplying the event value with the corresponding weights [27].

e Layer Computation: Once all the input events are processed, the neuron
values for the first layer are computed by summing the weighted inputs
and adding a bias. These results are then used as inputs for the second
layer, and the process is repeated until the third layer is computed.

e Post-processing: After the network has processed all layers, the system
triggers post-processing, which involves interpreting the results, generat-
ing an output (e.g., detecting if a keyword was spotted), and preparing
for the next round of input events.

By processing events asynchronously and using interrupts, the system effi-
ciently manages CPU resources, minimizing idle time and power consumption.

Furthermore, the modular design allows for easy extension and optimiza-
tion, making it a robust solution for real-time keyword spotting in low-power
devices[27].

Seneca-Lite Setup and Workload Mapping

For verifying the functionality of the KWS software, a 4-core 2x2 Seneca-Lite
architecture is used. The workload is a 3-layer fully connected network. Each
of the layers are run on each core. Each core and its workload distribution are
listed in Table 6.3. All communication between cores occurs over the Network-
On-Chip (NoC).

43

Core | Workload

Core 0 | Handling input stream and synchronization of other cores
Core 1 | Runs Layer 1 of the Fully Connected (FC) Neural Network
Core 2 | Runs Layer 2 of the Fully Connected (FC) Neural Network
Core 3 | Runs Layer 3 of the Fully Connected (FC) Neural Network

Table 6.3: Core workload distribution of KWS benchmark

6.3.2 Software Benchmark 2- Hand Gesture Recognition
Software

E. Ceolini et.al[3] present a benchmark for hand-gesture recognition using a com-
bination of electromyography (EMG) and event-based camera sensor data. The
study focuses on implementing this recognition system using neuromorphic com-
puting platforms, particularly Intel’s Loihi processor and the ODIN + MorphIC
systems, and comparing their performance with traditional machine learning
approaches[3].

The dataset generated relies on two sensors, a Dynamic Vision Sensor (DVS)
and an Active Pixel Sensor (APS). The APS uses a 240x180 pixels resolution
camera. The APS dataset and its network are used because of its efficiency in
event driven inference framework.

The APS feature network consists of three convolutional layers and one fully
connected layer. The first convolutional layer takes the greyscale image as input
and outputs 8 feature maps using a 3x3 kernel. From Figure 6.4, CONV2 and
CONV3 produce 16 and 32 feature maps respectively. The final layer of the
feature network is the fully connected later that takes the flattened output from
previous convolutional layers and maps it to 128 features.

The APS classification network consists of one fully connected network that
produces an output that corresponds to one of five hand gestures. It maps the
128 features generated to one of five classes.

CONV2

v

CONV3

FC1 > FC2 :>Output

v
v

APS Input CONV1
40x40x1

\ J | J
| |

Classification Network

Feature Network

Figure 6.4: APS neural network

44

Seneca-Lite Implementation and Workload distribution

The entire network is implemented on a 3x3 9 core Seneca-Lite architecture. In
the 9 cores, only 7 cores are used for active computation and running the neural
network. CONV2 and CONV3 are run on two cores due to issues with memory
sizes. The rest of the layers are run on a single core. The messages between
cores are relayed via the Network-on-chip (NoC). The rest of the architecture
has idle cores but the NoC of the entire 3x3 architecture is utilised. The input
is streamed in through the input module as discussed in section 5.3.

6.3.3 Benchmarking Results

Since the Seneca-Lite platform is flexible and can be extended to any number
of cores. The system level benchmarking is carried out using two architectures-
2x2 4-core system and the 3x3 9-core system.

2x2 architecture synthesis Results

The 2x2 architecture is the system top and area is calculated for GF-22nm FDX
technology node. The JOULES area calculations provide the system level area
as:

2 x 2architecture(total area) = 0.416mm?
Similarly, for the APS benchmark, we use a 3x3 architecture.

3 x 3architecture(total area) = 1.124mm?

Energy Metrics
Key Word Spotting benchmark

The 4 core design utilised for the KWS code. The energy calculations were done
using JOULES for the post-synthesis simulation waveforms generated using Xil-
inx Vivado and NCSim. The total energy consumed by the four cores and the
Network-On-Chip (NoC) is:

Energyof KWSTask = 0.839uJ

APS Hand Gesture Recognition benchmark

In the 3x3 9-core design, the APS task has 7 active cores and 2 inactive cores.
Similar to the previous benchmark, the same toolset is used for calculating the
energy metrics for the APS benchmark.

Energyof APS GRTask = 9.263uJ

6.3.4 Comparison with state of the art
KWS Benchmark

Architecture | Total Energy (nJ) | Area (mm2) | Technology
Seneca 1.2 1.8 GF 22nm
Seneca-Lite | 0.839 0.416 GF 22nm

Table 6.4: Comparison of Seneca and Seneca-Lite for KWS benchmark

45

Table 6.4 provides a comparative snapshot of the two neuromorphic designs,
Seneca and Seneca-Lite, in terms of their energy consumption and area, both
fabricated using the GlobalFoundries (GF) 22nm technology process.

Seneca consumes more energy at 1.2 nJ compared to Seneca-Lite which uses
only 0.839 pJ. This represents a significant 30.1% reduction in energy con-
sumption for Seneca-Lite. In terms of area, Seneca occupies 1.8 mm? while
Seneca-Lite uses just 0.416 mm?, marking a striking 76.9% reduction in area.
The differences are illustrated graphically in Figure 6.5. Such metrics highlight
Seneca-Lite’s advantages in energy efficiency and compactness, making it po-
tentially more suitable for applications where power consumption and space are
critical constraints, like embedded systems or portable devices.

Results for KWS Benchmark

Area (mm2) Total Energy (uJ)

mSeneca mSeneca-Lite

Figure 6.5: Comparison of area and energy metrics for KWS bench-
mark

The reduction in both area and energy without a drastic decrease in perform-
ance capabilities suggests that Seneca-Lite is a lightweight version of Seneca,
focusing on power and space efficiency while potentially sacrificing some com-
putational power or flexibility offered by the fuller Seneca architecture. These
differences could align well with specific use cases of key word spotting soft-
ware where smaller, energy-efficient chips are preferable, especially in battery-
operated or wearable devices.

APS Benchmark

The APS benchmark is a subset of the hand gesture recognition software de-
scribed in [3]. The Table 6.5 features the results of 4 different neuromorphic
architectures. The results for Loihi and ODIN are published in [3]. Seneca was
benchmarked and compared in [27]. Seneca-Lite was benchmarked using the
3x3 architecture as described in subsection 6.3.2.

In Table 6.5, it is important to note that Silicon area and technology nodes
are different for different cores. The silicon area is the total area of the utilized

46

Architecture Accuracy (%) | Energy (uJ) | Area (mm?) | No. of cores
Loihi[3, 5] 92.1 815.3 39 9%

ODIN + MorphIC[3, 9] | 85.1 57.2 2.86 1

Seneca[27] 94.75 16.9 1.88 4
Seneca-Lite 90.25* 9.62 1.124 9

Table 6.5: Comparison of the results of different architectures for APS

benchmark

cores. The memory capacities and technology nodes of each core are: Loihi =
2 Mb in 14 nm, ODIN = 286kb in 28 nm, MorphIC = 576 Kb in 65 nm, and
SENECA is 2.3 Mb in 22 nm.

In the comparison of the architectures presented in the table, Seneca-Lite
demonstrates notable distinctions when evaluated against other architectures
such as Spiking CNN (Loihi), ODIN 4+ MorphIC, and Seneca. These differences
can be summarized as follows:

e Accuracy: Seneca-Lite achieves an accuracy of 90.2%, which, while slightly

Area comparison for APS benchmark

lower than the other architectures, particularly Seneca (94.75%) and Spik-
ing CNN (Loihi) (92.1%), remains competitive, especially considering its
other advantages. Since, we do not use all 9 cores, the NoC bottleneck
can cause some packets to arrive later than expected. With multiple cores
working on the same layer, the communication delay leads to drop in
accuracy.

Energy Comparison for APS Benchmark

20
10
0

mODIN mSeneca mSeneca-Lite

Area (mmz2) Energy (1))

mODIN mSeneca mSeneca-Lite

Figure 6.6: Comparison of area and energy metrics for APS benchmark

e Inference Energy: One of the most significant contrasts lies in the inference

energy consumption. Seneca-Lite uses only 9.62 pnJ, which is substantially
lower than the Spiking CNN (Loihi) at 815.3 pJ—a stark contrast. It
also outperforms ODIN + MorphIC (57.2 pJ) and even Seneca (16.9 nJ),
highlighting Seneca Lite’s superior energy efficiency.

Area: In terms of the area occupied, Seneca-Lite occupies 1.124 mm?2,
which is the smallest among the architectures compared. This is signific-
antly less than Spiking CNN (Loihi), which occupies 39 mm? and even

47

outperforms ODIN + MorphIC (2.86 mm?) and Seneca (1.88 mm?), in-
dicating its compactness and efficient design.

The difference between Seneca-Lite’s energy consumption (9.62 pJ) and that
of Spiking CNN (Loihi) (815.3 nJ) is particularly stark, with Seneca-Lite being
approximately 85 times more energy-efficient.

These comparisons highlight Seneca-Lite as a highly energy-efficient and com-
pact architecture, making it particularly suitable for applications where power
and space are at a premium, even if it slightly sacrifices accuracy compared to
some other high-accuracy models.

48

Chapter 7

Conclusions and Future
Work

7.1 Conclusions

The research presented in this thesis has introduced Seneca-Lite, an open-source,
RISC-V-based, multi-core neuromorphic platform designed to meet the growing
demands of Al and ML applications. The architecture of Seneca-Lite is care-
fully crafted to balance efficiency, scalability, and flexibility, providing a robust
platform for academic research and development in the field of neuromorphic
computing. The performance of Seneca-Lite was evaluated through extensive
benchmarking, and the results underscore its competitiveness compared to ex-
isting neuromorphic platforms.

As discussed in chapter 4, the primary design objectives for Seneca-Lite in-
cluded scalability, energy and area efficiency, adherence to an event-driven ar-
chitecture, and the use of open-source components. Each of these objectives
was carefully integrated into the system’s architecture and implementation:

e Scalability: The design was required to scale with the number of cores,
allowing it to support increasingly complex workloads. This objective was
achieved by parameterizing the architecture, particularly in the top-level
interconnections, which allow the number of rows and columns of cores
to be customized based on the specific requirements of the application.
This scalability was demonstrated in the implementation of various core
configurations, including a 4-core and a 9-core system, with efficient inter-
core communication facilitated by a dynamic Network on Chip (NoC).

e Energy and Area Efficiency: Seneca-Lite was designed to be a lightweight
neuromorphic platform, prioritizing both energy and area efficiency. The
choice of the Ibex RISC-V core, known for its low power consumption, and
the integration of the TileLink Uncached Lightweight (TL-UL) protocol,
which minimizes latency and energy usage, were critical in achieving these
goals. From subsection 6.3.4, the results showed that Seneca-Lite operates
with significantly lower energy consumption compared to other architec-
tures like the Spiking CNN (Loihi) and ODIN 4 MorphlC, particularly
highlighting its suitability for energy-constrained environments.

49

e Event-Driven Architecture: The architecture of Seneca-Lite was designed
to support event-driven data flow, which is essential for neuromorphic
computing applications. This approach ensures that the system processes
data only when necessary, reducing unnecessary power usage and latency.
The implementation of this event-driven approach at both the core level
and system level was successfully demonstrated, enabling efficient handling
of spiking neural network workloads.

e Open-Source: A key goal of this project was to contribute to the open-
source community by providing a platform that could be freely accessed,
modified, and extended by researchers and developers. Seneca-Lite was
built using open-source components, including the Ibex RISC-V core and
TL-UL protocol, ensuring that it remains accessible and adaptable for
future research and development efforts.

The benchmarking results revealed that Seneca-Lite performs well when com-
pared to other neuromorphic architectures.

While Seneca-Lite’s accuracy of 90.25% is slightly lower than that of the
Seneca architecture and Spiking CNN (Loihi), it is still within a competitive
range, particularly for lightweight and energy-efficient applications.

The architecture’s compact design, occupying only 1.124 mm?, further es-
tablishes Seneca-Lite as an area-efficient solution, which is significantly smaller
compared to other platforms like Loihi, which occupies 39 mm?.

7.2 Future Work

While Seneca-Lite represents a significant step forward in the development of
scalable and efficient neuromorphic platforms, there are several avenues for fu-
ture work:

e Advanced Routing Algorithms: While the current implementation uses
a straightforward routing algorithm for the NoC, future iterations could
benefit from more sophisticated algorithms that further reduce latency
and improve fault tolerance. This also includes introducing multicasting
to the architecture for faster response times.

e Integration with Emerging Technologies: As new Al and ML techniques
emerge, integrating these into the Seneca-Lite platform could further en-
hance its applicability and performance in cutting-edge research areas.

e Broader Application Support: Expanding the range of applications that
can be efficiently executed on Seneca-Lite, such as more complex spiking
neural networks or hybrid Al models, would increase the platform’s utility
across various fields.

e FPGA and ASIC implementation: Current Seneca-Lite architecture was
verified with benchmarks and simulations. The verification can be exten-
ded to hardware testing with FPGAs and custom chips for more accurate
results.

50

References

[1] Filipp Akopyan et al. “TrueNorth: Design and tool flow of a 65 mW 1 mil-
lion neuron programmable neurosynaptic chip”. In: IEEFE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 34.10 (2015),
pp. 1537-1557.

[2] Inc. Cadence Design Systems. Tools A-Z. https://wuw.cadence . com/
en_US/home/tools/tools-a-z.html. Accessed: Aug. 20, 2024.

[3] Enea Ceolini et al. “Hand-Gesture Recognition Based on EMG and Event-
Based Camera Sensor Fusion: A Benchmark in Neuromorphic Comput-
ing”. In: Frontiers in Neuroscience 14 (2020). URL: https://api.semanticscholar.
org/CorpusID:220963473.

[4] Nguyen Cong Dao et al. “FlexBex: A RISC-V with a Reconfigurable In-
struction Extension”. In: 2020 International Conference on Field-Programmable
Technology (ICFPT) (2020), pp. 190-195. URL: https://api.semanticscholar.
org/CorpusID:233991737.

[6] Mike Davies et al. “Loihi: A neuromorphic manycore processor with on-
chip learning”. In: Proceedings of the 25th ACM international conference
on Architectural support for programming languages and operating sys-
tems. 2018, pp. 409-412.

[6] Islam Elsadek and Eslam Yahya Tawfik. “RISC-V Resource-Constrained
Cores: A Survey and Energy Comparison”. In: 2021 19th IEEE Interna-
tional New Clircuits and Systems Conference (NEWCAS) (2021), pp. 1-5.
URL: https://api.semanticscholar.org/CorpusID:235639171.

[7] Tim Fischer et al. “FlooNoC: A Multi-Th/s Wide NoC for Heterogeneous
AXI4 Traffic”. In: IEEE Design Test 40.6 (2023), pp. 7-17. por: 10.
1109/MDAT. 2023 .3306720.

[8] Charlotte Frenkel. ODIN: Online-learning Digital Spiking Neural Network
Processor. https://github.com/ChFrenkel/0DIN. 2019.

[9] Charlotte Frenkel et al. “A 0.086-mm? 12.7-pJ/SOP 64k-Synapse 256-
Neuron Online-Learning Digital Spiking Neuromorphic Processor in 28-
nm CMOS”. In: IEEE Transactions on Biomedical Circuits and Systems
13.1 (2019), pp. 145-158. DOI: 10.1109/TBCAS.2018.2880425.

[10] Steve Furber et al. “The SpiNNaker project”. In: Proceedings of the IEEE
102.5 (2014), pp. 652-665.
[11] Wulfram Gerstner and Werner M Kistler. “Spiking neuron models: Single

neurons, populations, plasticity”. In: Cambridge University Press 21.1
(2002), pp. 219-222.

o1

https://www.cadence.com/en_US/home/tools/tools-a-z.html
https://www.cadence.com/en_US/home/tools/tools-a-z.html
https://api.semanticscholar.org/CorpusID:220963473
https://api.semanticscholar.org/CorpusID:220963473
https://api.semanticscholar.org/CorpusID:233991737
https://api.semanticscholar.org/CorpusID:233991737
https://api.semanticscholar.org/CorpusID:235639171
https://doi.org/10.1109/MDAT.2023.3306720
https://doi.org/10.1109/MDAT.2023.3306720
https://github.com/ChFrenkel/ODIN
https://doi.org/10.1109/TBCAS.2018.2880425

[12]

[15]

Yutian Huan and André DeHon. “FPGA optimized packet-switched NoC
using split and merge primitives”. In: International Conference on Field-
Programmable Technology (2012), pp. 47-52. DOL: 10.1109/FPT.2012.
6412110.

Giacomo Indiveri et al. “Neuromorphic silicon neurons”. In: Frontiers in
Neuroscience 5 (2011), p. 73.

Intel. Loihi 2: Next-Generation Neuromorphic Research Chip. Online. Avail-
able from Intel Newsroom. Sept. 2021. URL: https://www. intel . com/
content/www/us/en/newsroom/news/next-gen-neuromorphic-chip.
html.

Costas Iordanou et al. “Hermes: Architecting a top-performing fault-tolerant
routing algorithm for Networks-on-Chips”. In: 201/ Fighth IEEE/ACM
International Symposium on Networks-on-Chip (NoCS). 2014, pp. 178-
179. por: 10.1109/N0CS.2014.7008782.

Eugene M Izhikevich. “Simple model of spiking neurons”. In: IEFE Trans-
actions on Neural Networks 14.6 (2003), pp. 1569-1572.

lowRISC. Ibex User Manual. Accessed: 2024-07-30. 2024. URL: https:
//ibex-core.readthedocs. io.

Wolfgang Maass. “Networks of spiking neurons: the third generation of
neural network models”. In: Neural Networks 10.9 (1997), pp. 1659-1671.

Joshua Mack et al. “RANC: Reconfigurable Architecture for Neuromorphic
Computing”. In: IEEE Transactions on Computer-Aided Design of Integ-
rated Circuits and Systems 40.11 (Nov. 2021), pp. 2265—2278. 1SSN: 1937-
4151. pOI: 10.1109/tcad.2020.3038151. URL: http://dx.doi.org/10.
1109/TCAD.2020.3038151.

OpenTitan Project. Tile Link Uncached Lightweight Interconnect Bus. Ac-
cessed: 2024-07-30. 2024. URL: https://opentitan.org/book/hw/ip/
tlul/.

Michael Papamichael and James C. Hoe. “CONNECT: Re-Examining
Conventional Wisdom for Designing NoCs in the Context of FPGAs”.
In: Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays (FPGA). New York, NY, USA: ACM, 2012,
pp. 37-46. DOI: 10.1145/2145694.2145703. URL: https://dl.acm.org/
doi/10.1145/2145694.2145703.

Michael Rogenmoser and Luca Benini. “Trikarenos: A Fault-Tolerant RISC-
V-based Microcontroller for CubeSats in 28nm”. In: 2023 30th IEEE
International Conference on FElectronics, Circuits and Systems (ICECS)

(2023), pp. 1-4. URL: https://api.semanticscholar.org/CorpusID:

263608627.

Kaushik Roy, Abhronil Jaiswal and Priyadarshini Panda. “Towards spike-
based machine intelligence with neuromorphic computing”. In: Nature
575.7784 (2019), pp. 607-617.

Kuladeep Sai Reddy and Kizheppatt Vipin. “OpenNoC: An Open-Source
NoC Infrastructure for FPGA-Based Hardware Acceleration”. In: IEEE
Embedded Systems Letters 11.4 (2019), pp. 123-126. por: 10.1109/LES.
2019.29050109.

52

https://doi.org/10.1109/FPT.2012.6412110
https://doi.org/10.1109/FPT.2012.6412110
https://www.intel.com/content/www/us/en/newsroom/news/next-gen-neuromorphic-chip.html
https://www.intel.com/content/www/us/en/newsroom/news/next-gen-neuromorphic-chip.html
https://www.intel.com/content/www/us/en/newsroom/news/next-gen-neuromorphic-chip.html
https://doi.org/10.1109/NOCS.2014.7008782
https://ibex-core.readthedocs.io
https://ibex-core.readthedocs.io
https://doi.org/10.1109/tcad.2020.3038151
http://dx.doi.org/10.1109/TCAD.2020.3038151
http://dx.doi.org/10.1109/TCAD.2020.3038151
https://opentitan.org/book/hw/ip/tlul/
https://opentitan.org/book/hw/ip/tlul/
https://doi.org/10.1145/2145694.2145703
https://dl.acm.org/doi/10.1145/2145694.2145703
https://dl.acm.org/doi/10.1145/2145694.2145703
https://api.semanticscholar.org/CorpusID:263608627
https://api.semanticscholar.org/CorpusID:263608627
https://doi.org/10.1109/LES.2019.2905019
https://doi.org/10.1109/LES.2019.2905019

[25]

[26]

[27]

[28]

Guangzhi Tang et al. “SENECA: building a fully digital neuromorphic
processor, design trade-offs and challenges”. In: Frontiers in Neuroscience
17 (2023). 1SsN: 1662-453X. DOL: 10.3389/fnins.2023.1187252. URL:
https://www.frontiersin.org/journals/neuroscience/articles/
10.3389/fnins.2023.1187252.

Inc. Xilinx. ZCU111 Evaluation Kit. https://www.xilinx.com/products/
boards-and-kits/zculll.html. Accessed: Aug. 20, 2024.

Yingfu Xu et al. “Optimizing event-based neural networks on digital neur-
omorphic architecture: A comprehensive design space exploration”. Eng-
lish. In: Frontiers in Neuroscience 18 (2024). 1sSN: 1662-4548. DOI: 10 .
3389/fnins.2024.1335422.

Feichi Zhou and Yang Chai. “Near-sensor and in-sensor computing”. In:
Nature FElectronics 3 (2020), pp. 664-671. URL: https://api.semanticscholar.
org/CorpusID:228820372.

53

https://doi.org/10.3389/fnins.2023.1187252
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2023.1187252
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2023.1187252
https://www.xilinx.com/products/boards-and-kits/zcu111.html
https://www.xilinx.com/products/boards-and-kits/zcu111.html
https://doi.org/10.3389/fnins.2024.1335422
https://doi.org/10.3389/fnins.2024.1335422
https://api.semanticscholar.org/CorpusID:228820372
https://api.semanticscholar.org/CorpusID:228820372

	Preface
	Introduction
	Background
	Spiking Neural Networks (SNNs)
	Neuron Architecture
	Challenges and Research Directions

	Neuromorphic Computing
	Ibex RISC-V Core
	Benefits of Using Ibex in Neuromorphic Platforms

	Tile Link Interconnects
	TileLink Uncached Lightweight (TL-UL)

	Survey of Open-Source NoCs

	Literature Study
	Reconfigurable Architecture for Neuromorphic Computing (RANC)
	Seneca Neuromorphic Architecture
	Intel Loihi
	ODIN Spiking Neural Network (SNN)

	Proposed Seneca-Lite Architecture
	Seneca-Lite Design Overview
	Event Driven Data Flow

	Neuromorphic Architecture
	Core Level Seneca-Lite Architecture
	System Level Architecture

	Seneca-Lite Hardware Implementation
	Single Core Seneca-Lite Hardware Implementation
	Control Mechanism

	Network on Chip (NoC) Router
	NoC Packet Structure

	System Level Hardware Implementation
	Module Hierarchy
	Top Level NoC connections
	4-core architecture

	Results and Discussion
	Experimental Setup
	Seneca-Lite Single Core Results
	Synthesis Results
	Energy Metrics

	System Level Results
	Software Benchmark 1- Keyword Spotting Software
	Software Benchmark 2- Hand Gesture Recognition Software
	Benchmarking Results
	Comparison with state of the art

	Conclusions and Future Work
	Conclusions
	Future Work

	References

