
 
 

Delft University of Technology

Self-Supervised Neuromorphic Perception for Autonomous Flying Robots

Paredes-Vallés, Federico

DOI
10.4233/uuid:f5f62ff1-28d8-4c5f-93f5-3f9d90d06d28
Publication date
2023
Document Version
Final published version
Citation (APA)
Paredes-Vallés, F. (2023). Self-Supervised Neuromorphic Perception for Autonomous Flying Robots.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:f5f62ff1-28d8-4c5f-
93f5-3f9d90d06d28

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:f5f62ff1-28d8-4c5f-93f5-3f9d90d06d28
https://doi.org/10.4233/uuid:f5f62ff1-28d8-4c5f-93f5-3f9d90d06d28
https://doi.org/10.4233/uuid:f5f62ff1-28d8-4c5f-93f5-3f9d90d06d28


Self-Supervised N
eurom

orphic Perception for A
utonom

ous Flying R
obots

F. Paredes-Vallés

Self-Supervised Neuromorphic 
Perception for Autonomous 
Flying Robots
Federico Paredes-Vallés

INVITATION

Presentation: 09h30
Defense: 10h00

November 17, 2023
Friday

Senaatszaal
TU Delft Auditorium

Mekelweg 5, Delft
The Netherlands

You are kindly invited
to the public defense of

my dissertation

Self-Supervised N
eurom

orphic Perception for A
utonom

ous Flying R
obots

F. Paredes-Vallés



Self-Supervised Neuromorphic Perception
for Autonomous Flying Robots





Self-Supervised Neuromorphic Perception
for Autonomous Flying Robots

Dissertation

for the purpose of obtaining the degree of doctor

at Delft University of Technology,

by the authority of the Rector Magni�cus, prof. dr. ir. T. H. J. J. van der Hagen,

chair of the Board for Doctorates,

to be defended publicly on Friday 17 November 2023 at 10:00 o’clock

by

Federico Paredes-Vallés

Master of Science in Aerospace Engineering,

Delft University of Technology, The Netherlands,

born in Murcia, Spain.



This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magni�cus, chairman

prof. dr. G. C. H. E. de Croon, Delft University of Technology, promotor

dr. ir. C. De Wagter, Delft University of Technology, copromotor

Independent members:
prof. dr. S. M. Bohté, Centrum Wiskunde & Informatica, The Netherlands

prof. dr. ir. P. Campoy, Universidad Politécnica de Madrid, Spain

prof. dr. ir. G. Gallego, Technische Universität Berlin, Germany

dr. Y. Sandamirskaya, Intel Labs and Zurich University of Applied

Sciences, Switzerland

prof. dr. ir. M. Wisse, Delft University of Technology

prof. dr. ir. M. Mulder, Delft University of Technology, reserve member

Keywords: Arti�cial neural networks; Autonomous drone racing; Deep learning;

Event-based cameras; Flying robots; Neuromorphic computing; Optical

�ow; Self-supervised learning; Spiking neural networks; Unsupervised

learning

Printed by: Ipskamp Printing, www.ipskampprinting.nl

Cover by: F. Paredes-Vallés and C. Soriano Segura

Copyright © 2023 by F. Paredes-Vallés

ISBN 978-94-6366-755-5

An electronic version of this dissertation is available at

http://repository.tudelft.nl/.

www.ipskampprinting.nl
http://repository.tudelft.nl/


Contents

Summary ix

Acronyms xi

1 Introduction 1
1.1 Sensing: Event-based cameras . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Algorithms: Spiking neural networks . . . . . . . . . . . . . . . . . . . 3

1.3 Processing: Neuromorphic processors . . . . . . . . . . . . . . . . . . . 4

1.4 Neuromorphic computing in robotics . . . . . . . . . . . . . . . . . . . 4

1.5 Problem statement and research questions . . . . . . . . . . . . . . . . . 5

1.6 Scope and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Frame-Based, Autonomous Drone Racing: Winning AIRR 2019 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Drone speci�cations . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 State estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.4 Flight planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.5 Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 State estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.3 Control and path planning . . . . . . . . . . . . . . . . . . . . . 30

2.3.4 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.5 Competition outcome . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Optical-Flow-Aided, Self-Supervised Frame Reconstruction From Events 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Input event representation . . . . . . . . . . . . . . . . . . . . . 44

3.3.3 Learning optical �ow via contrast maximization . . . . . . . . . . 44

3.3.4 Learning reconstruction via photometric constancy . . . . . . . . 45

3.3.5 Network architectures . . . . . . . . . . . . . . . . . . . . . . . 47

v



vi Contents

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 Optical �ow evaluation. . . . . . . . . . . . . . . . . . . . . . . 49

3.4.2 Reconstruction evaluation . . . . . . . . . . . . . . . . . . . . . 51

3.4.3 Impact of event deblurring . . . . . . . . . . . . . . . . . . . . . 53

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Unsupervised Learning of Event-Based Optical Flow with SNNs 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Optical �ow visual observables . . . . . . . . . . . . . . . . . . . 62

4.3.2 Adaptive spiking neuron model . . . . . . . . . . . . . . . . . . 64

4.3.3 Stable STDP learning rule . . . . . . . . . . . . . . . . . . . . . 65

4.3.4 Network architecture for motion perception . . . . . . . . . . . . 67

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.1 Synthetic data experiment . . . . . . . . . . . . . . . . . . . . . 71

4.4.2 Real data experiments . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.3 STDP evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.4 Additional experiments . . . . . . . . . . . . . . . . . . . . . . 77

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Self-Supervised Learning of Event-Based Optical Flow with SNNs 83
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.1 Input event representation . . . . . . . . . . . . . . . . . . . . . 87

5.3.2 Learning optical �ow via contrast maximization . . . . . . . . . . 88

5.3.3 Spiking neuron models . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.4 Network architectures . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.1 Evaluation of the ANN and SNN architectures . . . . . . . . . . . 92

5.4.2 Impact of adaptive mechanisms for spiking neurons . . . . . . . . 94

5.4.3 Further lessons on training deep SNNs . . . . . . . . . . . . . . . 95

5.4.4 Additional experiments . . . . . . . . . . . . . . . . . . . . . . 96

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Robustifying the SSL of Low-Latency, Event-Based Optical Flow 105
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3 Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3.1 Input format and contrast maximization . . . . . . . . . . . . . . 110

6.3.2 Iterative event warping. . . . . . . . . . . . . . . . . . . . . . . 111

6.3.3 Deblurring at multiple timescales . . . . . . . . . . . . . . . . . 113

6.3.4 Network architecture. . . . . . . . . . . . . . . . . . . . . . . . 114



Contents vii

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4.1 Evaluation procedure. . . . . . . . . . . . . . . . . . . . . . . . 115

6.4.2 Optical �ow evaluation. . . . . . . . . . . . . . . . . . . . . . . 115

6.4.3 Additional experiments . . . . . . . . . . . . . . . . . . . . . . 119

6.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7 Fully Neuromorphic Vision and Control for Autonomous Drone Flight 125
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.2 Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2.1 Simulating the on-chip spiking neuron model . . . . . . . . . . . 133

7.2.2 Four-point parametrization to estimate homography . . . . . . . . 133

7.2.3 Self-supervised learning of event-based optical �ow . . . . . . . . 134

7.2.4 From a vision-based state estimate to control. . . . . . . . . . . . 136

7.2.5 Training control in simulation . . . . . . . . . . . . . . . . . . . 136

7.2.6 Hardware setup . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.3.1 Robust vision-based state estimation . . . . . . . . . . . . . . . . 139

7.3.2 Control through visual observables: From sim to real . . . . . . . 143

7.3.3 Other examples of versatility and robustness . . . . . . . . . . . . 144

7.3.4 Benchmarking inference speed and energy consumption . . . . . . 147

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8 Conclusion 151
8.1 Answers to research questions . . . . . . . . . . . . . . . . . . . . . . . 151

8.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A How Do Neural Networks Estimate Optical Flow? 159
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

A.2.1 Dense optical �ow estimation with CNNs . . . . . . . . . . . . . 162

A.2.2 Receptive �eld mapping . . . . . . . . . . . . . . . . . . . . . . 164

A.2.3 Aperture problem . . . . . . . . . . . . . . . . . . . . . . . . . 165

A.3 Model details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A.4 Gabor �tting for translation . . . . . . . . . . . . . . . . . . . . . . . . 166

A.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

A.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A.4.3 Temporal bandwidth . . . . . . . . . . . . . . . . . . . . . . . . 173

A.5 Network response to dilation & rotation . . . . . . . . . . . . . . . . . . 174

A.5.1 Limitations of the spectral response pro�le �tting . . . . . . . . . 174

A.5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

A.6 Solving the aperture problem. . . . . . . . . . . . . . . . . . . . . . . . 179

A.7 Additional experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 180

A.7.1 Original vs. our FlowNetS . . . . . . . . . . . . . . . . . . . . . 180

A.7.2 Generalizability to natural images . . . . . . . . . . . . . . . . . 180



viii Contents

A.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

A.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

B Real-Time, Frame-Based, Dense Optical Flow on a Nano Quadcopter 185
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

B.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

B.2.1 Autonomous navigation of nano quadcopters . . . . . . . . . . . 188

B.2.2 Real-time dense inference with CNNs . . . . . . . . . . . . . . . 189

B.3 Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

B.3.1 Motion boundary detail guidance . . . . . . . . . . . . . . . . . 189

B.3.2 Strided STDC module redesign . . . . . . . . . . . . . . . . . . . 190

B.3.3 Reduced input/output dimensionality . . . . . . . . . . . . . . . 190

B.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

B.4.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . . 191

B.4.2 Performance and latency on public benchmarks . . . . . . . . . . 192

B.4.3 Additional experiments . . . . . . . . . . . . . . . . . . . . . . 192

B.4.4 Obstacle avoidance application . . . . . . . . . . . . . . . . . . . 193

B.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

References 197

Acknowledgments 231

Curriculum Vitæ 235

List of Publications 237



Summary

I
n the ever-evolving landscape of robotics, the quest for advanced synthetic machines that

seamlessly integrate with human lives and society becomes increasingly paramount. At

the heart of this pursuit lies the intrinsic need for these machines to perceive, understand,

and navigate their surroundings autonomously. Among the senses, vision emerges as

a cornerstone of human perception, providing a wealth of information about the world

we inhabit. Thus, it comes as no surprise that equipping robots with vision-based per-

ception capabilities, or computer vision, has captivated researchers for decades. Recent

breakthroughs, fueled by the advent of deep learning, have propelled computer vision to

new heights. However, challenges persist in leveraging the power of deep learning, as its

hunger for computational resources poses hurdles in the realm of robotics, particularly for

small �ying robots with their inherent limitations of payload and power consumption.

This dissertation embarks on a journey that begins at the intersection of two ground-

breaking technologies with the potential to revolutionize computer vision and enhance its

accessibility to small robots: event-based cameras and neuromorphic processors. These two

technologies draw inspiration from the information processing mechanisms employed by

biological brains. Event-based cameras output sparse events encoding pixel-level brightness

changes at microsecond resolution, while neuromorphic processors leverage the power of

spiking neural networks to realize a sparse and asynchronous processing pipeline.

Throughout this dissertation, comprehensive investigations have been conducted,

presenting innovative solutions and advancements in the �elds of computer vision and

robotics. The thesis begins by presenting the winning solution of the 2019 AIRR autonomous

drone racing competition, which showcases a monocular vision-based navigation approach

speci�cally designed to address the limitations of conventional sensing and processing

methods. Moreover, it explores the bridging of the gap between event-based and frame-

based domains, enabling the application of conventional computer vision algorithms on

event-camera data. Building upon these achievements, the thesis introduces a pioneering

spiking architecture that enables the estimation of event-based optical �ow, with emergent

selectivity to local and global motion through unsupervised learning. Additionally, the

thesis presents a framework that addresses the practicality and deployability of the models

by training spiking neural networks to estimate low-latency, event-based optical �ow with

self-supervised learning. Finally, this dissertation culminates with a demonstration of

the integration of neuromorphic computing in autonomous �ight. By utilizing an event-

based camera and neuromorphic processor in the control loop of a small �ying robot

for optical-�ow-based navigation, this research showcases the practical implementation

of neuromorphic systems in real-world scenarios. Overall, our studies demonstrate the

bene�ts of incorporating neuromorphic technology into the vision-based state estimation

pipeline of autonomous �ying robots, paving the way for the development of more power-

e�cient and faster neuromorphic vision systems.
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1
Introduction

T
he overarching objective of robotics research is to design and create advanced synthetic

machines that will ultimately enhance human lives and societal well-being. To achieve

this objective, these systems will need to perform tasks autonomously or collaboratively

with humans, while e�ectively interacting with and navigating their environments. There-

fore, their ability to perceive the world and make sense of it is of paramount importance.

In particular, vision is arguably the most important sense for humans [1], as it provides the

richest source of information about the environment. For this reason, it is no wonder that

providing robots with vision-based perception capabilities (further referred to as computer
vision) has been the focus of intense research in robotics for decades [2].

Fueled by the convergence of computational intelligence and engineering prowess,

computer vision has made tremendous progress in recent years. In particular, the advent of

deep learning has led to a paradigm shift, with deep neural networks now outperforming

handcrafted algorithms on many tasks [3, 4]. However, training these networks usually

requires large amounts of labeled data, which is often di�cult and/or costly to obtain in

a robotics context. Moreover, their deployment on robots that are safe to interact with

remains a challenge, as they are typically computationally expensive and thus require

powerful hardware and large amounts of energy. This is especially problematic for �ying

robots, which are inherently constrained by their payload and power consumption [5].

In pursuit of mission-capable, autonomous, small �ying robots, many roboticists have

turned to nature for inspiration. Although the examples are numerous, �ying insects stand

out as perhaps the most successful case of agile and robust �ying machines [6–8]. They

are able to navigate complex environments at high speeds, while avoiding obstacles and

reacting to unexpected events. In addition, they are able to perform these tasks with a

brain that is orders of magnitude smaller than that of a human [9]. Therefore, the quest

for inspiration from the animal kingdom not only frequently manifests itself in the design

of the “body” of some these robots [10, 11], but also, since more recently, in the design

of their on-board sensors and processors [12–14]. The �eld of neuromorphic engineering

has emerged as a promising alternative to conventional computing for edge devices, as

it aims to develop an approach to sensing and computing that, inspired by the function

1
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2 1 Introduction

and structure of biological brains, is able to perform complex tasks with low latency and

minimal energy consumption [15–17].

The combination of neuromorphic vision sensors, further referred to as event or event-
based cameras interchangeably [18], and neuromorphic processors [14, 19] running train-

able, spiking neural networks (SNNs) [20] holds the promise of highly e�cient and high-

bandwidth vision-based perception and processing. The challenge, however, lies in the fact

that the working principle of these systems is fundamentally di�erent from those of con-

ventional vision sensors and processors (see Fig. 1.1), and therefore, another paradigm shift

is needed to exploit their full potential. In this dissertation, we address this challenge by

proposing novel learning-based solutions for neuromorphic, vision-based perception and

processing. In addition, we demonstrate their e�ectiveness in the context of the autonomous

�ight of small �ying robots, as they form a prime example of resource-constrained plat-

forms with urgent need for low-energy, low-latency sensing and processing. The proposed

solutions are formulated using either unsupervised or self-supervised learning (SSL) not

only to remove the need for labeled data, but also to ensure that the learned solutions

perform well on the robots — avoiding the “reality gap” that arises when learning on

synthetic data.

The following sections use Fig. 1.1 as a common thread to provide an overview of

previous research on the di�erent elements of the neuromorphic computing �eld that

are relevant to this dissertation (namely neuromorphic vision sensors, algorithms, and

processors), and on how they compare to their conventional counterparts. Thereafter, the

research objective and questions of this thesis are formulated, and its outline is presented.

1.1 Sensing: Event-based cameras
Contrary to standard cameras, which make use of an external clock to sample light and

provide images at a constant frequency (see Fig. 1.1, top left); event-based cameras are

bio-inspired vision sensors that feature a pixel array that asynchronously reacts to pixel-

level brightness changes [18]. This working principle results in a sparse output stream

consisting of digital, timestamped events; with every event representing a (log–)brightness

change of a prede�ned magnitude, and encoding the x–y location and polarity of the

change. As illustrated in Fig. 1.1 (bottom left), the data-rate of the output event stream

depends on the dynamics of the visual scene. The larger the brightness change, the more

events per second are generated (and vice versa). More importantly for this dissertation is

that, under constant illumination, events are triggered by the apparent motion (i.e., optical

�ow [21]) of contrast in the image space [18].

Because of the sparse and asynchronous operating principle, these cameras are charac-

terized by several advantages with respect to their conventional frame-based counterparts:

a very high temporal resolution (in the order of microseconds), a sub-millisecond latency,

and (potentially) a low power consumption (in the order of milliwatts) [18]. Despite the

paradigm shift, the potential that these advantages entail for many �elds has quickly trig-

gered the generation of an extensive body of literature [22] on, not only how to use events

to solve a wide range of computer vision tasks [23–28], but also on how to best process the

events to retain the advantages over frame-based algorithms [29–32]. Nevertheless, regard-

ing the latter, the current mainstream solution is to bu�er events over substantially long

time windows and create grid-like representations [33] that are compatible with arti�cial



1.2 Algorithms: Spiking neural networks

1

3
Co

nv
en

tio
na

l
co

m
pu

tin
g

N
eu

ro
m

or
ph

ic
co

m
pu

tin
g

Sensing HardwareAlgorithms

t

f(t)

Frame-based perception

t

f(t)

Event-based perception

→ von-Neumann arch.
→ General purpose
→ Synchronous design

→ Non-von-Neumann arch.
→ Dedicated purpose
→ Asynchronous design

Artificial neural networks
→ Continuous updates
→ Inherently stateless

Ui(t)

Sj(t)

Si(t)

θ

Ureset

∆trefr

t

i

yt = f(w, xt)

Spiking neural networks
→ Sparse updates
→ Inherently stateful

Ui(t)

Sj(t)

Si(t)

θ

Ureset

∆trefr

t

i

yt = f(w, x[0,t])

Figure 1.1: Elements from the �eld of neuromorphic computing relevant to this dissertation (bottom), and how

they compare to their conventional counterparts (top). In this thesis, we cover both approaches to computing in

the context of the vision-based autonomous �ight of small �ying robots (see Chapters 2 and 7).

neural networks (ANNs). These representations allow ANNs to extract the information

encoded in the collective of events, but usually come at the cost of a high latency despite

the high levels of accuracy reported [34]. In addition, to run under real-time constraints,

ANNs usually require GPU-based hardware accelerators that, being characterized by a

power consumption usually in the order of tens of watts, limit their deployability on edge

platforms such as small �ying robots.

1.2 Algorithms: Spiking neural networks
Instead of processing event data with ANNs (see Fig. 1.1, top center), the neuromorphic

approach to retaining the advantages of event cameras is to process the sparse and asyn-

chronous events as they come, i.e., one-by-one in a per-event processing fashion, with

SNNs. As in Fig. 1.1 (bottom center), these architectures are bio-inspired computational

models comprised of spiking neurons: processing units that produce binary activations

(i.e., spikes) whenever their internal state (usually referred to as membrane potential or

voltage) surpasses a prede�ned threshold. This spike-based operating principle leads to a

sparse and asynchronous computing which not only is a perfect match for event cameras

due to their common nature, but also has the potential of being low-latency and low-power

when deployed on dedicated processors [14, 19].

The limited availability of neuromorphic hardware is one factor that has hindered

the widespread adoption of SNNs in �elds like computer vision and robotics. However,

another signi�cant challenge comes from the fact that learning algorithms designed for

ANNs do not transfer well to the spiking domain. This has driven extensive research
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mainly in two directions: (i) �nding ANN-SNN conversion strategies that lead to high

e�ciency gains without drops in accuracy [35, 36], and (ii) direct training of SNN with

traditional backpropagation (through time) using a few adjustments to deal with the non-

di�erentiability of the spiking activation function [20, 37, 38]. This lack of consensus on

how to design training pipelines for SNNs, which in turn underscores the complexity of

the problem, has limited the application of these architectures to often less complicated,

discrete problems [23, 24, 39, 40]. In addition, note that, prior to this dissertation, learning

in the SNN domain was dominated by spike-timing-dependent plasticity (STDP) [41]: a

form of Hebbian (i.e., unsupervised) learning [42] that adapts the strength of a connection

between two neurons based on their correlated activity, and was only successfully applied

in the computer vision domain to image classi�cation tasks [43–47].

1.3 Processing: Neuromorphic processors
In order to unlock the potential of SNNs as low-power and low-latency computing solutions

for event-based computer vision, dedicated hardware accelerators that are able to exploit

the sparse and asynchronous nature of these networks are needed. In this regard, the

�eld of neuromorphic engineering has made tremendous progress in recent years with the

development of several neuromorphic processors, such as the TrueNorth chip [48], the

BrainScaleS wafer-scale system [49], the DynapCNN [50], the Loihi processors [14, 51],

and others [48, 52]. Despite their di�erences (e.g., number of neurons and synapses),

these processors share a few characteristics, some of which are highlighted in Fig. 1.1

(bottom right). Mainly, they di�er from general-purpose, von-Neumann architectures

(e.g., CPUs, GPUs) in that, instead of having separate memory and processing units, the

memory is in close proximity to the processing. These two elements are arranged in

several (small) neurocores [19], which in turn are interconnected via the address-event

representation protocol [53] following a network-on-chip communication scheme [54, 55].

With these architectures, the di�erent layers of an SNN can be distributed among the

available neurocores. This parallelization of the storage and computation, together with

the sparse, binary activations of the spiking neurons, allows for a low-power and low-

latency operation [19]. Note that, in spite of this potential, most of the processors remain

as research prototypes and are not commercially available, thus limiting their adoption.

1.4 Neuromorphic computing in robotics
As aforementioned, the �eld of neuromorphic computing has the potential to revolutionize

the way robots perceive and interact with their environments. The combination of event-

based vision sensors and neuromorphic processors has the potential to enable robots to

perform complex tasks with low latency and minimal energy consumption. However,

despite the extensive (yet young) body of literature on neuromorphic computing, its

application to robotics has been limited to a few examples, and even fewer in the context

of autonomous �ight. In this section, we provide a brief overview of these examples.

Many of the applications that have been explored over recent years in the event-based

camera domain can be used, in one way or another, to provide robots with some of the

visual information required to autonomously navigate an environment. This includes

information about the robot’s ego-motion, the motion of other objects in the scene, and



1.5 Problem statement and research qestions

1

5

the structure of the environment; and usually comes from algorithms performing optical

�ow estimation [25, 33, 56, 57], feature detection and tracking [58–60], 3D reconstruction

[61–63], visual (inertial) odometry [64–66], or simultaneous localization and mapping [67],

among others. Early works incorporating an event camera in the control loop of robotic

platforms already demonstrated the advantages of these sensors through low-latency state

updates and e�cient data processing [68, 69]. Despite their algorithmic simplicity, these

�ndings motivated researchers in aerial robotics to adopt event-based cameras in detriment

of their conventional, frame-based counterparts. The work of Pijnacker-Hordijk et al. [70],

which was later extended by Scheper et al. [71], was the �rst in showing these sensors in

the control loop of a �ying robot, with the task being optical-�ow-based landing [72–75].

Thereafter, Vidal et al. [67] and Sun et al. [76] demonstrated the event camera in the context

of visual inertial navigation, also for �ying robots. In both cases, the authors reported that

event-based cameras, mainly because of their high temporal resolution and data sparsity,

allowed for pushing the limits of their robotic platforms to �ying speeds that were out of

reach for frame-based cameras (because of their low update rates and/or motion blur). This

was later con�rmed by research on event-based avoidance of static and dynamic obstacles

[77–81]. Note that the algorithms powering these examples were deployed on conventional

computing hardware (e.g., CPUs, GPUs) in all cases.

Robotic examples featuring event-based vision algorithms running on neuromorphic

processors are rare, despite their aforementioned potential, and so far have been limited in

complexity. Galluppi et al. presented in [82] a robotic setup in which an event camera was

connected to a SpiNNaker processor [52] to allow a ground robot to di�erentiate between

two lights �ashing a di�erent frequencies. Years later, in [83], Milde et al. designed and

deployed an SNN for event-based obstacle avoidance and target acquisition on a ground

robot equipped with a ROLLS processor [84]. The most recent example, and the closest to

an aerial robotic context, is the work of Vitale et al. in [85]. Inspired by [86], the authors

deployed an SNN on a Loihi processor [14] on board a bench-�xed dual-rotor to align the

roll angle of this platform with a black-and-white disk located in front of an event camera.

The SNN was in charge of not only �nding the line to align with, but also of implementing

the controller for generating the motor commands. Note that, in all these examples, the

SNNs were handcrafted and no learning/evolutionary/optimization algorithm of any kind

was used in their design.

Lastly, despite not having a camera in the loop, it is still relevant to highlight the

neuromorphic research that has recently taken o� on low-level control for aerial robots.

The works from Stroobants et al. [87–89] demonstrate the joint potential of (trainable)

SNNs and neuromorphic processors to achieve highly e�cient, IMU-based state-estimation

and control in resource-constrained, aerial platforms.

1.5 Problem statement and researchqestions
In this thesis, we focus on the neuromorphic computing elements that have been discussed

in previous sections, examining their application in the context of �ying robots. The aim

is to achieve vision-based navigation with an event-based camera and a neuromorphic

processor, running an SNN for perception, on board and in the control loop of a robot.

This is yet to be accomplished in the literature, mostly due to the inherent complexity of

solving real-world, large-scale problems with (trainable) spiking networks that can, in turn,
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be deployed on neuromorphic processors. Consequently, the core question driving the

research conducted in this dissertation can be formulated as follows:

Driving Research Question

How can neuromorphic perception and processing be incorporated into the vision-

based, state-estimation pipeline of an autonomous �ying robot?

This question can be approached from various perspectives since, regardless of the

computing paradigm, there is no unique way of providing robots with vision-based naviga-

tion capabilities for autonomous �ight. Among the available options, this thesis focuses

on how this can be achieved using 2D motion information in the image plane, i.e., optical

�ow [21]. This choice is motivated by two primary reasons. Firstly, optical �ow is core

to many computer vision algorithms and, in the event-camera domain, it represents a

relatively young but active area of research. However, existing literature often emphasizes

maximizing accuracy while overlooking algorithm latency [33, 34]. Therefore, we believe

that any contributions made towards our central research question will also be of relevance

to the wider computer vision community. Secondly, there is extensive literature that, after

drawing (once again) inspiration from �ying insects, has demonstrated the potential of

optical �ow in tasks such as autonomous landing [72–75], attitude control [90] or ob-

stacle avoidance [91]. Considering these factors, the speci�c problem statement for this

dissertation is formulated as follows:

Problem Statement

How can optical-�ow-based autonomous navigation be realized with an event-based

camera and a neuromorphic processor in the control loop of a �ying robot?

Our attention will now shift to the requirements needed to address this question to the

best of our ability. In order to achieve this, the problem statement has been subdivided

into �ve research questions, which were addressed in a sequential manner as the research

unfolded.

Frame-based perception: Understanding the challenge
Before making the jump to neuromorphic technology and optical �ow, it is of importance

to understand the limits and complexities of vision-based autonomous �ight with frame-

based cameras and conventional computing. One particular scenario that pushes this

technology to its limits is autonomous (indoor) drone racing [92], where �ying robots

must autonomously navigate a prede�ned track as quickly as possible using only on-board

resources. In such conditions, the maximum speed achievable by the drones is typically

determined by the robustness and computational e�ciency of the control and perception

algorithms, rather than by the physical constraints of the platform itself [93]. The �rst

research question of this dissertation was then formulated in this context as follows:
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RQ1: Research Question 1

How can fast, autonomous �ight through gates be achieved with frame-based

perception and conventional processing in a GPS-denied environment?

This question led to the development of a robust yet e�cient vision-based naviga-

tion solution (frame-based, monocular) for very fast autonomous �ying robots. In fact,

this solution proved to be successful, as evidenced by our victory in the 2019 Arti�cial

Intelligence Robotic Racing (AIRR) Circuit, where it outperformed other state-of-the-art

methods, both monocular and stereo [94], when deployed on the same robot (i.e., same

sensors and processors). However, this competition also provided �rst-hand experience

on some of the inherent limitations of conventional computing for robotic applications.

Speci�cally, motion blur, the limited (and �xed) update rate of the camera, and the need

for large amounts of labeled data for our machine learning algorithm were the primary

bottlenecks of our approach.

Bridging event-based and frame-based computer vision
As discussed in Section 1.1, event cameras react to changes in brightness by generating

events with a very high temporal resolution [18]. This makes these sensors particularly

robust to motion blur issues [95], but downstream applications, such as the perception

algorithm developed for AIRR, remain limited due to the sparse and asynchronous nature of

event data. This need to bridge the gap between the event-based and frame-based computer

vision domains leads to the second research question:

RQ2: Research Question 2

How can we leverage the knowledge of the inner working of event cameras to

learn event-based frame reconstruction in a self-supervised fashion?

The outcome of this research was the development of the �rst solution to the problem

of frame reconstruction from events that, instead of relying on labeled data, leverages the

relation between the events, optical �ow, and the brightness signal [18] to train ANNs in a

self-supervised manner. Event-based optical �ow was also obtained through SSL using the

(at the time) state-of-the-art method from literature [33, 96, 97].

Unsupervised learning for motion-selective SNNs
Despite the potential of the previous solution to reconstruct blur-less images from the

events at a much higher rate than frame-based cameras (and the research direction that

this unlocks), the downstream algorithms would still be applied on conventional images.

This entails losing their potential of being low-latency and low-power since ANNs would

be required to perform this events-to-frame conversion as a �rst stage. For this reason, the

third research question directed our attention towards SNNs:



1

8 1 Introduction

RQ3: Research Question 3

How can a spiking neural network learn to develop event-based motion selectivity

in an unsupervised fashion?

This third research question led to the development of the �rst SNN architecture in

which selectivity to both local and global motion emerged in an unsupervised manner

using event-camera data. The learning rule employed was a novel formulation of STDP, a

correlation-based, local plasticity rule inspired by biological processes that, up until this

point, had primarily been successful in classi�cation tasks [43–47]. Through this research,

we were able to con�rm that event cameras and SNNs are an ideal combination, as the latter

can extract meaningful patterns from the input events while maintaining high sparsity and

low latency levels. However, the absence of supervision posed challenges in controlling

the learned features and comparing their performance with other approaches.

SSL of low-latency, event-based optical flow with SNNs
With the aim of improving the robustness of learning event-based optical �ow estimation,

the fourth research question of this dissertation was formulated as follows:

RQ4: Research Question 4

How can low-latency, event-based optical �ow be learned in a self-supervised

fashion with spiking neural networks?

The outcome of this research was a novel self-supervised pipeline that, by leveraging

the knowledge on event-based optical �ow and SNNs from previous research questions,

allows for the training of models that can be scaled up to high inference frequencies.

Contrary to the event-camera literature, which, as aforementioned, is mostly focused

on maximizing accuracy, this pipeline targets minimal latency without compromising

performance. Backpropagation through time was used to promote SNNs to exploit their

internal dynamics to extract motion information from the sparse input events, which are

processed nearly as they a triggered.

Fully neuromorphic pipeline for vision-based flight
Lastly, what was remaining to provide an answer to the driving research question of this

dissertation was to demonstrate the e�ectiveness of the proposed SSL pipeline in the

context of the autonomous �ight of a robot. This was done by formulating the �fth and

�nal research question as follows:

RQ5: Research Question 5

How can a spiking neural network be trained in a self-supervised fashion to perform

event-based optical �ow estimation while running on a neuromorphic processor in

the control loop of an autonomous �ying robot?
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Figure 1.2: Outline of the rest of this dissertation.

The outcome of this research was the pioneering demonstration of the potential of

neuromorphic sensing and processing in achieving vision-based autonomous �ight. Specif-

ically, we showed that the proposed SSL pipeline can be used to e�ectively train SNNs

that, when deployed on Intel’s Loihi neuromorphic processor [14], can perform optical-

�ow-based state estimation with low latency and power consumption, while maintaining

high levels of accuracy. This demonstration was conducted in a real-world scenario, where

a quadrotor successfully accomplished various tasks, including hovering, landing, and

sideways maneuvering, in an autonomous manner.

1.6 Scope and limitations
To provide an answer, out of the many possible, to the driving research question of this

dissertation, several limitations were imposed on the scope of the conducted research. Some

of these limitations were already alluded to in previous sections, but they are summarized

here for clarity. Firstly, the research primarily centers around event-based optical �ow and

its application for estimating the ego-motion of the �ying platform. Other uses of optical

�ow, such as obstacle avoidance, are outside the scope of this thesis. Secondly, the emphasis
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is on training neural network architectures, including both ANNs and SNNs, without relying

on labeled or synthetic data. Therefore, only unsupervised and self-supervised training

frameworks are considered, despite the state-of-the-art in most computer vision domains

being dominated by pure supervised learning approaches. Lastly, although training without

labels unlocks the possibility of re�ning the models in an online fashion during deployment,

what is in the scope of this dissertation is o�ine (i.e., batch) training. This means training

the models on general-purpose processors (e.g., CPUs, GPUs) before deployment. By setting

these limitations, the research aims to provide a speci�c answer to the driving research

question while acknowledging and addressing the challenges inherent in the chosen scope.

1.7 Outline
As depicted in Fig. 1.2, the subsequent chapters of this dissertation present comprehensive

responses to the �ve research questions derived from the problem statement, ultimately

leading to an answer to the driving research question. In Chapter 2, we address RQ1 by

describing the winning solution to the 2019 AIRR autonomous drone racing competition:

a monocular vision-based navigation approach designed around the limitations of con-

ventional sensing (i.e., frame-based) and processing (i.e., general-purpose, synchronous)

[98, 99]. Moving forward, Chapter 3 already takes a leap into event-based cameras and

addresses RQ2 by focusing on the problem of frame-based reconstruction from the events.

This chapter aims to bridge the gap between the event-based and frame-based domains

[100], facilitating the application of conventional computer vision algorithms for down-

stream tasks. Thereafter, the focus is already on estimating event-based optical �ow with

SNNs, and Chapter 4 proposes the �rst spiking architecture in which selectivity to both

local and global motion emerges in an unsupervised fashion from the input events [101],

thus addressing RQ3. To enhance the deployability of the models, Chapter 5 describes the

�rst self-supervised framework for training SNNs to estimate low-latency, event-based

optical �ow [102]. This pipeline was later extended in Chapter 6 [103] to address some of

the limitations inherent to learning event-based optical �ow in a self-supervised fashion.

The combined contributions of these two chapters e�ectively tackle RQ4. Finally, neuro-

morphic computing was demonstrated in the context of autonomous �ight in Chapter 7,

where we showed an event-based camera and a neuromorphic processor in the control

loop of a �ying robot performing optical-�ow-based navigation [104]. The neuromorphic

processor was used to e�ectively run the SNN with low latency and power consumption,

while maintaining competitive levels of accuracy. This research addresses RQ5.

To conclude, Chapter 8 provides a summary of the main contributions made throughout

the research. It discusses the implications of these contributions and explores potential

future research directions in the �eld of neuromorphic computing for robotics. Lastly,

Chapters A and B present two additional research directions that were explored in parallel to

the main research questions. Speci�cally, Chapter A presents a neuropsychology-inspired

investigation on how deep neural networks estimate optical �ow from frame-based data

[105]. This study provides valuable insights into the limitations and robustness of these

architectures, o�ering recommendations for future work. Chapter B, on the other hand,

focuses on demonstrating frame-based optical �ow running on ultra-low power computing

hardware in the context of vision-based obstacle avoidance for nano �ying robots [106].
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2.1 Introduction

A
rtificial intelligence (AI) has seen tremendous progress over the last decade, espe-

cially due to the advent of deep neural networks [3, 4]. The major milestones in the

history of AI have always been associated with competitions against human experts. These

competitions clearly show the increasing complexity of the tasks in which AI can extend be-

yond human performance. In 1997, IBM’s Deep Blue showed the power of search methods

combined with expert systems [107] by beating the world champion in the game of chess,

Garry Kasparov. Chess is a fully observable, turn-based game, with ≈ 10123 possible game

states. After chess, the AI community started to aim for the game of Go, which has a much

larger branching factor that also results in a much higher number of ≈ 10360 possible game

states, rendering most search methods ine�ective. In 2017, the Master version of Google

Deepmind’s AlphaGo beat Ke Jie, the top-ranked Go player at the time. AlphaGo used an

elegant combination of Monte Carlo tree search and deep neural networks for evaluating

board positions [108]. In 2019, Google Deepmind’s AlphaStar reached a GrandMaster

status in the real-time strategy game StarCraft II [109]. This game represents yet a higher

complexity, as it involves real-time instead of turn-based play, partial observability, and a

large and varied action space. Finally, even the online multiplayer game Dota 2 was tackled

with reinforcement learning, forming another step in complexity [110].

Robotics will form a new frontier in AI research since the associated problems are even

more complex [111]. Typical robotics problems are high-dimensional, continuous, and only

partially observable. Moreover, and most importantly, robots have to operate in the real

world, of which many relevant aspects remain hard to model or simulate. Sample-intensive

learning methods may apply to simpli�ed robot models in simulation, allowing for faster

than real-time learning, but transferring them to an actual robotic system typically leads to

a reality gap [112–114] that substantially reduces performance. One part of the reality gap

is the di�erence in sensory input like visual appearance and sensor noise. The other part of

this reality gap is the speci�cs of a robot itself, concerning both its “body” (energy source,

structure, sensors, actuators) and “brain” (processing power, memory). For example, there

may be unmodeled aerodynamic e�ects or di�erent timings in the perception-action cycle

of the actual robotic hardware.

One extreme challenge at the moment for AI in robotics is formed by autonomous drone

racing. Similar to human drone races, the goal for the drones is to �nish a pre-determined

racing track in as short a time as possible. The drones have to race by using only their

on-board resources, which are heavily restricted in terms of size, weight, and power (SWaP)

[5]. To be successful, the drones will have to �y through complex tracks at very high

speeds (human racers reach speeds of up to 190 km/h). This means that they need a fast

perception-action cycle on lightweight hardware, which additionally should be robust, as

the margin for error is small.

The research on autonomous drone racing �nds its roots in seminal work on agile

and aggressive �ight [115–117]. The focus of many of these early studies was mostly on

high-performance control, outsourcing sensing and state estimation to external motion

tracking systems and associated central computers. Later studies focused on also getting

the sensing and state estimation on board, allowing the drones to perform quick maneuvers

through gaps [118, 119]. A real drone race additionally requires the drone to detect racing

gates in more complex spaces, with multiple gates and potential distractors in view, while
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Figure 2.1: Setup of the Washington race (i.e., second race of the AIRR season).

not only passing one gate, but �ying a full trajectory in sequence, dealing with unforeseen

deviations on the way. The research on drone racing received a boost by the �rst-ever

autonomous drone race competition, organized in conjunction with the IROS robotics

conference in 2016, in Daejeon, South Korea [120]. This competition let the participants

free in their choice of platform and only required that all sensing and processing took

place on board. The �rst competition showed the di�culty of the problem, with the

winner reaching 10 gates at an average speed of 0.6 m/s. This is in stark contrast to the

impressive racing performance reached a year later by Morrell et al. [121], whose drone

only lost by a few seconds from an expert human pilot on their track. In-competition

�ight speeds remained inferior to out-of-competition �ight speeds also over the ensuing

years, with IROS drone race speeds of the winner reaching 2.5 m/s in 2018 [122]. The

reason for this mostly lies in the real-world aspects of the competitions. They take place in

environments previously unknown by the teams, with no opportunity for benign, solution-

speci�c changes, and little time for adapting the developed solution to the environment

in situ. Moreover, competitions often pose a more challenging environment, with gates

located slightly di�erently than on the pre-communicated maps or even moving during

the race, unforeseen lighting e�ects optimized for spectators rather than for drones, and

large crowds of moving people around the �ight arena.

In this chapter, the winning approach to the 2019 AI Robotic Racing (AIRR) competition

is presented. This competition which is also refered to as AlphaPilot, was organized by

Lockheed Martin and the Drone Racing League (DRL) in 2019 and had a grand prize for the

best AI of $1M. The AIRR competition strives to support the development of AI for racing

drones that will be able to surpass human drone racing pilots. It is completely di�erent

from the previous autonomous drone racing competitions in many aspects. For example,

the competition did not take place on a single day at a conference but had two phases:

a quali�er phase and a competition phase. In the quali�er phase, 424 teams registered

worldwide and had to qualify by performing a computer vision task, racing in simulation,

and describing their proposed approach and team composition. The competition phase,

with only 9 teams participating, was also unique as it was organized as a complete season

with three seasonal races and a championship race. The races themselves were organized
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by DRL as e-sports events, also aiming for the amusement of the audience, adding speci�c

requirements on the teams and robots. Moreover, the organization provided all teams with

the same type of racing drone, developed by the organizers. These drones were equipped

with four high-resolution, wide �eld-of-view cameras, and an NVIDIA AGX Xavier board to

run the embedded AI (see Fig. 2.1). Hence, the robotic hardware was the same for all teams,

making the competition only about the di�erence between the AI software. Moreover, the

teams had very little direct access to the racing drone hardware, making it very hard to get

acquainted with the hardware, perform calibrations, and identify potential reality gaps.

The amount of �ight testing was low and happened in di�erent conditions than the races

in terms of light, room size, and even air density. Finally, during the races, the AI code was

uploaded to refurbished drones that had never �own this particular code before without

the possibility to improve in between the runs. Consequently, the AI developed for the

competition had to be very data e�cient and robust.

The goal was to mainly develop AI solutions on the provided DRL simulator, which

�gured a substantial reality gap in terms of drone dynamics and sampling characteristics

of especially the camera. The simulator, which contained unknown drone dynamics, did

have a hardware-in-the-loop setup for the processing, i.e., it communicated with the same

NVIDIA Xavier board and allowed teams to accurately test the computational e�ort of the

developed algorithms.

Human-inspired, gate-based approach
In our approach to developing an AI for the AIRR competition, we used the characteristics

and restrictions of the competition as a point of departure (see Figs. 2.1 and 2.2). First

and foremost, we desired to �y as fast as possible, ideally close to the physical limits of

the drone. This implied that we did not use perception methods that would restrict the

drone’s maximum speed. Importantly, it meant the exclusion of state-of-the-art methods for

feature-based visual inertial odometry (VIO), e.g. [123], since the blurry images that occur

at higher speeds lead to more di�culties in �nding and tracking features. The reliance

on this type of VIO was one of the main reasons that the runner-up team limited their

velocity to 8 m/s [94]. Moreover, current accurate VIO methods have the disadvantage that

they are computationally intensive. For similar reasons, we did not employ feature-based

simultaneous localization and mapping (SLAM) methods, e.g. [124], as used by the winning

team in the IROS 2017 competition [92]. Additionally, SLAM methods have di�culties

handling changes in the map, like the foreseen gate displacements.

Instead, we drew inspiration from human pilots who focus greatly on the gates, while

combining their observations with knowledge of the drone’s responses to control inputs and

an approximate map of the track (see Fig. 2.2). Hence, we developed an accurate, robust, and

computationally e�cient monocular gate detection method. We aimed to process images at

the fastest speeds the drone could achieve. Whereas previous competitions contained gates

of a uniform, unique color [92, 120], the AIRR competition featured more complex gates,

precluding hand-designed detection methods as in Li et al. [125, 126]. Relative localization

can also not be done with standard rectangle-based, single-shot detectors [127] since the

bounding boxes generated by such methods by themselves do not allow for an accurate

determination of the drone’s relative pose. Furthermore, we did not choose a deep neural

network that immediately maps images to relative pose, as in [122, 128]. Such networks
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Figure 2.2: The human-inspired approach to drone racing using single-camera position estimation, dynamics

prediction, a rough model of the track, and risk-aware control. (*) Two simulators, 5000 ft-dynamics, sea-level-

dynamics. (**) Loss of log �les, test opportunities, or races.

experience di�culties when multiple gates are in sight and are more di�cult to analyze

and �x.

We developed a novel gate segmentation deep neural network (DNN) called “GateNet”

to create a fast vision pipeline that is minimally sensitive to the various known perturba-

tions at high velocities. This includes the increasing levels of motion blur, rolling shutter

deformation, and the possible absence of texture in large parts of the scene due to the lack

of features in parts of the man-made environment. The DNN also was used to overcome

over-exposure as teams could control neither the exposure settings of the camera nor the

light conditions. The vision pipeline also had to deal with the presence of moving unknown

entities, the absence of precise frame timing information and unknown shutter-times.

Subsequently �nding gate corners was done with very e�cient active perception [125].

Especially on �ying robots where every gram matters, active vision is highly relevant [129–

131] and we show it can be part of successful engineering designs. Pose estimates �nally

can then be computed using perspective-n-point (PnP) combined with the racecourse map.

Further inspired by human �rst-person-view pilots’ ability to predict drone motion, we

enhanced the drone’s state estimates with model-based predictions from a dynamic model

�tted on �ight data. Merging the visual measurements with the predictions is then done

with a random sample consensus (RANSAC) based moving horizon estimator (MHE) from

previous work [126] but extended to better estimate the drone’s yaw angle during the race.

Concerning control, we designed a strategy that would permit high speeds but would

allow for �ying very early on and would have short intuitive tuning cycles, given the little

available �ight time. As a result, promising methods such as deep reinforcement learning

[132] or imitation learning [133] were ruled out. The short timeline and little �ight time

would not allow for a thorough investigation of the reality gap between the drone and the

simulator with methods like abstraction [114, 134]. Even online adaptation [135] would

yield limited bene�ts in a race where every drone only �ew once, measurements could be

very noisy, and the time to the �rst gate is a mere 2 seconds. Finally, the long down-times,

loss of log �les (stored in RAM) and failed competition runs in case of a crash, made risk

management a crucial part of the control development.

While perception-aware trajectory generation [136] can optimize speed and perception,

it does not take into account that collision risks depend on the relative position to the
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gate. The control is therefore designed from a gate-centered perspective in which risks

and constraints, but also position uncertainty, vary depending on the distance to the gate.

The controller makes use of classical control theory but was gradually augmented to �y

increasingly close to the platform limits. This allowed us to start �ying early in the process

and gather crucial log �les to steadily investigate drone limitations while minimizing risks.

On top of the initial scheme, we implemented an open-loop, full-throttle take-o� called

“boost” to overcome sensor boot-time delays. We adopted a pitch-for-altitude controller

to maintain altitude when thrust saturated, and an o�ine optimized gate-approach-line

strategy. Finally, we developed a human-inspired, risk-aware strategy that speeds the robot

up substantially when far from obstacles or aligned with the next gate, but that slows

down when uncertain or misaligned. Whereas both in computer vision and robotics a lot

of research e�ort is invested in increasing the accuracy of methods, we put computational

e�ciency at the core of our approach. The reason for this is that control performance is

not only determined by accuracy but also by the control delay, two factors which are most

often on a trade-o� with each other. Moreover, not saturating processing power allowed

us to have additional threads logging all data (images, states, measurements, etc.). This

data was extremely important to estimate the drone’s model and fusion parameters, and

for retraining and improving the perception pipeline.

Figure 2.3: System schematic of the approach.

Figure 2.4: Illustration of the various controller modi�cations, further denoted by S.2–S.5.
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Figure 2.5: Overview of the perception pipeline and execution time of each of the submodules on the Jetson AGX

Xavier. Both RANSAC and the remaining vision pipeline were running on separate CPU threads. The DNN was

executed on the GPU.

The full scheme is shown in Fig. 2.3, and in the next section, we give an in-depth

explanation of the implementation used in the competition and our approach.

2.2 Method
2.2.1 Drone specifications
All participating teams in the 2019 AIRR competition operated the same race drone type

called “Racer AI” (see Fig. 2.1). This plus-con�guration quadcopter was approximately 70

cm in diameter, weighed around 3 kg, and had a thrust-to-weight ratio of about 1.4. It

was equipped with two sets of forward-facing stereo camera pairs which looked sideways

with an angle of ±30◦ and up with an angle of 15◦ (see Fig. 2.8). The cameras were the

global-shutter, color Sony IMX 264 sensor, which provided 1200×720 resolution images at a

rate of 60 Hz. The wide �eld of view lens had a focal length of ≈590 pixels. Besides cameras,

the Racer AI had a Bosch BMI088 IMU, with a measurement range of ±24 g and ±34.5 rad/s

(with a resolution of 7e-4 g and 1e-3 rad/s) provided at an update rate of 430 Hz; and a

downward-facing laser range�nder Garmin LIDAR-Lite v3 with a measurement range of

up to 40 m (resolution of 0.01 m) and update rate of 120 Hz. As the embedded computer,

the Racer AI was equipped with an NVIDIA Jetson AGX Xavier, containing a GPU with

512 CUDA cores and an 8-core ARM CPU. It ran Linux with the PREEMPT RT kernel patch.

Lastly, the Racer AI had a BetaFlight low-level autopilot controlling the angular velocities

of the drone and accepting commands at a rate of 50 Hz.

2.2.2 Perception
The perception modules were executed sequentially in a dedicated thread, while a separate

thread did the logging of images. We only used one out of the four cameras, as this setup

matches the challenge that human pilots have to face. Although monocular vision is more

challenging in terms of depth perception, it entails less computational load and calibration

requirements. Moreover, it allows for lighter and hereby faster drones to be created in the

future. Since none of the cameras faced forward, we had the drone �y in the direction

of the optical axis of the selected camera. The original 1200×720 images provided by the

camera were �rst centrally cropped to 720×720 to remove parts of the own robot that

were in sight, and then downsized to 360×360 using bilinear interpolation. No radial lens
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Figure 2.6: Overview of training images. From left to right per column: quali�cation data, simulator, workshop,

Orlando, Washington, Baltimore, Austin and the testing area in Littleton.

undistortion was performed on the images, but instead, the lens parameters were used in

the pose estimation. The correction of only a few corners through reverse lens parameters

saves a lot of CPU load when compared to correcting all pixels.

GateNet: Gate detection by semantic segmentation
In the �rst stage of our perception pipeline, GateNet was used to transform each resized

input image  into a binary mask  that segments all visible gates regardless of their

distance to the camera. GateNet is a fully convolutional deep neural network architecture

that consists of a 4-level U-Net [137] with [64, 128, 256, 256] convolutional �lters of size

3×3 and (element-wise sum) skip connections. All layers use ReLU activation functions

except the �nal prediction layer, which uses a sigmoid to keep  in the range [0, 1].

GateNet was trained in a supervised manner through a weighted combination of the binary

cross-entropy and soft-Dice loss functions on a dataset eventually consisting of 2336 images

recorded in 8 distinct environments (see Fig. 2.6). The ground-truth mask for each sample

in the training dataset was manually annotated. We augmented the training data through

random a�ne transformations, variations in the HSV color space, and arti�cial motion

blur. The blur consists of the convolution of a squared averaging �lter of random size

between 5 and 15 pixels, and random orientation. For the deployment on NVIDIA’s Jetson

AGX Xavier, we ported the network to TensorRT 5.0.2.6 with a batch size of 1 and full

precision FP32 mode. The network contains 1723.7k trainable parameters. The execution

time, measured on the CPU, to send an image, have it processed on the GPU, and retrieve

the result was 13.18 ms (≈75.9 Hz) (see Fig. 2.5).

We deployed a di�erent GateNet version in each competition race, with the only

di�erences being the size of the training dataset and the data augmentation mechanisms.

Networks were always trained from scratch when changing the augmentation mechanisms.

Before new races, we quickly �ne-tuned the models to deployment environments with

training data from the test sessions through incremental training after adding hand-labeled

training data from typically roughly 50 manually selected di�cult images.
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BaltimoreWashingtonOrlando Austin

Figure 2.7: Qualitative results of the generated segmentation masks by the �nal GateNet model from on-board

images of each of the events.

Snake-gate: Active vision for corner identification
To then retrieve the inner and outer corners of only the next gate, even when multiple

gates were in sight, we employed a variation of the lightweight, active-vision algorithm

[131] known as snake-gate and �rst presented in [125]. This two-stage, iterative sampling

method reports the desired gate corners in a �xed order. The �rst stage starts at the

intersection of the vertical and horizontal histograms of . The histograms represent the

number of white pixels per column or row and the maxima in the histogram point to the

pixel with a high probability of belonging to the closest (largest) gate. From that point, it

starts sampling white pixels in a �xed direction in the image space (i.e., top-left, top-right,

bottom-right, or bottom-left) until the corresponding outer corner is found. Thereafter, the

sampling direction changes until all corners have been identi�ed. A pixel is considered to

be a corner if the sampling method cannot progress in the speci�ed direction. Once the

outer contour was identi�ed, we used the centroid of this set of corners as the starting point

to identify the inner corners of the gate by sampling black pixels instead. To overcome

incorrect corner association at bank angles greater than |45| deg, the mask  was �rst

de-rotated using the drone’s estimated roll angle around the optical axis.

Snake-gate requires (i) the mask of a gate to be continuous, and (ii) no gate overlap in

the image space. The �rst requirement was normally met thanks to our robust and accurate

GateNet model (see Fig. 2.7). However, most of the AIRR tracks had gates placed in front of

each other, violating the second requirement. To cope with this, we developed gate-prior.

Gate-prior: Sanity check on the identified corner locations
Snake-gate does not provide any form of con�dence metric regarding the identi�ed corners.

Therefore we developed a sanity check. The expected 3D location of the next gate based

on the internal �ight plan was projected into the image space, and is called “gate-prior”.

We then compared the sides and angles of both inner and outer contours of this projection

to those of the identi�ed gate and only accepted the validity of a corner if the error of the
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associated sides and angle was below 25%. Rejected corners of a contour with at least two

valid corners were corrected using the shape of the gate-prior (see Fig. 2.11). This actively

reduced the number of outliers and it improved the robustness to challenging scenarios

that could lead to discontinuous masks (e.g., HDR scenes, fast motion, partial gate in the

image) and gate overlap (see Fig. 2.11). If no valid corners were found for two full seconds,

a recovery mechanism would override “gate-prior” and accept any gate corners given by

snake-gate.

Localization via perspective-n-point
The size, approximate location, and orientation of the AIRR gates were known in all races.

The estimation of the drone’s position and orientation was found by solving the PnP

problem, using the identi�ed corner locations in the image space and their corresponding

3D locations (maximum eight corners). As in [125, 126], instead of relying on pure vision-

only PnP, we combined it with the on-board attitude estimate of the drone to retrieve the

camera’s 3D location, as this was shown to be more robust in drone racing conditions.

We solved the PnP problem with an iterative method based on Levenberg-Marquardt

optimization, which minimizes the reprojection error and requires at least three point-

correspondences.

2.2.3 State estimation
Attitude estimation was performed using a complementary �lter fed with gyroscope and

accelerometer data. Position and velocity estimates were propagated using a drag and

thrust model in the “�at-body” frame
f bRW shown in Fig. 2.8, which is a local tangent

plane rotated by the yaw  of the drone. The predicted drag speci�c forces in the �at-body

frame (af bx , af by ) were modeled as:

[
af bx
af by ]

= [
d̂x 0
0 d̂y] [

c s 
−s c ]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

f bRW

[
vWx
vWy ] (2.1)

where c and s present the cosine and sine of the yaw angle, (vWx , vWy ) the velocities

in the world frame and the linear drag parameters d̂x and d̂y were found by �tting the

integrated path to best match the known gate locations using �ight logs. To reduce the

drift of drag-model predictions in the world frame aW , an additional �rst-order linear

�lter called “alpha” fused the drag speci�c force model with accelerometer measurements

(subscript m). The resulting prediction model is:

aW = � ⋅WRf b
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(2.2)

where � determines the ratio between predictions based on drag model or accelerometers,

WRB is the rotation from body-to-world, g is the local gravitational acceleration and aBx,y,z
are the accelerometer measurements. A value of � = 85% was found to yield the best

predictions. The predicted velocity and position in the world frame were obtained through

integration: vW = ∫ aW and pW = ∫ vW .
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Figure 2.8: Axis de�nition of the drag-based model with the

camera viewing angle and its 30◦ degree o�set in the x–y
plane, and 15◦ up.

For the altitude, a Kalman �lter

merged the low-pass �ltered (6 Hz cut-

o�) vertical accelerations and the low-

pass (50 Hz cuto�) �ltered attitude-

corrected downward-facing laser range

measurements.

Horizontal position corrections were

performed by merging the PnP estimates

in world coordinates from the percep-

tion pipeline with the predicted path (see

Fig. 2.9). As vision estimates occasion-

ally still contained large errors, an MHE

based on RANSAC was used. It is di-

rectly adopted from [126], but besides

position and velocity corrections, yaw

corrections were also made to account for initial heading alignment errors and yaw inte-

gration drift. The corrections were done by running the MHE �lter independently on each

axis (px , py ,  ). Separate bu�ers with a maximum of 180 samples hold information about

PnP estimates and delay-compensated inertial estimates.

Samples older than 2 seconds were removed. The delay was �xed to 20 measurements (at

0.04 second intervals) on the drone and 110 when run as hardware-in-the-loop simulation.

Using RANSAC with 200 iterations with 80% of the samples, the �lter �tted the predicted

world path and heading with the PnP measurements. The result was a position correction

êpx,y and a velocity correction êvx,y on top of the predicted estimates to obtain the current

state at each time step. The heading correction ê on the other hand, was only applied

once upon passing each gate. The least-squares �t for RANSAC was written as x̂ =
(ATA + )I )−1AT y where the prior � ensured a preference for small corrections in velocity

estimates, and x̂ , A and y were de�ned to map the position and velocity errors in function

of time Δt over the bu�er with samples n = 1 to N (given only for px ):

⎡
⎢
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(2.3)

This estimator ran in a separate thread and was executed each time there were enough

samples in the bu�ers. When a gate was crossed, the prediction was reset to the value of

the state and the MHE bu�ers were cleared. A minimum number of 27 PnP estimates (18 in

simulation due to lower frame rates) were then required before the solution was allowed

to jump to the new estimate.

2.2.4 Flight planning
Path planning was done by tracking position waypoints from a list of approximate gate

locations. We used the locations provided by the organizers during the practice runs and a
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Figure 2.9: Moving horizon estimator. The predictions xk at various time steps k are scaled (êvx,y ) and o�set (êpx,y )

to best match the visual measurements x̄k within the 2 second time window. RANSAC is used to remove outliers

by sampling N random points from the bu�er.

manually updated �ight plan during the races to better correspond to the perceived gate

locations, which corresponds to true locations only in case of perfect calibrations. The

altitude setpoint was kept constant at 1.75 meters since all gate heights were identical and

�xed. To better align with gates, the current commanded position px,y,z(cmd) was not the

gate waypoint itself, but a temporary waypoint placed 6 meters perpendicularly in front of

the gate along its so-called “centerline.” When the robot got closer than 7 meters to this

target, the point remained at 7 meters from the drone and moved towards the gate along

the centerline until reaching the gate center.

2.2.5 Control
The heading  was commanded to align the active camera with the center of the next gate.

The selected active camera was either the right-center camera for tracks with right turns

or the left-center camera for tracks with only left turns. This maximized the time gates

were in-view and minimized the open-loop odometry phases. When arriving close to a

gate, heading commands could get unnecessarily aggressive and reduce the quality of the

model-based predictions. The yaw rate was therefore limited to 180 deg/s and the robot

even stopped aligning the camera with the current gate when getting closer than 2.2 meters

from the gate. This corresponds to the point where the gate would not be completely

visible anymore.

The proportional position controller mapped the horizontal position errors in the �at-

body frame Δpf bx,y to commanded horizontal velocities vf bx,y . An additional proportional

term was mixed in the lateral axis to have to robot align with the gate by computing the

perpendicular distance towards the gate centerline Δpgate

y . The total lateral control became:

vf by = (1 − �center) ⋅ kp1 ⋅ Δp
f b
y + �center ⋅ kp2 ⋅ Δp

gate

y (2.4)

where kp1 = 0.45 and kp2 = 0.45 were gains, and the mixing parameter �center would

determine if the robot �ew directly to the waypoint along the shortest path or followed the

gate centerline to improve perception and improve approach angles at the cost of increased

distance to �y. Since the distance between gates was small in the last races, no obstacles

were present along the gate centerlines, and some gates were placed at shallow angles, in

the end, a value of �center = 60% was used.
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Figure 2.10: Schematic representation of the cascaded PID control pipeline with several enhancements for fast

and risk-aware �ight S.2–S.5.

The forward velocity was a function of the distance to the gate Δpf bx and the current

motion vector. Far from the gate (>10 meters), the winning entry used a commanded

velocity of 7.5 m/s. Then the speed was reduced to an alignment speed of 5.5 m/s. Once the

state estimation predicted that the robot was su�ciently well aligned to pass through the

gate within 80 centimeters of the center, it was allowed to speed up as much as possible. If

the robot got so close to the gate that the gate was not in-sight anymore, to minimize the

open-loop time spent in the gate, it would always accelerate if it had not reached at least

the gate-crossing speed of 7.5 m/s.

A velocity control loop converted the velocity commands to desired pitch and roll

angles using a feedforward gain of 0.009 rad/m/s and a velocity error feedback gain of

0.4 rad/m/s. The commanded pitch angle was constrained between -45
◦

and -14
◦

pitch

down, hence preventing pitching up. This served in keeping a good forward speed and

helped perception as the �xed 15◦ upward-looking angle of the camera meant that the

bottom of the gate could fall outside the �eld of view when pitching up. Moreover, slower

speeds and fast deceleration into the own propeller downwash also led to a larger drift

of our drag-based odometry approach. The total bank angle was saturated at 45 degrees

by maintaining the ratio between pitch and roll and is referred to as coupled saturation.

Finally, a rate limiter of 320 deg/sec was applied to reduce the e�ects of attitude changes

on the available throttle.
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Thrust commands were generated using traditional PID with a feedforward hover-

thrust of 67% at sea-level and 73% in Littleton, which scaled with the inverse cosine of the

total bank angle of the drone. Saturation was applied to the altitude error Δpwz (+/- 2 meter)

and T
cmd

(15 – 100%). An integrator windup protection was added to the PID loop by not

integrating when the T
cmd

saturation was active.

When the throttle would saturate in full throttle, a “pitch-for-altitude” controller was

activated. As the throttle saturation could occur both in forward �ight as well as in turns,

instead of implementing a traditional “pitch-up to climb” controller, a max-bank reduction

was used on top. In fast forward �ight, the pitch-for-altitude controller would command

pure pitch-up while during saturating turns the maximum roll angle of 45 degrees of roll

was also reduced by the same amount.

Attitude control was achieved by computing feedforward rate commands for the

BetaFlight low-level autopilot that was running a rate controller tuned by DRL. This

was augmented with a bounded feedback controller on the error between the commanded

and the current attitude. The errors in attitude are given as e� , e� , e while the feedback

and feedforward gains are kp = 0.12 and kf f = 1/dt . The change in desired pitch and roll

angles in the given discrete time step are noted Δ�
cmd

and Δ�
cmd

with time step dt . The

rate commands in roll, pitch, and yaw then become:

⎡
⎢
⎢
⎣

p
cmd

−q
cmd

r
cmd

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

1 0 −s�
0 c� c� s�
0 −s� c�c�

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

kf fΔ�cmd
+ kpe�

ff fΔ�cmd
+ kpe�

kpe 

⎤
⎥
⎥
⎦

(2.5)

These were scaled and sent together with the commanded thrust to the BetaFlight low-level

controller at 50 Hz.

The gains were tuned based on a total of 60 short remote outsourced �ight tests, lasting

5 to 15 seconds, after which logs would be returned. The test �ights were performed at a

separate, roughly 60% smaller track with a di�erent density altitude than at the competition

locations. This altered the drone dynamics, made �ights very short, limited the types of

maneuvers, and made it hard to reach full speed. The parameters were then manually

�ne-tuned during the 1-hour test slot the day before the races.

2.3 Results and analysis
In this section, we show the impact of the various elements of our approach on its per-

formance, for perception, state estimation, and control. These experiments are conducted

with a combination of real data collected with the drone, and synthetic data from the

hardware-in-the-loop simulation platform provided by the competition organizers. Regard-

ing perception, we assess the accuracy and robustness of the GateNet model qualitatively

and quantitatively. Additionally, we provide an overall view of the computational expenses

of the perception pipeline. Subsequently, we compare the performance of the developed

state estimation scheme with that used in previous competitions. Concerning our control

strategy, we conduct a detailed investigation of the various control improvements we intro-

duced. Then, we determine the robustness of our approach to inaccuracies in the internal

drone race map. Lastly, we discuss the results of the competition, for the quali�cation stage,

the seasonal races, and the �nal winning championship race.
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Rejected outer corner

Rejected inner corner

Accepted/Corrected corner

Predicted corners

Figure 2.11: Robustness of our GateNet-based perception pipeline and corner re�nement to motion blur (left),
distant gates leading to incomplete segmentation masks (middle), and gate overlap, and aggressive bank angles

(right).

2.3.1 Perception
To quantitatively analyze the GateNet model, we collected and manually annotated a dataset

consisting of 165 images logged during our 12-second winning run in the championship

race. This dataset is characterized by (i) motion blur on the images due to the high-

speed pro�le achieved in this run, (ii) strong illumination changes, and (iii) a challenging

environment with banners containing visual features similar to those of the gates along

the course of the track. The reason for only using logged images from this race in this

evaluation is that it is the only data that was not used in any training dataset. The GateNet

model deployed for the championship race achieves an average intersection-over-union

(IoU) of 87%. After the third race, we added an arti�cial motion blur data augmentation

mechanism to the training pipeline which notably improved the resilience towards blur.

Note that this arti�cial blur was not applied to the ground truth masks to still promote

sharp segmentations (see Fig. 2.11, left).

The example images and segmentations in Fig. 2.11 show the performance of GateNet

in challenging scenarios like motion blur, distant gates, and adverse lighting conditions.

They also show the robustness of our corner association algorithm. Our computationally

e�cient gate corner detector called “snake-gate” identi�es the inner and outer corners

of the front panel of the gates by actively sampling a small percentage of the pixels of

the segmentation result. Then, our state-prediction-based sanity check and re�nement of

identi�ed corner locations called “gate-prior,” compares the sides and angles of the inner

and outer contours of both the detected and expected gate in the image plane to neglect

distractor gates when multiple gates are in sight (like overhead projected gates from the
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Figure 2.12: Qualitative and quantitative results of the impact of the gate’s features on the segmentation accuracy.

Di�erent manipulation techniques were employed: (A) variation of the scale of the gate in the image space, (B)

removal of checkerboards, (C) substitution of default logos with our own, (D) removal of logos, and (F ) variation

of feature transparency. (E) summarizes the importance of scale and feature transparency. It presents the IoU as a

function of the scale of the gate and the feature transparency for hundreds of data points. This shows that good

detections are possible if the logo has a maximum of 80% transparency (20% contrast) for gate sizes down to 30%,

but requires more contrast to detect the smaller gates. In all cases, the maximum scale of the gate was set so that

the four outer corners of the gate coincide with the extremes of the image space, of size (360×360).

live video stream). It also corrects the location of the estimated corners in case snake-gate

didn’t identify a corner properly. The resulting corrected corners are �nally fed to the

PnP-based pose estimation. This allows the drone to localize itself with respect to the next

gate even in the case of a discontinuous GateNet mask (see Fig. 2.11, center) or gate overlap

in the image space (see Fig. 2.11, right).

Computing the forward pass of GateNet on the GPU models requires on average

13.18 ms and thus can be performed faster than the camera update rate (i.e., 60 Hz). The

estimated gate mask from the cropped and downsized input image is de-rotated using the

estimated camera roll angle around the optical axis to prevent incorrect corner association

and requires an average of 1.32 ms computing time (see Fig. 2.5). The active-vision-based

snake-gate method requires accessing the intensity information of only 1.64% of the pixels

of a 360×360 mask, which translates to a workload of 0.23 ms per image. We used the

full horizontal and vertical histograms of the masks for snake-gate initialization even
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though computationally more e�cient alternatives exist [125, 126]. Gate-prior takes on

average 0.14 ms to correct the identi�ed corners, and lastly, solving the PnP to localize

the drone with respect to the gate requires 1.12 ms. Combined with the 1.08 ms import

and pre-processing, the perception pipeline takes 17.07 ms while the thread runs at an

average of 54 Hz, as it occasionally needs to wait a few milliseconds for delayed images.

Note that the full image derotation was only added just before the championship. It was

not implemented in the active-vision-based corner detector for risk mitigation purposes,

although this could allow the vision pipeline to execute under 16 ms.

Due to the importance of GateNet in the perception pipeline, we also analyzed the

impact that each of the features of the AIRR gates has on the segmentation accuracy.

We experimented with synthetic data in which we varied the appearance of the gates’

features (i.e., checkerboards and text) and assessed the quality of the segmentation both

qualitatively and quantitatively. Multiple conclusions can be derived from the results in

Fig. 2.12. These results con�rm the importance of the contrast changes introduced by the

logos and checkerboards, and that removing the logos or checkerboard patterns leads to

local gaps in the segmentation. The test with the di�erent logos con�rms that GateNet

has not learned the speci�c shapes of the AIRR logos but exploits more generic contrast

in this region. The transparency test shows the importance of the presence of contrast.

GateNet is quite robust to low contrasts (Fig. 2.12F), but there is a dependency on the

scale. Fig. 2.12E shows the IoU for di�erent gate scales and transparencies. At most scales,

GateNet’s performance only breaks down at ≈80% transparency, whereas at the smallest

scale (0.1) it breaks down at ≈60%. Note that, in all cases, the maximum scale of the gate

was set so that the four outer corners of the gate coincide with the extremes of the image

space, of size (360×360).

2.3.2 State estimation
The vision-based position estimates are fused with model-inertial-based odometry to

smoothen the measurements and overcome periods in which no gates are detected. This

odometry is primarily based on a linear drag model of the quadrotor in the “�at-body”

frame (see Fig. 2.8). The values of the linear drag were �tted with the scarce data from the

real �ights. Under low �ight speed and constant altitude assumptions, this easy-to-identify

model was shown to be a reasonable approximation [126]. To improve the predictions

during more aggressive maneuvers, instead of �tting a more complex model for which

insu�cient data was available, we chose to fuse accelerometer data in the odometry (see

Eq. 2.2). The di�erence in performance was compared between the drag-only model called

“�at-body”, the combined model-inertial “alpha” method (named after its � parameter to set

the relative importance of the drag-model versus accelerometer odometry), and traditional

body-frame accelerometer-only odometry.

Since no position ground truth is available for the competition �ights, the comparison is

made with drone observations and track knowledge instead. This can in theory be subject

to scaling and o�set errors, but as long as the robot perception matches its predictions,

they can successfully be merged, just like walking animals merge step-based odometry

with visual observations without the need for a calibrated meter representation.

Position measurements close to the gate are very precise thanks to the very good

geometry of the PnP triangulation. In other words, small changes in position appear as
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Figure 2.13: Odometry results based on the real-world data from all competition and training runs. Left: average

of errors in odometry of the three dynamic models (inertial-only, model-only “�at-body” and combined “alpha”,

and the lateral and longitudinal components of “alpha”) after 1.8 s of prediction, where the gate size is indicated

as a dashed line. Right: statistics of the total accumulated odometry errors from the starting podium to each gate

for the 13 full tracks �own competition tracks.

Figure 2.14: Odometry-based position estimate top view for a typical track based on the real-world data from the

Baltimore track. Note that the third gate had a di�erent orientation than expected from the �ight plan, which

causes the vision measurements to appear rotated. The �ight times in seconds is indicated, with the total track

lasting about 12 seconds.
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Setting number S.1 S.2 S.3 S.4 S.5

Pitch for altitude & × ✔ ✔ ✔ ✔
coupled saturation

Boosted take-o� × × ✔ ✔ ✔
Gate centerline × × × ✔ ✔
Risk-awareness × × × × ✔
Robustness 5 / 10 8 / 10 6 / 10 9 / 10 10 / 10

Completion time (s) 13.25±0.12 13.95±0.26 13.71±0.25 13.77± 0.32 12.08±0.27

Avg. speed (m/s) 4.57±0.52 4.55±0.25 4.62±0.23 4.73±0.22 5.38±0.18

Max. speed (m/s) 7.82±0.51 7.51±0.40 7.82±0.44 8.84±1.03 9.69±0.74

Table 2.1: Contribution of the various controller modi�cations in simulation on the Austin track.
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Figure 2.15: Top view of the simulation test results of the di�erent controllers on the Austin track.

large changes in pixel position of gate corners. Moreover, passing the gate is a crucial

part of the race and relies on odometry only for the last few meters. We therefore �rst

compared the odometry methods on 1.8-second stretches just before a gate (see Fig. 2.13

for the statistics and Fig. 2.14 for example stretches). Subsequently, we integrated the

odometry methods from start to end on 13 full tracks and compared it with the end-gate in

the relatively accurate gate map (<1 m displacements). The results can be seen in Fig. 2.13

and a speci�c track in Fig. 2.14. They show that the model-inertial “alpha” method obtains

the best results, which is why we used it in the �nal championship race. In general, the

model-inertial-based odometry can obtain very good results given the scarce resources

it requires (50% within <15 m endpoint error without calibration for a 12 s prediction

horizon). Nevertheless, it only seems well-suited for tracks that have su�cient gates to

perform position corrections.

2.3.3 Control and path planning
To qualitatively validate the contribution to speed and reliability of the di�erent control

additions, a simulation study was performed. The initial classical control setup, marked

as S.1 and shown in Table 2.1 and Fig. 2.15, only �nished the track half the time when

con�gured to �y at competitive speeds. Four modi�cations were made to increase its speed

and reliability.

The �rst modi�cation to the classical control scheme combines the maximum roll

and pitch angles into a single maximum bank called “coupled saturation” since separate

maximum pitch and roll angles could yield 42% higher bank angles when saturating together.
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Moreover, instead of putting a low and safe maximum bank angle of about 35° to never

saturate thrust, we increased the limit past this point to 45°. This would occasionally lead

to insu�cient thrust, which was addressed by introducing a pitch-for-altitude control loop.

As shown in Table 2.1 S.2, the pitch-for-altitude control loop leads to higher robustness,

now �nishing 8 / 10 runs with only a minor loss in speed.

An open-loop take-o� with 100% thrust and a saturating nose-down attitude called

“boost” (S.3) was added to initiate the take-o� before the slow laser-range altitude sensor

had �nished booting. Likewise, a saturating pitch down was applied just before the �nal

gate to get an even quicker �nish in case the drone sensed it was well aligned. This reduces

robustness (6 out of 10 runs �nishing the track) but leads to slightly quicker �ight times

in simulation and much quicker �nish times in real races by skipping the up to 1.5 s

laser-range startup delay (not present in simulation).

Instead of moving along the shortest path towards the gate, an optimal approach line

called “gate-centerline” was de�ned to prevent sharp approach angles to gates. Too sharp

angles not only signi�cantly decrease the safety margin of passing through gates but also

a�ect the position dilution of precision of PnP corners, in turn reducing the quality of

state estimates. This addition (S.4) increased the robustness to a success rate of 9 out of 10

through safer gate crossing angles and increased quality of perception.

The �nal addition to the pipeline is an adaptive, risk-based longitudinal velocity con-

troller (Fig. 2.4, S.5). At large distances from the gate, the drone is allowed to accelerate to

a higher speed until it arrives at the optimal gate viewing distance, where it has to make

sure the camera sees the gate. Once the drone is su�ciently con�dent that it is aligned

properly with the gate, it can accelerate again. On the other hand, when a gate is not at

the expected location or takes longer to identify, or if the control fails to align quickly,

the drone slows down. This combination of risk and perception awareness was simple to

implement, very light, intuitive to tune, and resulted in robust fast behavior. Table 2.1 S.5

shows that including risk-aware accelerations led to 10 successes out of 10 runs, while

substantially increasing the average speed from 4.7 m/s to 5.4 m/s in simulation.

2.3.4 Robustness
Robustness was required to deal with possible camera calibration issues, the random initial

starting podiums, the uncertainty about which drone was used for which race, and the

inability to measure the track precisely (initially gate locations were even planned to

change between runs).

Variations in the track
To evaluate the robustness of our approach to changes in the racing environment, we

performed a set of simulation experiments in which we perturb our drone’s internal

representation of the individual gates and starting podium. Both position and orientation

are altered. The drone is thereby forced to react to unanticipated gate locations. This is

evaluated in the DRL simulator, which has �xed gate locations, by adding uniform errors

to the �ight plan.

Fig. 2.16 shows that the state estimates quickly jump to the correct relative location

with respect to the internally gate locations (prior waypoints). These red gates represent

the (deliberately biased) expected gate locations in the robot’s internal map while the
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Cases Original Gate position error Gate yaw error

Flightplan error 0m, 0° 3 m 5 m 20° 40°
Completion time (s) 13.01±0.19 13.02±0.31 12.79±0.81 13.03±0.25 13.60±0.48

Runs completed 10/10 10/10 6/10 9/10 6/10

Table 2.2: Robustness to errors in internal track representation in simulation. Overview of the perturbed �ight

plans and the e�ect on lap completion times.

Figure 2.16: Robustness to errors in internal track representation in simulation. The on-board state estimation

based on the internal model (red gates) jumps to the correct relative solution (green track) after gathering su�cient

evidence.

yellow gates mark the actual locations. The blue line is the simulator’s ground-truth of the

drone trajectory, while the green line represents the drone’s internal state estimates. The

advantage of this approach in a race with only a single lap is that the drone does not need

to distinguish between its state error and internal map error.

Fig. 2.17 show that our pipeline can �nish the course even with 3 m perturbations in

the course map or about 25% of the 12 m inter-gate distance, albeit with lateral swings due

to the control initially aligning with a wrong gate location and then needing to correct.

Fig. 2.17 also shows simulation with �ight plan perturbations of 5 m, 20° and 40°. The table

in Table 2.2 summarizes the robustness of the approach for various perturbations. The

success rate only starts to drop substantially (to 6/10 runs) when gates are displaced 5 m on

a track where the inter-gate distance is about 12 m or about 41% of the inter-gate-distance.
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Figure 2.17: Robustness analysis in simulation on the Baltimore track with uniform �ight plan gate position errors

of 3 m and 5 m, and uniform gate orientation errors of 20° and 40°. Perturbations in trajectories can be seen when

the drone aligns with expected position of gates, but quickly has to correct after observing the real positions.

2.3.5 Competition outcome
Fig. 2.18 represents our competition results for the three seasonal races and the champi-

onship race and that of the best opponent. Each race consisted of several “heats” which

could use a di�erent version of the code. This allowed teams to ensure completion of the

track with a steady speed in the initial heats and setting best �nish times in the later heats.

Fig. 2.19 shows the trajectories �own by our best run during all races. Since there was no

ground-truth position measurement system, we show the on-board position estimates.

The �rst race of the season in Orlando was won by team KAIST from South Korea, who

were able to �y through two gates of the track. Our drone was not able to pass any gate

primarily due to unanticipated enormous di�erences in illumination between testing and

competition. The second race took place in Washington DC and our team was the �rst

to fully �nish any track. Since then, our racing speed increased over the seasonal races.

The championship race held at Austin was a tight competition as multiple teams were

�nishing the track during their training and quali�cation runs. The best performance of

the �nalists is shown in Fig. 2.18. Our �nish time of 12 s with an average velocity of 6.75

m/s and maximum velocity of 9.19 m/s was the prize-winning run (see Fig. 2.20).

After winning the AI vs. AI challenge, our drone was staged against the DRL champion

GAB707 in a Human vs. AI challenge. In this race where we were not allowed to change

any parameter, our �rst deployment led to a crash into the �rst gate, due to a change in

starting position of more than 50% of the distance to the gate. Both other heats against

the human also started from unanticipated podiums but were within the robustness of the

system and �nished with the same 12 s lap time.

2.4 Conclusion
We presented our approach to the AIRR competition, which led to winning two out of

three seasonal races, the championship race, and the title of “AIRR World Champion 2019”.

Our approach was human-inspired in the sense that the developed AI focuses on the

drone racing gates, which serve as waypoints for the race trajectory, relies signi�cantly

on model-based odometry, and accelerates as much as possible when the situation is safe.
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Figure 2.18: Overview of our performance in the 2019 AIRR competition. Top left: Leader-board of the champi-

onship race, indicating the time it took for each team to reach their farthest waypoint on the track (DNF = “did

not �nish”). Top right: our MAVLab autonomous drone taking o� at the championship race, before �nishing the

74 m course in 12 s. Picture credit: DRL. Bottom: Completion times at the di�erent tracks.

The approach successfully dealt with the scarcity of data and was highly computationally

e�cient, allowing for a very fast perception and action cycle. By having a deep neural

network vision front end, our approach proved to be particularly resilient to frequent

changes in the environment. The only occasion that the changes proved to be too much

was during the �rst season race where all training was done in ambient light conditions

while the race took place in showbiz illumination conditions that over-exposed the gates.

The constraints of the event drove the current implementation to make several simpli-

�cations. First of all the vertical, lateral, and longitudinal dynamics are decoupled in the

controller and the estimator. The current model also makes extensive use of the constant

altitude properties of the competition. Finally, the navigation solution is tailored towards

detecting speci�c gates. But the light monocular approach opens the road to implemen-

tation on board much lighter and hereby faster robots. Finally, merging sparse visual

observations with a dynamic model capable of predicting the drone motion for longer

distances has shown great results and allowed record in-competition velocities.
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Figure 2.19: Overview of our performance in the 2019 AIRR competition. Top view of the estimated executed

path with the rough map of each track received by the organizers.

2.5 Discussion
AI purists may raise the question of how much the competition, and our approach, was

actually about AI. In a “pure” AI scenario, the drone’s perception and control would have

been learned from scratch, making use of the provided simulator. Such an approach would,

however, have clashed with the competition setup and timeline. The simulator was ready

only a few weeks before the �rst race and had a substantial reality gap in terms of the
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Figure 2.20: Estimated speed pro�le at the championship race. Our drone �ew with an average speed of 6.75 m/s

and reached a top speed of 9.19 m/s.

drone’s dynamics and image capturing. For example, the images in the simulation had a

variable delay, going up to 0.5 s (which was worse than on the real platform). Combined

with the extremely scarce access to the drone and outsourced testing, this would have left

very little time for end-to-end training and a successful crossing of the reality gap.

Robotics competitions like AIRR reveal highly relevant research areas for AI. In this case:

How can AI best be designed, so that robots need minimal time and data to reach robust and
highly agile �ight? A monolithic neural network trained end-to-end purely in simulation

likely requires too many training samples to form the best answer to this question. And, if

we equate the experience accumulated in a simulator with the evolutionary experience

before the birth of an animal, this is not the strategy that we observe in animals either.

Animals “even from the same species” are all di�erent physically, and their intelligence is

set up in such a way as to deal e�ectively with these di�erences. Whereas humans need

a long development time before becoming operational, many �ying insects can almost

immediately �y and perform successful behaviors. The reason for this is that evolution

has put in place various mechanisms to deal with, e.g., the physical di�erences between

members of the same species, ranging from adaptation to various learning mechanisms.

This means that true AI will require not only reinforcement learning [138], but also,

various types of self-supervised learning [139], unsupervised learning [140], and lower-

level adaptations as used for instance in adaptive control [135, 141]. This last level of

learning, arguably at the lowest level, is hugely important for crossing the reality gap in

robotics [114].

2.6 Future directions
To make our approach work in time and robustly enough for the competition, the employed

AI still relied quite a lot on us as human system designers. We learned the drone’s model

based on �ight data, used supervised learning with human labeling of images, and designed

an active vision algorithm for �nding corners in the segmented images. In the future, the

generation of large amounts of training data from simulation could reduce this manual
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work, but in this event, the quali�cation round forced teams to label large amounts of

images to at least assess the quality of their detector (see Fig. 2.6 �rst column). Using this

data for training resulted in a DNN that segmented so well that it was only complemented

with actual �ight data.

Please note though that we and others are quickly developing deep learning approaches

that can cross the reality gap for performing visual odometry [142], tracking of predeter-

mined optimal trajectories [134, 143] or even for full optimal control [144, 145]. AIRR has

already been a driving force to develop AI methods that will successfully bridge the reality

gap, even for robots that are di�cult to model in detail upfront.

But to beat human pilots in multi-robot races in random, complex, windy environments

with multiple gate types, a lot of elements still need further development. Game theory

on balancing risks of collisions with the ambition to overtake other drones, detection of

randomly shaped gates after having been shown their appearance only minutes before the

race, and adapting to competitor tactics are just a few of the many additional challenges

that future robotics research will need to face in the competition against human pilots.

Ultimately, reducing the computational load while increasing the speed of algorithms,

or in other words improving the computational e�ciency, will play a deciding role in de-

termining how fast and maneuverable �ying robots can become, as power and especially

weight spent in computing adversely in�uence performance. Facing these robotic chal-

lenges will bring the technology closer to applications for the bene�t of the real world.

We expect the applications of very fast, agile, and situation-aware �ying robots to range

from ambulance drones or package delivery drones swiftly planning around obstacles in

cluttered environments, to search and rescue drones. But most of all, autonomous racing

helps develop solutions that will, sooner or later, improve the characteristics of all �ying

robots. If we succeed to do this in heavily resource-constrained and time-pressed racing

drones, then it will also generalize to other types of robots and tasks, such as autonomous

vacuum cleaners or self-driving cars.

Supplementary material

Video summary of the approach: https://youtu.be/yN5QVl07F2Q

Videos of all the best competition entries: https://youtu.be/ihfUckB16wU

Log�les of the 2019 AIRR winning entry: https://tinyurl.com/56pvbzmp

https://youtu.be/yN5QVl07F2Q
https://youtu.be/yN5QVl07F2Q
https://youtu.be/ihfUckB16wU
https://youtu.be/ihfUckB16wU
https://dataverse.nl/dataset.xhtml?persistentId=doi:10.34894/CKL4TQ
https://tinyurl.com/56pvbzmp




3
Optical-Flow-Aided,

Self-Supervised Frame
Reconstruction From Events

After exploring the design of a vision-based navigation solution for �ying robots using con-
ventional sensing and processing in the previous chapter, we now delve into the realm of
neuromorphic sensing. Event-based cameras are novel vision sensors that sample, in an asyn-
chronous fashion, brightness increments with low latency and high temporal resolution. The
resulting streams of events are of high value by themselves, especially for high speed motion
estimation. However, there has been a growing interest in reconstructing intensity frames
from these events, as this allows bridging the gap with existing literature on appearance- and
frame-based computer vision. Recent work has mostly approached this problem using neural
networks trained with synthetic, ground-truth data. In this chapter we approach, for the �rst
time, the intensity reconstruction problem from a self-supervised learning perspective. Our
method, which leverages the knowledge of the inner workings of event-based cameras, com-
bines estimated optical �ow and the event generative model to train neural networks without
the need for any ground-truth or synthetic data. Results across multiple datasets show that the
performance of the proposed self-supervised approach is in line with the state-of-the-art at the
time of publication. Additionally, we propose a novel, lightweight neural network for optical
�ow estimation that achieves high speed inference with only a minor drop in performance.

The contents of this chapter have been published in:

F. Paredes-Vallés, G. C. H. E. de Croon, Back to event basics: Self-supervised learning of image recon-
struction for event cameras via photometric constancy, IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2021.
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3.1 Introduction

U
nlike conventional cameras recording intensity frames at �xed time intervals, event

cameras sample light based on scene dynamics by asynchronously measuring per-pixel

brightness
1

changes at the time they occur [18]. This results in streams of sparse events

encoding the polarity of the perceived changes. Because of this paradigm shift, event

cameras o�er several advantages over their frame-based counterparts, namely low power

consumption, high dynamic range (HDR), low latency and high temporal resolution.

Despite the advantages, the novel output format of event cameras poses new challenges

in terms of algorithm design. Unless working with spiking neural networks [101, 102],

events are usually converted into intermediate representations that facilitate the extraction

of information [18, 29]. Among others, intensity frames are an example of a powerful

representation since they allow the evaluation of the appearance of a visual scene, thus

bridging the gap between event cameras and the existing frame-based computer vision

literature [146, 147]. For this reason, there has been a signi�cant research drive to develop

new methods to reconstruct images from events with similar statistics to those captured

by standard cameras.

Recent work has mostly approached this problem from a machine learning perspective.

With their E2VID arti�cial neural network, Rebecq et al. [146, 147] were the �rst to show

that learning-based methods trained to maximize perceptual similarity via supervised

learning outperform hand-crafted techniques by a large margin in terms of image quality.

Later, Scheerlinck et al. [148] achieved high speed inference with FireNet, a simpli�ed

model of E2VID. Despite the high levels of accuracy reported, these architectures were

trained with large sets of synthetic data from event camera simulators [149], which adds

extra complexity to the reconstruction problem due to the simulator-to-reality gap. In

fact, Sto�regen et al. [150] recently showed that if the statistics of the synthetic training

datasets do not closely resemble those seen during inference, image quality degrades and

the generalizability of these architectures remains limited.

In this work, we propose to come back to the theoretical basics of event cameras

to relax the dependency of learning-based reconstruction methods on ground-truth and

synthetic data. Speci�cally, we introduce the self-supervised learning (SSL) framework in

Fig. 3.1, which consists of two arti�cial neural networks, FlowNet and ReconNet, for optical

�ow estimation and image reconstruction, respectively. FlowNet is trained through the

contrast maximization proxy loss from Zhu et al. [33], while ReconNet makes use of the

�ow-intensity relation in the event-based photometric constancy [151] to reconstruct the

frames that best satisfy the input events and the estimated optical �ow. Using our method,

we retrain several networks from the image reconstruction [146, 148] and optical �ow [25]

literature. In terms of accuracy, results show that the reconstructed images are in line

with those generated by most learning-based approaches despite the lack of ground-truth

data during training. Additionally, we propose FireFlowNet, a lightweight architecture for

optical �ow estimation that, inspired by [148], achieves high speed inference with only a

minor drop in performance.

In summary, this chapter contains two main contributions. First, a novel SSL framework

to train arti�cial neural networks to perform event-based image reconstruction that, with

1
De�ned as the logarithm of the pixel intensity, i.e., L ≐ log(I ).
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Events
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ReconNet
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L̂

Contrast
Maximization

Generative
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i∈ε

piC

Event accumulation
∆L

Error propagation

Figure 3.1: Overview of the proposed framework. Our model is trained in a self-supervised fashion to perform

optical �ow estimation and image reconstruction from event data using contrast maximization and the event-based

photometric constancy, respectively. Colored reverse arrows indicate error propagation for each loss.

the aid of optical �ow, does not require ground truth of any kind and can learn directly on

real event data. Second, we introduce FireFlowNet: a novel, lightweight neural network

architecture that performs fast optical �ow estimation from events. We validate our self-

supervised method and optical �ow network through extensive quantitative and qualitative

evaluations on multiple datasets.

3.2 Related work
Early methods to image reconstruction from event data approached the problem through

the photometric constancy: each event provides one equation relating the intensity gradient

and the optical �ow [151]. Kim et al. [152] were the �rst in the �eld and developed an

extended Kalman �lter that, under rotational and static scene assumptions, reconstructs a

gradient image that is later transformed into the intensity space via Poisson integration.

They later extended this approach to 6 degrees-of-freedom camera motion [61]. Under the

same assumptions, Cook et al. [153] simultaneously recovered intensity images, optical

�ow, and angular velocity through bio-inspired, interconnected network of interacting

maps. Bardow et al. [154] developed a variational energy minimization framework to

simultaneously estimate optical �ow and intensity from sliding windows of events, relaxing

for the �rst time the static scene assumption.

Instead of relying on the photometric constancy, several approaches based on direct

event integration have been proposed, which do not assume scene structure or motion

dynamics. Reinbacher et al. [155] formulated intensity reconstruction as an energy mini-

mization problem via direct integration with periodic manifold regularization. Scheerlinck

et al. [156] achieved computationally e�cient reconstruction by �ltering events with a

high-pass �lter prior to integration.

Several machine learning approaches have also been proposed. Training generative

adversarial networks with real grayscale frames was proposed by Wang et al. [157] and

Pini et al. [158]. However, Rebecq et al. [146, 147] showed that training in a supervised
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fashion with a large synthetic dataset allowed for higher quality reconstructions with

their E2VID architecture. Focused on computational e�ciency, Scheerlinck et al. [148]

managed to signi�cantly reduce E2VID complexity with FireNet, with only a minor drop

in accuracy. Inspired by these works, Choi et al. [159] and Wang et al. [160] recently

proposed hybrid approaches that incorporate super resolution aspects in the training

process and architecture design to improve image quality. Lastly, Sto�regen et al. [150]

recently highlighted that, when training with ground truth, the statistics of the training

dataset play a major role in the reconstruction quality. They showed that a slight change in

the training statistics of E2VID leads to signi�cant improvements across multiple datasets.

Our proposed SSL framework (see Fig. 3.1) is based on the event-based photometric

constancy used by early reconstruction methods. Similarly to Bardow et al. [154], we

simultaneously estimate intensity and optical �ow from the input events. However, instead

of relying on a joint optimization scheme, we achieve it via two independent neural

networks that only share information during training. Further, we reconstruct intensity

directly from the photometric constancy, instead of from an oversimpli�ed model of the

event camera. This approach allows, for the �rst time, to relax the strong dependency of

learning-based approaches on ground-truth and synthetic data.

3.3 Method
An event camera consist of an array of independent pixels that respond to changes in

the brightness signal L(t), and transmit these changes through streams of sparse and

asynchronous events [12]. For an ideal camera, an event ei = (x i , ti , pi) is triggered at pixel

x i = (xi , yi)T and time ti whenever the brightness change since the last event at that pixel

reaches a contrast sensitivity threshold C . Therefore, the brightness increment occurred in

a time window Δtk is encoded in the event data via pixel-wise accumulation:

ΔLk (x) = ∑
ei∈Δtk

piC (3.1)

where C > 0, and the polarity pi ∈ {+, −} encodes the sign of the brightness change.

As in [151], under the assumptions of Lambertian surfaces, constant illumination and

small Δt , we can linearize Eq. 3.1 to obtain the event-based photometric constancy:

ΔLk (x) ≈ −∇Lk−1(x) ⋅ uk (x)Δtk (3.2)

which encodes that events are caused by the spatial gradients of the brightness signal,

∇L = (�xL, �yL)T , moving with optical �ow u = (u, v)T . The dot product conveys that

no events are generated if the �ow vector is parallel to an edge (u⊥∇L), while they are

generated at the highest rate if perpendicular (u ∥ ∇L). Thus, events are caused by the

projection of the optical �ow vector in the ∇L direction, the so-called normal optical �ow.

3.3.1 Overview
Our goal is to learn, in an SSL fashion, to transform a continuous stream of events into a

sequence of intensity images {Îk}. To achieve this, we propose the pipeline in Fig. 3.1 in

which two neural networks are jointly trained. On the one hand, FlowNet is a convolutional

network that learns to estimate optical �ow by compensating for the motion blur in the
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input events. On the other hand, ReconNet is a recurrent convolutional network that learns

to perform image reconstruction through the event-based photometric constancy.

3.3.2 Input event representation
As proposed in [33], the input to both our networks is a voxel grid Ek with B temporal

bins that gets populated with consecutive, non-overlapping partitions of the event stream

"k ≐ {ei}N−1i=0 , each containing a �xed number of events, N . For each partition, every event

(with index i) distributes its polarity pi to the two closest bins according to:

E(x i , tb) = ∑
i
pi�(tb − t∗i (B − 1)) (3.3)

�(a) = max(0, 1 − |a|) (3.4)

t∗i =
(ti − tk0 )

(tkN−1 − t
k
0 )

(3.5)

where b is the bin index, and t∗i ∈ [0, 1] denotes the normalized event timestamp. This

representation adaptively normalizes the temporal dimension of the input depending on

the timestamps of each partition of events.

3.3.3 Learning optical flow via contrast maximization
We aim to learn to reconstruct L through the photometric constancy in Eq. 3.2, which,

besides the spatial and temporal derivatives of the brightness itself, also depends on the

optical �ow u. One could use ground-truth optical �ow to solve for this ill-posed prob-

lem. However, due to the limited availability of event-camera datasets with accurate,

high-frequency ground-truth data, we opt for training our FlowNet to perform �ow esti-

mation in a self-supervised manner, using the contrast maximization proxy loss for motion

compensation [96].

A partition of events is said to be blurry whenever there is a spatiotemporal misalign-

ment among its events, i.e., events generated by the same portion of a moving edge are

captured with di�erent timestamps and pixel locations. The idea behind the motion com-

pensation framework [96] is that accurate optical �ow can be retrieved by �nding the

motion model of each event that best deblurs "k . Knowing the per-pixel optical �ow, the

events can be propagated to a reference time t
ref

through:

x′i = x i + (tref
− ti)u(x i) (3.6)

In this work, we adopt the deblurring quality measure proposed by Mitrokhin et al.
[161] and later re�ned by Zhu et al. [33]: the per-pixel and per-polarity average timestamp

of the resulting image of warped events (IWE), H . The lower this metric, the better the

deblurring. As in [33], we generate an image of the average (normalized) timestamp at

each pixel for each polarity p′ via bilinear interpolation:

Tp′ (x;u|t
∗
ref
) =

∑j �(x − x′j )�(y − y
′
j )t

∗
j

∑j �(x − x′j )�(y − y
′
j ) + �

j = {i ∣ pi =p′}, p′ ∈ {+, −}, � ≈ 0
(3.7)
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∆Lk ∆L∗
k

Event warping

∇

δxL̂k−1

δyL̂k−1

W

W

Wk
k−1(δxL̂k−1)

Wk
k−1(δyL̂k−1)

•

∆L̂∗
k

Error

Figure 3.2: Brightness reconstruction via the event-based photometric constancy formulation proposed in this

work. The most recent event-based optical �ow estimate from FlowNet ûk is used to (i) warp the input events,

(ii) warp the spatial gradients of the last reconstructed image L̂k−1, and (iii) in the dot product with the warped

gradients. The predicted brightness increment image ΔL̂∗k is compared to that obtained with the deblurred input

events, ΔL∗k , and the error is propagated backwards towards ReconNet to improve reconstruction accuracy.

and minimize the sum of the squared images resulting from warping the events forward

and backward to prevent scaling issues during backpropagation:

contrast(t∗ref
) = ∑

x
T+(x;u|t∗ref

)2 + T−(x;u|t∗ref
)2 (3.8)

contrast = contrast(1) + contrast(0) (3.9)

The total loss used to train FlowNet is then given by:


FlowNet

= contrast + �1smooth
(3.10)

where 
smooth

is a Charbonnier smoothness prior [162], and �1 is a scalar balancing the

e�ect of the two losses. Note that, since contrast does no propagate the error back to pixels

without events, we mask FlowNet’s output so that null optical �ow vectors are returned at

these pixel locations.

3.3.4 Learning reconstruction via photometric constancy
We formulate the SSL reconstruction problem from an image registration perspective [163]

via brightness increment images. Speci�cally, we propose to use the di�erence between the

reference increment imageΔL (event integration, Eq. 3.1) and the predictedΔL̂ (photometric

constancy, Eq. 3.2) to reconstruct the brightness signal that best explains the input events,

assuming known, error-free optical �ow. This reconstructed brightness is denoted by L̂.

FlowNet predictions are used in the computation of ΔL̂, and as registration parameters to

warp both increment images to a common temporal frame (indicated by the superscript
∗
).

A schematic of the proposed formulation is shown in Fig. 3.2.

To minimize motion blur in the reconstructed frames, instead of directly integrating

the input events, we de�ne the reference brightness increment ΔL∗ via the per-pixel and

per-polarity average number of warped events:
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ΔL∗(x;u) ≐ C (G+(x;u|1) − G−(x;u|1)) (3.11)

Gp′ (x;u|t
∗
ref
) =

Hp′ (x;u|t∗ref
)

Pp′ (x;u|t∗ref
) + �

(3.12)

where P is a two-channel image containing the number of pixel locations from where

the IWE H receives events in the event warping process. Therefore, ΔL∗ is a deblurred

representation of the contrast change encoded in the input events. An ablation study on

the impact of event deblurring prior to event integration can be found in Section 3.4.3.

On the other hand, we adapt the event-based photometric constancy in Eq. 3.2 and

compute ΔL̂ by warping the spatial gradients of the last reconstructed image to the current

time instance via spatial transformers [164]:

ΔL̂∗(x;u) ≐ −k
k−1(∇L̂k−1(x)) ⋅ ûk (x) (3.13)

where k
k−1 is the warping function of the optical �ow ûk .

Following a maximum likelihood approach [12, 60], we de�ne the photometric recon-

struction loss as the squared L2 norm of the di�erence of the warped brightness increments:

PE =
‖‖‖ΔL

∗(x;u) − ΔL̂∗(x;u)‖‖‖
2

2
(3.14)

where, besides L̂, the contrast threshold C is the only remaining unknown. To relax the

dependency on this parameter, our ReconNet uses linear activation in its last layer instead

of the frequently used sigmoid function [147, 148]. The resulting unbounded brightness

estimate is �rst transformed into the intensity space through Îk = exp(L̂k ), and then

normalized to get the �nal reconstruction Î fk :

Î fk =
Îk −m
M −m

(3.15)

where m and M are the 1% and 99% percentiles of Îk , and Î fk is clipped to [0, 1]. This

normalization allows the use of any value of C for training as long as the ratio of positive

and negative thresholds resembles that of the evaluation sequences. We assume that most

event-camera datasets were recorded with C+/C− ≈ 1, and set both thresholds to 1.
On its own, Eq. 3.14 is not su�cient for the reconstruction of temporally consistent

images. Because of the dot product in Eq. 3.13, the absence of input events can be am-

biguously understood as lack of apparent motion, lack of spatial image gradients, or both.

To solve for this issue, we introduce an explicit temporal consistency loss based on the

frame-based formulation of the photometric constancy [165]. In essence, we de�ne the

temporal loss as the photometric error between two successive reconstructed frames:

TC = ‖‖‖L̂k −
k
k−1(L̂k−1)

‖‖‖1 (3.16)

The total loss used to train ReconNet is then given by:

ReconNet =
S
∑
k=0

PE + �2
S
∑
k=S0

TC + �3
S
∑
k=0

TV (3.17)
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Figure 3.3: Neural networks evaluated in this work.

where S denotes the number of steps we unroll the recurrent network for during training,

TV is a smoothness total-variation constraint [166], and �2 and �3 are scalars balancing

the e�ect of the three losses.

3.3.5 Network architectures

EV-FlowNet [25] FireFlowNet (Ours)

No. params. 14130.28 k 57.03 k

Memory 53.90 MB 0.22 MB

Downsampling Yes No

Table 3.1: Main architectural di�erences between our Fire-

FlowNet and EV-FlowNet [25]. FireFlowNet has 250× fewer pa-

rameters, consuming only 0.41% of the memory.

We evaluate the two trends on net-

work design for event cameras when

trained with our SSL framework. The

evaluated architectures are shown in

Fig. 3.3.

FlowNet: FireFlowNet. Fire-

FlowNet is our proposed lightweight

architecture for fast optical �ow es-

timation. Inspired by FireNet [148], the network consists of three encoder layers that

perform single-strided convolutions, two residual blocks [167], and a �nal prediction layer

that performs depthwise (i.e., 1 × 1) convolutions with two output channels. All layers

have 32 output channels and use 3 × 3 kernels and ReLU activations except for the �nal,

which uses TanH activations. A comparison of the key architectural di�erences between

our FireFlowNet and the current state-of-the-art is shown in Table 3.1.

FlowNet: EV-FlowNet [25]. The input voxel grid Ek is passed through four strided

convolutional layers with output channels doubling after each layer starting from 64. The

resulting activations are then passed through two residual blocks [167] and four decoder
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outdoor_day1 indoor_�ying1 indoor_�ying2 indoor_�ying3

EPE↓ %
Outlier

↓ EPE↓ %
Outlier

↓ EPE↓ %
Outlier

↓ EPE↓ %
Outlier

↓
EV-FlowNetGT-SIM [150] 0.68 1.0 0.56 1.0 0.66 1.0 0.59 1.0
EV-FlowNetFW-MVSEC [25] 0.49 0.2 1.03 2.2 1.72 15.1 1.53 11.9

EV-FlowNetEW-MVSEC [33] 0.32 0.0 0.58 0.0 1.02 4.0 0.87 3.0

EV-FlowNetEW-DR (Ours) 0.92 5.4 0.79 1.2 1.40 10.9 1.18 7.4

FireFlowNetEW-DR (Ours) 1.06 6.6 0.97 2.6 1.67 15.3 1.43 11.0

Table 3.2: Quantitative evaluation of our FlowNet architectures on the MVSEC dataset [168]. Best in bold, runner

up underlined.

layers that perform bilinear upsampling followed by convolution. After each decoder,

there is a (concatenated) skip connection from the corresponding encoder, as well as

another depthwise convolution to produce a lower scale �ow estimate, which is then

concatenated with the activations of the previous decoder. The 
FlowNet

loss (see Eq. 3.10)

is applied to each intermediate �ow estimate via �ow upsampling. All layers use 3 × 3
convolutional kernels and ReLU activations except for the �ow prediction layers, which

use TanH activations.

ReconNet: FireNet [148]. Same architecture as FireFlowNet except for the second

and third encoder, which are recurrent ConvGRU layers [169]. As in [148], each layer has

16 output channels, but we use linear activation in the �nal layer.

ReconNet: E2VID [147]. The input voxel grid Ek is passed through a convolutional

head layer, three recurrent encoders performing strided convolution followed by ConvLSTM

[170], two residual blocks [167], three decoder layers that perform bilinear upsampling

followed by convolution, and a �nal depthwise convolutional prediction layer. There are

(element-wise sum) skip connections between symmetric encoder and decoder layers, and

the number of output channels in the head layer is 32 and doubles after each encoder. Head,

encoder, and decoder layers use 5 × 5 kernels, while the rest uses 3 × 3. All layers use ReLU

activations except for the �nal prediction layer which uses linear.

3.4 Experiments
We train our networks on the indoor forward facing sequences from the UZH-FPV Drone

Racing Dataset (DR) [171], which is characterized by a much wider distribution of optical

�ow vectors than other datasets, such as MVSEC [168], the Event-Camera Dataset (ECD)
2

[172], or the High Quality Frames (HQF) dataset [150]. Our training sequences consist of

approximately 15 minutes of event data recorded with a racing quadrotor �ying aggressive

six-degree-of-freedom trajectories. We split these recordings and generate 440 128 × 128
(randomly cropped) sequences of 2 seconds each, and use them for training with B = 5. We

further augment this data using random horizontal, vertical and polarity �ips, besides with

arti�cial pauses of the input event stream (i.e., forward-pass with null input voxel). For

training, we �xed the number of input events per pixel to 0.3.

2
The DAVIS frames accompanying the ECD dataset [172] usually su�er from motion blur and under/overexposure.

For this reason, we only evaluate reconstruction accuracy on sections of this dataset in which the frames appear

to be of high quality. The exact cut times are adopted from [150]. Additionally, we only evaluate optical �ow

accuracy on these sections to remain comparable to the results reported in [150].
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GPU (ms) FLOPs (G)

EV-FlowNet FireFlowNet EV-FlowNet FireFlowNet

240 × 180 4.33 1.97 8.91 2.47
346 × 260 7.05 3.81 18.60 5.14
640 × 480 17.04 12.55 61.47 17.59
1280 × 720 49.32 34.24 184.41 52.67

Table 3.3: Computational cost evaluation of our FireFlowNet against EV-FlowNet [25]. We report inference time

on GPU and the �oating point operations (FLOPs) per forward-pass at common sensor resolutions. We used a

single NVIDIA GeForce GTX 1080 Ti GPU for all experiments.

Our framework is implemented in PyTorch. We use the Adam optimizer [173] and a

learning rate of 0.0001 for both networks, and train with a batch size of 1 for 120 epochs.

We empirically set the weights for each loss to {�1, �2, �3} = {1.0, 0.1, 0.05}, ReconNet’s

unrolling S to 20 steps, and S0 to 10 steps.

3.4.1 Optical flow evaluation
To validate FireFlowNet as a lightweight alternative to the current state-of-the-art in event-

based optical �ow estimation, we evaluated both of our FlowNet architectures on the

indoor_�ying and outdoor_day sequences from the MVSEC dataset [168] with the ground-

truth data provided by Zhu et al. [25]. Optical �ow predictions were generated at each

grayscale frame timestamp (i.e., at 45 Hz), and scaled to be the displacement between two

successive frames. This evaluation setting is usually referred to as dt = 1 in the literature

[25, 33, 34, 102, 150]. The predicted optical �ow is converted from units of pixels/grid to

units of pixel displacement by multiplying it with dtgt/dt
grid

.

Quantitative results are presented in Table 3.2 and qualitative results in Fig. 3.4. We

use the average endpoint error (EPE↓, lower is better) and the percentage of points with

EPE greater than 3 pixels to compare our FlowNet architectures against three EV-FlowNet

from literature; two of them trained with frame- (FW) [25] and event-warping (EW) [33]

SSL proxy losses on MVSEC [168], and one trained with synthetic ground-truth data (GT)

[150]. For our networks, the number of input events per pixel was set to 0.3. Error metrics

were only acquired over pixels with valid ground-truth data and at least one event; and,

for comparison, we used the quantitative results reported in [33, 150].

From Table 3.2, the �rst noticeable aspect is the accuracy gap between EV-FlowNetGT-SIM

and the rest of networks. Training with ground-truth dense optical �ow entails certain

ability to resolve the aperture problem [105] that most SSL approaches lack. Regarding

the latter, our EV-FlowNet performs consistently better than EV-FlowNetFW-MVSEC in

all sequences except for outdoor_day1, but underperforms EV-FlowNetEW-MVSEC despite

using the same architecture and training procedure. We believe this is mostly due to the

di�erent training datasets and the fact that we did not �ne-tune the number of input events

for this evaluation. Further, note that these literature architectures were trained on a very

similar driving sequence from MVSEC, while our training data is much more diverse in

terms of optical �ow vectors [171].

Using our EV-FlowNet as reference, Table 3.2 shows that the proposed FireFlowNet is

characterized by a comparable accuracy despite the signi�cant reduction in model complex-
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EV-FlowNetGT-SIM [9] EV-FlowNetEW-DR (Ours) FireFlowNetEW-DR (Ours)EV-FlowNet (Ours)EV-FlowNet [150] FireFlowNet (Ours) EV-FlowNet [150] EV-FlowNet (Ours) FireFlowNet (Ours)EV-FlowNetGT-SIM [9] EV-FlowNetEW-DR (Ours) FireFlowNetEW-DR (Ours)

Figure 3.4: Qualitative comparison of our FlowNet architectures with the state-of-the-art EV-FlowNet [150] on

sequences from the ECD [172] (left) and HQF [150] dataset (right). The optical �ow color-coding scheme can be

found in Fig. 3.9.

ity. This performance drop is likely due to the narrow receptive �eld of the architecture,

which entails limitations due to the aperture problem. Regarding computational cost,

Table 3.3 shows that FireFlowNet runs ∼1.3-2.2 times faster than EV-FlowNet on GPU,

requiring less than ∼30% of FLOPS per forward-pass.

ECD
∗

HQF

EV-FlowNetFW-MVSEC [25] 1.36 1.25

EV-FlowNetGT-SIM [150] 1.51 1.39

EV-FlowNetEW-DR (Ours) 1.31 1.51

FireFlowNetEW-DR (Ours) 1.39 1.58

Table 3.4: Quantitative evaluation of our FlowNet ar-

chitectures on the ECD [172] and HQF [150] datasets.

For each dataset, we report the mean FWL↑ [150].

Best in bold, runner up underlined.

For completeness, we also evaluate our

FlowNet architectures on the ECD [172] and

HQF [150] datasets via the Flow Warp Loss

(FWL↑, higher is better) [150]. This metric

measures the sharpness of the IWE in rela-

tion to that of the original partition of events.

Similarly to [150], we set the number of input

events to 50k for all sequences in this evalua-

tion
3
. Table 3.4 shows that both our FlowNet

architectures, which are speci�cally trained to

perform event deblurring, are in line with or

outperform the state-of-the-art EV-FlowNet

trained with either frames [25] or synthetic ground truth [150] according to this metric.

More interestingly, FireFlowNet outperforms our EV-FlowNet in both datasets.

3
Note that the formulation of the FWL metric is sensitive to the number of input events [150].
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ECD
∗

HQF

MSE↓ SSIM↑ LPIPS↓ MSE↓ SSIM↑ LPIPS↓
E2VID [147] 0.08 0.54 0.37 0.14 0.46 0.45

FireNet [147] 0.06 0.57 0.29 0.07 0.48 0.42

E2VID+ [150] 0.04 0.60 0.27 0.03 0.57 0.26
FireNet+ [150] 0.06 0.51 0.32 0.05 0.47 0.36

E2VIDF (Ours) 0.07 0.52 0.38 0.07 0.44 0.47

E2VIDE (Ours) 0.06 0.55 0.37 0.06 0.48 0.47

FireNetF (Ours) 0.06 0.52 0.38 0.06 0.46 0.47

FireNetE (Ours) 0.06 0.51 0.41 0.06 0.46 0.51

Table 3.5: Quantitative evaluation of our ReconNet architectures on the ECD [172] and HQF [150] datasets. Best

in bold; runner up underlined.

E2VID+ [9] FireNet+ [9] E2VIDE (Ours) FireNetF (Ours) Ground truthE2VID+ [150] FireNet+ [150] E2VIDE (Ours) FireNetF (Ours) Ground truthGround truth

Figure 3.5: Qualitative comparison of our method with the E2VID+ and FireNet+ architectures [150] on sequences

from the ECD [172] and HQF [150] datasets. Local histogram equalization not used for this comparison.

3.4.2 Reconstruction evaluation
We evaluated the accuracy of our ReconNet architectures against the DAVIS240C [174]

frames from the ECD [172] and HQF [150] datasets, and compared their performance to the

state-of-the-art of image reconstruction networks trained with ground-truth supervision:

E2VID [147], FireNet [148], E2VID+ [150], and FireNet+ [150]. We used the results and

code provided by Sto�regen et al. [150] for the quantitative and qualitative evaluations. The

subscripts F and E indicate whether our networks were trained together with FireFlowNet

or EV-FlowNet.

For all methods, reconstructions were generated at each DAVIS frame timestamp. We

�rst applied local histogram equalization [175] to both frames, and then computed mean
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Input events EV-FlowNetEW-DR E2VIDE
Figure 3.6: Additional qualitative results on Prophesee’s high-resolution automotive dataset [178]. The optical

�ow color-coding scheme can be found in Fig. 3.9.

squared error (MSE↓, lower is better), structural similarity (SSIM↑, higher is better) [176],

and perceptual similarity (LPIPS↓, lower is better) [177]. For this evaluation, instead of

using a �xed number of input events, we used all the events in between DAVIS frames.

Results are presented in Table 3.5 and Figs. 3.5 and 3.6.

Figure 3.7: Common failure cases of

our SSL framework.

Despite not using any ground-truth data during training,

results show that our method is in line with the state-of-

the-art in terms of reconstruction accuracy. Quantitatively,

the error metrics of all our ReconNet architectures closely

resemble the results obtained with the original E2VID and

FireNet, but the accuracy gap increases if compared against

these same networks trained with the re�ned data augmen-

tation mechanisms from Sto�regen et al. [150]. This gap is

particularly notable in the LPIPS loss because these literature

networks are speci�cally trained to maximize perceptual

similarity to ground-truth frames. On the other hand, there

is no major quantitative di�erence between the evaluated

versions of ReconNet, regardless of their architecture or the

accompanying �ow network.

Qualitative results con�rm that our method reconstructs

high quality HDR images. However, it is possible to iden-

tify several di�erences with respect to the state-of-the-art.

Firstly, our images appear less sharp. Our architectures learn

to correlate the spatial gradients of the estimated brightness

L̂ to the IWE (see Section 3.3.4). This entails that the recon-

structed images are a�ected by the accuracy of the optical

�ow. Suboptimal optical �ow estimations lead to imperfect

event deblurring during training, which in turn is re�ected

in the reconstructed images as motion blur. Note that this

blur diminishes when using an appropriate �xed number of

input events for each sequence. Secondly, the dynamic range of the images di�ers. State-of-

the-art methods learn to map the input events into bounded estimates of L̂ via supervised

learning. On the contrary, our brightness estimate is unbounded, and normalization is

used to encode this signal as bounded images. Besides this, there is no signi�cant di�er-

ence between the evaluated ReconNet versions, despite the limited smoothing capabilities

of FireNet. Lastly, although our method does not su�er from the stretch marks mostly
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ECD
∗

HQF

MSE↓ SSIM↑ LPIPS↓ MSE↓ SSIM↑ LPIPS↓
E2VIDE (w/ deblurring) 0.06 0.55 0.37 0.06 0.48 0.47
E2VIDE (w/o deblurring) 0.14 0.30 0.58 0.11 0.28 0.64

Table 3.6: Quantitative evaluation of the impact of event deblurring on the ECD [172] and HQF [150] datasets.

For each dataset, we report the mean MSE (↓), SSIM [176] (↑) and LPIPS [177] (↓). Best in bold.
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Figure 3.8: Qualitative evaluation of the impact of event deblurring on the quality

of the reconstructed frames on sequences from the ECD [172] dataset.

Figure 3.9: Optical �ow �eld

color-coding scheme. Direc-

tion is encoded in color hue,

and speed in color brightness.

present in FireNet+ images, it is characterized by three common failure cases. As shown

in Fig. 3.7, these are: (i) the aforementioned motion blur, (ii) “ghosting” artifacts in large

texture-less regions due to limited extrapolation of edge information, and (iii) incoherent

reconstructions due to the lack of information about the initial brightness L0.

3.4.3 Impact of event deblurring
As discussed in this work, our self-supervised image reconstruction framework is designed

around the event-based photometric constancy equation. While the right-hand side of this

equation is obtained via the dot product between the warped spatial gradients of the last

reconstructed image and the estimated optical �ow; we propose that the left-hand side is

obtained by integrating the deblurred input events. Since the main supervisory signal used

to train our image reconstruction architectures comes from the comparison of the two

sides of this equation, after training, the spatial gradients of the reconstructed images are

correlated with the integrated events. These events, if not warped to the timestamp of the

reconstructed frame, would introduce motion blur into the images. The amount of motion

blur would depend on the density of events and on the length of the partition of events.

To validate this approach, we conducted an ablation study in which we trained the

same ReconNet architecture (accompanied by the same pre-trained optical �ow network)

with and without event deblurring prior to event integration. Quantitative results are

presented in Table 3.6, and are supported by qualitative results in Fig. 3.8. As shown, event

deblurring is a crucial mechanism to reconstruct sharp images from the events. Without it,

the reconstructed frames appear less sharp for the same number of input events, and the

network is characterized by signi�cantly worse error metrics on the evaluation datasets.
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3.5 Conclusion
In this chapter, we went back to the basics of event cameras and presented the �rst self-

supervised learning-based approach to event-based image reconstruction, which does

not rely on any ground-truth or synthetic data during training. Instead, our SSL method

makes use of the �ow-intensity relation used by early methods to reconstruct the frames

that best satisfy the input events and the estimated optical �ow. Results con�rm that

our method performs almost as well as the state-of-the-art, but that the reconstructed

images are characterized by several artifacts that need to be addressed by future work.

Additionally, we presented FireFlowNet: a fast, lightweight neural network that performs

event-based optical �ow estimation. We believe this work shows the exciting potential of

SSL to take over the research on image reconstruction from event data, and it opens up

avenues for further improvement by leveraging the great amount of unlabeled event data

available. Moreover, we have proposed a general self-supervised learning framework that

can be extended in multiple ways via more sophisticated reconstruction losses and other

event-based optical �ow algorithms.

Supplementary material

Video summary of the approach: https://youtu.be/eiIIhY7HeQM

Project code: https://github.com/tudelft/ssl_e2vid

https://youtu.be/eiIIhY7HeQM
https://youtu.be/eiIIhY7HeQM
https://github.com/tudelft/ssl_e2vid
https://github.com/tudelft/ssl_e2vid


4
Unsupervised Learning of
Event-Based Optical Flow

with SNNs

Although the reconstruction of sharp images from event data presented in the previous chapter
o�ers the potential for higher rates compared to frame-based cameras, it is important to
consider that downstream applications would still have to process conventional frames with
per-pixel data. Consequently, these algorithms are unable to fully leverage the inherent sparsity
and asynchrony of event-based cameras. For this reason, here we take a leap into spiking neural
networks, as their combination with event-based vision sensors holds the potential of highly
e�cient and high-bandwidth processing. This chapter presents the �rst hierarchical spiking
architecture in which motion (direction and speed) selectivity emerges in an unsupervised
fashion from the raw stimuli generated with an event-based camera. A novel adaptive neuron
model and stable spike-timing-dependent plasticity formulation are at the core of this neural
network governing its spike-based processing and learning, respectively. After convergence, the
neural architecture exhibits the main properties of biological visual motion systems, namely
feature extraction and local and global motion perception. Convolutional layers with input
synapses characterized by single and multiple transmission delays are employed for feature
and local motion perception, respectively; while global motion selectivity emerges in a �nal
fully-connected layer. The proposed solution is validated using synthetic and real event
sequences.

The contents of this chapter have been published in:

F. Paredes-Vallés, K. Y. W. Scheper, G. C. H. E. de Croon, Unsupervised learning of a hierarchical spiking
neural network for optical �ow estimation: From events to global motion perception, IEEE Transactions on

Pattern Analysis and Machine Intelligence (TPAMI), 2019.
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4.1 Introduction

W
henever an animal endowed with a visual system navigates through an environment,

turns its gaze, or simply observes a moving object from a resting state, motion

patterns are perceivable at the retina level as spatiotemporal variations of brightness [179].

These patterns of apparent motion, formally referred to as optical �ow [21], are a crucial

source of information for these animals to estimate their ego-motion and to have a better

understanding of the visual scene. A great example of the e�cacy of these cues in nature

is in �ying insects [179, 180], which are believed to heavily rely on these visual cues to

perform high-speed maneuvers such as horizontal translation or landing [181].

Considering their size and weight limitations, insects are a clear indicator of the

e�ciency, robustness, and low latency of the optical �ow estimation conducted by biological

systems. The ability to reliably mimic this procedure would have a signi�cant impact on

the �eld of micro-robotics due to the limited computational capacity of their on-board

processors. As an example, micro air vehicles (MAVs), such as the DelFly Explorer [182]

or the DelFly Nimble[11], could bene�t from a bio-inspired visual motion estimation for

high-speed autonomous navigation in cluttered environments.

Biological visual systems receive their input from photoreceptors in the retina. These

light-sensitive neurons absorb and convert incoming light into electrical signals which

serve as input to the so-called ganglion cells. The activity of these neurons consists of

temporal sequences of discrete spikes (i.e., voltage pulses) that are sent to large networks

of interconnected cells for motion estimation, among other tasks. Since it is spike-driven,

these biological architectures are characterized by a sparse, asynchronous, and massively

parallelized computation. Further, they are seen to adapt their topology, i.e., connectivity

pattern, in response to visual experience [183, 184]. This adaptation, or learning mechanism,

allows them to operate robustly in di�erent environments under a wide range of lighting

conditions.

In contrast, the working principle of the majority of cameras used for arti�cial visual

perception is categorized as frame-based: data is obtained by measuring the brightness

levels of a pixel array at �xed time intervals. Although convenient for some computer

vision applications, these sensors are ine�cient for the task of motion estimation as the

frame rate is independent of the dynamics of the visual scene. Additionally, due to the

limited temporal resolution of these sensors, rapidly moving objects may introduce motion

blur, limiting the accuracy of optical �ow estimation.

However, not all arti�cial systems rely on conventional frame-based cameras for visual

motion estimation. Inspired by biological retinas, several event-based cameras have recently

been presented [12, 174, 185, 186]. Similar to ganglion cells, each of the elements of the

pixel array reacts asynchronously to brightness changes in its corresponding receptive

�eld by generating events. A microsecond temporal resolution, latencies in this order of

magnitude, a wide dynamic range, and a low power consumption make these sensors an

ideal choice for visual perception.

Regardless of the vision sensor, the estimation of optical �ow by arti�cial systems is

normally performed algorithmically, with solutions that are built on simplifying assump-

tions that make this problem tractable [187, 188]. In spite of this, the recent progress in

parallel computing hardware has enabled arti�cial motion perception to be addressed from

a more bio-inspired perspective: arti�cial neural networks (ANNs). Similar to biological
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architectures, ANNs consist of large sets of arti�cial neurons whose interconnections can

be optimized for the task at hand. However, despite the high accuracy reported with both

frame- [189] and event-based sensors [25, 190], there is still a fundamental di�erence: the

underlying communication protocol in ANNs relies on synchronous packages of �oating-

point numbers, rather than on trains of asynchronous discrete spikes. As a consequence,

these architectures are often computationally expensive.

Taking further inspiration from nature, spiking neural networks (SNNs) have been

proposed as a new generation of ANNs [191]. As the name suggests, the computation

carried out by these bio-realistic neural models is asynchronous and spike-based, which

makes them a suitable processing framework for the sparse data generated by event-based

sensors [192]. Moreover, SNNs can bene�t from an e�cient real-time implementation in

neuromorphic hardware, such as IBM’s TrueNorth chip [48] or Intel’s Loihi processor [14].

Despite these promising characteristics, the spiking nature of these networks limits the

application of the successful gradient-based optimization algorithms normally employed in

ANNs. Instead, at the time of publication, learning in SNNs is dominated by spike-timing-

dependent plasticity (STDP) [41], a biologically plausible protocol that adapts the strength

of a connection between two neurons based on their correlated activity. STDP has been

successfully applied to relatively simple image classi�cation tasks [43–47]. However, until

now, no study has discussed the use of this learning rule for the estimation of event-based

optical �ow.

This chapter contains three main contributions. First, a novel adaptive mechanism

for the leaky integrate-and-�re (LIF) spiking neuron model [193] is introduced. Second, a

novel, inherently-stable STDP implementation is proposed. With this learning rule, the

strength of neural connections naturally converges to an equilibrium distribution without

the need for the ad-hoc mechanisms used by most of the existing formulations. Third, the

proposed neuron model and STDP rule are combined in a hierarchical SNN architecture

that, after learning, resembles the main functionalities of biological visual systems: feature

extraction and local and global motion perception. To the best of the authors’ knowledge,

this chapter shows, for the �rst time, that neural selectivity to the local and global motion

of input stimuli can emerge from visual experience in a biologically plausible unsupervised

fashion.

4.2 Related work
Event-based cameras
Inspired by biological retinas, each of the pixels of an event-based camera reacts asyn-

chronously to local changes in brightness by generating discrete temporal events. Specif-

ically, the generation of an event is triggered whenever the logarithmic change of the

image intensity L(x, y, t) exceeds a prede�ned threshold C such that
||Δ log(L(x, y, t))|| > C

[12]. This variation is computed with respect to a reference brightness level set by the last

occurring event at that pixel.



4.2 Related work

4

59

t[s]
x

y

t[s]
x

y

Events

Frames

P = 1

P = −1

t[s]
x

y

t[s]
x

y

Events

Frames

P = 1

P = −1

Figure 4.1: Comparison of the output of frame- and event-based cameras under the stimulus of a black horizontal

bar moving upward over a homogeneous white background.

Each event encodes information about its timestamp t , its corresponding (x, y) location

in the pixel array, and the polarity P ∈ {−1, 1} of the intensity change. This communication

protocol is referred to as address-event representation (AER). A visual comparison of the

output of frame- and event-based sensors under the same stimulus is illustrated in Fig. 4.1.

Spiking neural networks
Models of spiking neurons In biological networks, neural communication consists

in the exchange of voltage pulses [191]. For the reproduction of this asynchronous and

spike-based mechanism in SNNs, multiple models of spiking neurons have been presented

at various levels of abstraction. Biophysical formulations lead to accurate representations

of neural dynamics [194], however, their complexity limits their use in large-scale networks.

Alternatively, phenomenological formulations o�er a compromise between computational

load and biological realism. The most used models are the aforementioned LIF [193], the

Izhikevich [195], and the spike response model [196]. Ui(t)

Sj(t)

Si(t)

θ

Ureset

∆trefr

t

i

Ui(t)

Sj(t)

Si(t)

θ

Ureset

∆trefr

t

i

Figure 4.2: A model of a LIF neuron. The graphic

(bottom) shows the temporal course of the membrane

potential Ui (t) of the ith neuron (top), driven by a

sample presynaptic spike train Sj (t) from three input

neurons j = 1, 2, 3. Spikes are depicted as vertical bars

at the time at which they are received (if presynaptic)

or emitted (if postsynaptic). In this schematic, the

reset Ureset and resting Urest potentials are equal in

magnitude.

From a conceptual perspective, the major-

ity of these models share some fundamental

principles and de�nitions. The junction of

two neurons is called synapse; and relative

to these cells, the transmitting neuron is la-

beled as presynaptic, while the receiving as

postsynaptic. Each spiking neuron, as pro-

cessing unit, is characterized by an internal

state variable, known as membrane potential

Ui(t), which temporally integrates presynap-

tic spikes over time. If the arrival of a spike

leads to an increase (decrease) in Ui(t), then

the spike is said to have an excitatory (in-

hibitory) e�ect on the neuron. Ui(t) decays

to a resting potential Urest in case no input

is received. Lastly, a postsynaptic spike is

triggered whenever Ui(t) crosses the �ring

threshold � . Afterwards, the neuron resets its

membrane potential to Ureset, and enters in

a refractory period Δt
refr

during which new
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incoming spikes have negligible e�ect on Ui(t). Fig. 4.2 illustrates these concepts for the

case of a LIF neuron [193].

Synaptic plasticity De�ned as the ability to modify the e�cacy (weight) of neural

connections, synaptic plasticity is the basic mechanism underlying learning in biological

networks [197]. These architectures are seen to rely on di�erent learning paradigms

depending on their duty [198]. For instance, information encoding in biological visual

systems is established in an unsupervised fashion, while reinforcement and supervised

learning are employed for tasks such as decision making and motor control. Accordingly,

various forms of synaptic plasticity have been proposed for SNNs.

In the context of SNNs, unsupervised learning is generally referred to as Hebbian

learning, since plasticity rules from this paradigm are based on Hebb’s postulate: “cells
that �re together, wire together” [42]. In essence, these methods adapt the weight of a

connection based on the correlated activity of pre- and postsynaptic cells. Among others,

the biologically plausible STDP protocol is, by far, the most popular Hebbian rule for

SNNs [41]. With STDP, the repeated arrival of presynaptic spikes to a neuron shortly

before it �res leads to synaptic strengthening, also known as long-term potentiation (LTP);

whereas if the arrival occurs shortly after the postsynaptic spike, synapses are weakened

through long-term depression (LTD). Therefore, the change of weight ΔW is normally

expressed as a function of the relative timing between these two events. STDP formulations

exclusively dependent on this parameter are referred to as additive rules [199]. These

models, despite their success in pattern recognition problems [43–46, 200], are inherently

unstable and require the use of constraints for the synaptic weights, thus resulting in

bimodal distributions [41]. On the other hand, multiplicative STDP rules incorporate the

current weight value in the computation of ΔW in an inversely proportional manner. As

shown in [47, 201], this additional dependency leads to stable unimodal weight distributions.

However, the stability of these approaches results from a complex temporal LTP-LTD

balance, and it is not theoretically guaranteed.

Several lines of research can be distinguished regarding the use of supervised learning in

SNNs, being the most promising based on the well-known error backpropagation algorithm

[202]. Firstly, numerous adaptations to the discontinuous dynamics of SNNs have recently

been proposed for learning temporally precise spike patterns [203–206]. Alternatively,

due to the popularity of this method in ANNs, SNNs commonly rely on transferring

optimization results from their non-spiking counterparts [207–209]. In both cases, high

accuracy levels are reported in image classi�cation tasks, but still far below from those

obtained with conventional ANNs.

With respect to reinforcement learning in SNNs, various models have been presented,

the majority of which consist in the modulation of STDP with a reward function [210, 211].

However, applications of this paradigm are mainly focused on neuroscience research

[212, 213], besides several goal-directed navigation problems [214, 215] and the digit-

recognition application recently presented in [216].

Event-based optical flow estimation
The recent introduction of event-based cameras and other retinomorphic vision sensors has

precipitated the development of several novel approaches to event-based optical �ow esti-
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mation. Depending on their working principle, these solutions are divided into algorithmic

and neural methods.

Gradient-, plane-�tting-, frequency-, and correlation-based approaches set the basis of

the algorithmic state-of-the-art. These techniques compute sparse optical �ow estimates for

each newly detected event (or group of events) based on its spatiotemporal, polarity-speci�c

neighborhood. Firstly, adaptations of the gradient-based Lucas-Kanade algorithm [163]

were presented in [57, 217]. Secondly, the methods proposed in [70, 187, 218] extract optical

�ow by computing the gradients of a local plane �tted to a spatiotemporal surface of events.

Thirdly, multiple adaptations of the bio-inspired frequency-based methods have been

introduced [217, 219, 220], which allow the implementation in neuromorphic hardware

[221]. Lastly, the recent correlation-based approaches presented in [96, 161, 222, 223]

employ convex optimization algorithms to associate groups of events over time, and report

the highest algorithmic accuracy to date. Part of this category is also the block-matching

method recently proposed in [224], which employs conventional search techniques to �nd

the best matching group of events in previous temporal slices of the input.

The estimation of event-based optical �ow with neural models is dominated by SNNs.

However, there are a couple of ANN-based approaches worth remarking. In [25], a self-

supervised learning scheme was employed to train a convolutional ANN to estimate dense

image �ow. The input to the network consists of the per-pixel last timestamp and count

of events over a speci�c time window. Using the average timestamp instead, in [190],

the authors presented the �rst neural model to approach the full structure-from-motion

problem using event-based input. Here, two ANNs are employed for depth and dense

optical �ow estimation. Regarding the latter task, accuracy levels considerably higher than

those from [25] are reported.

Though the main goal of [225] is for predicting future input activations, this work

presented the �rst neural architecture capable of learning spatiotemporal features from

raw event data. For this purpose, a combination of multiple recurrent ANNs with a single

layer of spiking neurons was employed. As explained below, these features are potentially

useful as e�cient motion detectors, but no study has discussed their learning with SNNs.

With respect to pure SNN-based approaches, in [226, 227], the authors propose an

architecture in which motion selectivity results from the synaptic connections of a bursting

neuron to two neighboring photoreceptors, one excitatory and the other inhibitory. If

the edge is detected �rst by the excitatory cell, spikes are emitted at a �xed rate until the

inhibitory pulse is received. Otherwise, the neuron remains inactive. Optical �ow is conse-

quently encoded in the burst length and in the relative orientation of the photoreceptors.

In contrast, the SNNs presented in [228, 229] extract motion information through

synaptic delays and spiking neurons acting as coincidence detectors. A simple spike-based

adaptation of the Reichardt model [230] is introduced in [228] to show the potential of

this approach. This idea is explored in more detail in [229], in which the authors propose

the convolution of event sequences with a bank of spatiotemporally-oriented �lters, each

of which is comprised of non-plastic synapses with equal weights, but with delays tuned

to capture a particular direction and speed. Similarly to frequency-based methods [231],

these �lters compute a con�dence measure, encoded in the neural activity, rather than the

optical �ow components. Additionally, this solution employs a second spike-based pooling

layer for mitigating the e�ect of the aperture problem [232].
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Whether, and how, direction and speed selectivity emerge in biological networks from

visual experience still remains an open question. Some initial work by [233–235] shows

that robust local direction selectivity arises in neural maps through STDP if, apart from

presynaptic feedforward connections, neurons receive spikes from cells in their spatial

neighborhood through plastic synapses with distance-dependent transmission delays.

However, no study has assessed the speed selectivity of these cells, which is crucial for

optical �ow estimation.

4.3 Method
4.3.1 Optical flow visual observables
The optical �ow formulation employed throughout this study is introduced in the present

section. This model relates the ego-motion of a downward-looking camera over a static

planar scene to the perceived optical �ow and its corresponding visual observables. We use

this setting as it corresponds to the widely studied problem of optical-�ow-based landing

[70, 72, 74, 75]. However, note that we employ this optical �ow formulation to improve

the interpretability of the results. The proposed approach can also handle unstructured

motion and scenes.

XW

YW

ZW

θ, q

φ, p

YC

XC

ZC

UC

VC

WC

ψ, r

Figure 4.3: De�nitions of the world () and camera ()

references frames. The Euler angles, rotational rates, and

translational velocities that describe the motion of  are

shown as well.

The derivation of this optical �ow

model relies on the two reference frames

illustrated in Fig. 4.3. The inertial world

frame is denoted by  , whilst  de-

scribes the camera frame centered at the

focal point of the event-based camera.

In each of these frames, position is de-

�ned through the coordinates (X, Y , Z ),
with (U , V ,W ) as the corresponding ve-

locity components. The orientation of

 with respect to  is described by the

Euler angles �, � , and  , denoting roll,

pitch, and yaw, respectively. Similarly,

p, q, and r denote the corresponding ro-

tational rates.

The relations between sensor ego-

motion, optical �ow, and visual observ-

ables are based on the pinhole camera

model [236]. In this formulation, pixel

coordinates in the sensor’s pixel array

are denoted by (x, y), while (u, v) repre-

sent optical �ow components, measured in pixels per second. Note that this model assumes

an undistorted vision sensor.

Consider the situation depicted in Fig. 4.3, in which the sensor  moves arbitrarily

through a static environment subjected to translational (U , V ,W ) and rotational (p, q, r)
velocities. Due to this ego-motion, the projection of a world point onto the image plane

leads to an optical �ow of components:
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u = −
U
Z

+
W
Z

x − q + ry + pxy − qx2

v = −
V
Z

+
W
Z

y + p − rx − qxy + py2
(4.1)

From Eq. 4.1, the optical �ow of a point can be resolved into translational and rotational

components [236]. Since the latter is independent of the three-dimensional structure of the

visual scene, these expressions can be derotated if information on the rotational rates of

the sensor is available. This derotation leads to pure translational optical �ow components,

denoted by (uT , vT ). Moreover, if the scene is a planar surface, the depth Z of all visible

world points is interrelated through:

Z = Z0 + ZXX + ZYY (4.2)

where Z0 is de�ned as the distance to the surface along the optical axis of the sensor, and

ZX and ZY represent the slopes of the planar scene with respect to the X - and Y -axis of 
[72]. If information on the attitude of the sensor is available, these slopes can be computed

from the pitch and roll angles as:

ZX = tan �, ZY = − tan � (4.3)

In [236], the relation between the position of an arbitrary point in  and its projection

onto the image plane is given by (x, y) = (X /Z , Y /Z ). Consequently, Eq. 4.2 may also

be written in the form:

Z − Z0
Z

= ZX x + ZY y (4.4)

Further, let the scaled velocities of the sensor #x , #y , and #z be de�ned as follows:

#x =
U
Z0

, #y =
V
Z0

, #z =
W
Z0

(4.5)

Then, according to the derivations in [72], substituting Eqs. 4.4 and 4.5 into Eq. 4.1

leads to the following expressions for translational optical �ow:

uT = (−#x + #zx)(1 − ZX x − ZY y)
vT = (−#y + #zy)(1 − ZX x − ZY y)

(4.6)

From Eq. 4.6, and under the aforementioned assumptions, the scaled velocities, which

provide non-metric information on sensor ego-motion, can be derived from the translational

optical �ow of multiple image points. #x and #y are the opposites of the so-called ventral
�ows, a quanti�cation of the average �ows in the X - and Y -axis of  respectively [70].

Hence, !x = −#x and !y = −#y . On the other hand, #z is proportional to the divergence
of the optical �ow �eld, D = 2#z [70]. Throughout this work, these optical �ow visual

observables, more speci�cally the ventral �ow components, are employed to refer to the

stimulus speed in the image plane.
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4.3.2 Adaptive spiking neuron model

i

nl−1

3

2

1
W

i1 , τ
Wi2, τ

W in
l−1 , τ

ij Wij3, τ3

Wij1, τ1
Wij2, τ2

Wijm, τm

Figure 4.4: Schematic of the feedforward connectivity between neurons

from two adjacent layers (left). These connections can be considered as

being multisynaptic (right), each one having its own weight, transmis-

sion delay, and trace.

Let j = 1, 2,… , nl−1 denote a

group of presynaptic neurons,

from layer l − 1, fully con-

nected in a feedforward fash-

ion to a set of postsynaptic cells

i = 1, 2,… , nl , from layer l. As

depicted in Fig. 4.4, these neu-

ral connections can be consid-

ered as multisynaptic, i.e., the

link between two cells is not

restricted to a single synapse,

but several can coexist. In this

work, the number of multisy-

naptic connections m is layer-

speci�c, and each synapse has its own transmission delay as given by � ∈ ℝm . In addition to

this delay vector, layer connectivity is also characterized by a weight matrixW ∈ ℝn
l×nl−1×m

,

which determines the synaptic e�cacy of the connections.

Apart fromW and � , each synapse keeps track of an additional parameter that captures

the recent history of spikes transmitted. Referred to as the presynaptic trace [237], and

de�ned as X ∈ ℝn
l×nl−1×m

, its dynamics are given by:

�X
dXijd (t)
dt

= −Xijd (t) + �Sl−1j (t − �d ) (4.7)

where �X is the time constant, � is a scaling factor, and Sl (t) ∈ ℝn
l

denotes the (binary)

record of neural activity, or spike train, of cells from layer l . Note that d = 1, 2,… , m serves

to refer both to connections within a multisynaptic group and their corresponding delays.

From Eq. 4.7, whenever a spike arrives at a neuron i via a synapse with transmission

delay �d , the corresponding presynaptic trace Xijd (t) increases by a factor of �. In case no

spike is received, the trace decays exponentially towards zero according to �X .

The LIF model is the most widely used spiking neural model in literature. This is due to

its main assumption that in SNNs, information is not encoded in the spike amplitude, but

rather in the �ring time. Consequently, neural activity is reduced to discrete and binary

temporal events, thus ensuring computational tractability. The spiking neural model used

in this chapter is a modi�ed LIF model, de�ned as:

�U
dUi(t)
dt

= −(Ui(t) − Urest) + Ii(t) (4.8)

Ii(t) =
nl−1

∑
j=1

m
∑
d=1

(WijdSl−1j (t − �d ) − Xijd (t)) (4.9)

where �U denotes the time constant of the membrane potential, and I (t) is the so-called

forcing function of the system.

From Eqs. 4.8 and 4.9, the membrane potential Ui(t) of a neuron evolves over time by

integrating scaled presynaptic spikes from its input synapses, similarly to the conventional
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LIF model [193]. WheneverUi(t) reaches (or surpasses) the �ring threshold � , a postsynaptic

spike is generated, i.e., Sli (t) = 1, and Ui(t) is reset to Ureset. In addition, the neuron enters

in a refractory period Δt
refr

during which presynaptic spikes have no e�ect on Ui(t) to

ensure the temporal separation of postsynaptic pulses. In case no spike is �red at time t ,
this is re�ected in the neuron’s spike train as Sli (t) = 0.

Unlike traditional LIF [193], the forcing function I (t) of our neuron model includes an

additional term, further referred to as the homeostasis parameter, which is inspired by

the internal regulatory mechanisms of biological organisms [238]. This is used to adapt

the neural response to the varying input statistics—in particular, to the per-pixel �ring

rate—using the presynaptic trace X as an excitability indicator. Inferring from Eq. 4.9, this

parameter acts as an inhibitory penalty in the update rule of U (t). A postsynaptic neuron

connected to a group of highly-active presynaptic cells is said to have low excitability

due to its relatively high X . For this neuron to �re, it needs to receive a large number

of presynaptic spikes shortly separated in time. Conversely, the same cell connected to

poorly-active neurons is highly excitable; and thus, the �ring threshold � can still be

reached despite the considerably larger time di�erence between input spikes. Note that, to

get the desired neural adaptation, the scaling factor � , from Eq. 4.7, needs to be selected in

accordance with the neural parameters, mainly � and the range of possible W values.

When dealing with an event-based camera as source of input spikes, the �ring rate of

the sensor is not only correlated to the appearance of features from the visual scene, but

also to their optical �ow and the sensitivity settings of the camera. Slow apparent motion

leads to successive events being more distant in time than those captured from fast motion.

Consequently, if these events are to be processed with a network of spiking neurons, a

homeostasis mechanism is required to ensure that similar features are detected regardless

of the encoding spike rate.

Other approaches to homeostasis have been presented in the literature, such as threshold

balancing [239] or weight scaling [201]. However, these methods use postsynaptic spikes

to adjust the homeostatic inhibition through an adaptive mechanism. With this neural

feedback, there is a delay in adjusting the excitability of the neurons. These approaches are

therefore less suitable for the rapidly varying statistics of the data generated by a moving

event-based camera.

4.3.3 Stable STDP learning rule
In this work, we propose a novel multiplicative STDP implementation that, contrary to

the state-of-the-art of this learning protocol, is inherently stable by combining the weight-

dependent exponential rule from [47] with presynaptic trace information. Hereafter, we

will simply refer to it as STDP.

Whenever a neuron i �res a spike, the weight of its presynaptic connections is updated

as follows:

ΔWijd = �(LTP + LTD) (4.10)

LTP = LTPW ⋅ LTPX̂ ,

LTPW = e−(Wijd−winit
),

LTPX̂ = eX̂ijd (t) − a,

LTD = LTDW ⋅ LTDX̂

LTDW = −e(Wijd−winit
)

LTDX̂ = e(1−X̂ijd (t)) − a

(4.11)
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Figure 4.5: Illustration of the novel multiplicative STDP rule proposed in this work. The weight update (right)
results from the linear combination of the non-exclusive LTP and LTD processes. These, in turn, are characterized

by symmetrical dependencies on the synaptic weights (left) and normalized presynaptic traces (center). Note that,

in the schematic of the weight update (right), the weight axis is limited to the [−1, 1] range only for the purpose

of a better visualization of the equilibrium weights (dashed thick line) for a = 0.

where � is the learning rate of the rule,winit refers to the initialization weight of all synapses

at the beginning of the learning process, and X̂ i ∈ [0, 1] denotes the presynaptic traces of

neuron i normalized to the current maximum at the moment of �ring. Further, for stability,

� > 0 and a < 1 regardless of the value of winit (see Section 4.4.4).

From Eqs. 4.10 and 4.11, the weight update ΔW i results from the linear combination of

the output of two non-mutually exclusive processes: LTP, for strengthening, and LTD, for

weakening synaptic connections. Both of these processes are dependent on the weights

(LTPW , LTDW ) and normalized traces (LTPX̂ , LTDX̂ ) of the synapses under analysis. On

the one hand, the weight dependency of our learning rule takes inspiration from the STDP

formulation presented in [47]. LTPW and LTDW are inversely proportional to W i in an

exponential fashion, and are centered around winit (see Fig. 4.5, left). Consequently, the

e�ect of LTPW decreases (increases) the larger (smaller) a synaptic weight is in comparison

to winit. The opposite relation holds true for LTDW . On the other hand, rather than relying

on the precise spike timing [47], our rule employs normalized presynaptic trace information

as a measure of the relevance of a particular connection to the postsynaptic spike triggering

the update. The higher (lower) the value of X̂ijd (t), the larger (smaller) the e�ect of LTPX̂ ,

and vice versa for LTDX̂ (see Fig. 4.5, center).

With this formulation, a weight is established for each value of X̂ijd (t) through a

stable equilibrium of LTP-LTD contributions on ΔW i (see Fig. 4.5, right). The parameter

a has control over this non-linear mapping through the steepness of LTPX̂ and LTDX̂
in X̂ i ∈ [0, 1]. The higher (lower) the value of a—below the stability limit—, the wider

(narrower) the distribution of synaptic weights after convergence. As such, no additional

mechanism is required for preventing weights from vanishing or exploding. Synapses

characterized by weights that are higher (lower) than their corresponding equilibrium state

are consistently depressed (potentiated) until synapse-speci�c stability is achieved.

To track the convergence of the learning process, we propose the use of the following

mean square error criterion, where Ŵ i ∈ [0, 1] denotes the presynaptic weights of neuron

i after an update, normalized to the current maximum:
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i =
1

nl−1m

nl−1

∑
j=1

m
∑
d=1

(X̂ijd (t) − Ŵijd)
2

(4.12)

As the learning progresses, the moving average of i converges to a (close-to-zero)

equilibrium state. In this work, we stop synaptic plasticity using a �xed threshold on this

parameter, denoted by 
th

.

Local inter-lateral competition
For neurons to learn distinct features from the input data through STDP, this learning

rule needs to be combined with what is known as a winner-take-all (WTA) mechanism

[240]. This form of competition implies that, when a neuron �res a spike and updates its

presynaptic weights according to Eqs. 4.10 and 4.11, the rest of postsynaptic cells (from the

same layer) locally connected to the same input neurons get inhibited. As a result, these

cells are prevented from triggering STDP while the neuron that �red �rst, i.e., the winner,

remains in the refractory period.

Instead of relying on non-plastic synapses transmitting inhibitory spikes with a certain

delay, our implementation assumes that the internal dynamics of these neurons are inter-

correlated. Whenever the winner resets its membrane potential and enters in the refractory

period, neurons a�ected by the WTA mechanism do the same immediately afterwards. In

case multiple neurons �re simultaneously, the cell with the highest membrane potential

has preference for triggering the weight update. Further, the postsynaptic spikes from

the other �ring neurons are not considered. To ensure coherence between the training

and inference phases of our proposed SNN, layers trained with STDP maintain the WTA

mechanism after the learning process.

4.3.4 Network architecture for motion perception
To extract a robust measure of motion from the raw camera input, we propose the multi-

layer SNN illustrated in Fig. 4.6. This section highlights the unique goal of each of the

layers comprising this architecture, together with the variations of the proposed neuron

model and learning rule that are required depending on their connectivity scheme.

Input layer
Being the �rst stage of the network, the input layer encodes the event-based sensor data

in a compatible format for the rest of the architecture. This layer can be understood as

to be comprised of spiking neurons with no internal dynamics, whose neural activity is

determined by event arrival. Neurons are arranged in two-dimensional neural maps, one

per polarity, resembling the grid-like topology of the vision sensor. Depending on the

spatial resolution of these maps, each neuron is assigned with the polarity-speci�c events

of one or multiple pixels with no overlap.

SS-Conv layer: Feature extraction
The goal of the single-synaptic convolutional layer, or SS-Conv, is to extract visual features

from the input, and by doing so, to �lter out the input events that may otherwise corrupt

the learning process, and hence the performance, of subsequent layers in the architecture.
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Figure 4.6: Overview of the feedforward SNN architecture.

Neurons in this layer are retinotopically arranged in k = 1, 2,… , f (1) two-dimensional

maps. Each of these neurons receives spikes from presynaptic cells within a speci�c

spatial receptive �eld, of size r , in all maps of the previous layer. This sparse connectivity is

characterized by a set of excitatory synaptic weights, formally referred to as a convolutional

kernel Wk ∈ ℝr×f (0) , that is equal for all neurons belonging to the same map. This form of

weight sharing ensures that, within a map, neurons are selective to the same feature but at

di�erent spatial locations.

Let the input connectivity of neuron i from the map k be characterized by the afore-

mentioned convolutional kernelWk , the presynaptic trace X i ∈ ℝr×f
(0)

, and the spike train

S(0)ik (t). Further, let N ik refer to the map-speci�c direct neural neighborhood of the cell,

including itself. Then, considering neural connections as single-synaptic with transmission

delay � , the forcing function driving the internal dynamics of neurons in this layer is

de�ned as follows:

Iik (t) =
r
∑
j=1

f l−1

∑
c=1

WjckSl−1jc (t − � ) − max
∀b∈N ik

r
∑
j=1

f l−1

∑
c=1

Xbjc (t) (4.13)

Apart from the sparse connectivity, the only di�erence between this expression and the

fully-connected formulation, i.e., Eq. 4.9, is in the homeostasis parameter. When arranged

retinotopically, the neurons’ dynamics do not only depend on their own presynaptic trace

X i , but also on the synaptic traces characterizing their direct spatial neural neighborhood

N ik . By using the maximum trace, neurons are prevented from specializing to the leading

edge of moving visual features, rather than to the features themselves (see Section 4.4.4).

An augmentation of the proposed STDP rule is also required to handle the fact that

multiple updates can be generated simultaneously in di�erent spatial locations of the

same map. Since these neurons share convolutional kernel, ΔWk is computed through

synapse-speci�c averages of the local contributions. Additionally, due to the high overlap

of presynaptic receptive �elds, the WTA inhibitory mechanism described in Section 4.3.3

is expanded to cells within a small neighborhood of the �ring neurons, regardless of the

neural map. Note that, after learning, only the neuron-speci�c competition is maintained.

Merge layer: Feature aggregation
Due to the aperture problem [232], the di�erent types of local motion that can be perceived

at this stage of the architecture are exclusively dependent on the spatial con�guration



4.3 Method

4

69

of input features, i.e., their appearance, and not on their polarity. Consequently, the f (1)
neural maps of the SS-Conv layer can be merged into a single combined map without

losing useful information for motion perception. The merge layer is used for this purpose.

Compared to when local motion is to be perceived directly from the SS-Conv output, this

operation results in a decrease of both the number of convolutional kernels required in the

subsequent layer, and the amount of per-kernel trainable parameters.

Similarly to SS-Conv, the merge layer is convolutional and single-synaptic. The internal

dynamics of its neurons are driven by Eq. 4.13 (with l = 2 in this case), but without the need

for N ik since presynaptic connections are not plastic. Because of the latter, the application

of the WTA mechanism is also neglected. Instead, this layer is characterized by a single

1 × 1 convolutional kernel with unitary connections to each of the neural maps of the

previous layer.

MS-Conv layer: Local motion perception
MS-Conv is presented as a variation of the SS-Conv layer whose role is to provide local

motion estimates of the features extracted in the previous layers, by means of velocity-

selective neurons. Similarly to feature identi�cation, this selectivity emerges from visual

experience through STDP.

For the purpose of local motion perception, we propose an augmentation of Eq. 4.13

based on the foundations of frequency-based optical �ow methods [231] and bio-inspired

motion detectors [230, 241]. Firstly, motion is to be extracted as orientation in the spa-

tiotemporal domain. Therefore, neural connections in the MS-Conv layer are considered

multisynaptic with di�erent constant transmission delays as given by � ∈ ℝm . Secondly,

since these delays (and the rest of neural parameters) are equal for all (spatiotemporal)

convolutional kernels, inhibitory synapses are required to prevent the �ring of erroneous

postsynaptic spikes when the input trace only �ts part of the excitatory component of the

kernels. To account for this, each MS-Conv kernel is de�ned by a pair of excitatory and

inhibitory plastic weight matrices, denoted byW exc

k ∈ ℝr×m andW inh

k ∈ ℝr×m , respectively.

According to these additions, the forcing function of cells in this layer is expressed as:

Iik (t) =
r
∑
j=1

m
∑
d=1

(W exc

jdk + �W
inh

jdk )S
(2)
j (t − �d ) − max

∀b∈N ik

r
∑
j=1

m
∑
d=1

Xbjd (t) (4.14)

where � ∈ [0, 1] scales the impact of inhibitory synapses, and the presynaptic trace is

de�ned as X i ∈ ℝr×m .

Due to the neural spatial disposition, the implementation of STDP in this layer is, in

essence, identical to the one employed for SS-Conv. The only di�erence comes from the

fact that, for inhibitory synapses, the weights are initialized at 0, and w inh

init
is set to −wexc

init

(see Eq. 4.11). This discrepancy between w inh

init
and the initialization weight enables neurons

in this layer to be reactive to di�erent input features until specialization.

Pooling layer: From local to global
As an intermediate stage between the MS-Conv and dense layers, the pooling layer is

employed in the SNN architecture as a means to reduce the spatial dimensionality of the

former, and hence to facilitate the learning process of the latter. The intuition of this

layer is that, by pooling local motion estimates over large portions of the visual scene, a
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more accurate measure of the global motion in each of these regions can be obtained, thus

mitigating the e�ect of the aperture problem [232].

Similarly to the merge layer, the pooling layer is convolutional and single-synaptic, and

its presynaptic connections are not plastic. This layer is characterized by the same number

of neural maps as the MS-Conv, each one assigned with an excitatory kernel Wk that has

unitary weights with its presynaptic counterpart and null with the rest. In addition, there

is no overlap between receptive �elds.

Dense layer: Global motion perception
The dense layer, as the �nal stage of the architecture, is comprised of individual neurons

fully connected to cells in the pooling layer via single-synaptic plastic connections. Similarly

to �nal regions of biological visual motion systems [179, 180], neurons in this layer develop

selectivity to the global motion of the scene from visual experience through STDP.

With respect to implementation details, synaptic plasticity is conducted as described in

Section 4.3.3, and the forcing function of dense neurons resembles Eq. 4.9, but referring to

the convolutional presynaptic layer to which these cells are connected. This expression is

then de�ned as:

Ii(t) =
n(4)

∑
j=1

f (4)

∑
c=1

(WijcS
(4)
jc (t − � ) − Xijc (t)) (4.15)

where the weights and trace of input connections are de�ned as W i ∈ ℝn
(4)×f (4)

and

X i ∈ ℝn
(4)×f (4)

, respectively.

4.4 Experiments
In this section, we evaluate the performance of our convolutional SNN on synthetic [172]

and real event sequences [56, 172]. All the experiments are conducted using our open-

source CUDA-based cuSNN library, with a simulation timestep of Δtsim=1 ms. Concerning

learning, the networks are trained in a layer-by-layer fashion using the unsupervised STDP

rule presented in Section 4.3.3. Regardless of the layer type, the parameter a from Eq. 4.11

is set to 0, the initialization weight to winit = 0.5, the learning rate � to 1 × 10−4, and the

convergence threshold to 
th
=5 × 10−2. As shown in Figs. 4.5 (right) and 4.16c, these

parameters lead to weight distributions that, after convergence, are naturally constrained

in the rangeW ∈ [0, 1] for excitatory synapses, andW ∈ [−1, 0] for inhibitory. Throughout

the learning phase, short event sequences are presented sequentially at random following

a uniform distribution. Throughout the learning phase, and regardless of the data type and

sensor employed, we perform random (with 50% chance) spatial (i.e., horizontal and vertical)

and polarity �ips to the event sequences as data augmentation mechanisms. Moreover,

in both the learning and inference phases, the spatial resolution of each sequence is

downsampled to half its original size for computational e�ciency purposes. For more

information on the hyperparameters of these networks and their initialization, please refer

to [101].



4.4 Experiments

4

71

4.4.1 Synthetic data experiment

Figure 4.7: SS-Conv kernels

learned from the checker-

board texture. Weights are

encoded in color brightness:

green for input neurons with

positive (event) polarity, and

red for negative.

Firstly, we assess our motion-selective architecture on several

noise-free sequences restricted to the pure vertical and horizontal

image motion of a checkerboard pattern. These very structured

texture and motion facilitate the understanding of the behavior

and main properties of the network. Visual stimuli and ground

truth were generated with the event camera simulator from [172],

and this analysis is based on the planar optical �ow formulation

from Section 4.3.1.

Starting with the SS-Conv layer, Fig. 4.7 shows the four con-

volutional kernels learned from these sequences. With this kernel

scale, our learning rule leads to the successful identi�cation of

edges at the di�erent spatial orientations present in the input

data, and with the two combinations of event polarity. Using

these kernels for feature extraction, and aggregating their spiking

activity in the merge layer, an MS-Conv layer consisting of sixteen

spatiotemporal kernels was trained thereafter. Fig. 4.8 shows the

appearance of these kernels after convergence, and the response

of their corresponding neural maps as a function of the ventral

�ow components (!x , !y ).

This �gure con�rms that, with the connectivity pattern of the MS-Conv layer, STDP

leads to the successful identi�cation of the spatiotemporally-oriented traces of input

features, and hence their local motion. Out of the sixteen kernels trained, seven specialized
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Figure 4.8: Appearance (top) and neural response (bottom) of the sixteen spatiotemporal kernels learned from the

checkerboard texture in the MS-Conv layer. Response plots are normalized by the maximum kernel response on

the stimuli evaluated: 8.2763 spikes/ms by k = 11 for !x = 4.0 s−1. Synaptic strength is encoded with brightness

using the kernel formulation from Eq. 4.14, i.e., W exc + �W inh
.
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(b) Pure vertical global motion

Figure 4.9: Neural response of the sixteen individual neurons from the dense layer trained in the checkerboard

texture. Response plots are normalized by the maximum neural response on the stimuli evaluated: 0.3 spikes/ms

by i = 4 for !x = −3.8 s−1.

to pure horizontal motion, and the remaining nine to pure vertical. Each direction of

motion (up, down, left, right) was captured by at least four kernels, which, in turn, were

selective to a particular stimulus speed. For instance, upward motion was identi�ed by

kernels k = {13, 14, 15, 16}, from slow to fast tuning speed. Therefore, kernels in this

layer can be understood as local, velocity-tuned �lters that resemble those employed in

frequency-based optical �ow methods [217, 219, 229, 231]. However, instead of being

manually designed, these �lters emerge from visual experience in an unsupervised fashion.

A three-dimensional illustration of two MS-Conv kernels can be found in Fig. 4.10.

x
y

τ

x
y

τ

Figure 4.10: 3D illustration of

two MS-Conv kernels learned

from the checkerboard texture.

Synaptic strength is encoded

with brightness.

In addition, remarkable is the fact that two of the (generally)

four kernels that specialized to each of the aforementioned

motion directions have overlapping neural responses despite the

WTA mechanism described in Section 4.3.3. This is indicative

of the relatively weak speed selectivity of MS-Conv neurons in

comparison to their strong direction selectivity. Section 4.4.4

con�rms these results through an evaluation of both selectivities

as a function of � .

Lastly, selectivity to global motion emerges in neurons from

a dense layer trained as the �nal stage of the SNN, using the

low-dimensional activity of the pooling layer. Fig. 4.9 shows the

neural response (after convergence) of the sixteen cells in this

layer as a function of (!x , !y ). From this �gure, it can be seen

that neurons are successful at capturing the dominant global

motion pattern from the spatial distribution of local motion esti-

mates from previous layers. Out of the neurons trained, groups

of four specialized to each motion direction, with di�erent tun-

ing speeds. Note that the velocity-selective properties of these

neurons are exclusively dependent on those of the MS-Conv

kernels. Section 4.4.4 includes an evaluation of the temporal

activity of these neurons in response to speed pro�les that di�er

from the constant-speed sequences employed for learning.
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(a) Rotating disk (b) Roadmap

Figure 4.11: SS-Conv kernels learned from real sequences. Synaptic strength is encoded in color brightness.

4.4.2 Real data experiments
For the experiments with real data, we use samples from di�erent sources. In a �rst

evaluation, we employ the rotating-disk sequence from [56], which provides input events

corresponding to a disk slowly turning at a constant speed. Furthermore, several uncon-

strained recordings of a roadmap pattern (recorded with a SEES1 [186]) are used in a second

experiment characterized by more unstructured and noisy visual stimuli. For this, we also

use natural scene sequences from the Event Camera Dataset [172] for validation.

Rotating-disk seqence
Fig. 4.11a shows the appearance of the SS-Conv kernels trained on the rotating-disk

sequence. Similarly to the checkerboard case, neurons in this layer become selective to

the most frequent input features, which are edges at di�erent spatial orientations, and of

di�erent event polarity.

(a) Rotating disk

(b) Roadmap

Figure 4.12: MS-Conv kernels

learned from real sequences in the

(normalized) optical �ow space. Mo-

tion direction is encoded in color

hue, and speed in color brightness.

Each kernel is depicted as a cross.

With respect to the MS-Conv layer of this architecture,

Fig. 4.12a shows its 64 kernels in the (normalized) optical

�ow space. From this �gure, we observe that, through our

STDP rule, these MS-Conv kernels learn to identify a wide

variety of optical �ow vectors, including diagonal motion at

di�erent speeds. The performance of this layer in local mo-

tion perception can be assessed from the qualitative results

in Fig. 4.13 (�rst two rows). Here, we compare the response

of the network at this stage to the output of EV-FlowNet

[25], which represents the state-of-the-art of conventional

ANNs in event-based optical �ow estimation. From these re-

sults, in both the clockwise and counterclockwise sequences,

the response of the MS-Conv layer resembles that of EV-

FlowNet, thus con�rming the validity of our SNN in local

motion perception.

Lastly, a dense layer comprised of sixteen neurons was

trained, and the response of its cells is shown in Fig. 4.14.

As expected, the two global motion patterns present in the

data are successfully captured: half of the neurons react to

clockwise rotation, and the rest to counterclockwise. Besides

competition, the di�erent response levels are due to distinct

distributions of local motion estimates in the pooling layer

leading to the same global motion pattern.
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Input SS-Conv Merge MS-Conv EV-FlowNet

Figure 4.13: Qualitative results from the evaluation on real event sequences. From left to right, the �rst column

corresponds to the input events, the following three to the spiking response of the SS-Conv, merge, and MS-Conv

layers, respectively; and the last column to the optical �ow estimation of EV-FlowNet [25]. A color is assigned to

each of the kernels comprising the SS-Conv, merge, and MS-Conv layers. MS-Conv color reference shown in

Fig. 4.12, and computed through a 2D histogram-matching method as in [242].

Roadmap texture and natural scenes
Fig. 4.11b shows the appearance of the SS-Conv kernels from the SNN trained on roadmap

recordings. Similarly to those obtained with the rotating disk, these kernels learned edges

(and combinations thereof) at several orientations, and of di�erent polarities. However,
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note that kernel appearance is signi�cantly less smooth due to the unstructured and

low-contrast features of this texture, besides the sensor noise.
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Figure 4.14: Neural activity of the dense layer trained in

the rotating-disk sequence, in response to the two global

motion patterns in this recording.

Regarding the MS-Conv layer, Fig. 4.12b

shows its 64 spatiotemporal kernels in the

(normalized) optical �ow space. In this

�gure, we observe that despite the wide

variety of vectors learned, these are not as

uniformly distributed as for the rotating-

disk case. One can see that, �rst, hori-

zontal motion is the most frequent local

image motion type in the roadmap record-

ings; and second, the unsupervised nature

of STDP prioritizes frequent features over

others, less frequent, that may be more

distant in this two-dimensional space.

Qualitative results of the network performance up to this layer are shown in Fig. 4.13

for roadmap and natural scene recordings (last �ve rows). We draw several conclusions

from these results. Firstly, the SS-Conv layer is a key component of the architecture, since

it successfully �lters out inconsistent local events sequences, which bene�ts the learning

and performance of subsequent layers. Secondly, the optical �ow estimation of EV-FlowNet

[25] validates our MS-Conv layer, since it estimates highly similar optical �ow vectors.

However, there is a signi�cant di�erence between the estimates of these two approaches,

besides resolution (i.e., detail level). EV-FlowNet [25] performs best in high texture regions,

providing a semi-dense estimate of the local motion. On the other hand, our network

only provides local motion estimates whenever and wherever it discerns features whose
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Figure 4.15: Temporal course of the postsynaptic trace (as in Section 4.4.4) of the eight most-active neurons (for

each case) from the dense layer learned from the roadmap texture (bottom), in response to di�erent global planar

motion patterns (top). Plots are normalized by the maximum trace on the stimuli evaluated: 1.0 by i = 3 at t = 3.0
s for the horizontal motion case. Optical �ow visual observables (!x , !y , D) computed from the event sequences

with the planar optical �ow formulation from Section 4.3.1.
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Figure 4.16: Evolution of the weight distribution of sixteen SS-Conv kernels throughout the learning process, using

Kheradpisheh’s [45], Shrestha’s [47], and our STDP formulation. Results obtained with the roadmap texture, the

same learning rate, and the same budget of training sequences. Each distribution is normalized by its maximum

value in the learning process: 534 synapses with W ≈ 0.025 for (a), 130 with W ≈ −0.871 for (b), and 219 with

W ≈ 0.077 for (c); all from the 100% learning segment.

spatiotemporal trace �ts one of the MS-Conv kernels. Due to trace overlap, no estimation

is provided for image regions with high feature density. This limitation comes from the

working principle of this layer, which takes inspiration from frequency-based methods

[231] and bio-inspired motion detectors [230, 241], and for which these regions are also

problematic.

Lastly, Fig. 4.15 shows the temporal activity of some of the 32 neurons comprising the

dense layer of this architecture, in response to several global planar motion patterns. These

results con�rm the validity of this layer, and hence of the entire SNN, in becoming selective

to this motion information through STDP. Moreover, similarly to the rotating-disk case,

these results reinforce that, since notably di�erent distributions of local motion estimates

may correspond to the same global motion type, multiple dense neurons can specialize to

the same motion pattern without overlapping responses.

4.4.3 STDP evaluation
We now evaluate several STDP formulations in the task of learning the kernels of an

SS-Conv layer from the recordings of the roadmap texture. Speci�cally, we compare our

rule, as in Section 4.3.3, to those proposed by Kheradpisheh et al. [45], and Shrestha et al.
[47]; two of the most recent multiplicative formulations that have successfully been used

for image classi�cation with SNNs. Fig. 4.16 shows the weight distribution evolution of

the SS-Conv kernels throughout the learning process, using each of the aforementioned

formulations. Kernel appearance after learning is shown in Fig. 4.17.

The working principle of all STDP formulations is essentially the same. Whenever a

neuron �res, the presynaptic connections that transferred the input spikes causing the

�ring are potentiated, while those that did not are depressed. The di�erences are in how

the relevance of a connection is determined, and in how it is taken into account to compute

the weight update ΔW . Both Kheradpisheh’s [45] and Shrestha’s [47] formulations use

temporal windows of �xed length to determine whether an input spike, and so its corre-

sponding synapse, had an in�uence on the postsynaptic �ring. However, this information

is only employed to determine whether a synapse is potentiated or depressed, and not
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(a) Kheradpisheh et al. [45] (b) Shrestha et al. [47]

(c) Ours

Figure 4.17: Appearance of sixteen SS-Conv kernels after the learning process, using Kheradpisheh’s [45],

Shrestha’s [47], and our STDP formulation. Results obtained with the roadmap texture, the same learning rate,

and the same budget of training sequences. Synaptic strength is encoded in color brightness.

in the computation of ΔW . On the one hand, Kheradpisheh’s weight update is propor-

tional to the current weight: ΔW ∝ Wijd (1 −Wijd ). Results show that this rule leads to

the learning of ambiguous features that fail to capture the spatiotemporal properties of

the input, since all the weights become either null or unitary (see Fig. 4.16a). On the other

hand, Shrestha’s rule incorporates the weight dependency in an inversely proportional

manner: ΔW ∝ e−Wijd
for potentiation, and ΔW ∝ −eWijd

for depression. As shown, even

though the ΔW for potentiation (depression) diminishes as the weights increase (decrease),

weights keep increasing (decreasing) throughout the learning process (see Fig. 4.16b), and

hence constraints to prevent them from exploding (vanishing) are required. The use of

these constraints would, in turn, result in a bimodal weight distribution similar to that of

Kheradpisheh’s rule, with the aforementioned drawbacks.

As explained in Section 4.3.3, and to the best of the authors’ knowledge, our STDP

implementation is the �rst multiplicative formulation in incorporating synaptic relevance

in the computation of ΔW , resulting in an update rule whose LTP and LTD processes

are not mutually exclusive. We combine (normalized) presynaptic trace information as a

measure of synaptic relevance, with the inversely proportional weight dependency from

[47]. Results, and the stability proof included in Section 4.4.4, con�rm that with our novel

STDP formulation, an equilibrium weight is established for each synapse, towards which

the weights converge throughout the learning process (see Fig. 4.16c). Since the equilibrium

state depends on synaptic relevance, the features learned are successful at capturing the

spatiotemporal properties of the input.

4.4.4 Additional experiments
Effect of the max-based homeostasis formulation
Figs. 4.18 and 4.19 illustrate the need for the homeostasis parameter as detailed in Eqs. 4.13

and 4.14, which considers the maximum presynaptic trace of the direct spatial neighborhood

N ik of the neuron under analysis, when dealing with layers characterized by retinotopically-

arranged cells. For a better understanding, Fig. 4.18 should be compared to Figs. 4.7 and

4.11a, and Fig. 4.19 to Figs. 4.8a and 4.8b.
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(a) Checkerboard (b) Roadmap

Figure 4.18: SS-Conv kernels learned from synthetic (left) and real event sequences (right) with the neuron-speci�c

homeostasis formulation. Synaptic strength is encoded in color brightness.
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Figure 4.19: MS-Conv kernels learned from the checkerboard texture with the neuron-speci�c homeostasis

formulation. Synaptic strength is encoded with brightness.

As shown, when the neuron-speci�c presynaptic trace is employed instead of the full

homeostasis formulation, convolutional kernels specialize to the leading edge of moving

features, and hence most of these kernels are characterized by more ambiguous synaptic

con�gurations in which the strong synapses are mainly located on the receptive �eld

borders. The e�ect of using this incomplete model on the performance of the SS-Conv

layer is that a greater number of kernels is required to extract the same number of spatial

features. However, the impact of this formulation is more visible in the MS-Conv layer.

As shown in Fig. 4.19, the vast majority of MS-Conv kernels lose their velocity-selective

properties, simply because the spatiotemporally-oriented traces of input features are no

longer captured. The leading-edge specialization also makes the learning process more

complex, since kernel overlap increases. This, in turn, leads to some of these kernels being

always prevented from �ring, i.e., prevented from triggering STDP (e.g. k = 11).

Velocity selectivity of MS-Conv neurons
Fig. 4.20 shows the velocity selectivity of MS-Conv neurons as a function of � , after training

with the synthetic checkerboard texture. These results con�rm that, while selectivity to

motion direction emerges regardless of the value of � , the inhibitory component of MS-Conv

kernels is crucial for the development of speed selectivity. A more extensive sensitivity

analysis of these properties can be found in [243].

Temporal response of dense neurons
Fig. 4.21 is shown to assess the temporal activity of neurons from the dense layer learned

using the checkerboard texture in response to speed pro�les that di�er from the constant-

speed sequences employed for learning. Due to the pure leftward motion of the stimuli

used for this evaluation, only the activity of neurons specialized to this motion direction

is shown. Neural activity is measured through the postsynaptic trace yi(t) of these cells,
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Figure 4.20: Direction and speed selectivity of neurons in the MS-Conv layer as a function of � . The dashed lines

indicate the training con�guration, and each response plot is normalized by its maximum value. Results obtained

with the checkerboard texture. � = 0 means no inhibition, while � = 1 that inhibitory and excitatory weights

contribute equally to the response of this layer.
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Figure 4.21: Temporal course of the postsynaptic trace of neurons i = 1–4 from the dense layer learned from the

checkerboard texture (bottom, see Fig. 4.9), in response to leftward input stimuli with di�erent speed pro�les

(top). Plots are normalized by the maximum trace on the stimuli evaluated: 0.4098 by i = 4 at t = 0.36 s for the

�uctuating acceleration case.

which, similarly to Eq. 4.7, keeps track of the recent history of postsynaptic spikes emitted

by a particular neuron, and is given by:

�y
dyi(t)
dt

= −yi(t) + Sli (t) (4.16)

Response aspects, such as the overlap of neural activity for some ventral �ow ranges,

or the dominance of i = 4 for fast motion, are in line with the results shown in Fig. 4.9a.

Proof of stability of the proposed STDP
We use Lyapunov theorem to investigate the global stability of the STDP implementation

that we propose in this work. To simplify the proof, we assume that neural connectivity is

single-synaptic with no transmission delay. The STDP rule de�ned in Eqs. (4) and (5) can

then be rewritten as:

ΔWij = �(e
−(Wij−winit

)(eX̂ij − a) − e(Wij−winit
)(e(1−X̂ij ) − a)) (4.17)
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Equilibrium weights W̄ij are given by ΔWij = 0:

W̄ij =
1
2
ln

(
eX̂ij − a

e(1−X̂ij ) − a)
+ winit

(4.18)

If we let z = Wij − W̄ij , Eq. 4.17 becomes:

ΔWij =�(eX̂ij − a)
1
2 (e(1−X̂ij ) − a)

1
2 (e−z − ez)

ΔWij =A(e−z − ez)
(4.19)

where A(X̂ij , a) is a convenience function containing all components that are not a function

of z. Then we de�ne the positive de�nite energy function V (z) = 1
2z
2
. As such, V̇ (z) can

be solved as follows:

V̇ (z) = zż = z(ΔWij − ΔW̄ij) (4.20)

where ΔW̄ij can be computed from the time derivative of Eq. 4.18 as:

ΔW̄ij =
1
2
ΔX̂ij (

eX̂ij

eX̂ij − a
+

e(1−X̂ij )

e(1−X̂ij ) − a)
(4.21)

and ΔX̂ij can be determined using Section 4.7:

ΔX̂ij =
�

�XX̂i,m
(Sl−1j − X̂ijSl−1m ) (4.22)

where, here, the subscriptm denotes the index of the neuron with the maximum presynaptic

trace. Combining Eqs. 4.21 and 4.22 we are left with:

ΔW̄ij =
1
2

�
�X X̂i,m (

eX̂ij

eX̂ij − a
+

e(1−X̂ij )

e(1−X̂ij ) − a)
(Sl−1j − X̂ijSl−1m )

=B(Sl−1j − X̂ijSl−1m )

(4.23)

where B(X̂ij , a) is a convenience expression containing all elements not a function of Sl−1j
and Sl−1m . Now the energy derivative can be expressed simply as:

V̇ (z) = Az(e−z − ez) − Bz(Sl−1j − X̂ijSl−1m ) (4.24)

Using the Taylor expansion of ez and e−z , we are left with:

V̇ (z) = − 2A(z2 +
z4

3!
+⋯ ) − Bz(Sl−1j − X̂ijSl−1m ) (4.25)

Now if we look at the case where there is no external input to the neurons (i.e., the

normalized presynaptic trace is constant, Sl−1j = Sl−1m = 0), we have that global asymptotic

stability is guaranteed for A > 0, which can be ensured by setting � > 0 and a < 1.
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When considering the input, we can de�ne bounded error z with input-state stability

inequality for a bounded input u = X̂ijSl−1m − Sl−1j :

‖z(t)‖ ≤ �(‖z(t)‖, t − t0) + 
 (sup�≥t0
‖u(� )‖) , ∀t ≥ t0 (4.26)

where 
 is the so-called Lyapunov gain, which will lead to input-state stability if positive

de�nite. Now, using the �rst order approximation for the Taylor expansion from Eq. 4.25,

we can show:

V̇ (z) ≤ −Az2, ∀|z| ≥
B (X̂ijS

l−1
m − Sl−1j )
2A

(4.27)

with Lyapunov gain 
 = B
2A .

As A must be positive for global asymptotic stability, for 
 to be positive de�nite, B
must also be positive. As such, �X and � must have the same sign. Additionally, the values

of the constants in A and B can be used to control the bounds of the error z.

To give some physical meaning to these parameters we can see that adjusting a will

change the sensitivity of the STDP update to the presynaptic trace. The larger the di�erence

|1 − a|, the less sensitive the update will be to the input. The time constant �X will adjust

the rate at which the presynaptic trace is updated from the inputs Sl−1j and Sl−1m . The larger

the time constant the slower the presynaptic trace will change and the more bounded the

error will become. The scaling factor � changes the magnitude of the presynaptic trace

and therefore the magnitude of the rate of change of the presynaptic trace.

One thing to note here is the discontinuity as Xi,m → 0. This shows that the bound

of the error can become large if the maximum presynaptic trace is small and the current

neuron being updated is not the neuron with the maximum presynaptic trace. Physically,

this would mean that the network cannot accurately learn when the input is in�nitely

sparse. For the case where the input is measurably sparse, the learning can be improved by

compensating with a larger time constant �X .

4.5 Conclusion
In this chapter, we presented the �rst SNN in which selectivity to the local and global

motion of the visual scene emerges through STDP from event-based stimuli. The success

of this emergence depends on three contributions. First, an adaptive spiking neuron model

is necessary to handle the rapidly varying input statistics of event-based sensors, and we

present a novel suitable formulation for this purpose. Second, we introduce a novel STDP

implementation that, contrary to the current state-of-the-art of this learning protocol, is

inherently stable. Third, we propose an architecture that learns to perform a hierarchical

feature extraction, e�ectively capturing geometric features, identifying the local motion of

these features, and integrating this information into a global ego-motion estimate.
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Supplementary material

Video summary of the approach: https://youtu.be/FJrba02kZII

Project code: https://github.com/tudelft/cuSNN

https://youtu.be/FJrba02kZII
https://youtu.be/FJrba02kZII
https://github.com/tudelft/cuSNN
https://github.com/tudelft/cuSNN


5
Self-Supervised Learning of

Event-Based Optical Flow
with SNNs

The unsupervised nature of the training framework from the previous chapter posed challenges
in controlling the learned features and comparing their performance with other approaches.
Therefore, in this chapter, we focus on the task of learning to estimate low-latency optical �ow
from event-based camera inputs in a self-supervised manner, by modifying the state-of-the-art
training pipeline (for conventional arti�cial neural networks) to encode minimal temporal
information in its inputs. Moreover, we reformulate the self-supervised loss function for event-
based optical �ow to improve its convexity. We perform experiments with various types of
recurrent, spiking and non-spiking, architectures using the proposed pipeline. Concerning
spiking networks, we investigate the e�ects of elements such as parameter initialization and
optimization, surrogate gradient shape, and adaptive neuronal mechanisms. We �nd that
initialization and surrogate gradient width play a crucial part in enabling learning with sparse
inputs, while the inclusion of adaptivity and learnable neuronal parameters can improve
performance. We show that the accuracy levels of the proposed networks are on par with the
state-of-the-art at the time of publication.

The contents of this chapter have been published in:

J. J. Hagenaars
†

, F. Paredes-Vallés†, G. C. H. E. de Croon, Self-supervised learning of event-based optical
�ow with spiking neural networks, Advances in Neural Information Processing Systems (NeurIPS), 2021.

† Equal contribution, with alphabetical ordering.

Contribution: The research leading to this chapter’s work was the result of a collaborative e�ort with ir. Jesse J.

Hagenaars, from the Micro Air Vehicle Laboratory (Delft University of Technology). We both equally contributed

to the conception of the study, to performing the experiments, and to the analysis and interpretation of the results.

Speci�cally, I designed the self-supervised framework for learning low-latency, event-based optical �ow, while

Jesse did most of the implementation work for simulating the spiking neural networks.
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Figure 5.1: Self-supervised event-based optical �ow pipeline for deep spiking neural networks. In order of

processing, the event stream is split into small partitions with the same number of events, which are formatted

and then fed to the network in a sequential fashion. An optical �ow map is predicted for each partition, associating

every input event with a motion vector. Once a su�cient number of events has been processed, we perform a

backward pass using our contrast maximization loss [97].

5.1 Introduction

N
euromorphic hardware promises highly energy-e�cient and low-latency sensing

and processing thanks to its sparse and asynchronous nature. Event cameras cap-

ture brightness changes at microsecond resolution [18], while neuromorphic processors

have demonstrated orders of magnitude lower energy consumption and latency compared

to von-Neumann architectures [48, 244]. To realize the full potential of such neuromor-

phic pipelines, we have to move towards an event-based communication and processing

paradigm, where single events are passed as-is between the event-based sensor/camera

and the neuromorphic processor running a spiking neural network (SNN), without pro-

cessing or accumulation of any kind in between. Because of this, all temporal integration

of information needs to happen inside the network itself. Most work on employing SNNs

to event-based computer vision follows this approach [39, 40], but is limited to problems

of limited temporal complexity (like classi�cation). On the other hand, most state-of-the-

art arti�cial neural network (ANN) pipelines for event-based computer vision combine a

stateless feedforward architecture with encoding temporal information in the input [25, 33].

Apart from incompatible pipelines, one of the larger impediments to widespread neu-

romorphic adoption is the fact that learning algorithms designed for traditional ANNs do

not transfer one-to-one to SNNs, which exhibit sparse, binary activity and more complex

neural dynamics. On the one hand, this has driven research into the conversion of ANNs

to SNNs without loss of accuracy, but with the promised e�ciency gains [35]. On the

other hand, it has limited the application of directly-trained SNNs in the computer vision

domain to less complicated and often discrete problems like image classi�cation [39, 40]

on constrained datasets such as N-MNIST [23] or DVS128 Gesture [24].
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Still, many ongoing developments in the area of direct SNN training are promising

and may form building blocks for tackling more complex tasks. Surrogate gradients

[37, 38, 204, 206], which act as stand-in for the non-di�erentiable spiking function in the

backward pass, enable traditional backpropagation with few adjustments. Similarly, the

inclusion of parameters governing the neurons’ internal dynamics in the optimization was

demonstrated to be bene�cial [40, 245]. Many works also include some form of activity

regularization to keep neurons from excessive spiking [38, 246] or to balance excitability

through adaptation [101, 247]. Kickstarting initial activity (hence gradient �ow) is often

not the goal of these regularization terms, even though [38] shows that there is a narrow

activity band in which learning is optimal. This ties in with the initialization of parameters,

which has not been rigorously covered for SNNs with sparse inputs yet, leaving room for

improvement.

Our goal is to demonstrate the potential of neuromorphic sensing and processing on a

complex task. To this end, we tackle a real-world, large-scale problem by learning, in a self-

supervised fashion and using SNNs, to estimate the optical �ow encoded in a continuous

stream of events; a task that is usually tackled with deep, fully convolutional ANNs [25, 33].

By focusing on such a problem, we aim to identify and tackle emerging knowledge gaps

regarding SNN training, while approximating a truly asynchronous pipeline.

In summary, the main contribution of this chapter is two-fold. First, we propose a

novel self-supervised learning (SSL) framework for event-based optical �ow estimation

that puts emphasis on the networks’ capacity to integrate temporal information from small,

subsequent slices of events. This training pipeline, illustrated in Fig. 5.1, is built around a

reformulation of the self-supervised loss function from [33] that improves its convexity.

Second, through this framework, we train the �rst set of deep SNNs that successfully

solve the problem at hand. We validate our proposals through extensive quantitative and

qualitative evaluations on multiple datasets. Additionally, for the SNNs, we investigate the

e�ects of elements such as parameter initialization and optimization, surrogate gradient

shape, and adaptive neural mechanisms.

5.2 Related work
Due to the potential of event cameras to enable low-latency optical �ow estimation, ex-

tensive research has been conducted on this topic since these sensors were introduced

[96, 187, 217, 248]. Regarding learning-based approaches, in [25], Zhu et al. proposed

the �rst convolutional ANN for this task, which was trained in an SSL fashion with the

supervisory signal coming from the photometric error between subsequent grayscale

frames captured with the active pixel sensor (APS) of the DAVIS240C [174]. Alongside this

network, the authors released the MVSEC dataset [168], the �rst event camera dataset with

ground-truth optical �ow estimated from depth and ego-motion sensors. A similar SSL

approach was introduced in [190], but here optical �ow was obtained through an ANN

estimating depth and camera pose. Later, Zhu et al. re�ned their pipeline and, in [33],

proposed an SSL framework around the contrast maximization for motion compensation

idea from [96, 97]; with which, as explained in Section 5.3.2, the supervisory signal comes

directly from the events and there is no need for additional sensors. More recently, Sto�re-

gen and Scheerlinck et al. showed in [150] that, if trained with synthetic event sequences

(from an event camera simulator [149]) and ground-truth data in a pure supervised fashion,
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the ANN from [25, 33] reaches higher accuracy levels when evaluated on MVSEC. Lastly,

to hold up to the promise of high-speed optical �ow, there has been a signi�cant e�ort

toward the miniaturization of optical �ow ANNs [100, 249].

With respect to learning-based SNNs for optical �ow estimation, only the works of

Paredes-Vallés et al. [101] and Lee et al. [250, 251] are to be highlighted. In [101], the

authors presented the �rst convolutional SNN in which motion selectivity emerges in an

unsupervised fashion through Hebbian learning [42] and thanks to synaptic connections

with multiple delays. However, this learning method limits the deployability of this

architecture to event sequences with similar statistics to those used during training. On the

other hand, in [250], the authors proposed a hybrid network, integrating spiking neurons

in the encoder with ANN layers in the decoder, trained through the SSL pipeline from [25].

This architecture was later expanded in [251] with a secondary ANN-based encoder used

to retrieve information from the APS frames. Lastly, SNNs have also been implemented in

neuromorphic hardware for optical �ow estimation [227], although this did not involve

learning. Hence, until now, no one has yet attempted the SSL of optical �ow with a pure

SNN approach.

Most of the SNN work in other computer vision domains has so far been focused on

discrete problems like classi�cation [39, 40, 252, 253] and binary motion-based segmentation

[254]. A notable exception is the work from Gehrig et al. [255], who propose a convolutional

spiking encoder to continuously predict angular velocities from event data. However, until

now, no one has yet attempted a dense (i.e., with per-pixel estimates) regression problem

with deep SNNs that requires recurrency.

5.3 Method
5.3.1 Input event representation
An event camera consists of a pixel array that responds, in a sparse and asynchronous

fashion, to changes in brightness through streams of events [18]. For an ideal camera,

an event ei = (x i , ti , pi) of polarity pi ∈ {+, −} is triggered at pixel x i = (xi , yi)T and time

ti whenever the brightness change since the last event at that pixel reaches the contrast

sensitivity threshold for that polarity.

The great majority of learning-based models proposed to date for the problem of event-

based optical �ow estimation encode, in one form or another, spatiotemporal information

into the input event representation before passing it to the neural architectures. This allows

stateless (i.e., non-recurrent) ANNs to accurately estimate optical �ow at the cost of having

to accumulate events over relatively long time windows for their apparent motion to be

perceivable. The most commonly used representations make use of multiple discretized

frames of event counts [33, 100, 150, 250, 251] and/or the per-pixel average or the most

recent event timestamps [25, 190, 249].

Ideally, SNNs would immediately receive spikes at event locations, which implies that

temporal information should not be encoded in the input representation, but should be

extracted by the network. To enforce this, we use a representation consisting only of

per-pixel and per-polarity event counts, as in Fig. 5.1. This representation gets populated

with consecutive, non-overlapping partitions of the event stream "inp

k ≐ {ei}N−1i=0 (referred

to as input partition) each containing a �xed number of events, N .
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5.3.2 Learning optical flow via contrast maximization
We use the contrast maximization proxy loss for motion compensation [97] to learn to

estimate optical �ow from the continuous event stream in a self-supervised fashion. The

idea behind this optimization framework is that accurate optical �ow information is encoded

in the spatiotemporal misalignments among the events triggered by the same portion of a

moving edge (i.e., blur) and that, to retrieve it, one has to compensate for this motion (i.e.,

deblur the event partition). Knowing the per-pixel optical �ow u(x) = (u(x), v(x))T , the

events can be propagated to a reference time t
ref

through:

x′i = x i + (tref
− ti)u(x i) (5.1)

In this work, we reformulate the deblurring quality measure proposed by Mitrokhin et
al. [161] and Zhu et al. [33]: the per-pixel and per-polarity average timestamp of the image

of warped events (IWE). The lower this metric, the better the event deblurring and the

more accurate the optical �ow estimation. We generate an image of the average timestamp

at each pixel for each polarity p′ via bilinear interpolation:

Tp′ (x;u|tref
) =

∑j �(x − x′j )�(y − y
′
j )tj

∑j �(x − x′j )�(y − y
′
j ) + �

�(a) = max(0, 1 − |a|)

j = {i ∣ pi = p′}, p′ ∈ {+, −}, � ≈ 0

(5.2)

Previous works minimize the sum of the squared temporal images resulting from the

warping process [33, 100]. However, we scale this sum prior to the minimization with the

number of pixels with at least one warped event in order for the loss function to be convex:

contrast(tref
) =

∑x T+(x;u|tref
)2 + T−(x;u|tref

)2

∑x [n(x′) > 0] + �
(5.3)

where n(x′) denotes a per-pixel event count of the IWE. As shown in Section 5.4.4, without

the scaling, the loss function is not well-de�ned as the optimal solution is to always warp

events with large timestamps out of the image space so they do not contribute to Eq. 5.2.

Previous works circumvented this issue by limiting the maximum magnitude of the optical

�ow vectors that could be estimated through scaled TanH activations in the prediction

layers [33, 100].

As in [33], we perform the warping process both in a forward (t fw
ref

) and in a backward

fashion (tbw

ref
) to prevent temporal scaling issues during backpropagation. The total loss

used to train our event-based optical �ow networks is then given by:

contrast = contrast(t fwref
) + contrast(tbw

ref
) (5.4)


�ow

= contrast + �smooth
(5.5)

where � is a scalar balancing the e�ect of the two losses and 
smooth

is a Charbonnier

smoothness prior [162], as in [25, 33]. Since contrast does not propagate the error back to

pixels without input events, we mask the output of our networks so that null optical �ow

vectors are returned at these pixel locations. Furthermore, we mask the computation of
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
smooth

so that this regularization mechanism only considers optical �ow estimates from

neighboring pixels with at least one event.

As hinted by the motion model in Eq. 5.1 and discussed in [97, 256], there has to be

enough linear blur in the input event partition for contrast to be a robust supervisory

signal. This is usually not the case in our training pipeline due to the small number of input

events N that we pass to the networks at each forward pass. For this reason, we de�ne a

secondary event partition, the so-called training partition "train

k→k+R ≐ {("
inp

i , ûi)}k+Ri=k , which

is a bu�er that gets populated every forward pass with an input event partition and its

corresponding optical �ow estimates. At training time, we perform a backward pass with

the content of the bu�er using backpropagation through time once it contains R successive

event-�ow tuples, after which we detach the state of the networks from the computational

graph and clear the bu�er. Note that 
smooth

is also applied in the temporal dimension by

smoothing optical �ow estimates at the same pixel location from adjacent tuples.

5.3.3 Spiking neuron models
We compare various spiking neuron models from literature on the task of event-based

optical �ow estimation. All models are based on the leaky-integrate-and-�re (LIF) neuron,

whose membrane potential U and synaptic input current I at timestep k can be written as:

U k
i = (1 − Sk−1i )�U k−1

i + (1 − �)I ki (5.6)

I ki = ∑
j
W �

ij S
k
j +∑

r
W rec

ir Sk−1r (5.7)

where j and r denote presynaptic neurons while i is for postsynaptic, � is the membrane

decay or leak, S ∈ {0, 1} a neuron spike, and W �
and W rec

feedforward and recurrent

connections, respectively. Membrane decays can either be �xed or learned. A neuron �res

an output spike S if the membrane potential exceeds a threshold � , which can either be

�xed, learned, or adaptive (see below). Firing also triggers a reset of U , which is either

hard, as in Eq. 5.6, or soft, as in [247]. The former is said to be more suitable for deeper

networks, as it gets rid of errors accumulated by the surrogate gradient [257].

Following [247], we introduce an adaptive threshold to make up the adaptive LIF (ALIF)

model. A second state variable T acts as a low-pass �lter over the output spikes, adapting

the �ring threshold based on the neuron’s activity:

�ki = �0 + �1T
k
i (5.8)

T ki = �T
k−1
i + (1 − �)Sk−1i (5.9)

where �{0,1} are (learnable) constants, and � is the (learnable) threshold decay/leak. ALIF’s

equations for U and I are identical to the LIF formulation. By decaying the threshold very

slowly, T can act as a longer-term memory of the neuron [246].

Instead of postsynaptic adaptivity, we can keep a trace of presynaptic activity and use

that to regularize neuron �ring, giving the presynaptic LIF (PLIF) model. In [101], this

adaptation is implemented by subtracting a presynaptic trace P from the input current:
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I ki = ∑
j
W �

ij S
k
j +∑

r
W rec

ir Sk−1r − �0Pki (5.10)

Pki = �1P
k−1
i +

1 − �1
|Ri |

∑
j∈Ri

Sk−1j (5.11)

where �{0,1} are (learnable) addition and decay constants, and Ri is the set of receptive

�elds of neuron i over all channels (i.e., the second term in Eq. 5.11 is an average pooling

averaged over all channels). Adaptation based on presynaptic instead of postsynaptic

activity minimizes adaptation delay, making it especially suited to the fast-changing nature

of event data [101]. In this spirit, we also propose the XLIF model, a crossover between

ALIF and PLIF, which adapts its threshold based on presynaptic activity:

�ki = �0 + �1P
k
i (5.12)

As surrogate gradient for the spiking function � , we opt for the derivative of the inverse

tangent � ′(x) = aTan
′ = 1/(1 + 
x2) [40] because it is computationally cheap, with 
 being

the surrogate width and x = U − � . In order to ensure gradient �ow (hence learning) in

the absence of neuron �ring, the width should be su�cient to cover at least a range of

subthreshold membrane potentials, while the height should be properly scaled (i.e., ≤ 1) for

stable learning [38]. Exact shape is of less importance for �nal accuracy. Further details on

this can be found in Section 5.4.4.

5.3.4 Network architectures
We evaluate the two trends on neural network design for event cameras through (spiking)

recurrent variants of EV-FlowNet [25] (encoder-decoder) and FireNet [148] (lightweight,

no downsampling). An overview of the evaluated architectures can be found in Fig. 5.2.

The use of explicit recurrent connections in all our ANNs and SNNs is justi�ed through

the ablation study in Section 5.4.4.

The base architecture referred to as EV-FlowNet is a recurrent version of the network

proposed in [25]. Once represented as in Section 5.3.1, the input event partition is passed

through four recurrent encoders performing strided convolution followed by ConvGRU

[169] with output channels doubling after each encoder (starting from 64), two residual

blocks [167, 258], and four decoder layers that perform bilinear upsampling followed

by convolution. After each decoder, there is a (concatenated) skip connection from the

corresponding encoder, as well as a depthwise (i.e., 1×1) convolution to produce a lower scale

�ow estimate, which is then concatenated with the activations of the previous decoder. The


�ow

loss (see Eq. 5.5) is applied to each intermediate optical �ow estimate via upsampling.

All layers use 3 × 3 kernels and ReLU activations except for the prediction layers, which

use TanH activations.

The FireNet architecture in Fig. 5.2 is an adaptation of the lightweight network proposed

in [148], which was originally designed for event-based image reconstruction. However, as

shown in [100], this architecture is also suitable for fast optical �ow estimation. The base

architecture consists of �ve encoder layers that perform single-strided convolution, two

ConvGRUs, and a �nal prediction layer that performs depthwise convolution. All layers
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εinp
k

G1 G2 G3 G4 R1 R2 D1

P1

D2

P2

D3

P3

D4
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Figure 5.2: Schematic of the base neural networks used in this work. All evaluated variants inherit from these

architectures and only vary the neuron model and/or the convolutional recurrent layer.

have 32 output channels and use 3 × 3 kernels and ReLU activations except for the �nal

layer, which uses a TanH activation.

Based on these architectures, we have designed several variants: (i) RNN-EV-FlowNet

and RNN-FireNet, which use vanilla ConvRNNs instead of ConvGRUs; (ii) Leaky-EV-

FlowNet and Leaky-FireNet, which use ConvRNNs and whose neurons are stateful cells

with leaks (for a more direct comparison with the SNNs); and (iii) SNN-EV-FlowNet and

SNN-FireNet (with SNN being LIF, ALIF, PLIF or XLIF), the SNN variants that use ConvRNNs

and whose neurons are spiking and stateful according to the neuron models in Section 5.3.3.

The prediction layers of all SNN variants are kept real-valued with TanH activation, acting

as a learned decoder from binary spikes to a dense optical �ow estimate. The �rst layer of

the SNNs can likewise be viewed as a learned spike encoder, receiving integer event counts

and emitting spikes.

Clarifications on implicit and explicit recurrency
The de�nition of the implicit temporal dynamics of the leaky, non-spiking variants of

our EV-FlowNet and FireNet base architectures closely resembles that of the membrane

potential for spiking neurons (see Eq. 5.6) but without the reset mechanism. With ReLU as

non-linearity, the activation Y of a leaky neuron is given by:

Y ki = ReLU(�Y
k−1
i + (1 − �)∑

j
W �

ij I
k
i ) (5.13)

where j and i denote presynaptic and postsynaptic neurons respectively, � is the decay or

leak of the neuron, k the timestep, and W �
the feedforward weights multiplying the input

signal I .
Regarding explicit recurrency, there is a slight di�erence between the vanilla ConvRNN

layers used in our SNN and ANN architectures. On the one hand, the ConvRNNs that we

use in our SNNs are de�ned through Eqs. 5.6 and 5.7 with two convolutional gates, one for

the input and one for the recurrent signal, followed by the spiking function. On the other

hand, the ConvRNNs in our ANNs are characterized by the same two convolutional gates

but in this case followed by a TanH activation, and thereafter by a third output gate with

ReLU activation. This augmentation was introduced to improve the convergence of the

RNN and leaky variants of the base ANN architectures.
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5.4 Experiments

Figure 5.3: Optical �ow color-

coding scheme. Direction is

encoded in color hue, and

speed in color brightness.

To highlight the robustness of our SSL pipeline, we train our

networks on the indoor forward-facing sequences from the UZH-

FPV Drone Racing Dataset [171], which is characterized by a

much wider distribution of optical �ow vectors than the datasets

that we use for evaluation, i.e., MVSEC [25], High Quality Frames

(HQF) [150], and the Event-Camera Dataset (ECD) [172]. The

selected training sequences consist of approximately 15 minutes

of event data that we split into 140 128 × 128 (randomly cropped)

sequences with 500k events each. We further augment this data

using random horizontal, vertical, and polarity �ips.

Our framework is implemented in PyTorch. We use the Adam

optimizer [173] and a learning rate of 0.0002, and train with a

batch size of 8 for 100 epochs. We clip gradients based on a global

norm of 100. We �x the number of events for each input partition to N = 1k, while we

use 10k events for each training event partition. This is equivalent to K = 10 forward

passes per backward pass (i.e., the network’s unrolling), as described in Section 5.3.2 and

illustrated in Fig. 5.1. Lastly, we empirically set the scaling weight for 
smooth

to � = 0.001.

We evaluated our architectures on the MVSEC dataset [168] with the ground-truth

optical �ow data provided by Zhu et al. in [25], which was generated at each APS frame

timestamp, and scaled to be the displacement for the duration of one (dt = 1) and four

(dt = 4) APS frames. Optical �ow predictions were also generated at each frame timestamp

by using all the events in the time window as input for dt = 1, or 25% of the window

events at a time for dt = 4 (due to the larger displacements). For comparison against

the ground truth, the predicted optical �ow is converted from units of pixels/partition to

units of pixel displacement by multiplying it with dtgt/dtinput. We compare our recurrent

ANNs and SNNs against the state-of-the-art on self-supervised event-based optical �ow

estimation: the original (non-recurrent) EV-FlowNet [25] trained with either photometric

error as in [25] or contrast maximization [33], and the hybrid SNN-ANN network from

[250]. Quantitative results of this evaluation are presented in Table 5.1. We report the

average endpoint error (EPE↓, lower is better) and the percentage of points with EPE

greater than 3 pixels and 5% of the magnitude of the optical �ow vector, denoted by %
Outlier

,

over pixels with valid ground-truth data and at least one input event. Qualitative results of

our best performing networks on this dataset are shown in Fig. 5.4.

For the sake of completeness, as in [100, 150] we also evaluate our architectures on the

ECD [172] and HQF [150] datasets using metrics derived from the contrast maximization

framework [96, 97]. The details and results of this evaluation can be found in Section 5.4.4.

Regarding the SNN variants, the results in Table 5.1, Fig. 5.4 and Section 5.4.4 correspond

to networks whose neural parameters (i.e., leaks, thresholds, adaptive mechanisms) were

also optimized when applicable, unless speci�ed. See Section 5.4.4 for an ablation study on

the learnable parameters.

5.4.1 Evaluation of the ANN and SNN architectures
Firstly, the quantitative results in Table 5.1 con�rm the validity of the proposed SSL

framework for event-based optical �ow estimation with recurrent networks. As shown, our
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dt = 1 outdoor_day1 indoor_�ying1 indoor_�ying2 indoor_�ying3

EPE↓ %
Outlier

↓ EPE↓ %
Outlier

↓ EPE↓ %
Outlier

↓ EPE↓ %
Outlier

↓
EV-FlowNet

∗
[25] 0.49 0.20 1.03 2.20 1.72 15.10 1.53 11.90

EV-FlowNet
∗

[33] 0.32 0.00 0.58 0.00 1.02 4.00 0.87 3.00
Hybrid-EV-FlowNet

∗
[250] 0.49 - 0.84 - 1.28 - 1.11 -

EV-FlowNet 0.47 0.25 0.60 0.51 1.17 8.06 0.93 5.64

RNN-EV-FlowNet 0.56 1.09 0.62 0.97 1.20 8.82 0.93 5.51

Leaky-EV-FlowNet 0.53 0.28 0.71 0.60 1.43 11.37 1.14 8.12

LIF-EV-FlowNet 0.53 0.33 0.71 1.41 1.44 12.75 1.16 9.11

ALIF-EV-FlowNet 0.57 0.42 1.00 2.46 1.78 17.69 1.55 15.24

PLIF-EV-FlowNet 0.60 0.52 0.75 0.85 1.52 13.38 1.23 9.48

XLIF-EV-FlowNet 0.45 0.16 0.73 0.92 1.45 12.18 1.17 8.35

FireNet 0.55 0.35 0.89 1.93 1.62 14.65 1.35 10.64

RNN-FireNet 0.62 0.52 0.96 2.60 1.77 17.55 1.48 13.60

Leaky-FireNet 0.52 0.41 0.90 2.66 1.67 16.09 1.43 13.16

LIF-FireNet 0.57 0.40 0.98 2.48 1.77 16.40 1.50 12.81

ALIF-FireNet 0.62 0.45 1.04 3.02 1.85 18.88 1.58 15.00

PLIF-FireNet 0.56 0.38 0.90 1.93 1.67 14.47 1.41 11.17

XLIF-FireNet 0.54 0.34 0.98 2.75 1.82 18.19 1.54 14.57

dt = 4

EV-FlowNet
∗

[25] 1.23 7.30 2.25 24.70 4.05 45.30 3.45 39.70

EV-FlowNet
∗

[33] 1.30 9.70 2.18 24.20 3.85 46.80 3.18 47.80

Hybrid-EV-FlowNet
∗

[250] 1.09 - 2.24 - 3.83 - 3.18 -

EV-FlowNet 1.69 12.50 2.16 21.51 3.90 40.72 3.00 29.60
RNN-EV-FlowNet 1.91 16.39 2.23 22.10 4.01 41.74 3.07 30.87

Leaky-EV-FlowNet 1.99 17.86 2.59 30.71 4.94 54.74 3.84 42.33

LIF-EV-FlowNet 2.02 18.91 2.63 29.55 4.93 51.10 3.88 41.49

ALIF-EV-FlowNet 2.13 20.96 3.81 50.36 6.40 66.03 5.53 61.07

PLIF-EV-FlowNet 2.24 23.76 2.80 34.34 5.21 52.98 4.12 45.31

XLIF-EV-FlowNet 1.67 12.69 2.72 31.69 4.93 51.36 3.91 42.52

FireNet 2.04 20.93 3.35 42.50 5.71 61.03 4.68 53.42

RNN-FireNet 2.35 24.31 3.64 46.54 6.33 63.89 5.20 56.60

Leaky-FireNet 1.96 18.26 3.42 42.03 5.92 58.80 4.98 52.57

LIF-FireNet 2.12 21.00 3.72 48.27 6.27 64.16 5.23 58.43

ALIF-FireNet 2.36 25.82 3.94 52.35 6.65 67.61 5.60 61.93

PLIF-FireNet 2.11 20.64 3.44 44.02 5.94 64.02 4.98 57.53

XLIF-FireNet 2.07 18.83 3.73 47.89 6.51 67.25 5.43 60.59

∗
Non-recurrent ANNs with input event representations encoding spatiotemporal information, as described in [25, 33, 250].

Table 5.1: Quantitative evaluation on MVSEC [168]. Best in bold, runner up underlined.

base architectures EV-FlowNet and FireNet perform on par with the current state-of-the-

art, even though these non-recurrent networks from literature encode explicit temporal

information in their input event representations, and were trained on other very similar

sequences from MVSEC [168] to prevent the input statistics from deviating from the

training distribution during inference [25, 33, 250]. Since we train on a very di�erent

dataset [171], this on-par performance also con�rms the generalizability of our ANNs and

SNNs to distinctly di�erent scenes and distributions of optical �ow vectors. This claim is

further supported by qualitative results in Fig. 5.4 and additional results in Section 5.4.4.
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Figure 5.4: Qualitative evaluation of our best performing ANNs and SNNs on sequences from the MVSEC dataset

[168]. The optical �ow color-coding scheme can be found in Fig. 5.3.

Secondly, from the comparison between our base ANN architectures and their spiking

counterparts without adaptation mechanisms (i.e., LIF-EV-FlowNet and LIF-FireNet), we

can conclude that, although there is a general increase in the EPE and the percentage

of outliers when going spiking, the proposed SNNs are still able to produce high quality

event-based optical �ow estimates. In fact, according to Table 5.1, the main drop in accuracy

does not come from the incorporation of the spiking function (and the selection of aTan
′

as surrogate gradient), but mainly from the use of vanilla convolutional recurrent layers

instead of gated recurrent units. As shown, our spiking LIF architectures perform very

close to their RNN and leaky counterparts, despite the latter being ANNs. This highlights

the important need for more powerful convolutional recurrent units for SNNs, similar to

ConvLSTMs [170] and ConvGRUs [169] for ANNs, as this would narrow the performance

gap between these two processing modalities according to our observations. Interestingly,

a previous comparison of the performance of recurrent ANNs and SNNs for event-based

classi�cation [259] suggested similar improvements to SNN units.

5.4.2 Impact of adaptive mechanisms for spiking neurons
Table 5.1 also allows us to draw conclusions about the e�ectiveness of the adaptive mecha-

nisms for spiking neurons introduced in Section 5.3.3. For both EV-FlowNet and FireNet,

we observe that threshold adaptation based on postsynaptic activity (i.e., the ALIF model)

performs worse compared to other models. While the ALIF model was shown to be e�ec-

tive for learning long temporal dependencies from relatively low-dimensional data as in

[246, 247, 260], the adaptation delay introduced by relying on a postsynaptic signal seems

detrimental when working with fast-changing, high-dimensional event data. This is in

line with suggestions by Paredes-Vallés et al. in [101], who use presynaptic adaptation

for this reason. Our own results with presynaptic adaptation (i.e., PLIF and XLIF models)

are somewhat inconclusive. While PLIF performs better in the case of FireNet, this is not

the case for EV-FlowNet. On the other hand, XLIF’s performance is very similar to the

LIF model for both FireNet and EV-FlowNet architectures. Based on these observations,

we think that adaptivity based on presynaptic activity should be considered for further
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development. In this regard, the XLIF model has the advantage that it is able to generate

activity (leading to gradient �ow, and thus learning) even for very small inputs, whereas

PLIF is incapable of this for a given threshold (because P is always positive). A more

detailed comparison of activity levels for the di�erent variants is given in Section 5.4.4,

along with an approximation of the energy e�ciency gains of SNNs compared to ANNs.

5.4.3 Further lessons on training deep SNNs
Multiple problems arise when training deep SNNs for a regression task that involves

sparse data, as is done here. Regarding learning, we �nd that gradient vanishing poses the

main issue. Even considering dense inputs/loss and a shallow (in timesteps or in layers)

SNN, su�cient gradient �ow is a result of wide enough (in our case, covering at least

|U − � | ≤ �) and properly scaled (i.e., ≤ 1) surrogate gradients [38, 257, 260], and parameter

initializations that lead to non-negligible amounts of spiking activity [38]. Sparse data and

deep networks make �nding the proper settings more di�cult, and for this reason, we

have tried to increase the robustness of various of these hyperparameter settings. First, we

looked at the learning performance and gradient �ow of networks with various surrogate

gradient shapes and widths. Compared to the aTan
′

surrogate speci�ed in Section 5.3.3,

SuperSpike [261] with 
 = 10 and 
 = 100 (both narrower) show little learning due to

negligible gradient �ow (see Section 5.4.4 for more details). One way of reducing the

e�ect of a too narrow surrogate gradient would be to trigger spiking activity through

regularization terms in the loss function, as done in, e.g., [38, 246]. These form a direct

connection between loss and the neuron in question, bypassing most of the gradient

vanishing that would happen in later layers. We tried the variant proposed in [38], which is

aimed at achieving at least a certain fraction of neurons to be active at any given time. With

this fraction set to 5%, we saw that for SuperSpike with 
 = 10 there was some learning

happening, while for 
 = 100 there was no e�ect. Plots of the loss curves and gradient

magnitudes are available in Section 5.4.4. Of course, more research into these and other

regularization methods is necessary. Alternatively, as done in [257], batch normalization

(or other presynaptic normalization mechanisms) could be used to ensure proper activity

and gradient �ow.

Regarding the network output, there seems to be an intuitive gap between classi�cation

and regression tasks, with the latter requiring a higher resolution to be solved successfully.

In our view, there are two aspects to this that might pose an issue to SNNs. First, given the

single prediction layer that the here-presented SNNs have to go from binary to real-valued

activations, one could expect a loss in output resolution compared to equivalent ANN

architectures. Second, even for moderate activity levels, the outputs of a spiking layer can

be much larger in magnitude than an equivalent ANN layer, even for comparable parameter

initializations. Intuitive solutions to these shortcomings are (i) to increase the number of

channels to increase the resolution, and (ii) to initialize the weights of the non-spiking

prediction layer as to have a smaller magnitude. While increasing the number of output

channels in 5 (LIF-FireNet, see Fig. 5.2) did not lead to signi�cantly improved performance

or learning speed, decreasing the initialization magnitude of the weights in layer  did.
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5.4.4 Additional experiments
Convexity of the self-supervised loss function
To evaluate the convexity of the self-supervised loss function for event-based optical �ow

estimation from [33] and the adaptation that we propose in this work, we conducted

an experiment with two partitions of 40k events from the ECD dataset [172]. In this

experiment, for the selected partitions, we computed the value of Eq. 5.4 (with and without

the scaling) for four sets of optical �ow vectors given by:

us(d) = {(u ∶ u = g(i, d), v ∶ v = g(j, d)), i ∈ {0, 1, ..., 128}, j ∈ {0, 1, ..., 128}} (5.14)

g(x, d) =
2xd
128

− d (5.15)

where d denotes the per-axis maximum displacement, which is drawn from the set

D = {128, 256, 512, 1024}. This is equivalent to performing a grid search for the lowest

contrast over an optical �ow space ranging from (−d, −d) to (d, d) with 128 samples for

each axis. Fig. 5.5 highlights the main di�erence between the original and our adapted
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Figure 5.5: E�ect of scaling contrast for di�erent optical �ow vectors for two event partitions from the Event-

Camera Dataset [172]. Numbers on top indicate the maximum per-axis pixel displacement for each column.
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formulation. Although for the smaller values of d the two normalized losses look quali-

tatively similar, for larger values it is possible to discern that the original contrast is not

convex, and that its optimal solution is to throw events out of the image space during the

warping process so they do not contribute to the computation of the loss. On the contrary,

the scaling that we propose in Section 5.3.2 �xes this issue, and results in a convex loss

function for any value of d .

Self-supervised evaluation and additionalqalitative results
Apart from the quantitative and qualitative evaluation on the MVSEC dataset [168] included

in Section 5.4, we also evaluate our architectures on the ECD [172] and HQD [150] datasets,

as in [100, 150]. Since these datasets lack ground-truth data, we use the Flow Warp Loss

(FWL↑, higher is better) [150], which measures the sharpness of the IWE relative to that of

the original event partition using the variance as a measure of the contrast of the event

images [97]. In addition to FWL, we propose the Ratio of the Squared Average Timestamps

(RSAT↓, lower is better) as a novel, alternative metric to measure the quality of the optical

�ow without ground-truth data. Contrary to FWL, RSAT makes use of Eq. 5.3 to measure

the contrast of the event images and is de�ned as:

RSAT ≐
contrast(t fw

ref
|u)

contrast(t fw
ref

|0)
(5.16)

ECD HQF

FWL↑ RSAT↓ FWL↑ RSAT↓
EV-FlowNet 1.31 0.94 1.37 0.92
RNN-EV-FlowNet 1.36 0.95 1.45 0.93

Leaky-EV-FlowNet 1.34 0.95 1.39 0.93

LIF-EV-FlowNet 1.21 0.95 1.24 0.94

ALIF-EV-FlowNet 1.17 0.98 1.21 0.98

PLIF-EV-FlowNet 1.24 0.95 1.28 0.93

XLIF-EV-FlowNet 1.23 0.95 1.25 0.93

FireNet 1.43 0.99 1.57 0.99

RNN-FireNet 1.34 0.99 1.42 0.99

Leaky-FireNet 1.40 0.99 1.52 0.99

LIF-FireNet 1.28 0.99 1.34 1.00

ALIF-FireNet 1.35 1.00 1.49 1.00

PLIF-FireNet 1.30 0.97 1.35 0.98

XLIF-FireNet 1.29 0.99 1.39 0.99

Table 5.2: Quantitative evaluation on the ECD [172] and HQF

[150] datasets. Best in bold, runner up underlined.

where RSAT<1 implies that the pre-

dicted optical �ow is better than a base-

line consisting of null vectors. Since

both metrics are sensitive to the num-

ber of input events [101], we setN=15k

events for all sequences in this evalua-

tion. Quantitative results of this evalu-

ation can be found in Table 5.2, while

qualitative results on these datasets are

shown in Fig. 5.6.

Apart from further con�rming the

generalizability of our architectures to

other datasets and the on-par perfor-

mance of our SNNs with respect to

the recurrent ANNs (and thus to the

state-of-the-art), results from this eval-

uation reveal the lack of robustness of

the self-supervised FWL metric from

Sto�regen and Scheerlinck et al. [150]

in capturing the quality of the learned

event-based optical �ow. As shown in Table 5.2, FWL results do not correlate with the EPEs

reported in Table 5.1. For instance, FireNet variants are characterized by higher values

(thus better, according to [150]) than their computationally more powerful EV-FlowNet

counterparts overall, while, according to Table 5.1, it should be the opposite. On the other

hand, according to its correlation with the reported EPEs in Table 5.1, RSAT, which is
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Figure 5.6: Additional qualitative results of our best performing ANNs and SNNs on sequences from the ECD

[172] (top three) and HQF [150] (bottom three) datasets. The optical �ow color-coding scheme can be found in

Fig. 5.3.

based on our reformulation of the self-supervised loss function from [33], is a more reliable

metric to assess the quality of event-based optical �ow without ground-truth data.

Ablation study on recurrent connections
In this ablation study, we evaluate the importance of explicit recurrent connections for

event-based optical �ow estimation with ANNs and SNNs when using our input event

representation (see Section 5.3.1) and training settings (see Section 5.4). To do this, we use
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Figure 5.7: Qualitative results of FireNet and FireFlowNet variants on a sequence from MVSEC [168]. The optical

�ow color-coding scheme can be found in Fig. 5.3.

the base FireNet architecture and its leaky and LIF variants (as introduced Section 5.3.4),

and compare their performance on MVSEC [168] to their non-recurrent counterparts. As in

[100], the non-recurrent version of FireNet that we use, which substitutes the ConvGRUs

with convolutional encoders, is further referred to as FireFlowNet. The qualitative and

quantitative results for this ablation study are shown in Fig. 5.7 and Table 5.3, respectively.

Firstly, from these results, we can conclude that stateless ANNs (such as FireFlowNet)

are not capable of learning to estimate optical �ow using our input event representation and

training pipeline. This observation con�rms the claim made in Section 5.3.1 about the fact

that our event representation minimizes the amount of temporal information encoded in

the input to the networks. Secondly, these results also con�rm that, in order to successfully

learn optical �ow, the networks need to be able to build an internal (hidden) state through

explicit recurrent connections and/or neural dynamics. As shown, the only architecture that

is not able to learn optical �ow is FireFlowNet. If this network is augmented with recurrent

connections (i.e., FireNet), neural dynamics (i.e., Leaky-FireFlowNet, LIF-FireFlowNet),

or both (i.e., Leaky-FireNet, LIF-FireNet), optical �ow can be learned with our proposed

pipeline and event representation. However, from the quantitative results in Table 5.3, we

can observe that learning optical �ow through neural dynamics without explicit recurrent

connections (i.e., Leaky-FireFlowNet, LIF-FireFlowNet), although possible, is quite complex

and results in networks with lower accuracy. For this reason, we conclude that recurrent

connections are an important driver for learning accurate event-based optical �ow with

our training pipeline, and hence, we use them in the ANNs and SNNs that we propose in

this work.

Ablation study on learnable parameters for SNNs
Several works emphasize the importance of including neural parameters in the optimization

[40, 245, 260, 262], agreeing that including the various decays or leaks is bene�cial for

performance. Some also argue and show that learning thresholds adds little value [40, 245],
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dt = 1 outdoor_day1 indoor_�ying1 indoor_�ying2 indoor_�ying3

EPE↓ %
Outlier

↓ EPE↓ %
Outlier

↓ EPE↓ %
Outlier

↓ EPE↓ %
Outlier

↓
FireNet 0.55 0.35 0.89 1.93 1.62 14.65 1.35 10.64
Leaky-FireNet 0.52 0.41 0.90 2.66 1.67 16.09 1.43 13.16

LIF-FireNet 0.57 0.40 0.98 2.48 1.77 16.40 1.50 12.81

FireFlowNet 1.02 1.62 1.37 6.86 2.24 25.74 2.00 21.09

Leaky-FireFlowNet 0.61 0.56 0.97 2.71 1.76 17.68 1.52 14.16

LIF-FireFlowNet 0.84 1.15 1.22 5.55 2.06 22.25 1.80 18.13

dt = 4

FireNet 2.04 20.93 3.35 42.50 5.71 61.03 4.68 53.42

Leaky-FireNet 1.96 18.26 3.42 42.03 5.92 58.80 4.98 52.57
LIF-FireNet 2.12 21.00 3.72 48.27 6.27 64.16 5.23 58.43

FireFlowNet 3.88 55.47 5.29 68.37 8.26 79.42 7.33 78.69

Leaky-FireFlowNet 2.29 24.22 3.68 47.12 6.29 62.30 5.37 58.29

LIF-FireFlowNet 3.24 43.08 4.67 60.34 7.54 74.68 6.54 71.45

Table 5.3: Quantitative evaluation of FireNet and FireFlowNet variants on MVSEC [168]. Best in bold, runner up

underlined.

which makes intuitive sense given that the same e�ect can be achieved through scaling

the synaptic weights. To con�rm these observations, we perform an ablation study on the

learning of per-channel leaks and thresholds for LIF-FireNet. All instances of a parameter

are initialized to the same value, but can be adapted over time in the case of learning. The

results in Table 5.4 suggest that, for our task, learning at least the leaks is bene�cial for

performance. However, despite these di�erences in EPE, the training loss curves for all

variants, as shown in Fig. 5.8, do not vary a lot. For this we can follow the same explanation

as in the ablation study on recurrent connections: without the optimization of leaks, the

network could focus on decreasing 
smooth

, which does not lead (as much) to the actual

learning of optical �ow.

Looking at the learned leaks also gives us insight into how information is integrated

throughout the network. Fig. 5.9 shows the distribution of the parameter a, from which the

membrane potential leaks are computed as � = 1
1+exp(−a) , for the LIF-FireNet variants with

learnable leaks. Initially, all a = −4; after learning, earlier layers mostly end up with faster

leaks (lower a), while later layers end up with slower leaks (higher a). This intuitively

makes sense: we want earlier layers to respond quickly to changing inputs, while we need

later layers to (more slowly) integrate information over time and produce an optical �ow

estimate.

Details on further lessons
We looked at the e�ect of surrogate gradient width on learning performance by trying

out three variants on LIF-FireNet: aTan
′

with 
 = 10 (default), and SuperSpike [261] with


 ∈ {10, 100}. The resulting loss curves are plotted in Fig. 5.11. The width of aTan
′
-10 is

such that there is su�cient gradient �ow for learning; this is less so for SuperSpike-10, and

not at all for SuperSpike-100. The plots of per-layer mean gradient magnitude in Fig. 5.10

con�rm this: SuperSpike-10 only shows non-negligible gradient �ow for the last two layers,

while the mean gradients for SuperSpike-100 are practically zero.
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Figure 5.8: Training loss curves for LIF-FireNet variants

with di�erent sets of learnable parameters.

Learnable thresholds X X

Learnable leaks X X

outdoor_day1 0.65 0.68 0.57 0.58

indoor_�ying1 1.14 1.04 0.97 0.96
indoor_�ying2 1.88 1.89 1.70 1.82

indoor_�ying3 1.62 1.61 1.45 1.52

Table 5.4: Ablation study on learnable parameters

for SNNs on MVSEC [168] using variants of LIF-

FireNet. We report the EPE↓ for dt = 1. Best in bold,

runner up underlined.
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Figure 5.9: LIF-FireNet distribution of learned leaks � = 1
1+exp(−a) , initialized at a = −4.

As mentioned in Section 5.4.3, one possible way of mitigating gradient vanishing would

be to connect each layer to the loss directly, through, e.g., a regularization term on minimum

activity as in [38]:

act =
L
∑
l
max(0, f

desired
− f

actual
)2 (5.17)

with L being all the spiking layers, f
desired

the desired per-timestep fraction of active

neurons, and f
actual

the actual per-timestep fraction of active neurons. By taking the

maximum, we ensure that act goes to zero as soon as the activity is above the desired level.

The e�ect of adding activity regularization with f
desired

= 0.05 can be observed in Fig. 5.11.

While the direct connection between each layer and the loss is able to start learning for

SuperSpike-10, it has little e�ect for SuperSpike-100. The bottom row of Fig. 5.10 shows

that the gradient �ow for SuperSpike-10 becomes non-negligible for earlier layers after

step 40,000 or so; for SuperSpike-100, the gradients have increased signi�cantly, but are

still not enough to allow learning. These results are in line with the recent SNN literature,

which shows that SuperSpike-100 can enable learning for shallow networks [38, 263], but

that it degrades performance as the number of layers increases beyond four [257], and that

tuning of the surrogate width is necessary. Note that [257] also demonstrates learning
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Figure 5.10: Per-layer mean of absolute gradient values during training of LIF-FireNet with various surrogate

gradients, and activity regularization act. aTan
′
-10 denotes � ′(x) = 1/(1 + 10x2), where x = U − � ; SuperSpike-


[261] denotes � ′(x) = 1/(1 + 
 |x |)2, with 
 ∈ {10, 100}. Data is smoothed with a 1000-step moving average and a

stride of 100.
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Training loss curves belonging to LIF-FireNet.

with SuperSpike-10 for deeper networks, but this probably works because they use batch

normalization.

Comparison of activity levels for adaptive SNNs
SNNs implemented in neuromorphic hardware consume less energy as their activity

decreases [244], which makes it important to investigate how activity levels vary across

spiking neuron models, and how they correlate with the outputs of the network: because
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(a) EPE against mean activity (over all spiking layers). (b) Mean (normalized) optical �ow magnitude (over

all pixels that have at least one event) against mean

activity (over all spiking layers).

Figure 5.12: Recorded activity (fraction of nonzero values) of spiking FireNet variants during (a) indoor_�ying1

of MVSEC [168] with dt = 1 and (b) boxes_6dof of the ECD dataset [172] with N = 15k events. Each marker

represents one timestep.

spiking layers emit only binary spikes, in some cases more spikes would be needed for

output values larger in magnitude. We recorded the activity (fraction of nonzero values)

and EPE of the {LIF, ALIF, PLIF, XLIF}-FireNet variants during the indoor_�ying1 sequence

of MVSEC [168] with dt = 1, as well as the mean normalized output optical �ow magnitude

during the boxes_6dof sequence of the ECD dataset [172] with N = 15k input events.

Fig. 5.12 shows the results. One observation we can make from Fig. 5.12a is that the neuron

models with an adaptive threshold (ALIF, XLIF) are more active than those without, while

achieving similar EPEs. While this excessive spiking could be the result of initializing the

base threshold �0 too low, the similarity in EPE certainly suggests that these models spike

too much for the performance they achieve, and that there is a certain redundancy in their

activity.

Looking at Fig. 5.12b, we again observe that the models with adaptive threshold are

more active than those without. On the other hand, it seems that ALIF and XLIF are more

consistent in their activity across the range of outputs (narrower, more vertically oriented

clusters). Looking at the clusters of LIF and PLIF, we can see that they both have roughly

the same shape, but the latter’s average output is larger in magnitude. This indicates that

presynaptic and postsynaptic adaptive mechanisms can both serve a purpose: the former

helps in increasing the absolute output range, while the latter helps in keeping activity

(and therefore energy consumption) constant across this range. This makes the XLIF model

especially interesting to investigate further in future work.

To approximate the e�ciency gains of SNNs running on neuromorphic hardware

and compare it with equivalent ANN implementations, we can look at the number of

accumulate (AC) and multiply-and-accumulate (MAC) operations of each, as is also done in

[260]. Using energy numbers for ACs and MACs from [264], this gives us a very rough 25x

increase in energy e�ciency of SNNs compared to ANNs, assuming that (i) �oating-point

MAC operations cost �ve times as much energy as �oating point AC operations; (ii) SNNs

only make use of AC operations, while ANNs only make use of MAC operations; (iii) the

average activity level of the SNN is 20%, as in Fig. 5.12a. However, as rightly pointed out in
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[244] (which contains a more elaborate quanti�cation of e�ciency gains of SNNs running

on the Loihi neuromorphic processor), the comparison using AC and MAC operations for

respectively SNNs and ANNs may not be a fair one for all tasks, considering, e.g., overhead

in neuromorphic chips and the optimization of MACs in ANN accelerators.

5.5 Conclusion
In this chapter, we presented the �rst set of deep SNNs to successfully solve the real-world,

large-scale problem of event-based optical �ow estimation. To achieve this, we �rst refor-

mulated the state-of-the-art training pipeline for ANNs to considerably shorten the time

windows presented to the networks, approximating the way in which SNNs would receive

spikes directly from the event camera. Additionally, we reformulated the state-of-the-art

self-supervised loss function to improve its convexity. Prior to their training with this

framework, we augmented several ANN architectures from literature with explicit and/or

implicit recurrency, besides the addition of the spiking behavior. Extensive quantitative

and qualitative evaluations were conducted on multiple datasets. Results con�rm not only

the validity of our training pipeline, but also the on-par performance of the proposed

set of recurrent ANNs and SNNs with the self-supervised state-of-the-art. To the best of

our knowledge, and especially due to the addition of explicit recurrent connections, the

proposed SNNs correspond to the most complex spiking networks in the computer vision

literature, architecturally speaking. For the SNNs, we also conducted several additional

studies and (i) concluded that parameter initialization and the width of the surrogate

gradient have a signi�cant impact on learning: smaller weights in the prediction layer

speed up convergence, while a too narrow surrogate gradient prevents learning altogether;

and (ii) observed that adaptive mechanisms based on presynaptic activity outperform those

based on postsynaptic activity, and perform similarly or better than the baseline without

adaptation. Overall, we believe this chapter sets the groundwork for future research on

neuromorphic processing for not only the event-based structure-from-motion problem,

but also for other, similarly complex computer vision applications. For example, our results

suggest the need for more powerful recurrent units for SNNs.

Supplementary material

Video summary of the approach: https://youtu.be/T7-9GGYnuZ4

Project code: https://github.com/tudelft/event_�ow

https://youtu.be/T7-9GGYnuZ4
https://youtu.be/T7-9GGYnuZ4
https://github.com/tudelft/event_flow
https://github.com/tudelft/event_flow


6
Robustifying the SSL of

Low-Latency, Event-Based
Optical Flow

In the previous chapter, we introduced a novel self-supervised pipeline speci�cally designed
for estimating low-latency, event-based optical �ow. Despite its novelty and the research
direction that it unlocked, we identi�ed two limitations that originated from the underlying
principle of contrast maximization, which serves as the theoretical basis for the self-supervision.
Firstly, the pipeline assumed that events move linearly within the timespan of their loss
function. This assumption restricts the ability of the pipeline to accurately capture the true
(and potentially nonlinear) trajectory of scene points over time. Secondly, the success of the self-
supervised training heavily depended on the hyperparameters controlling the amount of motion
information perceived by the networks before computing the loss. In this chapter, we present a
novel self-supervised learning framework that addresses these limitations, and that enables the
sequential estimation of event-based optical �ow while ensuring the scalability of the models
to high inference frequencies without sacri�cing accuracy. At the heart of our approach is a
continuously-running stateful neural model that is trained using our novel formulation of
contrast maximization that makes it robust to nonlinearities and varying statistics in the input
events. Extensive experiments conducted on multiple datasets demonstrate the e�ectiveness
of our method. The proposed pipeline establishes a new state of the art (given the literature
at the time of publication) in terms of accuracy for approaches trained or optimized without
ground truth data.

The contents of this chapter have been published in:

F. Paredes-Vallés, K. Y. W. Scheper, C. De Wagter, G. C. H. E. de Croon, Taming contrast maximization
for learning sequential, low-latency, event-based optical �ow, IEEE International Conference on Computer

Vision (ICCV), 2023.
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6.1 Introduction

E
vent cameras capture per-pixel log-brightness changes at microsecond resolution

[18]. This operating principle results in a sparse and asynchronous visual signal that,

under constant illumination, directly encodes information about the apparent motion

(i.e., optical �ow) of contrast in the image space. These cameras o�er several advantages,

such as low latency and robustness to motion blur [18], and hence hold the potential of

a high-bandwidth estimation of this optical �ow information. However, the event-based

nature of the generated visual signal poses a paradigm shift in the processing pipeline, and

traditional, frame-based algorithms become suboptimal and often incompatible. Despite

this, the majority of learning-based methods that have been proposed so far for event-

based optical �ow estimation are still highly in�uenced by frame-based approaches. This

in�uence is normally re�ected in two key aspects of their pipelines: (i) the design of the

network architecture, and (ii) the formulation of the loss function.

Regarding architecture design, most literature methods format subsets of the input

events as dense volumetric representations [33] that are processed at once by stateless

(i.e., non-recurrent) models [33, 34, 100, 150]. Similarly to their frame-based counterparts

[265–267], these models estimate the per-pixel displacement over the time-length of the

event volume using only the information contained within it. Consequently, these volumes

need to encode enough spatiotemporal information for motion to be discernible. However,

if done over relatively long time periods, the subsequent models su�er from limitations

such as high latency or having to deal with large pixel displacements [34, 268, 269].

With respect to the loss function, multiple options have been explored due to the lack of

real-world datasets with per-event ground truth. Pure supervised learning can be used with

datasets such as MVSEC [168] or DSEC-Flow [34], but their ground truth only contains

per-pixel displacement at low frequencies, which makes models di�cult to train. On the

other hand, a self-supervised learning (SSL) framework can be formulated using either the

accompanying frames with the photometric error as a loss [25, 270, 271], or through an

events-only contrast maximization [96, 97] proxy loss for motion compensation (i.e., event

deblurring) [33, 100, 102, 161, 272]. However, despite not relying on ground truth, all the

literature on SSL for optical �ow assumes that the events move linearly within the time

window of the loss, which ignores much of the potential of event cameras and their high

temporal resolution (see Fig. 6.1, bottom left).

In this work, we focus on the estimation of high frequency event-based optical �ow and

how this can be learned in an SSL fashion using contrast maximization with a relaxed linear

motion assumption. To achieve this, we build upon the continuous-operation pipeline

from Hagenaars et al. [102] (i.e., Chapter 5 of this dissertation), which retrieves optical

�ow by sequentially processing small partitions of the event stream with a stateful (i.e.,

recurrent) model over time, instead of dealing with large volumes of input events. We

augment (and train) this pipeline with a novel contrast maximization formulation that

performs event motion compensation in an iterative manner at multiple temporal scales,

as shown in Fig. 6.1. Using this framework, we achieve the best accuracy of all contrast-

maximization-based approaches on multiple datasets, only being outperformed by pure

supervised learning methods trained with ground-truth data.

In summary, the extensions that we propose to the SSL framework in [102], i.e., our main

contributions, are: (i) the �rst iterative event warping module in the context of contrast
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Figure 6.1: Our pipeline estimates event-based optical �ow by sequentially processing small partitions of the event

stream with a recurrent model. We propose a novel self-supervised learning framework based on a multi-timescale

contrast maximization formulation that is able to exploit the high temporal resolution of event cameras via

iterative warping to produce accurate optical �ow predictions.

maximization, which unlocks a novel multi-reference loss function that better captures the

trajectory of scene points over time, thus improving the accuracy of the predictions (see

Section 6.3.2); and (ii) the �rst multi-timescale approach to contrast maximization, which

adds robustness, improves convergence, and reduces tuning requirements of loss-related

hyperparameters (see Section 6.3.3). As a result, we present the �rst self-supervised optical

�ow method for event cameras that relaxes the linear motion assumption, and hence that

has the potential of exploiting the high temporal resolution of the sensor by producing

estimates in a close-to continuous manner. We validate the proposed framework through

extensive evaluations on multiple datasets. Additionally, we conduct ablation studies to

show the e�ectiveness of each individual component.

6.2 Related work
Due to the aforementioned advantages of event cameras for optical �ow estimation, exten-

sive research has been carried out since these sensors were �rst introduced [154, 187, 217,

248, 272, 273]. Regarding learning-based approaches, the �rst method was proposed by

Zhu et al. in [25] with EV-FlowNet: a UNet-like [137] architecture trained with SSL, with

the supervisory signal coming from the photometric error between subsequent frames

captured with an accompanying camera. To avoid the need for a secondary vision sensor,

in [33], Zhu et al. proposed an SSL framework around the contrast maximization for motion

compensation idea from [96, 97], hence relying solely on event data. This pipeline was

used and further improved in [100, 102, 272]. Other approaches trained EV-FlowNet in
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a supervised fashion with synthetic/real ground-truth data and showed higher accuracy

levels through evaluations on public benchmarks [34, 150]. However, they also highlighted

EV-FlowNet’s inability to deal with large pixel displacements [34]. Because of this, inspired

by the frame-based literature [267], Gehrig et al. departed from the use of UNet-like net-

works and proposed E-RAFT in [34]: the �rst architecture to introduce the use of correlation

volumes in the event camera literature. This model, which was recently augmented with

attention mechanisms [274], achieved state-of-the-art performance in multiple datasets.

A novel perspective to learning event-based optical �ow is to move away from event

accumulation over long timespans, and instead rely on continuously-running stateful

models that integrate information over time. The �rst methods of this kind were proposed

by Paredes-Vallés et al. [101] and Hagenaars et al. [102], but this idea has recently gained

interest in the event camera literature [269, 270, 275]. The reason is that leveraging memory

through sequential processing can potentially lead to lightweight and low-latency solutions

that are also robust to large pixel displacements without the need for correlation volumes

[269]. However, despite their potential of being scaled to high inference frequencies, all

these solutions assume that events move linearly in the timespan of their loss function,

and hence cannot capture the true trajectory of scene points over time.

When it comes to learning nonlinear pixel trajectories from event data, only the work

of Gehrig et al. in [268] is to be highlighted. However, their approach uses multiple event

and correlation volumes to �t Bézier curves to the trajectory of scene points, resulting

in a high-latency solution. In contrast, in this work, we extend the continuous-operation

pipeline from Hagenaars et al. [102] with an SSL framework in which discrete trajectories

are regressed at high frequency by leveraging memory within the models. This approach

allows, for the �rst time, to exploit the high temporal resolution of event cameras while

capturing more accurately the trajectory of scene points over time thanks to the proposed

iterative event warping mechanism.

Among non-learning-based approaches, the work of Shiba et al. in [272] bears par-

ticular relevance due to certain similarities with our framework. Speci�cally, Shiba et al.
propose a tile-based method for event-based optical �ow estimation that extends contrast

maximization [96, 97] by incorporating (i) multiple spatial scales, (ii) a multi-reference

focus loss, and (iii) a “time-aware” optical �ow formulation. Similarly, our learning-based

approach also employs a multi-scale strategy and utilizes a multi-reference focus loss.

However, instead of making assumptions about the events’ motion over extended time

periods, we propose to learn their potentially nonlinear trajectories at high frequency by

leveraging the iterative event warping module.

6.3 Method
The goal of this work is to learn to sequentially estimate optical �ow at high frequencies

from a continuous stream of events. In such a pipeline, if the inference frequency is

su�ciently high, events need to be processed nearly as soon as they are triggered by the

sensor, with no pre-processing in between. Because of this, the integration of temporal

information needs to happen in the network itself. To accomplish this, we propose the

framework in Fig. 6.1, in which a stateful model is trained using our novel formulation of

contrast maximization for sequential processing. The components of this framework are

described in the following sections.
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6.3.1 Input format and contrast maximization
For an ideal camera, an event ei = (x i , ti , pi) of polarity pi ∈ {+, −} is triggered at pixel

x i = (xi , yi)T and time ti whenever the change in log-brightness since the last event at that

pixel location reaches the contrast sensitivity threshold for that polarity [18].

As in [102], we use a two-channel event count image as input representation, which

gets populated with consecutive, non-overlapping, �ne discrete partitions of the event

stream "inp

k ≐ {ei} (further referred to as input partitions), each containing all the events in

a time window of a certain duration, i.e., ti ∈ [t
begin

k , tend

k ]. This representation does not

contain temporal information by itself, and recurrent models are hence required.

Regarding learning, we use the contrast maximization framework [97] to train, in an

SSL fashion, to continuously estimate dense (i.e., per-pixel) optical �ow from the event

stream. Assuming brightness constancy, accurate �ow information is encoded in the

spatiotemporal misalignments (i.e., blur) among the events triggered by the same portion

of a moving edge. To retrieve it, one has to compensate for this motion by geometrically

transforming the events using a motion model. As in [33, 100, 102, 272], we transport each

event to a reference time t
ref

through:

x′i = x i + (tref
− ti)u(x i) (6.1)

where u(x) = (u(x), v(x))T denotes the optical �ow map used to transport each event from

ti to t
ref

. The result of aggregating the transformed events is further referred to as the

image of warped events (IWE) at t
ref

.

As the loss function of our SSL framework, we adopt the time-based focus objective

function from [102]. Using the warped events at a given t
ref

, we generate an image of the

per-pixel average timestamps for each polarity p′ via bilinear interpolation:

Tp′ (x;u|tref
) =

∑j �(x − x′j )�(y − y
′
j )t̄j (tref

, tj )
∑j �(x − x′j )�(y − y

′
j ) + �

�(a) = max(0, 1 − |a|)

j = {i ∣ pi = p′}, p′ ∈ {+, −}, � ≈ 0

(6.2)

where t̄i denotes the normalized timestamp contribution of the ith event, according to

Fig. 6.3 and Eq. 6.5.

Then, the contrast maximization loss function at t
ref

is de�ned as the scaled sum of the

squared temporal images:

CM(tref
) =

∑x T+(x;u|tref
)2 + T−(x;u|tref

)2

∑x [n(x′) > 0] + �
(6.3)

where n(x′) denotes a per-pixel event count of the IWE. The lower the CM, the better the

event deblurring at t
ref

.

As discussed in [97, 102, 256], for any focus objective function to be a robust supervisory

signal for contrast maximization, the event partition used in the optimization needs to

contain enough motion information (i.e., blur) so it can be compensated for. However, as

in [102], that is not the case in our input partitions due to the �ne discretization of the

event stream that we are targeting. Therefore, only at training time, we de�ne the so-called
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Figure 6.2: Incompatibility of multi-reference deblurring and linear event warping in the presence of nonlinearities

in the pixel trajectories. Top: Events generated by a moving dot following circular motion, and optical �ow

color-coding scheme. Bottom left: Optical �ow solutions required to produce sharp IWEs at di�erent t
ref

using

linear and iterative warping. While the former requires a di�erent solution for each t
ref

, the proposed iterative

warping can achieve this using a single solution. Arrows illustrate the direction of the required displacement

Δx i = (tref
− ti )u(x i ) at each (discretized) spatial location. Bottom right: Resulting IWEs at di�erent t

ref
using the

optimal optical �ow map for t
ref
= mid.

training partition (or event bu�er in Fig. 6.1) "train

k→k+R ≐ {"
inp

i }k+Ri=k , which stacks together

the events in the input partitions of R successive forward passes through the network. Once

these are performed, we use this partition and the estimated optical �ow maps to compute

the loss, and use truncated backpropagation through time to update the model parameters.

After this update, we detach the states of the network from the computational graph and

clear the training partition and optical �ow bu�er. The importance of sequential processing,

as an alternative to training stateless models in short input partitions, is corroborated in

Section 6.4.3.

6.3.2 Iterative event warping
In order to better approximate the trajectories of scene points over time, in this work we

relax the linear motion assumption in the SSL framework for event-based optical �ow by

augmenting the sequential-estimation pipeline from [102] with iterative event warping.

Instead of transporting events to a given t
ref

assuming linear motion regardless of the

length of the warping interval (as in [33, 100, 102, 272]), we perform a �ner discretization of

the event trajectories and assume that motion is only linear between optical �ow estimates.

Therefore, to express a group of events at a given t
ref

, we geometrically transform them

using all the intermediate optical �ow estimates through multiple iterations of Eq. 6.1.
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Fig. 6.2 shows the di�erences between the linear event warping in [102] and the proposed

iterative augmentation, as well as the limitations of the former. Note that our iterative

warping is fundamentally di�erent from that of the work of Wu et al. in [269], where input

events are deblurred before being passed to the models using residual optical �ow estimates

until convergence.

t

ts
.

co
nt

rib
.

t

Deblurring tref Forward warping Backward warping

Extremes only All tref

Figure 6.3: Timestamp normalization pro�les for the per-event contri-

butions to the images of average timestamps in Eq. 6.2, for R=10. Left:
Deblurring only done at the extremes of the training partition, as in

[33, 100, 102]. Right: Deblurring done at all reference times, thanks

to the proposed iterative event warping. Normalization pro�les only

shown for three t
ref

for a better visualization.

Literature methods on event-

based optical �ow with contrast

maximization compute the fo-

cus objective function at multi-

ple reference times in the train-

ing partition (usually at the ex-

tremes) to prevent over�tting

and/or scaling issues during

backpropagation [33, 100, 102,

272]. However, since these ap-

proaches assume optical �ow

constancy in the span of their

loss function, they su�er with

nonlinearities in the pixel tra-

jectories (see the blurry IWEs in Fig. 6.2, bottom right). On the contrary, because of the

�ner discretization of the event trajectories coming with our sequential processing pipeline

and the proposed iterative warping, we can use any (combination of) reference time(s)

for the computation of the focus objective function. In fact, as shown in Fig. 6.3 (right),

we propose the use of all the discretization points as reference times for event deblurring.

Apart from the aforementioned regularizing bene�ts, having to produce sharp IWEs at any

t
ref

forces the models to estimate a sequence of optical �ow maps that is consistent with

the velocity pro�le of the event stream. For a given training partition of length R, the loss

is computed as follows:

R
CM

=
1

R + 1

R
∑
t
ref
=0
CM(tref

) (6.4)

which ensures that the IWEs (and the corresponding images of average timestamps in

Eq. 6.2) at all reference times t
ref
∈ [0, R] contribute equally to the loss.

As in [33, 100, 102], for CM(tref
) in Eq. 6.3 to be a valid supervisory signal, events

that are temporally close to the reference time t
ref

need to contribute to the temporal

image in Eq. 6.2 with larger timestamp values than events that are far in time. Therefore,

once the events have been transported to t
ref

, their timestamp is normalized prior to the

computation of Eq. 6.2 as follows:

t̄i(tref
, ti) = 1 −

|t
ref
− ti |
R

, with ti ∈ [0, R] (6.5)

which results in the normalization pro�les in Fig. 6.3, for a given training partition of

length R.

Inspired by [276], we mask individual events from the computation of the loss whenever

we detect that they are transported outside the image space through the event warping
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process in the span of a deblurring window de�ned at the reference time t
ref

. This prevents

our models from learning incorrect deformations at the image borders, and is motivated

by the fact that the complete trajectory of the pixel is only partially observable in the

training partition. An ablation study on the impact of this masking strategy can be found

in Section 6.4.3.

Lastly, we do not augment the loss function in Eq. 6.4 with smoothing priors acting as

regularization mechanisms. With iterative event warping, the error propagates through all

the pixels covered in the warping process, regardless of whether they have input events or

not. Therefore, the spatial coherence of the resulting optical �ow maps is enhanced.

6.3.3 Deblurring at multiple timescales

t

ts
.c

on
tri

b.

Deblurring tref LR/4
CM LR/2

CM LR
CM

p = 0 p = 1 p = 2 p = 3

Figure 6.4: Multi-timescale approach to contrast maximization. For a

given training partition of length R, we �t multiple sub-partitions of

di�erent lengths (in the �gure: one of length R in red, two R/2 in blue,

and four R/4 in green) and compute the loss in each of them according

to Eq. 6.4. The global loss is computed as in Eq. 6.6. This �gure only

shows the timestamp normalization pro�les of the central t
ref

of each

sub-partition, but the losses are still computed at all reference times. An

image representation of the accumulated input events in a sub-partition

of each timescale is also shown.

Despite the addition of iterative

event warping, the success of

our SSL framework still heavily

depends on the hyperparame-

ters that control the amount of

motion information perceived

by the networks in the span

of a deblurring window. In

our pipeline, these are: dtinput,

the timestep used to discretize

the event stream; and R, the

number of forward passes, and

hence optical �ow maps, per

loss. Thus, the e�ective length

(in units of time) of the event

window used for motion com-

pensation is given by dtinput ×R.

We hypothesize that, for each

training dataset, there is an op-

timal length for this window

that depends on the statistics

of the data (e.g., event density,

distribution of optical �ow mag-

nitudes) and model architecture, and that deviations from this optimal length lead to the

learning of suboptimal solutions. E.g., shorter windows may converge to solutions that are

more selective to fast rather than slow moving objects, and vice versa. Note that not only

our method is sensitive to the tuning of these parameters, but also previous approaches

based on contrast maximization [33, 100, 102, 272].

To add a layer of robustness to the framework and relax its strong dependency on hy-

perparameter optimization, we propose the multi-timescale approach illustrated in Figs. 6.1

and 6.4. For a given training partition of length R, instead of computing a single focus loss

through Eq. 6.4, we compute this loss at S temporal scales of length R/2s , with 0 ≤ s ≤ S − 1,

and combine them as follows:
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multi

CM
=
1
S

S−1
∑
s=0

1
2s

2s−1
∑
p=0

R/2
s

CM,p (6.6)

As shown, we �t multiple non-overlapping sub-partitions in the training bu�er if S > 0.
The subscript p indicates their location in this bu�er, starting from the earliest (see Fig. 6.4).

Note that, through this multi-timescale approach to contrast maximization, our models

need to converge to a solution that is suitable for all the timescales in the optimization,

regardless of their length. An alternative formulation would be to incorporate per-pixel

learnable masks (i.e., an attention module in the loss space) so that, depending on the input

statistics, learning only happens at the most adequate scale. However, for this to happen,

the loss function would have to be augmented to stimulate this behavior, and it is unclear

how that would be done in practice.

6.3.4 Network architecture
We use the recurrent version of EV-FlowNet [25] proposed in [102]

1
(see Fig. 6.5). The

events are represented as event count images (see Section 6.3.1), then passed through

four encoders with strided convolutions followed by ConvGRUs [169] (channels doubling,

starting from 64), two residual blocks [167], and then four decoders performing bilinear

upsampling followed by convolution. After each decoder, there is a skip connection

(using element-wise summation) from the corresponding encoder, as well as a depthwise

convolution to produce estimates at lower scales, which are then concatenated with the

activations of the previous decoder. Note that the proposed focus loss function (see Eq. 6.6)

is applied to each intermediate optical �ow estimate via upsampling. Lastly, all layers use

3 × 3 kernels and ReLU activations except for the prediction layers, which use TanH.

εinp
k

G1 G2 R1 D1

P1

D2

P2 ûk

Conv Res. block Upsampling + Conv Conv↓ + ConvGRU

Figure 6.5: Schematic of the model architecture used in this work. It is characterized by N recurrent encoders,

N residual blocks, and N decoder layers. Optical �ow estimates are produced at all decoder levels. In this

diagram, N = 2 and N = 1.

6.4 Experiments
We evaluate our method on the DSEC-Flow [34, 277] and MVSEC [168] datasets. We

evaluate the accuracy of the predictions based on the following metrics: (i) EPE (lower

is better, ↓), the endpoint error; (ii) %3PE (↓), the percentage of points with EPE greater

than 3 pixels; (iii) FWL (↑) [150], a deblurring quality metric based on the variance of the

1
Our architecture is equivalent to ConvGRU-EV-FlowNet [102]. However, for the purpose of clarity within the

rest of the chapter, we will use this term to speci�cally refer to the original model from [102].
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IWEs; and (iv) RSAT (↓) [102], a deblurring quality metric based on the per-pixel average

timestamps of the IWEs. We compare our solution to the published baselines, which range

from supervised learning (SL) methods trained with ground truth, to SSL methods trained

with grayscale images (SSLF) or events (SSLE), and model-based approaches (MB).

We train all our models on a subset of sequences from the training dataset of DSEC-Flow

(only daylight recordings
2
). This corresponds to 19 minutes of training data, which we

split into 572 128 × 128 (randomly-cropped) sequences of 2 seconds each. We use a batch

size of 8 and train until convergence with the Adam optimizer [173] and a learning rate of

1e-5. To keep memory usage within limits, we only propagate error gradients through up

to 1e3 randomly-chosen events per millisecond of data. Despite this, note that we warp

and use all the input events for the computation of the loss function.

6.4.1 Evaluation procedure

[x0, tbegin]

[x0 + ugt, tend]

[x0 + uest, tend]

Event stream

Ground truth flow

Estimated flow
Reconstructed flow

Figure 6.6: Reconstruction of the pixel displacement of a scene point

in the time window of a ground-truth sample from the multiple

optical �ow maps estimated in this period, i.e., ∀uk ∈ [tbegin
, t

end
].

The error of the last optical �ow estimate is magni�ed for clarity.

When evaluating our sequential

models, if dtgt > dtinput, we need to

reconstruct the estimated per-pixel

displacement in the ground-truth

time window from the multiple op-

tical �ow maps estimated in this

period. We do this by �rst aver-

aging the (bilinearly interpolated)

optical �ow vectors that describe

the trajectory of each scene point,

and then by scaling the resulting

optical �ow vectors by dtgt/dtinput.

An illustration of this reconstruc-

tion is shown in Fig. 6.6 for a scene

point following a nonlinear trajectory. Note that our solution is subject to cumulative errors

when evaluated through this reconstruction on benchmarks with ground truth provided at

low rates (e.g., 10 Hz in DSEC-Flow [34]). Therefore, it will compare unfavorably to other,

non-sequential, methods that only produce a single optical �ow estimate in the timespan

of a ground-truth sample.

6.4.2 Optical flow evaluation
Evaluation on DSEC-Flow
Quantitative results of our evaluation on DSEC-Flow are presented in Table 6.1, and are

supported by the qualitative comparison in Fig. 6.7. For this experiment, we trained multiple

models with the same dtinput = 0.01s (i.e., ×10 faster than DSEC’s ground truth) but di�erent

lengths of the training partition, and with and without the multi-timescale approach.

2
The contrast maximization framework for motion compensation assumes constant illumination [96, 97]. Under

this assumption, all the events captured with an event camera are generated by the apparent motion of objects

in the image space. However, the constant illumination assumption is often violated in sequences recorded at

night because the main source of light in these environments comes from �ashing, arti�cial lights (e.g., street

lamps). In addition, the signal-to-noise ratio of these sensors decreases under low light conditions, which means

that a large percentage of the captured events are not triggered by motion but by sensor noise [18].
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Figure 6.7: Qualitative comparison of our method with the state-of-the-art E-RAFT architecture [34] and the

model-based approach from Shiba et al. [272] on sequences from the test partition of the DSEC-Flow dataset [34].

Ground truth not included due to unavailability. The optical �ow color coding can be found in Fig. 6.2 (top), and

the corresponding IWEs in Fig. 6.8.

Multiple conclusions can be derived from the reported results. Firstly, our best performing

model (i.e., R = 10, S = 1) achieves the best accuracy of all contrast-maximization-based

approaches on this dataset according to the EPE and the percentage of outliers. Speci�cally,

it outperforms the baselines with an improvement in the EPE in the 33% – 45% range,

only being outperformed by SL methods trained with ground truth on the same dataset

[34, 269]. This con�rms that (i) the timestamp-based loss function in Section 6.3.1 allows

us to learn accurate event-based optical �ow (contrary to the �ndings of [278]); and that

(ii) our augmentations to the sequential pipeline in [102] lead to a signi�cant improvement

in the accuracy of the model (i.e., 45% improvement in the EPE).

Secondly, these results also con�rm our hypothesis that, for each training dataset,

there is an optimal length for the training partition R in terms of the EPE. According to

Table 6.1, the optimal R for this dataset, our model architecture, and our dtinput is 10 (i.e.,

0.1s of event data), with the EPE increasing if the training partition is made shorter or

longer. However, as also shown in this table, we can relax the strong dependency of the

contrast maximization framework on this parameter through the proposed multi-timescale

approach. Our S > 1 models converged to solutions that slightly underperform our best
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Figure 6.8: IWEs corresponding to the qualitative comparison of our method with the state-of-the-art E-RAFT

architecture [34] and the model-based approach from Shiba et al. [272] on sequences from the test partition of

the DSEC-Flow dataset [34] (see Fig. 6.7).

EPE↓ %3PE↓ FWL↑ RSAT↓

S
L

E-RAFT [34] 0.79 2.68 1.33 0.87

EV-FlowNet, Gehrig et al. [34] 2.32 18.60 - -

Gehrig et al. [268] 0.75 2.44 - -

IDNet [269] 0.72 2.04 - -

TIDNet [269] 0.84 3.41 - -

TMA [279] 0.74 2.30 - -

Cuadrado et al. [280] 1.71 10.31 - -

E-Flowformer [281] 0.76 2.68 - -

S
S
L

E

EV-FlowNet
∗

[33] 3.86 31.45 1.30 0.85
ConvGRU-EV-FlowNet

∗
[102] 4.27 33.27 1.55 0.90

dt = 0.01s, R = 2, S = 1 (Ours) 9.66 86.44 1.91 1.07

dt = 0.01s, R = 5, S = 1 (Ours) 4.05 52.22 1.58 0.97

dt = 0.01s, R = 10, S = 1 (Ours) 2.33 17.77 1.26 0.88

dt = 0.01s, R = 20, S = 1 (Ours) 16.63 33.67 1.06 1.10

dt = 0.01s, R = 10, S = 3 (Ours) 2.82 27.09 1.37 0.92

dt = 0.01s, R = 20, S = 4 (Ours) 2.73 23.73 1.24 0.90

M
B

Shiba et al. [272] 3.47 30.86 1.37 0.89

∗
Retrained by us on DSEC-Flow, linear warping.

Table 6.1: Quantitative evaluation on the DSEC-Flow dataset [34]. Best

in bold, runner up underlined.

performing single-scale model

(EPE went up by 17% – 21%),

but were trained without the

need to �ne-tune the length

of the training partition. Note

that, despite this slight drop in

accuracy, these multi-timescale

solutions still outperform the

other non-SL baselines. To fur-

ther support these results, a vi-

sualization of the distribution

of the EPE of our models as

a function of the ground truth

magnitude is provided in Sec-

tion 6.4.3.

Lastly, Table 6.1 also allow

us to conclude that deblurring

quality metrics FWL [150] and
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RSAT [102] are not reliable indicators of the quality of the estimated optical �ow. The

reason for this is their inability to capture “event collapse” issues (as described in [282]),

and would give favorable scores to undesirable solutions that warp all the events into a

few pixels. According to our results, the FWL metric, being the spatial variance of the IWE

relative to that of the identity warp, su�ers more from this issue: the best FWL value is

obtained with a model with 9.66 EPE.

Regarding qualitative results, Fig. 6.7 shows a comparison of our best performing model

with the state-of-the-art E-RAFT architecture [34] and the contrast-maximization-based

approach from Shiba et al. [272] on multiple sequences from the test partition of DSEC-

Flow (i.e., ground truth is unavailable). These results con�rm that our models are able to

estimate high quality event-based optical �ow despite not having access to ground-truth

data during training, and also show the superiority of our method over the current best

contrast-maximization-based approach [272]. Two limit cases in which our models provide

suboptimal solutions are also shown in this �gure: (i) sequences recorded at night (e.g.,

zurich_city_12_a) due to the presence of large amounts of events triggered by �ashing

lights and not by motion; and (ii) the car hood, which is also problematic for E-RAFT (i.e.,

does not capture it) and for [272]. Note that, in our case, (ii) is an artifact of the pixel

displacements reconstructed from multiple optical �ow estimates, and could be mitigated

by having an occlusion handling mechanism in this reconstruction process.

EPE↓ %3PE↓ FWL↑ RSAT↓
dt = 0.1s∗ 3.48 34.72 0.98 0.87
dt = 0.05s 3.09 27.36 1.11 0.91

dt = 0.01s 2.33 17.77 1.26 0.88

dt = 0.005s 2.34 17.92 1.38 0.89

dt = 0.002s 2.66 21.83 2.04 0.90

∗
Non-recurrent, volum. event repr. with 10 bins.

Table 6.2: Impact of the input window length on

the DSEC-Flow dataset [34]. Best in bold, runner

up underlined.

In addition to the evaluation in Table 6.1

and Fig. 6.7, we also conducted an experiment in

which we trained multiple models with di�erent

dtinput (ranging from 0.1s to 0.002s) but with

the same amount of information in the training

partition: 0.1s of event data. Results in Table 6.2

show that our sequential pipeline leads to an

improvement in the accuracy of the predicted

optical �ow maps with respect to the stateless

EV-FlowNet, which processes the 0.1s of event

data at once. This improvement is due to the

fact that the complexity of dealing with large

pixel displacements gets reduced when processing the input data sequentially using shorter

input windows. In addition to this, Table 6.2 also shows that the accuracy of our models

is not compromised when estimating optical �ow at higher frequencies, despite the high

sparsity levels in the input data at those rates.

Evaluation on MVSEC
Quantitative results of our evaluation on MVSEC are presented in Table 6.3, and are

supported by the qualitative comparison in Fig. 6.9. For this experiment, since (i) there is no

consensus in the literature with respect to the training dataset [25, 33, 34, 100, 102, 150, 272],

and (ii) the outdoor_day2 sequence (i.e., the other daylight, automotive sequence) is only 9

minutes of duration during which the event camera is subject to high frequency vibrations

[168], we decided to transfer one of our models trained on DSEC-Flow to MVSEC. More

speci�cally, we chose the model trained with dtinput = 0.005s and R = 20 from Table 6.2, as

a model trained with a short input window on DSEC-Flow is expected to be robust to the

slow motion statistics of MVSEC [34]. We deployed the model at the same frequency as
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outdoor_day1 indoor_�ying1 indoor_�ying2 indoor_�ying3

EPE↓ %3PE↓ EPE↓ %3PE↓ EPE↓ %3PE↓ EPE↓ %3PE↓
S
L

EV-FlowNet+ [150] 0.68 0.99 0.56 1.00 0.66 1.00 0.59 1.00

E-RAFT [34] 0.24 1.70 - - - - - -

EV-FlowNet [34] 0.31 0.00 - - - - - -

TMA [279] 0.25 0.07 1.06 3.63 1.81 27.29 1.58 23.26

Cuadrado et al. [280] 0.85 - 0.58 - 0.72 - 0.67 -

S
S
L

F EV-FlowNet [25] 0.49 0.20 1.03 2.20 1.72 15.1 1.53 11.9

Ziluo et al. [270] 0.42 0.00 0.57 0.10 0.79 1.60 0.72 1.30

S
S
L

E

EV-FlowNet [33] 0.32 0.00 0.58 0.00 1.02 4.00 0.87 3.00

EV-FlowNet [100] 0.92 5.40 0.79 1.20 1.40 10.9 1.18 7.40

EV-FlowNet [272] 0.36 0.09 - - - - - -

ConvGRU-EV-FlowNet [102] 0.47 0.25 0.60 0.51 1.17 8.06 0.93 5.64

Ours (transferred from DSEC) 0.27 0.05 0.44 0.00 0.88 4.51 0.70 2.41

M
B

Akolkar et al. [283] 2.75 - 1.52 - 1.59 - 1.89 -

Brebion et al. [273] 0.53 0.20 0.52 0.10 0.98 5.50 0.71 2.10

Shiba et al. [272] 0.30 0.11 0.42 0.09 0.60 0.59 0.50 0.29

Table 6.3: Quantitative evaluation on all MVSEC sequences [168]. Best in bold, runner up underlined.

the temporally-upsampled ground truth (i.e., 45 Hz). Results in Table 6.3 show that, in the

outdoor_day1 sequence, our model outperforms the great majority of methods in terms

of the EPE (even some SL methods trained on this dataset), and is only surpassed by the

current state-of-the-art E-RAFT [34] and TMA [279] architectures. Note that this is also

an automotive sequence, so it presents some similarities with dataset used to train this

model. For the case of the indoor sequences, recorded with a drone �ying in an indoor

environment, our transferred model demonstrates (on average) an improvement of 25%
in EPE compared to the architecturally-equivalent ConvGRU-EV-FlowNet model from

Hagenaars et al. [102], while showing an error increase of 30% compared to Shiba et al.

[272]. However, note that the latter method is not learning-based, so it is not subject to

generalization issues besides those inherent to contrast maximization.

6.4.3 Additional experiments
Impact of seqential processing

EPE↓ %3PE↓
dt = 0.1s∗ 3.48 34.72

dt = 0.05s∗ 3.24 32.45

dt = 0.01s∗ 15.85 90.52

dt = 0.005s∗ 28.45 97.27

dt = 0.002s∗ 15.28 94.79

dt = 0.05s 3.09 27.36

dt = 0.01s 2.33 17.77
dt = 0.005s 2.34 17.92

dt = 0.002s 2.66 21.83

Table 6.4: Quantitative evalu-

ation of the impact of sequen-

tial processing on DSEC-Flow

[34]. Best in bold, runner up un-

derlined. ∗: Non-recurrent, vol-

umetric event representation

with 10 bins.

Here, we study the impact of the proposed contrast maximiza-

tion framework for sequential event-based optical �ow estima-

tion (i.e., short input partitions, longer training partitions; see

Section 6.3) and compare it to the non-sequential pipeline from

Zhu et al. [33] (i.e., input and training partitions are of the same

length). To do this, we trained multiple models on DSEC-Flow

with di�erent dtinput, but with dttrain= 0.1s for the sequential

models and dttrain= dtinput for the non-sequential. Quantitative

results in Table 6.4 con�rm the claims made in Section 6.3.1

about the fact that, for contrast maximization to be a robust

supervisory signal, the training event partition used for the

computation of the supervisory signal needs to contain enough

motion information (i.e., blur) so it can be compensated for. As

shown, non-sequential models converge to worse solutions the

shorter the input window. On the other hand, our sequential
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Input events Ground truth E-RAFT (SL) Shiba et al. (MB) Ours (SSLE)

Figure 6.9: Qualitative comparison of our method with the state-of-the-art E-RAFT architecture [34] and the

model-based approach from Shiba et al. [272] on the outdoor_day1 sequence from the MVSEC dataset [168].

Optical �ow predictions are masked with the input events to be consistent with the evaluation proposed in [25].

The optical �ow color coding can be found in Fig. 6.2 (top).

pipeline allows us to shorten the input window without compromising the performance,

as discussed in 6.4.2.

Linear vs. iterative event warping
Here, we examine the e�ect of the type of event warping (linear [102] vs. iterative) on

the performance of the sequential, stateful architecture introduced in Section 6.3.4 when

it is trained on the DSEC-Flow dataset. To do this, we trained four models in total: two

variants (with and without image border compensation) of ConvGRU-EV-FlowNet [102],

which is trained with linear warping; and another two variants of the same architecture, but

trained with the proposed iterative warping module. Quantitative and qualitative results

are presented in Table 6.5 and Fig. 6.11, respectively. In both cases (with and without image-

border compensation), the models trained with iterative warping (i.e., ours) outperform

those trained with linear warping (EPE dropped by 28% without compensation, and 62%
with it). This is expected, as the iterative warping module is able to better capture the

trajectory of scene points over time, as explained in Section 6.3.2.

To support the arguments presented in Section 6.3.2 and Fig. 6.2 regarding the limitations

of linear warping, we also conducted an experiment in which we deployed models trained

on DSEC-Flow with linear and iterative warping on a sequence from the Event Camera

Dataset [172] with strong nonlinearities in the trajectories of scene points. Note that this

sequence, known as shapes_6dof, was recorded with a di�erent event camera and that

its statistics are signi�cantly di�erent from those of DSEC-Flow (i.e., hand-held camera

looking at a planar scene [172] vs. automotive scenario [277]). Qualitative results are

presented in Fig. 6.10. In addition to showing that the models generalize (to some extent)

to this new sequence, these results demonstrate that only the models trained with iterative

event warping are able to produce sharp IWEs at multiple reference times.
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Accumulated events Reconstructed displacement

IWE at tref = 0 IWE at tref = latest

(a) ConvGRU-EV-FlowNet
∗†

[102].

Accumulated events Reconstructed displacement

IWE at tref = 0 IWE at tref = latest

(b) Ours.

Figure 6.10: Qualitative results of the ablation study with respect to the type of event warping. Inference settings:

dt = 0.01s, accumulation window of 0.5s. Both models were trained on the DSEC-Flow dataset [34], with dt

= 0.01s, R = 10, S = 1. ∗: Retrained by us on DSEC-Flow [34]. †: Without border compensation. The optical �ow

color coding can be found in Fig. 6.2 (top).

Optical flow at the image borders
As discussed in Section 6.3.2, for a given temporal scale, we mask the events that are

transported outside the image space at any time during the warping process from the

computation of the loss to prevent learning incorrect optical �ow at the image borders.

Here we study the impact of this masking mechanism on the performance of not only the

proposed SSL framework but also of two other literature methods: EV-FlowNet [33] and

ConvGRU-EV-FlowNet [102]. For this experiment, we trained two versions of each model,

one with and one without the proposed image-border compensation technique, on the

DSEC-Flow dataset. Note that EV-FlowNet is a stateless model trained with a volumetric

event representation [33] with 10 bins, and hence processes all the input events in between

ground-truth samples at once.

EPE↓ %3PE↓
EV-FlowNet

∗†
[33] 3.86 31.45

EV-FlowNet
∗

[33] 3.48 34.72

ConvGRU-EV-FlowNet
∗†

[102] 4.27 33.27

ConvGRU-EV-FlowNet
∗

[102] 6.09 36.36

dt = 0.01s, R = 10, S = 1† (Ours) 3.08 21.38

dt = 0.01s, R = 10, S = 1 (Ours) 2.33 17.77

∗
Retrained by us on DSEC-Flow, linear warping.

†
Without border compensation.

Table 6.5: Quantitative results of the ablation study on the

DSEC-Flow dataset [34] with respect to the e�ectiveness

of the proposed warping module and image-border com-

pensation mechanism.

Quantitative and qualitative results

are presented in Table 6.5 and Fig. 6.11, re-

spectively. These results highlight that, for

both EV-FlowNet and our model, adding

the proposed image-border compensation

improves performance (EPE dropped by

10% and 24%, respectively). However, the

performance degraded when adding it

to the training pipeline of ConvGRU-EV-

FlowNet (EPE went up by 43%). We be-

lieve that the reason for this drop in perfor-

mance is the event warping method used

during training. While the proposed itera-

tive warping allows for the error to prop-

agate through all the pixels covered in the
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Figure 6.11: Qualitative results of the ablation study on the DSEC-Flow dataset [34] with respect to the e�ectiveness

of the proposed event warping module and image-border compensation mechanism. Top: Models trained with

the proposed SSL framework (dt = 0.01s, R = 10, S = 1). Bottom: Literature methods EV-FlowNet [33] and

ConvGRU-EV-FlowNet [102]. ∗: Retrained by us on DSEC-Flow. †: Without border compensation. The optical

�ow color coding can be found in Fig. 6.2 (top).

warping process, the linear warping used to train ConvGRU-EV-FlowNet only propagates

the error through pixels with input events [102]. Therefore, if events are removed from the

computation of the loss, the error is not propagated through the corresponding pixels, and

then the spatial coherence of the resulting optical �ow maps degrades. Despite sharing the

same warping methodology, this is less of an issue for EV-FlowNet since it processes the

events from longer temporal windows in a single forward pass, producing a single optical

�ow map per loss. The longer this window, the more likely it is that a pixel contains events

triggered by multiple moving objects (i.e., re�ected as events with di�erent timestamps),

and hence the higher the probability that the error is propagated through that pixel.

Visualizing the endpoint error
To support the hypothesis in Section 6.3.3 that the length of the training partition R has a

signi�cant impact on the quality of the training, here we study the distribution of the EPE

of our models in Table 6.1 as a function of the ground truth optical �ow magnitude in the

thun_00_a
3

sequence from DSEC-Flow [34]. The error distributions are shown in Fig. 6.12

and con�rm the conclusions derived from Table 6.1 in Section 6.4.2. Models trained with

short training partitions (i.e., R ∈ [2, 5]) converge to solutions that are less accurate (i.e.,

high EPE) for low ground truth magnitudes, while long partitions (i.e., R ≥ 20) do the same

3
Note that, since ground truth is required for this experiment, this sequence belongs to the training partition of

DSEC-Flow [34]. Consequently, this means that our models have had access to a randomly cropped version of it

during training.
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Figure 6.12: Distribution of the EPE of our models in Table 6.1 as a function of the ground truth magnitude in the

thun_00_a sequence from DSEC-Flow [34]. For this experiment, and as in Table 6.1, all models were trained and

deployed with dtinput = 0.01s.

but for high ground truth magnitudes. The proposed multi-timescale approach (i.e., S > 1)
to contrast maximization alleviates this issue and allows for the training of models that

are accurate for all ground truth magnitudes without having to �ne-tune the length of

the training partition. As shown in this �gure, the error distribution of the S > 1 models

closely resembles that of our best performing solution: R = 10, S = 1.

6.5 Limitations
The self-supervised method for event-based optical �ow presented in this work, while

demonstrating highly accurate and promising results, is not without limitations. Two

critical challenges that need to be acknowledged are the brightness constancy assumption

and the aperture problem. Firstly, the contrast maximization framework [96, 97] assumes

constant illumination, leading our models to face di�culty in learning from events that are

not due to motion in the image space but that arise from changes in illumination. Since this

limitation is inherent to contrast maximization, it extends to other approaches based on the

same principle [100, 102, 272]. Due to this assumption, we excluded sequences recorded

at night from our training dataset. Secondly, akin to many other optical �ow methods,

our approach is susceptible to the aperture problem. This indicates that only motion

components normal to the orientation of an edge in the image space, also known as normal

optical �ow, can be reliably resolved [105]. Consequently, the proposed method might

face challenges in accurately determining the true motion direction in certain ambiguous

scenarios. The regularizing e�ect of the iterative event warping and the multiple spatial

scales at which dense optical �ow is estimated in our architecture are mechanisms in our

proposed solution that collectively strive to counteract the aperture problem’s in�uence.
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6.6 Conclusion
In this chapter, we presented the �rst learning-based approach to event-based optical �ow

estimation that is scalable to high inference frequencies while being able to accurately

capture the true trajectory of scene points over time. The proposed pipeline is designed

around a continuously-running stateful model that sequentially processes �ne discrete

partitions of the input event stream while integrating spatiotemporal information. We train

this model through a novel, self-supervised, contrast maximization framework (i.e., event

deblurring for supervision) that is characterized by an iterative event warping module and a

multi-timescale loss function that add robustness and improve the accuracy of the predicted

optical �ow maps. We demonstrated the e�ectiveness of our approach on multiple datasets,

where our models outperform the self-supervised and model-based baselines by large

margins. Future research should look into how to learn to better combine the information

from multiple timescales, as well as into the design of lightweight architectures that can

keep up with real-time constraints.

We believe that the proposed approach opens up avenues for future research, especially

in the �eld of neuromorphic computing. Spiking networks running on neuromorphic

hardware have the potential of exploiting the main bene�ts of event cameras, but for that

they need to process the input events shortly after they arrive. Our proposed framework

is a step toward this objective, as it enables the estimation of optical �ow in a close to

continuous manner, with all the integration of information happening within the model

itself.

Supplementary material

Video summary of the approach: https://youtu.be/vkYimENc494

Project code: https://github.com/tudelft/taming_event_�ow

https://youtu.be/vkYimENc494
https://youtu.be/vkYimENc494
https://github.com/tudelft/taming_event_flow
https://github.com/tudelft/taming_event_flow
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Fully Neuromorphic Vision

and Control for Autonomous
Drone Flight

The scienti�c discoveries from previous chapters converge here, where we present the �rst fully
neuromorphic vision-to-control pipeline for controlling a �ying robot. Speci�cally, we train a
spiking neural network that accepts event-based camera data and outputs low-level control
actions. The vision part of the network maps incoming events to ego-motion estimates and
is trained with self-supervised learning on real event data. The control part is learned with
an evolutionary algorithm in simulation. Robotic experiments show a successful sim-to-real
transfer. The robot can accurately follow di�erent ego-motion setpoints, allowing for hovering,
landing, and maneuvering sideways—even while yawing at the same time. The neuromorphic
pipeline runs on board on Intel’s Loihi neuromorphic processor with an execution frequency of
200 Hz, spending only 27 �J per inference. These results illustrate the potential of neuromorphic
sensing and processing for enabling smaller, more intelligent robots.
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Contribution: The research leading to this chapter’s work was the result of a collaborative e�ort with multiple

researchers, all from the Micro Air Vehicle Laboratory (Delft University of Technology). Apart from contributing

to the conception of the study, to performing the experiments, and to the analysis and interpretation of the results,

I speci�cally designed the vision-based state estimation pipeline. This required simulating, training, validating

and deploying spiking neural networks for event-based optical �ow estimation.
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7.1 Introduction

O
ver the past decade, deep arti�cial neural networks (ANNs) have revolutionized the

�eld of arti�cial intelligence. Among the successes has been the signi�cant improve-

ment of visual processing, to an extent that computer vision can now outperform humans

on speci�c tasks [284]. Also the �eld of robotics has bene�ted from this development, with

deep ANNs achieving state-of-the-art performance in tasks such as stereo vision [285, 286],

optical �ow estimation [189, 266, 267], segmentation [287, 288], object detection [289–291],

and monocular depth estimation [292–294]. However, this high performance typically

relies on substantial neural network sizes that require quite heavy and power-hungry

processing hardware. This limits the number of tasks that can be performed by larger

(ground) robots, and even prevents deployment on smaller robots with highly stringent

resource constraints, like small �ying drones.

Neuromorphic hardware may provide a solution to this problem, since it mimics the

energy-e�cient, sparse and asynchronous nature of sensing and processing in biological

brains [295, 296]. For example, the pixels in neuromorphic, event-based cameras only

transmit information on brightness changes [18]. Since typically only a fraction of the

pixels change in brightness signi�cantly, this leads to sparse vision inputs with subsequent

events that are in the order of a microsecond apart. The asynchronous and sparse nature of

visual inputs from event-based cameras represents a paradigm shift compared to traditional,

frame-based computer vision. Ideally, processing would exploit these properties for quicker,

more energy-e�cient processing. However, currently, learning-based approaches to event-

based vision involve accumulating events over a substantial amount of time, creating

an “event window” that represents extended temporal information. This window is then

processed similarly to a traditional image frame with an ANN [25, 33, 34, 100]. While

there is work that employs much shorter event windows [101–103], the full potential of

neuromorphic vision will only be achieved when events are processed asynchronously as

they come in by means of neuromorphic processors designed for implementing spiking

neural networks (SNNs) [191, 297]. These networks have temporal dynamics more similar

to biological neurons. In particular, the neurons have a membrane voltage that integrates

incoming inputs and causes a spike when it exceeds a threshold. The binary nature of

spikes allows for much more energy-e�cient processing than the �oating point arithmetic

in traditional ANNs [298, 299]. The energy gain is further improved by reducing the spiking

activity as much as possible, as is also a main property of biological brains [300]. Coupling

neuromorphic vision to neuromorphic processing promises low-energy and low-latency

visual sensing and acting, as exhibited by agile animals such as �ying insects [301].

In this chapter, we present the �rst fully neuromorphic vision-to-control pipeline for

controlling a �ying drone, demonstrating the potential of neuromorphic hardware. To

achieve this, we overcome several challenges related to present-day neuromorphic sensing

and processing. For example, training is currently still much more di�cult for SNNs than

for ANNs [302, 303], mostly due to their sparse, binary, and asynchronous nature. The

most well-known di�culty of SNN learning is the non-di�erentiability of the spiking

activation function, which prevents naive application of backpropagation. Currently, this

is tackled rather successfully with the help of surrogate gradients [37, 38], although longer

sequences (as would be the case for event-by-event processing) can still lead to gradient

vanishing. Moreover, while the richer neural dynamics can potentially represent more
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complex temporal functions, they are also harder to shape; and neural activity may saturate

or dwindle during training, preventing further learning. The causes for this are hard to

analyze, as there are many parameters that can play a role. Depending on the model, the

relevant parameters may range from neural leaks and thresholds to recurrent weights

and time constants for synaptic traces. A solution may lie in learning these parameters

[40, 304], but this further increases the dimensionality of the learning problem. Finally,

when targeting a robotics application, SNN training and deployment is further complicated

by the restrictions of existing embedded neuromorphic processing platforms, which are

typically still rather limited in terms of numbers of neurons and synapses. As an illustration,

the ROLLS chip [84] accommodates 256 spiking neurons, the Intel Kapoho Bay (featuring

two Loihi chips [14] in a USB stick form factor) 262.1k neurons [85], and the SpiNNaker

version in [82] 768k neurons. Although these chips di�er in many more aspects than

only the number of neurons, this small sample already shows that current state-of-the-art

SNNs cannot be easily embedded on robots. SNNs that have recently been trained on

visually complex tasks such as optical �ow determination [101, 102], still feature far too

large network sizes for implementation on current neuromorphic processing hardware for

embedded systems. The smallest size SNN in these studies is LIF-FireFlowNet for optical

�ow estimation [102], which still has 3.7M neurons (at an input resolution of 128 × 128).

As a consequence, pioneering work in this area has been limited in complexity. Very

early work involved the evolution of spiking neural network connectivity to map the

16 visual brightness inputs of a wheeled Kephera robot to its two motor outputs [305].

The evolved SNN, simulated in software, allowed the robot to avoid the walls in a black-

and-white-striped environment. Most work exploring SNNs for robotic vision focuses on

simulation. For example, in [215], the events from a simulated event-based camera with

128×128 pixels are accumulated into frames, compressing them over time into 8×4 Poisson

input neurons. These inputs, which capture the clear white lines of the road border, are

then directly mapped to two output neurons for staying in the center of the road with

the help of reward-modulated spike-time-dependent plasticity learning. Robotic examples

of in-hardware neuromorphic processing for vision are more rare. An early example is

the one in [82], in which an event-based camera with 128 × 128 pixels is connected to a

SpiNNaker neuromorphic processor to allow a driving robot to di�erentiate between two

lights �ashing at di�erent frequencies with a 128-neuron winner-takes-all network. In [83]

a spiking neural network is designed for following a light target in the top half of the �eld of

view, while avoiding regions with many events in the bottom half of the �eld of view. This

network is successfully implemented in the ROLLS neuromorphic chip [84] and tested in an

o�ce environment. Recent years have seen an increasing focus on �ying robots, i.e., drones,

because they need to react quickly while being extremely restricted in terms of size, weight,

and power (SWaP). In [85], an SNN is implemented on a bench-�xed dual-rotor to align the

roll angle with a black-and-white disk located in front of the camera. The SNN involved

both a visual Hough transform [306] for �nding the line, and a proportional-derivative

(PD) controller for generating the propeller commands. Finally, in [307], an SNN was �rst

evolved in simulation and then implemented in Loihi for vision-based landing of a �ying

drone. This control network only consisted of 35 neurons since the visual processing was

still performed with conventional, frame-based computer vision methods. Additionally, it

is worth noting that only the vertical motion of the drone was controlled with the SNN; its
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Figure 7.1: Overview of the proposed system. (A) Hardware overview showing the communication between

event-camera, neuromorphic processor, single-board computer and �ight controller. RTPS (real-time publish-

subscribe) and USB refer to the used communication protocols. (B) Quadrotor used in this work (total weight 994

g, tip-to-tip diameter 35 cm). (C) Pipeline overview showing events as input, processing by the vision network

and decoding into a control command. (D) Demonstration of the system for an optical �ow constant divergence

landing.

lateral position was controlled using traditional control algorithms and an external motion

capture system. The current work represents a step up in complexity by performing 3D

visual ego-motion estimation and control of a �ying drone with a fully neuromorphic

vision-to-control pipeline.

A fully neuromorphic solution to vision-based navigation
The presented vision-to-control pipeline consists of an SNN that is trained to accept raw

event-camera data and output low-level control actions for performing autonomous vision-

based ego-motion estimation and control at approximately 200 Hz. A core property of our

learning setup is that it splits vision and control, which provides two major advantages.

First, it helps to prevent the reality gap on the camera event input side, as the vision

part is trained based on raw events from the actual event camera on the drone. We use

self-supervised learning, since this foregoes the need for ground truth measurements that

are di�cult to obtain for event-based vision. Second, as the output of the vision part is an

ego-motion estimate, we can learn the control in a simple and extremely fast simulator.

This allows us to evade the high-frequency generation of visually realistic images for event

generation [149], something that would lead to excessive training times in an end-to-end
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learning setup. The resulting pipeline, illustrated in Fig. 7.1C, was implemented on the

Loihi neuromorphic processor [14] and used on board a small �ying robot (see Fig. 7.1B) for

vision-based navigation. A schematic of the hardware setup employed is shown in Fig. 7.1A.

The system successfully follows ego-motion setpoints in a fully autonomous fashion, i.e.,

without any external aids such as a positioning system. Fig. 7.1D shows an example of a

landing experiment with our neuromorphic pipeline in the control loop of the drone. The

�gure shows the smoothly decreasing height of the drone above the ground (blue line),

and the estimated optical �ow divergence (orange line), which is the vertical component of

the velocity vector divided by this height. The divergence curve is typical of an optical

�ow divergence landing, �rst approaching the setpoint -0.5 1/s and then becoming more

oscillatory when getting very close to the ground [73].

As mentioned, the main challenge of deploying such a pipeline on embedded neu-

romorphic hardware is that, due to the preliminary state of this technology, one has to

work within very tight limits regarding the available computational resources. In this

project, several design decisions were made to adapt to these limitations. Firstly, the vision

processing pipeline assumes that the event-based camera on the drone, the DAVIS240C

[174], looks down at a static, texture-rich, �at surface. Knowing the structure of the visual

scene in advance simpli�es the estimation of the ego-motion of the camera (and hence

of the drone) with the help of optical �ow information, as in [70, 72, 73, 307, 308]. Opti-

cal �ow, i.e., the apparent motion of scene points in the image space, can be estimated

from the output of an event-based camera with a wide variety of methods, ranging from

sparse feature-tracking algorithms [57] to dense (i.e., per-pixel) machine learning models

[25, 34, 102]. In the search for an e�cient and high-bandwidth vision pipeline that achieves

the desired 200 Hz operating frequency, the second design decision was to reduce the

spatial resolution of the event-based vision data by only processing information from the

image corner regions of interest (ROIs) rather than the entire image space, and to limit

the number of events to 90 per ROI. More speci�cally, as depicted in Figs. 7.1 and 7.2,

we propose the use of a small SNN that is applied independently at each ROI, with each

ROI being 16 × 16 pixels in size after a nearest-neighbor downsampling operation. Each

network consists of 7.2k neurons and 506.4k synapses distributed over �ve spiking layers,

i.e., one input layer, three self-recurrent encoders, and a pooling layer. Its parameters (i.e.,

weights, thresholds, and leaks) are identical for the four ROIs, and it estimates the optical

�ow, in pixels per millisecond, of the corresponding ROI. Because of the static and planar

scene assumption, the apparent motion of the scene points at the four corner ROIs encodes

non-metric information about the velocity of the camera (i.e., divided by the distance to

the surface along the optical axis) and its rotational rates in a linear manner [309].

Based on this relation, we perform control. To keep the pipeline maximally neuromor-

phic (minimum required processing happening outside of Loihi) and performant (sending

more spikes to Loihi decreases execution frequency), we train a linear controller in sim-

ulation, and merge it with the decoding of the spikes coming from the vision network

(representing optical �ow). In other words, the linear controller takes vision spikes, a

user-given control setpoint, and attitude of the drone and maps these linearly to thrust

and attitude control commands. While opting for a linear controller allows for a fully

neuromorphic vision-to-control pipeline, it also means we have to make some assumptions.

For instance, angles in pitch and roll should be small, and the optical �ow variables taken as
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Figure 7.2: Overview of the spiking vision network. Running at approx. 200 Hz, events are accumulated (max.

90 events per corner ROI) and then fed through the vision network consisting of three encoders (kernel size

3 × 3, stride 2) and a spiking pooling layer. Spikes are decoded into two �oats representing �ow for that corner

ROI. This network is replicated to the three other ROIs, in order to end up with four ROI optical �ows vectors.

During training, these are used in a homography transformation to derive dense �ow, which is then used for the

self-supervised loss. The full network is running on the neuromorphic processor during real-world �ight tests.

input should be derotated in pitch and roll [72, 236]. Furthermore, we should keep in mind

that a linear controller will be unable to compensate for any drift or steady-state o�set

through integration. We show that, despite all this, we are able to successfully perform

control of a �ying drone.

We split the training of our vision-to-control pipeline into two separate frameworks. On

the one hand, the vision part of the pipeline, in charge of mapping input events to optical

�ow, is trained in a self-supervised fashion using the contrast maximization framework

[96, 97]. The idea behind this approach is that, by compensating for the spatiotemporal

misalignments among the events triggered by a moving edge (i.e., event deblurring), one

can retrieve accurate optical �ow information. In this work, we use the formulation

proposed in [102] (Chapter 5 of this dissertation) and shown in Fig. 7.2. Corner ROI events

within non-overlapping temporal windows of 5 milliseconds are processed sequentially

by our spiking networks, which provide optical �ow estimates at every timestep. Only

during training, we use the motion information of the four corners ROIs to parameterize a

homography transformation that, under the assumption of static planar surface, allows

us to retrieve dense optical �ow, as in [78, 309–311]. Following [102], we accumulate

event and optical �ow tuples over multiple timesteps for contrast maximization to be a

robust self-supervisory signal, and only compute the deblurring loss function and perform

a backward pass through the networks (using backpropagation through time) once 25

milliseconds of event data have been processed. To cope with the non-di�erentiable spiking

function of our neurons, we use surrogate gradients [37].

On the other hand, the control part of the network, consisting of a linear mapping from

the motion of the four corner ROIs to thrust and attitude control commands, is trained
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Figure 7.3: Overview of the control pipeline for simulation and real-world tests. During training in simulation, we

construct visual observables (scaled velocities and yaw rate) from ground-truth using the continuous homography

transform. The control decoding takes these observables together with roll and pitch and a setpoint to output

commands, which control the drone dynamics. We train the controller using evolution based on a �tness signal

that quanti�es how well the controller can follow setpoints for horizontal and vertical �ight. In the real world,

we receive �ows of the corner ROIs from the vision network, transform these to control commands in a single

matrix multiplication, and send these commands to the autopilot.

in a drone simulator using an evolutionary algorithm. Evolutionary algorithms work

by evaluating all the individuals in a population, where the best-performing (or �ttest)

individuals are varied upon to form the population of the next generation. Over generations,

the individuals will get an increasingly high �tness, which in our case means that they

become better at ego-motion control. Fig. 7.3 gives an overview of the simulator setup

used in evolution. To get around the need to incorporate an event-based vision pipeline in

simulation, we use the ground-truth state of the simulated drone to generate the expected

�ows per corner ROI using the continuous homography transform [312], and use these to

construct the scaled velocity (i.e., velocity divided by height above ground) and yaw rate

estimates that make up the visual observables of the camera’s ego-motion. The velocity is

divided by height, as optical �ow vectors capture the ratio of velocity and distance [72, 236].

The inputs to the linear control mapping are then these visual observables, absolute roll

and pitch (from the drone’s inertial measurement unit or IMU) and a desired setpoint for

the visual observables. The outputs of the controller (i.e., desired collective thrust, pitch

and roll angles and yaw rate) are subsequently applied to the simulated drone model in

order to control it. During evolution, the �tness of a controller is determined based on the

accumulated visual observable error in an evaluation. We evaluate each of the individuals

in the population on a set of (repeated) setpoints representing horizontal and vertical �ight,

create o�spring through random mutations, and select the best individuals for the next

generation. The trained controller is transferred directly to the real robot, without any

retraining.
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7.2 Method
Here, we explain the main components of the proposed fully-neuromorphic vision-to-

control pipeline, starting with the neuron model of our SNN and how this is trained in a

self-supervised fashion using real event data. Next, we describe how the vision-based state

estimate can be used for navigation, and how we train a controller on top of it.

7.2.1 Simulating the on-chip spiking neuron model
In this study, we utilize a spiking neuron model based on the current-based leaky-integrate-

and-�re (CUBA-LIF) neuron, whose membrane potential U and synaptic input current I at

timestep t can be written as:

U t
i = �U (1 − S

t−1
i )U t−1

i + I ti (7.1)

I ti = �I I
t−1
i +∑

j
W �

ij S
t
j +W

rec

ii St−1i (7.2)

where j and i denote presynaptic (input) and postsynaptic (output) neurons within a layer,

S ∈ {0, 1} a neuron spike, and W �
and W rec

feedforward and self-recurrent connections

(if any), respectively. The decays (or leaks) of the two internal state variables of this neuron

model are learned, and are denoted by �U and �I . A neuron �res an output spike if the

membrane potential exceeds a threshold � , which is also learned. The �ring of a spike

triggers a hard reset of the membrane potential. Note that, in this work, all neurons within

a layer share the same decays and �ring threshold.

Neurons on the Loihi neuromorphic processor also follow the CUBA-LIF model [14],

however, several considerations must be taken into account to accurately simulate these

on-chip neurons. Firstly, the two states variables are quantized in the integer domain.

Hence, the parameters associated with these variables are also quantized in the same way:

w ∈ [−256 .. 256 − Δw] with Δw being the quantization step for the synaptic weights,

�{U ,I} ∈ [0 .. 4096] for the decays, and � ∈ [0 .. 131071] for the threshold. We follow this

quantization scheme with Δw = 8 (6-bit weights) in the simulation and training of our

neural networks. Secondly, to emulate the arithmetic left (bit) shift operations carried out

by the processor when updating the neuron states, we perform a rounding towards zero

operation after the application of the decays. Taking these aspects into consideration, we

obtain a matching score of 100% between the simulated and the on-chip spiking neurons.

We use quantization-aware training (quantized forward pass, �oating-point backward pass)

to minimize the performance loss of our SNN when deployed on Loihi.

As surrogate gradient for the spiking function � , we opt for the derivative of the

inverse tangent � ′(x) = aTan
′ = 1/(1 + 
x2) [40], with 
 = 10 being the surrogate width

and x = U − � .

7.2.2 Four-point parametrization to estimate homography
Assuming that x = [x, y, 1]T and x′ = [x′, y′, 1]

T
are two undistorted corresponding

points from a planar scene expressed in homogeneous coordinates and captured by a

pinhole camera at di�erent time instances, a planar homography transformation is a linear

projective transformation that maps x ↔ x′ such that:
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whereH is a 3x3 non-singular matrix, further referred to as the homography matrix, which

is characterized by eight degrees of freedom and is de�ned up to a scale factor �, and from

which we obtain the normalized form by setting ℎ33 = 1.
From Eq. 7.3, we can formulate Akh = bk , a system of linear equations for the k-th

point correspondence, where:

Ak = [
x y 1 0 0 0 −x′x −x′y
0 0 0 x y 1 −y′x −y′y] (7.4)

h = [ℎ11 ℎ12 ℎ13 ℎ21 ℎ22 ℎ23 ℎ31 ℎ32]
T

(7.5)

bk = [x′ y′]
T

(7.6)

As shown in Fig. 7.2A, our vision network predicts the displacement of the corner ROI

pixels in a certain time window. Using this information, we can solve for the components

of the homography matrix through h = A−1b, with A and b being the result of the concate-

nation of the individual Ak and bk of each point correspondence ∀k ∈ {TL,TR,BR,BL},
resulting in a determined system of equations. This approach is referred to as the four-point

parametrization of the homography transformation [309], and it has proved to be successful

in the event-camera literature for robotics applications [78, 313].

Once the homography matrix is estimated, we can estimate a dense (i.e., per-pixel)

optical �ow map as follows:

u(x ,H ) =
⎡
⎢
⎢
⎣

u(x ,H )
v(x ,H )

1

⎤
⎥
⎥
⎦
= H

⎡
⎢
⎢
⎣

x
y
1

⎤
⎥
⎥
⎦
−
⎡
⎢
⎢
⎣

x
y
1

⎤
⎥
⎥
⎦

(7.7)

which encodes the displacement of pixel x in the time window of H . With a slight abuse

of notation, u further denotes optical �ow in Euclidean coordinates.

7.2.3 Self-supervised learning of event-based optical flow
To train our spiking architecture to estimate the displacement of the pixels of the four

corner ROIs in a self-supervised fashion, we use the contrast maximization framework

for motion compensation [96, 97]. Assuming constant illumination, accurate optical �ow

information is encoded in the spatiotemporal misalignments among the events triggered

by a moving edge (i.e., blur). To retrieve it, one has to learn to compensate for this motion

(i.e., deblur the event partition) by transporting the events through space and time. Once

we get a per-pixel optical �ow estimate u(x ,H ) from Eq. 7.7, we can propagate the events

to a reference time t
ref

through the following linear motion model:

x′i = x i + (tref
− ti)u(x i ,H ) (7.8)
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where t and t
ref

are normalized relative to the time window between x and x′. The result

of aggregating the propagated events is referred to as the image of warped events (IWE) at

t
ref

, and it having a high contrast indicates good motion compensation/deblurring.

As loss function, we use the reformulation from [102] of the focus objective function

based on the per-pixel and per-polarity average timestamp of the IWE [33, 161]. The lower

this metric, the better the event deblurring and hence the more accurate the estimated

optical �ow. We generate an image of the per-pixel average timestamp for each polarity p′
via bilinear interpolation:

Tp′ (x;u|tref
) =

∑j �(x − x′j )�(y − y
′
j )tj

∑j �(x − x′j )�(y − y
′
j ) + �

�(a) = max(0, 1 − |a|)

j = {i ∣ pi = p′}, p′ ∈ {+, −}, � ≈ 0

(7.9)

Following [102], we �rst scale the sum of the squared temporal images resulting from

the warping process with the number of pixels with at least one warped event:

contrast(tref
) =

∑x T+(x;u|tref
)2 + T−(x;u|tref

)2

∑x [n(x′) > 0] + �
(7.10)

where n(x′) denotes a per-pixel event count of the IWE.

As in [33, 100, 102], we perform the warping process both in a forward (t fw
ref

) and in a

backward fashion (tbw

ref
) to prevent temporal scaling issues during backpropagation. The

total loss used to train our event-based optical �ow networks is then given by:

contrast = contrast(t fwref
) + contrast(tbw

ref
) (7.11)


�ow

= contrast + �smooth
(7.12)

where 
smooth

is a Charbonnier smoothness prior [162] applied in the temporal domain to

subsequent per-corner-ROI optical �ow estimates, while � is a scalar balancing the e�ect

of the two losses. We empirically set this weight to � = 0.1.
As discussed in [102, 103], there has to be enough linear blur in the accumulated input

event partition for this loss function to be a robust supervisory signal [97, 256]. Since

we process the event stream sequentially, with only a few events being considered at

each forward pass, we de�ne the so-called training partition "train

k→k+R ≐ {("
inp

i , ûi)}k+Ri=k ,

which is a bu�er that gets populated every forward pass with the input events and their

corresponding optical �ow estimates. This is illustrated in Fig. 7.2A. At training time, we

perform a backward pass with the content of the bu�er using backpropagation through

time once it contains 5 successive event-�ow tuples (i.e., 25 milliseconds of event data),

after which we update the model parameters, detach its states from the computational

graph, and clear the bu�er. Note that the selection of input and training partition lengths

represents deliberate design choices [314], made in alignment with our target execution

frequency of 200 Hz, the fact that we do not have direct connectivity between the event

camera and the neuromorphic processor, and the statistical attributes of our dataset. We

use a batch size of 16 and train until convergence with the Adam optimizer [173] and a

learning rate of 1e-4.
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Figure 7.4: Merging linear transformations. (A) We go directly from output spikes s of the vision network to

control commands c in a single linear decoding by multiplying the involved linear transformation matrices. (B)

The same principle can be applied to connect two separately trained spiking networks in a spiking manner, from

spikes s to currents c, suitable for neuromorphic hardware.

7.2.4 From a vision-based state estimate to control
The corner ROI �ows [uTTL,u

T
TR,u

T
BR,u

T
BL]

T ∈ ℝ8×1 resulting from the vision-based state

estimation can be used to control the drone. More speci�cally, we can transform the �ows

to visual observable estimates [72], consisting of scaled velocities �̂ ∈ ℝ3×1 and yaw rate

!̂
z in the camera frame , as follows [236]:

u = [
−1 0 x x
0 −1 y −y] [

�

!
z ]

(7.13)

where u is the optical �ow of a world point with pixel array coordinate x = [x, y]T , and

where it is assumed that 1) the scene is static and planar, 2) angles in pitch and roll are

small and 3) optical �ow is derotated in pitch and roll (meaning the observed �ow is only

due to translation and yawing). Concatenating Eq. 7.13 for all four corners of the �eld

of view (uk , xk ∀ k ∈ {TL,TR,BR,BL}) allows us to do a least-squares estimation of the

scaled velocities �̂ and the yaw rate !̂
z , which can then be transformed to the body

frame . To perform control, we can let a user select setpoints �sp and !
z,sp, and use a

trained or manually tuned controller to minimize the di�erence between the estimated

visual observables and their setpoints.

Because Eq. 7.13 is a linear transformation, it can be “merged” with other transforma-

tions if these are also linear. This holds for the decoding from spikes to corner ROI �ows

in the vision SNN, meaning that we can use a single linear transformation from spikes to

control commands if we use a linear controller. In a similar fashion, we can use this idea to

connect separately trained SNNs, merging their linear decodings and encodings. If both

are implemented on neuromorphic hardware, this would mean that no o�-chip transfer is

necessary. Fig. 7.4 illustrates these concepts.

7.2.5 Training control in simulation
We perform control by linearly transforming the visual observable estimates �̂ ∈ ℝ3×1 and

!̂
z , the drone’s absolute roll |�| and pitch |� | and the scaled velocity setpoint �sp ∈ ℝ3×1
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to a control command c ∈ ℝ4×1, which consists of an upward, mass-normalized collective

thrust o�set from hover f̄0,c in the body frame , a roll angle �c and pitch angle �c , and

a yaw rate !
z,c , in order to reach a certain setpoint of scaled velocities �sp and yaw rate

!
z,sp (always 0).

The control part is trained separately from the vision part because of the cost of accu-

rately simulating event-based camera inputs (this needs subpixel displacements between

frames, hence high frame rate for fast motion). Simulation is done with a modi�ed version

of the drone simulator Flightmare [315]. To mimic the output of the vision-based state

estimation network, we �rst compute the ground-truth continuous homography [312, 316]

from the state of the drone:

Ḣ = K ([!
]× +

1
p
z

v (e−z )
T
)K

−1
(7.14)

where Ḣ is the continuous homography, K is the camera intrinsic matrix, [!]× ∈ ℝ3×3 is a

skew-symmetric matrix representing in�nitesimal rotations, p
z is the Z-component of the

position vector from the world frame  to the camera frame  (representing perpendicular

distance from the ground plane to the camera), v
is the velocity of the camera, and e−z is

the unit vector in the negative Z-direction of the world frame. To obtain angular rates and

velocities in the camera frame, we use the camera extrinsics, consisting of a rotation R
and a translation T

:

! = R!
(7.15)

v = R (v
 + [!]×T

) (7.16)

where the right-hand sides of Eqs. 7.15 and 7.16 are known from the simulator. Next, we

use the continuous homography to get the �ow of the four corners [312, 316]:

[
uk
1 ] = −(1 − xk (e


−z )

T
) Ḣxk (7.17)

where uk is the �ow in Euclidean coordinates, 1 is the identity matrix, and xk = [xk , yk , 1]T
is the projection of the world points in the corners of the �eld of view onto the pixel

array in homogeneous coordinates. We add  (0, 0.025) noise to the �ows uk (based on a

characterization of the vision SNN). Eq. 7.13 is subsequently used to go from �ows of the

corner ROIs to visual observables in the camera frame, which is then transformed back to

the body frame for control.

We use a mutation-only evolutionary algorithm with a population size of 100 to evolve

the weights of the linear controller matrix ∈ ℝ4×9, whose initial values are drawn from

 (−0.1, 0.1). More speci�cally, we generate o�spring by adding mutations drawn from

 (0, 0.001) to all parameters of each parent and then evaluate the �tness of both parents

and o�spring. The next generation is comprised of the best 100 individuals, and we repeat

this process until convergence (approx. 25k generations). We use Flightmare to assess

�tness at �ying various visual observable setpoints. Every individual is evaluated across

a set of 16 setpoints, with each scaled velocity setpoint �
sp

having at most one nonzero

element ∈ {±0.2, ±0.5, ±1.0} 1/s, skipping the positive setpoints for the Z-direction, and



7

138 7 Fully Neuromorphic Vision and Control for Autonomous Drone Flight

including hover. The yaw rate setpoint is set to !
z,sp

= 0 for all. Each setpoint is repeated

ten times, meaning a total of 160 evaluations per individual. Fitness F is computed as:

F =
1

Neval
∑

i∈Neval
∑

j∈Nsteps
w ⋅

⎛
⎜
⎜
⎜
⎝

�
sp,i −

⎡
⎢
⎢
⎣

�̂x
�̂y
�z

⎤
⎥
⎥
⎦j

⎞
⎟
⎟
⎟
⎠

2

+ (!̂

z )

2
(7.18)

Here,Neval is the number of evaluations,Nsteps = 1000 is the number of steps per evaluation,

and w = [1, 1, wz]T is a vector weighing the �tness for di�erent axes, where we set wz = 10
for setpoints where �z,sp

= 0. Note that, for the Z-direction, we use the ground-truth scaled

velocity in the world frame �z instead of the one in the body frame, as the latter is zero in

the case of the drone ascending or descending at a slope equal to its attitude, and would

hence go unpunished, leading to extra vertical drift. Furthermore, if the simulated drone

goes out of bounds or crashes before the end of an evaluation, it is reset without any

additional �tness penalty.

We use domain randomization [317] to obtain a more robust controller and reduce the

reality gap: for each of the ten repeats, a random constant bias  (−0.001, 0.001) rad is added

to the absolute pitch and roll received by the control layer. This bias is shared among the

population to keep things fair. Furthermore, for each of the 160 evaluations per individual,

we randomly vary the initial position p = [0, 0, 2]T + 3×1(−1, 1)m (except for horizontal

setpoints, where we �x p
z to 1.5 m, due to the linear nature of the controller we have

here), initial velocity v ∼  3×1(−0.02, 0.02) m/s, initial attitude quaternion q ∼
 4×1(−0.02, 0.02) (normalized), and initial angular rates ! ∼  3×1(−0.02, 0.02) rad/s.

We modify Flightmare to include drag f drag occurring as a result of translational motion,

and we take it to be acting in the so-called “�at-body” frame ′, which is the body frame

rotated by the roll and pitch of the drone, such that the Z-axis is aligned with the world

Z-axis. Following [99], we use a drag model that is linear with respect to velocity in X and

Y, but using a drag coe�cient kv,x = kv,y = 0.5. This results in the following:

fdrag = −R
′

⎛
⎜
⎜
⎝

⎡
⎢
⎢
⎣

kv,x
kv,y
0

⎤
⎥
⎥
⎦
◦ R

′v
⎞
⎟
⎟
⎠

(7.19)

The outputs of the linear controller c ∈ ℝ4×1 are clamped to [−1, 1] and fed to di�erent

parts of the cascaded low-level (thrust, attitude and rate) controllers. To accommodate some

of the shortcomings of the linear controller, we compensate thrust for the attitude of the

drone. Lastly, note that all dynamics equations are integrated with 4
th

-order Runge-Kutta

with a timestep of 2.5 ms. The frequency of the simulation is 50 Hz.

7.2.6 Hardware setup
Real-world experiments were performed with a custom-built quadrotor carrying the event-

based camera (DAVIS240C), a single-board computer (UP Squared) and a neuromorphic

processor (Intel Kapoho Bay with two Loihi neuromorphic research chips). A high-level

overview can be found in Fig. 7.1, while all components are listed in Table 7.1. We use

PX4 as autopilot �rmware, and ROS for communication. More speci�cally, events coming
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Component Product Mass [g] ∼Power [W]

Frame GEPRC Mark 4 225 mm

508 259

Motor Emax 2306 Eco II Series

Propellor Ethix S5 5 inch

Flight Controller Pixhawk 4 Mini

ESC SpeedyBee 45A BL32 4in1

Battery Tattu FunFly 1800mAh 4S 195 -

Single-board computer UP Squared ATOM Quad Core 08/64 202 18

Event-based camera DAVIS240C 27 1

Neuromorphic processor Intel Loihi, Kapoho Bay form factor 62 1

Table 7.1: List of hardware components used for the real-world test �ights.

from the event-based camera are passed to the UP Squared over USB using ROS1. These

events are processed (downsampling, cropping, limiting to 90 per image corner ROI) on

the UP Squared, and sent as spikes to the vision network running on the Kapoho Bay over

USB. After processing, the output spikes are sent back over USB to the UP Squared, where

they are decoded into �ows for each corner ROI. The ROI �ows are then published by

a ROS1 node, and sent to ROS2 over a ROS1-ROS2 bridge. The linear controller (or PI

controller, for that matter) and the processing around it, running as a ROS2 node, takes the

ROI �ows together with the attitude estimate coming from PX4 (IMU) and the setpoint

provided by the user, and outputs the control command. This command is then sent over

ROS2 to PX4, and processed by the low-level controllers there. ROS2 makes use of RTPS

(real-time publish-subscribe) for communication, which allows for high-frequency and

high-bandwidth messaging between the UP and PX4, meaning our entire pipeline can run

at 200 Hz. For position control between test runs, and as failsafe, we use an OptiTrack

motion capture system.

7.3 Experiments
Because of the split between the vision and control parts of the pipeline, we can eval-

uate their performance separately. The estimated corner ROI �ows of the vision part

are compared against ground truth data obtained from a motion capture system, while

the control part is evaluated in simulation. Connecting vision and control together, we

then demonstrate the performance of our fully neuromorphic vision-to-control pipeline

through real-world �ight tests. To further illustrate the robustness of our vision-based

state estimation, we perform real-world tests with changing setpoints, and tests in various

lighting conditions. Lastly, we compare energy consumption against possible on-board

GPU solutions.

7.3.1 Robust vision-based state estimation
To prevent reality-gap issues when simulating an event-based camera, we train and eval-

uate the vision part of our pipeline using real-world event sequences recorded with the

same platform (i.e., drone and downward-facing event-based camera) and in the same

indoor environment (i.e., static and planar, constant illumination). This dataset consists of
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Figure 7.5: Overview of results for the vision-based state estimation. (A) Characteristics of the dataset for

estimating planar optical �ow. Left: Grayscale �ower texture used to cover the �oor. Center: Accumulated event

windows showing the blur arising from motion, ground truth �ow �elds as determined with a motion tracking

system and based on a �at �oor assumption (only for evaluation), and the result when using the �ow �elds to

deblur the event windows (only for illustration). Right: Ground-truth optical �ow distributions for the training

and test datasets. (B) Comparison of estimated and ground-truth visual observables for sequences with di�erent

motion speeds (slow, medium, fast). (C) Network activity resulting from the events in the top-left-corner ROI in

the fast motion sequence.

approximately 40 minutes of event data, which we split into 25 minutes for training and 15

for evaluation, and its motion statistics are shown in Fig. 7.5A. In addition to the visual

data, the ground truth pose (i.e., position and attitude) of the drone over time is provided

at a rate of 180 Hz, and is used solely for evaluation. Examples of this ground truth, which

can be converted to dense optical �ow using the camera calibration, are shown in Fig. 7.5A

alongside the �oor texture of the indoor environment.
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⋅10−2

Full image +2x Down. +Corner ROI crop +Limit events +Loihi quant.

Conv-GRU ANN 5.88 5.56 5.61 5.72 -

Conv-RNN SNN 7.92 7.89 7.91 6.97 6.96

Self-RNN SNN (ours) 10.79 9.80 8.22 7.71 8.34

Table 7.2: Quantitative comparison between di�erent vision architectures. Bottom right corner, in bold, indicates

the �nal architecture. Architecture choices (row-wise) and design decisions (column-wise) impact test performance

in terms of the average endpoint error (EPE↓, lower is better). Baseline architectures feature the same feedforward

connectivity pattern as ours, but vary the neuron model and the type of recurrent connections.

We train our vision SNN with the self-supervised contrast maximization framework

from [102] and a quantization-aware training routine that simulates the neuron and synapse

models in the target neuromorphic hardware. Once this is done, we evaluate the perfor-

mance of our spiking network on the task of planar event-based optical �ow estimation

using sequences with varying amounts of motion. Qualitative results are presented in

Fig. 7.5B, where the estimated visual observables (scaled velocities and yaw rate, con-

structed from the estimated optical �ow vectors at the image corner ROIs) are compared

to their ground-truth counterparts. These results con�rm the validity of our approach.

Despite the architectural limitations of the proposed solution (e.g., spike-based processing,

limited �eld of view, only self-recurrency, weight and state quantization) and the fact

that it does not have access to ground-truth information during training, it is able to

produce optical �ow estimates that accurately capture the motion encoded in the input

event stream, i.e., the ego-motion of the camera. This is especially remarkable for the

shown fast sequence, where towards the end the camera is spinning with approximately

4 rad/s. Note that, similarly to any other optical-�ow-based state-estimation solution, our

SNN is subject to the aperture problem not only due to the limited receptive �eld of the

corner ROIs but also because of the use of event cameras as vision sensors [18].

In Fig. 7.5C, we show the internal spiking activity of our vision SNN as it processes

the top-left corner ROI from the fast sequence shown in Fig. 7.5B, along with the decoded

optical �ow vectors. These qualitative results provide insight into the type of processing

carried out by the proposed architecture, which is spike-based and therefore sparse and

asynchronous. Notably, despite the rapid motion in the input sequence, all layers of the

SNN maintain activation levels below 50% of the available neurons. Note that the network

was not explicitly trained to promote sparse activations. Furthermore, we can distinguish

layers with activity levels that are highly correlated with the input activity (i.e., encoder 1

and pooling), while others rely on their explicit recurrent connections to maintain activity

levels that are relatively independent of the input statistics (i.e., encoder 2 and encoder 3).

In Table 7.2, we provide a quantitative comparison of our solution with other similar

recurrent architectures (that are not compatible or do not �t in the Intel Kapoho Bay),

based on the average endpoint error (EPE↓, lower is better). This evaluation not only

demonstrates the performance of our spiking network, but also assesses the impact of each

mechanism that was incorporated into the pipeline to achieve a solution that could be

deployed on Loihi at the target frequency of 200 Hz. Several conclusions can be drawn

from these results. Firstly, the ANN outperforms its spiking variants by a large margin, and



7

142 7 Fully Neuromorphic Vision and Control for Autonomous Drone Flight

Figure 7.6: Comparison of results obtained in simulation and during real-world �ight tests. (A) Estimated scaled

velocities for 16 di�erent setpoints in three axes, across three scenarios: linear network controller in simulation

and the real world, and a hand-tuned proportional-integral (PI) controller in the real world. Real-world tests use

the vision network to obtain visual observable estimates. Setpoints are nonzero in one direction, indicated with

dashed lines. Rows represent the di�erent motion axes. (B) 3D world position trajectories for the same �ight tests.

Each cube in (B) matches the plot in the corresponding location in (A).

self-recurrency is the weakest form of explicit recurrency among those tested. Secondly,

deploying one architecture to each image corner ROI instead of processing the entire image

space at once is bene�cial for our architecture, while only having a slight detrimental e�ect

on the baselines. Limiting the number of events that can be processed at once to 90 per

corner ROI is also helpful for the evaluated SNNs, as it helps reduce the internal activity

levels. Lastly, the incorporation of the Loihi-speci�c weight and state quantization leads to

an error increase for our architecture.
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7.3.2 Control through visual observables: From sim to real
Separately from the vision part, we train and evaluate the control part of our pipeline. This

is a linear mapping from a visual observable estimate, absolute roll and pitch and a visual

observable setpoint to thrust and attitude commands. The visual observable estimate is

made up of scaled velocity �̂ and yaw rate !̂
z ; the visual observable setpoint consists of

the corresponding setpoints �sp and !
z,sp. A population of these linear mappings is evolved

in simulation for a set of 16 scaled velocity and yaw rate setpoints. Each setpoint �
sp

has

at most one nonzero element ∈ {±0.2, ±0.5, ±1.0} 1/s. In other words: they represent hover,

vertical �ight in the form of landing at three speeds (no ascending �ight), and horizontal

�ight in four directions at three speeds. Unless mentioned otherwise, the setpoint for yaw

rate !
z,sp

= 0. The �rst column of Fig. 7.6 shows the performance of the evolved linear

network controller in simulation in terms of the estimated scaled velocities �̂ (Fig. 7.6A)

and the world position p
over time (Fig. 7.6B) for all setpoints. The controller reaches

the setpoint in all cases, and is capable of keeping the scaled velocities for the non-�ight

direction close to zero. Especially for �∗,sp
= ±1.0 1/s, there is overshoot, but this can be

expected given that this is a linear mapping without any kind of derivative control.

We get the second column of Fig. 7.6 by deploying this controller in the real world,

and replacing the ground-truth visual observables with those estimated by the vision

network. Looking at the scaled velocity plots for the di�erent setpoints, we see that these

become less noisy for higher setpoints and faster �ight, as can also be seen from the 3D

position plots. This is due to the fact that the signal-to-noise ratio of the vision-based

state estimation increases with motion magnitude (little motion means most events are

due to noise, as can be seen in Fig. 7.5). Also, the inertia of the drone provides some

stability at higher speeds. Overall, the results demonstrate successful deployment of the

fully neuromorphic vision-to-control pipeline. Nevertheless, apart from several setpoints

(e.g., landings, �{x,y},sp
= ±0.2 1/s), the controller is not able to reach the desired setpoint:

the steady-state error looks to be proportional to the setpoint magnitude. This can be

attributed to the fact that while the controller is a linear mapping, the relationship between

attitude angle and resulting forward/sideways velocity is nonlinear as a result of drag.

Providing absolute attitude input to the network, and simulating the drag (as in [99])

during training turned out not to be enough to compensate. Furthermore, there can be

mismatches between the dynamics of the simulated drone (body characteristics, motor

dynamics) with which the controller was trained and the real drone on which the �ight

tests were performed, even though we abstracted the control outputs to attitude commands.

Lastly, inaccuracies of the drag model can also be a source of error (in this case, it seems

that drag was higher in reality than in simulation).

The third column of Fig. 7.6 shows the results obtained by connecting a hand-tuned

proportional-integral (PI) controller to the vision-based state estimation. We compare this

to the linear network controller. Looking at all directions and setpoints, we see that the PI

controller reaches the setpoint faster than the network controller. For horizontal �ight,

the network controller is not at all able to reach the setpoint �{x,y},sp
= ±1.0 1/s and only

just in the case of ±0.5 1/s, supposedly due to the limitations of linear control. The PI

controller does not have this problem, as it can increment its control command to eliminate

the steady-state error. For vertical �ight, both the network and the PI controller have quite

some overshoot for �z,sp
= −1.0 1/s. That this is so obvious, however, has to do with the
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Figure 7.7: Additional results with vision network and proportional-integral (PI) controller. (A) Top row: alternating

setpoints in X and Y (shaded areas) in order to �y a square. Bottom row: rotating the scaled velocity setpoint

by the yaw angle, while maintaining a yaw rate setpoint of 0.2 rad/s (dashed line), leads to the drone spinning

around its Z-axis while �ying in a straight line. (B) Landing experiments with di�erent lighting conditions. While

�ickering lights lead to many more events, visual observable estimates (and hence control) only diverge when it

is so dark that there are almost no events.

fact that at such speeds from such heights (i.e., 2.5 m), the drone barely reaches the setpoint

before reaching the ground, and therefore has little time to compensate for any overshoot

(look at the PI controller for �z,sp
= −0.5 1/s; there overshoot is similar but is corrected

shortly after). A slightly lower gain or a derivative term could help here.

7.3.3 Other examples of versatility and robustness
We can combine the vision-based state estimation with the PI controller to show the

versatility and robustness of the former through various other tests, with the bene�t of

not having to include these in training for the controller network. Fig. 7.7A shows these
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Figure 7.8: Additional results with vision network and linear network controller. (A) Alternating setpoints in X

and Y (shaded areas) in order to �y a square. (B) Landing experiments with di�erent lighting conditions. While

�ickering lights lead to many more events, visual observable estimates (and hence control) only diverge when it

is so dark that there are almost no events.

tests. The top row displays the user alternating through di�erent scaled velocity setpoints

in X and Y (while keeping yaw constant) in order to let the drone �y a square. While the

controller is able to reach the desired setpoint quite quickly, allowing for rather sharp

corners, there is signi�cant drift in yaw (0.97 rad), leading to a rotated second square.

The bottom row of Fig. 7.7A shows an experiment in which the drone has to �y in a

straight line while spinning around its Z axis like a frisbee. With this experiment we aim

to investigate how well the neuromorphic vision can separate rotational and translational

optical �ow, without relying on optical �ow derotation with the help of gyro measurements.

The drone receives a nonzero yaw rate setpoint !
z,sp

= 0.2 rad/s. In combination with a

setpoint of �y,sp
= 0.5 1/s this would lead to the drone �ying in a circle. To prevent this and

achieve the frisbee-like spinning e�ect, we rotate �y,sp
by the yaw angle. The �rst and last

plot show that this works: despite some drift in X and Z, the setpoints are followed well

and the 3D position trajectory is quite straight. The second plot shows that the desired

yaw rate is tracked well and that the yaw angle is constantly increasing.

Fig. 7.7B shows landing with divergence �z,sp
= −0.5 1/s for various lighting conditions

(quanti�ed with lux measurements). With these experiments we aim to investigate the
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Figure 7.9: Results with vision network and linear network controller for various textures. Flight tests in X, Y and

Z over variously textured mats show that the vision network is able to estimate optical �ow regardless of texture.

Input events are for the �{x,y},sp = 0.5 1/s and �z,sp = −0.5 1/s tests. Dashed lines show the nonzero setpoints in

the motion axis.

robustness of the approach to wildly varying event statistics. For instance, in a darker

environment, contrasts are less visible, which means that motion will generate many fewer

events and that there will be more spurious, noisy events—not unlike our own human

vision when we walk in the dark. When lights are switched on and o�, this generates

massive numbers of events that are unrelated to motion, hence violating the brightness

constancy assumption underlying optical �ow determination. The events for the top left

corner ROI are shown in the bottom row of Fig. 7.7B. The results in the light and darkish

settings look alike, but �ickering lights lead to a large increase in events, while the darkest

setting gives almost no events. As the middle row of plots shows, despite the challenging

light conditions, the controller is able to track the setpoint (black dashed line) quite well,

and the estimated scaled velocities approximate their ground thruths. Only the darkest

setting poses a real problem for the state estimation: in that case, the estimated scaled

velocities �̂ diverge too much from the ground truth scaled velocities � to perform

a successful landing. Note that robustness to lighting conditions is independent of the

performed maneuver; we chose landing as it involves a wider range of visual motion than

horizontal �ight, allowing us to better see the impact of lower-light conditions, and because

divergence-based landings inherently lead to oscillations [73], which makes for a more

challenging scenario in the case of �ickering lights. For completeness, the disco, darkness,

and squares experiments have also been performed with the neuromorphic controller.

Results are shown in Fig. 7.8. In most cases, setpoint tracking performance is similar to

that of the vision network and PI controller combination in Fig. 7.7. For the square-�ying,

the network controller even seems to outperform the PI controller in terms of yaw drift.

Lastly, to demonstrate that successful real-world �ight transfers textures other than

those the vision network was trained on, we successfully performed additional tests on

other textured surfaces, as shown in Fig. 7.9. Oscillations in scaled velocities are similar to

those observed above the training texture.
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Seq. Static [W] Dynamic [W] Idle [W] Running [W] Delta [W] inf/s mJ/inf

Nahuku 32 (empty) any 0.86 0.04 0.90 0.90 4 e-3 60496 71 e-6

Nahuku 32: SNN

slow 0.90 0.05 0.94 0.95 12 e-3 1637 7 e-3

medium 0.90 0.04 0.94 0.95 8 e-3 411 21 e-3

fast 0.90 0.04 0.94 0.95 7 e-3 274 27 e-3

Jetson Nano: SNN (5W)

slow - - 1.05 2.23 1.18 14 86.11

medium - - 1.03 2.25 1.22 14 85.58

fast - - 1.03 2.24 1.21 14 86.19

Jetson Nano: SNN (10W)

slow - - 1.04 2.98 1.93 26 75.25

medium - - 1.06 2.98 1.92 26 75.35

fast - - 1.04 2.99 1.95 25 76.52

Jetson Nano: ANN (5W)

slow - - 1.05 2.66 1.61 59 27.46

medium - - 1.07 2.64 1.57 56 27.91

fast - - 1.06 2.64 1.58 57 27.52

Jetson Nano: ANN (10W)

slow - - 1.04 3.30 2.27 83 27.36

medium - - 1.07 3.33 2.26 80 28.09

fast - - 1.07 3.30 2.23 80 27.80

Table 7.3: Approximate energy and power characteristics for various devices on three sequences: slow, medium

and fast. On average, slow has 28.6 events/inf, medium has 106.9 events/inf, and fast has 186.6 events/inf. Delta

power is the di�erence between idle and running (total) power, and is used to compute energy per inference.

Dynamic power is the power needed for switching and short-circuiting, while static power is due to leakage.

Together, these components contribute to the total running power. Nahuku is a board with 32 Loihi chips (Kapoho

Bay has 2). A Nahuku con�guration where no spikes are sent and only chips and cores are allocated (no synapses)

is included as ‘empty’. Jetson Nano has a low-power (5W) and high-power (10W) mode. One inference (inf) is the

processing of one set of inputs by the network, resulting in an output or prediction. On Jetson Nano, we test both

our vision SNN as well as the Conv-GRU ANN mentioned in Table 7.2.

7.3.4 Benchmarking inference speed and energy consumption
Table 7.3 shows a comparison in terms of power/energy and runtime between the Loihi

neuromorphic processor and an NVIDIA Jetson Nano for running the vision network

(both SNN as well as equivalent ANN) on sequences with varying amounts of motion and

hence varying input event density. The SNN runs in hardware on Loihi and in software

(PyTorch) on Jetson Nano. The tests for Loihi were performed on a Nahuku board, which

contains 32 Loihi chips. We con�rmed, insofar possible, that using two chips on Nahuku

is representative of a Kapoho Bay (at least in terms of execution time), which is the two-

chip form factor used on the drone. Still, neither of these benchmarks is completely

representative of the tests performed in the real world: the benchmarks use data already

loaded in memory, and therefore only quantify the processing by the network without

any bottlenecks or impacts due to I/O and preprocessing, whereas the �ight tests involve

streaming event data that is coming in and is being processed in an online fashion. This

shows in Loihi’s execution frequencies in Table 7.3, which are well above the 200 inferences
1

per second (inf/s) achieved during �ight tests.

Because Jetson Nano does not provide static and dynamic power components, we

compare the di�erence between idle and running power, and use that to compute energy

per inference. Loihi, depending on the sequence, outperforms Jetson Nano by three to

1
An inference is the processing of one set of inputs by a machine learning model, such as a deep neural network,

to produce an output or prediction. In our case, the set of inputs are the events occurring in a time window of 5

ms, and the predictions are the motion estimates of the four image corner ROIs.
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four orders of magnitude, providing a one to two orders of magnitude improvement

in execution frequency. Furthermore, the bene�ts of neuromorphic processing show in

Loihi’s increasing execution frequency as event sparsity increases (from fast to slow motion

sequences). Because a GPU like Jetson Nano is not optimized to simulate SNNs, we also run

an equivalent ANN (Conv-GRU with downsampling, corner crop ROI and event limiting

from Table 7.2). The increased inference speed for the ANN on Jetson Nano con�rms

that this is indeed a more suitable architecture for GPUs. Nonetheless, while energy

consumption per inference has decreased compared to the SNN on Jetson Nano, energy

e�ciency and inference speed still do not come close to those of the SNN on Loihi.

7.4 Conclusion
We presented the �rst fully neuromorphic vision-to-control pipeline for controlling a

�ying drone. Speci�cally, we trained a spiking neural network that takes in raw event-

based camera data and produces low-level control commands. Real-world experiments

demonstrated a successful sim-to-real transfer: the drone can accurately follow various

ego-motion setpoints, performing hovering, landing, and lateral maneuvers—even under

constant yaw rate.

Our study con�rms the potential of a fully neuromorphic vision-to-control pipeline

by running on board with an execution frequency of 200 Hz, spending only 27 µJ per

network inference. A major question is whether such an impressive energy gain will make

a di�erence on a system level even if future neuromorphic chips weigh in the order of

grams and will have a negligible idle power. Compared to the power required for hovering,

277 W, a di�erence between 3 W and 7 mW (see Table 7.3) may seem like a small di�erence.

However, on �ying robots, such small di�erences can have substantial e�ects [318]. A

heavier, more power-consuming computing unit does not only require more power from

the battery, but it also needs to be lifted in the air. This requires a bigger battery and

possibly bigger motors that themselves also have to be lifted. Moreover, as argued in [318],

a lower latency, as accomplished with neuromorphic processing, allows for faster �ight.

This in turn leads to drones accomplishing their missions with less �ight time. Still, the

main point is not necessarily what you gain on a ∼1-kilogram drone if you switch from

a conventional embedded GPU to a lightweight neuromorphic processor (which is not

negligible), but that neuromorphic processing will enable many more networks to run on

such larger drones and even enable deep neural networks on much lighter platforms that

cannot even carry an embedded GPU. An example of the latter are 30-gram �apping wing

drones, which use ∼6 W to �y[11].

To reach this potential to the fullest, the entire drone sensing, processing, and actuation

hardware should be neuromorphic, from its accelerometer sensors to the processor and

motors, allowing for sparse and event-driven/asynchronous computation all the way

through. Because such hardware is currently not available, we have limited ourselves to

the vision-to-control pipeline, ending at thrust and attitude commands.

Until then, advancements could come from improved I/O bandwidth and interfacing

options for the neuromorphic processor and event camera. The current processor is limited

to x86 host boards (preventing potentially lighter but equally performant ARM boards to

be used), and can only be connected directly via AER to a speci�c model of event-based

camera (this is of course also a limitation on the part of the available event cameras). While
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the former is limiting for all works implementing neuromorphic hardware on constrained

systems like drones, the latter is especially relevant to our advanced use case, where we

reached the limits of the number of spikes that can be sent to and received from the

neuromorphic processor at the desired high execution frequency of 200 Hz. To achieve

this frequency, we had to 1) limit the number of events per input window to 90 per image

corner ROI, and 2) limit ourselves to a linear network controller, which avoids having to

send additional input spikes that encode the setpoint and attitude. Ultimately, further gains

in terms of e�ciency might be obtained by moving from digital neuromorphic processors

to mixed-signal hardware, but this will pose even larger development and deployment

challenges given the noise sensitivity of such hardware [296, 319].

Despite the above-mentioned limitations, the current work presents a substantial step

towards neuromorphic sensing and processing for drones. The results are encouraging,

because they show that neuromorphic sensing and processing may bring deep neural

networks within reach of small autonomous robots. In time this may allow them to

approach the agility, versatility and robustness of small animals such as �ying insects.

Supplementary material

Video playlist of the approach: https://tinyurl.com/4edsypye

https://www.youtube.com/playlist?list=PL_KSX9GOn2P-pyEODPVIb6PXfjr4BXuqH
https://tinyurl.com/4edsypye
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Conclusion

I
n this concluding chapter, we revisit and address the research questions and problem

statement presented in Chapter 1, which have structured the work conducted throughout

this dissertation. We then discuss the broader implications of our �ndings and the potential

impact that they may have on the broader scienti�c research �eld. Finally, we explore

several potential avenues for future research.

8.1 Answers to researchqestions
The �rst research question derived from our problem statement was formulated as follows:

RQ1: How can fast, autonomous �ight through gates be achieved with frame-based

perception and conventional processing in a GPS-denied environment?

This question was addressed in Chapter 2 with the development of a robust and e�cient

vision-based navigation solution for autonomous drone racing. To enable fast and agile

�ight using conventional sensing and processing, a lightweight monocular pipeline was

devised, focusing exclusively on gate information. This was achieved by leveraging the fact

that the gates were the only objects in the environment whose approximate appearance,

location, and orientation were known a priori. The �rst step in the proposed pipeline

is to detect the corners of the next gate to be traversed according to the �ight plan, in

the image space. This is done by �rst segmenting gate pixels using an arti�cial neural

network (ANN) and then searching for the corners in the resulting mask using a light active-

vision algorithm. The corners that can be validated using the robot’s prior expectations

of the gate’s appearance and geometry are then used to estimate the pose of the camera

in the world frame with a perspective-n-point algorithm. These vision measurements are

enhanced with model-based predictions through random sample consensus, resulting in

the state estimates used to control the robot. To �nalize, a risk-aware control strategy is

employed to balance the trade-o� between speed and safety. The proposed solution was

validated in hardware-in-the-loop simulation and real-world experiments. In fact, it was

benchmarked against other state-of-the-art visual-inertial navigation solutions in the �rst

151
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Arti�cial Intelligence Robotic Racing season in 2019, where it was the fastest and most

robust approach in those conditions, with the runner-up team being (only) three seconds

slower in the �nal race. Signi�cantly, this chapter highlights the importance of minimizing

latency in the perception pipeline to achieve high-speed autonomous �ight. Our solution

prioritized real-time performance at the system’s maximum operating frequency (i.e., 60

Hz) over the use of more complex and computationally expensive algorithms.

RQ2: How can we leverage the knowledge of the inner working of event cameras

to learn event-based frame reconstruction in a self-supervised fashion?

This second research question was motivated by the limited adoption of event cameras

in robotics, despite their numerous advantages. This limited adoption is primarily due to

the lack of a mature algorithmic ecosystem capable of e�ectively utilizing the sparse and

asynchronous nature of event camera output. In Chapter 3, we addressed this question

by proposing a novel self-supervised learning (SSL) framework for event-based frame

reconstruction. Our proposed solution is based on the event generative model, which,

under constant illumination, establishes a relationship between events, brightness, and

optical �ow. Speci�cally, we demonstrate that this model can be leveraged to learn to

reconstruct brightness frames from the events without relying on ground-truth data, as

long as the optical �ow encoded in the events is known or can be estimated. To achieve this,

we train ANNs to minimize the discrepancy between the input events and the model-based

predictions. The e�ectiveness of our training pipeline was validated using multiple datasets,

where our networks demonstrated performance comparable to the state-of-the-art methods,

despite not having access to reference frames during the training process. Additionally,

we addressed the task of event-based optical �ow estimation within the SSL framework.

Our approach utilized the concept of contrast maximization for motion compensation,

allowing us to learn event-based optical �ow directly from the input events. Furthermore,

we proposed a lightweight neural network architecture for event-based optical �ow, which

achieved high-speed inference while maintaining a minimal decrease in performance.

RQ3: How can a spiking neural network learn to develop event-based motion

selectivity in an unsupervised fashion?

This third research question, focusing on event-based optical �ow estimation with

spiking neural networks (SNNs), was addressed in Chapter 4. Here, we introduced the �rst

SNN that develops selectivity to motion, including direction and speed, in an unsupervised

manner from the input event stream. The success of our approach was facilitated by the

development of several key components. Firstly, we proposed a spiking neuron model

capable of e�ectively handling the rapidly varying input statistics of event cameras through

pre-synaptic adaptation. Secondly, we formulated a novel version of the correlation-based

spike-timing-dependent plasticity (STDP) rule, which di�ers from the existing state-of-

the-art approaches by being inherently stable. And �nally, we designed a convolutional

SNN architecture that learns to perform hierarchical feature extraction. Speci�cally, it

starts by extracting geometric features, followed by capturing their local motion using
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multi-synaptic connections with di�erent temporal delays, and eventually inferring global

motion estimates via spatial integration. The e�ectiveness of this approach was validated

through experimentation using both synthetic and real event sequences. However, due to

the absence of supervision, quantitative comparisons with the state-of-the-art methods

posed challenges. As a result, we relied on extensive qualitative analysis to assess and

compare the performance of our approach. Most signi�cantly, this chapter highlights the

potential of SNNs to perform low-latency, event-based optical �ow estimation.

RQ4: How can low-latency, event-based optical �ow be learned in a self-supervised

fashion with spiking neural networks?

This fourth research question, driven by the limitations of unsupervised learning, was

addressed in Chapters 5 and 6. In Chapter 5, we presented the �rst set of deep SNNs to

successfully solve the problem of event-based optical �ow estimation. To accomplish this,

we reformulated the state-of-the-art training pipeline for ANNs (i.e., the aforementioned

contrast maximization) to signi�cantly reduce the time windows presented to the networks.

Additionally, we re�ned the SSL loss function to enhance its convexity. Prior to training

with our framework, we augmented various ANN architectures from literature with explicit

and/or implicit recurrency, alongside the incorporation of the spiking behavior. Extensive

quantitative and qualitative evaluations were conducted using multiple datasets. Our

results not only con�rm the e�cacy of our training pipeline, but also demonstrate that

the proposed set of recurrent ANNs and SNNs perform comparably to the state-of-the-art

self-supervised methods.

Despite the signi�cant accomplishments of Chapter 5, the proposed training pipeline

assumes linear motion of events within the timeframe of their loss function, limiting its

ability to accurately capture the true trajectory of scene points over time. To overcome

this, Chapter 6 introduces a reformulated pipeline that addresses the scalability to high

inference frequencies while accurately capturing the true trajectory of scene points. An

iterative event warping module and a multi-timescale loss function are the main additions

to the pipeline. The former unlocks a novel multi-reference loss function that improves

the accuracy of the predicted optical �ow, while the latter enhances the robustness of the

training process. The e�ectiveness of this new approach was validated using multiple

datasets, where our models demonstrated superior performance compared to both the

self-supervised and model-based baselines, surpassing them by signi�cant margins. Please

note that, although this reformulation of the training pipeline was validated with ANNs, it

is extrapolable to SNNs as well.

RQ5: How can a spiking neural network be trained in a self-supervised fashion

to perform event-based optical �ow estimation while running on a neuromorphic

processor in the control loop of an autonomous �ying robot?

This �fth and last research question was tackled in Chapter 7, where we introduced

the groundbreaking concept of a fully neuromorphic vision-to-control pipeline for con-

trolling a freely �ying robot. The experimental setup involved equipping the robot with a
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downward-facing event camera, which captured data from a static planar surface, and a

specialized neuromorphic processor. The latter was used to run a compact SNN that was

trained to process high-dimensional raw event-camera data and output low-level control

actions. This allowed for autonomous vision-based ego-motion estimation and control at

approximately 200 Hz, spending only 27 �J per network inference. The proposed learning

setup e�ectively addresses the challenge of slow and inaccurate simulation of event-based

data, as it allows for the independent training of vision and control. While the vision part

of the network is trained using an adapted version of the self-supervised pipelines from

Chapters 5 and 6, the control policy is learned through evolution in simulation without

the need to simulate events. Real-world experiments were conducted, wherein the event

camera and neuromorphic processor were integrated into the control loop of the �ying

robot. The results showcased the e�ectiveness of our approach, as the robot accurately fol-

lowed various ego-motion setpoints and successfully performed hovering, landing, lateral

maneuvers, and even constant yaw rate control.

The answer to this �nal research question, which builds upon the contributions of the

previous chapters, also serves as the answer to our initial problem statement, which was

formulated as follows:

Problem Statement: How can optical-�ow-based autonomous navigation be

realized with an event-based camera and a neuromorphic processor in the control

loop of a �ying robot?

Our studies demonstrate the bene�ts of incorporating neuromorphic technology into

the vision-based state estimation pipeline of autonomous �ying robots, particularly in

terms of latency and power consumption. The results obtained from our experiments

are highly encouraging and suggest that the integration of neuromorphic sensing and

processing could make deep neural networks more accessible for small autonomous robots

(and other edge devices with limited resources). This advancement has the potential to

enhance the agility, versatility, and robustness of these robots, bringing them closer to the

capabilities exhibited by �ying insects.

8.2 Discussion
The pursuit of incorporating neuromorphic technology into the control loop of autonomous

�ying robots has been the driving force behind the research presented in this dissertation.

In this section, we delve into the main challenges encountered during this journey and

the lessons we have gleaned along the way. Additionally, we shed light on the wider

implications of our �ndings and the potential impact they can have on the broader scienti�c

research �eld.

Efficient intelligence for flying robots
Flying robots face inherent limitations due to their restricted payload capacity and power

budget. Throughout our research, we have recognized the critical signi�cance of developing

e�cient perception and processing pipelines to enable the autonomy of these robots. This

theme has been at the core of our work, driving our exploration and innovations. In
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Chapter 2, we developed a vision-based pipeline speci�cally tailored for autonomous drone

racing with frame-based cameras. To ensure fast, agile, and robust �ight, we leveraged

classical (lightweight) algorithms wherever possible, while ANNs were used selectively

where needed. Our research then shifted to exploring event-based cameras and SNNs

as alternatives to conventional sensing and processing in Chapters 3, 4, 5, and 6. These

chapters highlight the potential of neuromorphic computing to achieve low-latency, low-

power vision-based perception for robotics. Finally, in Chapter 7, we demonstrated the

feasibility of a fully neuromorphic vision-based pipeline for controlling a freely �ying

robot. This solution, which is characterized by an energy consumption in the order of

microjoules and a latency of milliseconds, represents a signi�cant step towards developing

e�cient intelligence for �ying robots, as it shows that heavy processing can be realized

on-board with only a fraction of the power needed to �y.

Low-latency processing of event data with SNNs
The event-camera literature has primarily focused on the use of stateless ANNs to process

the data, with only a limited number of studies exploring the use of SNNs in often less

complicated tasks. In this dissertation, we argue that to realize the full potential of event

cameras and achieve low-latency and low-power solutions, stateful SNNs should process

the incoming events nearly as they are generated by the sensor, with no accumulation

in between. To support this claim, we have demonstrated the training of architecturally-

complex SNNs for real-world, large-scale problems, speci�cally event-based optical �ow

estimation. In Chapter 4, we approached the problem from an unsupervised learning

perspective using STDP to train the SNNs, while in Chapters 5 and 6, we explored the self-

supervised learning paradigm by employing new formulations of contrast maximization

for motion compensation. In both approaches, we shortened the time windows presented

to the networks and removed the temporal information from the input representations,

approximating the way in which SNNs would receive events directly from the camera.

This approach, which promotes the integration of spatiotemporal information within the

models themselves through their internal dynamics, was then employed in Chapter 7

to realize the fully neuromorphic autonomous �ight of a robot. Note that this idea has

already sparked signi�cant interest in the event-based optical �ow literature, and several

subsequent works have followed our �ndings [269, 270, 275], as they can potentially lead

to lightweight solutions that are also robust to large pixel displacements.

Training SNNs with and without supervision
In this dissertation, we tackled the problem of training SNNs for event-based optical �ow

estimation from two di�erent learning perspectives: unsupervised and self-supervised. In

Chapter 4, our focus was on unsupervised learning using the STDP rule, which adjusts the

synaptic weights based on the temporal correlation between pre- and postsynaptic spikes.

Despite the simplicity of this local learning rule, we successfully solved the task at hand by

leveraging our knowledge of optical �ow and the characteristics of event cameras to design

an SNN capable of developing motion selectivity using this learning rule. However, the lack

of supervision in STDP presents challenges. Firstly, it is di�cult to directly benchmark our

approach against the state-of-the-art since the learned features have limited controllability

(i.e., we cannot specify what the network should learn). Secondly, careful �ne-tuning
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of hyperparameters such as �ring thresholds, decays, and synaptic delays is required to

maintain a balanced network activity. On the other hand, the SSL paradigm explored in

Chapters 5, 6, and 7 involves de�ning a loss function to be minimized during training,

using the well-known backpropagation (through time) algorithm. This approach, once

compensated for the non-di�erentiability of the spiking activation function [37, 38], enables

us to leverage the vast array of tools and techniques developed for training ANNs. In these

chapters, we demonstrated the e�ectiveness of this approach by training SNNs capable of

estimating event-based optical �ow with accuracy levels comparable to those of their ANN

counterparts, and with the added bene�t of being able to run on a neuromorphic processor.

Note that the �ndings from our investigations on estimating event-based optical �ow with

SNNs have gotten the attention of the broader research community, as evidenced by the

numerous follow-up works [250, 254, 320–333].

8.3 Outlook
In this section, we explore several potential avenues for future research, which we believe

can build upon the �ndings presented in this dissertation.

Toward per-event processing with SNNs
One of the key insights from our research is that to fully harness the potential of event-

based solutions, SNNs need to be trained to process incoming events nearly instantaneously

as they are generated by the sensor. However, achieving this per-event processing approach

is more complex than it might appear. There are two main challenges associated with this

goal. Firstly, SNNs are recurrent networks with intricate internal dynamics. When the sim-

ulation timestep is decreased to enable per-event processing, the training process becomes

signi�cantly slower, and the memory requirements increase drastically if training with

backpropagation through time (BPTT). BPTT, which has been shown in this dissertation

to be a robust and e�ective gradient-based learning rule for SNNs, relies on accessing the

network’s internal states from previous timesteps to perform credit assignment over time.

Consequently, these states need to be stored in memory throughout the BPTT process,

which adds to the memory requirements. Secondly, as the simulation timestep decreases,

the sparsity of the input increases. This means that there are fewer events occurring within

each timestep, making it more challenging to extract meaningful patterns from the input

data. We believe that these challenges could be addressed in multiple ways. One approach

is to explore alternative learning rules that do not require the unrolling of networks in the

backward pass, such as forward propagation through time [334] or the forward-forward

algorithm [335]. These rules can reduce memory requirements and alleviate the com-

putational burden of training SNNs. Additionally, leveraging the sparsity of SNNs and

employing sparse computations during simulation can help reduce memory usage and

increase inference speed. Techniques and frameworks that support sparse computations,

such as the sparse module in PyTorch
1
, can be utilized for optimization. Lastly, another

avenue of exploration is the use of more complex recurrent units, including potentially

gated units, to enhance the ability of SNNs to extract meaningful patterns from sparse

input data.

1
See torch.sparse at https://pytorch.org/docs/stable/sparse.html (in beta at the time of writing this document).

https://pytorch.org/docs/stable/sparse.html
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Robustifying unsupervised learning
Unsupervised learning opens the door to backpropagation-free online learning in SNNs.

However, an observation from our research is that while unsupervised learning rules

can be e�ective in tasks where prior knowledge can be utilized in the network design,

their applicability becomes limited when such knowledge is unavailable or cannot be

incorporated into the architecture. For instance, in Chapter 4, we successfully trained an

SNN to develop motion selectivity using STDP with a hierarchical architecture that enabled

motion information to be discernible as clusters of spatiotemporal patterns. However,

unsupervised learning may face challenges solving other tasks. To address this limitation

and enhance the controllability of the learning process, we believe that future research

on unsupervised learning for SNNs should focus on meta-learning, i.e., learning to learn.

Speci�cally, we propose exploring the learning of the parameters of local learning rules,

such as STDP, through either self-supervised or pure supervised approaches. By enabling

the network to optimize its online learning rule in an o�ine training phase according to the

needs of the task at hand, there is potential to enhance the robustness and deployability of

SNNs. It is worth noting that some neuromorphic processors, such as Intel’s Loihi [14, 51],

already o�er support for online learning through customizable local learning rules.

The future of neuromorphic flying robotics
One of the primary contributions of this dissertation is the successful demonstration of a

neuromorphic vision-to-control pipeline for controlling a freely �ying robot with minimal

latency and power consumption. This achievement represents a signi�cant step forward in

the �eld of event-based cameras and SNNs, and it marks the beginning of a long journey

towards the development of fully neuromorphic, small (�ying) robots. The development of

such robots, surpassing the capabilities of their counterparts equipped with conventional

sensors and processors, holds great promise for the future. However, to realize this vision,

several challenges need to be addressed, both in terms of hardware and software. On

the hardware side, a signi�cant advancement could come from improving input/output

(I/O) bandwidth in the processors. Enhancing the I/O capabilities can facilitate e�cient

data transfer between event-based sensors and neuromorphic processors, enabling faster

and more seamless processing. Additionally, considerations for small form factors and

low power consumption are essential for both the sensors and processors. Furthermore,

there is potential for further e�ciency gains by transitioning to analog neuromorphic

processors, but this will pose even larger challenges in terms of their development and

deployment. Regarding software, we reiterate the importance of per-event processing with

SNNs, the need for scalable training pipelines and more complex recurrent units, and the

potential of meta-learning. Once these challenges in hardware and software are overcome,

the journey towards fully neuromorphic robots will gain signi�cant momentum, enabling

advancements in various areas of robotics and paving the way for a new era of intelligent

and e�cient machines.
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How Do Neural Networks

Estimate Optical Flow?

This chapter presents the �rst research topic that was explored in parallel to the main research
questions of this dissertation. We investigate how deep arti�cial neural networks estimate
frame-based optical �ow. A better understanding of how these networks function is important
for not only assessing their generalization capabilities to unseen inputs, but also for suggesting
changes to improve their performance. For our investigation, we focus on FlowNetS, as it is the
prototype of an encoder-decoder neural network for optical �ow estimation. Furthermore, we
use a �lter identi�cation method that has played a major role in uncovering the motion �lters
present in animal brains in neuropsychological research. The method shows that the �lters in
the deepest layer of FlowNetS are sensitive to a variety of motion patterns. Not only do we �nd
translation �lters, as demonstrated in animal brains, but thanks to the easier measurements in
arti�cial neural networks, we even unveil dilation, rotation, and occlusion �lters. Furthermore,
we �nd similarities in the re�nement part of the network and the perceptual �lling-in process
which occurs in the mammal primary visual cortex.

The contents of this chapter have been published in:

D. B. de Jong, F. Paredes-Vallés, G. C. H. E. de Croon, How do neural networks estimate optical �ow?
A neuropsychology-inspired study, IEEE Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), 2021.

Contribution: The research leading to this chapter’s work was the result of an M.Sc. graduation project conducted

by ir. David B. de Jong, whom I supervised together with prof. dr. Guido C. H. E. de Croon. Apart from the

conceptual collaboration, I speci�cally helped designing and conducting the experiments, as well as analyzing

the obtained results. Moreover, I contributed to extending the original work for the revised version of the paper,

which was eventually published.
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A.1 Introduction

O
ptical �ow is a visual cue de�ned as the projection of the apparent motion of objects

in a scene onto the image plane of a biological vision system or a visual sensor [21].

This cue is important for the behavior of animals of varying size [336], ranging from small

�ying insects [180] to humans [179], as it allows these animals to estimate their ego-motion

and to have a better understanding of the visual scene. Optical �ow is also important

in computer vision and robotics applications for tasks such as object tracking [337] and

autonomous navigation [73].

Many algorithms have been introduced to determine optical �ow [338], including

correlation-based matching methods [339, 340], frequency-based methods [341, 342], and

di�erential methods [163, 343]. Correlation-based matching methods try to maximize

the similarity between di�erent intensity regions across multiple frames. Finding the

best match then corresponds to �nding the shift which maximizes the similarity score.

Frequency-based methods exploit either the amplitude or phase component of the complex

valued response of a Gabor quadrature �lter pair [344] convolved with an image sequence.

Lastly, di�erential methods compute optical �ow based on a Taylor expansion of the image

signal, subject to the brightness constancy assumption.

All these methods assume that the brightness of a moving pixel remains constant over

time and, when applied locally, are subject to the aperture problem [232]. Only motion

components normal to the orientation of an edge in the image can be resolved.

A global smoothness constraint has been added for di�erential methods, which assumes

that neighboring pixels undergo a similar motion [343]. This has led to variational methods

that minimize a global energy function consisting of a data and a smoothness term. These

methods have played a dominant role for many years due to their high performance.

However, a main drawback is that the iterative minimization of the energy function leads

to long computation times. Moreover, the brightness constancy assumption is a coarse

approximation to reality and thus limits performance [345]. Research has focused on extra

energy terms to deal with deviations from this assumption and improve the robustness of

global smoothness constraints, leading to slow but steady progress.

As in many other computer vision areas, currently, the best-performing algorithms

are trained deep neural networks. Initially, training such networks was challenging due

to the lack of ground-truth optical �ow data and the excessive human e�ort required

for manual optical �ow labeling. Dosovitskiy et al. [265] were the �rst to successfully

train deep neural networks to estimate optical �ow by using a synthetically generated

dataset with optical �ow ground truth. Their networks, FlowNetS and FlowNetC, initially

performed slightly worse than the state-of-the-art variational methods [346]. However,

trained deep neural networks became the new state-of-the-art method for optical �ow

estimation by subsequent researchers who focused on improving the architecture and

training data [189, 266, 347].

Until now, the functioning of these networks is poorly understood. In this chapter

we investigate how deep neural networks perform optical �ow estimation. There are

two main reasons why this is important. First, understanding the method’s functioning

brings insights into its limits and robustness, for example concerning generalization to

test distributions. Second, it may lead to valuable recommendations for improving the

performance, for instance, by changing properties of the architecture or training data.
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Figure A.1: Schematic of the FlowNetS architecture [265]. The contracting part compresses spatial information

through the use of strided convolutions (c), while the expanding part uses upconvolutions (u) for re�nement.

The predict-�ow (pf) layers transform feature map activations into dense �ow estimates (f). The feature map

corresponding to the output of the c6 layer (gray dashed box) is studied in Sections A.4 and A.5, while the �ow

re�nement process (blue dashed box) is discussed in Section A.6.

In our analysis of deep optical �ow networks, we make use of a method that has

helped unveiling the workings of motion-sensitive brain areas in neuropsychology [348].

Speci�cally, we measure the response of neurons in FlowNetS [265] to stimuli with varying

spatiotemporal frequencies and construct a spectral response pro�le. The input stimuli

used are translating plane waves, as this input type proved to be more selective in the

frequency domain than moving bars [349]. Based on the earlier �ndings of Gabor �lters

[344] in biological vision systems [350, 351] and other learning-based methods [352, 353],

we expect to �nd these �lters in FlowNetS as well. Therefore, we �t a Gabor function to the

spectral response pro�le of neurons in the network and study the residual error patterns.

We �nd that the Gabor translational motion �lter model is suitable for the majority of

the neurons. Additionally, we �nd neurons sensitive to motion patterns such as dilation,

rotation, and occlusion. Interestingly, neurons sensitive to these motion patterns have not

been mentioned in neuropsychology. Furthermore, our analysis strongly suggests that the

resolution in the temporal frequency domain can be signi�cantly improved if more than

two frames would be used as input to the neural network. Lastly, we �nd that the optical

�ow re�nement process in the decoder part of the network behaves in a manner akin to

�ow re�nement within biological vision systems.

A.2 Related work
A.2.1 Dense optical flow estimation with CNNs
Ever since the pioneering work of Horn et al. [343], variational optical �ow methods [354]

have played a dominant role in optical �ow estimation due to their high performance.

Most modern variational optical �ow estimation pipelines consist of four stages: matching,

�ltering, interpolation, and variational re�nement. Various improvements have been pro-

posed over time to deal with issues such as long-range matching [355] and occlusion [356].
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Furthermore, improvements such as dense correspondence matching based on convolution

response maps of the reference image with the target image [357], and supervised data-

driven interpolation of a sparse optical �ow map [358] were also proposed. These last two

improvements introduced elements of deep learning into the variational pipeline.

Dosovitskiy et al. [265], however, were the �rst to introduce a supervised end-to-end

trained convolutional neural network (CNN). CNNs have three major advantages when it

comes to estimating optical �ow. First, CNNs outperform variational optical �ow estimation

methods in terms of accuracy [189, 266, 347]. Second, the runtime of CNN-based optical

�ow algorithms, when executed on the appropriate hardware, is signi�cantly lower than

variational methods [189]. Third, CNN-based methods can learn from data and can exploit

statistical patterns not realized by a human designer. This is an advantage over variational

methods which require explicit, and sometimes inaccurate, assumptions on the input.

However, CNNs also have three disadvantages. First, the results depend on the quality

and size of the training data. Second, CNN-based methods face the risk of over�tting,

which is relevant for optical �ow estimation because it is di�cult to obtain ground truth

[346]. Third, there is no guarantee that the trained models will generalize to scenarios

not contained in the training dataset. Due to the “black-box” nature of the solution, it is

di�cult to get insight into its workings and limitations.

In [265], Dosovitskiy et al. introduced two networks based on the U-net architecture

[137]: FlowNetS and FlowNetC. While FlowNetS is an encoder-decoder network consisting

of simple convolutions, FlowNetC creates two separate processing streams and combines

them in a correlation-layer. This layer performs a multiplicative patch comparison between

feature maps. Due to the explicit use of a correlation-layer, it is more straightforward to

understand the workings of FlowNetC. However, not much is known about the workings

of FlowNetS. Inspired by this architecture, Ranjan et al. [359] introduced SpyNet, a spatial

image pyramid with simple convolutional layers at each pyramid level and a warping

operation between pyramid levels. SpyNet’s coarse-to-�ne approach brings a higher

computational and memory e�ciency at the cost of a more limited set of perceivable

motion types. Ranjan et al. also visualized the weights of the �rst layer of their network

and observe that these �lters resemble Gabor �lters [344], which provided a glimpse

into the working principle of this architecture. Finally, Teney et al. [360] built a shallow

CNN-architecture by integrating domain knowledge, such as invariance to brightness and

in-plane rotations. On small motion their architecture performs well, but performance

declines on large motion near occlusions. They conclude good occlusion performance

requires reasoning over a larger spatiotemporal extent.

The generalization performance of CNN-based methods can be evaluated for speci�c

instances by determining the epistemic uncertainty [361]. Indeed, Ilg et al. [362] used a mod-

i�ed FlowNetC that produces multiple hypotheses per forward pass, which are then merged

to a single distributional �ow output. They showed that their network produces highly

uncertain �ow estimates when optical �ow estimation is di�cult (shadows, translucency,

etc.). Lastly, Ranjan et al. [363] highlighted another downside of deep neural networks,

which is the ability of adversarial examples to fool neural networks and produce erroneous

results. They showed that especially networks using an encoder-decoder architecture are

a�ected, while networks using a spatial pyramid framework are less vulnerable. None of

the works above, however, explain how their architecture estimates optical �ow.
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A.2.2 Receptive field mapping
There are two main threads of research to understand what neural networks have learned:

attribution and feature visualization. Attribution methods [364, 365] are used to attribute
�lter outputs, like optical �ow, to parts of the input by visualizing the gradient. However, it

is hard to see where an optical �ow estimate comes from. Feature visualization is concerned

with understanding what neurons, �lters, or layers in a neural network are sensitive to by

optimizing the input [366]. The result is usually an image with noisy and visually di�cult to

interpret high-frequency patterns [367]. Three methods of regularization can be applied to

cope with this phenomenon. First, frequency penalization discourages the forming of these

patterns. The downside is that this approach also discourages the forming of legitimate

high-frequency patterns which are of interest for optical �ow estimation. Second, small

transformations like scaling, rotation, or translation can be applied in between optimization

steps [368]. This approach is also not viable because transformation a�ects the ground truth

of optical �ow. Third, priors can be used which can keep the optimized input interpretable.

Such approaches typically involve learning a generative model [369] or enforcing priors

based on statistics from the training data [370]. This approach is often very complex and it

may be unclear what can be attributed to the prior and what can be attributed to what the

network has learned.

Due to these reasons, we look at the �eld of neuropsychology and speci�cally study what

methods researchers have used to determine what stimuli activate neurons in mammalian

vision systems and what functions best describe the neural responses. It was shown that

Gabor functions [344] best modeled the spatial response of simple cells in the mammal

visual cortex [350]. It can be shown that Gabor �lters are optimal for simultaneously

localizing a signal in the spatial and frequency domain [371], making them ideal for motion

estimation. Later, DeAngelis et al. [372] examined the spatiotemporal response of cells and

their space-time separability. In functional form, space-time separable Gabor �lters are

frequency-tuned with a stationary Gaussian envelope, and space-time inseparable Gabor

�lters are velocity-tuned with a moving Gaussian envelope [373]. In this work we only

consider �tting frequency-tuned Gabor �lters, due to their simplicity and the low number

of input frames used by the FlowNet architectures.

Two approaches to receptive �eld mapping in neuropsychology can be discerned:

the reverse-correlation approach and the spectral response pro�le approach. The former

presents a rapid random sequence of �ashing bars at various imaging locations to the

mammal. The spike train emitted by the neuron in the subject is correlated to the sequence

in which the stimuli were presented. This approach allows for a rapid measurement

of the receptive �eld pro�le in the spatiotemporal domain [351]. Instead, the spectral

response pro�le approach presents translating plane waves to the mammal at varying

orientations and spatiotemporal frequencies [374, 375]. Jones et al. used both the reverse-

correlation approach to construct a spatial receptive �eld pro�le [376] and measured the

response to plane waves to construct a spectral response pro�le [348]. Subsequently, the

spatial and spectral responses were compared to the Gabor �lter model in the spatial and

frequency domain, and the �lter parameters obtained from both methods proved to be

highly correlated [350]. A similar correspondence in outcome between the methods was

found by DeAngelis et al. [372, 375] in the visual cortex of cats.
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In this work we extend the approach of Jones et al. [350] to the spatiotemporal do-

main and measure spectral responses of the network to translating plane waves, to which

frequency-tuned spatiotemporal Gabor �lters are �tted. A bene�t of measuring the spa-

tiotemporal spectral responses for optical �ow is that translation is more easily described

in the frequency domain [373].

A.2.3 Aperture problem
Optical �ow methods are only able to resolve motion components normal to the orientation

of an edge in the intensity pattern. This is known as the aperture problem [232]. In CNNs

the size of the aperture of a neuron is referred to as the receptive �eld, which is de�ned as

the region in the input which a�ects the activation of the neuron. In this work we show

that the receptive �eld size is related to the aperture problem by training di�erent versions

of FlowNetS with varying receptive �eld sizes.

In neuropsychology, Komatsu [377] has shown the existence of a perceptual �lling-in

mechanism in the mammalian visual cortex for cues such as color, brightness, texture, or

motion. While the precise neural workings are still under discussion, edge structure [378]

and the interaction between neighboring neurons play an important role in this process

[379]. In neural networks, attempts have been made to implement such a mechanism

as well. To allow for the interaction between neurons, a recurrent model can be used

[380]. Zweig et al. [358], however, used an unfolded feed-forward version of a recurrent

network and a multi-layer loss to allow for interaction between neurons. Their CNN-based

motion interpolation architecture takes a sparse �ow map and edge structure as input.

They showed their motion interpolation method re�nes motion estimates similarly to the

human visual cortex by demonstrating the �lling-in e�ect of the network on a Kanizsa

illusion. FlowNetS also features a multi-layer loss, and, in Section A.6, the ability of the

expanding part of FlowNetS to interpolate and re�ne �ow maps is highlighted.

A.3 Model details
Fig. A.1 shows a schematic representation of the FlowNetS architecture, which takes

two consecutive images as input. Multiple versions of FlowNetS exist. Dosovitskiy et al.
[265] mention the use of the ReLU activation function in their work. The release of their

pre-trained models, however, uses a leakyReLU activation function. In order to facilitate

interpretability of the motion �lter analysis, we choose to use the ReLU version. With the

same aim, we introduce two small adjustments. First, the bias terms are removed in the

predict-�ow pf layers because the �ow is assumed to be zero-centered. Second, the kernel

size in the pf layers is reduced from 3 × 3 to 1 × 1 to allow clearer location identi�cation.

Regarding training, as in [265], we use the same data augmentation on both frames, but

we do not use incremental �ow and color augmentation between frames, since the authors

do not specify the parameters of these mechanisms. Furthermore, the network is trained

for fewer iterations (300k iterations versus 600k iterations) due to limited availability

of computational resources. Evaluation on the MPI-Sintel [381] and FlyingChairs [265]

datasets shows comparable performance between the slightly modi�ed FlowNetS and the

original version, as can be seen in Section A.7.1.
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The synthetic dataset FlyingChairs [265], which was used to train the original and our

slightly modi�ed FlowNetS, consists of approximately 22k image pairs. The image pairs

are composed of a varying numbers of chairs and background images from natural scenes.

Between image pairs, a composition of translation, rotation, and scaling motion is applied.

As stated in the supplementary material of [265], the size of the chairs
1

is sampled from

a Gaussian with a mean and standard deviation of 200 pixels, clamped between 50 and

640 pixels. Note that the synthetic scenes also contain occlusion. Further details about the

composition of a�ne motion can be found in [265].

A.4 Gabor fitting for translation
We investigate to what motion patterns the neurons in FlowNetS are sensitive. In neu-

ropsychology, the responses of simple cells turned out to be captured very well by Gabor

�lters [348, 350, 375, 382]. That simple cells act like Gabor �lters makes sense, since Gabor

�lters are known to be optimal in the sense that they achieve maximal resolution in both

the spatiotemporal and the associated frequency domains. As a consequence, they require

a minimal number of �lters to represent spatiotemporal information [350, 375].

Although arti�cial neural networks are very di�erent in many aspects from biological

ones, they were inspired by them and inherit similar traits. In particular, they seem suitable

to represent spatiotemporal �lters and may be subject to a similar pressure as biological

networks to succinctly represent spatiotemporal patterns when having to estimate optical

�ow. This was our motivation to �rst investigate whether FlowNetS’ neural responses

resemble those of Gabor �lters. In our investigation, we mainly focus on the deepest

encoding layer in the network, the c6 layer. As shown in Fig. A.1, the activations of the

feature maps of these layers are directly, linearly transformed (via pf6) into an initial

coarse-scale horizontal and vertical �ow estimate (i.e. f6), which is later used as the basis

for re�nement. Hence, the coarsest, most direct representation of optical �ow is encoded

in this layer. Although we focus our analysis on c6, the earlier layers play an important

role as well. They do this not only by the determination of the activations in layer c6 but

also (in the case of c2 - c5) by contributing to the re�nement of optical �ow via skip

connections.

In this section, �rst the theory behind Gabor �lters and the spectral response �tting

method is discussed, followed by the results obtained. Thereafter, we discuss the resolution

in the temporal frequency domain of the �tted Gabor �lters.

A.4.1 Methodology
As in [341, 344, 373], the spatiotemporal frequency-tuned Gabor �lter g in Cartesian

coordinates centered at the origin can be written as the product of a Gaussian w and a

translating plane wave s:

g(x, y, t) = s(x, y, t)w(x, y, t) (A.1)

1
Note that, in [265], the authors do not specify how the size of a chair is determined, so there is a certain ambiguity

around this parameter.
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The (non-normalized) Gaussian w is de�ned by:

w(x, y, t) = exp(−
1
2 (

x2R
�2x

+
y2R
�2y

+
t2

�2t )) (A.2)

where �x , �y , and �t control the spread of the spatiotemporal Gaussian window. To

decrease the number of parameters in the �tting process, it is assumed that the center

of the Gaussian coincides with the center pixel of the receptive �eld. Furthermore, the

subscript R denotes a rotation operation which allows the Gaussian to be aligned along

orientation �0, and is de�ned as:

xR = x cos(�0) + y sin(�0)
yR = −x sin(�0) + y cos(�0)

(A.3)

where a positive value of �0 corresponds to a clockwise rotation with respect to the positive

x-axis. The subscript 0 indicates the parameter value corresponding to the peak response

of the Gabor �lter. This orientation, which corresponds to the preferred direction of motion

of the �lter, is related to the spatial frequencies via �0 = tan−1 (fy0 /fx0).

A translating plane wave s in the Cartesian coordinate system can be written as:

s(x, y, t) = cos (2� (F0xR − ft0 t) + '0) (A.4)
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Figure A.2: Illustration of the half-magnitude pro-

�le in the 3D frequency domain of a spatiotem-

poral Gabor �lter. The three ranges along which

the responses of the Gabor half-magnitude pro-

�le are evaluated for the spectral response pro�le

�tting process are shown in color.

where the spatial frequency magnitude F0 is re-

lated to the spatial frequencies via F0 = (f 2x0 +
f 2y0 )

1/2
, ft0 indicates the temporal frequency, and

'0 denotes the phase of the �lter. The dependence

of s on y is due to xR , which is a function of x
and y (see Eq. A.3). A Gabor �lter is said to be

even when '0 = 0 and odd when '0 = ±� . Fur-

ther, note that the preferred velocity of the �lter

v0 is related to F0 and the temporal frequency

ft0 via v0 = ft0 /F0, as in [341]. A higher spatial

frequency F0 allows tracking of motion of thinner

image structures. When a signal is sampled in

time or space, frequency components which are

larger than or equal to 0.5 cycles per frame (i.e.,

the Nyquist frequency) become undersampled

and aliasing occurs. Thus, if we limit ourselves

to signals which do not su�er from aliasing, the

maximum velocity a signal can have is limited

by its F0. Fig. A.2 shows the 3D frequency space

with the half-magnitude pro�le of a Gabor �lter.

Because we will �t the response of phase-sensitive Gabor �lters, we highlight three

phase-dependent convolution phenomena. Note that a valid convolution
2

of two tensors

2
We use “convolution” to refer to the correlation of a �lter over an image to remain consistent with the CNN

terminology.
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with equal size corresponds to their dot product. First, because a sine is an odd signal, the

dot product of two sines at opposite frequencies is negative. Second, the dot product of

a cosine at opposite frequencies will be positive due to the even nature of the function.

Third, sine and cosine are decorrelated and thus the dot product will be zero between these

two signals.

Gabor spectral response profile fitting
In the Gabor spectral response �tting process, translating grayscale plane waves s are used

as input to the network, and we try to minimize the di�erence in response between �lters

in the c6 layer of our FlowNetS and spatiotemporal Gabor �lters g. To better approximate

the response of c6 �lters, we enhance the Gabor �lter output with a gain term K , a bias

term b, and pass the response through a ReLU non-linearity. Then, the response r to a

convolution with a translating plane wave s and a Gabor �lter g is given by:

r = ReLU (K (s(x, y, t) ∗ g(x, y, t)) + b) (A.5)

where r is a function of nine parameters (i.e., F0, �0, ft0 , '0, �x , �y , �t , K , b), which are

estimated in a two-step process.

First, a gridsearch is performed to determine the location in the spatiotemporal fre-

quency domain with the highest response per �lter in the c6 layer. We denote the response

of the �lters in the network by r̂ , and their peak response value by r̂0. Because the �tted

Gabor �lters are phase sensitive, this amounts to estimating four parameters (i.e., F0, �0,
ft0 , '0). Therefore, a four-dimensional grid of translating plane waves (i.e., the input to the

network) is constructed using all combinations of these parameters within a given range

and step size (see [105]). The range for the value of half spatial wavelength �/2 = 1/2F is

chosen so that it captures the sizes of the chairs present in the training dataset (as explained

in Section A.3).

Second, once the peak response of thec6 �lters is found, we estimate the spatiotemporal

spread of the Gaussian (determined by �x , �y , �t ), the gain K , and the bias b. This is done

by minimizing the di�erence in response between the �tted Gabor �lters r (see Eq. A.5) and

the corresponding c6 �lters r̂ along three separate ranges in the spatiotemporal frequency

space (F , � , and ft ). These ranges are illustrated in Fig. A.2, and further described in [105].

We de�ne the cost function  in response to a convolution with a translating plane wave s
as:

 = ∑
i
(ri − r̂i)2F +∑

j
(rj − r̂j )2� +∑

k
(rk − r̂k )2ft

= F + � + ft

(A.6)

where F , � , and ft denote the sum of squared errors over the respective ranges. We

constrain the bounds of the Gabor �lter parameters to obtain reasonable values, which

leads to a non-linear bounded convex optimization problem which is solved using the

robust trust-region-re�ective algorithm [383]. In order to compare the obtained cost values

between c6 �lters, we construct a normalized cost value norm by dividing the cost by

the squared peak response of the �lter: norm = /r̂20 .
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Figure A.3: Location of peak response r̂0 per c6 �lter in the spatiotemporal frequency domain in response to

translating plane waves. Left: Half spatial wavelength �0/2 and orientation �0 corresponding to peak response r̂0
per �lter. Right: Half spatial wavelength �0/2 and temporal frequency ft0 corresponding to peak response r̂0 per

�lter. In both plots, the black dashed lines indicate the peak of the distribution in the half spatial wavelength

dimension, which is around 200 pixels.
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Figure A.4: Quantitative results of the spectral Gabor �lter �tting process. Left: Boxplot containing the total

normalized cost norm per �lter (592 �lters). Right 3x3 plots: Row-wise, the measured responses of three di�erent

c6 �lters and their corresponding Gabor �ts. The blue, green, and red c6 �lters correspond to the crosses at the

median, near the 75th percentile and near the upper whisker limit of the boxplot, respectively.
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Figure A.5: Orientation cost � per �lter as a function

of '0.

We found 592 of the 1024 �lters in the c6
layer of FlowNetS to have an activation

larger than zero when using the aforemen-

tioned input waves. The location of the peak

response of the active c6 �lters in terms of

half spatial wavelength �0/2, orientation �0,
and temporal frequency ft0 can be seen in

Fig. A.3 (left). As shown, the locations of

the peak responses of the �lters are well dis-

tributed over all angles. Radially, there is a
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Figure A.6: Qualitative results of the error patterns of the spectral Gabor �tting process. The spectral response

pro�les are shown as a function of spatial frequency F and orientation � . Data shows the measured response

of a c6 �lter, Fit is the response of the corresponding �tted Gabor �lter, and Error shows their di�erence.

Evaluations are with respect to ft0 and '0. (A) c6 �lter whose response pro�le is accurately captured by the

Gabor model. (B) Red c6 �lter from Fig. A.4, which activates on opposite spatial frequencies. (C) c6 �lter with a

very weak directional bias. (D) Noisy c6 �lter pattern (further discussed in Section A.5).
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Figure A.6: (continued) (E) For this c6 �lter, the spectral response pro�le for three di�erent temporal frequency

ft values is visualized. Two di�erent Gaussian peak responses at opposite orientation can be observed at ft = 0.3
and ft = 0.5 cycles per frame. The blue and red lines correspond to the axes of the 2D representation of this �lter

shown in Figure A.7.

concentration around a half spatial wavelength of 200 pixels. Two possible explanations

for this are the fact that (i) the average size of the chairs in the training dataset is 200 pixels,

or that (ii) the half of the receptive �eld size of c6 �lters is 192 pixels. The concentration

of the peak responses becomes even more apparent in Fig. A.3 (right), which shows the

distribution along the temporal and half spatial wavelength axes. Furthermore, we note

that the distribution of the temporal frequencies is skewed toward the Nyquist limit of 0.5
cycles per frame. A possible reason for this is the low resolution in the temporal frequency

due to the low number frames used as input to the network. This is further discussed in

Section A.4.3.
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Figure A.7: Spatiotemporal frequency representation of the

measured �lter response in Fig. A.6E. The positive and negative

F -axes correspond to the blue and red lines in Fig. A.6E.

The main observation of our spec-

tral analysis is that the �tted modi�ed

Gabor functions (i.e., Eq. A.5) capture

the spatiotemporal frequency selectiv-

ity of the active c6 �lters of FlowNetS

accurately. In order to give insight into

the goodness of �ts for all neural re-

sponses in thec6 layer, we show three

example responses corresponding to

di�erent normalized cost values norm
in Fig. A.4. Note that the �tted Gabor

�lters correspond well to the response

of the blue and green c6 �lters (with

norm at 50%, 75% of the distribution);

but, in the red case (an outlier), the

�tted Gabor shows a substantial devi-

ation from the measured c6 response

near � = 0.
This experiment was also performed for the other convolutional layers of the network’s

encoder segment. As shown in Table A.1, the lower the layer, the smaller the receptive �eld
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Figure A.8: Bandwidth of spatial frequency F , ori-

entation � , and temporal frequency ft of the �tted

Gabor �lters of the 75% active c6 �lters with the

lowest norm .

Layer norm Max. �/2 Num. active �lters/�lters

conv6_1 1.65 800 592/1024

conv5_1 1.42 270 372/512

conv4_1 1.44 270 408/512

conv3_1 1.67 95 234/256

conv2 3.37 47 62/128

conv1 4.71 10 64/64

Table A.1: Result of the Gabor spectral response �tting

procedure for di�erent convolutional layers of the encoder

part of FlowNetS.

size and hence the upper limit for the half spatial wavelength is decreased. According to the

average (normalized) �tting error per layer norm , the response of neurons in the c3–c6
layers �ts well the translational Gabor �lter model, while our methodology suggests that

neurons in c1 and c2 are not yet as motion-selective as Gabor �lters. Table A.1 also

shows that c6 is characterized by a higher norm than its preceding layer. A possible

explanation for this is that, in the earlier layers, the network is only able to perceive less

complex motions which better �t the Gabor �lter model.

Coming back to c6, the good �t for the majority of neurons supports the choice for

the Gabor �lter as opposed to other types of models. Of course, one can argue that the

Gabor �lter does not perfectly capture the response and a more complex model may lead

to a better �t. Below, we will extensively delve into the cases in which the Gabor model

seems to fall short of explaining c6’s neural responses. Here, it is important to note

that in principle, we already have such a complex model: the neural network itself. The

advantage of the Gabor model is that it has a low number of parameters that can be readily

interpreted. Indeed, in neuropsychology, the step to more complex �lters was only made

when it became necessary for characterizing “complex” cells that did not respond to simple

stimuli [382]. The �ts and error patterns above the 75% percent threshold (corresponding

to the green c6 �lter) are very interesting, and we visually inspected them for systematic

deviations. Visual inspection is performed instead of an auto-correlation procedure since

the latter is not possible due to a non-uniformly spaced polar 3D frequency grid [350].

Fig. A.6 contains the qualitative results used for this analysis, while Section A.7.2 evaluates

the generalizability of the �tted Gabor �lters to more complex natural stimuli.

Similarly to the blue �lter in Fig. A.4, Fig. A.6A shows a c6 �lter whose response �ts

nicely in the Gabor �lter framework. On the other hand, we �nd three types of systematic

deviations (i.e., Fig. A.6B, A.6C, A.6E) from the Gabor model, and also conclude that some

patterns are too complex for interpretation, such as the c6 �lter shown in Fig. A.6D.

The �lter in Fig. A.6B shows a deviation from the �tted Gabor 180 degrees away from

�0. This �lter is responsive to edge structure (i.e., |'0| ≈ 90◦) and is thus approximately odd,

since the dot product of two odd signals at opposite frequencies results in a negative value.

However, this �lter still produces a positive activation at the opposite spatial frequency,

corresponding to 180 degrees away from �0. In Fig. A.5 the distribution of the phase values
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'0 versus orientation cost � for all �lters is depicted. As shown, there are multiple �lters

responsive to edge structure that have a high � (e.g., the red �lter in Fig. A.4). One possible

reason for this systematic deviation from the Gabor response is that the network is able

to learn �ow �lters that are invariant to polarity (meaning white-black or black-white

transitions).

We �nd two c6 �lters that exhibit weak directional bias, an example of which can

be found in Fig. A.6C. Moreover, we also �nd �lters that exhibit two or more Gaussian

peaks with similar peak response magnitudes but tuned to di�erent spatial frequencies

F0, orientations �0, and temporal frequencies ft0 . An example of such a �lter can be found

in Fig. A.6E, and its 2D spatiotemporal representation is shown in Fig. A.7. A possible

explanation is that these �lters are sensitive to occlusion, as discussed in Section A.5.

Lastly, we �nd �lters that appear noisy and are hard to interpret given the limitations

of our methodology (further discussed in Section A.5). Such an example can be seen in

Fig. A.6D.

A.4.3 Temporal bandwidth
For orientation � and temporal frequency ft , the bandwidth is de�ned as the width of

the �lter which provides an output above half the maximum response. This leads to

a bandwidth in degrees Δ�1/2 and cycles per frame Δft1/2 for orientation and temporal

frequency respectively:

Δft1/2 = ftmax − ftmin (A.7)

Δ�1/2 = �max − �min (A.8)

For spatial frequency F , the bandwidth is de�ned in terms of octaves as follows:

ΔF1/2 = log2 (Fmax/Fmin) (A.9)

Although we estimate the Gabor parameters of the activec6 �lters in the �tting process,

the apparent bandwidth of these �lter di�ers due to the non-linear transform in Eq. A.5.

The bandwidth is therefore measured based on the �tted Gabor �lter response. In Fig. A.8,

the bandwidth of F , � , and ft can be seen. As shown, the interquartile range for spatial

frequency bandwidth is between 1 and 2 octaves and the median orientation bandwidth
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Figure A.9: Convolution response of a dilation �lter dw with a translating plane wave s evaluated with spatiotem-

poral frequencies at k integer multiples of the fundamental frequency. In the  plot, a larger phase di�erence

corresponds to a darker color with black being equal to or greater than �/2. A red mask is applied to frequency

components with low power. The dashed lines indicate the Gaussian pattern perceived by the spectral �tting

procedure.
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is approximately 50◦. Lastly, the temporal frequency bandwidth is of large extent with a

median of approximately 0.27 cycles per frame.
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Figure A.10: Illustration of how the network is able to decrease

the extent of the �lter response in the temporal domain. Top:
Fit and measured data for the median c6 �lter (see Fig. A.4).

Middle: The response of the �tted Gabor �lter without the bias

term and ReLU non-linearity. Bottom: Response of the �tted

Gabor �lter when the number of frames is increased.

We note that the network is able to

narrow the extent of the �lter response

in the temporal domain using the non-

linear transform in Eq. A.5. An illustra-

tion of this mechanism can be seen in

Fig. A.10. As shown, the extent of the

half-magnitude pro�le is wider if the

non-linear transformation is not em-

ployed. This �gure also shows what

happens when more frames are added

to the input and the other parame-

ters are kept the same (see Fig. A.10,

bottom). This suggests that an even

narrower extent could be reached by

feeding the network with more images

over time than just the two subsequent

images used in FlowNetS. A higher res-

olution in the frequency domain is ben-

e�cial as it allows for a more precise

measurement of the �ow.

A.5 Network response to dilation & rotation
In this section, the sensitivity of c6 �lters to dilation and rotation is analyzed. First, we

explain the limitations of the spectral Gabor response pro�le �tting process and why we

are not able to discern �lters activating on translation, dilation, rotation, and occlusion

with this methodology. Second, the theory used to identify �lters sensitive to dilation and

rotation is presented. Lastly, our results are discussed.

Note that Gabor translation �lters [344] and occlusion �lters [384] already have an

analytical description in both the space-time and frequency domain. Such a description of

dilation and rotation is, to the best of the authors’ knowledge, missing. Therefore, �tting

c6 �lters to a dilation and rotation motion �lter model requires a novel mathematical

foundation which is outside of the scope of this work.

A.5.1 Limitations of the spectral response profile fitting
In the �rst part of the spectral response �tting process, a gridsearch is performed to �nd

the peak response. In the subsequent �tting process, three response lines are generated

by varying either F , ft , or � , whilst keeping ' constant. This method only allows the

measurement of the relative attenuation in amplitude with respect to the peak response r̂0.
This is su�cient for translation, which can be de�ned as a single constant phase Gaussian

in the 3D frequency spectrum and thus produces a Gaussian in response. However, it is

insu�cient for other more complex motion types.
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Figure A.11: Convolution response of a rotation �lter cw with a translating plane wave s evaluated with spatiotem-

poral frequencies at k integer multiples of the fundamental frequency. In the  plot, a larger phase di�erence

corresponds to a darker color with black being equal to or greater than �/2. A red mask is applied to frequency

components with low power. The dashed circle indicates the double lobe Gaussian pattern perceived by the

spectral �tting procedure.
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Figure A.12: Convolution response of an occlusion �lter with a translating plane wave s evaluated with spatiotem-

poral frequencies at k integer multiples of the fundamental frequency. Left: Example occlusion signal following

the description of Beauchemin et al. [384]. Middle left: The power spectrum of the Fourier-transformed occlusion

�lter. Middle right: The angle  indicating the phase di�erence between the Fourier components of the occlusion

�lter and s. A larger phase di�erence corresponds to a darker color with black being equal to or greater than

�/2. A red mask is applied to frequency components with low power. Right: Convolution response between the

occlusion �lter and s. The pattern above the dashed gray line resembles that of Figs. A.6E and A.7.
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Due to the ReLU activation function, the dot product of two translating plane waves

at the same frequency, which are more than or equal to 90 degrees out-of-phase, is zero.

Note that a convolution in the space-time domain equals to multiplication in the frequency

domain according to the convolution theorem [371]. Because we evaluate the convolution

response only at discrete frequencies of k integer multiples along the fx , fy , and ft axis,

only a single frequency component of the Fourier-transformed translating plane wave S
will contain power

3
. Then, if we de�ne the k-th frequency component of S as the complex

vector p, and the k-th frequency component of the Fourier transformation of the �lter to

be analyzed as q, the phase di�erence between these two complex vectors is de�ned as the

angle  and given by:

 = cos−1(
p ⋅ q
|p||q|

) (A.10)

where the maximum value of  is � , and values of  ≥ �/2 result in a zero response due to

the ReLU in Eq. A.5.

Convolution response: Dilation & rotation filters
To determine which frequency components of dilation, rotation, and occlusion are more

than 90 degrees out of phase, the discrete Fourier transform [371] is used to transform a

simulated space-time signal to a representation in the frequency domain. Fig. A.9 shows

the convolution response of a dilation �lter dw with a translating plane wave s. From this

�gure, it can be observed that a diamond-like pattern emerges in the response, due to the

immeasurable out-of-phase components of dw and s. Because we evaluate the responses

along lines orthogonal to the peak response, the pattern perceived is indicated by the

dashed lines in the right-most plot of this �gure, which correspond to the colored linear

patterns in Fig. A.2. Thus, a Gaussian will be perceived along the spatial and the temporal

frequency ranges. Hence, we are not able to discern between dilation and translation �lters.

Similarly, Fig. A.11 shows the convolution response of a rotation �lter cw with s. Note

that the 3D power spectrum of cw is di�erent from a Gaussian. At high temporal frequencies

(i.e., ±0.2 cycles per frame), the frequency components of cw and s are out-of-phase. Thus,

these frequency components will not be detected. The pattern perceived along the varying

� (also shown in Fig. A.2) is two Gaussian lobes at opposite frequency. This pattern is

similar to the convolution response of a cosine Gabor �lter tuned to stationary patterns (i.e.,

zero temporal frequency). Therefore, our methodology is also not able to detect rotation

�lters.

Convolution response: Occlusion filters
Furthermore, we convolve an occlusion �lter, using the description of Beauchemin et al.
[384], with translating plane waves s. Occlusion in the spatiotemporal domain can be

described as the combination of a Gaussian, a Heaviside step function, and two translating

plane waves translating with di�erent frequencies, as shown in Fig. A.12. The power

spectrum of the Fourier-transformed �lter can be described as two Gaussian �lter pairs

with tails due to the Heaviside step function. The angle  demonstrates that these tails

have a large phase di�erence. Consequently, only the pattern above the dashed line is

detected using our methodology, which corresponds to two di�erent Gaussian lobes tuned

3
Not taking into account the complex conjugate component.
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(a) Left: Half spatial wavelength �0/2 and initial orientation �0. Right: Half spatial wavelength �0/2 and scale

factor ℎ. The black dashed line indicates the temporal aliasing constraint given by Eq. A.14.
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(b) Left: Half spatial wavelength �0/2 and initial orientation �0. Right: Half spatial wavelength �0/2 and angular

temporal frequency !. The black dashed line indicates the temporal aliasing constraint given by Eq. A.17.

Figure A.13: Location of peak response r̂0 per c6 �lter in the spatiotemporal frequency domain in response to

dilating (top) and rotating waves (bottom). Only �lters whose peak response r̂0 was higher than the maximum

found in the translation gridsearch are shown.

to di�erent frequencies. This pattern resembles that of Figs. A.6E and A.7, thus making it

likely that the �lter represented in these �gures is responsive to occlusion. However, it

should be noted that we are not able to discern such a pattern from the superposition of

two regular Gabor �lter pairs tuned to di�erent frequencies.

A.5.2 Methodology
In order to still assess the sensitivity of the c6 �lters to dilation and rotation, we come

up with a di�erent methodology in which two gridsearches are performed. We assess

the locations of the peak responses for �lters which have a higher response to dilation or

rotation than to translation. We do not classify a �lter as either a rotation or dilation �lter,

since a �lter can be sensitive to a composition of these respective motions.

Dilation parametrization
As in [342], a dilating wave d is given by:

d(x, y, t) = cos (2�F0(xr − �xr t) + '0) (A.11)

where � denotes the dilation factor. The training dataset used to train FlowNetS, i.e.

FlyingChairs [265], de�nes scaling motion in terms of the a�ne scaling factor ℎ. Because
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the network only takes two frames as input, we de�ne the relation between ℎ and � as

follows:

ℎ =
1

1 − �
(A.12)

The gridsearch is performed for the [0.5, 2.0] range of ℎ, as it encapsulates the values

encountered during training. More details about this search space can be found in [105]. In

order to mitigate the e�ect of temporal aliasing, the search space is constrained so that the

velocity of a point is not more than half its spatial wavelength �0/2. For a dilating wave,

this velocity is given by:

v = (
1

1 − �
− 1)x = (ℎ − 1)x (A.13)

Then, the temporal aliasing constraint for dilating waves is given by:

(ℎ − 1)x ≤
1
2
�0 (A.14)

Rotation parametrization
A rotation wave c is given by:

c(x, y, t) = cos (2�F0xr (t) + '0) (A.15)

where xr (t) varies with time, and is de�ned as:

xr (t) = x cos(�0 + !t) + y sin(�0 + !t) (A.16)

where ! denotes the angular velocity in radians per frame.

The search space for the rotation gridsearch can be found in [105]. A constraint was

also added to limit the e�ect of temporal aliasing. ! can be related to a point at distance m
from the center of rotation by v = !m. The maximum distance from the center of rotation

to the edge is equal to half the receptive �eld size, which is 383 pixels in the c6 layer of

our FlowNetS. As the wave rotates around the center pixel, the velocity at this point should

thus be lower than half the spatial wavelength. The constraint is given by the following

relation:

!mmax ≤
1
2
�0 (A.17)

A.5.3 Results
The peak responses of c6 �lters which have a higher activation to dilation than to transla-

tion (i.e., approximately 15% of the active �lters) are shown in Fig. A.13a. These �lters show

a radially dispersed pattern along the �-axis, and a peak in the distribution of half spatial

wavelengths near 200 pixels. Lastly, peak responses are often close to the temporal aliasing

limit and the maximum scaling value of the gridsearch. This is similar to the temporal peak

response location for the translation gridsearch (see Fig. A.3).

In Fig. A.13b, the peak responses of the c6 �lters for the rotation gridsearch are shown.

It can be observed that most �lters are active near the temporal translation and temporal

rotational aliasing limit. Also, a peak in the distribution of half spatial wavelengths can be

identi�ed around 250 pixels, which is slightly higher than expected. A possible explanation
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Figure A.14: Response of our FlowNetS and its two variations, FlowNetXS and FlowNetXXS, to diagonally

translating bars with motion magnitude |u| = 64 pixels. Left: f6, f4 and f2 FlowNetS �ow maps in response to

downward-left diagonally translating bars of di�erent scales, using the color-coding scheme from [385]. The red

squares highlight the output region used for evaluating the error. Right: Endpoint error (EPE↓, lower is better)

versus scale of the bar in pixel coordinates. RF f6 indicates the diagonal receptive �eld size in pixel coordinates

corresponding to the f6 �ow map.

for this discrepancy is that rotation is actually a 3D motion and thus the scale should also

be limited along its radial axis. Approximately 45% of the active c6 �lters activate more

on rotation than on translation, which could be due to the fact that we do not limit the

wavelength along the axis of rotation. The points in the motion �eld at the far end of the

receptive �eld then move with a very high velocity, and therefore, the response of the

�lters is higher.

A.6 Solving the aperture problem
In order to determine until what scale of input stimuli FlowNetS can resolve the aperture

problem, three di�erent versions of this network are trained under the same circumstances

with varying receptive �eld sizes. The receptive �eld size is de�ned as the region in the

input images which a�ects the value of the feature map at a particular layer and feature

map location. Therefore, we modify the �lter size of the convolutional kernels in c6, which

is actually composed of two layers: c6_0 and c6_1. The original (and our) FlowNetS uses

3x3 kernels in these layers, which leads to a receptive �eld size of 383 pixels in the f6 �ow

map. We train two additional models with kernels sizes (1x1, 3x3) and (1x1, 1x1) for c6_0
and c6_1, which we name FlowNetXS and FlowNetXXS, and whose f6 receptive �eld

size is 255 pixels and 191 pixels, respectively. For the three of these networks, the receptive

�eld size increases in the expanding part of the architecture due to the upconvolutional

layers.

As input, we use a diagonally translating bar of di�erent scales with motion magnitude

|u| = 64 pixels. We determine the error at the center of the bar, and at three �ow maps of

di�erent resolutions: f6, f4, and f2 (see Fig. A.1).

In Fig. A.14 (left), the FlowNetS response to a downward left translating bar of varying

scale is shown. Firstly, the �ow becomes more and more re�ned in the expanding part of

the architecture. Secondly, the network is able to extrapolate motion cues from the edges

of the bar towards the center, but only to an extent determined by the scale of the bar.
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Model name FlyingChairs test [EPE↓] MPI Sintel clean train [EPE↓] MPI Sintel Final train [EPE↓]

FlowNetS [265] 2.71 4.50 5.45

FlowNetS-ours 3.10 5.06 5.81

Table A.2: Performance comparison between the original version of FlowNetS and ours on the MPI-Sintel [381]

and FlyingChairs [265] datasets.

Fig. A.14 (right) shows the average endpoint error (EPE↓, lower is better) of FlowNetS,

FlowNetXS, and FlowNetXXS in response to two translating bars of di�erent scales moving

upward right and downward left, respectively. As shown, the network’s robustness to the

aperture problem is related to the receptive �eld size, and networks with larger receptive

�elds are able to resolve the aperture problem at larger scales.

A.7 Additional experiments
A.7.1 Original vs. our FlowNetS
In Table A.2 a performance comparison between the slightly modi�ed version of FlowNetS

studied in this chapter and the original version of Dosovitskiy et al. [265] can be found

on the FlyingChairs [265] and MPI sintel [381] datasets. As described in Section A.3, our

version uses ReLu activations, pf layers with 1x1 kernels, no biases, and it was trained for

300k iterations with no data augmentation between frames. As shown, our version has

a slightly worse, but comparable performance to the original version. The change in the

pf size from 3 × 3 to 1 × 1 helps interpretability of the analysis, but does bring the total

receptive �eld size in the c6 layer to 383 pixels as opposed to the original size of 511 pixels.

A.7.2 Generalizability to natural images
To evaluate the generalizability of the �tted bank of translational Gabor �lters to natural

stimuli, we used the �rst 500 image pairs of the FlyingChairs dataset [265] and compared

the response of the Gabor bank to that of the corresponding �lters from the convolutional

c6 layer of FlowNetS [265].
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Figure A.15: Average normalized MAE between the acti-

vations of convolutional �lters in the c6 layers and the

corresponding �tted Gabor �lters on datasets comprised of

translational plane waves (left) and natural stimuli (right).

In order to obtain the response of the

Gabor �lters to a pair of input images,

we �rst rendered the �lter bank so that

they have the same receptive �eld as the

convolutional �lters in the c6 layer (i.e.,

383 × 383). We convolved the rendered �l-

ters over the padded image pair so that the

output has the same spatial dimensions as

the input images; and then applied the

corresponding gain, bias, and the ReLU

non-linearity as in Eq. A.5. Lastly, we

passed the resulting activations through a

series of average pooling operations (same

strides and padding as in FlowNetS) to ob-

tain feature maps of the same spatial reso-
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lution as those from c6 �lters. These maps are directly comparable and we used the mean

absolute error (MAE↓, lower is better) for this purpose. We normalized the MAE for each

�lter and image pair using the maximum activation, and compute the average MAE over

all image pairs in the dataset under analysis with which either the Gabor or the c6 �lter

present a non-zero response.

Fig. A.15 shows the distributions of the errors on the natural stimuli from FlyingChairs

and on a dataset comprised of the translating plane waves that maximally activate each of

the �tted Gabor �lters (i.e., 592 image pairs). These results show that, in both cases, the

behavior of the �tted Gabor �lters closely resembles that of the c6 layer. The average

error on the translating plane waves is 0.13 (13% of the maximal response), with the error

distribution being characterized by only a few outliers (12) starting at 0.34. On the natural

stimuli, the average error is 0.08 (8% of the maximal response) with outliers (61) starting at

0.17. We believe the reason for the error being generally lower on the natural stimuli is

due to the di�erent image statistics between datasets, where the natural images come from

the training data set.

Lastly, with this experiment, we also con�rmed that the c6 �lters that we found silent

during the �tting process (432 �lters out of 1024) remain silent when presented with the

natural stimuli from FlyingChairs. This, together with the error distributions in Fig. A.15,

validates the Gabor �tting process and the use of the translational plane waves as input

images.

A.8 Discussion
Impact on Computer Vision
Our results show that the neural responses in the deepest encoding layer of FlowNetS, c6,

are well captured by Gabor-like �lters. This �nding provides insight into the limits and

robustness of the approach. Given this core mechanism for estimating optical �ow, it is to be

expected that the network generalizes quite well to out-of-training-set samples. However,

it also raises some concerns, since traditional Gabor �lters for optical �ow estimation had

certain disadvantages. They deal badly with deviations from translation, varying contrast

due to changing lighting conditions, and are subject to the uncertainty relation, which

corresponds to the balance between localization of the stimuli in the spatial domain and

resolution in the frequency domain.

FlowNetS successfully copes with all of these issues. We have shown that deviations

from translations are dealt with by additional �lters that are sensitive to more complex

motion types. Moreover, Mayer et al. [386] showed that FlowNet is able to cope with varying

contrast over time due to changing lighting conditions. Lastly, we have demonstrated that

FlowNetS is able to achieve a better spatial localization of motion cues in the expanding

part of the network, thus coping with the uncertainty relation.

In terms of accuracy, FlowNetS did not reach the levels of state-of-the-art methods.

For example, it has poor performance on sub-pixel �ow [189]. One reason for this might

be the large number of strides utilized before the initial �ow prediction is made. Also,

our analysis shows that a Gabor �lter based on two frames results in a large temporal

frequency bandwidth, and hence limited performance concerning �ow velocity estimation.

This is narrowed somewhat by the non-linear transformations due to the ReLU activation
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function and bias term. However, our analysis indicates that this could be further improved

by using more frames and thus providing more temporal information to the network.

Please note that there is an increasing number of multi-frame methods for deep optical

�ow estimation, e.g., [387–390]. As remarked in [387], most of these methods use multiple

images in order to track �ow to future frames and track �ow back to the past, in order to

enhance consistency of the �ow. Methods such as StarFlow [390] additionally pass the �ow

and extracted features from the previous image pairs as input to the deep net, while other

methods make use of LSTMs [389]. However, the basic matching still happens between two

frames with FlowNetC-like neural correlation blocks. What we propose here is to enter

multiple images directly into a FlowNetS-like network in order to reduce the temporal

bandwidth, something which to our knowledge has not been investigated yet.

The Gabor-like nature of the neural �lters in c6 may also be a reason for less accuracy;

These responses are mapped to coarse �ow in a linear way by pf6. This means that

optical �ow velocities that are higher than the �lter’s tuned velocity, actually lead to an

underestimation of the optical �ow (due to the bell-shape of the response, see, e.g., Fig. A.4).

The network likely copes with this in the following ways. First, it can narrow the response

bandwidth with the nonlinear activation function. To see why this helps, think of the

extreme in which a neuron would respond in a Dirac-like way to a very speci�c optical

�ow velocity. Of course, such a narrow response would then require a very large number of

neurons to cover all optical �ow velocities. This brings us to the second coping mechanism:

the �nal �ow is mostly determined by the neurons in the neural �lter bank that are tuned

closer to the true optical �ow velocity, as they will react more intensely. Finally, the biases

in the network can be set in a way to deal with this problem, which is biased since it mostly

involves underestimation. Still, it may be worth investigating if di�erent mechanisms

would lead to a better accuracy, for instance by introducing a winner-take-all mechanism.

We observed that only 592 of the 1024 c6 �lters have an activation larger than zero.

However, the high similarity of the active �lters to the Gabor model already suggests that it

would also be worth studying a hybrid FlowNetS network, in which there is a �xed Gabor

�lter bank (extended with rotation and dilation features) followed by a convolutional multi-

layer loss �ow re�nement. This would greatly reduce training time, and, most probably,

improve the generalizability of the network.

Finally, our �ndings for FlowNetS may also be relevant to “PoseNets” (e.g., [391, 392])

that take as input subsequent images and output the relative pose, i.e., an estimate of

the translation and rotation between them. Typically, for such relative pose estimation

networks a simple encoder structure is used, which is very similar to FlowNetS’s structure

up to and including c6. We expect that optical �ow plays a large role in the estimation

of translation and rotation between subsequent images, and, given the similar network

structure, it is possible that PoseNets also implicitly determine �ow with Gabor-like �lters

before synthesizing the information into a translation and rotation estimate.

Impact on biology
We have used and extended methods from neuropsychology for determining the types of

motion �lters represented by neurons in the deep c6 layer of FlowNetS. The analysis gave

very similar results to those on neurons in the mammalian visual cortex. First, many �lter

responses �t very accurately with Gabor �lters that capture translational motion. Second,
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the spatial and orientation bandwidth statistics show similarity to bandwidths of neurons

found in the mammalian visual cortex. We report a median spatial frequency bandwidth

of 1.36 octaves, while De Valois et al. [393] report 1.4 octaves for the macaque visual

cortex. Similarly, we �nd a median orientation bandwidth of 52 degrees, while De Valois et
al. [394] �nd 65 degrees. These similarities may be due to similar optical �ow statistics

being perceived both by the network and the animals. Third, as in neuropsychological

experiments [372], we observed that some �lters respond poorly to translating plane waves.

Our analysis shows that such poor response may be due to the �lters being sensitive to

more complex motions such as dilation and rotation. Indeed, in the human brain, channels

sensitive to dilation have been found [395]. However, this did not provide conclusive

evidence of neurons sensitive to dilation. Our analysis and results suggest that it is worth

looking for dilation- and rotation-sensitive neurons in animal brains. In fact, one could

even extend the analysis to also check for shear, as this forms an additional basis for the

�ow �eld derivatives [236].

A.9 Conclusion
We have employed a spectral response �tting approach from neuropsychology to demon-

strate that the deepest layer of FlowNetS essentially encodes a bank of spatiotemporal

Gabor �lters. Although accurate �ts were obtained, the spectral response �tting approach

is limited, since it is not able to identify the exact motion pattern causing the maximum

activation of a �lter. In this work, we have already shown that the network also contains a

large number of �lters that are more sensitive to dilation and rotation than to translation,

but more complex motion �lters may be present. Finally, we have studied how FlowNetS

tackles the aperture problem. Our results suggest that, on the one hand, the receptive �eld

size is highly correlated to the scale at which the network can resolve the aperture problem.

On the other hand, the expanding part of the network allows to solve the aperture problem

at slightly larger scales by performing a �lling-in function similar to that in mammal vision

systems.

Future work could: (i) perform a similar analysis on SpyNet [359], (ii) study the neural

response to more complex motion patterns like compositions of a�ne and 3D motion, as

present in more realistic synthetic training datasets (e.g., FlyingThings [396]), (iii) attempt

to improve FlowNetS’ performance by using smaller strides or more input images, and (iv)

employ our extended spectral response �tting method to investigate if animal brains have

dilation- and rotation-sensitive neurons as well.
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Real-Time, Frame-Based,
Dense Optical Flow on a

Nano�adcopter

This chapter presents the second research topic that was explored in parallel to themain research
questions of this dissertation. We investigate how optical-�ow-based autonomous navigation
can be realized with a neural network solution on board a nano quadcopter with limited
computational resources. To this end, we present NanoFlowNet, a lightweight convolutional
neural network for real-time dense optical �ow estimation on edge computing hardware. We
draw inspiration from recent advances in semantic segmentation for the design of this network.
Additionally, we guide the learning of optical �ow using motion boundary ground truth data,
which improves performance with no impact on latency. Validation results on the MPI-Sintel
dataset show the high performance of the proposed network given its constrained architecture.
Additionally, we successfully demonstrate the capabilities of NanoFlowNet by deploying it
on the ultra-low power GAP8 microprocessor and by applying it to vision-based obstacle
avoidance on board a Bitcraze Crazy�ie, a 34 g nano quadcopter.

The contents of this chapter have been published in:

R. J. Bouwmeester, F. Paredes-Vallés, G. C. H. E. de Croon, NanoFlowNet: Real-time dense optical �ow
on a nano quadcopter, IEEE International Conference on Robotics and Automation (ICRA), 2023.

Contribution: The research leading to this chapter’s work was the result of an M.Sc. graduation project

conducted by ir. Rik J. Bouwmeester, whom I supervised together with prof. dr. Guido C. H. E. de Croon. Apart

from the conceptual collaboration, I speci�cally helped designing and conducting the �ight experiments, as well

as analyzing the obtained results.
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B.1 Introduction

S
afe and reliable navigation of autonomous aerial systems in narrow, cluttered, GPS-

denied, and unknown environments is one of the main open challenges in the �eld of

robotics. Because of their small size and agility, micro air vehicles (MAVs) are optimal for

this task [5, 397]. Nano quadcopters are a variety of MAVs that are characterized by minimal

weight (approx. 30 g) and size (approx. 10 cm rotor-to-rotor) and hence are well suited for

deployment under the aforementioned conditions. With the right algorithm design, these

nano quadcopters have been demonstrated to be able to perform complex tasks such as

exploration [398] or gas source seeking [399]. However, conventional approaches to these

problems rely on computationally expensive “map-based” methods that require an array of

sensors (e.g., stereo camera, LiDAR) and processors that, in the majority of cases, exceed

the payload capacity of these vehicles.

The main approach to autonomous �ight of MAVs is based on monocular vision, since a

single camera can be light-weight and energy-e�cient, while providing rich information on

the environment. One of the most important monocular visual cues for navigation is optical

�ow. Until now, it has been extensively exploited on aerial vehicles with relatively high

payload capacity for tasks such as obstacle avoidance [130, 400], and several bio-inspired

methods for autonomous navigation [73, 91, 401–403].

Traditionally, the task of monocular optical �ow estimation has been performed by

hand-crafted methods [163, 343]. However, the �eld recently shifted toward deep learning

approaches [189, 265–267, 347, 359, 404–409], which deliver not only a better performance

than the conventional methods but also a faster runtime. Although the focus has largely

been on improving performance, e�orts have been made to �nd models of reduced size

and faster inference [189, 266, 347, 359, 405, 408, 410]. However, these methods remain

computationally expensive, with runtime ranging from several to tens of frames per second

(FPS) on desktop GPUs and requiring millions of parameters (and hence large amounts of

memory), rendering these models incompatible with edge hardware.

In this work, instead of improving the accuracy of state-of-the-art approaches, we focus

on their inference speed and, more particularly, on the deployment of a dense optical �ow

network on edge devices. To this end, we present NanoFlowNet, a lightweight convolutional

Figure B.1: We demonstrate NanoFlowNet in an obstacle avoidance application on board a nano quadcopter

(time-lapse image).
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neural network (CNN) architecture for optical �ow estimation that, inspired by the semantic

segmentation network STDC-Seg [411], achieves real-time inference on the ultra-low power

GAP8 multi-core microprocessor on the Bitcraze AI-deck. An overview of the proposed

network architecture and its training pipeline can be found in Fig. B.2.

Figure B.2: NanoFlowNet consists of (i) an encoder that extracts

features from the input images, (ii) a fusion module that combines

features from di�erent levels, and (iii) a motion-boundary-guided

detail head, which is only enabled during training, to guide the

learning with zero cost to inference latency.

The key contributions of this

chapter are listed as follows. First,

we introduce NanoFlowNet, a

novel lightweight neural network

architecture that performs, for

the �rst time, real-time dense

optical �ow estimation on edge

hardware. We validate this net-

work, which runs at 5.5-9.3 FPS

on the tiny GAP8 microproces-

sor, through extensive quantita-

tive and qualitative evaluations

on multiple datasets. Second, we

show, for the �rst time, that using

motion boundary ground truth to

guide the learning of optical �ow

improves performance while hav-

ing zero impact on inference la-

tency. Last, we demonstrate the

proposed NanoFlowNet in a real-

world obstacle avoidance applica-

tion on board a Bitcraze Crazy�ie

nano quadcopter.

B.2 Related work
B.2.1 Autonomous navigation of nanoqadcopters
The limited computational capacity of nano quadcopters (and MAVs in general) puts a

constraint on the types of methods that can be used for autonomous navigation. Methods

demonstrated on board nano quadcopters can be broadly grouped in model-based rein-

forcement learning for hovering [412], obstacle avoidance based on dedicated laser ranging

sensors [398, 399, 413], and self-motion estimation using optical �ow from dedicated opti-

cal �ow sensors [414] or estimated with external, multi-camera setups [415, 416]. Other

methods circumvent the computational constraints of these vehicles by running methods

o�-board [417–419].

Regarding edge computing hardware, recent works have focused on augmenting the

computational power of nano quadcopters without exceeding their payload limitations.

Methods based on application-speci�c integrated circuits [420–423] can e�ciently provide

information for speci�c tasks such as simultaneous localization and mapping and visual-

inertial odometry but have not yet been presented on a �ying drone. More recently, parallel

ultra-low power processors introduce energy-e�cient multi-core processing to parallelize
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visual workloads on edge devices [424]. In this work, we exploit the commercially available

o�-the-shelf AI-deck from Bitcraze, equipped with the GreenWaves GAP8 system-on-chip

(SoC) and an ultra-low power grayscale camera. This nine-core SoC has been used for

several end-to-end methods that integrate perception and navigation by directly regressing

inputs through a CNN into control commands [424–426]. Instead, in our approach, we

calculate optical �ow as an intermediate step. This gives us direct control over vehicle

behavior and can support multiple optical-�ow-based tasks to be performed simultaneously

or interchangeably. Our work, motivated by these bene�ts, is the �rst to present a fully

convolutional neural network for a dense prediction task on board the AI-deck.

B.2.2 Real-time dense inference with CNNs
For the design of NanoFlowNet, we draw inspiration from recent semantic segmentation

literature in order to signi�cantly speed up optical �ow estimations while retaining per-

formance. More speci�cally, we draw inspiration from the BiSeNet [427] and STDC-Seg

[411] architectures. First, BiSeNet identi�ed a sacri�ce of low-level spatial information

in previous real-time methods and improved performance by proposing a multi-path ar-

chitecture in which low-level spatial information is encoded in a separate path. A feature

fusion module was proposed to fuse information from the high- and low-level paths, while

an attention re�nement module re�ned features through channel attention. Then, the

STDC-Seg architecture introduced the STDC module, which increases the receptive �eld

size per layer at a low computational cost. Furthermore, it identi�ed that BiSeNet’s spatial

path pronounces edges, and replaced the convolutions from the path with a train-time-only

“detail head” and “detail loss” to mimic the information passed from the removed convolu-

tions, thus shrinking the model and decreasing latency. The “detail guidance ground truth”

was generated by convolving the ground truth segmentation map with a Laplacian kernel.

A few elements of STDC-Seg and BiSeNet have been separately investigated in the

context of optical �ow. AD-Net [428] showed that channel attention can be bene�cial for

optical �ow estimation, while EDOF [429] fused features from an edge-detector network

and an optical �ow encoder network for detail-guided optical �ow estimation. Similar to

STDC-Seg, we use edges to guide the learning.

B.3 Method
For the design of NanoFlowNet, we adopt the STDC-Seg network [411] and modify it to our

needs. We replace all regular convolutions with depthwise separable convolutions, and we

globally reduce the number of �lters by a factor of four to further reduce latency and the

number of parameters. We introduce an even smaller model with half of NanoFlowNet’s

�lters (globally) and call it NanoFlowNet-s. Further modi�cations to the architecture are

discussed in detail in the following sections.

B.3.1 Motion boundary detail guidance
The closest analogy to detail guidance as used in STDC-Seg is to generate edges from the

optical �ow ground truth. Instead, we replace this “edge-detect" detail guidance ground

truth with motion boundary ground truth from the optical �ow datasets. We adopt the

focal loss [430] to counter the class imbalance problem.
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Figure B.3: Original strided STDC module from [411], with the exception that we use depthwise separable

convolutions in place of all non-pointwise convolutions. We use ReLU activations after all layers in the block. M
denotes the number of input features, while N is the number of output features.

Figure B.4: Our modi�ed strided STDC module. We reorganize the operations to minimize the spatial resolution

pointwise convolutions have to perform on.

B.3.2 Strided STDC module redesign
We modify the strided STDC modules from STDC-Seg [411] to further decrease latency. The

original and modi�ed strided STDC modules can be found in Figs. B.3 and B.4, respectively.

First, following the insights of several low-latency literature methods [431–435], we replace

all convolutions in the STDC module with depthwise separable convolutions due to their

low computational expense. Second, we identify that the pointwise convolution operation

in the strided STDC module is the most expensive in terms of the number of multiply-

accumulate (MAC) operations. By relocating this operation to the bottom path after the

average pooling operation, we make the strided STDC block computationally more tractable

overall while increasing the number of features in the top path and the number of features

with a large receptive �eld size in the concatenated output. Our modi�ed blocks lead to a

reduction of over 50% of the MAC operations in stage 1, and of over 10% in stages 2 and 3.

B.3.3 Reduced input/output dimensionality
We design the network for low-resolution input and downscale all dataset’s input frames,

optical �ow, and motion boundary ground truth accordingly. The scaling factor is picked

such that the resulting data resolution closely matches the target application resolution

(approx. qqVGA, 160 × 120 pixels). Horizontal and vertical scalings are identical, to �x

the aspect ratio in an attempt to retain naturalism. This allows us to make the network

shallower by dropping the �rst (expensive) convolution altogether and thus decrease

latency while maintaining feature sizes in the deepest layers. The downscaled training

data matches the low-resolution cameras found on nano quadcopters more closely, making

our synthetic dataset more naturalistic for our intended application. As an added bene�t,

working with downscaled data signi�cantly speeds up training. The primary downside

of reduced input resolution is the loss of information, in particular we will miss out on
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Method

EPE↓ FPS↑
No. Params. (k)

Clean Final GPU1 GAP82

FlowNet2-xs 9.05 9.46 150 - 1,978.25

NanoFlowNet (ours) 7.12 7.98 141 5.57 170,88

NanoFlowNet-s (ours) 9.56 10.05 151 9.34 46.75

Table B.1: Quantitative results on MPI Sintel (train). 1At a resolution of 96 × 224. 2At a resolution of 112 × 160,
including vision thread. Best in bold, runner up underlined.

(a) Input frame I (b) Ground truth (c) NanoFlowNet (d) NanoFlowNet-s (e) FlowNet2-xs

Figure B.5: Qualitative comparison of optical �ow estimates by NanoFlowNet(-s) and FlowNet2-xs on the MPI

Sintel (train) clean pass.

small objects and small displacements that are not captured by the resolution. To be able

to compare with existing optical �ow works, we benchmark performance at native dataset

resolution, since downscaling of �ow magnitudes results in lower endpoint error (EPE↓,

lower is better) without a qualitative improvement.

Lastly, we design our network for grayscale input images, saving two thirds of the

on-board memory dedicated to the input frames and decreasing the computational cost of

the �rst layer (at a loss of color information).

B.4 Experiments
B.4.1 Implementation details
All models are trained for 300 epochs on FlyingChairs2 [265, 436], a regenerated Fly-

ingChairs dataset with motion boundary ground truth. We use the Adam optimizer [173],

with learning rate 1e-3 and a batch size of 8. After this, we �ne-tune our architectures on

FlyingThings3D [396] for 200 epochs with a learning rate of 1e-4.

Given the scaling and conversion to grayscale of the input data, our network is not

directly comparable with results reported by other works. For comparison, we retrain

one of the fastest networks in literature, Flownet2-s [189], on the same data. Given the

reduction in resolution, we drop the deepest two layers to maintain a reasonable feature

size in the deepest layers, and name the model Flownet2-xs.
We run all experiments in a docker environment with TensorFlow 2.8.0, CUDA 11.2,

CUDNN 8.1.0, TensorRT 7.2.2 on an NVIDIA GeForce GTX 1070 Max-Q with batch size 1

for benchmarking latency.
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(a) Input frame I (b) Ground truth (c) Motion-boundary

guidance

(d) Edge-detect

guidance

(e) No detail guidance

Figure B.6: Qualitative comparison of di�erent detail guidance methods on the MPI Sintel (train) clean pass.

B.4.2 Performance and latency on public benchmarks
We evaluate the trained networks on the unseen MPI Sintel train subset, on both the

clean and �nal pass. Quantitative results can be found in Table B.1. Regarding accuracy,

according to these results, our NanoFlowNet performs better than the squeezed FlowNet2-

xs architecture, despite using less than 10% of the parameters. With respect to runtime,

FlowNet2-xs does not �t on the GAP8 microprocessor due to the network size (i.e., lack

of memory). To put the achieved latency of NanoFlowNet in perspective, we execute

FlowNet2-xs’ �rst two convolutions and the �nal prediction layer on the GAP8. The three-

layer architecture achieves 4.96 FPS, which is slower than running the entire NanoFlowNet

(5.57 FPS). On laptop GPU hardware, NanoFlowNet achieves comparable FPS to FlowNet2-

xs. NanoFlowNet-s has lower performance than both other models, but has a low parameter

count with only 27% of NanoFlowNet’s and 2.4% of FlowNet2-xs’s parameters, and is the

fastest out of all the networks tested.

Qualitative results, presented in Fig. B.5, con�rm that NanoFlowNet makes the most ac-

curate optical �ow estimates out of all the networks tested. Interestingly, both NanoFlowNet

and NanoFlowNet-s appear to detect displacements of smaller objects, which FlowNet2-xs

misses. However, NanoFlowNet-s’ �ow estimates are highly noisy.

B.4.3 Additional experiments
Motion boundaries detail guidance

Detail guidance

EPE↓
Clean Final

None 7.636 8.119

Edge detect 7.404 8.141

Motion boundaries 7.122 7.979

Table B.2: Quantitative comparison of di�er-

ent methods of detail guidance on MPI Sintel

(train). Best in bold, runner up underlined.

We verify the e�ectiveness of motion boundary detail

guidance by retraining two additional networks, one

with detail guidance based on the optical �ow ground

truth convolved with a Laplacian kernel (further re-

ferred to as “edge-detect guidance”), and another one

with no detail guidance. Quantitative and qualitative

results can be found in Table B.2 and Fig. B.6. As

shown, motion boundary detail guidance improves

results and outperforms edge detect detail guidance.

Since all these guidance methods only a�ect (i.e.,

guide) the training behavior, all methods have identical latency. Qualitative results show

that motion-boundary-guided optical �ow best de�nes moving objects, and shows the least

“leakage” of foreground objects into the background.
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Strided STDC module redesign

STDC block

EPE↓ FPS↑
Clean Final GPU1 GAP82

Unmodi�ed 7.483 8.114 136 4.84

Modi�ed 7.122 7.979 141 5.57

Table B.3: Quantitative comparison of the original and the

modi�ed STDC block on MPI Sintel (train). 1At a resolu-

tion of 96 × 224. 2At a resolution of 112 × 160, including

vision thread. Best in bold.

Table B.3 shows the e�ects of the strided

STDC module redesign. The network with

the redesigned module is both faster (both

on laptop GPU and the GAP8 micropro-

cessor) and more accurate.

Reduced input dimensionality
A comparison between training and in-

ferring on grayscale images compared

to color images can be found in Table

B.4. Our grayscale model outperforms the

color variant. We hypothesize that this is due to the limited capacity of the network. The

latency of the grayscale model on the GAP8 is lower due to reduced data transfer and a

cheaper �rst convolution.

B.4.4 Obstacle avoidance application

Mode

EPE↓ FPS↑
Clean Final GPU1 GAP82

Color 7.726 8.344 141 5.18

Grayscale 7.122 7.979 141 5.57

Table B.4: Quantitative comparison of grayscale vs. color

input frame-based architectures. 1At a resolution of 96 ×
224. 2At a resolution of 112×160, including vision thread.

Best in bold.

We deploy the proposed NanoFlowNet ar-

chitecture on a Crazy�ie 2.x equipped with

the AI-deck and the �ow-deck for the task

of vision-based obstacle avoidance. We use

the AI-deck to capture images with the

front-facing camera and to run optical �ow

inference and processing. The downward-

facing optical �ow deck is used for position-

ing only. The total �ight platform weighs

in at 34 g. See Fig. B.8 for a picture of the

platform.

Control strategy
We implement the horizontal balance strategy from [437, 438], with which the yaw rate  ̇
is set based on the error erl between the sum of �ow magnitudes in the left and right half

Figure B.7: Inspired by GapFlyt [130], we deliberately let the quadcopter oscillate vertically to generate additional

optical �ow.
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of the �ow estimate (see Eq. B.1). We set gains kp = 0.0126 and kd = 0.0018 experimentally.

The forward velocity of the quadcopter is set at 0.2 m/s.

 ̇ = kperl + kd ̇erl (B.1)

Figure B.8: Crazy�ie 2.x equipped with (i) the AI-

deck used for image acquisition using a front-facing

camera and to run optical �ow inference, and (ii) the

downward-facing �ow-deck used only for positioning.

We augment the balance strategy by im-

plementing active oscillations (a cyclic up-

down movement, see Fig. B.7) which results

in additional optical �ow being generated

across the �eld of view (FOV). This is partic-

ularly helpful for avoiding objects in the di-

rection of horizontal travel. Up-down rather

than left-right surveying favors detecting ob-

stacles wider than taller in nature, but is

much simpler to combine with the left-right

balance strategy. Additionally, left-right sur-

veying requires rolling, which introduces ro-

tational �ow that does not contain depth in-

formation.

We implement both the CNN and calcu-

lation of erl on the GAP8 microprocessor of

the AI-deck. Calculating the �ow error on the AI-deck signi�cantly reduces the amount of

data that needs to be transmitted over UART to the autopilot. The calculation of the yaw

rate is done on the Crazy�ie 2.x, and fed into the controller.

AI-deck implementation
The CNN processing power on the AI-deck comes from the GreenWaves Technologies

GAP8. The chip is organized around the central single-core fabric controller (FC) and the

eight-core cluster (CL) for parallelized workloads. For our application, we run FC@250MHz,

CL@230MHz, and VDD@1.2V.

Our AI-deck is equipped with the HM01B0 monochrome camera, which supports a

resolution of up to 324×324, a QVGA (244×324) window mode, a 2×2monochrome binning

mode, and cropping. For our application we enable both the window mode and binning

mode (122 × 162) and take a central crop of 112 × 160, to ensure a matched spatial resolution

of upsampled and skipped features in the network architecture. At our input resolution,

using grayscale versus color reduces the L2 memory usage on the AI-deck by 14%. This

additional L2 memory is made available to the AutoTiler, which improves inference time

by reducing the number of data transfers.

In this work, we utilize the GreenWaves Technologies GAP�ow toolset for porting our

CNN to the GAP8. NNTool takes a TensorFlow Lite or ONNX CNN description and maps

all operations and parameters to a representation compatible with AutoTiler, the GAP�ow

tiling solver. We use NNTool to implement 8-bit post-training quantization to our CNN.

We quantize on images from the MPI Sintel dataset [381] and achieve an average signal to

quantization noise ratio of 10.
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Figure B.9: Results of multiple obstacle avoidance runs in cluttered and open environments. Position recorded

with a motion capture system.

Experimental setup

Figure B.10: Overview of the cluttered, obstacle avoid-

ance environment. Obstacles are outlined in purple, while

texture-enhancing mats and curtains in orange.

We compose two indoor environments for

obstacle avoidance. First, an open environ-

ment, with obstacles exclusively placed at

the outline of the environment. Second,

a cluttered environment, with obstacles

placed throughout (see Fig. B.10). Obsta-

cles include textured and untextured poles,

synthetic plants, �ags, or panels. Both

environments are enclosed with textured

panels to trap the quadcopter inside. Panel

textures consist of forest texture, data ma-

trix texture, and a drone racing gate tex-

ture. In both environments, we augment

the enclosure’s texture with highly tex-

tured mats and curtains.

The simple proof-of-concept control

algorithm has no dedicated method of dealing with head-on collisions. By placing obstacles

around the perimeter of the open environment we minimize the risk of a head-on collision

with the panels as they introduce an imbalance of optical �ow, even on a fully perpendicular

collision path with a panel.
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For each experiment, we start the quadcopter at approximately the same location, with

varying heading. We let the quadcopter run until a collision or empty battery. We record

�ight positioning data with a motion capture system for post-�ight analysis only and

record experiments with an ISO view and top view camera.

Results
Flight paths extracted from the motion capture system are plotted on maps of the envi-

ronment and can be found in Fig. B.9. The control algorithm is most robust in the open

environment, with the quadcopter managing to drain a full battery without crashing. In

the cluttered environment, performance is much more variable. Especially in occasions

where obstacles are in close proximity to one another, the quadcopter tends to successfully

avoid an obstacle, only to collide with another during the maneuver. Adding a head-on

collision detection based on the detection of the focus-of-expansion (FOE) and divergence

estimation (e.g., [91]) could help avoid obstacles in these cases.

In several of the successful avoidances, the quadcopter initially responds weakly to

the obstacle, only to turn away more harshly when the course has already been corrected

su�ciently. This behavior is expected because of two reasons. First, the optical �ow due to

forward movement is zero at the FOE and maximum at the edge of the peripheral vision.

Second, due to the fact that the obstacles take up more of the FOV when they are in closer

proximity to the quadcopter, they generate more optical �ow. This behavior could be

corrected by weighing the optical �ow more heavily towards the center of the image.

Another notable feature of the �ight paths is that the nano quadcopter frequently

appears to enter a spiraling path. The control algorithm is overreacting to stimuli from

across the environment. Despite this, the behavior is consistent, the resulting paths are still

exploring the environments, and the nano quadcopter is able to break out of the spiraling

motion by approaching a panel (see Fig. B.9, top right) or approaching an obstacle (see Fig.

B.9, top center).

B.5 Conclusion
In this work, we introduced a lightweight CNN architecture for dense optical �ow esti-

mation on edge hardware, called NanoFlowNet. We achieved real-time latency on the

AI-deck. Furthermore, we showed that training our network guided on motion boundaries

improves performance at zero cost to latency. Finally, we implemented NanoFlowNet in a

real-world obstacle avoidance application on board a Bitcraze Crazy�ie nano quadcopter.

For future work, we expect examples that take more advantage of the dense information in

the generated optical �ow �eld.

Supplementary material

Video summary of the approach: https://youtu.be/lKkO1VvE4VU

Project code: https://github.com/tudelft/nano�ownet

https://youtu.be/lKkO1VvE4VU
https://youtu.be/lKkO1VvE4VU
https://github.com/tudelft/nanoflownet
https://github.com/tudelft/nanoflownet
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Propositions
accompanying the dissertation
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by
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1. Embracing simplicity and interpretability as core tenets in engineering nur-
tures effective solutions, mitigating complexity risks, and cultivating a pro-
found system understanding. [This thesis]

2. Adopting self-supervised learning in robotics harnesses the power of real, un-
labeled data, bypassing the need for sensor simulation and hence addressing
the reality gap in perception systems. [This thesis]

3. Neuromorphic technology has the potential to catalyze intelligence democ-
ratization in robotics, revolutionizing small robot integration, empowering
advanced capabilities, and expanding their applications. [This thesis]

4. Nature, as source of inspiration for robotics, guides a path towards practical
solutions when embraced as a muse rather than a blueprint. [This thesis]

5. Event cameras, driven by the essence of change, unveil a profound truth in
robotics: perception thrives on dynamism.

6. In an AI-dominated media landscape, education, logic, and critical thinking
will remain as our last refuge, protecting truth and upholding integrity.

7. The journey to become an independent researcher transcends solo pursuits,
as fruitful collaborations cultivate breakthrough innovation and amplify the
impact of our work.

8. In a multi-cultural work environment, excelling in one’s job and embracing
cross-cultural understanding are two sides of the same coin.

9. In the realm of creativity, where pixels and ideas collide, videogames and
computer vision research coexist as distinct yet interconnected domains, both
inviting exploration, discovery, and the unleashing of untapped potentials.

10. Preserving personal time poses a formidable challenge for Ph.D. candidates,
transcending research domains while being integral to academic endeavors.

These propositions are regarded as opposable and defendable, and have been
approved as such by the promotors prof. dr. G. C. H. E. de Croon, and

dr. ir. C. De Wagter.


