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A B S T R A C T   

Large accidents throughout the 20th century marked the development of safety fields in engineering, devoted to 
better identify hazards, understand risks and properly manage them. As these fields evolved rather quickly and 
moved from a compliance to a risk-based approach, a significant delay in this transition was experienced in fire 
safety engineering (FSE). Devastating fires well into the 21st century and the restrictive nature of prescriptive 
codes signaled the need to transition towards a performance-based one. A performance-based approach provides 
flexibility and capitalizes on learning from accidental events and engineering disciplines such as process safety 
and FSE. This work provides an overview of the main alternatives to account for uncertainty in safety studies 
within the context of FSE, including traditional probabilistic analyses and emerging approaches such as strength 
of knowledge. A simple example is used to illustrate the impact of the uncertainty analysis on the results of a 
simple fire safety assessment. A structured evaluation is performed on each alternative to assess its ease of 
implementation and communication. The outcome is a compendium of advantages and disadvantages of the 
alternatives that constitute a toolbox for fire safety engineers to configure and use within their fire risk assess-
ments. Process safety engineers are expected to gain an understanding of the similar and important challenges of 
FSE, being it directly relevant for process risk management and fire risk management in administrative buildings.   

1. Introduction 

1.1. Aim of this paper 

Safety engineering covers a large range of specialized disciplines, 
including nuclear safety, chemical process safety and security, disaster 
and emergency management, reliability engineering and fire safety en-
gineering (FSE). Cadena and Munoz (Jaime and Cadena, 2013) 
addressed the particular link between process safety and FSE, which 
despite addressing hardly intersecting systems, share common chal-
lenges and solutions. This paper presents chemical process safety prac-
titioners with a view of the challenges of uncertainty accounting within 
FSE. As administrative and storage buildings constitute key elements of 
a chemical processing business, fire risks in these facilities must also be 
adequately managed to ensure process safety and business continuity. 

PRAs are the typical way in which complex systems are assessed and 
their use in performance-based design in FSE is evident (Van Coile et al., 
2017, 2018, 2019; Gernay et al., 2019). Gehandler (2017) highlights the 
issues with FSE’s current theoretical framework, stating that the process 

to demonstrate an adequate safety level of a building is ‘restricted by a 
linear design process where mainly quantitative data and methods matters’. 
Following such a numerical and mechanical process might prevent 
safety engineers from solving the correct problems, e.g. demonstrating 
compliance rather than safety. Regardless of the approach to risk 
assessment, its outputs can yield potentially inaccurate results due to the 
uncertainties involved. Despite inaccurate, these results are not useless. 
The uncertainty involved in fire risk assessments cannot be a reason to 
abandon their use, on the contrary, it must be used as a tool to reinforce 
them and support better decision making. Managing uncertainty sources 
in risk assessments -particularly in PRAs- is a key challenge for FSE and 
to implement the recommendations identified by the mentioned 
enquiries. 

This work aims at providing FSE practitioners with a picture of the 
alternatives available for analyzing and communicating uncertainty. 
Furthermore, the alternatives are evaluated to support their selection 
given a safety objective, available inputs and resource restrictions. The 
evaluation is done based on two dimensions: suitability and effective-
ness. The results not only present FSE practitioners with a toolbox of 
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alternatives, but also provide process safety engineers with reflections 
which are easily applicable to current challenges posed by uncertainty in 
quantitative risk assessments. 

This introduction presents the mentioned challenges of accounting 
for uncertainty in fire risk assessments, starting with an analysis of those 
in process safety. Section 2 presents the main uncertainty analysis al-
ternatives found in literature and describing them, section 3 implements 
them to a simple fire safety example. Section 4 evaluates the alternatives 
on a comparative basis and section 5 discusses the FSE challenges in 
light of the evaluation results, using input from practitioners and ex-
perts. Finally, section 6 presents the conclusions of this work and its role 
in addressing current FSE challenges. 

1.2. Risk assessment supports decision making 

Fire events in Table 1 show that complex systems can fail and lead to 
major loss for all involved stakeholders. Similar events have led to the 
development of safety engineering fields such as nuclear safety and 
chemical process safety. Safety engineering within its purposes to sup-
port decision-making and properly manage risk. The formal process to 
do so is a risk assessment, made of hazards (and scenarios) identifica-
tion, risk analysis and risk evaluation. The input of this process is in-
formation about the system such as physical characteristics and 
hazardous elements, while the outputs depend on the definition of risk 
and the analysis method. In general, the outputs of a risk assessment is 
the prioritization of risks, identifying those which are not acceptable in 
relation to a pre-defined acceptance criterion. Such output depends on 
the risk definition choice. Diverse definitions are available (Aven and 
Renn, 2009; Analysis, 2015) and the one by ISO 31000 (Standardization, 
2018) states that it is the effect of uncertainty on objectives. Aven et al. 
(2011) have stated that definitions of risk impact the way it is under-
stood and evaluated. Detailed analyses of the ontological origin of the 
risk concept and its evolution throughout time are provided by Beck 
(Beck and Kewell, 2012) and Blokland and Reniers (2019). A popular 
definition for risk which enable many traditional risk assessment 
methodologies is that of consequences multiplied by likelihood, i.e. 
expected value. 

1.3. Uncertainty in risk assessments 

A recognized issue of risk assessment is the presence of uncertainty 
sources, which can not only be numerous but correlated in complex 
ways. Before the scientific foundations of risk assessment were struc-
tured around 1945–1980 (Dionne, 2013), many traditional engineering 
fields were already using its key features and managing the associated 
uncertainties. Structural engineering is an example relevant to FSE, 
where calculations needed to design a structure involve multiple com-
plex variables and dependencies, which are modeled using well-known 
tools and parameters both of which involve considerable uncertainties, 
see Tallja et al. (Talja et al., 1997). In this particular example un-
certainties are identified and managed through ‘experience from practical 
analysis’, i.e. expert judgment. As complexity grows, new approaches to 
account for uncertainties, e.g. the comparison of the use of safety factors 
and reliability approach in structural design by Wang et al. (2019). 
Currently risk assessment is recognized as a formal process and the core 
of the risk management process as defined by ISO 31000 (Standardiza-
tion, 2018) and Aven (2016a) presents a detailed analysis of its foun-
dations, as well as of the way in which uncertainties are involved in the 
different steps. Using the example of the mature chemical process safety 
field, issues have been identified associated to the complacency of 
practitioners (Årstad and Aven, 2017), the limits of prediction in risk 
assessments (Goerlandt and Reniers, 2018), the limits of the typically 
used probabilistic approach (Aven, 2010) and communicating un-
certainties in the studies to the stakeholders (Zeng and Zio, 2017). In 
particular, Pasman and Rogers (2018) conclude that risk analysts (en-
gineers in charge of carrying out the risk assessment) are “haunted” by 
uncertainty while at the same time highlighting the vital role of risk 
assessments in supporting key decision making by stakeholders. 

Safety science literature includes reviews on risk assessment meth-
odologies, displaying approaches that adapt to different nature, 
complexity and magnitude of systems (Tixier et al., 2002; Marhavilas 
et al., 2011; Baecher, 2016). These reviews reflect not only the 
uniqueness and complexity of systems, but also the need to adapt the 
risk definition to better understand and manage uncertainty. Aven 
(2010) clarifies that the purpose of risk assessment is not obtaining a risk 
index, e.g. Risk = Likelihood x Consequence, but obtaining ‘an objective 
description of unknown quantities’ or ‘a scientific judgement about the 
unknown quantities’ from the qualified safety engineers performing the 
risk assessment. A last and important consideration is that risk assess-
ment foundations could lack coherence as they derive from reaction to 
catastrophic events and practical experience, rather than from a scien-
tific approach (Yang et al., 2018). This also poses a challenge to 
benchmark results and to unify guidelines. As highlighted by Aven and 
Kristensen (2019) and the previously identified issues, it is a current 
priority of safety engineering fields to better understand uncertainty and 
its effect on risk assessments. 

1.4. Risk assessment issues in fire safety 

Most of the advancements of risk assessment have been undertaken 
in disciplines with a predominant performance-based approach, to 
which FSE has been transitioning since the appearance of the first 
performance-based construction codes, e.g. United States (Meacham, 
1997). FSE has adapted risk assessment tools from other disciplines, 
however its framework does not provide the same basis for its structured 
and systematic implementation, as revealed by Hackitt (2018). An 
example is Approved Document A (Ministry of Housing, 2010), which 
requires an explicit and systematic risk assessment of buildings 
exceeding limits of area or number of stories. However, to implement 
such assessment there is limited guidance on the identification of fire 
scenarios for analyzing structural integrity (Bisby, 2019). The issues 
identified by Hackitt in the UK have also been identified in Australia 
(Peter Shergold, 2018) and could be extrapolated to other places where 
similar structures are in place. Identified issues include lack of shared 

Table 1 
Examples of catastrophic events.  

Event Year Location Safety 
field 

Human 
loss 

Economic loss 

Collapse of 
World Trade 
Centre ( 
Usmani 
et al., 2003) 

2001 New York, 
USA 

Fire, 
security 

2977 
fatalities 

US$8B 
(buildings 
value) ( 
Amadeo, 
2020) 

Fire at Grenfell 
Tower ( 
Torero, 
2018) 

2017 London, UK Fire 72 
fatalities 

£50M 
(renovations 
and enquiry) ( 
Booth, 2019) 

New Zealand 
International 
Convention 
Centre fire ( 
Johnston, 
2019) 

2019 Auckland, 
NZ 

Fire – US$26M 
(liquidated 
damages over 
delays) 

Campbell 
chemical 
warehouse 
fire 

2019 Melbourne, 
Australia 

Fire, 
process 

– Multi-million 
dollar clean 
up (Chris 
Vedelago, 
2019) 

Chemical 
warehouses 
fires in 
Dhaka 

2019 Dhaka, 
Bangladesh 

Fire 81 
fatalities 
(India, 
2019) 

Unknown  
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risk assessment practices, poor data collection and sharing, inadequate 
documentation (Recommendations 5, 8, 12, 14 from Shergold and Weir 
(Peter Shergold, 2018)), availability, completeness and updating of fire 
risk assessments, lack a ‘building safety manager’, lack of a broad scope 
for risk assessments, management of changes and technical assumptions 
(Recommendations 3.2–3.4, 2.9, 9.3 from Hackitt (2018)). The identi-
fied issues highlight a vast range of challenges to be addressed –partly- 
by FSE and the way in which risk assessments are conducted, as well as 
their role in the decision-making process. 

1.5. Uncertainty sources in risk assessment 

The breakdown of uncertainty presented in Table 2 is based on the 
FSE context, but others exist and can be useful in the right context 
(Cooke and Bedford, 2001; Hayes, 2011; Walker et al., 2013). Such 
structure is product of the recompilation of the definitions provided by 
different sources and many of the works referenced in this study, mainly 
(Aven and Renn, 2009; Kaplan and Garrick, 1981; Notarianni and Parry, 
2016). It can be argued that uncertainty is only divided into epistemic 
and aleatoric and that linguistic elements are included in the former (Zio 
and Pedroni, 2012); however, linguistic uncertainty as defined by 
Colyvan (2008) is particularly relevant in the context of safety engi-
neering fields. The use in FSE of risk acceptability criteria such as ALARP 
(as low as reasonably practicable) (Van Coile et al., 2018) and of 
performance-based requirements (Meacham and. Van Straalen, 2018) 
which largely rely on linguistic elements, introduce this type of uncer-
tainty which cannot be easily treated quantitatively. Johansen and 
Rausand (2015) capture linguistic uncertainty within a broader category 
of ambiguity and provide a detailed accounting of how to identify and 
treat it within the process of a risk assessment. 

A generic risk assessment process is shown in Fig. 1, along with the 
typical uncertainty types fed to it. Propagating such uncertainties can be 
a procedural issue if all are deemed epistemic and expressed using 
classical or Bayesian probabilities; however, the process shows that 
different uncertainty types are mixed along the process, backing up 
Colyvan’s (Colyvan, 2008) argument. Both Hackitt and Shergold-Weird 
enquiries (Hackitt, 2018; Peter Shergold, 2018) highlight the need of 
reducing vagueness and/or ambiguity from performance requirements 
used to evaluate a fire safety in a building. Such ambiguity and vague-
ness is not communicated and it is rather carried along the risk assess-
ment process without explicit consideration. Notarianni (Notarianni and 
Parry, 2016) also notices this when discussing uncertainty sources in the 
FSE design process by stating that ‘at present, performance criteria are not 
established or agreed on’. The relevance of this type of uncertainty in FSE 
is not clear as reflected by the uncertainty definition of the Society of 
Fire Protection Engineering (SFPE): ‘amount by which an observed or 

calculated value might differ from the true value’ (Hurley, 2012). This 
definition not only constitutes a narrow view of what risk and uncer-
tainty are, but also greatly limits the capacity for practitioners to express 
uncertainty in studies where a probabilistic approach is not feasible or 
recommended. 

As presented in Table 2, epistemic uncertainty can be reduced 
through acquiring new information, i.e. evidence. With enough addi-
tional evidence, epistemic uncertainty can be reduced enough to make 
analysts comfortable with the outcomes of their risk assessments. Evi-
dence can either update or improve prior knowledge on something 
already known, e.g. updating probabilities, or reveal new knowledge 
that did not exist, e.g. new failure modes. Hackitt’s (Hackitt, 2018) 
enquiry was precisely motivated by this type of new findings, in which 
the facades used for energy consumption reduction contributed directly 
to the massive loss of the Grenfell Tower fire. Failure modes or faulty 
assumptions are typically identified when catastrophic events occur. 
Such uncertainty is referred to as ‘deep uncertainty’ or the highest level 
of uncertainty according to Walker et al. (2013) and cannot be treated in 
a probabilistic manner as Kaplan once proposed (Kaplan et al., 2001). 

The variety of uncertainty sources and their type (including deep 
uncertainty) present a challenge for any risk assessment approach. Aven 
(2011a) provides a compilation of references in which risk assessments 
in general are deemed ‘simplistic and unrealistic’ and even misleading 
when the background knowledge of the analyst is poor. This draws 
relevance to this work and the identification of the different uncertainty 
analysis alternatives available for FSE practitioners. 

1.6. Quantitative risk assessment issues in FSE 

The previous are particularly relevant for quantitative (probabilistic) 
risk assessments (known as QRA or PRA), in which an expected value 
approach is taken and the risk is quantified as a function of scenarios, 
their frequencies of occurrence and their consequences. PRAs have their 
foundation in the Rasmussen study (Commission, 1975) and the theo-
retical basis provided by Kaplan (Kaplan and Garrick, 1981). Several 
references provide technical details of PRAs (Benintendi, 2018; Benin-
tendi; Ramachandran et al., 2011; Safetyo.C.f., 2000) and detailed ex-
amples include airports (Iervolino et al., 2019), liquid spill fires (Zhao 
et al., 2017), natural events triggering technological events (NaTech) 
(Antonioni et al., 2015; Cozzani et al., 2014), hydrogen refueling sta-
tions (Gye et al., 2019), land-use planning (Ltd, 2012), railway tunnels 
(Vanorio and Mera, 2012), urban road tunnels (Meng et al., 2011). In 
short, in PRAs risk is defined as the triplet <si, pi, xi>, where i refers to 
an integer number representing a given scenario (s), p refers to the 
probability of said scenario occurring and x to its consequences. Both 
Amundrud (Amundrud and Aven, 2015) and Zio (2018) highlight that 
PRAs are useful and their major advantage being scenario identification 
and risk sources comparison. 

PRAs are applied in FSE through the BS 7974 (H247974:2019 and 
Appl, 2019) and rely on statistical data of fire ignition and probabilities 
of failure for safety equipment such as sprinklers or mechanical 
extraction. Similar approaches in process safety have already been 
analyzed after decades of implementation, highlighting the potential for 
large uncertainty margins which are seldom reported (Goerlandt et al., 
2016; Rae and Alexander, 2012) and requiring new risk assessment 
perspectives (Aven and Kristensen, 2019; Goerlandt and Reniers, 2017; 
Bjørnsen et al., 2019; Flage and Aven, 2018; Khorsandi and Aven, 2017; 
Askeland et al., 2017; Bjerga et al., 2016; Aven, 2016b). Such un-
certainties threat rendering risk assessments useless in supporting 
decision-making and the new perspectives call for a need to understand 
them not as a mechanistic process, but as a complex evidence gathering 
exercise than effectively supports decision-making. FSE is not strange to 
this potential problems, as a probabilistic nature to fire risk is found in 
early fire safety engineering literature (Castino, 1982). 

Table 2 
Uncertainty types in FSE.  

Type of 
uncertainty 

Epistemic Aleatory Ambiguity 

Description Lack of or 
incomplete 
knowledge 

Natural 
variability 

Vagueness, context 
dependency, 
linguistic, under- 
specificity, normative 

Context Complex systems 
and phenomena 

Large 
populations 

Performance-based 
regulation, criteria 
and guidelines 

Reduction 
methods 

New or improved 
theories based on 
experimental 
observation 

Statistical 
studies to 
characterize 
probability 
distributions 

Consensus and 
alternative 
interpretations 

Residual 
uncertainty 
after 
reduction 

Deep uncertainty 
associated to 
complex fire 
phenomena and 
interactions 

Uncertainty 
associated to 
extreme 
variations 

Misinterpretation  
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2. Uncertainty analysis options 

The approaches available for safety engineers to describe uncertainty 
go well beyond probability (Colyvan, 2008; Flage et al., 2014) and this 
section identifies the main approaches through a bibliographical search, 
using Dubois’s work (Dubois, 2010) to guide the selection of search 
criteria (Table 3). The searches were conducted on Scopus® database 
which indexes key peer-reviewed literature much related to the 
mentioned safety engineering fields. The data was retrieved on the 13th 
of March of 2019 using a search timeframe between January 2000 and 
December 2018, limiting it only to journal articles. The table presents 
the search parameters, while Fig. 2 presents the predominance of the 
probabilistic approach in journal papers production and the growing 
contribution of the other main alternatives. 

This initial set of approaches to uncertainty analysis is further 
expanded by exploring selected papers. One of these papers is the 
detailed and well-structured description of the Generalized Information 
Theory (GIT) presented by Klir (2004), and additional relevant work is 
also available (Hayes, 2011; Zio and Pedroni, 2012; Beer et al., 2013; 
Abdo et al., 2017; Aven, 2011b). Klir presents the approaches as tools to 
describe the degree of evidence that the true value of a variable of in-
terest X is within a specified set, particularly the defined interval [0,1]. 
Klir calls these approaches uncertainty functions and include classical 
probability theory, possibility and evidence theory, and constitute the 
first approaches reviewed in this work, as presented in Table 4. 

Uncertainty functions provide a numerical outcome of uncertainty 
contained in all the information available -or the lack of it- and this is not 
always possible to map onto the prescribed range. Klir recognizes 
alternative theories can fit within the GIT as long as they allow mapping 
uncertainty into the defined interval [0,1] and highlights that the “choice 
of the uncertainty theory employed in dealing with each given problem should 

be determined by the nature of the problem itself” (Klir, 2004). 
Beyond uncertainty functions, alternatives have arisen which focus 

on better supporting the decision-making despite the presence of 
considerable -unquantifiable- uncertainty both in the inputs used to 
define a scenario and in the assumptions used to model a system. Such 
alternatives are grouped under Robust decision making (Lempert 
Marchauet al., 2019), which is defined is a framework designed to 
support decision-making under deep uncertainty. An example of these 
alternatives is the info-gap approach (Ben-HaimY.M., Nikolaides, 2005) 

Fig. 1. Mapping of uncertainties along a generic risk assessment process.  

Table 3 
Searches and top results. .  

Approach Number of articles 
(2000–2018) 

Top subject area Top author (No. 
publications) 

Probabilistic 749* Engineering 
(28.4%) 

Aven, T. (11) 

Bayesian 316 Engineering 
(26.4%) 

Khan, F. (6) 

Fuzzy 306 Engineering 
(27.8%) 

Huang, G.H. (23) 

Possibility 150 Environmental 
(21.0%) 

Zio, E. (5) 

Belief 82 Engineering 
(11.6%) 

Tesfamariam, S. (4) 

*For the probabilistic, the results for ‘non-probabilistic’ were removed. 

Fig. 2. Results and annual growth for the main approaches to uncer-
tainty analysis. 

Table 4 
Uncertainty analysis alternatives within this work.  

General approach Specific approach Date Main feature 

Uncertainty functions Classical probability 1977 Additive, 
mapping onto 
[0,1] 

Possibility theory 1978 Non-additive, 
mapping onto 
[0,1] 

Evidence theory 1976 
P-boxes 1987 

Robust Decision 
Making (Lempert 
Marchauet al., 2019) 

Info-gap (Ben-HaimY.M., 
Nikolaides, 2005) 

2005 Focus on 
robustness 

Strength of knowledge ( 
Aven and Kristensen, 2019;  
Bjørnsen et al., 2019;  
Askeland et al., 2017; Aven, 
2016b) 

2017 Assumption 
testing 

Exploratory Model Analysis 
(Bankes, 1993) 

2003 Scenario 
exploration  

J.E. Cadena et al.                                                                                                                                                                                                                               



Journal of Loss Prevention in the Process Industries 68 (2020) 104288

5

in which the robustness is defined as an uncertainty horizon, i.e. a 
measure of how much uncertainty the system can resist. Such an 
approach helps engineers define satisfying performance requirements 
and allowing for variability in expected loads to the system. 

The info-gap approach applied to structural problems with uncertain 
load variables (Takewaki and Ben-Haim, 2005) is in line with the per-
formance assessment done by Cadena et al. (2019) despite not specifying 
a robustness measure. In the latter, the assessment is accompanied by a 
judgment of its trustworthiness instead of a quantification of the 
robustness as in info-gap or of uncertainty as a probability. This trust-
worthiness judgment is done based on the approach formulated by Aven 
(Aven and Kristensen, 2019; Bjørnsen et al., 2019; Askeland et al., 2017; 
Aven, 2016b) in which all quantities and associated assumptions within 
the model used are judged according to their strength of knowledge and 
output sensitivity. Exploratory Modelling Analysis (EMA) is another 
alternative that has been formulated under the Robust Decision Making 
framework. EMA makes use of computational power to run a large set of 
potential realities (scenarios) and then provide the information as a 
whole for stakeholder to support their decision. 

2.1. A note on inputs 

The nature of the input is key to any risk assessment, and also to 
uncertainty analysis. The approaches considered in this work do not 
specify a particular type of input. In general, inputs can be classified as 
quantitative or qualitative. The former can be used in risk assessments if 
qualitative criteria are used to define the variables of risk, e.g. proba-
bility and likelihood. Qualitative inputs can also be transformed into the 
latter using fuzzy numbers, which are variables with a specific formal-
ized language. 

Fuzzy numbers can be used as inputs for most of the approaches 
presented in this work and have the added value of expressing the 
membership function of a quantity of interest within a specified range. 
This allows engineers to describe their knowledge about the quantity as 
a function of degree of belief, rather than as a crisp function. A review of 
the use of fuzzy numbers in safety engineering is presented by Kabir and 
Papadopolous (Kabir and Papadopoulos, 2018), while Shi (2009) pre-
sents a building fire risk analysis using fuzzy numbers. Fuzzy numbers 
also reflect the need for engineers to use additional information rather 
than just a crisp value. 

Numeral Unit Spread Assessment Pedigree (NUSAP) (Funtowicz and 
Ravetz, 1990) constitute another type of input. NUSAP is a notational 
scheme that presents a numerical result along with information about 
the measurement and systematic error (Spread and Assessment, 
respectively) and the quality of what the number represents (Pedigree). 
NUSAP aims to provide decision makers with a more complete image of 
what a numerical result entails by taking into account its uncertainty as 
presented by Ellis et al. (2000). Given that pedigrees are subjectively 
defined categories, this constitutes an issue in propagating uncertainty 
and favor approaches such as fuzzy numbers or the recent alternative 
proposed by Zadeh (2011), Z-numbers. 

In this work, none of these notations are prioritized, as we 
acknowledge that the type of number used depends on the knowledge 
and confidence of the analyst in defining a variable. For the rest of this 
work, typical quantitative inputs will be considered, but the previous 
referenced work present applications of the uncertainty analysis ap-
proaches using different inputs. 

2.2. Probabilistic 

The idea of having a number that expresses how likely an event is to 
happen is very powerful and is in line with the intuitive meaning of 
likelihood (Young, 2018). The probabilistic alternative has as main 
characteristic that the possible values of the variable of interest X are 
assumed independent and associated with random variation. By speci-
fying the evidence theory framework, more precise estimates can be 

obtained, but less information is provided. In particular, the information 
associated to knowledge -and lack of it-is not explicitly presented in the 
estimates and a sense of completeness of knowledge is associated to the 
estimates; this is not always the case though. There are three distinct 
alternatives for a probability analysis: classical, frequentist and subjec-
tive. The former is analytical and evaluates the expected result against 
all possible results, e.g. rolling a dice, usually of little use in risk as-
sessments. However, in fire risk assessments there are variables for 
which a uniform probability distribution is assumed, i.e. classical 
approach. 

Frequentist alternative is suited to problems where a fully analytical 
approach is not possible, introducing random variables which can be 
probabilistically analyzed. This approach usually begins with recorded 
data that represents the behavior of the system to later analyze it and 
estimate future states of the system. This is done through logical con-
structions and random sampling. An example of the databases used in 
frequentist approaches is loss of containment databases such as (E and 
Offshore Hydrocarbon, 2001) in which oil & gas operators record and 
submit leaks and their main characteristics. Another relevant example of 
frequentist probabilistic analysis is the one carried out for the Cassini 
spaceship, where the aim was obtaining the probability of having a 
failure during the spacecraft’s flight and then a reentry to Earth (Frank, 
2000; Laboratory, 1997). This is a case of interest given that the hazard 
related to the reentry to Earth was not the impact (with most materials 
melting in reentry) but the nuclear fuel. The report that describes the 
calculation (Laboratory, 1997) presents a detailed accounting of the 
diverse possibilities explored for a reentry to earth, which could only 
happen under very specific conditions which were deemed “highly un-
likely”. In the Cassini case the assumptions are clear and explicit, being 
supported by the engineers to show they are reliable. Almost two de-
cades ago Apostolakis (1991) presented the issue of focusing on 
obtaining estimates of the parameters that define a probability distri-
bution which allows to gain insight to support a decision and claimed 
that such practice should be avoided. Not long ago Young (2018) 
advocated for the same argument when analyzing research results 
product of a large number of regressions. Apostolakis concluded that 
researchers should not only report the researchers’ preferred statistics 
and regression, but the whole body of models that they used. 

Subjective probabilities constitute a third approach, as mathemati-
cally structured by Savage (1972) and also known as the Bayesian 
approach. This expresses the degree of belief towards a particular event 
from a set of states of the system, which can be ‘updated’ as new ob-
servations are obtained. Cooke (Cooke and Bedford, 2001) describes 
that this intuitive approach allows for ‘rational decision’ and the 
incorporation new evidence, resulting in increased knowledge and 
improved probability estimations. In the context of fire risk assessments, 
the possibility of achieving such observations is not guaranteed and 
seldom the case. 

Consider the design and construction of a mid-rise residential 
building which is intended for a life of no less than 40 years. Further-
more, consider that the architectural characteristics of this building do 
not match the boundaries of a prescriptive code and therefore a fire risk 
assessment must be done to explicitly demonstrate its safety level. Such 
assessment will depend on a large amount of variable from which in-
formation is limited and the best approach to account for them is the use 
of assumptions, as presented by Aven (Aven and Kristensen, 2019). The 
updating of risk assessments (and validation of their assumptions) 
through the life-cycle of a system is addressed by Hackitt (2018), who 
proposes a safety case approach for the approval process of high-risk 
buildings in the UK. In a chemical process plants requiring safety 
cases, dedicated stakeholders continuously works on the collection of 
new observations to optimize the operation and update the risk picture. 
This is not the case for most occupied buildings. The previous highlight 
that probabilistic –particularly Bayesian estimates-risk assessments in 
fire safety should not be the only option to express uncertainty. 

Bayesian networks (BN) allow decomposing complex dependencies 
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between multiple variables, representing them graphically through 
nodes and links. BN are based in Bayes theorem, using known proba-
bilities of basic elements to estimate the conditional probabilities of 
dependent elements. This is a powerful use of known probabilities to 
model unknown probabilities in complex systems such as estimating the 
dynamic operational risk assessment in a chemical process setting 
(Barua et al., 2016) or estimating the risk of human fatality in building 
fires (Hanea and Ale, 2009). As this method is based on conditional 
probability theory, its weaknesses are similar. Probability distributions 
for the random variables in the basic nodes are required, which can 
introduce engineers ’ biases or assumptions that do not correspond to 
the system’s reality; their effect can only be accounted for if they are 
made explicit. 

2.3. P-boxes 

This approach is the result of using probability theory and interval 
analysis (Traub, 1967) to produce probability boxes (P-boxes) which 
represent a class of distributions, instead of a single one. The class is a 
representation of the associated epistemic uncertainty and the vari-
ability (aleatory uncertainty). In typical probabilistic analysis, a variable 
of interest can be represented by a random variable with a given prob-
ability distribution function and its related statistics, but if this function 
is unknown, the interval approach can be applied to its distribution. By 
doing so the variable is circumscribed within upper and lower bound-
aries. Each boundary is also a probability distribution function and these 
can have a distinct shape, e.g. Exponential, or not, i.e. non-parametric. 
Whether the shape is well defined or not is a function of the available 
information to the engineers. This information is also the key of the 
simple but effective P-box approach, as well defined bounds for the 
variables of interest must be known in order to analytically obtain the 
upper and lower boundaries. 

For a variable of interest X with known minimum and maximum 
bounds, e.g. (Jaime and Cadena, 2013; Van Coile et al., 2019), the 
non-parametric p-box would be the one in Fig. 3a, while if information 
about X allows assuming it distributes normally with bound on its mean 
and standard deviation, e.g. X = [1, 1.75], σ = [0.1, 0.3] the result is as 
in Fig. 3b. This evidently provides the probabilistic approach with a 
higher flexibility, particularly when there is no confidence in point value 
estimates and the engineers prefer to express uncertainty as an interval. 

2.4. Evidence theory 

This first approach, based on the Dempster-Shafer theory, allows 

using different sources of evidence to support an estimate of the degree 
of belief. In the context of risk assessment this degree of belief is asso-
ciated to the true value of a quantity of interest (X). The uncertainty -or 
simply lack of knowledge-regarding the true value of this variable of 
interest is typically characterized in a probabilistic manner, as presented 
in section 2.2. In evidence theory the possible events -or values of the 
variable of interest- (x1, x2, …, xi) are not constrained to single events, 
but to all possible subsets of events. Each of this possible events provide 
the analyst with a larger range of options to not only define a degree of 
belief of a single value, e.g. x3, but to define the degree of uncertainty 
corresponding to combinations, e.g. (x1, x2). 

The previous is a generalization of probability theory, where the 
latter have a probability of zero, i.e. P(X = x1, x2) = 0. Evidence theory 
provides a platform to gauge the strength of evidence by defining a basic 
probability assessment or masses for each subset, e.g. m(x1 ∪ x2) = 0.1. 
These masses are either obtained through expert elicitation or using the 
available data, allowing to define the belief and plausibility measures 
(Bel(X), Pl(X)). These measures can be interpreted as upper and lower 
boundaries of the degree of belief, which supports making a prediction 
between to possible values x1, x2 given that Bel(x1) is greater than the 
belief of all other possibilities. 

Given the generalized form of this approach, it can be employed to 
process both probabilistic inputs and basic probability masses, as pre-
sented by Du (2006) for the structural analysis of a machine. This pro-
vides an additional layer of information denoting lack of certainty 
regarding singleton values, which can be mapped into the same space in 
which probabilities are represented. 

2.5. Possibility theory 

Possibility theory is closely related to fuzzy variables, as these allow 
translating qualitative expert criteria into numbers. As described by 
Dell’Orco (Dell’Orco and Kikuchi, 2004) and Darby (2004), possibility 
theory with its necessity and possibility measures constitute the appli-
cation of Dempster-Shafer theory to a problem in which the possible sets 
of the variables of interest are nested, and therefore non-conflicting. This 
means that any possibility for the variable, includes or is included in 
another subset. 

This alternative provides engineers with an additional tool to express 
uncertainty in a case in which no conflicting evidence exist, but not 
enough evidence is available to have completely exclusive and inde-
pendent sets. The latter is the special case of probability. This has been 
found to be the case for a large set of studies in the field of process safety, 
in which possibility theory is used to compute the risk assessment of 

Fig. 3. a) P-box for known bounds of X, b) P-box assuming a normally distributed X with known bound on mean and standard deviation.  
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different experts for a set of scenarios. 
Ouazari (Ouazraoui et al., 2013) presents the application to the 

Layers of Protection Analysis (LOPA), while Mandal (Mandal and Maiti, 
2014) applies it to the Failure Modes and Effects Analysis (FMEA), both 
versatile and largely used process safety analyses. These examples show 
both the additional information conveyed by the results, in which risk is 
presented as a fuzzy number rather than a point-estimate (despite this 
can be is provided through different de-fuzzification methods). In these 
examples the outcomes reflect the possibility and necessity measures, 
analogous to the previously presented belief and plausibility of belief 
theory. 

2.6. Info-gap 

The approaches presented up to now rely on the concept of likeli-
hood, degree of belief or directly to the probability. In these, the un-
certainty of the analyses is provided within the output as in the case of 
evidence measures. Info-gap is an alternative approach which was first 
proposed by Ben-Haim (Ben-HaimY.M., Nikolaides, 2005). Info-gap’s 
name points to the fact that there are information gaps within our 
models and therefore uncertainties that we need to manage, even in the 
extreme case in which the uncertainty level is so high that we cannot use 
one of the previously presented approaches. 

Hayes (2011) describes info-gap as one of the main approaches to 
deal with uncertainty and highlights its non-probabilistic nature. This 
approach analyzes uncertainty from the perspective of how much un-
certainty can the system handle, as a function of variations in the inputs 
and the parameters of the models used. This implies a considerable 
knowledge of the system and a model or set of models that allow 
obtaining an initial estimate, which in typical design approaches is used 
to obtain an optimized solution. Such solution is supported by a set of 
assumptions that in reality might not hold which if why info-gap pro-
vides a framework to test the resistance of the system to changes in 
them. 

Ben-Haim (2005) exemplifies info-gap as a framework to establish a 
safety factor on the results of the system. This non-probabilistic 
approach -despite its requirement for considerable high levels of 
knowledge-provides a different approach to uncertainty. Such approach 
provides a solution that acknowledges the lack of knowledge and the 
impact this has on the system’s response, instead of a frequency, prob-
ability or degree of belief. 

2.7. Strength of knowledge 

The idea of designing a system that involves uncertainty without 
addressing it as a probabilistic problem was presented with info-gap, but 
this is not the only approach. Strength of knowledge is another one of 
these approaches. It aims at identifying and managing assumptions and 
limitation used in an analysis and which could significantly affect its 
outcomes. Based on the studies published by its authors, Strength of 
Knowledge can be applied in different manners and it is flexible. In fact, 
it can be seen as a very general idea which is then tailored to suit the 
specific features of each problem, as presented in (Goerlandt and 
Reniers, 2017; Flage and Aven, 2018; Aven, 2011b, 2016b, 2017). 

In a typical risk assessment -either in chemical process or fire safety- 
assumptions usually are found everywhere, beginning with the infor-
mation defining the system, then the construction of the scenarios, the 
models to estimate risk indices and to evaluate them. The general idea of 
Strength of Knowledge is to identify key assumptions made within a risk 
assessment and then judge whether they need to be addressed before 
communicating the results to the stakeholders. To judge the strength of 
knowledge a set of ordinal categories of qualitative or semi-quantitative 
nature are defined (e.g. low/medium/high) with their corresponding 
criteria, which are then used to judge each assumption. 

The supporting knowledge for an assumption is not the only aspect 
that can impact the outcomes, as the sensitivity of these to a variation in 

the inputs or in the assumption is also key. This aspect is also judged for 
each assumption using another set of ordinal categories, which can be 
defined with purely quantitative criteria based on sensitivity ranges on 
the outputs. Qualitative criteria can also be used for assumptions that 
cannot be quantitatively assessed, requiring a competent expert 
formulating them and overseeing the judgment. The results can help 
identify a narrow range of potentially problematic assumptions 
requiring treatment. 

This treatment can be part of the risk assessment itself, such as 
further probabilistic analysis or the use of imprecise probabilities (e.g. 
evidence theory). If the resources are exhausted an at the end of the 
assessment there are still critical assumptions, these can be part of the 
decision making process and lead to establishing monitoring, control 
and mitigation measures that account for them not holding during the 
operation of the system. 

2.8. Exploratory Model Analysis 

Acknowledging the presence of deep uncertainties at different levels 
within and around a system, there is a need for uncertainty analysis 
alternatives that move further away from prediction and grow closer to 
the concept of robustness already introduced with the info-gap alter-
native. Exploratory Model Analysis presents a framework in which 
models are no longer used as the tool to find the exact answer or in the 
case of risk assessments, a failure prediction. Instead, models are 
recognized as the flawed constructions that they are and this is instead 
used to explore a wide range of plausible worlds, i.e. scenarios, and 
assess the response to particular decisions made by the stakeholders. In a 
risk assessment this means exploring how a large set of possible sce-
narios would react to different risk management strategies and 
decisions. 

EMA can remove the mentioned burden on engineers and offer 
simpler approach to make the best out of the available models. Based on 
the work by Kwakkel (2017), EMA can be described as in Fig. 4 where 
the possible worlds are tested using different policies based on a model 
for the system. This constitutes a single computational experiment and 
each variation in the scenarios or the policy used generates different 
outcomes of interest. This differs from a typical engineering analysis in 
that all uncertainty sources are explicitly considered as part of the sce-
nario, and allows analyzing the relation between these and the outcomes 
to identify those that produce higher sensitivity or breakpoints. Such 
process is the vulnerability analysis, which is complemented by the 
robustness evaluation of the outcomes that comes close to the robustness 
concept of the info-gap theory. 

EMA can be interpreted as an intelligent exploration of unknown 
realities using imperfect models, from which a prediction is impossible. 
The value of this approach is that it allows providing the key stake-
holders with a comprehensive set of results that identify a policy that 
results in successful outcomes based on a given set of conditions within 
the scenarios. This is clearly and brilliantly exemplified by the imple-
mentation of EMA for the policy selection of water management of a 
river in the United States (Groves et al., 2013). Given the simplicity of 
the compartment fire example EMA is not implemented as it would 
require increasing the complexity of the system to introduce the possi-
bility of testing different risk management strategies. 

3. Case study: compartment fire 

To exemplify the differences between the presented alternatives a 
typical simple FSE example to illustrate them; both possibility theory 
and EMA are excluded. The former is excluded on the basis of its reliance 
on the additional fuzzy input from multiple practitioners, while the 
former is excluded as the simple nature of the example used does not 
support a wide range exploration as EMA intent. 

The example used is the calculation of the descent of the smoke layer 
in a simple rectangular compartment of length 7 m, width 5 m and 
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height 3 m (total floor area 35 m2) with a door of width 1.5 m and height 
2 m. The compartment is of residential nature and expected to have a 
representative fuel load of polyurethane (PU) which is initially taken as 
600 MJ/m2 (Ocran, 2012) with a heat release rate of 400 kW/m2 and a 
medium rate of fire growth (α = 0.0117 kW/s2). Using the set of equa-
tions of Annex 1 based on energy and mass conservation, as well as some 
key experimental correlations, a suitable model is constructed to 
perform the calculation. The model is applicable for pre-flashover con-
ditions and limits the fire size to 1 MW, which is one of the assumptions 
also registered in Annex 1 and discussed through the next sections. With 
a critical height established at 2 m, the key output of the model is the 
time for the smoke layer to reach this level. 

Assuming the previous input values without any uncertainty and 
applying them to the model, the result obtained is 58 s. Such an output is 
key for available vs required egress time calculations in performance- 
based analysis and it is discussed related to the outcome provided by 
each approach and its advantages and disadvantages. 

3.1. Probabilistic 

To illustrate a simple application of the probabilistic approach, we 
use the compartment fire example. Not enough information exists to 
define the exact value of the fire growth rate, which can range from a 
slow growing fire (α = 0.00293 kW/s2) to an ultra-fast one (α = 0.1874 
kW/s2) (Bwalya et al., 2003). This leads to the engineers to formulate 
alpha as a continuous random variable, which according to Nilsson 
(Nilsson and Van Hees, 2014) distributes as a log-normal function with a 
mean of 0.01924 kW/s2 and a specified 99.5th percentile of 0.219 
kW/s2, which are the result of analyzing 2965 fires. By using simple 
add-on to Microsoft Office Excel known as SIPmath (Sam and Savage, 
2012), a Monte Carlo simulation is performed in order to sample the 
distribution an obtain ten thousand input fires, which are described by 
Fig. 5. 

The obtained samples are the input for the compartment fire model 
in which the time for the smoke layer reaching 2 m can be calculated, 
yielding the results presented in Fig. 6. From this output it is possible to 
find obtain the time for untenable conditions and therefore the available 
time for egress in the compartment, which for a 50th percentile of 53 s 
and a 99th percentile close to 40 s. This indicates that there are fire 
scenarios in which extreme (but not impossible) scenarios can yield 18 s 
less than the previous output which did not account for uncertainty. 

Likewise, there are scenarios in which the time is as large as 89 s, which 
if taken into account could lead to underestimate the risk. 

3.2. P-boxes 

To construct the P-boxes for the compartment fire example, a range 
of distributions replaces a single probability distribution. This allows 
incorporating uncertainty on the distribution parameters, which for the 

Fig. 4. EMA process and main components based on (Kwakkel, 2017).  

Fig. 5. Fire growth alphas sampled for input of the probabilistic analysis.  

Fig. 6. Resulting distribution for descent time.  
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case of the compartment fire and the time for the smoke layer to descend 
to 2 m height are given by the 50th and 99.5th percentiles of the 
lognormal distribution that described the fire growth coefficient, alpha. 

Fig. 7 presents the resulting P-box having Po, the previous single 
distribution, P1 a and P2. The new distributions respond to the analyst 
considering different conditions than the ones initially introduced in the 
previous section. P1 rules out possible arson in the compartment, which 
leads to a lognormal distribution with 50th and 99.5th percentiles of 
0.011 kW/s2 and 0.105 kW/s2. P2 is a pessimist view of the analyst, 
based on the fact that the data used for the previous distributions do not 
match exactly the nature of the compartment. 

In order to present a more onerous scenario, the parameters of Po are 
doubled, resulting in a lognormal distribution with 50th and 99.5th 
percentiles of 0.0385 kW/s2 and 0.438 kW/s2. Here, specifying a range 
becomes harder, as now there are three distributions for which the re-
sults could be reported. Using the results of Fig. 7, the original result of 
58 s has a 45% probability in the pessimistic P2 distribution, which could 
lead analyst to further hesitate in using such result. This of course 
translates into confidence boundaries and is an ideal tool to better un-
derstand the uncertainty of the calculation. With occupants’ walking 
speed potentially under 1 m/s given they are sleeping or have a 
disability, the result of the P-box could help identify potential im-
provements to reduce egress path length. 

The disadvantage for the use of such results is that their communi-
cation can mislead stakeholders in believing that the worst possible 
conditions are covered, which might not be the case depending on the 
engineers’ trustworthiness on their assumptions such as the pessimistic 
parameters of P2. As additional data becomes available such as that 
presented by Hopkin et al. (2019), the possibilities for incorporating 
different conditions further enable the use of P-boxes. 

3.3. Evidence theory 

Back to the compartment fire example, the evidence theory is applied 
to conflicting information regarding the fire growth rate. Two fire en-
gineers are unsure of the correct rate to use in the calculation as the 
compartment’s occupation might change through time. This provides a 
considerable large range of possible fire growth rates, leading to the use 
of probability masses for the slow (S), medium (m) and fast (F) rates. The 
frame of discernment is therefore θ = {S, M, F} and a power set: 2θ =

{Ø,  S,  M,  F, (S,  M), (S, F), (M, F), (S,  M,  F)}. For these eight focal 
elements, the two experts are asked to provide the basic probability 
assignments with m(Ø) = 0, which is presented in Fig. 8. 

Disparity between the experts in their opinion is evident, which is 
common in the context of risk assessments (Yildiz et al., 2014) and could 
result in enhancement of the results (Bergmans et al., 2009). Particu-
larly, discrepancies might be found between third party reviewers and 
the opinion of the fire services, which might want the consideration of 
more onerous fire scenarios. By applying Dempster’s rule of 

combination, these two independent structures can be combined and the 
resulting structure used to estimate the quantity of interest, i.e. time for 
the smoke layer to descend to 2 m height. 

The results for the resulting structure for the quantity of interest are 
presented in Fig. 9. The results indicate that this time could be in the 
range between 41 and 17 s, with the former having a 40% likelihood and 
the range between 23 and 17 s one of 24%. Although this information -as 
with P-box analysis-does not provide a point-value answer, it enables 
combining evidence provided by multiple experts and obtaining a sim-
ple but clear result which could support the need to explore further 
design fires. 

One possible application of the Dempster-Shafer theory is using 
structures such as those in Fig. 8 to construct probabilistic distributions 
and then assessing the belief and plausibility of a whole family of these. 
Such application can again be applied to our example, this time moving 
away from different engineers providing evidence, to a single one which 
provides a belief structure for the parameters of the lognormal proba-
bilistic distribution considered in sections 2.2 and 2.3. The analyst de-
fines the ranges for the parameters of the distribution as presented in 
Table 5, which are computed using the IP Toolbox add on for Matlab and 
yields the results of Fig. 10. This graph provides the result for the belief 
and plausibility measures for the evidence provided and it is compared 
to the possible P-box resulting from using the extreme values of the 
ranges of Table 5. 

The comparison shows that indeed the evidence measurements 
provide additional insight to the possible ranges in which the ‘real’ 
distribution might be found, which are much narrower than those pro-
vided by the P-boxes. Using these results, the time for the smoke layer to 
reach 2 m height can be estimated for the 50th and 95th percentiles, 
yielding the ranges [25 s, 32 s] and [22 s, 25 s], respectively. It must be 
noted that in this example the conflicting information is minimum, with 
both experts not assigning a basic probability assignment to some sub-
sets such as [S, F]. However, Dempster-Shafer theory does allow for the 
inclusion of this type of conflicting evidence, which could be useful for 
some fire safety studies where expert criteria largely differ (Dell’Orco 
and Kikuchi, 2004). 

3.4. Info-gap 

Ferson and Tucker (2008) provide an understanding on how to 
implement the info-gap approach using probability bounds, i.e. P-boxes. 
Info-gap is implemented following the safety factor concept. Specif-
ically, four alternatives are presented and info-gap theory does not 
prescribe any particular one, as the analyst must decide which approach 
better fits each system. The approaches presented by Ferson and Tucker 
are practical and require a robustness measure (named alpha, for clarity 
referred here as αR) which is applied for the inputs of the system and 
allow identifying the level at which the system’s response is no longer 
acceptable. This measure is applied to confidence bounds, e.g. 
Kolmogorov-Smirnov for empirical distributions, proportional bounds, 
distribution shift and a validation metric. 

The previous ideas are in line with that of Cadena (Cadena et al., 
2019) when assessing fire risk through the concept of maximum 
allowable damage in a building for life safety, as an alternative to typical 
probabilistic approaches. These approaches are applied to the fire 
growth rate distribution presented in section 2.2 from the compartment 
fire example. First, an exponential function is defined which increases 
the P-boxes proportionally to the value of the fire growth rate (Fig. 11), 
followed by multiplying αR and the critical value of the 
Kolmogorov-Smirnov test to the nominal distribution, both for a confi-
dence of 1% and 20% (Fig. 12); the latter provides a wider P-box. 

Applying the αR to the nominal distribution original range and 
generates a simple but effective set of inputs, given that a fire growth 
step is established (a value of 0.01 kW/s2 is selected). With this simple 
application of the robustness measure, the time for the smoke layer to 
reach 2 m can be tested (Fig. 13) until it reaches a critical value, defined Fig. 7. P-box for the descend of the smoke layer height.  
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as the time it takes for an occupant to egress from the room. Based on the 
maximum path distance of 12 m within the room and a walking speed of 
0.7 m/s, this critical time is 16 s. A value of αR > 17 is required for the 
fire growth rate to reach ultra-fast (~0.19 kW/s2) and yield a time of 16 
s for the smoke layer to descend to 2 m height. As the value of αR in-
creases, so does the confidence on the result, which goes from 5% for αR 
= 16.95–90% for αR = 17.17 (Fig. 14). 

This outcome would provide the designers of the building with an 
understanding of the robustness that can be expected from the 
compartment, which can then be extrapolated to the whole building. 
Although the result for robustness is accompanied by a notion of like-
lihood or chance, it is important to understand that info-gap analysis 
mainly focuses on the potential for the system to resist a load, rather 
than on the likelihood of said load actually occurring. 

The application of info-gap theory and the robustness function in this 
example is simplified to provide the reader with a clear understanding of 
the potential for its use in fire safety. As complexity increases, info-gap 
robustness measurement allows evaluating two competing design al-
ternatives which could imply significantly different trade-off in a fire 
safety strategy within a building. Such an evaluation is objective and is 

Fig. 8. Dempster-Shafer structures for fire growth rate based on two experts’ opinion.  

Fig. 9. Dempster-Shafer structure resulting for the time to reach 2 m based on 
two experts input. 

Table 5 
Evidence for constructing the distribution of the fire growth rate.  

μ (kW/s2) σ (kW/s2) Basic probability assignment 

[0.01, 0.03] [0.03, 0.04] 0.9 
[0.03, 0.05] [0.04, 0.1] 0.1  

Fig. 10. Belief and plausibility measures for the lognormal distribution with 
uncertain parameters. 

Fig. 11. (Left) Info-gap concept applied to P-boxes through proportional 
uncertainty. 
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not based on the likelihood of an unknown event or condition, but on the 
amount of uncertainty that the system can tolerate and still perform 
adequately. 

3.5. Strength of knowledge (SoK) 

This alternative is applied to the compartment fire example, which 
begins by defining the levels and criteria for the strength of knowledge 
and output sensitivity. The former is adapted from previous work, as 
strength of knowledge criteria is largely compatible with the features of 
this example. For output sensitivity, the criteria are defined based on the 
variable of interest, i.e. the time for the smoke layer to descend to 2 m 
height, compared to the time required for occupants to egress the 
compartment, which is 16 s based on the calculation of the previous 
section. The criteria for both aspects are presented in Table 6 and are 
applied to judge the list of assumptions within the analysis. The six as-
sumptions and their SoK assessment are presented in Table 7, from 
which a wide range of potential issues are identified with the analysis. 

From the list, all assumptions have the potential to influence the 
result, but those with lowest SoK and highest output sensitivity (OS) can 
be prioritized. This makes assumptions 3, 5 and 6 stand out and require a 
close analysis. Assumption 3 questions the validity of the chosen un- 
tenability criterion selected as a function of smoke height layer. This 
potential issue with the performance criterion itself is treated by 
analyzing the output of the compartment fire model used (Annex I) and 
comparing both criteria. 

Fig. 12. Application of info-gap with Kolmogorov-Smirnov confidence bounds and αR between 1 and 20.  

Fig. 13. Simple application of info-gap to generate fire growth rate P-boxes.  

Fig. 14. Likelihood of time descending to 2 m being less than 16 s; 5% chance 
at a value of αR = 16.95. 

Table 6 
Strength of knowledge and output sensitivity levels and criteria.  

Aspect Level Criteria 

Strength of 
knowledge 

High -Updated references back up the values or 
assumptions 
-Strong and relevant theoretical grounds 
-Subjective knowledge is backed up by theory or 
robust research 

Medium Neither high nor low 
Low -Poor theoretical grounds and references for the 

values and assumptions 
-Low consensus between personnel involved in the 
assessment 
-Knowledge sources are subjective and not validated 

Output 
sensitivity 

High Variations within known ranges yield shorter 
available times than those required 

Medium Neither high nor low 
Low Large –unrealistic- variations required to yield 

shorter available times than those required  
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The outcomes of the comparison are provided in Fig. 15, showing 
that smoke height layer is a more conservative criterion. Based on this 
result, the SoK and OS are assigned new values (High, Low) and is no 
longer a pressing concern for the output of the analysis. The remaining 
two assumptions, No. 5 and 6, point towards unreliable inputs that can 
be addressed in a simple and effective manner. Assumption 5 points out 
that no detection, notification and pre-movement times are considered 
for the value of 16 s representing the required safe egress time. A pre- 
movement time that cannot be exactly pre-defined. This means that 
both assumptions remain unchanged and constitute an important source 
of uncertainty which can increase the previously calculated 16 s, to 
times of 46 s or more (using a pre-movement time of 30 s based on the 
SFPE Handbook data (Gwynne et al., 2016)). 

As pre-movement time increases due to lack of adequate means of 
notification or lack of understanding of the occupants due to low fa-
miliarity, the system reaches an unacceptable performance with lower 
fire growth rates. This evidently echoes the robustness approach of the 
info-gap theory, but also implies a much simpler course of action. 
Despite the lack of quantification, here it is easy to identify it is essential 
to ensure proper notification and a delivery of clear instructions to the 

occupants in order to maintain the system’s performance. 

4. Alternatives evaluation 

The previous section presented a description of the main uncertainty 
analysis options, providing and objective and brief description. In this 
section an analysis of these alternatives is provided, which aims at 
helping risk analysis to select one of them according to their needs. To 
conduct the analysis, the Design Science Research Methodology (DSRM) 
(Peffers et al., 2007) is used with a modification. 

The original DSRM includes six sequential steps in which a problem 
is identified, objectives for a solution are defined and an artifact is 
designed, demonstrated and evaluated. The last step is communicating 
the results of the process and the advantages of the artifact. In this work 
we don’t produce an artifact, but evaluate existing artifacts that help 
describing uncertainty and therefore better understand risk. Based on 
the previous, the design and demonstration steps are omitted and 
Table 8 shows the summary of the modified DSRM. 

Based on the proposed DSRM, this section addresses the evaluation 
of alternatives, for which a hierarchical structure is proposed following 
Prat’s guidelines (Prat et al., 2014). The two dimensions selected for 
evaluation are suitability and effectiveness in the context of a fire risk 
assessment. These dimensions are broken down into evaluation criteria 
and sub criteria as shown in Fig. 16. The first dimension is suitability, 
which is assessed by evaluating whether (Fig. 16) the alternative pro-
vides significant advantages and insignificant limitations. The second 
dimension is effectiveness, evaluated based on the ease of imple-
mentation and of communication of each alternative. The evaluation 
criteria for both dimensions are defined in Table 9. 

Implementing the DSRM to each alternative is done following the 
hierarchy structure and the evaluation criteria previously presented, 
with the results included in Annex II. The information consigned there 
not only presented the evaluation criteria and the level for each one, as 
well as the associated supporting comments, available software and 

Table 7 
List of assumption and SoK judgements.  

Assumption SoK OS Justification 

1. Fuel is polyurethane 
foam 

Medium Medium Representative of the fuel in a 
typical dwelling 

2. Alpha t-squared fire 
growth is valid 

High Medium Despite fire spread and growth 
having a complex behavior, in 
a dwelling this assumption is 
reasonable as long as different 
scenarios are analyzed 

3. Smoke layer height 
criterion is valid 

Low 
(High) 

High 
(Medium) 

Smoke layer temperature 
could reach a critical 
temperature before the smoke 
descends to 2 m height, thus 
yielding untenable conditions 
before it 

4. No ventilation effect 
on smoke layer 
descent 

High High Natural ventilation like doors 
and windows have a soffit 
below 2 m, therefore assuming 
it does not influence the smoke 
layer descent is onerous but 
valid for an initial analysis 

5. Detection, 
notification and pre- 
movement times =
0 s 

Medium High The occupants will react to the 
fire within the compartment 
and immediately evacuate 

6. Walking speed =
0.75 m/s 

Medium High Based on SFPE data (Gwynne 
et al., 2016) this is a slow 
speed, providing an onerous 
scenario for this simple 
analysis  

Fig. 15. Comparison of tenability criteria for a slow (left) and ultra-fast (right) fire growth.  

Table 8 
DSRM steps applied to this work.  

DSRM step Application to this work 

Identify the problem and 
motivate 

Better risk understanding through the use of 
appropriate uncertainty analysis options (Section 1) 

Objectives of a solution Provide a clear picture of the uncertainty analysis 
alternative for fire safety engineers 

Evaluation of alternatives Use of hierarchy structure to perform the evaluation ( 
Fig. 16) 

Demonstration Example of the compartment fire applied to the 
alternatives 

Communication Conclusions and opportunities based on the analysis 
are presented (section 0)  
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implementation examples. 
Once the evaluation is completed for all alternatives, the results can 

be synthesized as presented in Table 10. Notice that the objective of the 
evaluation is to show that none of the alternatives is perfect and all of 
them will imply important challenges for the practitioners implementing 
them either in FSE or other fields. It is also important to notice that the 
challenges that each alternative imply vary greatly in the dimension and 
criteria evaluated, which means that some of them will be better suited 
for some problems. 

First, a general analysis of the results is done, beginning with those of 
the suitability dimension. The previous point of all approaches being 

useful is reflected by the results of the significant advantages criterion, 
where all alternatives partially or fully achieve it. It can be observed that 
a breakpoint exist in the insignificant limitations criterion, which can be 
decisive for practitioners exploring new options. The first four ap-
proaches score a NA for this criterion, as all of them are constructed on 
the basis of strong and often not justifiable assumptions such as 
following a particular shape of probability distribution function or on 
the subjective estimates of experts which can seldom be directly 
validated. 

Although both info-gap and strength of knowledge present some 
important limitations, the basis of these approaches are physical phe-
nomena and the recognition of the incomplete or imperfect knowledge, 
respectively. Such basis provides practitioners with imperfect but useful 
approaches in which uncertainty is explicitly formulated. In the effec-
tiveness dimension, it can be observed that the more recent and alter-
native approaches present larger issues of implementation and 
communication. This can be a major obstacle for their implementation 
in the FSE context, as development of competences to correctly imple-
ment the alternatives might be needed. Communication is also an issue, 
as both the competences of the practitioners’ play a crucial role, as well 
as the willingness of the AHJ and other stakeholders to analyze uncer-
tainty from a non-probabilistic approach. 

With the exception of software limitations that decrease the imple-
mentation ease for possibility theory and the opposite situation for 
probability, the first four approaches are considerably similar. Each one 
offers a unique way to understand the likelihood of an event occurring or 
of a condition existing, but approach the problem in a similar manner 
and therefore also offer similar challenges for practitioners. In partic-
ular, those different to probability have a heavy reliance on subjective 
estimates provided by more than one expert. This is reflected by the 
consistent NA level of achievement for the insignificant limitations cri-
terion by all four approaches, which –again- does not render them 
useless, but impose significant challenges on the practitioners who wish 
to implement them. The mechanical nature of the calculations involved 
in these approaches can lead to believe that the results are trustworthy, 
but each individual problem should be treated on a case-by-case basis 
and the limitations explicitly stated. This treatment of the potential 
sources of uncertainty within the approach itself is seldom done, as the 
mechanical nature of the approaches usually leads practitioner to rely 
only on sensitivity analysis. 

Info-gap and strength of knowledge approaches present two different 
ways to deal with uncertainty without necessarily using a probabilistic 
approach, however they are able to accommodate it. The results of the 
evaluation for the former indicate significant advantages for practi-
tioners as it avoids dealing with uncertainty by focusing on measuring 
the robustness. In the case of a fire risk assessment this translates into 
understanding how much extra loads can a building take under fire 
condition before the objectives are compromised. However, there is not 
a standard way to do it and the available examples -although detailed 
and clear-need to be carefully extrapolated into each individual prob-
lem. Here lie the important limitations for this approach, as a deep 
analytical understanding of the problem is not always available in FSE; 
this triggers the use of methodologies as the one previously mentioned 
based on the concept of the maximum allowable damage (Cadena et al., 
2019). This methodology acknowledges the presence of uncertainty in 
the risk assessment and triggers two simultaneous processes: assessing 
the system’s performance as a function of the safety objectives and 
systematically record and judge the assumptions and limitations 
embedded in inputs, parameters and models employed. 

The purpose of judging assumptions and limitations is not only to 
identify potential weaknesses of the assessment, but to identify actions 
that allow monitoring and controlling them during the life-cycle of the 
system. In the context of the ISO 31000 framework, this would be part of 
the risk treatment plan. The default tool to judge assumptions and 
limitations in the maximum allowable damage methodology is the 
strength of knowledge approach. The evaluation results for this 

Fig. 16. Proposed hierarchy structure for the evaluation of alternatives; based 
on (Prat et al., 2014). 

Table 9 
Evaluation criteria -Suitability dimension.  

Evaluation criteria Level Indicator of level attainment 

Significant advantages Fully 
achieved 
(FA) 

The alternative is advantageous 
relative to the knowledge it provides 
and the potential to act upon it by 
relevant stakeholders. 

Partially 
achieved 
(PA) 

Cannot be judged as FA nor NA 

Not achieved 
(NA) 

Does not provide significant 
advantages or none can be 
associated to this incertitude space 

Insignificant limitations 
(not related to 
implementation) 

Fully 
achieved 
(FA) 

Limitations exits but are clearly 
defined and minor changes in inputs 
or model parameters or assumptions 
do not make the approach inviable 

Partially 
achieved 
(PA) 

Cannot be judged as FA nor NA 

Not achieved 
(NA) 

It is possible to trespass the 
applicability limits with minor 
variations to inputs or changes to 
model parameters or assumptions 

Easy to implement Fully 
achieved 
(FA) 

Clear sequence of steps in which 
data manipulation is clear and 
traceable; guidelines, algorithms 
and software are readily available 

Partially 
achieved 
(PA) 

Cannot be judged as FA nor NA 

Not achieved 
(NA) 

Lengthy and complex process with 
no clear guidelines for 
implementation. Software is not 
available or scarce. 

Easy to communicate Fully 
achieved 
(FA) 

The output’s uncertainty is easy to 
communicate and compare, being 
consistent with the quantity and 
detail level of the inputs. 

Partially 
achieved 
(PA) 

Cannot be judged as FA nor NA 

Not achieved 
(NA) 

The output does not clearly 
represent the uncertainty involved 
and can be inconsistent with the 
nature of the inputs.  
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approach can be regarded as the best of all, as it fully achieves signifi-
cant advantages and ease of communication. The bibliography available 
on this approach show how the simple idea of SoK can be applied in both 
a qualitative or quantitative format and effectively support decision 
making even in situations where knowledge is recognized to be 
incomplete or imperfect; this represents a significant tool for fire risk 
assessments, where much is known but even more assumed. The chal-
lenges of this approach lie on the need to properly setting it up in a case- 
by-case basis and with the use of categories that can evoke the same 
issues of constructing a risk analysis matrix (Duijm, 2015). 

In the suitability dimension, only EMA fully achieves the significant 
advantages criteria given its explicit recognition of deep uncertainty and 
the treatment of a massive universe of possibilities in order to inform 
decision-makers. An approach like EMA and others belonging to Robust 
Decision Making (RDM) explore a wide range of possible futures based 
on a large scale exploration of variations of both conditions and solu-
tions and both the theoretical construction of these futures and the 
complex relationships between variables involve represent a significant 
limitation. Even when implementation (rated PA) is supported by 
machine-learning or artificial intelligence, the complexity of these al-
gorithms can be such to not allow traceability of the results or exploring 
the relationships between key variables. Furthermore, EMA does not 
fully achieve the criteria for effectiveness, as its implementation is still 
limited to complex problems which can be well characterized and 
populated with significant background information. Communicating 
EMA’s outputs also poses a challenge, particularly for stakeholders used 
to a quantitative answer in the form of probabilities or frequencies. This 
approach can be considered at the extreme end of the possibilities to 
analyze uncertainty in fire safety risk assessments, and could be a 
powerful tool to assess the potential impact of fire safety policy changes 
such as proposed bans on specific materials. 

5. Discussion on the practitioners’ perspective 

5.1. Discussion from the practitioners’ perspective 

As previously stated, the aim of the paper is to supply practitioners 
with a picture of the uncertainty analysis approaches and their evalua-
tion based on ease of implementation/communication. In order to gauge 
and discuss the impact of the alternatives analysis an interview with two 
risk assessment experts were interviewed. The interviews do not intend 
to provide a statistical representation of the perception of all practi-
tioners, but to incite the debate on key issues and needed changes in the 
role of risk assessments and their outputs in FSE. First the profile of the 
interviewees is presented, followed by the interview results and a brief 
discussion. Interviewee 1 (I1) has a doctorate in chemical engineering in 
the topic of systems theory applied to safety engineering, over 10 years 
of academic carrier in the process safety field and is currently a senior 
health and safety professional at a major oil & gas company. Interviewee 
2 (I2) has a doctorate in civil engineering in the topic of structural fire, 
over 10 years of academic carrier in the FSE field and is currently a 
professor in a worldwide recognized university. Both interviewees were 

consulted due to the trajectories and recognition among peers of their 
contributions to their respective fields. 

First, the interviewees were asked if they consider the probabilistic 
approach the best suited alternative to assess the performance of an 
engineering system, specifically the fire safety of an occupied building. 
I1 pointed out that identifying low probability scenarios is not always 
possible following a probabilistic approach, requiring complementary 
techniques. In particular, I1 drew attention to the outmost need of 
preliminary qualitative risk analysis that focus on identification of sce-
narios that then lead to refined quantitative analysis of prioritized sce-
narios. This is consistent with the approach presented by BS 7974:2019 
(H247974:2019 and Appl, 2019), and differs from a more mechanistic 
approach as proposed by the verification methods (Johnson and Lobel, 
2018). I1 states that following a probabilistic approach or an alternative 
is a decision to be made as a function of the analysis objectives and the 
available resources. He further suggest such a decision needs to be made 
by stakeholders at an early stage of the project and that in particular, the 
probabilistic approach lacks usefulness when the reliability changes in 
the system (also in its sub-systems and elements) are not managed 
through time. I2 answer is that the probabilistic approach is the best 
suited alternative for some systems, as it is the alternative that provides 
the highest resolution, i.e. most insight in the spectrum of possible 
performance of the system in case of fire. Contrasting this, I2 recognizes 
that some systems might only need a site visit from a competent pro-
fessional to effectively account for uncertainties. A key point made by 
both I1 and I2 is that a risk assessment cannot be turned into the 
probabilistic analysis of all involved variables or uncertainties. I2 re-
inforces this mentioning the value of guidance and of prescriptive codes, 
which are applicable –and adequate-for a large range of projects. I2 
states that codes and guidance -particularly in FSE-have the value of 
providing a common benchmark and alternatives to approach different 
problems. This range can be seen as to go from a purely guidance based 
(prescriptive) to depending fully on the competence of the practitioners 
(performance-based). This last point made by I2 poses an interesting 
issue, as both extremes of practice range in FSE (rule-based and per-
formance based) have identified the danger posed by poorly managed 
uncertainties. In the context of chemical process safety, risk assessment 
guidelines point towards the probabilistic approach and the use of 
Paté-Cornell’s (Paté-Cornell, 1996) uncertainty management levels to 
manage uncertainty in a quantitative manner. However, safety engi-
neering presents a wide range of implicit and explicit manners to deal 
with uncertainty (Notarianni et al., 2016) including the way in which 
scenarios are identified, pre-defined rules for systems fitting a taxonomy 
(prescriptive approach), etc. The interviewees agreed on the need for a 
preceding qualitative assessment that guides the probabilistic one, and 
on the fact that using the former is no guarantee that uncertainty is 
adequately accounted for and managed. 

The previous leads to the second question regarding the obstacles of 
implementing the alternatives in practice. I1 states that the alternatives 
constitute a ‘toolbox’, from which a selection must be made early in the 
assessment. This selection is based on three elements: 1) assessment 
objectives as a function of decision-making, 2) available information 

Table 10 
Evaluation summary []. 
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and 3) available resources. Given that these elements are clearly iden-
tified, I1 finds that any obstacle in selecting an alternative will be 
associated to the stakeholders with authorization (approval) power and 
the system users. This is coherent with the difficulties in implementation 
found in the evaluation, which are common to all alternatives and 
require informed stakeholders with the ability to interpret the outputs. 
Furthermore, I1 emphasizes the need to prioritize the uncertainty 
analysis alternatives for each assessment based on an initial qualitative 
analysis. To address the question, I2 states that in FSE the current 
preferred approach to risk assessments is implicit worst credible sce-
narios (deterministic), which is in fact backed up by the analysis of 
Johansson (Johansson et al., 2011) of Australian fire engineering reports 
and presented in a broader international perspective by Bjelland (Bjel-
land and Borg, 2013). Therefore, I2 highlights that practitioners should 
be more aware and willing to communicate about the uncertainties 
involved in deterministic assessments, as well as their limitations. 
However, I2 recognizes that the current construction focus on the end 
goal (i.e. getting a design approved and built) limits the possibility of 
communicating the uncertainties completely and effectively. This is 
consistent with the Shergold-Weir enquiry (Peter Shergold, 2018) in 
Australia and with the Hackitt (2018) enquiry in the UK. The former 
reflects it with several recommendations, including No. 9 and 10 asso-
ciated to the lack of transparency and the need for a code of conduct for 
building surveyors. The latter referred to the issues associated to the 
construction regulatory system failure stating that “the primary moti-
vation is to do things as quickly and cheaply as possible rather than to 
deliver quality homes which are safe for people to live in”. I2 concludes 
that the main obstacle in FSE to implement the presented alternatives 
and better support decision-making is the lack of openness about the 
effects of uncertainties (within risk assessments) on objectives. 

6. Conclusions 

This work has described the need to better understand and employ 
available options for uncertainty analysis in the context of a fire risk 
assessment, starting from the premise that a single approach is not 
enough to tackle current challenges for FSE. Given the variability of 
uncertainty sources and their nature, practitioners cannot force all of 
them into a single analysis alternative, despite the lack of appropriate 
guidelines to do so. The lack of a clear perspective on the available al-
ternatives has been addressed by this work, describing them and 
applying them to a simple compartment fire problem. Applying the 
considered alternatives to a simple fire safety problem the results vary 
significantly and imply supporting different decisions for the compart-
ment. Despite its simplicity, the example illustrates the variability of the 
outputs based on the uncertainty analysis alternative. More importantly, 
no alternative provides the ‘right’ answer, while each one provides 
different pieces of valuable information. 

The advantages and challenges of each alternative in relation to their 
implementation and the outputs they provide for the decision-making 
process were judged following the modified DSRM methodology. 

Using the suitability and effectiveness dimensions, each one of the eight 
alternatives were evaluated in the context of FSE. The results indicate 
–as the case study-that no alternative is the ‘best’ and each one must be 
considered carefully in the context of the assessment being carried out. 
One common challenge is the reliance on mathematical calculations that 
are increasingly complex, requiring competent users capable of handling 
them or a robust software package that aids the calculations. As with any 
tool used in engineering, the use of available software must be done 
within its applicability range and considering the assumptions that the 
tool itself introduces to the calculation. A versatile alternative is found in 
the strength of knowledge, however the calibration of its categories 
could also pose challenges for its implementation, i.e. how to define a 
‘high’ strength of knowledge. 

The work presented aims at widening the perspective of practitioners 
fire safety engineers involved in risk assessment, but capitalizes on the 
knowledge and experience of different disciplines facing the same 
challenges. Recognizing that very distinct disciplines share challenges 
and solutions, create a needed synergy that may build new, more 
trustworthy and effective, risk assessments. This work capitalizes on the 
work done by many others throughout decades and expects to provide 
the basis for future work, in which technically challenging alternatives 
such as EMA can be efficiently implemented to typical problems in 
chemical process and fire safety engineering. 
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Annex I. -Compartment fire model 

The model for the compartment fire begins defining the heat release rate of the burning fuel, which is given by: 

Heat Release Rate= Q̇ = ΔHc • ṁf  

Q̇ is the heat release rate of a material -and this is measured in Watts (W), ΔHc is the ideal heat of combustion of the fuel measured in [J/kg] and ṁf is 
the burning rate measured in [kg/s]. The latter can also be computed as a function of the area by defining is as: 
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ṁf =A • ṁf
′′

where A is the area of the fire and ṁf
′′ is the burning rate per unit area. The fire growth can be extremely complex to model due to solid fuel combustion 

processes. A key -but onerous-simplification is that a fire can grow radially at an exponential rate. This means that the area of the fire can be described 
as a function of a radial fire spread (vs): 

A= πr2 = π(vs • t)2  

where t is the time step. Integrating these three equations the heat release rate can be expressed as a function of a fire growth rate parameter known as 
alpha (α): 

Q̇=

(

ΔHc • π • vs
2 • ṁf

′′

)

• t2 =αt2 

Performing an energy balance based on the heat released by the fire and the heat transferred by radiation to the surroundings (taken as a 30% of the 
total released), the heat feedback into the fire and the heat transferred to the smoke, it can be found that the smoke temperature can be expressed as: 

TS = TA +
Q̇s

ṁACp  

with ṁAthe air entrainment is produced by the fire and the smoke plume, Cp is the specific heat capacity of the smoke, Ts is the temperature of the 
smoke, and TA is the temperature of the ambient air. Based on experimental correlations, the air entrainment can be estimated as: 

ṁA =E
(

gρ2
A

CpTA

)1/3

Q̇1/3H5/3  

with g the gravity of the earth, E the entrainment constant (taken as 0.2), ρAthe air’s density and H the height at which the air entrainment is estimated. 
Assuming that the smoke produced is the same as air is entrained, it is possible to find the height of the smoke layer if its density is known (ρS). To 
estimate it, the ideal gas law is used: 

ρS = ρA
TA

TS 

Using the compartment’s ceiling area and the volume of the smoke layer, its height can be calculated: 

HS =
VS

ACeiling
=

ṁS

/

ρS

ACeiling  

Annex II. -Detailed evaluation of each alternative 

Probabilistic approach.  

Table 11 
Evaluation -Probabilistic approach  

Dimension Criterion Evaluation Supporting comments 

Suitability Significant 
advantages 

FA The main strength of this approach is that it considers a range of possible values for a quantity of interest and distributes 
the probability along it. This allows fitting a distribution that best fits the experimental data and obtaining its parameters, 
which allow for future estimations of the ‘a posteriori’ probability of failure. In practical terms, this approach allows 
experts selecting a range of values associated with different probability of occurrence instead of a single point value. 

Insignificant 
limitations 

NA This approach assumes that the probability of an event can be estimated as the result of infinite similar (equal) trials in 
which conditions remain the same, but this is hardly ever the case in real engineering systems. This largely depends on the 
availability (data set) to determine the distribution that fits the behavior of a quantity of interest. In practice, especially in 
complex systems, this information is seldom available and if so, it might need periodical updating. 
When this approach is used with subjective expert criteria, engineers might introduce uncertainty in the estimations by pre 
selecting a ‘shape’ of the probability distribution based on their judgment instead of using the best data available; this can 
also happen when no data is available and the experts choose a distribution in a subjective manner. 

Effectiveness Easy to implement FA Given required inputs and a clear workflow, the approach is easy to implement. However, this is dependent on having 
technical experts to structure the probabilistic assumptions, as well as competent practitioners to execute the analysis. 

Easy to 
communicate 

PA Outputs of numerical nature can be easily informed to stakeholders as in the case of individual risk indices, e.g. 1 × 10− 6 

fatalities/year; however such indices might not convey all the information associated to the source of probability 
distribution functions or to the assumptions behind their selection. Given that this alternative has been in practice for 
decades, this criterion is judged as partially achieved as it is not ensured that the uncertainty involved is explicitly 
accounted for and communicated. 

Software 
available 

MATLAB (https://www.mathworks.com/products/matlab.html) 
R (https://www.r-project.org/) 
Pelican (https://www.vosesoftware.com/products/pelican/) 
CristalBall (https://www.oracle.com/au/middleware/technologies/crystalball.html) 
SIPmath (https://www.probabilitymanagement.org/sipmath) 

P-boxes. 
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Table 12 
Evaluation -P-box  

Dimension Criterion Evaluation Supporting comments 

Suitability Significant 
advantages 

FA Require fewer assumptions from the possible probability distribution functions that fit elicited data from experts, ranging 
from non-parametric, parametric to bounded parametric p-boxes. The less assumptions, the wider the bounds for the 
resulting p-box. This flexibility provides an alternative to Monte Carlo sampling methods, which require independency 
assumptions and therefore additional assumptions, which for complex systems might not hold. 

Insignificant 
limitations 

NA A p-box analysis requires information on the quartiles or key parameters of the distribution of the variables of interest and 
it does not solve the expert elicitation issues. Furthermore, explaining the difference between a parametric or non- 
parametric p-box and the technical details that define it might be a challenge when communicating it to decision-makers. 

Effectiveness Easy to implement PA Given required inputs and a clear workflow, the approach is easy to implement. However, this is dependent on having 
technical experts to structure the probabilistic assumptions, as well as competent practitioners to execute the analysis. 

Easy to 
communicate 

PA The result of P-boxes -typically a range, as in the example of the compartment fire- can contribute significantly to the 
communication of the knowledge limitations of the key inputs of the analysis, and therefore of the uncertainty involved. 
The margin between the P-box boundaries and the uncertainty it represents can be challenging to communicate to the 
stakeholders, as well as the implications of the upper bound on decision-making. 

Software 
available 

RAMAS Risk Calc 4.0 (http://www.ramas.com/riskcalc), MATLAB, SIPmath (https://www.probabilitymanagement.org/sipmath) 

Evidence theory.  

Table 13 
Evaluation -Evidence theory  

Dimension Criterion Evaluation Supporting comments 

Suitability Significant 
advantages 

PA Evidence theory does not try to describe uncertainty using a measurement, but it does provide a measure of the existing 
evidence that supports a particular subset of possibilities. A key advantage is allowing for non-mutually exclusive (e.g. 
overlapping subsets of a larger fundamental set) to be computed, which is not allowed by classical probability theory. 
Finally, the quantifiable gap between Belief and Plausibility is a measure of the uncertainty, which constitutes a valuable 
tool to evaluate different input sets for fire safety engineering such as the multiple -complex and unknown- design fire 
characteristics. 

Insignificant 
limitations 

NA This theory becomes less useful in cases where evidence is limited and where the assignment of basic probability 
assignments transform into a subjective exercise. As Denœux (Denœux, 2001) explains, “the complexity of aggregating 
pieces of evidence increases exponentially with the number of sources”, which leads to restrictions on the size of the 
problem to be handled. 

Effectiveness Easy to implement PA There are important challenges to implement evidence theory, beginning with the -often-subjective- definition of the 
ranges and basic probability assignments used for the quantities of interest. The combination of multiple inputs and then 
the processing can be challenging if the quantities are considered dependent. This implementation requires a subject 
expert guiding the process and ensuring the desired outcome is obtained, although the availability of tools such as IP 
Toolbox increases the ease of use. 

Easy to 
communicate 

PA As an uncertainty function that maps into the [0, 1] range, the output is easy to communicate. However it presents similar 
challenges to the P-box’s outputs, as it is not a point-value but bounded distributions. Furthermore, the use of the evidence 
measurements (Belief and Plausibility) increases the complexity of the information to be communicated. 

Software 
available 

MATLAB module DSI Toolbox (Auer, A Verified MATLAB Toolbox for the 
Dempster-Shafer Theory) 
IP Toolbox for MATLAB (Philipp Limbourg -https://www.mathworks.com/matlabcentral/fileexchange/9379-imprecise-probability-propagation-toolbox, 
https://www.uni-due.de/informationslogistik/ipptoolbox.php) 
R package ‘EvCombR’ (Alexander Karlsson, 2014) 
R packace ‘evclust’ or Evidential Clustering (Thierry Denoeux, https://cran.r-project.org/web/packages/evclust/index.html) 
IDRISI GIS Analysis in TerrSet (Clark University) 
Orfeo Toolbox, Fusion of Classifications application (https://www.orfeo-toolbox.org/CookBook/Applications/app_FusionOfClassifications.html) 
GRASS GIS program ‘r.dst.combine’ using Dempster’s Rule of Combination (Benjamin Ducke, Gavin Powell, http://svn.osgeo.org/grass/grass-addons/grass6/ds 
t/raster/r.dst.combine/description.html) 

Possibility theory.  

Table 14 
Evaluation -Possibility theory  

Dimension Criterion Evaluation Supporting comments 

Suitability Significant 
advantages 

PA Its output is a range of possible values for a variable of interest, regardless of their probability. This adds a layer of 
information to the risk picture (Guyonnet et al., 2003). 

Insignificant 
limitations 

NA There is the potential of obtaining over conservative solutions, as unlikely values can be found within the output. 
Furthermore, the subsets representing the values of the variable of interest should be nested; if this is not the case or cannot 
be ensured, evidence theory should be considered instead. 

Effectiveness Easy to implement NA There are important challenges to implement possibility theory, beginning with the -often-subjective- definition of the 
fuzzy sets used for the quantities of interest. The combination of multiple inputs and then the processing can be 
challenging depending on the sampling of the fuzzy inputs and also the defuzziphication technique selected. This 
implementation requires a subject expert guiding the process and ensuring the desired outcome is obtained. 

Easy to 
communicate 

PA As in evidence theory, the outputs of possibility theory might be unfamiliar to the stakeholders, specially the possibility 
and necessity measures. 

Software 
available 

PossibleRisk, LEDTools, IP Toolbox for MATLAB 

Info-gap.  
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Table 15 
Evaluation -Info-gap  

Dimension Criterion Evaluation Supporting comments 

Suitability Significant 
advantages 

FA The outcomes of an info-gap analysis provides a quantification of uncertainties that cannot be assessed form a probabilistic 
approach and that are necessary to understand to support decision-making. In the presence of unstructured uncertainties such 
as in the case of fire safety concerns with new materials or assemblies, info-gap theory provides a functional alternative to 
support adequate decision-making. 

Insignificant 
limitations 

PA Most engineering analysis including those of fire safety engineering employ a large amount of models with irreducible -and 
unstructured- uncertainties, both key elements to apply the info-gap approach. Given the flexibility of this alternative, no 
significant limitations are identified except those related to its implementation. 

Effectiveness Easy to implement NA An info-gap analysis requires a detailed understanding of the system, the models involved and the inputs required, as well as an 
understanding of the uncertainty sources. Although these sources can be unstructured and unbounded, the info-gap is 
constructed based on those identified and an optimization scheme is used to estimate the robustness solution. This process can 
be mathematically demanding, requiring technical expertise for its implementation. 

Easy to 
communicate 

PA Despite it does not use probabilities, the results of the robustness functions should be fairly easy to communicate to 
stakeholder, in particular when two or more competing alternatives are compared. The significance of the robustness value can 
present significant challenges when taken out of a comparative analysis. 

Strength of knowledge.  

Table 16 
Evaluation -Strength of Knowledge  

Dimension Criterion Evaluation Supporting comments 

Suitability Significant 
advantages 

FA Adding the additional layer of strength of knowledge into the risk assessment, two same subjective probabilities can be judged 
in a very different way and therefore lead to different decision making. This allows explicitly stating the uncertainty behind the 
assumptions and the expected outcomes in the assessment. A significant advantage of this approach is that it can be used at all 
levels of risk assessment (e.g. ongoing operations, design considerations) and compatible with tools such as QRA or Risk 
Matrices. 

Insignificant 
limitations 

PA Agreement is required to define the criteria for the strength of knowledge ordinal levels, which can be a complicated task when 
the assessment involves personnel with very different point of views or expertise. This constitutes the biggest challenge of the 
alternative, as the criteria can be largely subjective and can diverge in the presence of stakeholders with extremely different 
points of view. 

Effectiveness Easy to implement PA Initially, SoK approach could be considered the easiest approach to account for uncertainty as it relies on a flexible scheme of 
qualitative levels that measure the supporting evidence and knowledge of the engineers. However, its actual implementation 
-as in the adequate use of risk analysis matrices- must be tailored to each system and to the objectives of the analysis. This 
increases the potential for misusing the alternative or requiring considerable additional resources for properly applying it. 

Easy to 
communicate 

FA SoK yields a list of assumptions and limitations and the associated knowledge that supports them or questions them. This not 
only allows for ease of communication, but also constitutes an additional information layer which can help formulate risk 
management actions. 

Exploratory Model Analysis.  

Table 17 
Evaluation -Exploratory Model Analysis  

Dimension Criterion Evaluation Supporting comments 

Suitability Significant 
advantages 

FA EMA is able to explore a vast set of possible scenarios including a large range of variables and variability in conditions. A 
statistical treatment of the resulting scenarios allow identifying key conditions that would make the decision alternatives 
inviable, hence finding robust strategies. Additionally, this methodology intakes new information, leading to adaptive 
strategies. 

Insignificant 
limitations 

PA Detailed knowledge of the system and the internal and external variables that might influence its performance is needed. 
Furthermore, advanced modelling tools and data base management is required in order to host the scenarios discovery and 
its statistical treatment, limiting the range of users for whom this methodology is viable. Not only specific competences in 
the field of computer experiments is required, including potential knowledge and skills of machine-learning and artificial 
intelligence, but a deep knowledge of the structure of the problem is required. The latter refers to the need for competent 
fire engineers to guide the construction process of the computational experiments. This in sum shows significant 
limitations to the methodology. 

Effectiveness Easy to implement PA Depending on the amount of conditions that require exploring and the technique chosen to generate the possible universes, 
the implementation will require more planning and technical resources such as computing power. Given the existence of a 
well characterized model, the EMA Workbench (Kwakkel, 2017) can be used to run it, given that a competent user leads 
the implementation. The latter constitutes the challenge for EMA implementation, as this technique is not typically used 
for fire risk assessments. 

Easy to 
communicate 

NA The ease of communication directly depends on the defined outcomes, as well as the complexity of the model. However, 
the communication is based on the evaluated policies and the scenario sets that yield either successful or unsuccessful 
results. For stakeholders used to probabilistic results, receiving such results could be challenging. 

Software 
available 

R, EMA workbench (TU Delft)  
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