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Abstract
This paper explains how to calibrate a stochastic collocation polynomial againstmarket
option prices directly. The method is first applied to the interpolation of short-maturity
equity option prices in a fully arbitrage-free manner and then to the joint calibration
of the constant maturity swap convexity adjustments with the interest rate swaptions
smile. To conclude, we explore some limitations of the stochastic collocation tech-
nique.

Keywords Stochastic collocation · Implied volatility · Quantitative finance ·
Arbitrage-free · Risk-neutral density

JEL Classification C630 · G170 · G130

1 Introduction

The market provides option prices for a discrete set of strikes and maturities. In order
to price over-the-counter vanilla options with different strikes, or to hedge more com-
plex derivatives with vanilla options, it is useful to have a continuous arbitrage-free
representation of the option prices, or equivalently of their implied volatilities. For
example, the variance swap replication of Carr and Madan consists in integrating a
specific function over a continuum of vanilla put and call option prices (Carr et al 1998;
Carr and Lee 2008). An arbitrage-free representation is also particularly important for
the Dupire local volatility model (Dupire 1994), where arbitrages will translate to a
negative implied variance.

A rudimentary, but popular representation is to interpolate market implied volatili-
tieswith a cubic spline across option strikes. Unfortunately, itmay not be arbitrage-free
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680 F. Le Floc’h, C. W. Oosterlee

as it does not preserve the convexity of option prices in general. Kahalé (2004) designs
an arbitrage-free interpolation of the call prices. It, however, presents the following
drawbacks: It requires convex input quotes and employs two embedded nonlinear
minimizations, and it is not proven that the algorithm for the interpolation function
of class C2 converges. In reality, it is often not desirable to strictly interpolate option
prices as those fluctuate within a bid–ask spread. Interpolation will lead to a very noisy
estimate of the probability density (which corresponds to the second derivative of the
undiscounted call option price).

More recently, Andreasen and Huge (2011) have proposed to calibrate the discrete
piecewise constant local volatility of the single-step finite difference representation for
the forward Dupire equation. In their representation, the authors use as many constants
as the number of market option strikes for an optimal fit. It works well but often yields
a noisy probability density estimate, as the prices are overfitted.

An alternative is to rely on a richer underlying stochastic model, which allows for
some flexibility in the implied volatility smile, such as the Heston or SABR stochastic
volatility models. While semi-analytic representations of the call option price exist
for the Heston model (Heston 1993), the model itself does not allow to represent
short-maturity smiles accurately. The SABR model is better suited for this, but has
only closed-form approximations for the call option price, which can lead to arbitrage
(Hagan et al. 2002, 2014).

Grzelak and Oosterlee (2017) use stochastic collocation to fix the Hagan SABR
approximation formula defects and produce arbitrage-free option prices starting from
the Hagan SABR formula. Here, we will explore how to calibrate the stochastic col-
location polynomial directly to market prices, without going through an intermediate
model.

This is of particular interest to the richer collocated local volatility (CLV) model,
which allows to price exotic options throughMonte Carlo or finite difference methods
(Grzelak 2016). A collocation polynomial calibrated to the vanilla options market is
key for the application of this model in practice.

Another application of our model-free stochastic collocation is to price constant
maturity swaps (CMS) consistently with the swaption implied volatility smile. In the
standard approximation of Hagan (2003), the CMS convexity adjustment consists in
evaluating the second moment of the distribution of the forward swap rate. It can be
computed in closed form with the stochastic collocation. This allows for an efficient
method to calibrate the collocation method jointly to the swaptions market implied
volatilities and to the CMS spread prices.

The outline of the paper is as follows: Section 2 presents the stochastic colloca-
tion technique in detail. Section 3 explains how to calibrate the stochastic collocation
directly to market prices and how to ensure the arbitrage-free calibration transparently,
through a specific parameterization of the collocation polynomial. Section 4 reviews
some popular option implied volatilities interpolation methods and illustrates the var-
ious issues that may arise with those on a practical example. Section 5 applies the
direct collocation technique on two different examples of equity index option prices.
Section 6 introduces the joint calibration of CMS convexity adjustments and swaption
prices in general. Section 7 applies the model-free stochastic collocation on the joint
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calibration of CMS and swaption prices. Finally, Sect. 8 explores some limitations of
the stochastic collocation technique along with possible remedies.

2 Overview of the stochastic collocationmethod

The stochastic collocation method (Mathelin and Hussaini 2003) consists in mapping
a physical random variable Y to a point X of an artificial stochastic space. Collocation
points xi are used to approximate the function1 mapping X to Y , F−1

X ◦ FY , where
FX , FY are, respectively, the cumulative distribution functions (CDF) of X and Y .
Thus, only a small number of samples of Y (and evaluations of FY ) are used. This
allows the problem to be solved in the “cheaper” artificial space.

In the context of option price interpolation, the stochastic collocation will allow
us to interpolate the market CDF in a better set of coordinates. In particular, we will
follow (Grzelak and Oosterlee 2017) and use a Gaussian distribution for X .

In Grzelak andOosterlee (2017), the stochastic collocation is applied to the survival
density functionGY , whereGY (y) = 1−FY (y)with FY being the cumulative density
function of the asset price process. When the survival distribution function is known
for a range of strikes, their method can be summarized by the following steps:

1. Given a set of collocation strikes yi , i = 0, . . . , N , compute the survival distribu-
tion values pi at those points: pi = GY (yi ).

2. Project on the Gaussian distribution by transforming the pi using the inverse
cumulative normal distribution Φ−1 resulting in xi = Φ−1(1 − pi ).

3. Interpolate (xi , yi ) with a Lagrange polynomial gN .
4. Price by integrating on the density with the integration variable x = Φ−1(1 −

GY (y)), using the Lagrange polynomial for the transform.

Let us now detail the last step. The undiscounted price of a call option of strike K
is obtained by integrating over the probability density function f , with a change of
variable:

C(K ) =
∫ +∞

0
|y − K |+ f (y)dy (1)

=
∫ Φ−1(1)

Φ−1(0)
|G−1

Y (1 − Φ(x)) − K |+φ(x)dx

≈
∫ ∞

−∞
|gN (x) − K |+φ(x)dx

=
∫ ∞

xK
(gN (x) − K )φ(x)dx, (2)

where φ(x) is the Gaussian density function and

xK = g−1
N (K ). (3)

The change of variables is valid when the survival density is continuous and its deriva-
tive is integrable. In particular, it is not necessary for the derivative to be continuous.

1 A polynomial is often used for the mapping.
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682 F. Le Floc’h, C. W. Oosterlee

As shown in Hunt and Kennedy (2004), a polynomial multiplied by a Gaussian can
be integrated analytically as integration by parts leads to a recurrence relationship on
mi (b) = ∫ ∞

b xiφ(x)dx . This idea is also the basis of the Sali tree method (Hu et al.
2006). The recurrence is

mi+2(b) = (i + 1)mi (b) + bi+1φ(b), (4)

with m0(b) = Φ(−b),m1(b) = φ(b). We have then:

C(K ) =
N∑
i=0

aimi (xK ) − Φ(−xK )K , (5)

where ai are the coefficients of the polynomial in increasing powers.
The terms mi (K ) involve only φ(xK ) and Φ(−xK ). The computational cost for

pricing one vanilla option can be approximated by the cost of finding xK and the
cost of one normal density function evaluation plus one cumulative normal density
function evaluation. For cubic polynomials, xK can be found analytically through
Cardano’s formula (Nonweiler 1968), and the cost is similar to the one of the Black–
Scholes formulae. In the general case of a polynomial gN of degree N , the roots can be
computed in O(N 3) as the eigenvalues of the associated Frobenius companion matrix
M defined by

M(gN ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 − a0
aN

1 0 · · · 0 − a1
aN

0 1 0 − a2
aN

...
...

. . .
...

...

0 0 · · · 1 − aN−1
aN

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We have indeed det (λI − M) = gN (λ). This is, for example, how the Octave or
MATLAB roots function works (Moler 1991). Note that for a high degree N , the
system can be very ill-conditioned. A remedy is to use a more robust polynomial basis
such as the Chebyshev polynomials and compute the eigenvalues of the colleague
matrix (Good 1961; Trefethen 2011). Jenkins and Traub solve directly the problem of
finding the roots of a real polynomial in Jenkins (1975).

A simple alternative, particularly relevant in our case as the polynomial needs to be
invertible and thus monotonic, is to use the third-order Halley’s method (Gander 1985)
with a simple initial guess xK = −1 if K < F(0, T ) or xK = 1 if K ≥ F(0, T ), with
F(0, T ) the forward price to maturity T . In practice, not more than three iterations
are necessary to achieve an accuracy around machine epsilon.

The put option price is calculated through the put-call parity relationship, namely

C(K ) − P(K ) = F(0, T ) − K ,

where P(K ) is the undiscounted price today of a put option of maturity T .
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Table 1 Collocation polynomials at the Gauss–Hermite nodes for the Black–Scholes model with volatility
25%, and for the SVI parameters corresponding to a least-squares fit of SPX500 options of maturity 10years

xi pi Black–Scholes 20years SVI 10years
yi ci yi ci

−3.3242574335521193 0.9995567284080997 1.302 56.569 0.000608 88.616

−1.8891758777537109 0.9705658670707293 6.475 60.296 1.196 90.181

−0.6167065901925942 0.7312858631972767 26.861 24.385 39.392 12.040

0.6167065901925942 0.26871413680272327 106.662 11.119 146.921 − 8.065

1.8891758777537109 0.029434132929270655 442.452 6.348 255.167 − 0.267

3.3242574335521193 0.0004432715919002534 2201.299 1.210 378.042 0.457

The polynomial is expressed with the coefficients ci as gN (x) = ∑5
i=0 ci x

i

3 Calibration of the stochastic collocation tomarket option prices

A Lagrange polynomial gN cannot always be used to interpolate directly on the col-
location points implied by the market option strikes (yi )i=0,...,N , because on one side
N might be too large for the method to be practical (there are typically more than
hundred market option prices on the SPX500 equity index for a given maturity), and
on the other side, there is no guarantee that the Lagrange polynomial will be mono-
tonic, even for a small number of strikes. Grzelak and Oosterlee (2017) propose to rely
on a set of collocation points (xi )i=0,...,N determined in an optimal manner from the
zeros of an orthogonal polynomial. It corresponds to the set of the Hermite quadra-
ture points in the case of the Gaussian distribution. This presupposes that we know
the survival distribution function values at strikes which do not correspond to any
quoted market strike. In Grzelak and Oosterlee (2017), those values are given by the
SABR model. Even with known survival distribution function values at the Hermite
collocation points, the resulting polynomial is not guaranteed to be monotonic. For
example, we consider options expiring in 20years on an asset with spot S = 100 that
follows the Black–Scholes model with a constant volatility σ = 25%. The Lagrange
collocation polynomial of degree N = 3 or N = 5 implied by the Gauss–Hermite
nodes is not monotonically increasing; we have g′

5(−2.34) = −15.2 (see Table 1
for the polynomial details). Another simple example we encountered comes from
fitting SPX500 options of maturity 10years, with the Gatheral SVI parameterization
(Gatheral and Lynch 2004). It corresponds to the following SVI parameters a = 0.004,
b = 0.027, s = 0.72, ρ = −0.99m = 1.0. The corresponding Lagrange quintic poly-
nomial obtained at the Gauss–Hermite nodes decreases around x = −2.36 as we have
g′
5(−2.36) = −16.5.
In this paper, we don’t want to assume a prior model. Instead of using a Lagrange

polynomial gN to interpolate on well-chosen (xi )i=0,...,N as in the step 3 of the collo-
cation method described in Sect. 2, we will directly calibrate a monotonic polynomial
gN to themarket option prices at strikes (yi )i=0,...,m , withm typicallymuch larger than
N . The monotonicity will be guaranteed through a specific isotonic parameterization.
The proposed parameterization will also conserve the first moment of the distribution
exactly.
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684 F. Le Floc’h, C. W. Oosterlee

In order to apply the stochastic collocation directly to market option prices, we thus
need to:

– find an estimate of the survival density from the market option prices (correspond-
ing to the step 1 of the collocation method described in Sect. 2),

– find a good initial guess for the monotonic polynomial gN ,
– optimize the polynomial coefficients so that the collocation prices are closest to
the market option prices.

We will detail each step.

3.1 A rough estimate of themarket survival density

Kahalé (2004) proposes a straightforward estimate. Let (yi )i=0,...,m be the market
strikes and (ci )i=0,...,m the market call option prices corresponding to each strike; the
call price derivative c′

i toward the strike Ki can be estimated by

c′
i ≈ li + li+1

2
where li = ci − ci−1

yi − yi−1
(6)

for i = 1, . . . ,m − 1, and with c′
0 = l1, c′

m = lm .
If the market prices are arbitrage-free, that is when

− 1 <
ci − ci−1

yi − yi−1
<

ci+1 − ci
yi+1 − yi

< 0, for i = 1, . . . ,m − 1 (7)

it is guaranteed that −1 < c′
i < 0 and the c′

i are increasing. A more precise estimate
consists in using the parabola that passes through the three points ci−1, ci , ci+1 to
estimate the slopes:

c′
i ≈ li (yi+1 − yi ) + li+1(yi − yi−1)

yi+1 − yi−1
where li = ci − ci−1

yi − yi−1
(8)

for i = 1, . . . ,m − 1, and with c′
0 = l1, c′

m = lm . It will still lead to −1 < c′
i < 0 and

increasing c′
i .

We can build a continuous representation of the survival density by interpolating
the call prices (yi , ci )i=0,...,m with theC1 quadratic spline interpolation of Schumaker
(1983), where additional knots are inserted to preserve monotonicity and convexity.2

By construction, at each market strike, the derivative will be equal to each c′
i .

The survival density corresponds to

GY (y) = −∂C

∂ y
(y), (9)

2 AC1 polynomial spline on a fixed set of knots cannot preserve monotonicity and convexity in the general
case (Passow and Roulier 1977).
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or equivalently through the put option prices P:

GY (y) = 1 − ∂P

∂ y
(y). (10)

In practice, one will use out-of-the-money options to compute the survival density
using alternative Eqs. (9) and (10).While in the case of the SABRmodel, it is important
to integrate the probability density (or the second derivative of the call price) from y
to ∞ (Grzelak and Oosterlee 2017), here we are only interested in a rough guess.3

From the survival density at the strikes yi , it is then trivial to compute the normal
coordinates xi .

3.2 Filtering out themarket call prices quotes

In reality, it is not guaranteed that the market prices are convex, because of the bid–ask
spread. While the collocation calibration method we propose in this paper will still
work well on a nonconvex set of call prices, starting the optimization from a convex
set has two advantages: a better initial estimate of the survival density and thus a better
initial guess, and the use of a monotonic interpolation of the survival density.

The general problemof extracting a “good”, representative convex subset of a nearly
convex set is not simple. By “good”, we mean, for example, that the frontier defined
by joining each point of the set with a line minimizes the least-squares error on the
full set, along with possibly some criteria to reduce the total variation. In Appendix C,
we propose a quadratic programming approach to build a convex set that closely
approximates the initial set of market prices. It can, however, be relatively slow when
the number of market quotes is large. The algorithm takes 4.8 s on a Core i7 7700U,
for the 174 SPX500 option prices as of January 23, 2018, from our example in Sect. 5.

A much simpler approach is to merely filter out problematic quotes, i.e., quotes
that will lead to a call price derivative estimate lower than −1 or positive. We assume
that the strikes (yi )0≤i≤m are sorted in ascending order. The algorithm starts from a
specific index k ∈ {0, . . . ,m}. We will use k = 0, but we let the algorithm to be more
generic. The forward sweep to filter out problematic quotes consists then in:

(i) Start from strike yk . Let the filtered set be S = {(yk, xK )}. Let j� = k,
(ii) Search for the next lowest index j , such that −1 + ε <

c j−c j�
y j−y j�

< −ε and j� <

j ≤ m. Replace j� by j ,
(iii) Add (y j� , c j� ) to the filtered set S . Repeat steps (ii) and (iii).

In our examples, we set the tolerance ε = 10−7 to avoid machine epsilon accuracy
issues close to − 1. A small error in the derivative estimate near − 1 or near 0 will
lead to a disproportionally large difference in the coordinate x .

While the above algorithm will not produce a convex set, we will see that it can be
surprisingly effective to compute a good initial guess for the collocation polynomial.

3 Integration is still possible with the quadratic spline interpolation approach.

123



686 F. Le Floc’h, C. W. Oosterlee

We could also derive a similar backward sweep algorithm and combine the two
algorithms to start at the strike yk close to the forward price F(0, T ). On our examples,
this was not necessary.

3.3 An initial guess for the collocation polynomial

In order to obtain an arbitrage-free price, it is not only important that the density
(zeroth moment) sums up to 1, which the collocation method will obey by default, but
it is also key to preserve the martingale property (the first moment), that is

∫ ∞

−∞
gN (x)φ(x) = F(t, T ). (11)

Using the recurrence relation [Eq. (4)], this translates to

a0 +
N−1
2∑

i=1

a2i (2i − 1)!! = F(t, T ). (12)

Instead of trying to find directly good collocation points, a simple idea for an initial
guess is to consider the polynomial hN (x) = ∑N

k=0 bkx
k corresponding to the least-

squares fit of xi , yi :

b0, . . . , bN = min
(a0,...,aN )∈RN+1

⎧⎨
⎩

m∑
i=0

[(
N∑

k=0

akx
k
i

)
− yi

]2
⎫⎬
⎭ , (13)

with the additional martingality constraint. This is a linear problem and is very fast
to solve, for example, by QR decomposition. Unfortunately, the resulting polynomial
might not be monotonic.

As we want to impose the monotonicity constraint by a clever parameterization of
the problem, wewill only consider the least-squares (with additional martingality con-
straint) cubic polynomial as starting guess. The following lemma helps us determine
whether it is monotonic.

Lemma 1 A cubic polynomial a0 + a1x + a2x2 + a3x3 is strictly monotonic and
increasing on R if and only if a22 − 3a1a3 < 0.

Proof The derivative has no roots if and only if the discriminant a22 − 3a1a3 < 0 	

If our first attempt for a cubic initial guess is not monotonic, we follow the idea

of Murray et al. (2016) and fit a cubic polynomial of the form A+ Bx +Cx3. For this
specific case, the linear system to solve is then given by

⎛
⎝1 0 0
0

∑m
i=0x

2
i

∑m
i=0x

4
i

0
∑m

i=0x
4
i

∑m
i=0x

6
i

⎞
⎠

⎛
⎝A
B
C

⎞
⎠ =

⎛
⎝ F(t, T )∑m

i=0xi yi∑m
i=0x

3
i yi

⎞
⎠ . (14)
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In our case, Lemma 1 reduces to B > 0 and C > 0. As the initial guess, we thus
use the cubic polynomial with coefficients a0 = A = F(t, T ), a1 = |B|, a2 = 0,
a3 = |C |.

3.4 Themeasure

The goal is to minimize the error between specific model implied volatilities and
the market implied volatilities, taking into account the bid–ask spread. The implied
volatility error measure corresponds then to the weighted root-mean-square error of
implied volatilities:

Mσ =
√∑m

i=0 μ2
i (σ (ξ, Ki ) − σi )

2

√∑m
i=0 μ2

i

, (15)

where σ(ξ, Ki ) is the Black implied volatility4 obtained from the specific model
considered, with parameters ξ , σi is the market implied volatility and μi is the weight
associated with the implied volatility σi . In our numerical examples, we will choose
μi = 1. In practice, it is typically set as the inverse of the bid–ask spread.

An alternative is to use the root-mean-square error of prices:

MV =
√∑m

i=0 w2
i (C(ξ, Ki ) − ci )2√∑m

i=0 w2
i

, (16)

where C(ξ, Ki ) is the model5 option price and ci is the market option price at strike
Ki . We can find a weight wi that makes the solution similar to the one under the
measure Mσ by matching the gradients of each problem. We compare

m∑
i=0

2w2
i
∂C

∂ξ
(ξ, Ki ) (ci − C(ξ, Ki )) ,

with
m∑
i=0

2μi
2 ∂σ

∂ξ
(ξ, Ki ) (σi − σ(ξ, Ki )) .

As we know that ∂C
∂ξ

= ∂σ
∂ξ

∂C
∂σ

, we approximate ∂C
∂σ

by the market Black–Scholes

Vega, the term (ci − C(ξ, Ki )) by ∂C
∂ξ

(ξopt − ξ), and (σi − σ(ξ, Ki )) by ∂σ
∂ξ

(ξopt − ξ)

to obtain

wi ≈ 1
∂ci
∂σi

μi . (17)

4 Fast and robust algorithms to obtain the implied volatility from an option price are given in Jäckel (2015)
and Li and Lee (2011).When no implied volatility corresponds to the model option price, which can happen
because of numerical error, we just fix the implied volatility to zero.
5 In the case of the stochastic collocation, ξ corresponds to the coefficients of the collocation polynomial.
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688 F. Le Floc’h, C. W. Oosterlee

In practice, the inverse Vega needs to be capped to avoid taking into account too
far out-of-the-money prices, which won’t be all that reliable numerically and we take

wi = min

(
1

νi
,
106

F

)
μi , (18)

where νi = ∂ci
∂σ

is the Black–Scholes Vega corresponding to the market option price
ci .

3.5 Optimization under monotonicity constraints

Wewish to minimize the error measure MV while taking into account the martingality
and the monotonicity constraints (Lemma 1) at the same time. The polynomial gN
is strictly monotonically increasing if its derivative polynomial is strictly positive.
We follow the central idea of Murray et al. (2016) and express gN in an isotonic
parameterization:

gN (x) = a0 +
∫ x

0
p(x)dx, (19)

where p(x) is a strictly positive polynomial of degree N − 1 = 2Q. It can thus be
expressed as a sum of two squared polynomials of respective degrees at most Q and
at most Q − 1 (Reznick 2000):

p(x) = p1(x)
2 + p2(x)

2. (20)

As in the case of the cubic polynomial, we can refine the initial guess by first finding
the optimal positive least-squares polynomial with the sum of squares parameteri-
zation. Let (β1,0, . . . , β1,q) ∈ R

q+1 be the coefficients of the polynomial p1 and
(β2,0, . . . , β2,q−1) ∈ R

q be the coefficients of the polynomial p2. The coefficients
(γk)k=0,...,N−1 of p can be computed by adding the convolution of β1 with itself to
the convolution of β2 with itself, that is

γk =
k∑

l=0

β1,lβ1,k−l +
k∑

l=0

β2,lβ2,k−l , (21)

with β1,l = 0 for l > q and β2,l = 0 for l > q − 1. The martingality condition leads
to

gN (x) = F(t, T ) −
N−1
2∑

k=1

γ2k−1

2k
(2k − 1)!! +

N∑
k=1

γk−1

k
xk . (22)
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Lemma 2 The gradient of gN toward (β1,0, . . . , β1,q , β2,0, . . . , β2,q−1) can be com-
puted analytically, and we have

∂gN
∂βl, j

(xi ) = 2
q∑

k=0

βl,k x
j+k+1
i

k + j + 1
−

q∑
k=1

(2k − 1)!!
k

βl,2k− j−1, (23)

with βl,k = 0 for k < 0 and β1,k = 0 for k > q and β2,k = 0 for k > q − 1.

Proof

gN (x) = a0 +
∫ x

0

2q∑
k=0

k∑
l=0

β1,lβ1,k−l x
k +

2q−2∑
k=0

k∑
l=0

β2,lβ2,k−l x
kdx

= a0 +
2q∑
k=0

1

k + 1

k∑
l=0

β1,lβ1,k−l x
k+1 +

2q−2∑
k=0

1

k + 1

k∑
l=0

β2,lβ2,k−l x
k+1.

We thus have

ak+1 =
{

1
k+1

(∑k
l=0β1,lβ1,k−l + ∑k

l=0β2,lβ2,k−l

)
for 0 ≤ k ≤ 2q − 2,

1
k+1

∑k
l=0β1,lβ1,k−l for k = 2q − 1, 2q.

We recall that the martingality condition implies

a0 = F(t, T ) −
q∑

k=1

a2k(2k − 1)!!.

We have

∂a0
∂βl, j

= −
q∑

k=1

(2k − 1)!! ∂a2k
∂βl, j

,

and

∂ak+1

∂β1, j
= 1

k + 1
2β1,k− j for j ≤ k ≤ 2q,

∂ak+1

∂β2, j
= 1

k + 1
2β2,k− j for j ≤ k ≤ 2q − 2,

∂ak+1

∂βl, j
= 0 for k < j and l = 1, 2.

Thus,

∂a0
∂βl, j

= −∑q
k=1

(2k−1)!!
k βl,2k− j−1,
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with βl,k = 0 for k < 0 and β1,k = 0 for k > q and β2,k = 0 for k > q − 1. 	


In particular, for a cubic polynomial, we have

∂g3
∂β1,0

(xi ) = 2β1,0xi + β1,1x
2
i − β1,1,

∂g3
∂β2,0

(xi ) = 2β2,0xi ,

∂g3
∂β1,1

(xi ) = β1,0x
2
i + 2β1,1

3
x3i − β1,0,

and for a quintic polynomial,

∂g5
∂β1,0

(xi ) = 2β1,0xi + β1,1x
2
i + 2β1,2

3
x3i − β1,1,

∂g5
∂β2,0

(xi ) = 2β2,0xi + β2,1x
2
i − β2,1,

∂g5
∂β1,1

(xi ) = β1,0x
2
i + 2β1,1

3
x3i + β1,2

2
x4i − β1,0 − 3

2
β1,2,

∂g5
∂β2,1

(xi ) = β2,0x
2
i + 2β2,1

3
x3i − β2,0,

∂g5
∂β1,2

(xi ) = 2β1,0

3
x3i + β1,1

2
x4i + 2β1,2

5
x5i − 3

2
β1,1.

The cubic polynomial initial guess can be rewritten in the isotonic form as follows,

a0 + a1x + a2x
2 + a3x

3 = a0 +
∫ x

0

(
a1 + 2a2t + 3a3t

2
)
dt

= a0 +
∫ x

0

(√
3a3t + a2√

3a3

)2

+
⎛
⎝

√
a1 − a22

3a3

⎞
⎠

2

dt .

(24)

Based on the initial guess (refined or cubic), we can use a standard unconstrained
Levenberg–Marquardt algorithm to minimize the measure MV , based on the iso-
tonic parameterization. This results in the optimal coefficients (β1,0, . . . , β1,q) and
(β2,0, . . . , β2,q−1), which we then convert back to a standard polynomial representa-
tion, as described above.

The gradient of the call prices toward the isotonic parameters can also be computed
analytically from Eq. (2), as we have

∂C

∂βl, j
(K ) = ∂xK

∂βl, j
(K )C(K ) +

∫ ∞

xK

∂gN
∂βl, j

(x)φ(x)dx,
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where xK is the integration cutoff point defined by Eq. (3). As ∂gN
∂x (β, xK ) > 0, we

can use the implicit function theorem to compute the partial derivatives ∂xK
∂βl, j

(K ):

∇xK (β) = − 1
∂gN
∂x (β, xK )

∇gN (β, xK )

where ∇xK =
(

∂xK
∂β1,0

, . . . , ∂xK
∂β2,q−1

)
and ∇gN =

(
∂gN
∂β1,0

, . . . ,
∂gN

∂β2,q−1

)
.

4 Examples of equity index smiles

We consider a set of vanilla option prices on the same underlying asset, with the same
maturity date. As an illustrating example, we will use SPX500 option quotes expiring
on March 7, 2018, as of February 5, 2018, from Appendix D. The options’ maturity
is thus nearly one month. The day before this specific valuation date, a big jump in
volatility across the whole stock market occurred. One consequence is a slightly more
extreme (but not exceptional) volatility smile.

4.1 A short review of implied volatility interpolations

Let us recall shortly some of the different approaches to build an arbitrage-free implied
volatility interpolation, or equivalently, to extract the risk-neutral probability density.

We can choose to represent the asset dynamics by a stochastic volatility model
such as Heston (1993), Bates (1996), Double-Heston (Christoffersen et al. 2009).
This implies a relatively high computational cost to obtain vanilla option prices and
thus to calibrate the model, especially when time-dependent parameters are allowed.
Furthermore, thosemodels are known to not fit adequately themarket of vanilla options
with short maturities. Their implied volatility smile is typically too flat.

Many practitioners revert to a parameterization-based or inspired from a stochastic
volatility model, such as the Hagan SABR expansion (Hagan et al. 2002), or the
Gatheral SVI model (Gatheral and Lynch 2004; Flint and Maré 2017). These are
much faster to calibrate. SVI is one of the most popular parameterizations to represent
the equity option volatility smile, because of its simplicity, its relation to stochastic
volatility models asymptotically, and its almost arbitrage-free property. However, as
we shall see, the fit for options on equities can still be poor (Fig. 1a). SVI manages
to fit only a part of the left wing and fails to represent well the market quotes in the
region of high implied volatility curvature. SVI and SABR are usually much better at
fitting longer option maturities.

Another approach is not to assume any underlying model and use an exact inter-
polation. A cubic spline interpolation of the implied volatilities is not arbitrage-free,
although it is advocated6 by M. Malz (2014). Kahalé (2004) proposes an arbitrage-
free spline interpolation of the option prices. Unfortunately, it is not guaranteed that

6 Malz precises that the challenge of his approach is to find a good filter for the quotes, which he does not
describe at all.
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Fig. 1 SVI and Andreasen–Huge calibrations on 1m SPX500 options as of February 05, 2018

his algorithm for C2 interpolation, necessary for a continuous probability density,
converges. Furthermore, it assumes that the input call option quotes are convex and
decreasing by strike. But the market quotes are not convex in general, mainly because
of the bid–ask spread. While we propose a quadratic programming-based algorithm to
build a convex set that closely approximates the market prices in Appendix C, it can
be relatively slow when the number of quotes is large. Finally, the resulting implied
probability density will be noisy, as evidenced by Syrdal (2002).

A smoothing spline or a least-squares cubic spline will allow to avoid overfitting
the market quotes. For example, Syrdal (2002) and Bliss and Panigirtzoglou (2004)
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use a smoothing spline on the implied volatilities as a function of the option deltas,7

with flat extrapolation. Smoothing is ensured by adding a penalty multiplied by the
integral of the second derivative of the spline function to the objective function. The
smoothing parameter is challenging to pick. In fact, Syrdal reverts to a manual ad hoc
choice of this parameter. Furthermore, the interpolation is a priori not arbitrage-free. In
order to make it arbitrage-free, an additional nonlinear penalty term against butterfly
spread arbitrages needs to be added to the objective function. Instead of a smoothing
parameter, the least-squares spline requires to choose the number of knots and their
locations, which can also seem arbitrary. A slightly different approach is taken by
Wystup (2015, p. 47) for the foreign exchange optionsmarket, where aGaussian kernel
smoother is applied to the market volatilities as a function of the option delta. The
kernel bandwidth is fixed and the number of kernel points (specific deltas) is typically
lower than the number of market option strikes. Wystup recommends to use up to 7
kernel points. While a larger number of points leads to a better fit on our example, it
may also lead to a negative density. With the Gaussian kernel smoothing, the shape
of the implied volatility looks unnatural8 around the point of high curvature (Fig. 2a),
and the density can become negative (Fig. 2b). It is thus not always arbitrage-free.

In order to guarantee the arbitrage-free property by construction and still staymodel-
free, Andreasen and Huge (2011) use a specific one-step implicit finite difference
where a discrete piecewise constant local volatility function is calibrated against mar-
ket prices. While it is simple and fast, it leads to a noisy implied density, even if we
replace the piecewise constant parameters by a cubic spline (Fig. 1b). This is because,
by design, similarly to a spline interpolation, the method overfits the quotes as the
number of parameters is the same as the number of market option quotes.

Finally, we can model directly the risk-neutral probability density (RND). Many
papers use the double lognormal mixture of Bahra (Bahra 2007; Arneric et al. 2015)
to represent the RND. The double lognormal mixture is not flexible enough to capture
our example of short-maturity smile (Fig. 3a). This is extended in Cheng (2010) to a
mixture of multiple lognormal distributions. With a mixture of 6 lognormal distribu-
tions, the root-mean-square error of the model volatilities against market volatilities
is nearly as low as with Andreasen–Huge (Table 2), and the RND is very smooth.
Furthermore, the model is also fully arbitrage-free by construction. But, in similar
fashion as the Gaussian kernel smoother (Wystup 2015), the mixture of lognormal
distributions tends to create artificial peaks in the RND (Figs. 2b, 3b), just to fit the
input quotes better on our example.

Compared to theGaussian kernel smoothing, themixture of lognormal distributions
results in fewer peaks as the volatility of eachdistribution is optimized, but there are still
clearly multiple modes in the density. In reality, as we will see with the collocation
method, the density has no particular reasons to have multiple modes. Mixture of
normal or lognormal distributions will, by their nature, tend to create multimodal
densities.

7 Especially for options on a foreign exchange rate, the implied volatilitymay be parameterized as a function
of the option delta, instead of the option strike. Note that the delta is itself a function of the implied volatility,
see Appendix A.
8 This could be remedied by a kernel smoothing on the strikes instead of the deltas, but then the probability
density goes negative in more places. We thus preferred to stay close to Wystup’s original idea.
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Fig. 2 Gaussian kernel smoothing calibrations on 1m SPX500 options as of February 05, 2018

Let us give more details about the setup of each technique on our example. For
the SVI parameterization, we use the quasi-explicit calibration method described in
Zeliade Systems (2009), which leads to the parameters of Table 3. For the Andreasen–
Huge method, we use a dense log-uniform grid composed of 800 points and solve
the probability density (the Fokker–Planck equation) instead of the call prices. We
then interpolate in between grid points by integrating the density to obtain the call
option prices to preserve the arbitrage-free property everywhere in a similar spirit as
(Hagan et al. 2014; Le Floc’h and Kennedy 2017).Weminimize the error measureMV

with the Levenberg–Marquardt algorithm. The Gaussian kernel smoother calibration
is described in Appendix A. We use, respectively, 7 and 12 kernel points, with a
bandwidth of 0.5 and 0.3. When the bandwidth is too large for the number of kernel
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Fig. 3 Mixture of lognormal distributions calibration on 1m SPX500 options as of February 05, 2018

points considered, the problem becomes ill-conditioned numerically as the optimal
kernel weights α become very large numbers (Table 4), while the result of the kernel
is a volatility of the order of 10%. Our multiple lognormal mixture optimization
is described in Appendix B and the calibrated parameters in Table 10. Note that
the optimization problem becomes very challenging numerically for a mixture of
more than 7 lognormal distributions, because, on the one side, the number of free
parameters is relatively high (3n−2 free parameters for n lognormal distributions) and
on the other side, the highly nonlinear structure of the problem creates multiple local
minima.
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Table 2 Root-mean-square error
(RMSE) of the calibrated model
volatilities against the market
volatilities

Model Free parameters RMSE

SVI 5 0.00757

Andreasen–Huge 75 0.00088

Gaussian smoothing kernel 7 0.00400

Gaussian smoothing kernel 12 0.00175

Mixture of 2 lognormals 4 0.01807

Mixture of 4 lognormals 10 0.00252

Mixture of 6 lognormals 16 0.00094

Table 3 Parameters resulting of the calibration of the SVI model σ 2(k) = a + b {ρ(k − m)

+
√

(k − m)2 + s2
}
against 1m SPX500 options as of February 05, 2018, with k = ln K

F

a b ρ s m

0.000 0.794 −0.492 0.0537 0.0554

Table 4 Optimal kernel
observations αi resulting of the
Gaussian kernel smoothing
against 1m SPX500 options as
of February 05, 2018, for
different bandwidths λ

Number of points λ min |αi | max |αi |
7 0.5 4.8E03 1.1E05

12 0.292 2.5E05 1.3E08

12 0.5 1.6E10 1.2E13

5 Polynomial collocation of SPX500 options

Previous literature has explored the calibration of stochastic collocation againstmarket
quotes for interest rates swaptions, in the case of the SABR model in Grzelak and
Oosterlee (2017) as well as for FX options. In both cases, the set of quotes is relatively
small (usually less than 10) and the risk of arbitrage in the quotes, related to the bid–
ask spread size, is very low. In the world of equity options, the quotes are denser (it is
not unusual to have 50 quotes for liquid equity indices), or less liquid, and thus have
a higher probability of containing small theoretical arbitrages.

Here, we consider the quotes of vanilla options on the index SPX500, expiring on
February 23, 2018, as of January 23, 2018, for 174 distinct strikes. We first take a look
at the cubic polynomial guess, least-squares quintic polynomial guess, and optimal
quintic polynomial that are calibrated to themarket quotes. Figure 4 shows thatwithout
any preprocessing, the cubic and quintic polynomial guesses are of relatively poor
quality, because of a few outliers. Filtering out the problematic quotes by imposing
hard boundaries on the resulting slope estimates is enough to fix this (see Fig. 5b).
The preprocessing to produce a convex set of quotes through quadratic programming
results in a better quintic polynomial guess but a worse cubic polynomial initial guess
(Fig. 5a, b). This is because the cubic polynomial guess has not been refined: It has not
been optimized with the monotonicity constraint. Otherwise, it would fit better than
the cubic polynomial optimized against our simple filtered quotes. The difference in
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Fig. 4 Strike as a function of x = Φ−1(p) where p is the cumulative density for SPX500 options expiring
on February 23, 2018, without applying any convexity filter
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(a) Quadratic programming convexity filter.
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Fig. 5 Strike as a function of x = Φ−1(p) where p is the cumulative density for SPX500 options expiring
on February 23, 2018, using a filter on the quotes

the polynomial guesses between the twomethods is, however, not large. Table 5 shows
that the first three moments9 of the quintic refined guess with the forward sweep filter
or with the convexity filter are close to the moments corresponding to the optimal
quintic polynomial collocation. On this example, the convexity filter improves the
estimate of the kurtosis significantly.

Let us take a look at the quality of the fit in terms of implied volatilities. In Figs. 6
and 7, the reference implied volatilities include all market options, i.e., they are unfil-
tered, even when afterward, we process those in order to apply the collocation method.

9 Here, we calculate the statistics of the underlying asset price distribution, as implied from the option
prices. We are not interested in the statistics of the market options prices themselves.
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Table 5 Mean, variance, skew and kurtosis corresponding to quintic polynomial collocation of SPX500
1m options as of February 5, 2018, for different filtering of market quotes

Collocation polynomial Mean Variance Skew Kurtosis

Refined quintic guess on raw quotes 2839.00 102.59 −1.59 14.72

Refined quintic guess with forward sweep 2839.00 93.36 −2.74 58.97

Refined quintic guess on convex quotes 2839.00 88.06 −2.63 38.87

Optimal quintic polynomial collocation 2839.00 88.92 −2.71 38.52
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Fig. 6 SPX500 smile

On our SPX500 option quotes from January 23, 2018, Fig. 6 shows that Gatheral SVI
parameterization does not fit very well. While SVI is generally quite good at fitting
medium and long maturities, it is often not very well suited for short maturities such
as the 1-month maturity we consider here. The cubic collocation, which has fewer
parameters fits better than SVI, and the quintic collocation provides a nearly perfect
fit on this example, which is impressive since it has the same number of free parameters
as SVI.

We now consider the same SPX500 option quotes expiring on March 7, 2018, as of
February 5, 2018, as in Sect. 4.1, and is listed in Appendix D. The option maturities
are still one month, but the valuation day corresponds to one day after a big jump in
volatility across the whole stock market. The smile is more complex. Figure 7 shows
that the curvature is much higher at the lowest point and that the left wing is slightly
concave. SVI manages to fit only a part of the left wing and fails to represent well
the market quotes in the region of high curvature. The quintic polynomial achieves
a reasonably good fit. In order to illustrate that our calibration technique still works
well with a higher degree polynomial, we also calibrate a nonic polynomial. It results
in a nearly perfect fit, despite the very strong curvature.
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Fig. 7 Implied volatility smile of SPX500 1m options as of February 5, 2018

We show the corresponding probability density in Fig. 8 and observe a high and
narrow spike in the regionwhere the implied volatility has a strong curvature. Contrary
to the stochastic collation method, SVI does not allow to capture this spike properly.
The density is also markedly different from the one obtained by the mixture of lognor-
mal distributions in Fig. 3b. In particular, it does not exhibit multiple peaks. This stays
true for collocations on a polynomial of higher degree. The root-mean-square error
(RMSE) of implied volatilities with a cubic polynomial collocation is smaller than
with SVI which has two more free parameters (Table 6 against Table 2). The nonic
polynomial collocation has a RMSE similar to the results from the Andreasen–Huge
method and the mixture of 6 lognormal distributions model, while the collocation has
again significantly fewer free parameters.

So far, we have considered individual smiles corresponding to a specific option
maturity. In order to build a full volatility surface, a linear interpolation of the col-
locating polynomial in between maturities will preserve the arbitrage-free property
across strikes as the intermediate polynomial will still be monotonic. Such an inter-
polation could, however, introduce arbitrage in time, as it does not guarantee, a priori,
that the call prices will increase with the maturity for a fixed log-moneyness. The
alternative is to fit each expiry independently and interpolate linearly in total variance
across a fixed log-moneyness.

6 Calibration of CMS convexity adjustments

Here, we will evaluate the quality of the stochastic collocation method on the problem
of calibrating the constant maturity swaps jointly with the interest rate swaptions.
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Fig. 8 Implied probability density of SPX500 1m options as of February 5, 2018

Table 6 Root-mean-square error
(RMSE) of the collocation
method implied volatilities
against the market implied
volatilities of the SPX500 1m
options as of February 5, 2018

Model Free parameters RMSE

Cubic collocation 3 0.00538

Quintic collocation 5 0.00280

Nonic collocation 9 0.00110

11th degree collocation 11 0.00099

A constant maturity swap (CMS) is a swap where one leg refers to a reference swap
rate which fixes in the future (for example, the 10 year swap rate), rather than to an
interest rate index such as the LIBOR. The other leg is a standard fixed or floating
interest rate leg.

For amaturity Ta , the forward swap rate Sa,b at time t with payments at Ta+1, . . . , Tb
is

Sa,b(t) = P(t, Ta) − P(t, Tb)

τ
∑b

j=a+1 P(t, Tj )
, (25)

where τ is the year fraction for a period (τ = 1 in the 30/360 daycount convention in
our examples) and P(t, T ) is the discount factor from t to T .

In the Ta + δ forward measure, the convexity adjustment for the swap rate Sa,b is

CA(Sa,b, δ) = E
Ta+δ

[
Sa,b(Ta)

] − Sa,b(0), (26)

where δ is the accrual period of the swap rate. It depends on the entire evolution
of the yield curve. Following Hagan’s standard model (Hagan 2003), Mercurio and
Pallavicini (2005, 2006) approximate the convexity adjustment by using a linear func-
tion of the underlying swap rate for the Radon–Nikodym derivative in order to express
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the value in the forward swap measure associated with Sa,b. This leads to

CA(Sa,b, δ) ≈ Sa,b(0)θ(δ)

⎛
⎝E

a,b
[
S2a,b(Ta)

]

S2a,b(0)
− 1

⎞
⎠ , (27)

where

θ(δ) = 1 − τ Sa,b(0)

1 + τ Sa,b(0)

(
δ

τ
+ b − a(

1 + τ Sa,b(0)
)b−a − 1

)
. (28)

Now E
a,b

[
S2a,b(Ta)

]
can be derived from the market swaption prices. In Hagan

(2003) and Mercurio and Pallavicini (2005, 2006), the replication method is used. We
will see in Sect. 7 that this expectation has a very simple closed-form expression with
the collocation method. This will simplify and speed up the calibration.

As explained inMercurio andPallavicini (2006), themarket quotes the spreads Xm,c

which sets to zero the no-arbitrage value of CMS swaps starting today and paying the
c-year swap rate S′

i,c from ti−1 to ti−1 + c with t0 = 0. We have

Xm,c =
∑m

i=1

(
S′
i,c(0) + CA(S′

i,c, δ)
)
P(0, ti )∑m

i=1 P(0, ti )
− 1 − P(0, tm)

δ
∑m

i=1 P(0, ti )
. (29)

We will consider the example market data fromMercurio and Pallavicini (2006) as of
February 3, 2006, where δ corresponds to a quarter year and the CMS leg is expressed
in ACT/360 while the floating leg and the spread are in 30/360 daycount convention.

In order to compute the CMS spread Xm,c, the convexity adjustments are needed
for many dates not belonging to themarket swaption expiries.We followMercurio and
Pallavicini (2006) and interpolate the convexity adjustments at the swaption expiries
by a cubic spline (with an adjustment of zero at t = 0).

The market swaptions are expressed in Black volatility and can be priced through
the standard Black formula on the forward swap rate.

Mercurio and Pallavicini (2005, 2006) describe a global calibration, where the
swaption volatility errors for each market swaption expiry and strike, plus a penalty
factor multiplied by the CMS spread error for each quoted market CMS spread, are
minimized in a least-squares fashion. This is a single high-dimensional minimization.
We will see how to apply this methodology to the collocation method, as well as a
new alternative calibration.

7 Joint calibration of swaptions and CMS convexity adjustments with
the stochastic collocation

In Sect. 6, we have described the calibration of swaptions and CMS convexity adjust-
ments from Mercurio and Pallavicini (2006). A key estimate for their method is an

approximation of the expectation E
a,b

[
S2a,b(Ta)

]
from Eq. (27). Instead of using the
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replicationmethod,when a collocation polynomial is calibrated to themarket swaption
prices, this expectation can be computed by a direct integration:

E
a,b

[
S2a,b(Ta)

]
=

∫ ∞

−∞
g2N (x)φ(x)dx . (30)

The coefficients (b0, . . . , b2N ) of g2N correspond to the self-convolution of the coef-
ficients (a0, . . . , aN ) of gN . Similarly to the calculation of the first moment, the
recurrence relation [Eq. (4)] leads to the closed-form expression

E
a,b

[
S2a,b(Ta)

]
= b0 +

N∑
i=1

(2i − 1)!!b2i . (31)

There are two ways to include the CMS spread in the calibration of the smile to the
swaption quotes, which we will label as the global and the decoupled approach. The
collocation method can be used in the global approach from Mercurio and Pallavicini
(2006), by first computing an initial guess in the form of a list of isotonic representa-
tions, out-of-the-market swaption quotes for each expiry according to Sect. 3. Then,
the least-squares minimization updates the isotonic representations iteratively.

Tables 7 and 8 show that the error with a quintic collocation polynomial is as low
as with the SABR interpolation.10 Compared to SABR interpolation, however, the
advantages of stochastic collocation are: it is arbitrage-free by construction, while the
SABR approximation formula has known issues with low or negative rates (Hagan
et al. 2014); the accuracy of the fit can be improved by simply increasing the collocating
polynomial degree; the calculation of the CMS convexity adjustment is much faster
as it does not involve an explicit replication.

The decoupled calibration procedure consists of the following two steps:

(A) Find the optimal convexity adjustment for each market swaption expiry

– Compute the initial guess for each convexity adjustment by fitting the swaption
smile at each expiry as described in Sect. 3, without taking into account any
CMS spread price.

– Compute the cubic spline which interpolates the convexity adjustments across
the expiries. Minimize the square root of CMS spread errors, by adjusting the
convexity adjustments and recomputing the cubic spline, for example, with the
Levenberg–Marquardt algorithm.

(B) Minimize the square of the swaption volatility error plus a penalty factor
multiplied by the convexity adjustment error, against the optimal convexity
adjustment for each expiry independently.

The penalty factor allows to balance the swaption volatilities fit with the CMS spread
fit. The decoupled calibration involves n+1 independent low-dimensional minimiza-
tions, with n being the number of swaptions expiries.

10 The SABR numbers come from Mercurio and Pallavicini (2006). For the Black model, our numbers
differ slightly from Mercurio and Pallavicini, likely because of the handling of holidays.
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Table 7 Absolute differences (in bp) between market and model swaptions implied volatilities

Strike −200 −100 −50 −25 0 25 50 100 200

SABR

5 × 10 1.1 0.2 0.3 0.5 0.2 0.2 0.8 0.2 0.4

10 × 10 0.2 0.1 0.4 0.3 0.1 0.2 0.4 0.5 0.3

20 × 10 0.8 0.6 0.4 0.4 0 0.3 0.3 0.5 0.5

Quintic global

5 × 10 0.1 − 0.4 0.3 0.4 0.2 − 0.5 − 0.3 0.3 0.0

10 × 10 0.4 − 1.8 0.4 1.0 1.3 0.2 − 0.5 − 1.7 1.0

20 × 10 0.7 − 1.7 0.8 1.2 1.1 0.5 − 0.7 − 1.8 1.3

Quintic decoupled

5 × 10 0.0 − 0.3 0.2 0.3 0.2 − 0.5 − 0.3 0.4 − 0.1

10 × 10 0.1 − 0.6 0.2 0.3 0.6 − 0.2 − 0.3 − 0.4 0.3

20 × 10 0.4 − 2.0 0.6 1.0 1.0 0.5 − 0.6 − 1.6 0.9

Strikes are expressed as absolute differences in basis points w.r.t the at-the-money values

Table 8 Absolute differences (in bp) between market CMS swap spreads and those induced by the SABR
functional form, the Black model and the collocation of a quintic polynomial for the 10-year tenor

Maturity (years) SABR Black Quintic global Quintic decoupled

5 0.8 0.0 0.3 0.3

10 1.7 2.3 1.2 1.4

15 1.8 3.2 1.3 1.7

20 1.3 4.0 1.3 1.8

30 2.1 6.3 2.3 1.9

Table 9 CMS convexity adjustments (in bp) for different expiries for the 10-year tenor

Expiry 1years 5years 10years 20years 30years

Optimal CA (step A) 1.75 10.62 20.24 35.02 49.41

Decoupled CA (step B) 1.75 10.63 20.52 37.14 60.41

Table 9 presents the optimal convexity adjustments for CMS swaps of tenor 10years
using the market data of Mercurio and Pallavicini resulting from the first step of the
decoupled calibration method. With a cubic spline interpolation on these adjustments,
the error in market CMS spreads is then essentially zero. The adjustments resulting
from the second step are also displayed for indication.

As evidenced in Tables 7 and 8, the error in the swaptions volatilities and in the
CMS spreads is as small as, or smaller than the decoupled calibration when compared
to the global calibration. In Fig. 9, we look at the smile generated by the quintic
collocation calibrated with a penalty of 1 (which corresponds to a balanced fit of
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Fig. 9 20× 10 swaption smile, calibrated with a penalty factor of 10,000 (exact CMS spread prices) and a
penalty factor of 1 (balanced fit corresponding to Table 8)

market CMS spreads vs. swaption volatilities as in Table 8) and a penalty of 10,000
(which corresponds to a nearly exact fit to the CMS spreads).

Instead of using a monotonic quintic polynomial, we could have used a monotonic
cubic polynomial with quadratic left and right C1-extrapolation. Two parameters of
each extrapolation would be set by the value and slope continuity conditions, and the
remaining extra parameter could be used to calibrate the tail against the CMS prices.
Overall, it would involve the same number of parameters to calibrate and would likely
be more flexible. The calibration technique would, however, remain the same: All
the parameters would need to be recalibrated as changes in the extrapolation result in
changes in the first two moments of the distribution as well.

8 Limitations of the stochastic collocation

A question which remains is whether the stochastic collocation method can also fit
multimodal distributions well?

Theorem 1 For any continuous survival distribution function GY , there exists a
stochastic collocation polynomial gN which can approximate the survival distribution
to any given accuracy ε > 0 across an interval [a, b] of R.
Proof The function g(x) = G−1

Y (1 − Φ(x)) is continuous andmonotone onR.Wolib-
ner (1951) and Lorentz and Zeller (1968) have shown that for any η > 0, there exists a
monotone polynomial gN ,η such that supx∈[a,b]

∥∥g(x) − gN ,η(x)
∥∥ ≤ η on any interval

[a, b] of R. From Eq. (2), the approximate survival distribution corresponding to the

123



Model-free stochastic collocation for an arbitrage-free… 705

collocation polynomial gN ,η is GN ,η = 1− Φ ◦ g−1
N ,η where the symbol ◦ denotes the

function composition.
Let I = [gN ,η(a), gN ,η(b)], Φ ◦ g−1

N ,η and thus GN ,η are also monotone and con-

tinuous on I . Let J = [1−Φ(b), 1−Φ(a)], and hN ,η = gN ,η ◦Φ−1 ◦ (1− id) where
id is the identity function. We have G−1

Y = g ◦ Φ−1 ◦ (1− id). As Φ−1 ◦ (1− id) is
continuous and monotone, we have

sup
y∈J

∥∥∥G−1
Y (y) − hN ,η(y)

∥∥∥ ≤ η.

As h−1
N is continuous and monotone on I , we also have

sup
x∈I

∥∥∥G−1
Y ◦ h−1

N ,η(x) − x
∥∥∥ ≤ η. (32)

The uniform continuity of GY implies that for each ε > 0, we can find an η > 0 such
that, if Eq. (32) holds, then

sup
x∈I

∥∥∥h−1
N ,η(x) − GY (x)

∥∥∥ ≤ ε.

	

In reality, simple multimodal distributions can be challenging to approximate in

practice, as they might require a very high degree of the collocation polynomial for
an accurate representation. In order to illustrate this, we consider an equally weighted
mixture of two Gaussian distributions of standard deviation 0.1 centered, respectively,
at f1 = 0.8 and f2 = 1.2. We can price vanilla options based on this density, simply
by summing the prices of two options using a forward at, respectively, f1 and f2
under the Bachelier model. We set the forward F(0, T ) = 1 and consider 20 options
of maturity T = 1 and equidistant strikes between 0.5 and 1.5.

The Black volatility smile implied by this model is absolutely not realistic (Fig. 10),
but it is perfectly valid and arbitrage-free theoretically, and we can still calibrate our
models to it.

Figure 11a shows that the cubic and quintic polynomial collocations do not allow
to capture the bimodality at all. The nonic polynomial does better in this respect, but
the implied distribution is still quite poor.

One solution, here, is to collocate on a monotonic cubic spline (Fig. 11b). The
simple algorithms (Dougherty et al. 1989; Huynh 1993) to produce monotone cubic
splines are only guaranteed to be of class C1. While the stochastic collocation can
be applied to C1 functions, the probability density will then only be of class C0. The
more difficult issue is the proper choice of the knots of the spline. How many knots
should be used? If we place a knot at each market strike, we will overfit and end up
with many wiggles in the probability density, like with the Andreasen–Huge method
(Fig. 1b).

Furthermore, the problem of optimizing the spline is numerically more challeng-
ing, given that the parameterization does not enforce automatically monotonicity or
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Fig. 10 Black implied volatility smile for a bimodal distribution and the calibrated stochastic collocation
smiles with a quintic and a nonic polynomial
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(b) Spline collocation.

Fig. 11 Probability density obtained by the stochastic collocation of a reference bimodal distribution

martingality. Regardingmonotonicity, in the case of the algorithm fromHyman (1983)
or Dougherty et al. (1989), a nonlinear filter is applied, which could make the opti-
mizer get stuck in a local minimum. Finally, there is the issue of which boundary
conditions and which extrapolation to choose. A linear extrapolation, combined with
the so-called natural boundary conditions, would result in a smooth density,11 but the
linear extrapolation still has to be of positive slope in order to guarantee the mono-
tonicity overR. A priori, this is not guaranteed. An alternative is to rely on the forward

11 Although this makes the model relatively rigid toward the wings representation.
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difference estimate as the slope, along with clamped boundary conditions, at the cost
of losing the continuity of the probability density at the boundaries.

9 Conclusion

We have shown how to apply the stochastic collocation method directly to market
options quotes in order to produce a smooth and accurate interpolation and extrapo-
lation of the option prices, even on challenging equity options examples. A specific
isotonic parameterization was used to ensure the monotonicity of the collocation poly-
nomial as well as the conservation of the zeroth and first moments transparently during
the optimization, guaranteeing the absence of arbitrages.

The polynomial stochastic collocation leads to a smooth implied probability density,
without any artificial peak, even with high degrees of the collocation polynomial. We
also applied the technique to interest rate derivatives. This results in closed-form
formula for CMS convexity adjustments, which can thus be easily calibrated jointly
with interest rate swaptions.

Finally, we illustrated, on a theoretical example, how the polynomial stochastic
collocation had difficulties in capturing multimodal distributions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

A Gaussian kernel smoothing

Let (xi , yi )i=0,...,m be m + 1 given points. Using the points (x̂k)k=0,...,n , which are
typically within the interval (x0, xm), a smooth interpolation is given by the function
g defined by

g(x) = 1∑n
k=0 ψλ(x − x̂k)

n∑
k=0

αkψλ(x − x̂k) (33)

for x ∈ R, n ≤ m and where ψλ is the kernel. The Gaussian kernel is defined by

ψλ(u) = 1

λ
√
2π

e− u2

2λ2 . (34)

The calibration consists in finding the αi that minimizes the given error measure on the
input (xi , yi )i=0,...,m . The solution can be found by QR decomposition of the linear
problem

⎛
⎜⎝

ψλ(x0 − x̂0) ψλ(x0 − x̂1) . . . ψλ(x0 − x̂n)
...

... . . .
...

ψλ(xm − x̂0) ψλ(xm − x̂1) . . . ψλ(xm − x̂n)

⎞
⎟⎠

⎛
⎜⎝

α0
...

αn

⎞
⎟⎠
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=
⎛
⎜⎝

y0
∑n

k=0ψλ(x0 − x̂k)
...

ym
∑n

k=0ψλ(xm − x̂k)

⎞
⎟⎠ . (35)

The xi are typically option strikes, log-moneynesses or deltas. The yi are the cor-
responding option implied volatilities. Wystup (2015) applies the method in terms of
option deltas. There are multiple delta definitions in the context of volatility interpo-
lation; we use the undiscounted call option forward delta:

� = Φ

(
1

σ
√
T
ln

F(0, T )

K
+ 1

2
σ
√
T

)
(36)

where Φ is the cumulative normal distribution function, F(0, T ) is the forward to
maturity T , K is the option strike and σ is the corresponding option volatility.

When thepoints are defined in delta,weneed tofind thedelta for a givenoption strike
in order to compute the option implied volatility or the option price for a given strike.
But the delta is also a function of the implied volatility. This is a nonlinear problem.
Equation 36,withσ = g(�), is solved by a numerical solver such as Toms348 (Alefeld
et al. 1995) or a simple bisection, starting at � = 0.5, in the interval [0, 1].

Wystup recommends a bandwidth of 0.25;wefind that a bandwidth of 0.5minimizes
the root-mean-square error of implied volatilities on our example.

B Mixture of lognormal distributions

Let (xi , yi )i=0,...,m be m + 1 given points. Using the points (x̂k)k=0,...,n , which are
typically within the interval (x0, xm), a kernel estimate of the density on the points x̂k
is

g(x) =
n∑

k=0

αkψλk (x, x̂k), (37)

where ψλk is a kernel of bandwidth λk , along with the condition
∑n

k=0 αk = 1 and
αk ≥ 0 for k = 0, . . . , n.

In our case, (yi )i=0,...,m are option prices, and we want to estimate the underlying
distribution.We then consider thatψλk (x) is a Gaussian and x is a logarithmic function
of the option strike K , x = ln(K ). In order to map the kernel exactly to the Black–
Scholes probability density, we use

ψλk (x, x̂k) = 1

λk
√
2π

e
−

(
x−x̂k+ 1

2 λ2k

)2
2λ2k

−x̂k
. (38)

The option price of strike K = ex is then given by

V (x) =
n∑

k=0

αkVBlack(e
x , ex̂k , λk, 1), (39)
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where VBlack(K , f , λ, T ) is the price of a vanilla option of maturity T and strike K
given by the Black-76 formula for an asset of forward f and volatility λ.

The calibration consists then finding the parameters αk, x̂k, λk that minimize the
measure MV . In the calibration, we will also add the martingality constraint, which
will ensure that the put-call parity holds exactly in the mixture model. This translates
to the additional constraint

n∑
k=0

αke
x̂k = F(0, T ), (40)

where F(0, T ) is the underlying asset forward to maturity.
We can enforce the constraints by a variable transformation. The

√
αk are located

on the hypersphere of radius R = 1 in R
n+1. Let θ ∈ R

n , a point u ∈ R
n+1 is on the

hypersphere if and only if

uk = R cos(θk)
k−1∏
j=0

sin(θ j ) (41)

for k = 0, . . . , n − 1 and un = ∏n
j=0 sin(θ j ). We thus use the transform αk = u2k . It

is invertible and the inverse is

θk = π

2
− arctan

⎛
⎝ uk√∑n

j=k+1 u
2
j

⎞
⎠ , (42)

or directly in terms of αk :

θk = π

2
− arctan

(√
αk∑n

j=k+1 α j

)
. (43)

The martingality condition can be enforced the same way, using the intermediate
variable zk = αkex̂k . Indeed, Eq. (40) means that zk is located on the hypersphere of
radius R = √

F(0, T ) in Rn+1.
This allows the use of an unconstrained algorithm such as Levenberg–Marquardt

to minimize the error measure MV on R
3n+1. As an initial guess, we use αk = 1

n+1 ,

x̂k = F(0, T ), λk = σATM
√
T where σATM is the implied volatility of the option whose

strike is closest to the forward price.
If negative strikes are allowed, we can replace lognormal distributions by nor-

mal distributions, and the Black–Scholes formula by the Bachelier one. Note that if
the bandwidth (λk) and the mean (x̂k) are fixed in advance, the problem becomes a
quadratic programming problem (Table 10).
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Table 10 Calibrated mixture of lognormal distributions against 1m SPX500 options as of February 05,
2018, for different number of distributions

Mixture of 2 lognormals

α 0.1664 0.8336

ex̂ 2208.46 2713.91

λ 0.1561 0.04033

Mixture of 4 lognormals

α 0.09789 0.2739 0.3489 0.2793

ex̂ 2203.35 2523.00 2701.93 2793.91

λ 0.2467 0.06519 0.02442 0.006543

Mixture of 6 lognormals

α 0.02164 0.1121 0.2480 0.2593 0.1794 0.1795

ex̂ 2045.69 2242.37 2551.67 2696.07 2812.76 2771.53

λ 0.5711 0.1129 0.04712 0.01909 1.576e−05 0.008333

C An algorithm to build a good convex set from themarket call
option prices

Let (yi )i=0,...,m be the market option strikes and (ci )i=0,...,m the corresponding call
option prices. Boyd and Vandenberghe (2004, p. 338) show that the least-squares
convex piecewise-linear function f (y) = maxi=0,...,m ĉi−gi (y−yi )fitting the (yi , ci )
is the solution of a quadratic programming problem:

minimize
m∑
i=0

(ci − ĉi )
2

subject to ĉi + gi (y j − yi ) ≤ ĉ j , i, j = 0, . . . ,m,

and − 1 + ε < gi < −ε, i = 0, . . . ,m.

where ĉi , gi are 2(m + 1) free parameters. The constraints on gi make sure that
our piecewise-linear function respects the call prices no-arbitrage bounds. Most of
those constraints are redundant with the convexity constraints: they can be reduced
to −1 + ε < g0 and gm < −ε. A robust quadratic solver such as CVXOPT can be
used, and we have then a good initial convex estimate of the call prices by evaluating
this piecewise-linear function at each market strike. The estimate is thus given by
(yi , ĉi )i=0,...,m .

For 75 option quotes, the constraints consist in a sparsematrix of 5775 rows and 150
columns. The python implementation of CVXOPT takes 0.38 s to solve the quadratic
programming problem on an Intel Core i7 7700U processor.

123



Model-free stochastic collocation for an arbitrage-free… 711

D Implied volatility quotes for vanilla options on SPX500 expiring on
March 7, 2018, as of February 5, 2018

The implied volatilities were obtained by using the mid-price of call and put options.
The forward price is implied from the put-call parity relationship (Table 11).

E Example code

The following Matlab/Octave code will calibrate the collocated polynomial to market
implied volatilities, without any filtering of the market quotes. The code is meant only
as an illustration of the method and is not particularly robust or fast.

Listing 1 makeIsotonicCollocation.m - Matlab/Octave code to compute the optimal collocation polynomial
for a given set of option strikes and vols.

function C = makeIsotonicCollocation(strikes , vols , tte , forward , degree)
m = length(strikes);
[prices , vegas] = blackCall(strikes , forward , vols , tte);
dx = diff(strikes ,1); dz = diff(prices ,1)./dx;
s = (dx(1:m-2) .* dz(2:m-1) + dx(2:m-1) .* dz(1:m-2)) ./ (dx(1:m-2)+dx(2:m-1));
x = -stdnormal_inv(-s);
binfilter = !isnan(x); x = x(binfilter); y = strikes (2:m-1)(binfilter);
cubic = polyfit(x,y,3); cubic (4)=forward -cubic (2);
if cubic (2)^2 - 3* cubic (3)*cubic (1) >= 0

M = [1, 0, 0; 0, sum(x.^2), sum(x.^4); 0, sum(x.^4), sum(x.^6)];
R = [forward; sum(x.*y); sum(x.^3 .* y)];
C = M \ R;
cubic = [abs(C(3)), 0, abs(C(2)), forward ];

end
C1 = [sqrt (3* cubic (1)), cubic (2)/sqrt (3* cubic (1))];
C2 = [sqrt(cubic (3)-cubic (2) ^2/(3* cubic (1)))];
C1p = zeros (1,( degree +1) /2); C2p = zeros(1, (degree -1) /2);
C1p(length(C1p)-length(C1)+1: length(C1p)) = C1;
C2p(length(C2p)-length(C2)+1: length(C2p)) = C2;
guess0 = [C1p C2p];
guess1 = lsqnonlin(@(guess)isopolyObjective(guess ,x,y,forward ,degree), guess0);
weights = min (1.0./ vegas ,1e6/forward);
sol = lsqnonlin(@(guess)isocolloObjective(guess1 ,strikes ,prices ,weights ,forward ,degree)

, guess1);
[C1 ,C2] = guessToIso(sol ,degree);
C = isoToPoly(C1 , C2 , forward);

end

function C = isoToPoly(C1 , C2 , forward)
C1sq = conv(C1 ,C1); C2sq = conv(C2 ,C2);
sq = zeros(1,length(C1sq));
sq(length(C1sq)-length(C2sq)+1: length(C1sq))=C2sq;
C = polyint(sq+C1sq);
polyForward = polyHermiteIntegral (C);
C(length(C)) = forward - polyForward;

end

function [C1 ,C2] = guessToIso(guess ,degree)
C1=guess ’(1:( degree +1) /2); C2=guess ’(( degree +1) /2+1: length(guess));

end

function value = isopolyObjective(guess ,x,y,forward , degree)
[C1 ,C2] = guessToIso(guess ,degree);
C = isoToPoly(C1 ,C2 ,forward);
value = polyval(C,x)-y;

end

function value = isocolloObjective(guess ,strikes ,prices ,weights ,forward ,degree)
[C1 ,C2] = guessToIso(guess ,degree);
C = isoToPoly(C1 ,C2 ,forward);
value = (priceEuropeanCall(C, strikes , forward)-prices) .* weights ;

end

function [price , vega] = blackCall(strike , forward , vol , tte)
vsqrtt = vol*sqrt(tte);
d1 = log(forward ./ strike) ./ vsqrtt + 0.5* vsqrtt; d2 = d1 - vsqrtt;
price = forward * stdnormal_cdf(d1) - strike .* stdnormal_cdf(d2);
vega = forward*stdnormal_pdf(d1)*sqrt(tte);

end
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Table 11 Implied volatility quotes for SPX500 options expiring on March 7, 2018, as of February 5, 2018.
In ACT/365, the option maturity is T = 0.082192

Strike Log-moneyness Implied vol. Strike Log-moneyness Implied vol.

1900 −0.325055 0.684883 2650 0.007651 0.280853

1950 −0.299079 0.6548 2655 0.009536 0.277035

2000 −0.273762 0.627972 2660 0.011417 0.273715

2050 −0.249069 0.604067 2665 0.013295 0.270891

2100 −0.224971 0.576923 2670 0.01517 0.267889

2150 −0.201441 0.551253 2675 0.017041 0.264533

2200 −0.178451 0.526025 2680 0.018908 0.262344

2250 −0.155979 0.500435 2685 0.020772 0.258598

2300 −0.134 0.474137 2690 0.022632 0.2555

2325 −0.123189 0.461716 2695 0.024489 0.25219

2350 −0.112493 0.445709 2700 0.026343 0.249534

2375 −0.101911 0.433661 2705 0.028193 0.246659

2400 −0.09144 0.42016 2710 0.03004 0.243553

2425 −0.081077 0.407463 2715 0.031883 0.240202

2450 −0.070821 0.393168 2720 0.033723 0.236588

2470 −0.062691 0.381405 2725 0.03556 0.234574

2475 −0.060668 0.3793 2730 0.037393 0.230407

2480 −0.05865 0.377109 2735 0.039223 0.227866

2490 −0.054626 0.372471 2740 0.041049 0.223049

2510 −0.046626 0.360294 2745 0.042872 0.219888

2520 −0.04265 0.354671 2750 0.044692 0.218498

2530 −0.03869 0.350533 2755 0.046509 0.214702

2540 −0.034745 0.34419 2760 0.048322 0.210506

2550 −0.030815 0.339273 2765 0.050132 0.208175

2560 −0.026902 0.333069 2770 0.051939 0.205508

2570 −0.023003 0.328206 2775 0.053742 0.199967

2575 −0.021059 0.324314 2780 0.055542 0.199007

2580 −0.019119 0.322041 2785 0.057339 0.195062

2590 −0.015251 0.3168 2790 0.059133 0.190547

2600 −0.011397 0.310914 2795 0.060923 0.188427

2610 −0.007559 0.305042 2800 0.062711 0.185893

2615 −0.005645 0.302416 2805 0.064495 0.182878

2620 −0.003734 0.299488 2810 0.066276 0.179292

2625 −0.001828 0.29609 2815 0.068053 0.175001

2630 7.5E−05 0.292378 2835 0.075133 0.185751

2635 0.001974 0.289516 2860 0.083913 0.207173

2640 0.00387 0.28584 2900 0.097802 0.225248

2645 0.005762 0.283342

The implied forward price is F(0, T ) = 2629.80. The interest rate is r = 0.97%
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Listing 2 priceEuropeanCall.m - Matlab/Octave code to price a European call option using a collocation
polynomial for a given set of option strikes.

function value = priceEuropeanCall(C, strike , forward)
ck = solveStrike(C,strike);
value = polyHermiteIntegralBounded(C,ck) - stdnormal_cdf(-ck).* strike;

end

function ck = solveStrike(C, strike)
ck = zeros(1,length(strike));
for i=1: length(strike)

Cp = C; Cp(length(Cp)) -= strike(i); Cp /= C(1);
r = roots(Cp); r = r(imag(r)==0);
ck(i) = r;

end
end

function value = polyHermiteIntegral (C)
n = length(C); value = C(n); m0=1; m1 = 0;
for i=2:(n-1)

m2 = m0 * (i-1); value += C(n-i)*m2; m0=m1; m1=m2;
end

end

function value = polyHermiteIntegralBounded(C,x0)
n = length(C); m0 = stdnormal_cdf(-x0); nx0 = stdnormal_pdf(x0); m1 = nx0;
value = C(n)*m0 + C(n-1)*m1;
for i=2:(n-1)

m2 = m0 * (i-1) + nx0 .* (x0 .^ (i-1));
value += C(n-i)*m2; m0=m1; m1=m2;

end
end
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