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Distributed sensor and actuator reconfiguration
for fault-tolerant networked control systems

André M. H. Teixeira, José Araújo, Henrik Sandberg and Karl H. Johansson

Abstract—In this paper, we address the problem of distributed
reconfiguration of networked control systems upon the removal
of misbehaving sensors and actuators. In particular, we consider
systems with redundant sensors and actuators cooperating to
recover from faults. Reconfiguration is performed while minimiz-
ing a steady-state estimation error covariance and a quadratic
control cost. A model-matching condition is imposed on the
reconfiguration scheme. It is shown that the reconfiguration
and its underlying computation can be distributed. Using an
average dwell-time approach, the stability of the distributed
reconfiguration scheme under finite-time termination is analyzed.
The approach is illustrated in a numerical example.

I. INTRODUCTION

Modern control systems are often operated over large-scale,
complex networked infrastructures such as power networks,
building automation systems, power plants and transportation
systems. The proliferation of low-cost embedded systems with
radio capabilities has enabled the deployment of systems with
increased performance and flexibility. However, these systems
become increasingly complex and must be efficiently designed
and operated. Several steps have been taken in this direction,
in the development of resilient and fault-tolerant architectures
and technologies [1], [2] and plug-and-play control [3], [4],
[5]. In this paper, we focus on distributed sensor and actuator
reconfiguration in over-sensed and over-actuated networked
control systems with a high degree of redundancy. In the
event of malfunctioning actuators, sensors, or other system
components, control systems may exhibit poor performances
or even become unstable [2], [6]. Thus, the design of fault-
tolerant control systems is of major importance. Examples
of safety-critical systems that must be resilient to faults and
cyberattacks include power networks, aircrafts, nuclear power
plants and chemical plants.

Since the 1970s, much research has been conducted in fault-
tolerant control systems, fault detection and diagnosis (FDD)
and reconfigurable control [7], [2], [8], [9], [10], [1], [11].
FDD deals with the identification of faults [10], [1], [12],
while reconfigurable control proposes methods to reconfigure
a system after a faulty component has been detected and
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disabled. The objectives of reconfiguration are generally to
recover stabilization of the system, maintaining the same
state trajectory (also known as model-matching), achieving
the same equilibrium point or minimizing the loss in perfor-
mance inflicted by the fault. Model-matching reconfiguration,
in particular, has been the focus of much of the research
in this area [8]. Many types of faults in sensors, actuators
and other system components have been considered in both
linear and nonlinear systems. However, the vast majority of
the solutions rely on a centralized approach [13], [14], [15],
[16], [17]. Due to the increased complexity and size of current
control systems, such techniques may be impractical [18],
[6]. Through the increased computation and communication
capabilities of embedded devices in these systems, FDD can
technically move from a centralized implementation to a
distributed one. However, distributed FDD and reconfiguration
to enable distributed fault-tolerant systems has been much
less explored. The architecture of such systems is discussed
in [19], [20], [21], while in [22] a distributed FDD is em-
ployed to perform a centralized reconfiguration. To the best
of our knowledge, distributed reconfiguration has not yet been
addressed in the literature.

In this paper, we address the problem of distributed re-
configuration for networked control systems with misbehaving
sensors and actuators by exploiting the existing redundancy.
Assuming that the sensor and actuator redundancy is high
enough to guarantee perfect model-matching of the nominal
dynamics with only healthy sensors, we propose a distributed
algorithm to perform the reconfiguration. The proposed dis-
tributed method guarantees closed-loop stability and mini-
mizes the steady-state estimation error covariance and a linear-
quadratic control cost under faults and cyberattacks while
achieving model-matching: the desired closed-loop estimation
error and dynamics remain the same before and after removing
the misbehaving devices. The distributed algorithm is shown to
converge to the optimal solution asymptotically. Additionally,
the stability of the closed-loop system is analyzed when the
distributed reconfiguration algorithms terminates in finite-time.

The rest of this paper is organized as follows. Section II
presents the system architecture and formulates the problem.
The centralized solution to the reconfiguration problem is
presented in Section III. In Section IV it is shown that
the reconfiguration can be distributed among the sensor or
actuator nodes and an efficient algorithm is devised. For
faults occurring sufficiently far apart in time, thus satisfying a
given average dwell-time condition, stability properties of the
system under the proposed distributed reconfiguration scheme
are given in Section V. Finally, numerical examples illustrate
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Fig. 1: Networked control system with a network of sensors
S1, S2 and S3, aggregator nodes F1 and F2 and actuators
A1, A2 and A3. Sensors and actuators are responsible for
reconfiguring themselves when system failures occur.

the distributed reconfiguration methods in Section VI and
Section VII concludes this paper.

A. Notation

The Kronecker product of matrix A and B is denoted as
A⊗B and the vectorization operation as vec(A). A matrix A is
denoted as positive definite if A � 0 and positive semi-definite
when A � 0. The trace of matrix A is denoted as tr(A). For
a vector x, ‖x‖ =

√
x>x denotes the Euclidean norm of x.

Given a matrix A, ‖A‖2 = maxu 6=0
‖Au‖
‖u‖ denotes the induced

2-norm of A, while ‖A‖F =
(
tr(A>A)

) 1
2 corresponds to its

Frobenius norm. Let κ(A) = ‖A‖2‖A†‖2 denote the condition
number of matrix A, and A† the pseudoinverse of A. The
notation | · | represents the cardinality of a set, and A \ B
denotes the set obtained by removing set B ⊆ A from set A.

A network is represented by an undirected graph G(V, E)
with vertex set V and edge set E ⊆ V × V . The edge
ek = (i, j) ∈ E indicates that nodes i and j can exchange
information. Denote Ni = {j|j 6= i, (i, j) ∈ E} as the
neighbor set of node i.

II. PROBLEM FORMULATION

The architecture of the networked control system considered
in this work is depicted in Fig. 1. This architecture has two
networks, one of sensors and one of actuators. Each network
has a certain level of redundancy, which means that nominal
operation can be maintained in spite of some components
being removed. The precise meaning of redundancy in our
setup will be given later in this section. Each sensor or actuator
is able to exchange information with its neighbors within the
network. In typical applications, such as building automation
and industrial process control, a large number of sensors is
expected to be deployed. To reduce the sensor-to-controller
communication, the information from the sensor nodes is fused
at aggregator nodes, which connect to the estimator. The
estimator is responsible for computing the state-estimate to
be broadcasted to the actuators in the network, which then
compute the control input values. The individual components
of the system are described below.

A. System model

Suppose the plant is modeled by a stochastic linear time-
invariant differential equation,

dx(t) = Ax(t) dt+BΓu(t)u(t) dt+ dw(t), (1)

dy(t) = Γy(t)
(
Cx(t) dt+ dv(t)

)
, (2)

with a state x(t) ∈ Rn, y(t) ∈ Rp and u(t) ∈ Rm
are the measurement vector and input vector, respectively,
with redundancy in their components, and w(t) ∈ Rn and
v(t) ∈ Rp are independent Wiener processes with uncorrelated
increments. The incremental covariances are W dt and V dt,
respectively. Moreover, processes w(t) and v(t) are assumed
to be mutually uncorrelated [23].

The sensor nodes apply a local linear transformation to the
measurements and transmit these values to aggregation nodes,
which compute z(t) ∈ Rs as the fusion of the sensor data

dz(t) = T dy(t) = TΓyCx(t) dt+ TΓy dv(t), (3)

where T ∈ Rs×p is the aggregation matrix, with s ≤ p, and
z(t) is transmitted to the estimator.

We consider the presence of misbehaving sensors and
actuators, which could be acting according to different types
of failures such as outages [16], partial degradation and loss
of effectiveness [17], incipient faults [24], or even controlled
by malicious cyber adversaries [25], [26]. Furthermore, we
suppose that misbehaving devices are detected and isolated
using suitable FDD schemes [1], [10], [12], after which they
are removed from the system. Once the misbehaving devices
have been removed, reconfiguration of the closed-loop system
takes place, which is the focus of this work.

The removal of misbehaving sensors and actuators is mod-
elled by the diagonal matrices Γy(t) ∈ Rp×p and Γu(t) ∈
Rm×m, respectively, with [Γy(t)]ii = γyi(t) ∈ {0, 1} and
[Γu(t)]ii = γui(t) ∈ {0, 1}. Here γyi(t) (γui(t)) represents
the status of sensor (actuator) i at time t, where γyi(t) = 1
(γui(t) = 1) means that the sensor (actuator) is healthy, while
γyi(t) = 0 (γui(t) = 0) indicates sensor (actuator) has been
disabled. The system is initially under nominal conditions,
hence Γy(t) = I and Γu(t) = I for t < t0.

For the sake of clarity of the presentation, all misbehaving
devices are assumed to be removed simultaneously at time
t = t0 and remain unchanged thereafter, which allows the
time argument to be omitted. Note, however, that the methods
devised in this paper directly apply to the non-simultaneous
case, by running the proposed reconfiguration algorithm se-
quentially with the occurrence of each new fault, which is
further investigated in Section V.

The sensor and actuator networks are represented by the
connected and undirected graphs Gy(Vy, Ey) with |Vy| = p
vertices and Gu(Vu, Eu) with |Vu| = m vertices, respectively.
For simplicity of presentation, we assume that each aggregator
node is connected to all sensor nodes. The set of sensor and
actuator nodes is defined as V , Vy ∪Vu, whereas we denote
Vf ⊆ V as the set of misbehaving nodes that have been
removed and we let the set of healthy nodes be Vh , V \Vf .

We assume that the controller is given by the continuous-
time linear-quadratic Gaussian (LQG) controller [23]. Let the



pair (TC,A) be observable and (A,B) be controllable. Next,
we describe the controller and estimator design under nominal
conditions with Γu = I and Γy = I . For LQG control, the
feedback gain is obtained as the minimizer of the control cost
Jc , lim

τ→∞
Jc(τ), where

Jc(τ) ,
1

τ

∫ τ

0

E
{
x(t)>Qx(t) + u(t)>Ru(t)

}
dt, (4)

and Q � 0 and R � 0 are weight matrices. We assume R is
diagonal. The optimal LQ controller is given by

u(t) = −Kx̂(t) = −R−1B>Px̂(t), (5)

where x̂(t) is the state estimate and P the solution to the
Riccati equation A>P + PA − PBR−1B>P + Q = 0. The
estimate is computed by the Kalman-Bucy filter [23] as follows

dx̂(t) = (A− LTC)x̂(t) dt+Bu(t) dt+ Ldz(t), (6)

with L = ΣC>T>(TV T>)−1, where Σ =
limt→∞E{e(t)e(t)>} is the steady-state covariance matrix
of the estimation error e(t) = x̂(t)−x(t) given by the Riccati
equation AΣ + ΣA> − ΣC>T>(TV T>)−1TCΣ + W = 0.
The Kalman-Bucy filter minimizes the expected mean-squared
error, which we denote as the estimation cost function:

Je , lim
τ→∞

1

τ

∫ τ

0

E
{
e(t)>e(t)

}
dt. (7)

From now on we drop the time argument (t) when it is
clear from the context.

B. Reconfiguration problem

Consider a scenario where several misbehaving sensor and
actuator nodes have been disabled, yielding Γu 6= I and Γy 6=
I . A possible corrective action is to modify the aggregation
matrix T and feedback matrix K so that only the remaining
healthy sensors and actuators are used to guarantee a certain
level of performance of the system. Let ũ ∈ Rm and z̃ ∈ Rs
denote the reconfigured control and sensor fusion signals:

dz̃ = T̃ dy = T̃ΓyCxdt+ T̃Γy dv,

ũ = −K̃x̂.
(8)

Denote Ãc(K̃) = A − BΓuK̃ and Ãe(T̃ ) = A − LT̃ΓyC
as the system matrices for the closed-loop dynamics of the
system and estimator, respectively. The objective of the re-
configuration is to achieve model-matching [15], [8] for both
the estimation dynamics and the closed-loop system dynamics
by computing T̃ and K̃ after the removal of sensors and
actuators, respectively. Model-matching is a common reconfig-
uration goal in fault-tolerant systems, as it guarantees that the
original system dynamics are preserved even in the presence
of faults. The definition of model-matching reconfiguration is
as follows. Let us denote the closed-loop estimator dynamics
before the fault as Ae = A − LTC and the nominal closed-
loop system matrix as Ac = A−BK. Then, model-matching
on the estimation error dynamics is achieved if Ãe(T̃ ) = Ae
for some new aggregation matrix T̃ . Model-matching on the
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Fig. 2: Digraph representation of a system with high sensing
and actuation redundancy. Faulty actuators and sensors (u4 and
y1) are depicted in red and with dot-dashed edges. Nodes used
to achieve perfect model-matching are represented in green.

closed-loop system dynamics is achieved if Ãc(K̃) = Ac for
some new feedback gain matrix K̃.

A possible structure of a system with sufficiently high
redundancy to allow perfect model-matching independently of
K and T is illustrated in Figure 2. For instance, the input u4

can be compensated by u2 and u5, as they affect x3 and x5,
respectively. However, since u2 also affects x1, the use of u2

must in turn be compensated by u1. In short, denoting bi as
the i-th column of B, the structural system in Figure 2 has
enough redundancy to ensure that there exist scalars α1, α2,
and α5 such that α1b1 + α2b2 + α5b5 = b4. In other terms,
the actuation redundancy ensures that Im(B) ≡ Im(BΓu).

However, by taking the gain matrices into consideration, less
redundancy can be considered, as in the following assumption.

Assumption 1: The sensor and actuator networks have suf-
ficient redundancy such that model-matching is feasible when
sensors and actuators are removed, i.e., Im(BK) ⊆ Im(BΓu)
and Im(C>T>) ⊆ Im(C>Γy).

Although the perfect model-matching conditions may seem
restrictive in classical control systems, large-scale networked
control systems indeed have a large number of redundant
components that may satisfy Assumption 1, as in the case
of application examples such as distributed control of wind-
farms [27], farming and livestock systems [3], smart grids
with multiple distributed energy resources [26], and building
management systems [25].

In case model-matching would not be feasible, i.e., Ae or
Ac would no longer be achievable with the healthy nodes,
different admissible closed-loop matrices must be considered.
After new feasible matrices Ae and Ac have been computed,
the methods proposed in this paper could be readily applied.

As the model-matching constraints are under-determined,
i.e., they admit multiple solutions, we propose to find the
model-matching solutions that minimize certain quadratic
costs. In particular, the cost function for the sensor recon-
figuration is the quadratic estimation cost (7)

Je(T̃ ) = lim
τ→∞

1

τ

∫ τ

0

E
{
ẽ>ẽ

}
dt, (9)

where ẽ is the estimation error after the misbehaving sensors
have been detected and removed. Furthermore, we define
the objective function of the actuator reconfiguration as the



quadratic control cost for the reconfigured control input

Jc(K̃) = lim
τ→∞

1

τ

∫ τ

0

E

{
x>
(
Q+ K̃>ΓuRΓuK̃

)
x

}
dt,

s.t. ẋ = (A−BΓuK̃)x,
(10)

where the expectation is taken with respect to the initial condi-
tion x(0), which is a zero-mean Gaussian random variable with
the positive definite covariance matrix R0 = E

{
x(0)x(0)>

}
.

The sensor and actuator networked reconfiguration problem
is to find the reconfigured aggregation matrix T̃ and feedback
gain matrix K̃ that minimize the estimation (9) and control
cost (10), respectively, subject to the model-matching condi-
tion. The sensor reconfiguration can be re-formulated as

min
T̃

Je(T̃ )

s.t. A− LT̃ΓyC = A− LTC,
(11)

while the actuator reconfiguration problem is

min
K̃

Jc(K̃)

s.t. A−BΓuK̃ = A−BK.
(12)

The solution to these optimization problems may be
achieved in a centralized or distributed manner. Next, we
describe a centralized approach to solve them. Later, we
propose an efficient distributed solution based solely on lo-
cal information exchange among sensor nodes and actuators
nodes. In both cases, we neglect the computation times and
consider that the solutions are computed instantaneously with
respect to the process dynamics. In Section V we analyze the
stability properties of the proposed distributed algorithm when
the reconfiguration is not instantaneous.

III. CENTRALIZED SENSOR AND ACTUATOR
RECONFIGURATION

We now tackle the centralized sensor and actuator reconfigu-
ration problems. Their solutions are derived and the centralized
reconfiguration mechanisms are illustrated.

A. Centralized sensor reconfiguration

The optimal solution to (11) can be characterized as follows.

Proposition 1: The solution to the sensor reconfiguration
problem (11) is

T̃ ? = TC(C>V −1ΓyC)†C>ΓyV
−1. (13)

In order to prove Proposition 1 we use the following lemma.

Lemma 1: Optimization problem (11) is equivalent to

min
T̃

tr
(

(W + LT̃ΓyV ΓyT̃
>L>)Ze

)
s.t. LTC = LT̃ΓyC

0 = A>e Ze + ZeAe + I.

(14)

Proof: The proof is given in the Appendix.
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Fig. 3: Networked control system with centralized sensor and
actuator reconfiguration. Faults are reported by the sensors
and actuators to the centralized estimator. Red dashed arrows
represent the transmission of information related to faults.

We now derive the optimal solution to (14), which is also the
solution to the sensor reconfiguration problem (11).

Proof of Proposition 1: Consider the optimization prob-
lem (14), which is convex. Note that the second equality
constraint is a Lyapunov equation with the Hurwitz system
matrix Ae, determined by the model-matching condition.
Hence, the variable Ze is uniquely defined by the constraint
and can be computed before hand. The Lagrangian function

for (14) is L(T̃ ,Λ) = tr

((
W + LT̃ΓyV ΓyT̃

>L>
)
Ze

)
+

tr

(
Λ>
(
LTC − LT̃ΓyC

))
, where Λ ∈ Rn×n represents the

Lagrange multipliers. Using the trace derivative expressions,
the Karush-Kuhn-Tucker (KKT) optimality conditions can be
written as

0 =
∂

∂T̃
L(T̃ ,Λ) = 2L>ZeLT̃ΓyV Γy − L>ΛC>Γy

0 = LTC − LT̃ΓyC

and can be rewritten as

0 = T̃Γy −
1

2
(L>ZeL)†L>ΛC>V −1Γy

0 = LTC(C>V −1ΓyC)† − 1

2
L(L>ZeL)†L>Λ.

Solving the above equations yields the optimal solution (13).
Fig. 3 illustrates the centralized reconfiguration that is

performed by a system component denoted as reconfiguration
manager. A fault occurs at sensor S2, which detects that it is
faulty, reporting it to the reconfiguration manager which now
knows Γy . The reconfiguration manager solves (13) to derive
the new aggregation matrix T̃ = [T̃1 . . . T̃p], where T̃i is a
column vector corresponding to the i-th column of T̃ . Then,
T̃1 is sent to sensor S1 and T̃3 to sensor S3, which compute
T̃1y1 and T̃3y3, where T̃iyi = [[T̃iyi]1 . . . [T̃iyi]s]

>. Each non-
zero component [T̃iyi]j is sent to the j-th aggregator, allowing



each aggregator node to compute zj and transmit this value to
the estimator.

B. Centralized actuator reconfiguration

The optimal centralized actuator reconfiguration is now
presented, which uses the following lemma.

Lemma 2: The optimization problem (12) is equivalent to

min
K̃

tr
(

(Q+ K̃>ΓuRΓuK̃)Zc

)
s.t. BK = BΓuK̃

0 = AcZc + ZcA
>
c +R0.

(15)

Following similar steps as in Proposition 1, the optimal
centralized actuator reconfiguration is characterized as follows.

Proposition 2: The solution to the actuator reconfiguration
problem (12) is

K̃? = ΓuR
−1B>(BΓuR

−1B>)†BK. (16)

Fig. 3 depicts also a fault in the actuator network. A fault
occurs at actuator A2, which reports to the reconfiguration
manager. The reconfiguration manager then solves (15) to
derive the new controller K̃ = [K̃>1 . . . K̃>m]>, where K̃i is
a row vector corresponding to the i-th row of K̃. Then, K̃1

is transmitted to to actuator A1 and K̃3 to actuator A3, which
allows them to compute and apply ũ1 and ũ3, respectively.

We highlight that the centralized actuator reconfiguration
solution may be also obtained through other problem formu-
lations. In [11], the authors proposed to solve actuator redun-
dancy through control allocation, which was formulated as an
optimization problem using the concept of virtual actuators. By
appropriately choosing the objective function, the solution (16)
can be obtained. Moreover, the same result may be obtained
using the pseudo-inverse method from [28], [29] when R has
identical elements.

The centralized reconfiguration scheme requires a central-
ized entity to compute the optimal T and K matrices and
then inform the corresponding sensors and actuators. However,
since each sensor/actuator may have a unique encoding/control
policy, the dissemination of the optimal matrices requires a
point-to-point communication from the centralized entity to
each node. This not only represents high computation and
communication costs, but it also results in a single point
of failure: the centralized entity. Therefore, this centralized
approach does not enjoy the usual benefits of distributed solu-
tions: increased scalability, modularity, and failure tolerance.
In the next section we propose an optimal distributed solution
to the reconfiguration problems (11) and (12).

IV. DISTRIBUTED SENSOR AND ACTUATOR
RECONFIGURATION

In this section, we propose a distributed algorithm to solve
the reconfiguration problem. We begin by rewriting the equiv-
alent centralized sensor and actuator reconfiguration problems
(14) and (15), respectively, as quadratic optimization problems
with a separable cost function and a global equality constraint.

First, the following notation is introduced. Consider a set of
l vectors ηi ∈ Rr and matrices Hi ∈ Rn2×r, for i = 1, ..., l,

and define H =
[
H1 . . . Hl

]
and η =

[
η>1 . . . η>l

]>
.

Define ω ∈ Rn2

and let S ∈ Rl×l be a diagonal matrix with
non-negative entries.

Lemma 3: The sensor and actuator reconfiguration prob-
lems (14) and (15) can be rewritten in the following form:

min
η1,...,ηl

l∑
i=1

Sii‖ηi‖2

s.t.
l∑
i=1

Hiηi = ω.

(17)

For the sensor case, we have l = p, T̃ =
[
η1 . . . ηp

]
,

H = (C>Γ>y )⊗ L, ω = vec (LTC) and Sii = [Γy]iiVii.
The actuator case is retrieved with l = m, K̃ =[
η1 . . . ηm

]>
, H = (I ⊗BΓu)P−1

r with Pr ∈ Rmn×mn

being a permutation matrix such that vec
(
K̃
)

= P−1
r η,

ω = vec (BK) and Sii = [Γu]iiRii.
Proof: The proof is given in the Appendix.

Remark 1: The variables ηi ∈ Rr and ωi ∈ Rn2

have the
following interpretation. For the case of sensor reconfiguration,
each ηi represents the aggregation matrix T̃ components for
the i-th sensor (i-th column of T̃ ), i.e., how sensor i transforms
its information to be transmitted to each of the fusion nodes
that it is connected to. In the same manner, each η>i corre-
sponds to the i-th actuator state-feedback matrix K̃ compo-
nents, i.e., the i-th row of K̃. The value of ω corresponds to the
vectorization of the estimation error dynamics and closed-loop
system dynamics before a fault occurs, for the case of sensor
and actuator reconfiguration, respectively. This represents the
quantity that ideally must be maintained by the combination of
all sensor (actuator) nodes during the reconfiguration, which
refers to the model-matching constraint.

The optimization problem (17) may be solved distributively
using dual decomposition and iterative algorithms [30], [31]. A
requirement is that the network remains connected when faults
occur. Using dual decomposition methods, the optimal solution
to problem (17) is guaranteed to be achieved asymptotically
in the number of iterations [31]. The main drawback is that
the global equality constraint of the problem is only ensured
asymptotically. Therefore, model-matching is not guaranteed
at every iteration. Due to this fact, we later analyse the
stability of the system under the distributed reconfiguration
in Section V.

To solve the dual optimization problem of (17) we resort
to the distributed alternating direction method of multipliers
(ADMM) algorithm [31]. In the following, the decision vari-
able η at each iteration k ≥ 0 is denoted as η[k].

Theorem 1: Consider the equivalent form of the sensor and
actuator reconfigurations problems (11) and (12), respectively,
presented in Lemma 3. Define q1, . . . , ql ∈ Rn2

such that∑l
i=1 qi = ω and the local variables ζ1, . . . , ζl ∈ Rn2

. Let

ηi[k] =
1

2
S−1
ii H

>
i ζi[k], (18)



where ζi[k] is computed by the following algorithm:

ζi[k + 1] =

(
1

2
HiS

−1
ii H

>
i + ρ|Ni|I

)−1

×

qi − ρ ∑
j∈Ni

µi,(i,j)[k]− π(i,j)[k]


ξi,(i,j)[k + 1] = αζi[k + 1] + (1− α)π(i,j)[k],

π(i,j)[k + 1] =
1

2

(
ξi,(i,j)[k + 1] + µi,(i,j)[k]

+ ξj,(i,j)[k + 1] + µj,(i,j)[k]
)
,

µi,(i,j)[k + 1] = µi,(i,j)[k] + ξi,(i,j)[k + 1]− π(i,j)[k + 1],

(19)

where ρ > 0 is the step size, α ∈ (0, 2) is a relaxation param-
eter, ρµi,(i,j) is the Lagrange multiplier of node i associated
with the constraint ζi = π(i,j), and ξi,(i,j)(k) is an auxiliary
variable private to node i associated with the edge (i, j).
Then, η[k] converges to the solution of (17), η?, from which
the solution to the sensor and actuator reconfigurations prob-
lems, (11) and (12), can be retrieved as T̃ ? =

[
η1 . . . ηp

]
and K̃? =

[
η1 . . . ηm

]>
, respectively.

Note that the ADMM algorithm in Theorem 1 is distributed,
since it only requires communication between neighbors to
exchange local variables. Methods to choose the parameters ρ
and α to increase the convergence speed are given in [32].

To prove Theorem 1, we first derive the dual form of (17).
Lemma 4: Let fi(ηi) = Siiη

>
i ηi. The optimization prob-

lem (17) can be rewritten in the following dual form:

min
{ζi}, {π(i,j)}

l∑
i=1

(
1

4
S−1
ii ζ

>
i HiH

>
i ζi − q>i ζi

)
s.t. ζi = π(i,j), ∀i ∈ V, j ∈ Ni.

(20)

Proof: [Proof of Theorem 1] The value of η[k] is obtained
as η[k] = argminϕifi(ϕi) − ζ

THiϕi = 1
2S
−1
ii H

>
i ζi[k]. The

ADMM algorithm (19) follows from [31] and is thus omitted.

Remark 2: The variables qi ∈ Rn2

and ζi ∈ Rn2

have
the following interpretation. The vector qi describes how the
vectorization of the closed-loop dynamics, i.e., ω, is assigned
among all nodes in the network. Note that the assignment is
only constrained by the condition

∑l
i=1 qi = ω, thus admitting

several solutions. The variable ζi, only available at node i, is
a local copy of the Lagrange multiplier associated with the
model-matching constraint Hη = ω.

The following result indicates how the parameters qi can be
updated locally by the healthy nodes after a fault has occurred.

Lemma 5: Let j ∈ Vf be an arbitrary faulty node, denote
J ⊆ Nj ∩Vh as a subset of its healthy neighbors and assume
J is not empty. Given the set {q̄i}i∈V such that

∑
i∈V q̄i = ω,

the set {qi}i∈V satisfying
∑
i∈Vh qi = ω can be computed as

qi =

{
q̄i, i 6∈ J

q̄i + νiq̄j , i ∈ J , (21)

where νi ≥ 0 for all i ∈ J and
∑
i∈J νi = 1.
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Fig. 4: Networked control system with distributed sensor and
actuator reconfiguration. Faults are detected by the sensors and
actuators which are responsible for the reconfiguration. Re-
configuration is achieved through the communication among
sensors and among actuators in a distributed manner through
the sensor and actuator network, respectively.

Algorithm 1 Distributed sensor/actuator reconfiguration

1) Detect and isolate sensor/actuator faults and disconnect
the faulty nodes at t = 0;

2) Locally compute qi as per Lemma 5;
3) Compute the optimal solution ζ?i to the dual prob-

lem (20) using the algorithm in Theorem 1;
4) Compute the primal optimal solution η?i =

1
2S
−1
ii H

>
i ζi(k);

5) Each sensor/actuator node i applies η?i .

The distributed reconfiguration algorithm can be summa-
rized in Algorithm 1. An illustration of the distributed sensor
and actuator reconfiguration is shown in Fig. 4 where a
fault occurs at sensor S3 and actuator A2 at t = t0. The
sensors locally infer that sensor S2 is no longer functioning, so
sensors S1 and S3 reconfigure themselves. This is performed
locally by each sensor computing the value of T̃1 and T̃3, and
calculating T̃1y1 and T̃3y3. Each component [T̃iyi]j is sent to
the j-th aggregator, allowing each aggregator node to compute
zj and transmit this value to the controller node. Similarly, the
actuators locally infer that actuator A2 is faulty, so actuators
A1 and A3 reconfigure themselves. This is a local operation
where each actuator computes the value of K̃1 and K̃3.

V. CLOSED-LOOP STABILITY UNDER DISTRIBUTED
RECONFIGURATION

The proposed distributed algorithm converges to the op-
timum asymptotically as it solves the dual problem. Primal
feasibility (model-matching), i.e., Hη[k] = ω, is only achieved
in the limit as the number of iterations k grows to infinity.
Therefore, one relevant concern is the system’s stability when
the dual algorithm is terminated in a finite number of itera-
tions. The results of this section are two-fold. First, assuming
that, on average, faults occur sufficiently far apart in time, we
provide results that guarantee global exponential stability if
the gain matrix produced by the reconfiguration algorithm in
finite time yields a Hurwitz closed-loop system matrix with a
known decay rate. Second, we derive an upper bound on the



number of iterations which ensures that a Hurwitz closed-loop
system matrix with a prescribed decay rate is obtained when
the dual algorithm is terminated.

A. Stability analysis

Consider the system model (1) and (2) without noise,
together with the control law (5) and the estimator (6), which
may be affected by faults occurring at different times. Next
we describe the behavior of the reconfiguration scheme, under
only actuator faults, for simplicity, and analyze its stability.
Similar results can be derived for the general case of both
sensor and actuators faults.

Under the proposed reconfiguration scheme, after each
fault i occurs, the distributed reconfiguration algorithm in
Theorem 1 is run for a finite number of iterations k̄ and a
suboptimal gain matrix is applied, yielding the closed-loop
system Ac + ∆(i)[k̄] with ∆(i)[k̄] defined by vec

(
∆(i)[k̄]

)
=

Hη[k̄]−ω. The algorithm may continue to run if no new fault
occurs and, when the optimal gain matrix is obtained, it is
applied to the system to recover the nominal dynamics, Ac.

Denoting t
(i)
f as the time instant at which the i-th fault

occurs, the system dynamics under multiple faults and the
proposed reconfiguration scheme can be expressed by the
switched system

ẋ(t) = (A−BΓ(i)
u K)x(t), for t ∈ [t

(i)
f , t(i)r )

ẋ(t) = (Ac + ∆(i)[k̄])x(t), for t ∈ [t(i)r , t(i)n )

ẋ(t) = Acx(t), for t ∈ [t(i)n , t
(i+1)
f ),

(22)

with initial condition x(t0) = x0, where t(i)r and t
(i)
n are the

time instants at which the finite-time and optimal gain matrices
are applied, with t0 ≤ t

(i)
f ≤ t

(i)
r ≤ t

(i)
n and t(i)n ≤ t

(i+1)
f for

all i. Note that the non-strict inequalities allow for new faults
to occur at different stages of the reconfiguration.

Recall that (22) is globally exponentially stable if there exist
positive scalar c and λ such that ‖x(t)‖ ≤ ce−λ(t−t0)‖x0‖.
Next we provide sufficient conditions establishing the global
stability of the switched system (22) when the faulty system
is unstable and Ac + ∆(i)[k̄] is Hurwitz.

We make the following definitions and assumptions on the
occurrence of faults. Let Nf (t0, t) be the number of faults
occurring within (t0, t), τf the average dwell time between
faults, and N0 the chatter bound.

Assumption 2: The occurrence of faults is such that the
following inequality holds: Nf (t0, t) ≤ N0 +

t− t0
τf

.

Assumption 3: There exist a ≤ 0 and positive scalars λf ,
λr, and λn such that

‖e(A−BΓ(i)
u K)t‖ ≤ ea+λf t, for all i

‖e(Ac+∆(i)[k̄])t‖ ≤ ea−λrt, for all i

‖eAct‖ ≤ ea−λnt.

Furthermore, we assume that λn ≥ λr holds, which captures
the fact that the nominal system decays faster than the system
reconfigured with a gain computed in finite time.

Remark 3: Given the system matrices of (22) for each i,
[33] describes methods to determine the scalars a, λf , λr,
and λn satisfying Assumption 3. While these methods can be
executed to compute λf and λn, by enumerating all possible
Γ

(i)
u , they cannot be used to determine λr since ∆(i)[k̄] is

unknown. In Section V-B, we provide a way to determine a
and λr satisfying the second inequality in Assumption 3 for
any matrix ∆(i)[k̄] satisfying ‖∆(i)[k̄]‖F ≤ δ.

Let τc(k̄) be the time required for completing k̄ iterations
of the reconfiguration algorithm.

Assumption 4: There exists some λ? ∈ (0, λr) such that the
following inequality holds:

τf > max

{
λf + λr
λr − λ?

τc(k̄),
a

λ?

}
.

Theorem 2: Consider the system dynamics under multiple
faults and the proposed reconfiguration scheme described
in (22), with Ac and Ac + ∆(i)[k̄] being Hurwitz for all i.
The switched system (22) is globally exponentially stable if
the occurrence of faults is such that Assumption 2 holds with
an arbitrary N0 > 0 and with an average dwell time between

faults τf > τc(k̄) +
a+ λfτc(k̄)

λr
.

Proof: The proof may be found in the appendix.
Theorem 2 guarantees global exponential stability for a

sufficiently large average dwell time between faults, even if
the faulty systems have unstable dynamics. Apart from the
requirements on the dwell time, the main required conditions
are that Ac + ∆[k̄] is Hurwitz and that one knows its decay
rate λr. Next we tackle these aspects by providing criteria
to terminate the reconfiguration algorithm in finite-time while
ensuring that the computed gain matrix yields a Hurwitz
closed-loop matrix with a prescribed decay rate.

B. Criteria for finite-time termination

Note that the closed-loop system dynamics and the esti-
mation error dynamics may each be described by a generic
system υ̇ = (D + ∆)υ with D stable and uncertainty ∆,
where vec (∆) = Hη[k] − ω. For the sensor reconfiguration
analysis, we have υ = x̂, D = Ae, H = (C>Γ>y ) ⊗ L and
ω = vec (LTC). Similarly, in the actuator reconfiguration case
υ = x, D = Ac, H = (I ⊗BΓu)P−1

r and ω = vec (BK).
First, based on [34], we recall a sufficient condition for

robust stability with bounded uncertainties that further ensures
a given decay rate, thus complying with Assumption 3.

Lemma 6: Given a Hurwitz matrix D and λr > 0, if there
exists a positive definite matrix X such that

D>X +XD +XX + δ2I + 2λrX ≺ 0,

then, for any norm-bounded uncertainty ‖∆‖F ≤ δ with δ >
0, the matrix D+∆ is Hurwitz and there exists a scalar a > 0
such that ‖e(D+∆)t‖ ≤ ea−λrt.

Theorem 3: Consider the sequence of vectors {η[k]} con-
verging to η? ∈ H = {η : Hη = ω} and define ∆[k] such
that vec

(
∆[k]

)
= Hη[k]− ω.

Suppose there exist matrices X � 0 and M � 0 satisfying
the matrix equation D>X + XD + X2+2λrX + M = 0



and a positive decreasing function of k, ε[k] > 0, such that
‖∆[k]‖F ≤ ε[k]‖∆[0]‖F holds for all k.

Define the integer k̄ such that the following inequality holds:

ε[k̄] <

√
λmin(M)

‖Hη[0]− ω‖
. (23)

Then, the system matrix D+ ∆[k] is Hurwitz with decay rate
λr ≥ 0 if the termination iteration k satisfies k ≥ k̄.

Proof: Suppose that ‖∆[k]‖F ≤ ε[k]‖∆[0]‖F and let
δ[k] = ‖∆[k]‖F . From Lemma 6, the closed-loop system ma-
trix at iteration k is guaranteed to be Hurwitz with decay rate
λr ≥ 0 if D>X+XD+X2+2λrX+δ[k]2I = −M+δ[k]2I ≺
0, which is ensured for k̄ when ε[k̄]δ[0] <

√
λmin(M).

Recalling that ε[k] is decreasing concludes the proof.
The above result provides a method to terminate the dual

algorithm while ensuring stability. It only requires knowledge
of the convergence properties of the dual algorithm, namely the
function ψ[k], and the initial distance ‖∆[0]‖F . The latter can
be computed when the reconfiguration algorithm is initialized,
since it only depends on the nominal controller and the initial
condition of the algorithm, η[0], which is determined by the
identification of the faulty nodes.

Convergence properties of distributed algorithms, and char-
acterization of their respective functions ψ[k], are readily avail-
able in the literature, see [31], [32], [35]. Next we combine
the results of Theorem 3 with the distributed ADMM algo-
rithm described in Theorem 1, and the respective convergence
properties analyzed in [32], to derive an explicit lower bound
on k̄ that ensures robust stability with a given decay rate.

Lemma 7: Consider the optimization problem (17), its
equivalent dual formulation (20), and the ADMM algorithm
described in Theorem 1. Let ζ? = limk→∞ ζ[k] be the optimal
solution to (20). Then, we have ‖ζ[k]−ζ?‖ ≤ ψ‖ζ[k−1]−ζ?‖
for all k with ψ ∈ [0 1).

Proof: The proof follows directly from [32, Theorem 1],
where the decay rate ψ can be found.

Theorem 4: Consider the optimization problem (17), its
equivalent dual formulation (20), and the ADMM algorithm
described in Theorem 1. The closed-loop system matrix ob-
tained at the iteration k from η[k] is guaranteed to be Hurwitz
with decay rate λr ≥ 0 for all k ≥ k̄ with

k̄ =


log(

√
λmin(M))− log

(
‖Hη[0]− ω‖κ(HS−1H>)

)
log(ψ)

 .
Proof: Since Hη[k] = −1/2HS−1H>ζ[k] for all k,

we can derive the following bound ‖Hη[k] − Hη?‖ ≤
‖1/2HS−1H>‖2‖(ζ[k]− ζ?)‖. Using Lemma 7, we have

‖Hη[k]−Hη?‖2 ≤ κ(HS−1H>)ψk‖Hη[0]−Hη?‖.

Recalling that ‖∆[0]‖F = ‖Hη[0]−ω‖ = ‖Hη[0]−Hη?‖ and
applying Theorem 3, we observe that the closed-loop matrix
satisfies the desired properties for all k such that

ψk <

√
λmin(M)

‖Hη[0]−Hη?‖κ(HS−1H>)
.

The proof concludes by taking the logarithm of both sides
and rearranging the terms.
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Fig. 5: Sensor and actuator network graph. The healthy nodes
are colored black and the faulty nodes are colored red.

Next we compute the matrices X and M that maximize
the magnitude of the uncertainty for which it is ensured that
D + ∆ is Hurwitz with decay rate λr ≥ 0.

Proposition 3: Denote X? and σ? as the optimal solution
to the convex optimization problem

max
X�0, σ>0

σ

s.t. 0 � D>X +XD + σI+2λrX

0 ≺

[
−D>X −XD − σI−2λrX X

X I

]
.

(24)

Then, matrix X? satisfies the robust stability constraint
D>X + XD + X2 + δ2I+2λrX ≺ 0 with δ2 = σ? being
the largest disturbance magnitude for which it is ensured that
D + ∆ is Hurwitz with decay rate λr ≥ 0. Additionally,
we have that the optimal matrix M is given by M? =
−D>X? −X?D − 2λrX

? −X?2 � 0.
Proof: The proof follows from Lemma 6.

The value k̄ assures that stability can be achieved in a
finite iterations. We remark that the lower bound k̄ obtained
from Theorem 4 is expected to be conservative, which will be
illustrated in the numerical example.

The calculation of k̄ as per Theorem 4 can be efficiently
performed in a centralized manner, by using the knowledge of
which nodes are faulty to compute H and η[0], which could
then be broadcast to all nodes. A more conservative value of
k̄ can be obtained in a distributed manner, by setting η[0] = 0
and using an upper bound of κ(HS−1H>) and ψ.

VI. NUMERICAL EXAMPLE

This section provides a numerical example that illustrates
the proposed distributed reconfiguration method. For an exper-
imental evaluation of the proposed methods in a room heating
scenario with a network of actuators, please see [36, Ch. 7].

A. Networked control system setup
In the following example, the aim is to control an unstable

second-order system with 9 sensors and 4 actuators. The



system dynamics, measured outputs and aggregated outputs
are given by (1), (2) and (3), respectively, where

A =

[
9 2.5
4 0

]
, B =

[
2.83 4.01 0.21 −0.58
−0.16 −0.64 2.86 4.73

]
,

C =



1 0.1
−2 −0.2
4 0.4

0.1 1
−0.5 −5
0.3 3
1 1
1 1

0.5 0.5


, T =



0.36 0.26 0
0.04 0.17 0
0.24 0 0.52

0 0.88 0.73
0.24 0 0.86

0 0.62 0.60
0 0.60 0.14
0 0.64 0.63

0.64 0 0.18



>

.

To enable reference tracking, the plant is augmented with two
integral states, representing the integral error at each physical
state. The control cost parameters are

R =

50 0 0 0
0 100 0 0
0 0 150 0
0 0 0 200

 , Q = 100I,

while the noise covariances are V = 0.4I and W = I .
Moreover, the state estimate and control input are given by
(6) and (5), respectively. The initial gains L and K are the
solutions to the LQG controller design problem. The ADMM
parameters in (19) are set to ρ = 1 and α = 1.5.

The sensor network graph is given in Figs. 5a and 5b while
the actuator network is depicted in Figs. 5c and 5d, for the
nominal and faulty cases, respectively.

B. Convergence of the distributed reconfiguration algorithm

We start by analyzing the performance of the distributed
reconfiguration scheme presented in Section IV for the sensor
and actuator faults depicted in Fig. 5. As performance indi-
cators, we consider the normalized objective function errors
|Je[k]−J?e | and |Jc[k]−J?c |, the errors in the model-matching
constraint ‖Heη[k]− we‖ and ‖Hcη[k]− wc‖ and the maxi-
mum real part of the eigenvalues of Ae[k] = A− LT̄ [k]ΓyC
and Ac[k] = A−BΓuK̄[k] that relates to the stability of the
intermediate reconfiguration solutions.

The results are depicted in Fig. 6. As it can be seen, the
distributed method asymptotically achieves the optimal cost
and guarantees the model-matching constraint. Moreover, the
state estimation error dynamics is unstable for the first 2 steps,
i.e., λr[k] = maxi

{
<{λi(Ae[k])}

}
> 0, k = 1, 2, while

the closed-loop dynamics are unstable for only the first step
since λr[k] = maxi

{
<{λi(Ac[k])}

}
> 0, k = 1. Applying

Theorem 4 from Section V, with λr = 0, we obtain the
guarantee that Ae[k] is stable for k ≥ k̄ = 53 steps and Ac[k]
is stable for k ≥ k̄ = 8 steps. Since Lemma 6 provides a
conservative stability guarantee, the obtained k̄ is expected
to be conservative. The distributed sensor reconfiguration
takes 15 steps to converge to |Je[k] − J?e | < 10−3 and
‖Heη[k] − we‖ < 10−1. Similarly, the distributed actuator
reconfiguration takes approximately 16 steps to converge.
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Fig. 6: Performance of the distributed sensor and actuator
reconfiguration method for the networks depicted in Fig. 5,
with λr[k] , maxi

{
<{λi(A(·)[k])}

}
.

C. Simulation results

The time-responses of the closed-loop system under the
faults in Fig. 5 are depicted in Fig. 7, which include the
state trajectories x(t), the control inputs u(t), and the running
control cost Jc(t) defined in (4). In Fig. 7 we depict three
cases: 1) no faults occur (solid line); 2) faults occur and
detection and isolation are instantaneous, but reconfiguration
is performed in real-time and intermediate reconfiguration
solutions are utilized at each time-step (dash-dotted line); 3)
faults occur, but no reconfiguration is performed (dashed line).

The second case aims at demonstrating the impact of
applying the reconfigured output before the reconfiguration
algorithm has converged to a stable closed-loop system. There-
fore, to better observe the impact of a slow real-time recon-
figuration in the system dynamics, the following two settings
are considered. First, the control law under reconfiguration
is set to zero immediately after the fault, which results in
an unstable open-loop system. Second, each iteration of the
reconfiguration is set to take 6 s to run, which includes both
computation and communication time. However, in practice,
much smaller computation and communication times can
be obtained, while the control policy under reconfiguration
may be, for instance, initialized at the pre-fault policy, thus
improving the performance of a real-time reconfiguration.

The sensor faults occur at time t = 20 s and the actuator
faults at t = 100 s. Observe that sensor faults have a small
influence in all of the cases, as verified in the plots of x(t)
and Jc(t). However, as it can be seen around t = 40 s, the
state trajectory x(t) when no reconfiguration is performed has
a large deviation from the nominal trajectory, which does not
occur when the proposed reconfiguration scheme is applied.

Fig.7 shows that the actuator fault has a more severe impact
in the second and third cases. In the second case, when
real-time reconfiguration is performed, we observe that the
state trajectory x(t) immediately deviates from the nominal
trajectory. This deviation is mainly due to the initialization of
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Fig. 7: Time-response of the state and estimation error trajecto-
ries and control input for the scenarios in Fig. 5. The reference
value to be tracked is depicted by the dotted line. Sensor faults
occur at time t = 20 s and actuator faults at t = 100 s. Three
cases are compared: no faults (solid), real-time reconfiguration
(dash-dotted) and no reconfiguration (dashed). The control
signals for the fault scenarios with and without reconfiguration
are denoted as uR(t) and uPI(t), respectively.

the reconfiguration algorithm, where the control law of each
actuator is initially set to zero, see the control signal plot uR(t)
for t ∈ [100, 106] s. However, as seen in the plot of uR(t), the
reconfiguration scheme reaches a stabilizing control law after
τ = 12 s (i.e., when two iterations are completed, c.f. Fig. 6)
and x(t) begins converging to the nominal trajectory.

On the other hand, the third case with no reconfiguration has
a better transient behavior, but worse performance in the long-
term. In fact, as seen in the plot of Jc(t) for t ∈ [110, 150] s,
the system without reconfiguration has a lower running cost
that the reconfigured system. However, as time runs on, the
trajectories without reconfiguration substantially deviate from
the nominal trajectories (i.e., trajectories of the system without
faults), see the plots for x(t) and uPI(t) from t = 140 s
onwards. This is further corroborated by the behavior of the
cost Jc(t) for t ∈ [160, 300] s.

VII. CONCLUSIONS

In this work, we developed a distributed reconfiguration
method for networked control systems under sensor and
actuator faults. The proposed approach guarantees a model-
matching reconfiguration while minimizing the steady-state
estimation error covariance and a quadratic control cost. The
distributed reconfiguration method is guaranteed to achieve
the same solution as the centralized reconfiguration, while
only requiring local cooperation among healthy sensors and
actuators. A numerical example demonstrates the effectiveness
of our approach.
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APPENDIX

A. Proof of Lemma 1

The first constraint in (14) is the model-matching constraint
which is derived as follows. Following Sec. II-B, model-
matching is guaranteed if the closed-loop matrix before fault is
the same as after the fault, i.e., A−LT̃ΓyC = Ae. Moreover,
the objective function and last constraint follow are given as
follows. The objective function Je in (9) is equivalent to Je =
tr(Σ̃), where Σ̃ is steady-state covariance of the estimation
error after a fault and defined as Σ̃ = limt→∞E

{
ẽ(t)ẽ(t)>

}
.

Additionally, under any given estimator gain L, Σ̃ is given by
the following Lyapunov equation (see [23] for details),

AeΣ̃ + Σ̃A>e +W + LT̃ΓyV Γy
>T̃>L> = 0.

The solution of the above Lyapunov equation, can also be
expressed as Σ̃ =

∫∞
0
eAet

(
W + LT̃ΓyV ΓyT̃

>L>
)
eA

>
e tdt.

Noticing that the term W + LT̃ΓyV ΓyT̃
>L>

is independent of time, one can arrive to the
following equivalence of the cost Je = tr(Σ̃) =

tr

((
W + LT̃ΓyV ΓyT̃

>L>
) ∫∞

0
eA

>
e teAetdt

)
. The proof

concludes by noticing that Ze =
∫∞

0
eA

>
e teAetdt is the

solution to the Lyapunov equation A>e Ze + ZeAe + I = 0.

B. Proof of Lemma 3

In order to prove Lemma 3, we rewrite the sensor and
actuator reconfiguration problems (14) and (15) as quadratic
optimization problems with equality constraints. Next we
derive the proof for the sensor reconfiguration, while the
actuator case is omitted for brevity.

Lemma 8: Define T̃ =
[
η1 · · · ηp

]
, ηi ∈ Rs and let

Hi ∈ Rn2×s for i = 1, . . . , p. Denoting H =
[
H1 . . . Hp

]
=(

C>Γ>y

)
⊗ L and ω = vec (LTC), the optimization prob-

lem (14) can be rewritten as

min
η1,...,ηp

p∑
i=1

[Γy]iiVii‖ηi‖2

s.t.
p∑
i=1

Hiηi = ω.

(25)

Proof: Recall that the cost Je in (7) is given by

Je = tr(Σ̃) = tr

((
W + LT̃ΓyV ΓyT

>L>
)
Ze

)
, as de-

rived in (14). As shown in Proposition 1, the optimal solu-
tion is independent of the constant terms W and L>ZeL,
which can be replaced with 0 and I , respectively. Since
V and Γ are diagonal, one can write the new objective
function as tr

(
T̃ΓyV ΓyT̃

>
)

= tr
(∑p

i=1[Γy]iiViiηiη
>
i

)
=∑p

i=1[Γy]iiVii‖ηi‖2. The model-matching constraint follows
directly by applying the vectorization operation.

C. Proof of Theorem 2

The proof closely follows that of [33, Thm. 1]. For
t > t0 such that t(q)n ≤ t < t

(q+1)
f , we have x(t) =∏q+1

i=1 e
Ac(t−t(i)n )e(Ac+∆(i)[k̄])(t(i)n −t

(i)
r )e(A−BΓ(i)

u K)(t(i)r −t
(i)
0 )x0.

Using the Assumption 3, we derive the upper bound

‖x(t)‖ ≤
q+1∏
i=1

(ea) e−λnTn(t)e−λrTr(t)eλfTf (t)‖x0‖,

where Tf (t), Tr(t), and Tn(t) are the total time for which the
corresponding modes in (22) are active, with t− t0 = Tf (t)+
Tr(t) + Tn(t). Note that, by design of the reconfiguration
scheme, t(i)r − t

(i)
0 ≤ τc(k̄) holds for all i, thus Tf (t) is

upperbounded by Tf (t) ≤ Nf (t0, t)τc(k̄). From this bound,
supposing λr ≤ λn, and Assumptions 2 and 4, we have

Tf (t)

t− t0
≤ τc(k̄)

τf
+
N0τc(k̄)

t− t0
≤ N0τc(k̄)

t− t0
+

(
1− τc(k̄)

τf

)
λr − λ?

λf + λ?

≤ N0τc(k̄)

t− t0
+
λr − λ?

λf + λ?
Tr(t)

t− t0
+
λn − λ?

λf + λ?
Tn(t)

t− t0
.

Thus we reach the inequality λfTf (t)−λrTr(t)−λnTn(t) ≤
−λ?(t− t0) + (λf + λ?)N0τc(k̄). Defining c = a(N0 + 1) +
(λf + λ?)N0τc(k̄), the proof follows by using Assumption 2
to derive the inequality ‖x(t)‖ ≤ ce

−(λ?− a
τf

)(t−t0)‖x0‖
and Assumption 4 to observe that λ? − a

τf
> 0. The

proof concludes by observing that the lower bound on τf
stated in the theorem satisfies Assumption 4 with λ? =

arg maxλ

{
λf + λr

λr − λ
τc(k̄),

a

λ

}
< λr.
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